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Abstract 

Often the most striking displays of colour in animals arise from interactions during mating. 

Nuptial colouration is exclusively associated with mating and typically functions in either 

female mate choice by signalling male quality, or male competition by asserting dominance 

and possession of a territory. Animal colouration is the result of various chromatophores 

found within the integument. Changes in the number and distribution of chromatophores 

and pigments over time causes seasonal colour change associated with nuptial colouration. 

The Threespine Stickleback (Gasterosteus aculeatus) is a teleost fish found throughout the 

northern hemisphere that displays large variation in nuptial colouration among populations. 

The white Threespine Stickleback, endemic to Nova Scotia, displays a pearlescent white 

colour during breeding season in contrast to the common Threespine Stickleback which is 

a dark green/brown colour. Although Threespine Sticklebacks are a model system for many 

evolutionary studies, the mechanisms involved in the evolution of the contrasting nuptial 

colouration of the white and common males are not well understood. The purpose of this 

study was to determine the cellular mechanisms underlying the differences in nuptial 

colouration of these ecotypes. In particular, I looked at both melanophore and iridophore 

coverage as well as melanophore number and percent of isolated iridophores in the two 

dermal chromatophore layers of stickleback. My results indicate that common males have 

a higher melanophore coverage and fewer isolated iridophores in the deep dermal layer 

than the white males. However, the number of melanophores and the iridophore coverage 

in each layer, as well as the surface melanophore coverage, did not significantly differ 

between the two groups. These finding indicate that the integumental chromatophores in 

these males are quite morphologically similar in number and distribution. Future studies 

should investigate the thickness of chromatophores and the orientation and spacing of 

platelet crystals within iridophores among white and common stickleback.  
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Introduction 

1.1 Speciation and Divergent Sexual Selection 

One of the goals of evolutionary biology is to understand the processes that lead to the 

formation of new species (Butlin et al., 2012; Lowry, 2012; Ravinet et al., 2017; Schluter, 

2001). According to Ernst Mayr’s biological species concept, species can be defined as 

“groups of interbreeding natural populations that are reproductively isolated from other 

such groups” (Mayr, 1969). Therefore, to understand speciation in sexually reproducing 

organisms it is imperative to study the causes of reproductive isolation (Schluter, 2001). 

Reproductive isolation can occur at different stages during the mating process. For 

sympatric populations, mate choice is often an important reproductive barrier between 

species (Butlin et al., 2012; Kozak, Rudolph, Colon, & Fuller, 2012). If individuals within 

a population possess a preference for a certain phenotype, then sexual selection may occur 

(Servedio & Boughman, 2017).  

Sexual selection is an evolutionary process that arises from differences in individual 

mating success due to a particular trait, leading to a change in that trait’s frequency 

(Servedio & Boughman, 2017). Divergence in sexual selection between populations can 

lead to speciation (Butlin et al., 2012; Schluter, 2009; Servedio & Boughman, 2017) by 

causing the formation of different groups within a population, which then become 

reproductively isolated, further reducing gene flow between the two groups (Servedio & 

Boughman, 2017). Therefore, the evolution of divergence in mate choice can be closely 

related to speciation, and understanding the mechanisms underlying differences in sexually 

selected traits may help to better understand speciation (Boughman, Rundle, & Schluter, 
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2005; Marques et al., 2017). Male nuptial colouration is a sexually selected trait that can 

be an important factor influencing mate choice and eventually lead to speciation in many 

species, such as in cichlid fishes (Boughman et al., 2005; Marques et al., 2017).  

1.2 Nuptial Colouration  

Some of the most incredible colouration in animals arises from the interaction 

between males and females in the pursuit of mates (Kronforst et al., 2012). Nuptial 

colouration is colouring that is exclusively associated with mating, and typically evolves 

in one of two ways: from female mate choice (intersexual selection) or by male/male 

competition (intrasexual selection) (Hunt, Breuker, Sadowski, & Moore, 2009). However, 

in some circumstances the males are choosey and the females compete for access to males 

(Amundsen & Forsgren, 2001). Nuptial colouration is often important in mate choice and 

therefore, may commonly evolve during speciation by sexual selection (Dijkstra, 

Seehausen, Pierotti, & Groothuis, 2007; Kodric-Brown, 1998; Price, Weadick, Shim, & 

Rodd, 2008; Seehausen & Schluter, 2004). An example of speciation driven by sexual 

selection on nuptial colouration occurs in cichlid fishes (Allender, Seehausen, Knight, 

Turner, & Maclean, 2003). Cichlids have diverged into over 1000 different species, many 

of which are sympatric and differ in nuptial colouration (Allender et al., 2003). For these 

fish, nuptial colouration is extremely important in mate choice and may contribute more 

strongly to reproductive isolation than other ecological factors, and therefore is an 

important mechanism in their rapid speciation (Allender et al., 2003).  

Nuptial colouration can sometimes be indicative of an individual’s ability to ward 

off predators (Hill, 1991), as bright colouration can indicate a healthier, stronger mate. 

