
Performance Analysis of Error-Control B-spline

Gaussian Collocation Software for PDEs I

Jack Pew1 , Zhi Li2, Connor Tannahill1, Paul Muir3, Graeme Fairweather4

Abstract

B-spline Gaussian collocation software has been widely used in the numerical
solution of boundary value ordinary differential equations (BVODEs) and par-
tial differential equations (PDEs) in one space dimension (1D) for many years.
The software package, BACOL, developed over a decade ago, was one of the
first 1D PDE packages to provide both temporal and spatial error control. A
new package, BACOLI, improves upon the efficiency of BACOL through the
use of new types of spatial error estimation and control. The complexity of the
interactions among the component numerical algorithms used by these pack-
ages implies that extensive testing and analysis of the test results is an essential
factor in their development. In this paper, we investigate the performance of
the BACOL and BACOLI packages with respect to several important machine
independent algorithmic measures and examine the effectiveness of the new er-
ror estimation and error control strategies. We also investigate the influence of
the choice of the degree of the B-splines on the efficiency and reliability of the
solvers. These results will provide new insights into how to improve BACOLI,
lead to improvements in the Gaussian collocation BVODE solvers, COLSYS and
COLNEW, and guide the further development of B-spline Gaussian collocation
software with error control for 2D PDEs.

Subject Classification: 65L10, 65M20, 65M70
Keywords: Partial differential equations, collocation, B-Splines, error control,
efficiency, reliability.

IThis work was supported by the Mathematics of Information Technology and Complex
Systems Network, the Natural Sciences and Engineering Research Council of Canada and
Saint Mary’s University.

1Saint Mary’s University, Halifax, NS, Canada, B3H 3C3
2Michigan State University, East Lansing, MI 48824, USA
3Corresponding Author: Mathematics and Computing Science, Saint Mary’s University,

Halifax, NS, Canada, B3H 3C3, E-mail Address: muir@smu.ca
4Mathematical Reviews, American Mathematical Society, Ann Arbor, MI 48103, USA

Preprint submitted to Computers & Mathematics with Applications April 2, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Saint Mary's University, Halifax: Institutional Repository

https://core.ac.uk/display/354994785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

For several decades, software packages implementing B-spline Gaussian collo-
cation algorithms, often called orthogonal spline collocation (OSC) algorithms
in the literature, have been widely used in the numerical solution of systems
of boundary value ordinary differential equations (BVODEs) and 1D partial
differential equations (PDEs). In these packages, the approximate solution is
represented as a linear combination of B-spline basis functions [5] of a user-
chosen degree, with unknown coefficients which are determined by requiring
the approximate solution to satisfy, in addition to the boundary conditions, the
differential equations at certain points (images of Gauss points) within each
subinterval of a mesh that partitions the spatial domain.

An essential component of a high quality numerical software package is a
framework that provides an error-controlled computation of the approximate
solution. A package that implements adaptive error control returns an ap-
proximate numerical solution for which an associated error estimate satisfies a
user-prescribed tolerance. This type of computation has two important advan-
tages:

(i) the user can have reasonable confidence that the numerical solution has an
error that is consistent with the requested tolerance, and

(ii) the cost of the computation will be consistent with the requested accu-
racy. Error-control software typically adapts the computation so that the
amount of work performed is appropriate for the desired accuracy, using,
for example, a spatial mesh with an appropriate number and distribution
of points.

In this paper, we consider B-spline Gaussian collocation software packages
for solving coupled systems of PDEs of the form

ut(x, t) = f (x, t, u(x, t), ux(x, t), uxx(x, t)) , x ∈ I, t ≥ t0, (1)

with separated boundary conditions

bL (t, u(a, t), ux(a, t)) = 0, bR (t, u(b, t), ux(b, t)) = 0, t ≥ t0, (2)

and initial conditions

u(x, t0) = u0(x), x ∈ I, (3)

where I denotes the interval (a, b).
In order to describe the spatial discretization of this problem using B-spline

Gaussian collocation, we introduce the following notation. Let πh = {xi}
NINT
i=0

denote a partition of the interval I ≡ [a, b] with

a = x0 < x1 < . . . < xNINT−1 < xNINT = b,

2

and let
Ii = [xi−1, xi], hi = xi − xi−1, i = 1, . . . , NINT.

We define the finite dimensional space Mp by

Mp = {vh ∈ C1(I) : vh|Ij
∈ Pp(Ij), j = 1, . . . , NINT},

where Pp(Ij) denotes the set of all polynomials of degree ≤ p on Ij . Note that

dimMp = NINT (p − 1) + 2 ≡ NCp.

As the name of the method suggests, it is customary to choose as a basis for

Mp the space of B-splines, {Bp,i(x)}
NCp

i=1 of degree p ≥ 3.

Let {ρj}
p−1
j=1 denote the nodes of the (p−1)-point Gauss-Legendre quadrature

rule on the interval [0, 1]. Let

G = {ξr}
NINT (p−1)
r=1

be the set of Gauss points in I, where

ξ` = xi−1 + hiρk, ` = (i − 1)(p− 1) + j, j = 1, 2, ...p− 1, i = 1, ..., NINT.

