
A system for describing and deciding properties of regular
languages using input altering transducers

By

Krystian Dudzinski

A Thesis Submitted to
Saint Mary's University, Halifax, Nova Scotia
in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Applied Science

May, 2011, Halifax, Nova Scotia

Copyright Krystian Dudzinski

Approved: Dr. Stavros Konstantinidis
Supervisor
Department of Mathematics and Computing Science

Approved: Dr. Mark Daley
External Examiner
Department of Computer Science
University of Western Ontario

Approved: Dr. Shyamala C. Sivakumar
Supervisory Committee Member
Department of Finance, Information Systems,
and Management Science

Approved: Dr. John Irving
Supervisory Committee Member
Department of Mathematics and Computing Science

Approved: Dr. Paul Muir
Program Representative

Approved: Dr. Pawan Lingras
Graduate Studies Representative

Date: July 19, 2011

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-83259-2
Our file Notre r6f6rence
ISBN: 978-0-494-83259-2

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

A system for describing and deciding properties of regular
languages using input altering transducers

By

Krystian Dudzinski

A Thesis Submitted to
Saint Mary's University, Halifax, Nova Scotia
in Part ial Fulfillment of the Requirements for

the Degree of Master of Science in Applied Science

May, 2011, Halifax, Nova Scotia

Copyright Krystian Dudzinski

Approved:
Dr. Stavros Konstantinidis
Supervisor
Department of Mathematics and Computing Science

Approved:
Dr. Mark Daley
External Examiner
Department of Computer Science
University of Western Ontario

Approved:
Dr. Shyamala C. Sivakumar
Supervisory Committee Member
Department of Finance, Information Systems,
and Management Science

Approved:
Dr. John Irving
Supervisory Committee Member
Department of Mathematics and Computing Science

Approved:
Dr. Paul Muir
Program Representative

Approved:
Dr. Pawan Lingras
Graduate Studies Representative

Date:

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to all the people

who, both directly and indirectly, made this thesis possible.

My supervisor, Dr. Stavros Konstantinidis, a great professor, a great mentor, and a

great person. For his commitment, patience, and guidance. It was a pleasure and an

honour to work with him.

The supervisory committee, Dr. Shyamala C. Sivakumar and Dr. John Irving for

their contribution.

The external examiner, Dr. Mark Daley, for the thorough revision of this thesis, an

insightful feedback, and helpful comments.

The Department of Mathematics and Computing Science, the Faculty of Science, and

the Faculty of Graduate Studies and Research for giving me the opportunity to study

at Saint Mary's University and the financial support.

All the faculty and the staff in the Department of Mathematics and Computing

Science. In particular I would like to thank Dr. Paul Muir and Dr. Pawan Lingras.

They are both wonderful professors, truly committed to their students, both inside

and outside the classroom.

My colleagues and fellow graduate students who significantly contributed to making

my experience at Saint Mary's University memorable.

The faculty and staff of Saint Mary's University. Tom Webb, for the opportunity

to work with him. Janet Stalker, for her help and commitment to improving my

communication skills. Dr. Dawn Jutla for the opportunity to look at computer

science from a different perspective.

My friends and colleagues that were there for me when I needed them.

Finally I would like to thank my family and loved ones. It is their faith and support

that helped me to get where I am right now. My parents, my grandmother, Kasia,

my friends, thank you!

Abstract

A system for describing and deciding properties of regular languages using input

altering transducers

By

Krystian Dudzinski

Abstract: We present a formal method for describing and deciding code related prop

erties of regular languages using input altering transducers. We also provide an

implementation of that method in the form of a web application. We introduce the

concept of an input altering transducer. We show how to use such transducers to

describe properties of languages and present examples of transducers describing some

well known properties (like suffix codes, prefix codes, infix codes, solid codes, and

others). We discuss some limitations of our method. In particular, all properties

that can be described using input altering transducers are 3-independence properties.

We also give an example of a 3-independence property that cannot be represented

using a transducer. We explain how our method is a specialisation of a more general

method based on language in-equations. We also discuss the relation between our

method and a method that uses sets of trajectories to describe properties. In par

ticular, we show how, for any given set of trajectories describing some property, to

build an input altering transducer describing the same property. We introduce the

concept of counterexample, which is a pair of words that, if a given language does

not belong to a given property, illustrate that fact. We show how we can incorporate

extracting such counterexample into our method. Finally, we provide some details on

the implementation and usage of the web application that was built as a part of this

research.

July 19, 2011.

Table of Contents

Chapter 1 Introduction 1

1.1 About our research 1

1.2 Thesis structure 3

Chapter 2 Basic Concepts 6

2.1 Set Notation 6

2.2 Alphabet, Word, Language 6

2.3 Regular Languages 7

2.4 Finite State Automata 7

2.5 Cartesian Product of Two Automata 12

2.6 Transducers 17

2.7 Cartesian Product of an Automaton and a Transducer 20

Chapter 3 Language Properties and Description Methods 23

3.1 Unique Decodability 23

3.2 Code Related Properties 24

3.3 Methods for Describing Code Related Properties 26

3.4 Existing Formal Methods for Describing Language Properties 28

3.4.1 Implicational Condition 28

3.4.2 Regular trajectories 31

3.4.3 Language in-equations 36

Chapter 4 Our Method 39

4.1 Describing Properties of Languages with Transducers 40

4.2 Constructing t(L) 42

4.3 The Final Product Construction and the Emptiness Test 45

4.4 Examples of Transducers Describing Well Known Properties 47

Chapter 5 Limitations 50

5.1 Input Altering Transducer 50

ii

5.2 Independence Properties 51

5.3 A 3-Independence Property Not Describable by an Input Altering Trans

ducer 52

Chapter 6 Further Discussion on Our Method 61

6.1 Complexity 61

6.2 More about Transducers Describing Properties 62

6.3 Transducers and Sets of Trajectories 63

6.3.1 Transforming a Set of Trajectories into an Input Altering Trans

ducer 64

6.3.2 Morphism of Trajectories 69

6.4 Our Method as a Specialisation of Language In-equations 71

6.5 Counterxample 72

6.5.1 First Approach 73

6.5.2 Second Approach 78

Chapter 7 Implementation 81

7.1 Implementation of the algorithms 82

7.2 User Interface 85

Chapter 8 Conclusion and Future Work 89

8.1 Conclusion and Discussion 89

8.2 Future Work 90

Bibliography 92

Chapter 1

l

Introduction

1.1 About our research

Information is contained in various structures, like pictures, sound, text, speech,

database records, and many more. Regardless of how the concept of information is

defined, we often need means of storing and transmitting those structures. For in

stance, consider speech. A means of storing and transmitting human speech is writing

it down. There are two aspects to that operation: something that we would consider

a hardware, which might be simply pen and paper, and some form of representing

speech in a graphical form in a way that it can be transformed back to its original

form. For the second aspect we require some form or representation that is suitable

for the hardware used, some form of a language. In computer science we use the

concept of languages, in particular formal languages, for representing information. A

formal language is a set of words over some alphabet. Given an alphabet £ = {0,1},

an example language over this alphabet might be: L\ = {1,10,100}. However, we

cannot just use an arbitrary set of words for representing information. Particular ap

plications, like data communication or DNA computing, require using languages that

satisfy certain constraints. For example some application in data communication may

require a language in which no word is a prefix of any other word in this language.

2

An example would be a language consisting of three words: L2 = {1,01,001}. We

say that the language L2 satisfies the prefix property. Note that the language L\ does

not satisfy the prefix property because 1 is a prefix of 10. The prefix property is only

one of many properties of languages. Investigating those properties is an important

branch of theoretical computer science. In particular, we investigate methods for

testing if a given language satisfies a particular property.

There is an abundance of algorithms in the literature for deciding language prop

erties. Most of those algorithms are specific to the property being tested. Lately,

however, there has been a trend toward developing uniform methods for deciding

and describing properties of languages. Each of those methods introduces a different

approach for expressing properties. However, to our knowledge there is a lack of

available implementation of any of those methods. We attempt to fill that gap.

In this thesis we introduce our method for describing and deciding properties of

languages. Our method requires a language in the form of a finite automaton (Fig.

1.1a) and is therefore applicable only to regular languages. The properties in our

method are described using transducers (Fig. 1.1b), which are well established objects

in theoretical computer science.

Provided with a language in the form of a finite automaton and a property in the

form of a transducer, we can use our method to test if the given language satisfies

that property (Fig. 1.2)

3

1 0 0 a/X

(a) An automaton representing a language L\ = (b) A transducer describing the pre-
{1,10,100}. Circles denote states of the automa- fix property. The main difference from
ton. In particular a double circle denotes a final an automaton is that every transition

is labelled with a pair of input/output
symbols.

state and an arrow with no origin state denotes
a start state. Arrows denote transitions and the
labels by transitions denote the input symbols.

Figure 1.1: Sample input machines for our method.

Automaton
Representing
Language

Our
Method

Decision

Figure 1.2: A conceptual diagram showing the functionality of our
method

As a part of this research we deliver an implementation of our method in the form of

a web application. This application is hosted on the university server and is available

for unrestricted access.

1.2 Thesis structure

Following we present an overview of the structure of this thesis.

In Chapter 2 we present basic definitions and conceptual tools that are crucial for our

research. We define the concepts of regular language, automaton, transducer, and

the Cartesian Product construction.

4

In Chapter 3 we take a look at known properties of languages. We focus on code

related properties. In the same chapter we review existing methods for describing

and deciding properties of languages. In particular, we look at methods based on

implication conditions, regular trajectories, and language in-equations

Chapter 4 provides a detailed description of our method for defining and describ

ing properties of languages. We explain how input altering transducers are used to

describe properties in the context of our method. We also show how the product con

struction is applied in our method. Finally we present example transducers describing

many known properties of regular languages.

In Chapter 5 we discuss some limitations of our method. We establish what type of

properties our method can be applied to. In particular, all properties that can be

described using our method fall in to the class of independence properties. We take a

closer look at the concept of input altering transducers, and we provide an example

and a proof of an independence property that can not be represented using an input

altering transducer.

Chapter 6 covers further details regarding our method. We investigate the complexity

of our method, the relation between a transducer and its inverse in the context of

our method, and dependencies between our method and some other existing methods

presented in Chapter 3. We also introduce the concept of a counterexample, that is a

pair of words with particular relation to each other that is a subset of a tested language

5

if that language does not satisfy the given property. We explain how extracting such

conuterexample works in our method.

One of the main goals of our research was to provide a usable implementation of

our method in the form of a web application. Chapter 7 contains details of that

implementation. We discuss both the implementation of algorithms as well as the

user interface. Finally, the format for describing automata and traducers in our

system is explained and some examples are provided.

The final chapter contains a summary of our work and a direction for future research

and implementation.

Chapter 2

6

Basic Concepts

In this chapter we introduce the basic concepts and notation used to investigate

regular languages.

2.1 Set Notation

If a set is denoted by S then | 5 | denotes the cardinality of that set, and 2 s denotes

all possible subsets of that set.

2.2 Alphabet, Word, Language

An alphabet, denoted by S, is a finite nonempty set. Elements of an alphabet are

called symbols. A word is a finite sequence of symbols over a given alphabet E. A

language is a set of words. It may contain the empty word, which is denoted by

A. The basic operation on words is concatenation. If u and v are words then their

concatenation is uv and consists of the symbols of u followed by those of v. Obviously,

u\ = \u = u.

Example: An alphabet consisting of two symbols : £ = {a,b}. An example language

over that alphabet consisting of 3 words: {abb, ab, a}. Also, if u = abb and v = ab,

then uv = abbab.

7

2.3 Regular Languages

The set of all possible languages is denoted by 2E*. Among those languages we can

distinguish four hierarchical groups, depending on the type of grammar or machine

used to describe the languages [7]:

• nonrestricted grammars - accepted by Turing machines

• context-sensitive grammars - accepted by linear bounded Turing machines

• context-free grammars - accepted by pushdown automata

• regular grammars - accepted by finite automata

In this paper we investigate languages from the last group. By definition a regular

language is a formal language accepted by a finite state automaton.