Because of this, females often initiate and drive the evolution of varying colour displays in 
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males (Kronforst et al., 2012). House finches are an excellent example of an animal in 

which male nuptial colouration is an honest signal to prospective mates. The red and orange 

pigments throughout the bird’s plumage are carotenoid based, and they must acquire this 

pigment from food (Hill, 1991; Hill & Farmer, 2005; Lendvai, Giraudeau, Németh, Bakó, 

& McGraw, 2013). A deeper red colour indicates the male has a better food source, is more 

resistant to certain parasites, and is more attentive to the female during breeding, all of 

which indicate a better mate (Hill, 1991; Hill & Farmer, 2005). Alternatively, female colour 

preference can also be the result of sensory drive, whereby environmental cues promote 

selection of features within the sensory system important in a particular habitat, which may 

lead to runaway selection or indirect benefits (Cummings & Endler, 2018; Maan, Hofker, 

Van Alphen, & Seehausen, 2006). Females may gain indirect benefits by detecting colour 

if the selected colours indicate male genetic quality (Montoya & Torres, 2014).  

1.3 Mechanisms Underlying Nuptial Colouration in Fishes  

In fishes, amphibians, reptiles, crustaceans and cephalopods most external 

colouration is the result of pigment cells known as chromatophores (Cal, Suarez-Bregua, 

Cerdá-Reverter, Braasch, & Rotllant, 2017; Fujii, 2000). Changes in chromatophore 

number, size, distribution, and pigment content result in the varying nuptial colourations 

among fish (Sköld, Aspengren, Cheney, & Wallin, 2016). There are several types of 

chromatophores, each varying in the type of pigment they contain (light reflecting or 

absorbing), the colour of pigment they contain, their shape, arrangement, and response to 

hormones (Schartl et al., 2016; Sköld et al., 2016). In particular, fish have a number of 

different chromatophore types, including melanophores, iridophores, leucophores, 

xanthophores, and erythrophores (Sköld et al., 2016). Melanophores are light absorbing 



 8 

dendritic cells containing brown or black eumelanin pigments (Schartl et al., 2016; Sköld 

et al., 2016). Iridophores are light reflecting cells that contain thin, flat, reflecting platelets 

containing purines, particularly guanine platelet crystals (Oliphant & Hudon, 1993; Schartl 

et al., 2016). Iridophores appear iridescent when the platelets are highly organized in 

stacked rows oriented in the same direction and more white when platelets are less 

organized and randomly scattered at different angles (Schartl et al., 2016). Additionally, 

the structure of iridophores can influence colour by altering the way light is reflected, 

producing colours ranging from blue to red, such as in the paradise whiptail (Price et al., 

2008). Leucophores are light scattering dendritic cells containing mainly uric acids that 

also appear white in colour (Schartl et al., 2016; Sköld et al., 2016). Xanthophores and 

erythrophores are light absorbing dendritic cells with pteridine and carotenoid pigments 

that range in colour from yellow to red (Schartl et al., 2016; Sköld et al., 2016). Varying 

densities and distributions of the different types of chromatophores, as well as the pigments 

within, produce different skin colour patterns (Sköld et al., 2016).  

 In fish, chromatophores are most often found in the dermis but can also be found 

in the epidermis, scales, and other tissues (Fujii, 2000; Sköld et al., 2016). Teleost fish can 

possess a variety of colours and patterns, but share a common structural organization of 

their chromatophores (Leclercq, Taylor, & Migaud, 2010). Chromatophores in teleosts are 

typically arranged in layers of cell types (Price et al., 2008; Sköld et al., 2016). However 

teleosts with scales have a more complex distribution of chromatophores as these cells are 

not restricted to layers (Leclercq et al., 2010). In salmonids, iridophores and melanophores 

are located in the dermis just beneath the epidermis as well as below the stratum 

compactum on the lower boundary of the dermis (Djurdjevič, Kreft, & Sušnik Bajec, 2015; 
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Leclercq et al., 2010). Melanophores are frequently found in association with iridophores 

forming a melano-iridophore complex, usually below the iridophores but with their 

dendritic processes extending around them (Leclercq et al., 2010). 

The distribution and combination of these cell layers produces different colours in 

fish skin, but there are multiple ways to achieve the same colour (Sköld et al., 2016). For 

example, the blue colour in the blue damselfish is created by a single layer of iridophores 

overlaying melanophores whereas blue colour in the common surgeonfish has two layers 

of iridophores (Sköld et al., 2016). White colouration in fish skin can be caused by the 

presence of leucophores, such as in the Japanese medaka (Sköld et al., 2016), or 

alternatively, white colour may be caused by the presence of iridophores, such as in the 

domino damselfish (Goda & Fujii, 2001). Additionally, the combination of iridophores 

overlaying melanophores or xanthophores is known to produce the black and yellow stripes 

respectively, in zebrafish, displaying the importance of the relationship between 

chromatophores in skin (Sköld et al., 2016).  

Colour change associated with nuptial colouration in fish can be categorized in one 

of three ways: permanent, long term, or rapid colour change (Kodric-Brown, 1998; Price 

et al., 2008). Tropical fish such as cichlids and guppies maintain breeding grounds year-

round and thus display permanent nuptial colouration (Galis & Metz, 1998; Kottler, 

Fadeev, Weige, & Dreyer, 2013; Price et al., 2008). In contrast, fishes with restricted 

breeding seasons, such as mummichogs and Threespine Stickleback, display long-term 

seasonal nuptial colouration (Marques et al., 2017; McKinnon, 1995; McKinnon & Rundle, 

2002; Reimchen, 1989). Changes in the number of chromatophores, chromatophore 

morphology, and/or deposition of pigments occurring over longer time periods (weeks to 
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months) is what causes seasonal colour change (Bagnara & Matsumoto, 2007; Price et al., 

2008; Sköld et al., 2016). Darkening the skin related to seasonal colour change is often 

achieved when light absorbing chromatophores (such as melanophores) disperse their 

pigment granules or when light reflecting chromatophores (such as iridophores) display a 

an aggregation response (Sugimoto, Yuki, Miyakoshi, & Maruko, 2005). The opposite 

occurs when lightening the skin. Additionally, melanophores can develop or degenerate 

over the long-term to more effectively change colour (Sugimoto et al., 2005). 