These are the collocation points.
With this notation, we express the collocation solution, U(x, t), in the form,

U(x, t) =

NCp
∑

i=1

yp,i(t)Bp,i(x), (4)

where yp,i(t) is an unknown time dependent (vector) coefficient of Bp,i(x). The
coefficients, yp,i(t), are obtained by requiring that U(x, t) satisfy the PDE at the
p − 1 Gauss points within each spatial mesh subinterval, Ij , i = 1, . . . , NINT ,
and that U(x, t) satisfy the boundary conditions. The former set of conditions,
known as the collocation conditions, give equations of the form,

Ut(ξl, t) = f (ξl, t, U(ξl, t), Ux(ξl, t), Uxx(ξl, t)) , (5)

for l = 2, . . . , NCp − 1. The latter pair of conditions lead to equations having
the form,

bL (t, U(a, t), Ux(a, t)) = 0, bR (t, U(b, t), Ux(b, t)) = 0. (6)

The ODEs (5), l = 2, . . . , NCp − 1, together with the equations (6), represent a
system of index-1 Differential-Algebraic Equations (DAEs).

For systems of BVODEs, the COLSYS package [3] was the first software
package based on B-spline Gaussian collocation which incorporated a mecha-
nism for error control. This package has been used extensively for many decades
and has been implemented in a number of numerical software libraries, for ex-
ample, [14], and in several problem-solving environments such as Scilab (bvode)

3

[21] and Python (scikits.bvp1lg) [23]. (In some cases, the implementation is
based on COLNEW [4], a modified version of COLSYS, in which the primary
difference is the replacement of the B-spline basis with a monomial basis, the
Gaussian collocation and error estimation and control algorithms remaining
largely unchanged).

For 1D parabolic PDEs of the form (1)–(2), the B-spline Gaussian collocation
packages PDECOL [15] and EPDCOL [12] were the earliest packages of this
family to provide any form of error control. However they provide control only of
the temporal error and not the spatial error. These packages require the user to
provide the time derivatives of the boundary equations. These ODEs, together
with the ODEs (5), l = 2, . . . , NCp − 1, are solved by an ODE solver which
provides the temporal error control. PDECOL employs a banded solver to treat
the linear systems arising from the B-spline collocation spatial discretization.
However these systems have an almost block diagonal (ABD) structure - see, for
example, [7]. EPDCOL, a modification of PDECOL that replaces the banded
solver with the ABD linear system solver, COLROW [6], in order to avoid fill-in
and the associated computational and memory overheads, was shown in [12] to
be about twice as fast as PDECOL.

Subsequently, the packages, BACOL [25, 27] and BACOLR [24] were de-
veloped. These also implement B-spline Gaussian collocation for the spatial
discretization but provide both temporal and spatial error control. The tempo-
ral error-controlled solution of the DAE system, (5), l = 2, . . . , NCp − 1, (6), to
obtain the time-dependent B-spline coefficients, is performed in BACOL using
the DASSL [4] package, which is based on Backward Differentiation Formulas
(BDFs), and in BACOLR using the RADAU5 package [9], which is based on a
fifth order implicit Runge-Kutta method of Radau IIA type. In a comparison
with several other packages for 1D parabolic PDEs, for example, EPDCOL,
MOVCOL [10], and HPNEW [16], BACOL was shown in [26] to provide supe-
rior performance, especially for problems with solutions exhibiting sharp moving
layers and for sharp tolerances. In [24], numerical comparisons of BACOL and
BACOLR show that the two codes perform similarly on several standard test
problems and that BACOLR has much superior performance on problems for
which the stability of the higher order BDFs is an issue. The stability regions
of the higher order BDFs do not include the imaginary axis and thus problems
that lead to DAEs having Jacobians with eigenvalues near the imaginary axis,
for example, Schrödinger type problems, cannot be treated using the higher or-
der BDFs. The paper [24] shows that BACOL fails on problems of this type
unless DASSL is restricted to using only lower order BDFs, in which case the
efficiency of the computation is substantially degraded.

BACOL obtains its spatial error estimate by computing a second approxi-
mate solution (based on B-splines of degree p +1), essentially doubling the cost
of the computation. The recently released package, BACOLI [18] improves on
the efficiency of the spatial error estimation scheme employed by BACOL by in-
troducing two new interpolation-based schemes, each of which is coupled with a
different spatial error control mode. Since the interpolant can be used to obtain
the spatial error estimate, the second approximate solution is not computed. In

4

[18], BACOLI is shown to be approximately twice as efficient as BACOL. We
discuss the BACOL and BACOLI packages in more detail in the next section.

We are currently developing a new version of BACOLR, called BACOLRI,
that employs the new spatial error estimation and control schemes that have
been implemented in BACOLI. Since we will compare BACOLRI with BACOLR
and BACOLI in a subsequent paper, we do not consider BACOLR within this
paper.

A common feature of the COLSYS and COLNEW packages and the 1D
PDE packages mentioned earlier is that each implements a family of Gaussian
collocation methods over a range of values of p. For example, for BACOLI,
the allowable range of p values is 4 to 11. While the user is required to select a
value for p, the packages provide little or no guidance regarding how it should be
chosen, and, to our knowledge, there has been little investigation of the impact
of p on the overall code performance, particularly for the PDE case. A primary
goal of this paper is therefore to investigate the role that the degree p of the
B-spline basis plays in the efficiency and reliability of the computation.

The development of B-spline Gaussian collocation software for 2D parabolic
PDEs in a rectangular spatial domain partitioned by a rectangular grid has
been considered in [13]. Current work on this project is focused on the develop-
ment of efficient spatial error estimation techniques involving the extension of
techniques we have developed for the 1D case, and the development of spatial
mesh adaptation (for spatial error control) based on ideas from moving mesh
methods - see, for example, [11]. This work depends heavily on the approaches
employed in the 1D case. Another primary goal of this paper, therefore, is an
investigation of the performance of 1D PDE solvers in order to apply the results
in the further development of B-spline Gaussian collocation software for the 2D
case.