2.4 Finite State Automata

We base our definition of a Finite State Automaton (FSA) on the one given in [42].

The only difference is that our definition of FSA allows multiple start states. It is

known that such modification does not affect the computational power of the model.

A finite state automaton (also referred to as a finite automaton) is a quintuple (Q,

E, 5, S, F) where:

• Q is the finite set of states

8

• S is the input alphabet

• 5 is the transition function or the transition set

• S is the set of start states

• F is the set of final states

An FSA has a graphical representation (Fig. 2.1). States are denoted by circles,

transitions are denoted by arrows with labels that connect states. Start states are

denoted by an arrow with no origin state and final states are denoted by double

circles.

Figure 2.1: An example FSA with Q = {1,2,3,4}, S = {a,b}, start
states S = {1} and final states F = {2,3,4}.

We say that an automaton accepts a word if that word is created by concatenating

the transition labels encountered when moving along a path from a start state to a

final state. Such path is called an accepting path.

Example: Let us consider the automaton in Fig. 2.1. 1 is the single start state in

this automaton. The first transition, labelled with a, takes us from state 1 to state 2

while accepting symbol a. From state 2 the transition labelled with b takes us to state

3 which is a final state. Along the path from the start state to one of the final states

9

the automaton accepted the word ah. Therefore ah is one of the words accepted by this

automaton.

We say that an automaton A accepts or represents a language L, if every word of this

language is accepted by A and every word accepted by A belongs to L.

Example: Let us again consider the automaton in Fig. 2.1. This automaton accepts

the following set of words: {a,ab,aba}. Therefore, this automaton represents the

language consisting of these three words.

We define the size of an automaton A to be:

\A\ = \Q\ + \5\ (2.1)

where \Q\ is the number of states in A, and j<51 is the number of transitions in A.

There are two types of automata that we often deal with in the literature [42]:

• Deterministic Finite Automaton (DFA)

• Nondeterministic Finite Automaton (NFA).

In a DFA the next state is always uniquely determined by the current state and input

symbol. Hence the transition function has the following form:

5 : Q x S -+Q (2.2)

10

An NFA is a generalization of a DFA. Formally an NFA is defined in the same way as

a DFA. The difference is in the transition function. In an NFA, it has the following

form:

5:QxY>->2Q (2.3)

where 2Q denotes all subsets of the states in an NFA. This means there might be more

than one transition from a state with the same label. Consequently, the next state is

not uniquely determined by the pair of the current state and the input symbol.

(a) DFA - every state has at most one (b) NFA - more than one transition
transition going out with the same la- with the same label originating from
bel state 1

Figure 2.2: Two equivalent Finite Automata: deterministic (2.2a) and
nondeterministic (2.2b).

Both types of automata accept the same family of regular languages [34]. Further

more, two automata are called equivalent if they accept the same language. For every

NFA we can build an equivalent DFA [42], however for a particular NFA with n states

an equivalent DFA can have up to 2" states.

In order to accept a given word, an automaton has to perform a certain computation,

which is simply an accepting path. We denote that computation by listing the tran

sitions that are visited during the computation in the order that they are visited. We

11

use the following notation to describe a single transition in an automaton:

(P, *, q) (2.4)

where p is the origin state, q is the destination state, a is the label of that transition,

and q £ 5{p, a). For example the automaton in Fig. 2.2b in order to accept the word

aaab has to perform the following computation:

(l , a , l) , (l , a , l) , (l , a , 2) , (2,6,2)

An automaton can contain some states that do not belong to any accepting path.

Such states are either unreachable from any start state of the automaton via any

computation, or none of the final states can be reached from that state regardless of

the input word. The process of removing such states and all corresponding transitions

from an automaton is called trimming. It does not affect the language accepted by

an automaton and can decrease the size of such automaton.

Example: An automaton accepting the language L = ab*, before and after trimming

(Fig. 2.3).

If a nondeterministic automaton contains any transitions labelled with the empty

words then it is called A-NFA. For every A-NFA we can build an equivalent NFA with

no A-transitions. Methods for building NFA based on A-NFA are well known and

(a) Untrimmed automaton (b) Trimmed automaton

Figure 2.3: An automaton accepting the language L = ab* untrimmed
(left) and trimmed (right).

therefore we will not introduce them in this thesis. However, we do refer the reader

to [13] and [42] where such a methods are discussed.

There are other well known operations on regular languages crucial for our methods

like Cartesian Product.

2.5 Cartesian Product of Two Automata

Using Cartesian product operation we can construct an automaton that represents

the intersection of two languages. If an automaton A\ accepts the language L\ and an

automaton A2 accepts the language L2 we can construct an automaton A3 accepting

the language L3 such that:

U n L2 = U (2.5)

A classical method for building such automaton is a Cartesian Product operation [13].

Let us consider two regular languages. Now let us assume that those two languages

13

are represented by two NFAs (no A-transitions), A\ and A2. For every transition

(pi,cr,qi) in A\ and (j)2,cr, qx) in A2 (i.e. transitions with matching labels) we add a

transition ((pi,p2), a, (ft, Q2)) to automaton A3. The set of start states in As includes

all states that are pairs of start states from automata A\ and A2. In other words a

state {pi, pi) becomes a start state in As if and only if pi is a start state in A\ and

p2 is a start state in A2. Similarly, the set of final states in A3 consists of states that

are pairs of final states of A\ and A2. That means a state (qi, q2) becomes final state

if and only if q\ is a final state in A\ and q2 is a final state in A2.

The product construction can be inefficient, as in some cases a created transition is

not accessible from a start state. In such a case the transition does not affect the

represented language but contributes to the size of the product automaton. Therefore

a more efficient solution is to build a product automaton incrementally [13]. In this

approach we start by denning the set of starting states. Next we build transitions

going out of start states. At the same time we build a set of states that are reachable

from any start state. In the next iteration we only build transitions going out of this

set of reachable states and expand the set of reachable states with states that are

constructed in that iteration. The procedure ends when all reachable transitions in

the new automaton have been constructed. The automaton constructed in this way

is equivalent to the automaton built directly by definition, but it is often smaller.

Example: Let us consider two automata, A\ (Fig. 2.4a) and A2 (Fig. 2.4b).

14

(a) The automaton A\ (b) The automaton A2

Figure 2.4

In the first step we identify the the set of start states of the product automaton (Fig.

2.5).

-0:3)
Figure 2.5: A start state of the product automaton

Then we build a set of transitions going out of start states (Fig. 2.6).

Figure 2.6: Adding transitions from a starting state

We can now identify a set of states that are directly reachable from any start state

(in this case state (1,1)). Both state 2 in A\ and state 2 in A2 are final states and

therefore the state (2,2) becomes a final state in the product automaton. Next we go

to the first state in the set of reachable states that have not yet been processed and

build all transitions going out from that state (Fig. 2.7).

15

Figure 2.7: Adding transitions going out of state (2,1)

There are no new states added in this step because all added transitions lead to states

that have been already established. In the final step we build a transition going out of

a final state (Fig. 2.8).

b
Figure 2.8: Adding transitions that go out of state 2,1

What if one of the automata is not in a A-free form? One approach is to transform it

into its A-free equivalent. A second approach, the one that we follow in this disserta

tion, is to expand both automata with a set of special A-transitions (we refer to those

transitions as self A-transitions) that do not affect the accepted language (Fig. 2.9).

Every added self A-transition ends in the same state as it starts. After we apply the

modification we proceed with the product construction in the same way as we did in

case of A-free automata, treating A as any other symbol in the language.

16

A A
i) An automaton with A-transitions (b) The expanded automaton with self

A-transitions

Figure 2.9

Example: Let us consider two automata: A\ (Fig. 2.10a) and A2 (Fig. 2.10b).
a b

A

(a) An automaton A\ (b) An automaton A2

Figure 2.10

Because automaton A\ has a X-transition we need to expand both automata involved

in product construction with self X-transitions (Fig. 2.11).

b X X

X

X X
(a) The automaton A\ expanded with (b) The automaton Ai expanded with
self A-transitions self A-transitions

Figure 2.11

Now can we build the product automaton using the incremental approach described

before. We start by identifying the set of starting states (Fig. 2.12a). Next we build

transitions going out of the start state (Fig. 2.12b). We keep expanding the set of

reachable states by building transitions only from reachable states (Fig. 2.12c). The

17

process is complete once we have processed all the reachable transitions (Fig. 2.12c).

A

(a) A start state of the product au- (b) Transitions going out of the start
tomaton state

(c) Building new transitions

(2,1))A

(d) The final product

Figure 2.12

2.6 Transducers

A transducer (Fig. 2.13) is a 6-tuple (Q, E, F, 8, S, F) where:

Q is the finite set of states

E is the input alphabet

T is the output alphabet

8 is the set of transitions

18

• S is the set of start states

• F is the set of final states

It extends the concept of NFA. For every accepted word, it produces a set of possible

output words. The transition set in a transducer has the following form:

5CQx (£U{A» x (ru{A}) x Q (2.6)

A transducer represents a relation between words. A transducer is called functional

or single valued if, for every input word, it produces at most one output word. Nonde-

terministic Sequential Machine (NSM) is a particular kind of transducer where every

transition is limited to one input and one output symbol.

b/b a/A

Figure 2.13: An example of a transducer

We sometimes present transducers in shorthand form using a to represent all the

possible letters from an alphabet. For instance, if a presented transducer has a tran

sition in the form (p, cr/A, q) and we want to apply it where both the input language

and the output language are over the alphabet {a, b, c} this transition is a shorthand

for the following set of transitions: (p,a/X,q), (p,b/\,q), (p, c/A, q). The transition

(p,a/a,q) is a shorthand for (p,a/a,q), (p,b/b,q), (p,c/c,q). Finally the transition

19

(p,a/a',q) is a shorthand for (p,a/b,q), (p,a/c,q), (p,b/a,q) (p,b/c,q), (p,c/a,q),

(p, c/b, q). An example of a transducer for the particular alphabet is presented in Fig.

2.14.

Similarly to an automaton, a transducer performs computations. In case of a trans

ducer every accepting computation accepts one word and produces one word. There

fore one computation represents a pair of an input and an output word. Similarly to

the case of an automaton, we denote a computation by listing all visited transitions

in the order that they were visited. For example for the transducer in Fig. 2.13

to accept the word bba and produce the word ba, this transducer can perform the

following computation:

(l ,6 /6 , l) , (l ,6 /a ,2) , (2 ,a /A,2)

In general, t(u) denotes the set of all possible outputs of t on input u. If we assume

t to be the transducer in Fig. 2.13 then ba £ t(bba), and also t(ab) = 0.

a/a a/a' a/a b/a

b/b a/b
(a) A transducer in shorthand notation (b) The same transducer over the al

phabet {a, b}

Figure 2.14: A transducer in shorthand form and its interpretation over
the alphabet {a, b}

20

We can perform the trimming operation on transducers. Such a procedure removes

transitions and states in a way that the relation represented by a transducer is not

affected.

2.7 Cartesian Product of an Automaton and a Transducer

We can apply the relation represented by a transducer not only to a particular word

but also to a whole language. Formally such an operation is denoted as follows:

t(Lx) = L2 (2.7)

where L\ is the original language, t is the transducer representing a relation, and L2 is

the language representing all the words that are a result of applying relation t to any

word in L\. We construct an automaton A2 that represents L2 using a product-like

operation on a pair of an automaton A\ representing L\ and a transducer t. For

every transition (pi,cr,qi) in A\ and {p2,cr/'y,q2) in t, that is a pair of transitions

with matching input labels, we build a transition ((.Pi,P2),7, (<7i><72)) in A2 where 7

is the output symbol of the corresponding transducer transition. We identify the set

of start states and final states of A2 in the same way we do in a case of a product

operation of two automata.