An excellent model for studying the evolution of nuptial colouration is the 

Threespine Stickleback because there is considerable variation in male nuptial colouration 

among populations within this species (reviewed by Bell & Foster, 1995). Because the 

Threespine Stickleback has a restricted breeding season, the males of this species are ideal 

for studying the mechanisms of long term colour change in relation to sexual selection 

(reviewed by Haley, 2018).  

1.4 Threespine Stickleback as a Model System to Study the Evolution of 

Nuptial Coloration 

The Threespine Stickleback (Gasterosteus aculeatus) is a teleost fish that is used 

as a model organism in many evolutionary studies (Wootton, 2009). Studies involving the 

Threespine Stickleback commonly focus on animal behaviour and in particular male 

breeding behaviours, as well as animal physiology and morphology (Wootton, 2009). 

Populations of Threespine Stickleback vary in many traits including body size, breeding 

colouration, number of bony plates, and spine length, which has made it the subject of 

many studies involving adaptation and speciation (Bell & Foster, 1995). Studying the 
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Threespine Stickleback has led to significant progress in understanding how speciation 

occurs in nature (McKinnon & Rundle, 2002). Speciation in the Threespine Stickleback is 

driven by natural selection in a number of populations (Barrett, Rogers, & Schluter, 2008; 

Conte & Schluter, 2013; Nagel & Schluter, 1998); however, differential sexual selection 

for traits such as breeding colouration, mating strategies, and parental care also contribute 

to assortative mating and may maintain or promote diversification (Marques et al., 2017; 

Ólafsdóttir, Ritchie, & Snorrason, 2006). Male nuptial colouration can result in sexual 

isolation when females have a strongly divergent colour preference (Boughman et al., 

2005). In the Threespine Stickleback, ecotypes have evolved to recognize mates based on 

body size and nuptial colouration (Boughman et al., 2005). Sexual isolation based on colour 

arises from females of each ecotype choosing to spawn with bright homospecific males 

(Boughman et al., 2005). Sexual selection on nuptial colouration can be divergent between 

some populations of Threespine Stickleback (Marques et al., 2017).  

The white Threespine Stickleback is an ecotype in which males have an atypical 

white nuptial colouration and are thought to have recently diverged from the typical marine 

form (McKinnon & Rundle, 2002). The white and common Threespine Sticklebacks occur 

sympatrically, but differ in traits such as breeding behaviour, size, and nuptial colouration 

(Blouw & Hagen, 1990; Haley, Dalziel, & Weir, 2019; McKinnon & Rundle, 2002). White 

males are more active than common males in regard to breeding behaviour, particularly in 

courtship behaviour (Blouw & Hagen, 1990; Blouw, 1996; Haley et al., 2019). 

Additionally, white males do not invest in parental care as the common males do (Blouw 

& Hagen, 1990; Blouw, 1996; Haley et al., 2019). Common males are generally larger than 

white males and because of their contrasting nuptial colours they can be distinguished by 
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eye (Haley et al., 2019).  During the breeding season, both the common and white males 

develop a red throat and blue iridescent eyes (Blouw & Hagen, 1990; Haley et al., 2019). 

However, the white males additionally develop a very conspicuous shimmering white 

dorsum, in contrast to the common males which develop a colour ranging from a dark blue-

green to brown shade on their dorsum (Figure 1; Blouw & Hagen, 1990; Haley et al., 2019). 

Outside of the breeding season, both white and common Threespine Stickleback exhibit 

olive green-brown and silver colouring that resembles the females and can be difficult to 

distinguish (Blouw & Hagen, 1990). The development of these bright colours during the 

breeding season in males implies that this trait is important during mating (Gumm, Feller, 

& Mendelson, 2011). Both laboratory tests and field observations indicate that the white 

Threespine Stickleback and the common Threespine Stickleback are reproductively 

isolated from each other, and that the differences in breeding colouration and behaviour of 

the two ecotypes has a genetic basis (Blouw & Hagen, 1990; Blouw, 1996; Samuk, 2016; 

Samuk, Iritani, & Schluter, 2014; Samuk et al., 2017). Although sticklebacks have long 

been a model system, the mechanisms involved in the evolution of the contrasting nuptial 

colouration of the white and common Threespine Stickleback are not fully understood (but 

see Haley et al. 2019).  
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Figure 1. Breeding male Threespine Stickleback from the Atlantic coast of Nova Scotia. 

White ecotype from Rainbow Haven Beach (A) and common ecotype from Canal Lake 

(B). Photographs by Dr. Paul Bentzen, reproduced from Haley et al. (2019). 