Performance analysis of scientific software for differential equations has a
long history. See, for example, [22] and references therein. While efficient,
stable and robust numerical methods are the foundation upon which all high
quality numerical software packages are developed, the sophistication of such
packages and the complexity of the interaction among the component algo-
rithms of the packages implies that extensive numerical testing together with
subsequent analysis of the results of the numerical experiments is an essential
factor in the development of such software. For example, the software package
BACOLI, considered in this paper, includes implementations of a number of
complex numerical algorithms such as adaptive error-controlled time-stepping
and method order selection for the DAEs and spatial mesh refinement for the
discretization of the spatial domain of the PDEs. In addition, the code also has
available two spatial error control schemes and a family of collocation methods.
The ways in which these algorithms interact to affect the efficiency and reliabil-
ity of the software must be assessed through detailed numerical experimentation
and performance analysis.

This paper is organized as follows. In Section 2, we provide an overview of
several features of BACOL and BACOLI. This is followed by a brief descrip-
tion of the spatial error estimation scheme employed by BACOL and the two

5

interpolation-based spatial error estimation/error control schemes implemented
in BACOLI. Section 3 provides selected results from a set of numerical experi-
ments reported in [20] in which the performance of the BACOL and BACOLI
packages is investigated. These packages are compared with respect to several
important machine independent measures that provide insight into the perfor-
mance of the algorithms implemented in these packages. In addition, results are
presented that compare the work required vs. accuracy achieved by the pack-
ages. Section 3 also provides results which examine the role that the degree of
the B-spline basis plays in both the efficiency and reliability of the solvers. We
conclude in Section 4 with a discussion of the results and present suggestions
for future research.

2. The software packages BACOL and BACOLI

As has already been mentioned, BACOL solves the DAEs arising from the
collocation equations (5) and boundary conditions (6) using the DAE solver
DASSL, which provides a temporal error-controlled computation of the B-spline
coefficients. After each accepted time step taken by DASSL, BACOL computes
an estimate of the spatial error in the collocation approximation and checks
if it satisfies the user-specified tolerance. If the tolerance is not satisfied, the
numerical solution in question is rejected, and a spatial remeshing, based on
the principle of equidistributing the spatial error estimate, is performed. Both
the location and the number of spatial mesh points may be changed during the
remeshing in order to adapt to the magnitude (with respect to the user-specified
tolerance) and distribution of the spatial error estimate over the spatial domain.
See [27] for further details. Based on the new spatial mesh, the computation of
the solution on the current time step is repeated using DASSL in what is referred
to as a “warm start” mode, meaning that the current time step and method
(that is, a BDF of a given order) are used. If, after several failed attempts
to obtain a spatial mesh such that the corresponding numerical solution has a
spatial error estimate that satisfies the desired tolerance, BACOL restarts the
time step using DASSL in “cold start” mode meaning that it restarts with a very
small time step and with the BDF of order one. Cold starts are computationally
expensive since it can take a substantial number of time steps and method order
increases before DASSL is able to return to the larger step size and the higher
order method that it was using before the cold start was enforced.

As mentioned earlier, the BACOL spatial error estimate is determined by
computing a second approximate solution, Ū(x, t), on the same spatial mesh and
at the same time t, but based on B-splines of degree p + 1. A scaled difference
of U(x, t) and Ū(x, t) is then computed to provide a spatial error estimate for
U(x, t). It has the form,

√

∫ b

a

(

Us(x, t)− Ūs(x, t)

ATOLs + RTOLs|Us(x, t)|

)2

dx, s = 1, . . . , NPDE,

6

where Us(x, t) is the sth component of U(x, t), Ūs(x, t) is the sth component
of Ū(x, t), ATOLs and RTOLs are the user-provided absolute and relative
tolerances for the sth component of the spatial error estimate, and NPDE is
the number of PDEs.

The computation of Ū(x, t) essentially doubles the overall cost. This in-
efficiency is addressed in the BACOLI package which replaces the expensive
computation of Ū(x, t) with a more efficient approach involving the computa-
tion of an interpolant based only on U(x, t). Two types of piecewise polynomial
interpolants have been developed. One, the SuperConvergent Interpolant (SCI)
[1], is based on interpolating values of U(x, t) at the mesh points and at certain
other points (within and immediately adjacent to each subinterval) where it is
superconvergent in space; that is, where the rate of convergence of the spatial
error at these points is at least one order higher than at an arbitrary point in
the spatial domain. A sufficient number of such points is chosen so that the
interpolation error is dominated by the error of the superconvergent values and
thus the resultant interpolant is of one order of spatial accuracy higher than
U(x, t). See [1] for further details. A scaled difference of the SCI and U(x, t),

√

√

√

√

∫ b

a

(

Us(x, t)− Ûs(x, t)

ATOLs + RTOLs|Us(x, t)|

)2

dx, s = 1, . . . , NPDE,

where Ûs(x, t) is the sth component of the SCI, is then computed to provide a
spatial error estimate for U(x, t).