Transducers can include transitions with A as both input or output symbols. A given

transducer, unlike an NFA, might not have a A-free equivalent. Therefore, before

applying the product construction, we have to expand both the automaton and the

21

transducer with self A-transitions (Fig. 2.15). Transitions added to the transducer

have A as both input and output. Note that adding self A-transitions does not affect

the relation represented by a transducer.

b/a a/A b/a a/A

-8
A/A A/A

(a) A transducer with A-transitions (b) The same transducer expanded
with self A-transitions

Figure 2.15: An example transducer expanded with self A-transitions

Example: Fig. 2.16 presents the process of building the product of the automaton in

Fig. 2.9b and the transducer in Fig. 2.15b

22

9̂
(a) Start state of the product automa- (b) Transitions going out of the start
ton state

(c) Building new transitions

A((2, lj-~(g!J))A

(d) The final product

Figure 2.16: The product of the automaton in Fig. 2.9b and the trans
ducer in Fig. 2.15b

Chapter 3

23

Language Properties and Description Methods

We define a language property to be a set of languages. In practice we usually choose

a set of languages that posses a certain common characteristic. We say that a lan

guage satisfies a property if it belongs to the set of languages defining that particular

property.

A common application of regular languages is encoding information. However, not

every language may be used for encoding. There are different properties that define

whether a language is an appropriate mean of encoding information. An important

type of properties are code related properties. There are a few existing methods for

deciding and describing such properties but they come with limitations.

In the first part of this chapter, we take a look at some classical and more recently

established properties of languages. In the second part, we provide an overview of

some existing general and formal methods for describing and deciding properties.

3.1 Unique Decodability

Unique decodablity is one of the most important and widely studied properties. This

property consists of languages that we call codes. Satisfying unique decodability is

24

usually a necessary condition for a language to be a lossless information transfer tool.

In the literature, this property is also referred to as the one-to-one property [29] or

unique decipherability [16]. We say that that a language belongs to that property if

every message over this language has a unique factorization over its code words.

Example: Let us consider the language L = {0,01,10}. The message 010 has two

possible factorizations over this language: (0)(10) and (01) (0). Thus L is not a code.

3.2 Code Related Properties

There is no unique definition for what a code related property is. In [21] and [25]

code related properties are the independence properties (see Section 5.2 for more

information on independence). Some classical code related properties are ([5] and

[29]):

• Prefix codes: no word in the language is a prefix of any other word in the same

language (Example: L\ = {01,11, 000} is a prefix code but L2 = {01,11, 010} is

not because 01 is a prefix o/OlO).

• Suffix codes: no word in the language is a suffix of any other word in the same

language (Example: L\ = {01,11, 000} is a suffix code but Li = {10,11, 010} is

not because 10 is a suffix o/OlO).

• Bifix codes: both prefix and suffix properties are satisfied (Example: Again

L1 = {01,11,000} is a bifix code but L2 = {10,11,010} is not because 10 is a

suffix o/OlO).

25

More recently investigated code related properties are:

• Infix codes [19]: no word in the language appears as part of any other word

in the same language (Example: Li = {01,11,000} is an infix code but L2 =

{10,11,01101} is not because 11 is part of 01101).

• Overlap-free languages [6, 15]: no proper prefix of one word is at the same time

proper suffix of any word in the language (Example: L\ — {10,100,1000} is an

overlap free language but L2 = {101,100, 1010} is not because prefix 10 of 100

is a suffix of 1010.)

• Solid codes [40, 24, 22] : the infix property is satisfied and the overlap-free

property is satisfied (Example: L\ = {0111,01011,010011} is a solid code but

L2 = {0111,1011,01011} is not because a suffix o / lOl l is a prefix o /Ol l l)

• Thin languages [32] - There are no two words of the same length in the language

(Example: L\ = {0, 01, 011} is a thin language but L = {1,01,10} is not)

Prefix and suffix codes have been well investigated since early days of computer sci

ence. Later, the attention of the scientific community was drawn to infix codes and

more recently to solid codes. Of course this is only a small subset of existing prop

erties. In fact it can be easily proven that there exists uncountably many properties

[11]. It should be noted that not every code related property is a subset of the code

property. For example not all thin languages are codes.

26

3.3 Methods for Describing Code Related Properties

Methods for deciding and describing classes of codes have been under investigation

for long time. There are many different algorithms for deciding if a language belongs

to a certain class of languages for some well established classes. For instance, there

is a variety of algorithms for deciding if a given language is a code for both finite and

infinite language. Many of them are based on the Sardinas and Patterson algorithm

[5]. A fast algorithm, but applicable only to finite languages is presented in [37]. A

different one, applicable to regular languages, is presented in [16]. It uses the concept

of functionality of transducers. Algorithms are also known for deciding if a language

belongs to the classes of suffix, prefix, and bifix codes [5], solid codes [24], and infix

codes [19].

The algorithms in publications listed above use different approaches for every prop

erty; In the following, we provide an overview of methods offering unified algorithms

applicable to multiple classes of languages. First we a take look at general mathemat

ical methods and then focus on formal methods, that is methods that utilize some

form of formal expressions for describing properties.

To our knowledge, [39] is the first work proposing a general mathematical method for

defining many code related properties. The authors use the concepts of binary word

relation and independent sets. A binary relation p on E* is a subset of S* x S*. A

strict binary relation has to satisfy additional constraints for all w, v € S*:

• (w, w) € p and (w, A) G p

27

• (w,v) G p implies length(w) > length(v)

• (w, v) £ p and length{w) = length(v) implies w = v

A subset H of £* is called p-independent (independent with respect to some relation

p) if the following statement holds true:

\/u, v £ H : (u, v) £ p =$• u = v

The authors of [39] describe prefix and suffix relations in the context of strict binary

relations over some alphabet E:

• pp = {(u,ux)\u e S ' , i 6 £*}

• Ps = {{u,xu)\u £ E*,x G E*}

Having the relations defined the authors use the concept of p-independence to describe

some code related properties. A language is a prefix code if it is j?p-independent and

it is a suffix code if it is ps-independent. Furthermore, the set of all p-independent

languages is in fact a property according to our definition of a property. For instance,

the set of all pp-independent languages is the prefix property. In that sense the

concept of p-independence provides a mathematical framework for describing language

properties. This concept was a foundation for further research - see [41] and [18].

Another, more recent method for defining code related properties is based on the

concept of dependence systems [25]. In particular we are interested in the concept

28

of n-independence. A property is an n-independence property, if a language be

longs to such a property if and only if every subset of such a language of cardinality

smaller than n also belongs to that property. It turns out that all properties that

can be defined using our method are in fact independence properties, in particular

3-independence properties. We further investigate the concept of independence in

Section 5.2.

3.4 Existing Formal Methods for Describing Language Properties

In the following part we investigate three existing formal methods for describing (thus

also defining) properties of languages:

• Implicational conditions [21], where properties are described by first order logic

formulas.

• Regular Trajectories [9, 10], where properties are described by regular expres

sions.

• Language in-equations [26], where properties are described by binary word op

erations.

3.4.1 Implicational Condition

The framework presented in [21] provides a method for general algebraic characterisa

tion of classes of languages. It uses first order formulas called implicational indepen

dence conditions. The basic implicational independence condition has the following

29

form:

(quantifier prefix)((formula) —> (formula))

where the elements of the condition must satisfy the following:

1. quantifier prefix - it involves only universal quantifiers and it may include quan

tification over the number of variables used.

2. formula - the first formula is refereed to as the premise, the second one is

the conclusion; both formulas are disjunction of conjunctions of equations and

inclusions

Following are some properties discussed in this thesis described using the framework

given in [21]:

Prefix codes:

Ip = "Vu, v : u E L, uv G L —> v = A"

Suffix codes:

Ia = "Vtt, v : u £ L,vu e L —>• v = A"

Infix codes:

Jj = "Vn, v,w : u € L, vuw £ L -) V = A.K) = A"

Hypercodes:

Ih= "\/n\/x0,..,xn,y1,...,yne X* :

x0...xn € L,xQy\x1...ynxn G L -)• y\ = \A,...,yn = A"

30

Overlap-free languages:

I0f = "Vu, v, w : u £ L, uv £ L, vw £ L -> u = A A v = A A w = A"

Solid codes:

h A I0f

In addition to the preceding properties this method is capable of describing properties

that are not describable using our method (and also two other methods presented in

this section). A good example is the code property:

Ic = "\/m\/rtixi,.., xn, y1,..., ym € X* :

xi e L,..., xn e L,yi £ L, ...,ym £ L, xx...xn = yi...yn-> n = m and xx = yx, ...,xn = ym"

Although this method can be used to express the code property, there are some

natural classes of codes the cannot be defined using it. The author of [21] provide as

an example the class of block codes.

31

3.4.2 Regular trajectories

In his paper [9], Domaratzki introduced the concept of T-codes. A T-code is any

language L for which the following statement holds true:

(T I I T S +) n L = 0 (3.1)

where Ily is a word operation called shuffle on trajectories. The shuffle on trajectories

operation was first defined by Mateescu in [35].

We give a formal definition of shuffle on trajectories, following the one given in [9]

and earlier by [30]. Let us consider two words x = x\x2...xn and y = y\y2---ym where

xl,yJ £ S, and the trajectory £ = t\t2...tk where tt G {0,1}, then

x1(x2-.xn JIt2...tk V\V2--ym) if ti = 0
x~tity

y1(x1x2...xn Ut2...tk V2-ym) if h = 1

Example: aaalloiooiibbb = a(aaJIioonbbb) = abaabb and aaaJIiooonbbb = fe(aaaIIioon

bb) = baaabb

If x = X\X2---xn and y = X where x, £ S, and the trajectory t = ^£2•••£*; where

tz e {0,1}, then

x1(x2...xn Ut2,„tk yiy2-ym) if £1 = 0
x I I t A = "

if h = 1

32

Example: aaa IIooo ^ = a(aa IIoo A) = aaa and aaa JIwo A = 0

If x = A and y = y\y2---ym where yj G E, and the trajectory t = t^-.-tk where

tz e {0,1}, then

AH t y
0 if h = 0

yi(xix2...xn Ut2,...,tfc y2-ym) if ii = 1

Example: A I l m aaa = a{\ IIn aa) = aaa and A Hon aaa = 0

In addition, x II A y = 0 if x 7̂ A or x 7̂ A. Finally, if x = y = A then A 11^ A = A and

A II t A = 0 when t ^ A

Domaratzki defines a shuffle on a set T C {0,1}* of trajectories operation:

x I I r y = (J x II t y

The shuffle on a set of trajectories is further extended by Domaratzki to apply to

languages. For Li ,L 2 C E*:

Li n T L2 = [J x IIT y
E € £ I , 2 / € L 2

Using a shuffle on set of trajectories operation, Domaratzki proposes a method for

33

describing T-codes. Consider a language L C E + . The language L is a T-code if it is

non-empty and Equation 3.1 holds for some T.

Some properties that we investigate in this thesis can be expressed using the T-

code framework. Let Pj'(S) denote all T-codes over an alphabet E and the set of

trajectories T. Using sets of trajectories Domaratzki describes classes of codes that

correspond to particular properties that we investigate in this thesis:

• suffix codes: T = 1*0*

• prefix codes: T = 0*1*

• bifix codes: T = 0*1* + 1*0*

• outfix and infix codes: T = 0*1*0* and T = 1*0*1*

• hypercodes: T = (1 + 0)*

Example: Let us consider the trajectory set T = 0*1*, some alphabet E and the

language L C E*. For every x £ L the operation x HT S + produces every word for

which x is a proper prefix. The operation L Ily E4" produces the language V consisting

of all of words for which a proper prefix is in L. The language L is a prefix code only

if none of the words in L is a prefix of any other word in L. Therefore L is a prefix

code if and only if (L Ily E+) n L = 0

For alternative way of describing T-codes Domaratzki uses deletion along trajectories,

a word operation introduced independently in [8] and [27]. Let us consider two words

34

x = X\X2...xn and y = y\y2---ym where Xi,yj £ E, and the trajectory t = t\t2...tk

where U £ {i, d}, then

x ->t y = <

xx(x2...xn ~->t2...tfc y\V2---ym) \it\ = i

(x2...xn ~>t2...tk y2-ym) if h = d and xx = yx

0 otherwise

Example: aab ~^>idd &b = a(ab -^>dd ab) = a, aab ~^>did ®b = (ab -wid ab) = a and

aab -^dudi ba = %

Also, x = x\,X2, ••••,xn where x^ £ E, and the trajectory t = t\t2...tk where tz £ {i,d},

then

x1(x2...xn ~>t2...t* A) if *i = *

0 otherwise

x ~~>+ A =

Example: aab ~^m A = a(ab Uu A) = aa6 and aab -~^du A = 0

Finally, x ~^\ y = 0 if x ^ A. Also A ~>t y = A if and only if t = y = A

Similarly to the shuffle on trajectories the operation of deletion along trajectories is

also extended to set of trajectories

x ^T V = [J x 11t y
teT

The deletion operation is expanded to an operation on languages. For LX,L2 C E*

35

we have:

L\ ~^>T L>2 = I) '• x ~~+x V
x£Li,y£L2

As stated before, classes of T-codes can be expressed in terms of the deletion on

trajectories operation (Equation 3.2). There is a relation between a set of trajec

tories representing a T-code in context of the shuffle operation and a trajectory set

representing the same T-code in context of the deletion operation. This relation is

given by a morphism r : {0,1}* —$• {i, d}* such that r(0) = i and r (l) = d. Given

T describing a set of trajectories for shuffle operation, T-codes can be expressed as

follows:

P r (S) = {L:(L ~+ T (T) E+) n L = 0} (3.2)

for every T C {0,1}* and any E.