 

The contrasting nuptial colouration of the white and common Threespine 

Stickleback is likely due to differences in the chromatophore content and distribution in 

their skin, particularly differences in melanophores and iridophores. Although leucophores 

are also known to produce white coloured skin, they have only been found in a few groups 

of fishes, such as medaka (Kimura et al., 2014), and have not been found in stickleback 

(Haley et al., 2019). Iridophores however are present, and several studies provide examples 

of how iridophores produce white colouration (e.g. Frohnhöfer, Krauss, Maischein, & 

Nüsslein-Volhard, 2013; Goda & Fujii, 2001; Salis et al., 2019; Sugimoto et al., 2005). As 

predicted, breeding white males have lower overall melanophore density and coverage 

compared to breeding common males (Haley et al., 2019). However, stickleback skin has 

two layers of dermal melanophores (surface and deep; Burton, 1975, 1978) and  the 

distinction between each melanophore layer has not been investigated. Since 
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chromatophores deep within the dermis of teleost fish produce the overall pigment pattern 

such as stripes or spots, whereas surface chromatophores provide an overall tint to the body 

(Sugimoto et al., 2005), these two layers may have differing influences on dorsal 

‘whiteness’.  

Prior research examining the mechanisms underlying skin coloration in fish have 

found that altering either melanophore and/or iridophore properties can cause lightening or 

darkening of skin. For example, Sugitmoto et. al., (2005) found that changes in dorsal 

darkness in zebrafish are the result of alterations in the density of surface melanophores, 

such that an increase in the density causes a dark black tint. The distinction of each layer 

is important because the melanophores in each layer are regulated by different pathways 

within the neuroendocrine system (Burton, 1975, 1978). Understanding the differences 

between these two layers reveal which physiological control mechanisms and biochemical 

pathways lead to white colouration to better understand how the white ecotype evolved. In 

some species it has been found that the melanophores are the variable factor determining 

the lightness of a fish with iridophores remaining the same. The number of iridophores 

(which are aligned in a single layer) in the gray/brown turbot is the same as in the dark 

turbot, however the dark turbot has more melanophores (Faílde, Bermúdez, Vigliano, 

Coscelli, & Quiroga, 2014). Alternatively, in other fish, it is the alteration of iridophores 

responsible for lighter colouration. In clownfish, a higher density of iridophores are present 

in the matte white stripes in comparison to the orange skin (Salis et al., 2019). In another 

study, it was found that an increase in the thickness of the dermal iridophore layer is 

responsible for the bright white spot on the domino damselfish (Goda & Fujii, 2001). 

However, location of the iridophores is also an important factor. In a study with zebrafish, 
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it was found that iridophores located underneath the melanophores are not reflective in the 

overall tint of the skin because they are not able to reflect light through the melanophores, 

whereas iridophores found above the melanophores contribute to bright shiny skin by 

reflecting light (Frohnhöfer et al., 2013; Sugimoto et al., 2005). Therefore, changes in 

iridophore properties such as the location in the skin could be another factor leading to the 

difference in nuptial colouration of the white and common Threespine Stickleback. 

1.5 Thesis Goals 

The goal of this thesis is to determine the cellular mechanisms underlying 

differences in nuptial coloration between white and common male Threespine Stickleback. 

In particular, I will test whether or not variation in the size and distribution of surface and 

deep dermal melanophores and distribution and position of iridophores exists between 

these two ecotypes of the Threespine Stickleback. I predict that the combination of a 

decrease in overall melanophore size and coverage, fewer melanophores in the surface 

layer, and an increase in iridophore distribution contribute to the bright white colouration 

of the male white Threespine Stickleback (Haley et al., 2019). Determining the difference 

in skin chromatophore morphology of these two ecotypes will contribute to understanding 

how the white sticklebacks evolved. I will accomplish this goal by comparing cross 

sections of frozen skin samples of both white and common Threespine Stickleback in 

breeding colour and measuring the distribution and coverage of iridophores and 

melanophores in the surface and deep dermal layers.  
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Materials and Methods  

2.1 Sampling Sites and Collection of Threespine Stickleback     

Fish were collected between May-August 2019, from two locations on the Nova 

Scotia mainland. A permit from the Department of Fisheries and Oceans was obtained 

(Fishing Licence #343920) for fish collection. Male white Threespine Stickleback were 

collected from Rainbow Haven Beach (44.654799°N, 63.421140°W) and common 

Threespine Stickleback were collected from Antigonish Landing (45.63243°N, 

61.9603°W). Rainbow Haven was chosen as a collection site because both white and 

common Threespine Stickleback have been observed in this location (Haley, 2018), and 

the goal was to collect sympatric populations of the ecotypes. However, in the summer of 

2019 no common Threespine stickleback were found at Rainbow Haven. Another site on 

the Atlantic coast, Canal Lake (44.497627° N, 63.900449° W), has also been used as a site 

to collect sympatric populations of common and white Threespine Stickleback in previous 

studies (Haley, 2018; Samuk, 2016). However, like Rainbow Haven, in the summer of 

2019 no common Threespine Stickleback were found. Therefore, Antigonish Landing was 

chosen as a collection location for common Threespine Stickleback because it has 

previously been studied and was found to only contain common Threespine Stickleback 

(Samuk, 2016).  

Prior to collecting males, I observed them visiting their nest and courting females, 

and qualitatively assessed their breeding colours to ensure I was sampling the desired 

ecotype. Adult males were caught using dip nets in accordance to SMU Animal Care 

protocol 17-18A “Collection of sticklebacks and killifish to study the evolution of fish 
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physiology” to confirm we caught the fish we observed and classified as white or common. 