The second type of interpolant, the Lower Order Interpolant (LOI) [2], is
based on interpolating values of U(x, t) at a set of points on each spatial subin-
terval such that the interpolant has an interpolation error that is asymptotically
equivalent to the error in a collocation solution of one order lower. In this case,
the number of interpolation points is chosen so that the interpolation error of
the LOI dominates the error associated with the U(x, t) values. See [2] for
further details. Then a scaled difference of the LOI and U(x, t),

√

√

√

√

∫ b

a

(

Us(x, t)− Ũs(x, t)

ATOLs + RTOLs|Us(x, t)|

)2

dx, s = 1, . . . , NPDE,

where Ũs(x, t) is the sth component of the LOI, provides a spatial error estimate
for a collocation solution that is of one lower order than U(x, t). This type of
error control, known as Local Extrapolation (LE) error control, is similar to what
is done in the context of Runge-Kutta formula pairs for the numerical solution
of initial value ODEs [8]. BACOLI offers an option for the use of either the SCI
or the LOI scheme, coupled with its associated error control mode.

In BACOL, U(x, t) is the primary solution returned to the user and Ū(x, t)
is computed only to obtain a spatial error estimate for U(x, t). Since the spatial
error estimate is for U(x, t), we refer to this as Standard (ST) Error Control, and
we refer to BACOL when running in this error control mode as BAC/ST. Since

7

the SCI scheme also computes a spatial error estimate for U(x, t), BACOLI,
when using the SCI option, is also using ST error control, and we refer to
BACOLI when running in this error control mode as SCI/ST. With a simple
modification, it would be possible to have BACOL return Ū(x, t). However
the error control would continue be based on the error estimate for U(x, t) and
would thus be an example of LE error control. We refer to BACOL, when
running in this error control mode, as BAC/LE. Since BACOLI, when using
the LOI option, also returns U(x, t) with the error control based on a spatial
error estimate for a collocation solution of one lower order, this is also LE error
control. We refer to BACOLI when running in this mode as LOI/LE. See [18]
for further details.

3. Numerical Results

In this section, we present a subset of the numerical results from [20] which
investigate the performance of the four codes, BAC/ST, BAC/LE, SCI/ST and
LOI/LE. We consider machine independent measures of efficiency, error vs. exe-
cution time comparisons, and a reliability measure comparing error achieved vs.
tolerance requested. We also examine the effects on performance of the error
estimation schemes, the error control modes, and the choice of the degree of the
B-spline basis.

The computations were performed on a system with two Intel(R) Xeon(R)
CPU E5420 @ 2.50GHz processors. The operating system was Ubuntu 12.04.5
LTS, and the Fortran compiler was GNU Fortran (Ubuntu/Linaro 4.6.3-lubuntu5)
4.6.3.

3.1. Test Problems

In [20] nine test problems are considered. Here we consider the following
three of these which are of particular interest because they have solutions that
feature moving spatial layer regions. This places demands on the spatial error
estimation and spatial mesh adaptivity algorithms to adequately detect and
track the moving layers as the solution evolves in time. See, for example, [27],
page 251, Figure 2, which shows this layer-tracking capability.

• OLBE: The One Layer Burgers Equation:

ut = εuxx − uux, x ∈ (0, 1), t ∈ (0, 1], (7)

with the initial condition and boundary conditions chosen so that the
exact solution is

u(x, t) =
1

2
−

1

2
tanh

(

x − t
2
− 1

4

4ε

)

, (8)

where ε is a problem-dependent parameter. We set ε = 10−4. The solution
has a sharp layer region at x ≈ 0.25 when t = 0. As t increases from 0 to
1, the layer moves to the right and is located at x ≈ 0.75 when t = 1.

8

• TLBE: The Two Layer Burgers Equation:

We again consider the PDE (7) but with the initial condition and boundary
conditions chosen so that the exact solution is

u(x, t) =
0.1e−A + 0.5e−B + e−C

e−A + e−B + e−C
,

where

A =
0.05

ε
(x−0.5+4.95t), B =

0.25

ε
(x−0.5+0.75t), C =

0.5

ε
(x−0.375).

When t = 0, the solution has two sharp layers at x ≈ 0.25 and x ≈ 0.5.
As t increases, these layers move to the right and merge, forming a single
layer at x ≈ 0.7 when t ≈ 0.5. As time increases further, the single layer
continues to move to the right, and is located at x ≈ 0.9 when t = 1. We
again choose ε = 10−4.

• TLBEx6: This test problem is a system of PDEs consisting of six copies
of TLBE, with ε = 10−4.

3.2. Machine Independent Efficiency Measures

In this subsection, we compare BAC/ST, BAC/LE, SCI/ST, and LOI/LE
with respect to several machine independent measures of the algorithms em-
ployed in the codes that can contribute significantly to their overall perfor-
mance. These machine independent measures provide an important comple-
ment to standard machine dependent timing results. Many additional insights
regarding code performance can be obtained by considering such performance
measures.

The machine independent measures that we consider are:

• the number of subintervals in the spatial mesh at the final time (Final
NINT),

• the total number of accepted time steps (Accepted Time Steps),

• the total number of spatial remeshings (Remeshings), and

• the total number of cold starts (Cold Starts).

As mentioned earlier, BACOL and BACOLI employ COLROW for the ef-
ficient solution of the ABD linear systems that arise during the computations.
Within COLROW, the CRDCMP routine performs factorizations of the ABD
coefficient matrices, while the CRSLVE routine solves the factored ABD sys-
tems. Thus we also consider:

• the total number of ABD matrix factorizations (Calls to CRDCMP),

• the total number of solves of ABD linear systems (Calls to CRSLVE).