Example: Let us consider the trajectory set T = 0*1*; an alphabet E, and language

L C E * . For every x £ L the operation x -^T{T) S + produces every proper suffix

of the word x. The operation L 11t(T) S + produces the language L' consisting of all

proper prefixes of every word in L. The language L is a prefix code only if none of

the words in L is a prefix of any other word in L. Therefore L is a prefix code only

if (L -wr(T) E+) n L = 0

Domaratziki points out that his framework cannot be used to describe the code prop

erty and that not all T- codes are in fact codes. In his paper Domaratzki gives an

example of trajectory set for which the T-code is not a code:

36

Example: Let us consider the language L = {ab, cb, abcb}. We can see that L is not

code, as abcb = (ab)(cb). Now let us consider the trajectory T = (10)*. The language

L is a T-code because (L U T S+) n L = 0 for this particular T and L.

3.4.3 Language in-equations

Some code related properties can be described using language in-equations. To use

language in-equation we first have to introduce the concept of binary operations on

words. We follow the definition of binary word operations given in [26]. A binary

word operation is a mapping:

<> : £* x £* -> 2s* (3.3)

where 2s* represents all possible subsets of E*.

In the following, we provide some examples of binary word operation as given in [26]:

• Concatenation: u • v = {uv}

• Left quotient: u —>iq v = {w} if {u = vw}

• Right quotient: u —>>g v = {w} if {u = wv}

• Insertion: u <— v = {u\VU2\u = U1U2}

• Deletion: u —>• v = {u\U2\u = U1VU2}

• Dipolar deletion: u ;=± v = {w\u = v\WV2,v = ^1^2}

37

• Shuffle (scattered insertion): ullv = {u\V\...UkVkUk+\\u = U\...Uf~+1,v = V\...Vk+i\

A binary operation can be applied to any two languages. For two languages L\ and

LxOL2= (j uOv (3.4)

Recall that, according to the definition we follow in this thesis, a property is a set of

all languages that share a common characteristic. Some code related properties can

be defined as a solution set to a language in-equation involving binary operations.

Following are few examples of such properties given in [26]:

1 . Prefix property is the solution set of (X —*iq S+) C Xc with a constraint

I C £ + , and where Xc is the complement of X, that is Xc — S + — X

2 . Suffix property is the solution set of (X —*>g S
+) C Xc with X C E +

3 . Infix property is the set of solution of (X ^ S~) C Xc with

4 . Outfix property is the set of solution of (X —> E+) C X c with I C E +

5 . Hypercode property is the set of solution of (X II S +) C X c with I C E +

Every language in-equation in the preceding list defines a property which consist of

all languages that satisfy that property. For example, a language that satisfies the

in-equation described in point 1 is a prefix code.

38

Language equation can be approached similarly to the algebraic equation. For ex

ample X()L = R is to some extent similar to the equation x + I = r where x is

the unknown and / and r are constants. However, because a binary word operation

is usually not commutative, the concept of left or right inverse has to be applied in

order to solve a language equation. Following the definition given in [26] we define

the concept of left and right inverse:

• For the binary operation <0>, a left inverse of <C> denoted as <)' is defined as:

w e x(}v iff x £ w()lv for all v, w, x € S*

• For the binary operation <0>, a right inverse of <0 denoted as <0>r is defined as:

w G {x<0>v} iff v £ x()rw for all v, w, x G S*

Similar approach can be applied to language in-equations.

Chapter 4

39

Our Method

Our method is developed to address the following problem:

Given the descriptions of a property P and a language L decide if L satisfies P.

We are able to decide certain language properties by testing the following condition:

t (i) n i = 0, (4.1)

where L is the given language and t is a transducer that describes the property P. If

(4.1) is true, the language L does satisfy (or belongs to) the property P. If (4.1) is

not satisfied then that language does not belong to the property P. Testing Equation

4.1 is a simple and effective method for deciding certain properties of languages. The

algorithm for that method is a four step process:

1. Describing the property with a transducer

2. Constructing the language t(L), where L is the given language and £ is a trans

ducer describing the property

3. Constructing the language t(L) D L

4. Testing if the language t(L) n L is empty or not

40

The method can be applied to a certain set of properties and comes with some limi

tations, which are discussed further in the next chapter.

4.1 Describing Properties of Languages with Transducers

Transducers are well understood tools in automaton theory. They can be used to

represent relations between words. Some properties are based on a relation between

words within a language, or rather avoiding the relation (e.g. suffix codes, where

no word can be a proper suffix of any other word within the same language). For

some properties we can build a transducer that describes the relation between words

that have to be excluded from a language for it to belong to certain property. Then,

such transducer describes that property in the context of our method. In particular

transducers can be used to describe all properties listed in Section 3.2.

Let us consider the suffix property. It is possible to construct the transducer ta such

that for any given input word the transducer ts is capable of generating every possible

proper suffix of that word (Fig. 4.1). By proper suffix of a word we mean a suffix

that does not equal the original word. We say that this transducer represents the

proper suffix relation.

Example: Given the word aaab, the set of possible outputs of the transducer in Fig.

4-1 would be: {aab,ab,b,X}. Note that aaab is not in this set since it not a proper

suffix of itself.

Similarly we can present the transducer tp for generating proper prefixes (Fig. 4.2).

41

a/\ a/a

Figure 4.1: The transducer ts. For every input word, it can produce
every proper suffix of this word. As mentioned in Section 2.6, a rep
resents any symbol in a given alphabet and A represents the empty
word.

a/a a/X

Figure 4.2: The transducer tp, for every input word, can produce every
proper prefix of this word.

Exapmle: The transducer in Fig. 1^.2 can produce all proper prefixes of any input

word. Given the input word aaab, the set of possible output words is: {aaa, aa, a, A}

In the context of our method and Equation 4.1, we say that the transducer in Fig.

4.1 describes the suffix property and the transducer in Fig. 4.2 describes the prefix

property. Using the same approach we can build transducers corresponding to dif

ferent properties. Note that such a transducer is useful for our method only if it is

input altering. A transducer is input altering if, for any input word, the set of output

words does not contain that input word. This issue is further discussed in Section

5.1.

Once we have a valid description of a property in a form of an input altering transducer

t, the next step is computing the language t(L).

42

4.2 Constructing t(L)

In this step we build the automaton representing the language t(L), where t describes

a certain property and L is the given language to be tested. To achieve this, we use the

product operation, as explained in Section 2.7. Performing the product operation on

the NFA A representing L and the transducer t results in an NFA A', which represents

the language of all words that are in relation with any word from L according to t.

Example: Let us consider the automaton A2 (Fig. 4-3) representing the language

L2 = a*b (Fig. 4-3). The automaton is now expanded with self X-transitions.

a A

A

Figure 4.3: The automaton representing the language L2 = a*b, ex
panded with self A-transitions

Next, let us consider a transducer tP representing the proper prefix relation over the

alphabet {a, b} (Fig. 4-4)-

In order to identify the language that will consist of all proper prefixes of the language

L2 we construct the product of the automaton A2 and the transducer tp. The steps in

building the product automaton are presented in Fig. 4-5.

a/a a/A
43

Figure 4.4: The transducer tp expanded with self A-transitions, repre
senting the proper prefix relation over the alphabet {a,b}

(a) Start state of the product automa- (b) Transitions going out of the start
ton state

a A

(c) Building new transitions going out
of the state (1,2)

A((1 , 2 ^ 2 ^))A

(d) The final product

Figure 4.5: The product of the automaton in Fig. 4.3 and the trans
ducer tp in Fig. 4.4

The automaton in Fig. 4-5d represents the language a*, which consists of all proper

prefixes of the language a*b.

Now, consider a transducer ts representing the proper suffix relation over the alphabet

{a,b} (Fig. 4.6).

44

Figure 4.6: The transducer ts expanded with self A-transitions, repre
senting the proper suffix relation over the alphabet {a, b}

We build the language of all proper suffixes of the language L?,. We construct the

product of the automaton presented in Fig. 4-3 and the transducer ts in Fig. 4-6. The

process of building the product automaton is presented in Fig. ^.7.

-<3>

(a) Start state of the product automa- (b) Transitions going out of the start
ton state

(c) Building new transitions going out
of the state (1,2)

(d) The final product

Figure 4.7: The product of the automaton in Fig. 4.3 and the trans
ducer ts in Fig. 4.6

45

The automaton in Fig. 4.7 represents the language a*b+X, that is the set of all proper

suffixes of the language L2 = a*b-

We have seen how to construct t(L), given an input altering transducer t and an

automaton representing L. The next step is to identify the set of words that exist

both in L and t(L).

4.3 The Final Product Construction and the Emptiness Test

When we test a given language L for properties like the suffix property or the prefix

property, we want to establish if that language contains pairs of words that have a

particular relation with one another. In such cases, given an input altering transducer

t that represents that relation, we can construct the language t(L). If t(L) has a subset

of words that also exist in L, then the property is not satisfied. In other words, if the

intersection of the language L and the language t(L) is the empty set, the language

L belongs to the property described by t.

In the previous section we showed how to construct the automaton t(L). Next, we

construct the automaton accepting the language t(L) fl L using again the product

operation. If the automaton representing t(L) C\ L does not contain any accepting

paths, then Formula 4.1 holds and the language L belongs to the property described

by t. However if the same automaton contains at least one accepting path, then L

does not belong to that property.

Example: Let us consider the language L^ (Fig. 4-3)- In the previous section we

46

constructed the automaton representing the language ts(L>2) (Fig. 4-7d) where ts

represents the suffix property. Now we construct the product of L2 and ts(L2) (Fig.

4-8). The resulting automaton is presented in Fig 4-8d. This automaton has an

accepting path. This means the language represented by that automaton in not an

empty one and the language L2 does not belong to the property described by ts.

A

MM]

(a) Start state of the product automa- (b) Transitions going out of the start
ton state

A A A

(c) Building new transitions (d) The final product

Figure 4.8: The process of constructing the automaton representing
L2Dts(L2).

Now consider the language L2 and the set of all proper prefixes of that language

tp(L2) (Fig. 4-5d). Constructing a product of L2 and tp{L2) results in the language

represented by the automaton in Fig. 4-9d. This automaton does not have an accepting

path (lack of an accessible final state clearly indicates lack of an accepting path).

47

Hence, the language represented by this automaton is empty. Therefore, Equation 4..1

holds for L2 and tp, which means that L2 is a prefix code.

MM]

(a) Start state of the product automa- (b) Transitions going out of the start
ton state

(c) Building new transitions (d) The final product

Figure 4.9: The process of constructing the automaton representing
L2 fl tp(L2)

In order to decide the emptiness problem of languages represented by automata we

use the well-known Breadth First Search algorithm [38] for searching for a path from

one of the starting states to one of the final states.