Males were also caught with minnow traps at Antigonish Landing, due to the presence of 

only the common ecotype at this location (Samuk 2016). In total, 11 white males and 12 

common males were transported back to the aquarium facilities at Saint Mary’s University. 

 

 

Figure 2. Map of Rainbow Haven (blue marker) and Antigonish Landing (red marker), 

Nova Scotia, Canada (A); Satellite view of Antigonish Landing sampling site denoted by 

a red marker (B); Satellite view of Rainbow Haven sampling site denoted by a blue marker 

(C).  

 

2.2 Husbandry and Laboratory Housing 

Fish were housed in 15 gallon tanks equipped with a waterfall filter at a temperature 

between 20-22°C and salinity of 10ppt ± 1 ppt in the Saint Mary’s University Aquarium 
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facilities. These conditions reflect the approximate temperature and salinity of the locations 

the fish were collected from during breeding season. The light conditions were also similar 

to the natural environment during breeding season, with the photoperiod set to 14 hours 

light and 10 hours dark (Haley et al., 2019). The white and common ecotypes were housed 

in separate tanks and allowed at least two weeks to acclimate to the lab prior to sampling. 

The acclimation period is important in chromatophore studies because wild caught fish 

typically lose some of their colouration in the lab from stress and handling, so this buffer 

period allows all fish to equally habituate to lab environment (Corney, 2019; Haley et al., 

2019). Tanks were supplemented with aquarium gravel, plastic plants, and clay pots for 

environmental enhancement. Fish were given a diet of frozen bloodworms, brine shrimp 

nauplii, and mysis shrimp twice daily. Hagen water quality test kits were used to monitor 

levels of ammonia, pH, nitrate and nitrite and 20% water changes were performed weekly 

or whenever nitrogenous waste measured was above healthy levels. 

2.3 Sampling Procedures   

Fish were sampled to obtain histological skin samples to quantify chromatophore 

content in white and common males following the SMU Animal Care protocol 19-08 

“Evolution of skin coloration in stickleback fishes”. Sampling took place in the laboratory 

from July-September 2019 after the fish had acclimated in the aquaria, but before the males 

lost their breeding colouration. Prior to sampling, fish were given a qualitative score of 1-

5 reflecting their breeding condition (Haley, 2018). The score indicates the intensity of 

breeding colouration, with 5 being the brightest coloration, near to what would be seen in 

the field during breeding season, and 1 being non-breeding colour as previously described 

(section 1.4). After scoring, the fish were removed from their tank using a dip net and 
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euthanized with a lethal concentration of buffered tricaine methanesulfonate (MS-222). 

Each fish was removed from the MS-222 and rinsed with water before being photographed 

next to a colour checker with an Olympus Tough TG-4 camera. Files of photographs were 

saved in JPG format.  

After taking photographs, 3-4 transverse sections of ~3mm thick were cut using a 

razor blade behind the second spine of the fish. The head and tail were discarded. The first 

section cut behind the spine was put into a tissue mould and filled with Tissue-Tek® 

Optimal Cutting Temperature (O.C.T.) compound before being submerged into a beaker 

containing cold isopentane to flash freeze it. The isopentane was chilled to about -150°C, 

indicated by a small rim of frozen isopentane present, by submerging the beaker in liquid 

nitrogen. The mould was held in the isopentane for about 10 seconds, until the O.C.T was 

completely frozen, appearing white in colour. These samples were stored in a -80°C freezer 

until ready for sectioning. The second and third sections cut behind the spine were placed 

into separate microcentrifuge tubes containing potassium rich saline solution for thirty 

minutes to contract the melanophores. The fourth section was placed into a microcentrifuge 

tube containing physiological saline solution for thirty minutes to expand the 

melanophores. After the thirty minutes, the second section was frozen with O.C.T in the 

same procedure as the first and stored in a -80°C freezer until ready for sectioning. The 

third and fourth sections were placed into microcentrifuge tubes containing 10% neutral 

buffered formalin and were stored at room temperature before being decalcified, 

dehydrated, and embedded in paraffin as back-up samples. Only the frozen samples that 

had been soaked in potassium rich saline were used for sectioning, due to time constraints.  
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Figure 3. A diagram of how the four transverse sections were cut behind the second spine 

of the fish. Sections were prepared and fixed in the following ways: 1) untreated, flash 

frozen; 2) contracted melanophores, flash frozen; 3) contracted melanophores, paraffin 

embedded; 4) expanded melanophores, paraffin embedded. Only the second sections 

(contracted melanophores, flash frozen) were used for further analysis. Stickleback 

drawing by Emily S. Damstra. 

 

2.4 Slide Preparation  

Frozen samples were transported to Mount Saint Vincent University on dry ice. A 

LEICA CM1850 cryostat set to -20°C +/- 1°C was used to cut 10 µm thick sections of each 

sample. Fisherbrand® Superfrost™ Plus slides were used to ensure samples adhered to 

slides. Two to three slides containing five to ten sections on each slide were cut from every 

sample (each fish). Slides were transported back to Saint Mary’s University on dry ice and 

stored in a -80°C freezer.  
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The slides were then haematoxylin and eosin (H&E) stained, using the following 

staining and mounting protocol: slides were allowed two minutes to briefly thaw at room 

temperature before being placed in -20°C VWR® acetone for eight minutes to fix the 

tissue. They were then washed with phosphate-buffered saline (PBS) for ten minutes and 

stained with VWR® Harris’s haematoxylin for one minute. Next, the slides were washed 

in distilled water for five minutes and stained with VWR® eosin Y 1% for 30 seconds. 