9

Here we present machine independent results from [20] for TLBEx6 with
ε = 10−4. We choose p = 5, 7, 9, and tolerances, tol = 10−4, 10−6, 10−8. We
set ATOLs = RTOLs = tol, s = 1, . . . , NPDE. For all tests, we choose p so
that we are comparing computations that return collocation solutions based on
polynomials of the same degree on each subinterval. Table 1 gives machine inde-
pendent measures for the four codes. In Table 2, we provide machine dependent
timings that include the cases considered in Table 1.

tol 10−4 10−6 10−8

p 5

BACOL/ST 14, 9899, 521 17, 23551, 976 28, 46825, 1064
(7)[2654, 33308] (5)[7014, 76450] (3)[9346, 131442]

BACOL/LE 14, 9346, 613 19, 21873, 943 44, 47092, 943
(12)[2896, 32612] (1)[4308, 67264] (0)[6616, 128772]

BACOLI/ST 15, 9816, 523 18, 37008, 756 35, 49545, 882
(3)[1501, 17062] (2)[3675, 37541] (0)[7473, 73273]

BACOLI/LE 15, 8988, 765 23, 20060, 961 46, 45188, 1067
(1)[1759, 16817] (1)[2178, 30941] (0)[2963, 63104]

p 7
BACOL/ST 15, 10841, 399 15, 25576, 754 16, 78797, 1130

(6)[2422, 34782] (3)[8314, 81886] (2)[18004, 154172]

BACOL/LE 15, 10042, 476 15, 24653, 899 23, 95628, 1099
(3)[2534, 33486] (1)[7870, 80468] (8)[13204, 139426]

BACOLI/ST 14, 10749, 417 16, 26350, 717 19, 50825, 906
(0)[1266, 17696] (1)[4580, 42141] (0)[8429, 77783]

BACOLI/LE 15, 10569, 540 15, 24456, 942 22, 48071, 1070
(6)[1457, 17900] (1)[4032, 40437] (7)[5425, 69758]

p 9

BACOL/ST 15, 11863, 325 14, 28769, 638 15, 54217, 950
(0)[2466, 36356] (3)[9344, 88620] (3)[18700, 156698]

BACOL/LE 14, 12065, 360 15, 26579, 658 15, 54894, 1115
(6)[2766, 37744] (0)[8234, 83140] (0)[19788, 164190]

BACOLI/ST 15, 11626, 352 15, 28684, 600 14, 54695, 938
(0)[1431, 18607] (0)[4604, 44084] (1)[9308, 82389]

BACOLI/LE 15, 10968, 425 14, 34408, 765 15, 61190, 1235
(0)[1400, 17791] (9)[4714, 44146] (6)[10315, 88796]

Table 1: Machine independent results for TLBEx6 with ε = 10−4, p = 5,7, 9, and
tol = 10−4,10−6, 10−8. Each table entry gives Final NINT, Accepted Time Steps,
and Number of Remeshings in row 1, and (Cold Starts) [Calls to CRDCMP, Calls to
CRSLVE] in row 2.

From Table 1, we see that, while the performances of BAC/ST, BAC/LE,
SCI/ST, and LOI/LE of course exhibit some relative variations over the p and
tol values considered, several general observations can be made:

• Final NINT: For smaller p values, the final NINT value increases as tol

10

tol = 10−4/p = 4 5 6 7 8 9 10 11
BACOL/ST 4.16 5.40 7.38 9.96 12.74 15.68 21.24 26.38

BACOL/LE 3.25 4.16 5.40 7.38 9.96 12.74 15.68 21.24
BACOLI/ST 2.18 2.59 3.16 4.16 5.73 7.02 8.89 10.46

BACOLI/LE 2.46 2.78 3.50 4.39 5.68 6.97 10.68 11.20

tol = 10−6/p = 4 5 6 7 8 9 10 11

BACOL/ST 13.14 16.34 20.99 28.09 35.89 47.81 59.47 76.61
BACOL/LE 13.28 13.14 16.34 20.99 28.09 35.89 47.81 59.47

BACOLI/ST 7.69 8.67 10.21 13.03 16.89 20.60 26.68 31.38
BACOLI/LE 8.36 8.03 9.89 12.36 16.25 20.80 25.01 29.22

tol = 10−8/p = 4 5 6 7 8 9 10 11

BACOL/ST 58.20 52.24 56.82 73.24 90.09 106.72 133.77 155.88
BACOL/LE 91.12 58.20 52.24 56.82 73.24 90.09 106.72 133.77
BACOLI/ST 29.63 29.36 29.38 34.72 40.63 47.09 57.77 64.13

BACOLI/LE 71.78 32.75 30.66 32.13 42.40 50.76 56.98 67.54

tol = 10−10/p = 4 5 6 7 8 9 10 11
BACOL/ST 231.94 124.86 134.63 130.26 150.47 176.64 202.04 213.03

BACOL/LE 338.08 231.94 124.86 134.63 130.26 150.47 176.64 202.04
BACOLI/ST 146.50 87.59 78.55 73.45 79.87 84.08 99.86 111.83

BACOLI/LE 356.08 125.11 82.80 79.74 80.18 97.44 108.21 128.52

Table 2: Machine dependent timings (in seconds), TLBEx6 with ε = 10−4, p = 4, . . . ,11,
tol = 10−4,10−6, 10−8, 10−10.

becomes sharper. In contrast, for larger p values, the final NINT value
is independent of tol. For the coarsest tol value, the final NINT value is
independent of p. However, for sharper tol values, the final NINT value is
larger for the smallest p value, and decreases as p increases. Combining
these points, we see that the final NINT value is largest when p is smallest
and tol is sharpest. Otherwise, the final NINT values employed by the
codes are quite similar.