4.4 Examples of Transducers Describing Well Known Properties

Next, we present input altering transducers describing some properties listed in Sec

tion 3.2 in the context of our method:

48

• Infix property (Fig. 4.10)

• Thin language property (Fig. 4.11)

• Hypercode property (Fig. 4.12)

• Overlap-free property (Fig. 4.13)

• Solid code property (Fig. 4.14)

a/X a/a a/X

a/a

Figure 4.10: Transducer ti describing the infix property.

a/a a/a'

a/a
Figure 4.11: Transducer tti describing the thin language property.

Given a transducer t\ describing some property Pi and t2 describing a property P2,

we can construct a transducer t\ U ti describing Pi D P2, which is the set of languages

that satisfy both Pi and Pi.

49

a/X a/X
Figure 4.12: Transducer th describing the hypercode property.

a/X a/a X/a

a/X y~~(a/a V~^ X/a /^-~^
1 h-1-A 2 >-—{ 3 V — H U J

Figure 4.13: Transducer t0j describing the overlap-free property.

Figure 4.14: Transducer tsc describing the solid code property.

Example: Consider the solid code property. As explained in Section 3.2, a solid code

is a language that belongs both to the infix property and to the overlap-free property.

The transducer tsc (Fig. 4-14) *s in fa°t equivalent to ti U t0f (Fig. 4-10 and 4-13).

Chapter 5

50

Limitations

Although our method is useful for formally describing some properties and testing if

languages belong to those properties, it does have limitations. It can only be applied

to 3-independence properties. Within that scope of problems our method requires

a description of properties in the form of input altering transducers, and not all

3-independence properties can be described using such transducers.

5.1 Input Altering Transducer

The method requires a property to be represented in the form of an input altering

transducer. A transducer t is input altering if and only if the following property holds:

Vw e E* : w & t{w) (5.1)

That means for any given input word over any alphabet, the input word is not con

tained in the set of output words.

Meeting this requirement is crucial for our method. If even a single word from the

input language is preserved by a transducer it means the output language will always

contain a word from the input language (Fig. 5.1). As a result Equation 5.1 will never

51

Figure 5.1: An example of a transducer that is not input altering. For
the input word aa the set of output words is {bb, ba, aa}. The original
word aa is also found in the set of possible output words.

hold and therefore such transducer cannot be used to test a language for a non-trivial

property. Moreover, if the given transducer is input altering then it is also decidable

whether a given regular language is maximal with respect to the property described

by that transducer - see [11].

Determining if a given transducer is input altering is not a decidable problem [20]. The

proof is based on the observation that the question of whether a transducer is input

altering can be mapped to the Post Correspondence Problem, which is not solvable

[33]. In practice, for the transducers defining properties like those in Section 3.2 it is

possible for a human to tell if the transducers is input altering or not. However, the

general problem remains algorithmically unsolvable.

5.2 Independence Properties

A property P is an n-independence [23] property, if the following statement holds

true for every language L:

L e P ^ V L ' C L : 0 < \L'\ < n -> L' e P (5.2)

52

That is, if a language L belongs to P then every subset of L of cardinality less than

n also satisfies that property, and if every subset of L of cardinality smaller than n

belongs to P then L satisfies that property. If we want to test a language for a property

that is a 3-independence property it is sufficient to test every subset of that language

of cardinality less than 3. Using a transducer we represent a relationship between two

words and check if a pair of words exists that does not satisfy the property. If no such

pair exists it means that all subsets of a language of cardinality less than 3 belong

to that property. In the case of 3-inependence property it is sufficient proof to state

that a language satisfies a particular property. However, not every 3-independence

property can be expressed in the form of input altering transducer.

A property P is called an independence property if it satisfies Formula 5.2 for some

n.

5.3 A 3-Independence Property Not Describable by an Input Altering

Transducer

There are uncountably many1 3-independence properties. Therefore we cannot use

finite state machines to represent every property from this set. However this argument

does not provide examples of such properties.

An example of a property that is not expressible using a transducer is the set PRSV

11TL fact, there are uncountably many 3-independence properties consisting of infix codes. This
is shown in [11]. The proof is based on the following two claims: (1) There are uncountably many
infix codes. (2) For every infix code C, the set 2C is a 3-independence property whose elements are
infix codes.

53

of languages where each language cannot contain the reverse of any of its words. For

instance if aab belongs to such language then baa cannot belong to it. Formally this

property is expressed as follows:

L E PRev <=^ Vu,v £L:u^vR (5.3)

There is no transducer capable of representing the property Pnev in context of our

method. To prove that we use a Pumping Lemma argument: we show that altering

a computation performed by t affects the relation represented by it. First we assume

that such a transducer exists. If such t exists the following statement holds true:

ML : t(L) n L = 0 ^=> L € PRev (5.4)

that is, for any regular language L and the transducer t representing PRev we can use

t in the equation 4.1 in order to decide if L belongs to the property PRev. Therefore:

VL : Vu, v E L : v £ t(u) >*=> v + uR (5.5)

Next let us also consider the language L — S* that is the language consisting of all

possible words. Then:

Vu, v G L : v $. t(u) <£=> u j^ v (5.6)

and, equivalently

Vu, v £ L : v G t(u) <==$• u — vR

Therefore, if such a transducer t exists, it has to be functional, so that t(u)

In order to disprove the existence of t we prove the following statement:

fit : Vu G E* : t(u) = uR (5.8)

Let us assume that t exists and has M states. Now consider the word u = aNbN such

that N > M. Then t(u) = bNaN,which means that the transducer t has to realize

the following computation:

(Qo,Xi/yi,qi),..., {qk-i,xk/yk,qk),..., (qn-i,xn/yn,qn)

where go is a start state and qn is a final state and:

NuN
• x\X2X^...xn = a o

• yiViy-i. ..yn = bNaN

In fact some accepted and produced symbols can be A and it might be the case that

n > \u\. Therefore, n > 2N. We can assume that the computation performed by t

when accepting the word u has the following structure:

{qo,Xi/yi,qx), ..., (qk,xk+1/yk+i,qk+1), ..., (qk+j-i,xk+3/yk+j>Qk+j),

{qk+j,xk+j+i/yk+j+i,qk+j+i), -.-, (qn-i,xn/yn,qn)

54

(5.7)

u

55

where the index k is such that q^ = qk+j and Xk+i = a the input sequence Xk+i-.-Xk+j =

aP where p £ {1, . . , j} and j > 1. This is a safe assumption because the transducer t

is a finite machine and the word u contains more a's than the transducer t has states,

so there is a repeated state q^ = qk+j between the two transitions involving the first

and the last input symbol a. In other words there is a repeatable sequence in that

computation where the input consist only of a's and A's and is non-empty, that is

contains at least one a. The repeatable sequence in the computation means that the

transducer has to have at least one loop in its structure. Therefore we know that t

has the one presented in Fig. 5.2, where z^j z'2 represents the repeated sequence of

the computation:

{qk,Xk+i/yk+i,Qk+i), •••! {Qk+j-i,Xk+j/yk+j,Qk+j)

where qk = qk+y

Z2/4

Figure 5.2: A general structure of the transducer representing PRBV

Removing the repeatable sequence from the computation accepting u creates a new

computation sequence. The new computation sequence is still a valid computation.

The new input word v! remains in the language accepted by the transducer and has

56

the following form: aN~pbN. Therefore the new computation should still realize the

reverse relation and the output v' word should have the following form: bNaN~p.

However that leads to a contradiction. To prove that, we look at different scenarios

of how the new computation can look like and consider the relation of the input and

output word in this new computation:

• If the removed repeated sequence contains a transition of the form (qz, a/b, Oj+i)

or (QJ, X/b, ql+i), then, for the input word aN~pbN, the output word has the form

bN~Tap where r > 0, which is not the reverse of the input word.

• If the removed repeated sequence contains any transitions of the form (qz, a/A, Oj+1)

but does not contain an equal number transitions of the form (q ,̂ A/a, qd+i), then

the new computation does not satisfy the reverse relation. The number of non-

A symbols removed form the input word is not equal to the number of non-A

symbols removed from the output word. In effect in the new computation the

length of the input word v! is different than the length of the output word v'.

That is sufficient to conclude that the new output word is not a valid reverse

of the input word for the new computation.

• The last case is that the removed sequence contains equal numbers of transitions

in the form (qr, a/A, qt+i) and in the form {ql, A/a, qt+\) and at the same time

does not contain any transitions involving b. This means that by removing the

repeatable sequence we would remove the same number of a's from the input

and from the output word. However this has also other implications. Due to

the structure of u we know that in the original computation all a's have to be

57

accepted before any fe's are accepted. Also all fe's have to be output before any a's

are output . Therefore the existence of a repeatable sequence that both accepts

and outputs o's implies that all fe's from the output word v has been produced

before that sequence appears and all 6 from the input word u will be accepted

after that sequence appears. Because the number of 6's in the input word can

be arbitrarily large and t is a finite machine we can make further assumption

about the structure of t for this case: there has to be a repeatable sequence in

original computation, following the repeatable sequence that accepts a's , that

accepts 6's but does not produce any 6's.

In the last case removing the repeatable sequence does not disprove the existence of

t because the new computation might still realise the reverse relation. However it

provides us with additional knowledge about the original computation:

• the repeated sequence outputs a's and therefore we know that all fe's have been

output by the computation before that repeated sequence appears

• the repeated sequence accepts a's and thus no fe's from the input word have yet

been accepted

Based on that knowledge we can draw a new conclusion regarding the structure of t.

As stated before we know that t has to be capable of accepting the word u with an

arbitrary number of a's and fe's. In such situation there must exit at least two more

separate repeatable structures:

58

• a repeated sequence z4/'z'4 preceding the Z2/z'2 that accepts only a's and/or A

and outputs fe's and possibly A

• a repeated sequence z5/z'5 following the Z2/z'2 that accepts 6's and possibly A

and outputs a's and/or A

The structure of transducer in situation like that is presented in Fig.5.3.

V4

WZ4 W ^
Figure 5.3: A general structure of the transducer that represents the
reverse relation

Let us look at the computation performed by t on the input u, assuming t has the

structure presented in Fig. 5.3. It has the following form:

(?o,Zi/2/i>9i)>

(? i . % / ! / W , ? w) ,

(Qh+c-l, Xh+c/Vh+c, Qh+c),

> z4/z'A

59

(qg,xg+1/yg+1,qg+i),

(Qg+k-l,Xg+k/yg+k, Qg+k),

> z2/z'2

(qv,xv+i/yv+i, qv+\),

[Qv+s-li Xv+s/Uv+st Qv+s)j

} Zs/z's

(qn-i,xn/yn,qn)

where q^ = qh+c, Qg = Qg+k and qv = qv+s. The repeated sequence starting from qv is

realized by the structure z5/z'5. We know that for this sequence the accepted word for

this sequence consist of only b's and/or A's with at least one b. The output for this

sequence consist of only of a's and/or A'. Again we use the Pumping Lemma argument

to analyse this computation. We remove this repeatable sequence and analyse the

new computation:

• If the repeatable sequence contains transitions in the form (ql,b/a,qi+i) or

(ql,X/a,qi+i), then, in the new computation, the input word has the form

aNbN~p and the output word has the form: bpaN~r where r > 0, which is

not the reverse of the input word.

• If the repeated sequence consist transitions (OJ, b/X, %+i), then the new compu

tation produces the output word that is not equal in length to the input word.

Hence the output word cannot be the reverse of the input word.

60

This time in all cases altering the computation alters the relation between input and

output words.

We showed that altering the computation realizing the reverse operation alters the re

lation represented by t while the new input word for the altered computation remains

in the language accepted by t. In the new computation t(u') ^ u'R. Therefore the

statement 5.8 holds true, which means that it is impossible to construct a transducer

that represents the PRev-

61

Chapter 6

Further Discussion on Our Method

In this chapter we provide further discussion of our method. We investigate its com

plexity. We take a look at the relation between a transducer describing a property

and its inverse. We also investigate a relation between our method and the one based

on sets of trajectories (discussed in Section 3.4.2) and also the one based on lan

guage in-equations (discussed in Section 3.4.3). Finally, we present our approach to

extracting a counterexample, that is a pair of words belonging to a tested language

that shows the language does not belong to a given property.