Finally, the slides followed a dehydration series of 70% ethanol, 80% ethanol, 90% ethanol, 

and 100% ethanol for five minutes each before being cleared twice with Fisherbrand® 

SafeClear™ xylene substitute (2-methylnonane) for five minutes each. Slides were cover-

slipped with Fisher Chemical™ Permount® and stored at room temperature.  

2.5 Data Collection and Analysis 

The slides were visualized using bright field microscopy enhanced with condenser 

differential interference microscopy (DIC) prisms with integrated polarizers. A ZEISS 

Axioplan 2 imaging microscope with an Axiocam camera (ZEISS) mounted to the top, and 

the program Axiovision (ZEISS) was used to take photographs of the samples and set the 

scale. Two to three photographs were taken of the dorso-lateral portion of transverse 

sections of each fish for analysis. In total, 67 photographs of cross sections and 21 

photographs of the full fish were analysed. All photographs were given a randomized 

number as file names so that the analysis could be completed “blind”.  

The full body photos of the fish were analysed using ImageJ version 1.52. First, the 

photos were converted to 8-bit grayscale. The photos were then standardized by calibrating 

to the mean gray value of the white square in the colour checker. In 8-bit gray scale the 

lowest value, 0, indicates the colour black and the highest value, 255, indicates the colour 
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white. The typical gray value of the white square was between 150-200, so the value of 

185 was chosen as the gray value to calibrate the white squares to. White squares were not 

calibrated to the true white value of 255 in order to avoid over exposure of the photos. The 

calibration was done by measuring the mean gray value of the white square in each photo 

using the “Measure” function, dividing that number into 185, and using the product in the 

“Multiply” function to adjust the gray value of each photo. After being standardized, the 

average dorsal brightness of each fish was measured. This was done by first drawing 

straight line from the top of the fish’s eye through the caudal peduncle. Then, a small 

rectangle was drawn on the dorso-lateral region between the second and third spine down 

to the horizontal line. This area was chosen because it is the same region where the frozen 

cross-section samples taken, and is often the brightest region of the fish (Corney, 2019). 

The rectangle was then measured for average gray value to represent the brightness of the 

fish.  

 

 

Figure 4. An example of how the section of the dorsal skin (A) and colour checker (B) 

were selected in each photo to be analyzed.   
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The photos of hematoxylin and eosin stained skin cross-sections were also analysed 

using ImageJ version 1.52. First, a global scale was set with the “Set Scale” function in 

ImageJ. The number of melanophores present in the surface and deep layers were counted 

by eye and recorded. Next, several measurements were taken using the “Segmented Line” 

tool. The length of a transect line along the surface and deep layers of dermis where the 

chromatophores are found (Burton, 1978) was measured. Then, the area of each transect 

line covered by melanophores and iridophores was measured. This was completed by 

individually measuring the length of each melanophore or iridophore cluster present on the 

transect line and adding them up. Additionally, the area of each transect line covered by 

iridophores in isolation of melanophores was measured. Percent cover of chromatophores 

integrates the chromatophore number, the amount of pigment deposited in the cell as well 

as the dispersion of the cell itself.  Notes were taken about each photo of general qualitative 

observations regarding the presence or absence of melanophores and iridophores in each 

layer, the degree of melanophore contraction, and the location of iridophores in relation to 

the melanophore
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Figure 5. Representative photographs of transverse histological sections through male stickleback integument (A). An example of how 

the number of surface melanophores (B), surface transect line (C), surface melanophores (D), surface iridophores (E), and surface “free” 

A B C 

D E F 
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iridophores (F) were quantified. Transect lines are represented by yellow lines; note that in some cases these yellow lines hide 

iridophores.
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2.6 Statistical Analysis  

 Data was analysed using R v.3.5.2 with ggplot2 package. Several welch two sample 

t-tests with a Bonferroni correction were conducted to examine differences between the 

common and white ecotypes in each of the chromatophore measures described. Bonferroni 

correction was used because multiple comparisons were completed for each sample. The 

adjusted critical p-value for these measures was 0.005. To test for an effect of 

melanophores on dorsal brightness, linear regressions were conducted between dorsal gray 

value and melanophore number and percent coverage. Due to the small sample size, the 

data for the white and common male melanophore measures was pooled. The assumption 

was made that the ecotypes would have the same slope and regression, however variation 

among ecotypes should be tested for using an ANCOVA in the future using a larger sample 

size. 
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Results 

The common and white Threespine Stickleback are ecotypes that differ in the 

nuptial colouration of males. To determine the morphological basis of this colouration, 

fish were collected and sampled from two locations in Nova Scotia: the white males from 

Rainbow Haven Beach and the common males from Antigonish Landing. Histological 

skin samples were soaked in K+ rich saline to contract melanophores before being flash 

frozen and H&E stained. Skin samples were prepared on slides and then visualized using 

light microscopy. Figure 6 depicts representative images of the skin samples used for 

analyses.  

 

 

Figure 6. Microscope images of transverse cut histological sections through the 

integument on the dorso-lateral portion of common (A) and white (B) Threespine 

Stickleback. Black arrows indicate melanophores and white arrows indicate iridophores.  