• Accepted Time Steps: The number of accepted time steps increases as
tol becomes sharper, as expected. The number of accepted time steps used
by the four codes is generally about the same and is largely independent
of p (although the codes do use slightly more time steps when p is larger.)

• Remeshings: Compared to the total number of accepted time steps,
there are relatively few remeshings. The number of remeshings is larger
when tol is sharper. For a given tol, the number of remeshings decreases
as p increases. This effect is more significant when tol is coarse. For given
p and tol values, the number of remeshings performed by the four codes
is generally about the same.

• Cold Starts: The number of cold starts is quite insignificant compared

11

to the total number of accepted time steps, for all codes and p, tol com-
binations.

• Calls to CRDCMP/Calls to CRSLVE: For small p values, the to-
tal number of calls to CRDCMP performed by BAC/ST or BAC/LE is
roughly the same as the number of calls made by SCI/ST or LOI/LE. For
larger p values, the total number of calls to CRDCMP is roughly twice
that of SCI/ST or LOI/LE. The number of calls to CRSLVE performed
by BAC/ST or BAC/LE is roughly twice that of SCI/ST or LOI/LE, for
all p values. Also, the number of calls to CRSLVE is typically about ten
times the number of calls to CRDCMP. These observations provide in-
sight for the timing results in Table 2 that show that, generally, SCI/ST
and LOI/LE are about twice as fast as BAC/ST or BAC/LE. This strong
correlation between the number of CRDCMP and CRSLVE calls and the
overall execution time is expected. See Figure 75 of [17] which shows
that, for BAC/ST and the TLBEx12 test problem, a PDE system con-
sisting of 12 copies of the TLBE, with ε = 10−4, the execution times for
the CRDCMP and CRSLVE routines represent about two thirds of the
overall execution time of BAC/ST. For a given code, the number of CRD-
CMP and CRSLVE calls increases substantially for sharper tol values, as
expected. The type of error control that is employed (ST or LE) does not
significantly impact the number of CRDCMP and CRSLVE calls.

These observations are also supported by the tables of machine independent
results for the other test problems presented in [20]. Figures that give com-
parison plots of some of these machine independent efficiency measures are also
provided in [20]. These figures provide further clarification of the relationships
among the measures that are discussed in the observations presented in this
subsection.

3.3. Error vs. Execution Time across Codes

In [20], error vs. execution time results are presented for the test problems
OLBE and TLBE with ε = 10−3 and 10−4, over the allowable range of p values
for each code. The tests were conducted for a range of 81 tol values from 10−2

to 10−10. The tol values were uniformly distributed - on a log scale - over 10−2

to 10−10.
We consider a representative case from [20], namely, TLBE with ε = 10−4

and p = 6. In Figure 1, a plot of error vs. execution time for each code is
given. The plots also show lines fitted to the data for each code to help clarify
comparisons among the codes. We see from Figure 1 that over the entire range
of errors, BAC/ST and BAC/LE have comparable execution times, SCI/ST
and LOI/LE have comparable execution times, and SCI/ST and LOI/LE are
consistently less expensive than BAC/ST and BAC/LE.

The comparisons among these codes can be seen more clearly if we plot the
execution times of BAC/LE, SCI/ST, and LOI/LE relative to that of BAC/ST.
These plots were developed as follows. We describe this process for the BAC/LE
data.

12

������������������������	���
��������

�����������

���

���

�
�
�
��
�
�
��
�

�� �!" �#�$%&'#�$()*
+,-./012
+,-./0/3
+,-./4012
+,-./40/3

Figure 1: Error vs. execution time for BAC/ST, BAC/LE, SCI/ST, LOI/LE, for TLBE with
ε = 10−4 and p = 6.

• We first perform a linear fit to the log of the error vs. log of time data
associated with BAC/ST in order to obtain a continuous representation
of the baseline BAC/ST data.

• Then, for each (error,time) ordered pair from the BAC/LE data set, we
use this linear fit to the BAC/ST data to obtain a corresponding time
estimate for BAC/ST; that is, an estimate of how much time BAC/ST
would take to compute a solution with the same error as BAC/LE.

• We then calculate the ratio of the actual BAC/LE time to this estimated
BAC/ST time. This yields a set of ordered pairs of the form (error, time
ratio) that we can associate with BAC/LE.

• Finally, we fit a line to the (log of error, time ratio) ordered pairs and plot
this line on a semi-log scale.

This process is repeated for the SCI/ST and the LOI/LE data. A plot is given
for the TLBE with ε = 10−4, p = 6 case in Figure 2. We can now see more
clearly that SCI/ST and LOI/LE are consistently less expensive than BAC/ST
and BAC/LE over the entire error range. The average costs for SCI/ST and
LOI/LE are about 50%-60% of the costs for BAC/ST and BAC/LE. For coarse
tolerances, the cost for BAC/LE is about 80% of that of BAC/ST. Also, we see
that for coarse tolerances, LOI/LE is less expensive than SCI/ST but for sharp

13

56789567:567;567<567=567>567?567@567A

BACDEFGHFFEF

6
I
6

6
I
J

6
IK

6
I
L

6
I
M

5I
6

5I
J

5IK

NO
P
Q
RQ
ST
UO
VQ
UW
X
YZ
[\
]̂
N_̀
OU
UQ
ab

cdefghgi
cdefgjhkl
cdefgjhgi

Figure 2: Error vs. execution time for BAC/LE, SCI/ST, and LOI/LE, relative to BAC/ST
execution time, for TLBE with ε = 10−4 and p = 6.

tolerances, LOI/LE error is more expensive than SCI/ST. Similar results were
obtained in [20] for the TLBE with ε = 10−3 and for the OLBE with ε = 10−3

and 10−4. The only exception is for LOI/LE with p = 4. For this case, LOI/LE
is much less expensive than any of the other codes when the tolerances are coarse
but much more expensive than any of the other codes for sharp tolerances.