6.1 Complexity

A theoretical cost of constructing the language t(L)(~)L has a complexity of 0 (| AL | 2 | ^ |)

where \Ai\ is the size of an automaton accepting L and |i| is the size of transducer t

representing some property. The cost of performing a Breadth First Search is 0{\ Am\)

where \Em\ is the size of an automaton accepting t(L) D L and \Vm\ is the number of

states in the same automaton.

Using a product implementation where we progressively build an automaton limits

the size of the problem. However, it also makes it more difficult to establish the exact

complexity of such a computation.

62

6.2 More about Transducers Describing Properties

It turns out that if a certain transducer describes a particular property in the context

of our method, then the inverse of that transducer represents the same property in

context of our method:

t(L)r)L = $<^=>flx,y GL:x et{y) <=>flx,y G L :yer1(x) < ^ r 1 (L) n L = 0

(6.1)

where t is an input altering transducer.

We build t _ 1 simply by switching the input symbol with the output symbol on every

transition in t. So, for the transition (g%, a/6, Ojt+i) in t, we put (g^, b/a, qk+i) in t_ 1 .

Example: Let us again consider the transducer tp that represents the proper prefix

relation over the alphabet E = {a, 6} (Fig. 6.1a). In order to construct t~l we switch

input symbols with output symbols in all transitions in tv. The transducer tp produces,

for an input word, every proper prefix of that word. The transducer t^1 (Fig.6.lb)

produces, for an input word, every word for which the input word is a proper prefix.

63

(a) A transducer describing the prefix (b) The inverse of the transducer de-
property scribing the prefix property

Figure 6.1: A transducer describing the prefix property and the inverse
of that transducer

6.3 Transducers and Sets of Trajectories

There are a number of similarities between our method and the one developed by

Dommaratzki in [10]. In both methods, for a given language L, we attempt to identify

a language 1/ so that the existence of any words from L' in L would violate the tested

property P. In other words, for the given language L, we identify the set 1/ with

respect to some property P so that L belongs to P if and only if:

L n U = 0

In our method L' is described as follows:

U = t(L)

where t is an input altering transducer. In Domaratzki's method the language V is:

U = LUT £•

64

where T is a set of trajectories. In the context of our method a property is described

using an input altering transducer. In the context of Domratzki's method a property

is described by a set of trajectories. It turns out that the same approach leads to

overlap between properties that can be described by our method and the one from

Domaratzki.

6.3.1 Transforming a Set of Trajectories into an Input Altering Trans

ducer

Every regular set of trajectories that describes a property in the Domaratzki's method

does have a corresponding input altering transducer in our method. Therefore every

T-code can be also tested using our method. In fact, our method can be used to

describe properties that cannot be described with trajectories [11]. Recall that in

Domaratzki's method a set of trajectories is described by a regular expression over

the alphabet {0,1}. Next we present a method to transform such a regular expression

into an input altering transducer that describes the same property.

The method consists of two steps:

1 Construct an NFA equivalent (accepting the same language) to the given regular

expression.

2 Construct an input altering transducer based on the NFA constructed in the

previous step.

For the first step we use the classical approach of structural induction [17].

65

Example: The automaton in Fig. 6.2 represents the set of trajectories T=0*l* + 1*0*.

Figure 6.2: The NFA equivalent 0*1* + 1*0*

Our on-line application has a feature that allows providing a property in a form of

an automaton accepting a set of trajectories. However such automaton has to be in

a A-free form. Only transitions labelled with 0 or 1 are allowed. We leave it up to

the user to construct the automaton accepting the set of trajectories in a A-free form.

The algorithm for building NFA equivalent to A-NFA is a well established one. We

also refer the reader to [14] for a fast algorithm for constructing NFAs in A-free form

from regular expressions. Figures 6.3 and 6.4 provide examples of automata in A-free

form, accepting some set of trajectories.

In the second step we build an input altering transducer based on an automaton

accepting some particular set of trajectories by implementing the following rules:

66

(a) A-NFA (b) NFA
Figure 6.3: Automata accepting T = 0*1*, which describes the prefix
property

(a) A-NFA (b) NFA
Figure 6.4: Automata accepting T — 1*0*, which describes the suffix
property

• For every transition (p, 0, q) in A we create, if they do not exist already, states

(p, No), (p, Yes), (q, No), (q, Yes) in t, and we add the following transitions to

t: ((p, Yes), a/a, (q, Yes)) and ((p, No), a/a, (q, No)).

• For every transition (p, l,q) in A we create, if they do not exist already, states

(p,No), (p,Yes), (q,Yes) in t, and we add the following transitions to t:

((p, Yes), X/a, (q, Yes)) and {{p, No), X/a, (q, Yes)).

• A state (p, No) in t becomes a start state if state p is a start state in A.

• A state (q, Yes) in t becomes a final state if state q is a final state in A.

This construction guarantees that every accepting path in t is input altering. We

know that the insertion along the trajectories in Domaratzki's method is an input

67

altering operation. The input alteration is enforced in his methods by making sure

that the inserted word belongs to E + . However developing simple morphism t(0, 1) =

{cr/a, A/cr} to transform an automaton accepting a set of trajectories into a transducer

does not guarantee that such transducer corresponding to some set of trajectories will

be input altering. On the other hand constructing a transducer using the preceding

rules guarantees that every accepting path in such transducer contains at least one

transition realizing insertion of a non-empty symbol (that is a transition labelled

with X/a). This way we make sure that every accepting path in the transducer is

input altering. At the same time the transducer t constructed based on some set of

trajectories T is such that for any regular language L the language t(L) is equivalent

to the language L Hr S +

Example: Let us consider the automaton in Fig 6.3b. The automaton consists of

the following transitions: (1,0,1), (1,1,2), (2,1,2). For every transition in this au

tomaton we construct a pair of transitions in the transducer:

• For (1,0,1), we have ((1, Yes), a/a, (1, Yes)) and ((1, No), a/a, (1, No))

• For (1,1, 2), we have ((1, Yes), X/a, (2, Yes)) and ((1, No), X/a, (2, Yes))

• For (2,1, 2), we have ((2, Yes), X/a, (2, Yes)) and ((2, No), X/a, (2, Yes))

The state (1, No) becomes the start state and (1, Yes) and (2, Yes) become final states

in t. This transducer is presented in Fig 6.5

68

a/a

Figure 6.5: The transducer equivalent to T = 0*1*

The transducer in Fig 6.5 is equivalent to the transducer in Fig. 6.1. For any given

input word it produces every possible word of which the input word is a proper prefix.

Similarly, we can take a deletion operation trajectory set to construct a transducer

describing the same property. The alphabet for trajectories representing the deletion

operation is {i,d}. In the first step we build an NFA equivalent to a trajectory set,

similarly as we did for a trajectory set for shuffle operation. In the next step we build

a transducer using the following rules:

• For every transition (p, i, q) in A we create, if they do not exists already, states

(p, No), (p, Yes), (q, No), (q, Yes) in t, and we add the following transitions to

t: ((p, Yes), a/a, (q, Yes)) and ((p, No), a/a, (q, No))

• For every transition (p, d, q) in A we create, if they do not exists already,

states (p, No), (p, Yes), (q, Yes) in t, and we add the following transitions to t:

((p, Fes), a/\ (q, Yes)) and ((p, No), a/A, (q, Yes))

• A state (p, No) in t becomes a start state if state p is a start state in A

69

• A state (q, Yes) in t becomes a final state if state q is a final state in A

The motivation for this set of rules is the same as in case of constructing a transducer

based on set of trajectories, which is making sure that resulting transducer is input

altering.

Example: Let us consider the trajectory set T = i*d*, describing the prefix property

in the context of the deletion operation. We construct an automaton accepting this

set (Fig. 6.4).

i d i d

(a) A-NFA (b) NFA
Figure 6.6: An automaton accepting T = i*d*, which represents the
prefix property

Next, we construct a transducer (Fig. 6.7) based on the automaton in Fig. 6.6b

We can see that the transducer in Fig. 6.7 is in fact the reverse of a transducer in

Fig. 6.5 and realizes the same relation as the transducer in Fig 6.1.

6.3.2 Morphism of Trajectories

As we explained in Section 6.2, in the context of our method, if a transducer describes

a particular property then the inverse of that transducer describes the same property.

70

a/a(*(l,Noy-~(2t$EBs))a/\

Figure 6.7: A transducer equivalent to T = i*d*

In his publication [10], Domaratzki defines the following morphism:

T-.{o,iy^{i,dy (6.2)

This morphism, when applied to a set of trajectories for the shuffle operation describ

ing a certain property, produces a set of trajectories that describes the same property

in the context of the deletion on trajectories operation. In other words, if T describes

a certain property in the context of the shuffle operation then T' = T(T) describes

the same property in the context of the deletion on trajectories operation. It turns

out that if we build a transducer t corresponding to the set of trajectories T and a

transducer if corresponding to the set of trajectories T(T) then t is an inverse of if

and, as mentioned in Section 6.2, t and if describe the same property in the context

of our method.

71

6.4 Our Method as a Specialisation of Language In-equations

Earlier in this thesis we presented the concept of describing properties using language

in-equations (Section 3.4.3). Here we show that our method is in fact a specialization

of that concept.

Every relation represented by a transducer is in fact a binary relation. We know that,

for every binary word operation 0 , the binary relation[<£>L] consists of all pairs (u, v)

such that v £ u^L. For every input altering transducer t we can identify a binary

relation [<)S+] that is represented by t. We have:

L n t (L) = 0 ^ L n t (L) C L c (6.3)

Example: A language Lp is a prefix code if and only if it satisfies the equation:

Lp n tp(Lp) = 0 (6.4)

where tp is the transducer describing the prefix property (Fig. J^.2). At the same time

the transducer tp implements the binary relation [—>rg E +] . Therefore the language

Lp satisfies Equation 6.4 if and only if it satisfies the in-equation:

Lp ^ r q S + C Lc
p (6.5)

with the restriction L p C S + .

72

6.5 Counterxample

The type of properties that our method is designed for makes it possible to identify

a two element subset of an investigated language to show that the language does not

belong to a particular property. Let us consider the language a*b. We have already

showed that this language is not a suffix code in Section 4.3. To provide a proof we

need to show at least one pair of words belonging to that language where one of the

words is a suffix of the other one. It might be the pair of (ab, b) because the word b

is a suffix of ab and they both belong to a*b.

In general, in case of independence properties, it is sufficient to find a subset of a

language that do not belong to a property to show that the language also does not

belong to that property. We investigate 3-independence properties and therefore such

a subset has to consist of two elements. We refer to such a set as a counterexample.

For a language L and a property described by a transducer t a counterexample consist

of two word, v and w such that:

v ,w G L A v 6 t(w) (6.6)

As suggested by Jurgen Dassow we implemented a feature to provide a counterexam

ple to the user in the case that a given language does not belong to a given property.

We identified and investigated two ways to provide a user with counterexample. The

first one involves only minor modifications to the code we implemented for the previ

ous steps. The drawback of this method is a significant calculation overhead in worst

73

case scenarios. The second method that we propose has exactly the same output.

It has worse space complexity and would require major modification of our main

method. Therefore, the first approach has been implemented in our system.

6.5.1 First Approach

In this approach we use methods that have already been implemented for the main

method with only slight modifications.

Recall, the main method for testing languages for properties consists of 4 steps. In the

final step we investigate if the product language LDt(L) is empty or not (Section 4.3).

The language is empty if an automaton representing the language has no accepting

paths. We use a breadth first search algorithm to identify an accepting path (or lack of

such path). The algorithm finishes either after visiting all the states in the automaton

or finding an accepting path. If an accepting path is found a corresponding word is

extracted. Hence, the method returns the first encountered member of a language if

such exists or reports an empty language otherwise. If the word is extracted, then it

belongs to a pair that satisfies Formula 6.6. The extracted word is denoted by v.