 

A B 
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3.1 Skin Brightness (Dorsal Gray Value) in Threespine Stickleback 

All data were found to be normally distributed using a Shapiro-Wilk test for 

normality. The common Threespine Stickleback had a significantly lower dorsal gray value 

than white males, indicating a darker colour (Figure 7). I use dorsal gray value as a measure 

of skin brightness, so this indicates that the white males typically have brighter skin than 

the common males. Prior to sampling fish were given a qualitative score from one to five 

reflecting their breeding condition (data not shown) (Haley, 2018). Eight out of the ten 

white males were scored a 3.5 or above, with the remaining two scored at 2.5, meaning 

most of the white males were in breeding colouration. In contrast, one common male was 

scored 4.5 and the remaining 11 scored 1.5 and below, meaning most of the common males 

were not in breeding colouration. Threespine Stickleback are rarely as brightly coloured in 

the laboratory facilities as they are in the field and so do not reflect the level of contrast 

between these breeding males in the wild (Blouw & Hagen, 1990).  
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Figure 7. Dorsal gray values of common and white male Threespine Stickleback. Example 

fish of a common male with a dorsal gray value of 13.215 (A) and a white male with a 

dorsal gray value 77.157 (B). Note that 0 is black and 255 is white. Red diamonds represent 

the mean, black bars represent the median, and black dots represent the average 

melanophore coverage for each individual fish. Boxes with different letters are 

significantly different from each other (Welch’s two sample t-test with Bonferroni 

correction, nwhite = 10, ncommon = 11, t = -3.6337, df = 15, p = 0.0024) (C). 

 

3.2 Histological Analysis of Chromatophore Morphology in Threespine 

Stickleback 

Examination of cross-sections of the skin under the light microscope revealed the 

two predicted dermal melanophore layers (Burton, 1978), in addition to two dermal 

iridophore layers, previously undocumented in stickleback (Figure 5). Each chromatophore 

measure was taken from two to three serial sections with two to three photos of each fish 

a 
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and then averaged for analysis (Figure 5). Some sections showed stretching or tearing 

present within the dermis and muscle tissue; if this was predicted to affect my measures, 

these photos were not used, resulting in only two photos for some individuals. One fish had 

no chromatophores in the surface layer in all three replicate photos (Figure 8A). 

The common males had a slightly higher average melanophore number in both the 

surface and deep dermal layers than the white males, but this was not significantly different 

between groups (Figure 8).  

 

  

Figure 8. Melanophore number in the surface (A) and deep (B) dermal layers of white and 

common male Threespine Sticklebacks. Red diamonds represent the mean, black bars 

represent the median, and black dots represent the average melanophore coverage for each 

individual fish. Boxes with shared letters are not statistically significant from each other 

(Welch’s two sample t-test with Bonferonni correction, nwhite = 11, ncommon = 12, t = 1.5511, 

df = 18.353, p = 0.138 (A); t = 1.1642, df = 20.227, p = 0.2579 (B)).  
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Several measurements of melanophore and iridophore coverage were taken. The 

common male Threespine Sticklebacks were found to have a higher average surface 

melanophore coverage than the white males, but this was not significantly different 

between groups (Figure 9A). Common Threespine Sticklebacks were also found to have a 

significantly higher average melanophore coverage in the deep layer compared to the 

whites (Figure 9B).  

 

 

Figure 9. Melanophore coverage in the surface (A) and deep (B) dermal layers of white 

and common male Threespine Stickleback. Red diamonds represent the mean, black bars 

represent the median, and black dots represent the average melanophore coverage for each 

individual fish. Boxes with shared letters are not statistically different from each other 

(Welch’s two sample t-test with Bonferroni correction, nwhite = 11, ncommon = 12, t = 1.8764, 

df = 18, p = 0.07635 (A); t = 4.3805, df = 17.897, p = 0.0003651 (B)).  
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The common Threespine Stickleback males were found to have a slightly lower 

average iridophore coverage in both the surface and deep layers than the white males, but 

neither of these results were significantly different among groups (Figure 10). 

 

 

Figure 10. Iridophore coverage in the surface (A) and deep (B) dermal layers of white and 

common male Threespine Stickleback. Red diamonds represent the mean, black bars 

represent the median, and black dots represent the average melanophore coverage for each 

individual fish. Boxes with shared letters are not statistically different from each other 

(Welch’s two sample t-test with Bonferroni correction, nwhite = 11, ncommon = 12, t = -1.1553, 

df = 20.634, p = 0.2612 (A); t = 1.1644, df = 20.994, p = 0.2565 (B)).  

 

The percent coverage of ‘free’ iridophores that were not associated with 

melanophores was also measured. It was found that the common Threespine Stickleback 

had fewer ‘free’ iridophores than the white Threespine Stickleback in the surface dermal 

layer, but this was not significant (Figure 11A). It was also found that the common 

a 

a 

a 

a 
A B 



 33 

Threespine stickleback had significantly less ‘free’ iridophores in the deep dermal layer 

(Figure 11B).  

 

 

Figure 11. Iridophore coverage in isolation of melanophores in the surface (A) and deep 

(B) dermal layers of white and common male Threespine Stickleback. Red diamonds 

represent the mean, black bars represent the median, and black dots represent the average 

melanophore coverage for each individual fish.  Boxes with shared letters are not 

statistically different from each other (Welch’s two sample t-test with Bonferroni 

correction, nwhite = 11, ncommon = 12, t = -1.0505, df = 20.986, p = 0.3055 (A); t = -3.7413, 

df = 18.44, p = 0.001443 (B)).  