3.4. Error vs. Execution Time across p Values

In [20], error vs. execution time results for each code over a range of p
values, for the OLBE and the TLBE, with ε = 10−3 and 10−4, are provided.
In Figure 3, we present representative results involving the OLBE with ε = 10−4

for LOI/LE. Similar results were obtained by the other codes for this problem
and by all the codes for the OLBE with ε = 10−3 and the TLBE. Since these
graphs give error vs. execution time results over a range of p values, we can
examine the impact that the choice of p has on performance.

From Figure 3, a general observation is that, for coarse tolerances, LOI/LE
is more efficient when p is small, while for sharp tolerances, a larger p value
leads to a more efficient computation. For sharp tolerances, small p values lead
to substantially higher costs than do larger p values.

3.5. Reliability: Tolerance vs. Error

In [19], an analysis of requested tolerance vs. error achieved performance for
the four codes considered in this paper is presented. In Figure 4, we provide a

14

mnopqmnormnosmnotmnou
vwxyz{|}{{z{

mnop

mnq

mnp

~
�
�
��
�
�
��
�

��������z�z�����z����
���
���
���
���
���
���
����
����

Figure 3: Error vs. Execution time for LOI/LE for the OLBE with ε = 10−4 and p =
4, . . . ,11.

15

�� ¡¢�� £�� ¤�� ¥�� ¦�� §�� ̈�� ©�� ª�� ¡

Tolerance

�� ¡

��¢

��¡

«¬

®
°̄
±
²°
°
°̄³
´
µ̄
²°
¶
®
·
²

¹̧º»¼½
¾¿
À̧Á¹Â»
Ã
½
ÄÄ
À̧
ÅÂ»Ä½
ÆÄ

Figure 4: Tolerance vs. Error/Tolerance, BAC/ST, TLBE with ε = 10−4, p = 6. The bottom
horizontal line at 100 = 1 represents the case where the error equals the tolerance. The top
horizontal line is the mean error over all tolerances.

typical result showing the performance of BAC/ST with p = 6 on the TLBE
with ε = 10−4 for a range of tol values from 10−1 to 10−10. We plot tolerance
vs. the corresponding error/tolerance ratio. From this figure, we see that the
mean error is about twice the tolerance and that the maximum factor by which
the error exceeds the tolerance is slightly less than 6.

The results reported in [19] show that, over all tests and codes, it is generally
the case that, on average, the error is typically only a small multiple of the
tolerance, and that, with respect to error estimation scheme and error control
mode, the codes have similar reliability. However, the results presented in [19]
also show that the reliability of the codes, with respect to error vs. tolerance,
is better for larger p values. In particular, for larger p values, the error is, on
average, typically equal to or slightly less than the tolerance, rather than being
somewhat larger than the tolerance, as is the case for the smaller p values.
In addition, the maximum amount by which the error exceeds the tolerance is
smaller for larger p values.

4. Summary, Conclusions and Future Work

This paper presents a detailed examination of the performance of BACOL
and BACOLI in which several important performance measures are considered.
The results show that:

16

• the new error estimation schemes/error control modes generally lead to
performance measures for BACOLI that are comparable to those of BA-
COL with the exception of those associated with the factorization and
solution of the ABD linear systems. A primary observation is that BA-
COLI (employing either error estimation scheme/error control mode) uses
approximately half as many ABD matrix factorizations and ABD linear
system solves as BACOL which leads to substantial savings in execution
time,

• for small p and sharp tol, LE error control mode leads to the use of more
spatial subintervals. This leads to greater execution time costs compared
to ST error control mode. Conversely, for coarse tolerances, LE error
control mode leads to a more efficient computation than does ST error
control mode,

• compared to the total number of accepted steps taken by the codes, the
total number of remeshings and cold starts is small. This is important
because the computational cost associated with a remeshing or a cold
start is significant compared to the cost of a single time step,

• for coarse tolerances, all codes generally have smaller execution times when
p is small. However, for sharper tolerances, larger p values lead to better
efficiency,

• the correlation between the error achieved and the tolerance requested
improves for larger p values.

There are several directions for future work. The results of this paper suggest
modifying BACOLI in the following ways:

• have it automatically choose p based on the tolerance requested, and
choose the p values over only an intermediate range of values since these
give the best combination of efficiency and reliability,

• have it automatically choose the error control mode, since it appears that
LE error control is better for coarse tolerances while ST error control is
better for sharp tolerances.

As mentioned earlier, another direction for future work involves the develop-
ment and analysis of BACOLRI, the modification of BACOLR that implements
the interpolation-based spatial error estimation schemes introduced in BACOLI.
The development of BACOLRI will make extensive use of the results presented
in this paper.

The results of this paper will also be used to inform the ongoing develop-
ment of B-spline collocation software for 2D PDEs [13]. Moreover, we plan to
investigate the error estimation schemes employed in the BVODE solvers COL-
SYS/COLNEW to explore the possibility of modifying these packages to employ
the interpolation based error estimations schemes used in BACOLI.