The second word in the counterexample is calculated based on the one extracted in

the previous step. We know that v G t(w), for some w G L. From that we conclude

that w G £_1(f)- We construct the language Lw = £_1(i>)- In order to do that we first

construct an automaton V representing the language consisiting only of the word v.

Then we apply the relation t"1 to the language represented by V . For that, we use

74

the product operation described in Section 2.7. A language Lw that is produced by

this operation consists of all words that result by applying transformation t~l to the

word v. However, not all the words contained in Lw also belong to L. In order to

identify a sub of words that is contained in both Lw and L we construct L'w = Lw n L

by performing a product operation on Lw and L. L'w represents a non-empty language

that consist of all words that, paired with v, create a counterexample. Only one word

from L'w is required for counterexample and therefore we apply the Breadth First

Search algorithm to extract it.

In summary, finding a counterexample when a given language L does not belong to

the property described by t consists of following steps:

(i) Extract a single word v from the language LDt(L) that was computed in the

last step of our method (Section 4.3).

(ii) Construct the language Lw = i - 1 ^)

(iii) Construct the language L'w = Lw n L

(iv) Extract a single word w from L'w

The words v,w G L provide a simple example to show that property represented by

t is not satisfied by L.

Example: Let us consider the language L<i = a*b, represented by the automaton A2

(Fig. 4-3), and the suffix property described by the transducer ts (that is the suffix

75

property). We have already constructed the language L2 n ^(-^2) (Fig. ^.8d) and

found an accepting path: ((1,2), b, (2,2)). Now we extract a word corresponding to

the accepting path that was found. In this example the word consists of one letter b.

We build an automaton representing this single word (Fig. 6.8).

Figure 6.8: An automaton representing the single word b

We need to expand this automaton with self X-transitions in order to perform the

product operation.

A A

Figure 6.9: The automaton in Fig. 6.8 expanded with self A-transitions.

Next, we construct tj1, that is the inverse of the transducer describing the suffix

property (Fig. 6.10).

Similarly to the automaton in Fig. 6.8 we need to expand this transducer with self

X-transitions (Fig. 6.11).

©

76

X/a a/a

\/a
1 hJ—((2

Figure 6.10: Inverse of a transducer describing the suffix property

Figure 6.11: The inverse of the transducer ts describing the suffix prop
erty expanded with self A-transitions.

We use product construction to construct a language ts
 1(6) (Fig. 6.12).

~@

(a) Step 1

a A

b b
(c) Step 3 (d) Step 4

Figure 6.12: Steps in building an automaton representing the language

77

The language t~1(i>) represented by the automaton in Fig. 6.12d consists of all words

that are returned by applying t^1 to the word b, which is (a + b)+b. However, not all

the words from this language are in L2 (for example bob) Therefore we construct an

automaton representing L2 n tj1(t>) (Fig. 6.13). Note that this step does not require

expanding automata with self X-transition as every state in Fig. 6.12d already has

these transitions.

1,(1,1
A(—<l,[l,l]K4l,[l,2]

b

(a) Step 1

a A

(JMMj) (2JMJ)
(b) Step 2

a A A

(^^^(i^}-^(2^) A (^^^^y^^

(2, [1,2]) (2, [1,1]) A C ® €HO A

(c) Step 3 (d) Step 4
Figure 6.13: Steps in building an automaton representing the language
t~\b)nL2.

Any of the words in the language represented by the automaton in Fig. 6.13d paired

up with word b would create a counterexample for this case. However, we need only

one word. Therefore we apply the Breadth First Search algorithm to this automaton to

extract a single word. In this, case the extracted word is ab. The pair (ab, b) provides

78

a desired counterexample. Both words ab and b belong to the language L2 and b is a

suffix of ab. It clearly shows that L2 is not a suffix code.

The complexity of this method is dependant on the case being consider. If the given

language does belong to the given property than the complexity is constant and equal

to 0 because the method is not invoked. In case the method is invoked, the complexity

rises toO(| t |* |u ; |* |A |) where \t\ is the size of a transducer t describing the property,

| w | is the size of the word that was found in the first step and |^4| is the size of the

automaton accepting the tested language.

6.5.2 Second Approach

Recall our main method. The first major step of that method is building an au

tomaton representing t(L), where t is a transducer describing a property and L is a

given language. When building an automaton representing such a language, we look

at transitions in the automaton A representing L and transitions in the transducer

t. For every transition (p,x,q) in A and (p',x/y,q!) in t, we create the transition

((PJPOII/) (<?> <z0) m the automaton representing t(L). Now we modify this step so

that not only the output symbol by also the input symbol is preserved. So now we

create the transition {(p,p'),y(x),(q,q')). We also preserve the input symbols while

building the automaton representing LDt(L). This modification allows us to build a

final automaton with accepting paths corresponding to every possible pair of words

u,w where w € L and u € t(w). After this modification every accepting path, if such

exists, in the automaton accepting L fl t(L) represents a counterexample.

79

Example: Let us again consider the language L2 = a*b (Fig 4-3) and the transducer

ts (Fig. 4-6) describing the suffix property over the alphabet {a, 6}. We use the

product construction, modified as described above, to construct the automaton ts(L-2)

(Fig. 6.14).

-©

(a) Step 1

A«G9

A(A) A(A)

A (A) Q g)

(c) Step 3 (d) Step 4
Figure 6.14: Steps in building an automaton representing the language
ts{L2) while keeping track of input symbols

Next, we construct the automaton representing ts(L2) C\ L2 (Fig. 6.15). In this step

we also preserve the input symbol for every transition.

Every path in the automaton in Fig. 6.15d represents a pair of words (w,v) with

l . [l . l]

X(a)

A(A) (^J^pJ^^
X(a)

80

(a) Step 1 (b) Step 2

A(A) — ^ 1 , [1, l]y-Xl, [1, 2}y-M2{&2}) A(A) (— (l , [1 , l]U-4l , [1, 2] V ^ 2 F { 2 #

A(a) a(a)

Ha\ 6(6)

A(a) a(a) A(A)

A(A)

A(a &(*)

A(A)

(c) Step 3 A(A) (d) Step 4
Figure 6.15: Steps in building the automaton representing the language
£s (£2) H L2 while keeping track of input symbols.

v,w £ L? andw € i f ^) - Therefore every accepting path in this automaton represents

a counterexample proving that L2 does not satisfy the suffix property . For instance

the path ((1, [11]), X(a), (1, [1, 2])), ((1, [1, 2]), 6(6), (2, [2, 2])) represents the pair (6, ab).

Both the time and the space complexity of the second approach with respect to big O

notation are the same as the main method without modifications. However, the exact

space complexity is worse because every transition in the automaton representing t(L)

and the automaton representing t(L) n L would have to store two symbols instead of

one.

Chapter 7

81

Implementation

In addition to developing a theoretical framework, our goal was to provide an imple

mentation of our methods. The implementation consists of two main elements: a user

interface and an implementation of algorithms. The algorithms were implemented in

the C + + language with Boost libraries [2]. The user interface was developed using

Python with the Django [3] web framework. This combination allowed us to take

advantage of both the speed of C + + and the convenience of Django as a rapid web

application development solution.

At this point we want to acknowledge the existence of some other packages for manip

ulating finite automata and regular languages. Among others we investigated FIRE

Station [12], Grail++ [1], OpenFST [36], AMORE [28], Vaucanson [4], and Fado

[35, 31]. In particular we considered using Grail++ but to our knowledge the project

is not maintained any more, the features that we wanted to use do not work correctly,

and the package does not provide any features for manipulating transducers. The sec

ond package that might be used for our method is Fado. This package is maintained

and still growing. However, at the time we started our research all necessary feature

were not yet available in this toolset. Also, Fado is implemented in Python with

82

makes it significantly slower than similar implementations in C++ .

7.1 Implementation of the algorithms

The back end functionality and data structures are encapsulated in two general

classes:

• Automaton - encapsulates the logic of single automaton, which can be an NFA

or a transducer

• AutomatonMethods - a factory class, that encapsulates the logic of all the

operations performed on automata and transducers.

The Automaton class stores the structure of an automaton or a transducer as a set

of transitions, a set of start states (the implementation allows more than one), and a

set of final states.

Example: The automaton in Fig. 4-3 would be logically represented as follows.:

• Set of start states: {1}

• Set of final states: {2}

• Set of transitions: {(1, a, 1), (1, 6, 2)}

The transducer in Fig 4-2 would be represented as follows:

83

• Set of start states: {1}

• Set of final states: {2}

• Set of transitions: {(1, a/a, 1), (1,6/6,1), (1, a/A, 2), (1,6/A, 2), (2, a/A, 2), (2,6/A, 2)}

Following are some important functions in the public interface of the Automaton

class:

/ / I m i t i a l i s e s the automaton with data contained in the vector
/ / Each item in vector should contain e i t h e r one t r a n s i t i o n or
/ / d e f i n i t i o n of s t a r t or f i n i s h s t a t e
Automaton(s td : :vec tor<s td : : s t r ing> word);

/ / F i l l s the automaton based on the input stram
void f i l l (s t d : : i f s t r e a m & i n f i l e) ;

/ / Expands the automaton with e i t h e r a new t r a n s i t i o n , new s t a r t s t a t e
/ / or new f i n a l s t a t e depending on what i s contained in the input l i n e
void f i l l B y L i n e (s t d : : s t r i n g l i n e) ;

/ / Extract input alphabet of the automaton
/ / by going through a l l t r a n s i t i o n s 5
s t d : : s e t < s t d : : s t r i n g > getAlphabet() ;

/ / Adds p—lambda—p t r a n s i t i o n s to a l l s t a t e s inNFA
/ / (isTransducer=FALSE)
/ / and p—lambda/lambda—p to a l l s t a t e s in a t ransducer
/ / (isTrandducer=TRUE)
void expandWithSelfLambdaTransitions(bool i sTransducer) ;

The AutomataMethods is a factory class that encapsulate most of the functionality

used in our method. Following are some important functions implemented as a part

of public interface of this class:

84

// Generates product of two automata

// If last argument is set to true than second argument is expected to be a

// transducer and the result of operation is a language(in form of

// automaton) generated by providing a language(first) to a transducer

// (second)

bool product(Automaton & first,

Automaton & second,

Automaton & result,

bool isTransducer);

// This function takes automaton and expands every transition that has

// more than one input symbol into set of transitions,

bool expandTransitions(Automaton & automata);

// Check if the automaton has an accepting path

bool acceptingPath(Automaton & automata);

// this method also check if automata has an accepting path

// In addition it returns the first encountered accepted word if such

// exists

bool acceptingPathWithWord(Automaton & automata,

std::vector<std::string> & word);

// transforms the automaton accepting set of trajectories

// into a transducer. Only transitions in allownd in

// the input automaton are 0 and 1.

bool automataToTransducer(Automaton & first,

Automaton & second,

Automaton & alphabetSource);

// Creates transducer that for every transition p x/y q in the

// original transducers has a transition p y/x—q

bool invertTransducer(const Automaton & original, Automaton & inverted);

// The main function that encpsulates our whole method

boost::python::tuple testLanguage(Automaton & testedLanguageAutomaton,

Automaton & propertyTransducer);

The two classes are exposed to Python using B O O S T Python feature. Using this

feature we compiled our C + + implementation into a set of dynamic libraries that are

85

accessible from Python.

7.2 User Interface

Our method is available in the form of web application under following address:

http://laser.cs.smu.ca/transducer/

Deciding properties of regular
languages

Provide a langaagetvia an automaton): | Choose Ftle [N 0 fj]e chosen

Select a type of property: ' Transducer

Provide a property of the selected type: [Choose File] N0 fl|e chosen

Submit

Format for Automaton Format for Transducer Format for Trajectory Set

This website is the user interface for the application based on our method. It was

written in Python with a use of Django web development package. To use that

interface a user has to provide two files:

• a file containing the description of an automaton that represents a language

• a file containing the description of a transducer that describes a property, or

an automaton that accepts the set of trajectories that describes a property; the

user has to choose the type of machine

http://laser.cs.smu.ca/transducer/

86

The format of files containing automata and transducers follows the format in Grail++

[1] package. An automaton, both in case of a language and a set of trajectories is

described in a file as follows:

• a line of the form p a q describes a single transition, where p is the origin state

of that transition, q is the destination state, and a is the label of such transition

• a line of the form (START) | — p denotes a start state of the automaton

• a line of the form q — | (FINAL) denotes a final state of the automaton

States have to be represented by non negative integers. Labels can consist of a

sequence of alphanumerical symbols. However, each label is considered a single letter

over the alphabet accepted by given automata (e.g. line 1 a2 4 means that al is a

single symbol in the alphabet of the language accepted by the automaton described

in such file). An automaton can have multiple final states and multiple start states

defined.