17

[1] T. Arsenault, T. Smith, and P.H. Muir. Superconvergent interpolants for
efficient spatial error estimation in 1D PDE collocation solvers. Can. Appl.
Math. Q., 17:409–431, 2009.

[2] T. Arsenault, T. Smith, P.H. Muir, and J. Pew. Asymptotically correct
interpolation-based spatial error estimation for 1D PDE solvers. Can. Appl.
Math. Q., 20:307–328, 2012.

[3] U.M. Ascher, J. Christiansen, and R.D. Russell. Collocation software for
boundary value ODEs. ACM Trans. Math. Softw., 7:209–222, 1981.

[4] K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of
Initial-Value Problems in Differential-Algebraic Equations, volume 14 of
Classics in Applied Mathematics. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 1996.

[5] C. de Boor. A Practical Guide to Splines, volume 27 of Applied Mathemat-
ical Sciences. Springer-Verlag, New York, revised edition, 2001.

[6] J.C. Dı́az, G. Fairweather, and P. Keast. Algorithm 603. COLROW and
ARCECO: FORTRAN packages for solving certain almost block diagonal
linear systems by modified alternate row and column elimination. ACM
Trans. Math. Software, 9(3):376–380, 1983.

[7] G. Fairweather and I. Gladwell. Algorithms for almost block diagonal linear
systems. SIAM Rev., 46(1):49–58, 2004.

[8] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential
Equations. I, volume 8 of Springer Series in Computational Mathematics.
Springer-Verlag, Berlin, second edition, 1993.

[9] E. Hairer and G. Wanner. Solving Ordinary Differential Equations. II,
volume 14 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, second edition, 1996.

[10] W. Huang and R.D. Russell. A moving collocation method for solving time
dependent partial differential equations. Appl. Numer. Math., 20(1-2):101–
116, 1996.

[11] W. Huang and R.D. Russell. Adaptive Moving Mesh Methods, volume 174
of Applied Mathematical Sciences. Springer, New York, 2011.

[12] P. Keast and P.H. Muir. Algorithm 688: EPDCOL: a more efficient
PDECOL code. ACM Trans. Math. Softw., 17(2):153–166, 1991.

[13] Z. Li and P.H. Muir. B-spline Gaussian collocation software for two-
dimensional parabolic PDEs. Adv. Appl. Math. Mech., 5:528–547, 2013.

[14] NAG Numerical Algorithms Group Fortran library. d02tlc. The Numerical
Algorithms Group, Ltd., Wilkinson House, Oxford, UK.

18

[15] N.K. Madsen and R.F. Sincovec. Algorithm 540: PDECOL, general collo-
cation software for partial differential equations. ACM Trans. Math. Softw.,
5(3):326–351, 1979.

[16] P.K. Moore. Interpolation error-based a posteriori error estimation for
two-point boundary value problems and parabolic equations in one space
dimension. Numer. Math., 90(1):149–177, 2001.

[17] J. Pew, Z. Li, and P.H. Muir. A computational study of the efficiency
of collocation software for 1D parabolic PDEs with interpolation-based
spatial error estimation. Saint Mary’s University, Dept. of Mathemat-
ics and Computing Science Report Series, Technical Report 2013 001,
http://cs.smu.ca/tech reports, 2013.

[18] J. Pew, Z. Li, and P.H. Muir. Algorithm 962: BACOLI: B-spline adap-
tive collocation software for PDEs with interpolation-based spatial error
control. ACM Trans. Math. Softw., 42(3):25:1–25:17, 2016.

[19] J. Pew and P.H. Muir. Tolerance vs. error results for a class of error control
B-spline Gaussian collocation PDE solvers. Saint Mary’s University, Dept.
of Mathematics and Computing Science Technical Report Series, Technical
Report 2015 001, http://cs.smu.ca/tech reports, 2015.

[20] J. Pew, C. Tannahill, and P.H. Muir. Performance analysis results for error
control B-spline Gaussian collocation PDE solvers. Saint Mary’s Univer-
sity, Dept. of Mathematics and Computing Science Technical Report Series,
Technical Report 2018 001, http://cs.smu.ca/tech reports, 2018.

[21] Scilab. bvode, bvodeS. Scilab Enterprises, 143 bis rue Yves Le Coz, 78000
Versailles, France.

[22] G. Söderlind and L. Wang. Evaluating numerical ODE/DAE methods,
algorithms and software. J. Comput. Appl. Math., 185(2):244–260, 2006.

[23] P. Virtanen. scikits.bvp1lg 0.2.8., https://pv.github.io/scikits.bvp1lg/.

[24] R. Wang, P. Keast, and P. H. Muir. Algorithm 874: BACOLR: Spatial and
temporal error control software for PDEs based on high-order adaptive
collocation. ACM Trans. Math. Softw., 34(3):15:1–15:28, 2008.

[25] R. Wang, P. Keast, and P.H. Muir. BACOL: B-spline Adaptive COL-
location software for 1D parabolic PDEs. ACM Trans. Math. Software,
30(4):454–470, 2004.

[26] R. Wang, P. Keast, and P.H. Muir. A comparison of adaptive software for
1D parabolic PDEs. J. Comput. Appl. Math., 169(1):127–150, 2004.

[27] R. Wang, P. Keast, and P.H. Muir. A high-order global spatially adap-
tive collocation method for 1-D parabolic PDEs. Appl. Numer. Math.,
50(2):239–260, 2004.

19