Example: The content of a file describing the automaton accepting aaa(aaa)*b +

aa(ba)*a(aa(ba)*a)*b:

(START) | - 1
1 a 2
2 a 3
3 b 2
3 a 4
4 a 2
4 b 8
1 a 5
5 a 6

87

6 a 7
7 a 5
7 b 8
8 - | (FINAL)

The content of a file describing the automaton accepting the set of trajectories T =

1*0*1* describing the infix property:

(START) | - 1
1 1 1
1 0 2
2 0 2
2 1 3
3 1 3
1 - | (FINAL)
2 - | (FINAL)
3 -I (FINAL)

A description of a transducer expands the description of an automaton:

• a line of the form (START) | — p denotes the start state of the transducer

• a line of the form q — | (FINAL) denotes a final state of the transducer

• a line of the form p o~\ 02 q describes a single transition in the transducer,

where o\ is an input symbol and o<i is the output symbol for that transition

Similarly as in case of an automaton, states have to be described by non-negative

integers. Both, input and output symbols can be described using any charter sequence

except lambda. The word lambda is reserved for representing the empty word A.

88

Example: An example file that describes a transducer describing the infix property.

(START) I- 1
1 a lambda 2
1 b lambda 2
1 a a 5
1 b b 5
2 a lambda 2
2 b lambda 2
2 a a 3
2 b b 3
3 a a 3
3 b b 3
3 a lambda 4
3 b lambda 4
4 a lambda 4
4 b lambda 4
5 a a 5
5 b b 5
5 a lambda 4
5 b lambda 4
2 - | (FINAL)
3 - | (FINAL)
4 - | (FINAL)

After the user submits a file with a language and a file with a property and clicks

the Submit button, our application computes the answer. If the submitted language

belongs to the submitted property then the user simply gets a confirmation of that

fact. Otherwise the user receives a message saying that the language does not satisfy

the property and a counterexample, that is a pair of words in this language violating

the property.

Chapter 8

89

Conclusion and Future Work

8.1 Conclusion and Discussion

In this thesis we introduced a method for describing and deciding properties of regular

languages using input altering transducers. We discussed the relation of our method

to other ones, and explored our method limitations. Moreover we implemented our

method and created a web application that makes our method available to the research

community.

We introduced the concept of input altering transducer and we showed how input

altering transducers can be used to describe many classical and more recently estab

lished code properties, including but no limited to prefix codes, suffix codes, infix

codes, bifix codes, overlap-free languages, thin languages, and solid codes.

There are uncountably many code related properties. Our method is applicable only

to a subset of those properties because not all independence properties (and therefore

code related properties) can be represented using input altering transducers. As an

example we provided an explanation and an extensive proof for the fact that the

reverse property cannot be represented using a transducer.

90

In Chapter 7 we took a closer look at our method. We showed that if a transducer t

represents a certain property in the context of our method, t~l represents the same

property. We also discussed our method in relation to other methods. In particular

we provided a method for transforming a set of trajectories into a corresponding input

altering transducer. Moreover, we discussed how to construct a counterexample for a

language L and a property P, provided L <£ P.

One of our main research goals was to implement our method in the form of a web

application. In Chapter 8 we provided some details of the implementation. We also

included a brief tutorial on how to access and use our system, along with example

input files. To our knowledge, this is the first publicly available implementation of a

method for deciding language properties, where the set of properties is not fixed.

8.2 Future Work

Our method was developed for testing if a regular language satisfies a given property.

In our opinion the next step is investigating methods for generating a language that

satisfies some given properties. Such methods could be developed for finite languages,

or if possible for infinite languages where the output would be an automaton accepting

the generated language. Also, our method require input altering transducers, which

limits the set of properties that can be described. Therefore, the other possible

direction for research would be discovering and investigating more powerful methods

for describing and deciding properties of languages.

91

As with any implemented system, ours also is open for improvements and enhance

ments. As mentioned in Chapter 7, our web application, in addition to transducers, is

able to process properties described by trajectory sets. However, an input trajectory

set has to be provided in a form of an automaton. A more standard way of describing

trajectory sets is via regular expressions. Therefore, a natural enhancement would be

to provide the option in our application to input trajectory sets in a form of regular

expressions.

When we started thinking about implementing our method as a web application, our

goal was to lay a foundation for what we hope will become a more complete application

for manipulating languages. Therefore, the more broad direction for future research

and development is to implement new features that will provide users of our system

with set of useful tools for researching formal languages.

Bibliography

92

[1] Grail++, October 2009. http://www.csd.uwo.ca/Research/grail/.

[2] Boost C + + libraries, October 2010. ht tp: / /www.boost .org/ .

[3] Django framework, October 2010. ht tp: / /www.boost .org/ .

[4] Vaucanson, June 2011. http://www.lrde.epita.fr/cgi-bin/twiki/view/Vaucanson/.

[5] J. Berstel and D. Perrin. Theory of codes. Academic Press Orlando, 1985.

[6] A. Carpi. Overlap-free words and finite automata. Theor. Comput. Sci., 115:243—
260, July 1993.

[7] N. Chomsky. Three models for the description of language. IRE Transactions
on Information Theory, 2:113-124, 1956.

[8] M. Domaratzki. Deletion along trajectories. Theor. Comput. Sci., 320:293-313,
June 2004.

[9] M. Domaratzki. Trajectory-based codes. Acta Inf., 40(6-7):491-527, 2004.

[10] M. Domaratzki and K. Salomaa. Codes denned by multiple sets of trajectories.
Theor. Comput. Sci, 366(3): 182-193, 2006.

[11] K. Dudzinski and S. Konstantinidis. Formal descriptions of code properties:
decidability, complexity, implementation. Int. J. of Foundation of Computer
Science, to appear in 2011.

[12] M. Frishert, L. G. Cleophas, and B. W. Watson. Fire station: An environment
for manipulating finite automata and regular expression views. In CIAA '04,
pages 125-133, 2004.

[13] A. Ginzburg. Algebraic theory of automata. ACM monograph series. Academic
Press, New York, NY, 1968.

[14] C. Hagenah and A. Muscholl. Computing epsilon-free nfa from regular expres
sions in o(n log(n)) time. In Proceedings of the 23rd International Symposium
on Mathematical Foundations of Computer Science, MFCS '98, pages 277-285,
London, UK, 1998. Springer-Verlag.

[15] Yo-Sub Han and Derick Wood. Overlap-free regular languages. In Danny Chen
and D. Lee, editors, Computing and Combinatorics, volume 4112 of Lecture Notes
in Computer Science, pages 469-478. Springer Berlin / Heidelberg, 2006.

http://www.csd.uwo.ca/Research/grail/
http://www.boost.org/
http://www.boost.org/
http://www.lrde.epita.fr/cgi-bin/twiki/view/Vaucanson/

93

[16] T. Head and A. Weber. Deciding code related properties by means of finite trans
ducers. Proc. Sequences II, Methods in Communication, Security, and Computer
Science, pages 260-272, 1993.

[17] J. L. Hein. Discrete Structures, Logic and Computability. Jones and Bartlett
Publishers, Inc., USA, 1994.

[18] P. T. Hu, K. V. Hung, and D. L. Van. Codes and length-increasing transitive
binary relations. In Dang Van Hung and Martin Wirsing, editors, Theoretical
Aspects of Computing ICTAC 2005, volume 3722 of Lecture Notes in Computer
Science, pages 29-48. Springer Berlin - Heidelberg, 2005.

[19] M. Ito, H. Jiirgensen, H. J. Shyr, and G. Thierrin. Outfix and infix codes and
related classes of languages. J. Comput. Syst. Sci., 43(3):484-508, 1991.

[20] J. Johnson. Rational equivalence relations. Theor. Comput. Sci., 47:39-60,
November 1986.

[21] H. Jiirgensen. Syntactic monoids of codes. Acta Cybern., 14(1):117-134, 1999.

[22] H. Jiirgensen. Maximal solid codes. J. Autom. Lang. Comb., 6:25-50, January
2001.

[23] H. Jiirgensen and S. Konstantinidis, The hierarchy of codes. In Fundamentals of
Computation Theory, volume 710 of Lecture Notes in Computer Science, pages
50-68. Springer Berlin - Heidelberg, 1993.

[24] H. Jiirgensen and S. S. Yu. Solid codes. J. Inform. Process. Cybern, 26:563-574,
1991.

[25] H. Jiirgensen and S. S. Yu. Dependence systems and hierarchies of families of
languages. Unpublished manuscript, 1995.

[26] L. Kari and S. Konstantinidis. Language equations, maximality and error-
detection. J. Comput. Syst. Sci., 70:157-178, February 2005.

[27] L. Kari and P. Sosik. On language equations with deletion. Bulletin of the
EATCS, 83:173-180, 2004.

[28] V. Kell, A. Maier, A. Potthoff, W. Thomas, and U. Wermuth. Amore: A system
for computing automata, monoids and regular expressions. In Proceedings of
the 6th Annual Symposium on Theoretical Aspects of Computer Science, pages
537-538, London, UK, 1989. Springer-Verlag.

[29] Al. A. Markov. Nonrecurrent coding. Problemy Kibernetiki, (8):169186, 1961.

[30] A Mateescu, G Rozenberg, and A Salomaa. Shuffle on trajectories: Syntactic
constraints. Theoretical Computer Science, 197(1-2) :1 - 56, 1998.

94

[31] N. Moreira and R. Reis. Interactive manipulation of regular objects with fado.
SIGCSE Bull, 37:335-339, June 2005.

[32] G. Paun and A. Salomaa. Thin and slender languages. Discrete Applied Mathe
matics, 61(3):257-270, 1995.

[33] E. L. Post. A variant of a recursivly unsolvable problem. Bulletin of the American
Mathematical Society, 52, 1946.

[34] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM
J. Res. Dev., 3:114-125, April 1959.

[35] Rogrio Reis and Nelma Moreira. FAdo:tools for finite automata and regular
expressions manipulation. Technical Report DCC-2002-2, DCC-FC& LIACC,
Universidade do Porto, August 2002.

[36] M. Riley, C. Allauzen, and M. Jansche. Openfst: an open-source, weighted finite-
state transducer library and its applications to speech and language. In Proceed
ings of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, Compan
ion Volume: Tutorial Abstracts, NAACL-Tutorials '09, pages 9-10, Stroudsburg,
PA, USA, 2009. Association for Computational Linguistics.

[37] M. Rodeh. A fast test for unique decipherability based on suffix trees. Informa
tion Theory, IEEE Transactions on, 28(4):648-651, July 1982.

[38] S. J. Russell and P. Norvig. Artificial Intelligence: a modern approach. Prentice
Hall, 2nd international edition, 2003.

[39] H. Shyr and G. Thierrin. Codes and binary relations. In Marie Malliavin,
editor, Sminaire dAlgbre Paul Dubreil Paris 19751976 (29me Anne), volume 586
of Lecture Notes in Mathematics, pages 180-188. Springer Berlin / Heidelberg,
1977. 10.1007/BFb0087133.

[40] H. Shyr and S. Yu. Solid codes and disjunctive domains. Semigroup Forum,
41:23-37, 1990. 10.1007/BF02573375.

[41] H. J. Shyr. Free Monoids and Languages. Hon Min Book Company, Taichung,
Taiwan, 1991.

[42] S. Yu. Regular languages, volume 1 of Handbook of formal languages, pages
41-110. Springer-Verlag New York, Inc., New York, NY, USA, 1997.