 

3.3 Correlation of Melanophore Measures to Skin Brightness (Dorsal Gray 

Value) in Threespine Sticklebacks 

 To test if my histological measures of melanophore number and coverage correlated 

with overall brightness, I conducted several linear regressions. I found that melanophore 

A B 
a 

a 

a 

b 



 34 

number in the surface dermal layer could not predict dorsal brightness (Figure 12A). 

Melanophore number in the deep dermal layer also could not predict dorsal brightness 

(Figure 12B). The combination of the number of melanophores in the surface and deep 

layer also could not predict dorsal brightness (Figure 12C). I found that the percent 

coverage of melanophores in the surface layer can predict dorsal brightness, but only 

weakly (Figure 12D). Percent coverage of melanophores in the deep layer can predict 

dorsal brightness, and this result was slightly stronger (Figure 12E). The combination of 

melanophore coverage in the surface and deep layers also predicts dorsal darkness but this 

was not any stronger than the melanophores in the deep layer alone (Figure 12F). 



 35 

 

           

Figure 12. Relationship between surface melanophore number and dorsal gray value in Threespine Stickleback males (A) (linear 

regression, n = 21, t = -0.956, df = 19, F = 0.9149, p = 0.3508, adjusted R2 = -0.0043); relationship between deep melanophore number 
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and dorsal gray value in Threespine Stickleback males (B) (linear regression, n = 21, t = -0.957, df = 19, F = 0.9154, p = 0.3509, adjusted 

R2 = -0.0042); relationship between the combination of melanophores in the surface and deep dermal layers and dorsal gray value of 

Threespine Stickleback males (C) (linear regression, n = 21, df = 18, F = 0.742, p = 0.4902, adjusted R2 = -0.0265); relationship between 

percent melanophore coverage in the surface dermal layer and dorsal gray value of Threespine Stickleback males (D) (linear regression, 

n = 21, t = -2.131, df = 19, F = 4.541 p = 0.0464, adjusted R2 = 0.1504 ); relationship between percent melanophore coverage in the 

deep dermal layer and dorsal gray value of Threespine Stickleback males (E) (linear regression, n = 21, t = -3.465, df = 19, F = 12, p = 

0.0026, adjusted R2 = 0.3549); relationship between the combination of percent coverage in the surface and percent coverage in the deep 

layers and dorsal gray value (F) (linear regression, n = 21,  tsurface = -0.247, tdeep = -2.405, df = 18, F = 5.735, p = 0.0118, adjusted R2 = 

0.3214).  
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Discussion 

White and common ecotypes of Threespine Sticklebacks represent a useful model 

species to study how male nuptial colouration might evolve (Haley, 2018). In this study, I 

quantified the number and distribution of melanophores, as well as the distribution of 

iridophores to better understand the cellular mechanisms underlying white nuptial 

colouration. My results indicate that: 1) as predicted, stickleback possess two 

chromatophore layers; 2) the number of melanophores in both layers are not significantly 

different between white and common ecotypes; 3) common males have a significantly 

higher melanophore coverage in the deep dermal layer, but not the surface; 4) the coverage 

of iridophores in each layer in the common and white males is not significantly different 

but white males had more “free” iridophores in the deep layer; 5) the percent coverage of 

melanophores in the deep dermal layer was the best predictor of dorsal brightness in surface 

skin photographs.   

4.1 Skin Brightness in White and Common Threespine Stickleback  

My results indicated that the common males had significantly darker dorsum than the 

white males (Figure 7). This result was expected, knowing that the white males become 

white and the common males become dark blue-green, so dorsal brightness was measured 

as a “control” to confirm what is known from previous studies (Corney, 2019; Haley et al., 

2019; Jamieson, Blouw, & Colgan, 1992).  However, it is important to note the qualitative 

breeding colour scores given to the fish prior to sampling. Despite finding a large difference 

in the dorsal brightness, many of these fish were not in full nuptial colouration. As 

mentioned previously, the nuptial colouration of Threespine Stickleback housed in the 
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laboratory is rarely as bright as it is in the field (Blouw & Hagen, 1990), so these 

observations do not reflect the level of contrast between breeding males in nature and are 

thus a conservative estimate of differences in dorsal brightness among ecotypes. The fish 

were brought back to the lab to acclimate to the same conditions and surroundings, however 

the time in the lab for some of the fish (mostly the common males) was long enough that 

they had lost most of their breeding colouration. Additionally, the common males were 

collected later in the breeding season than the white males, due to the difficulty in finding 

sites with commons. Therefore, it is more accurate to state that this study compared the 

chromatophores of lab-acclimated breeding white males to lab-acclimated common males 

that were no longer displaying nuptial colouration.  

This may have affected the results because perhaps these males were in the lab long 

enough to implement some of the long-term mechanisms of colour change, such as altering 

the number or dispersal of melanophores. Common Threespine Stickleback males increase 

melanophore density during the breeding season (Haley, 2018), so the fact that the common 

males were not in breeding colouration when they were sampled could mean that the 

density of melanophores was lower than what would have been found in breeding males, 

therefore reducing the difference in this trait between the common and white ecotypes. 

Although I did find a trend of higher melanophore number in common males in both the 

surface and deep layers (Figure 8), neither of these results were significantly different. 

Therefore, the fact that the common males had lost their breeding colour could have 

significantly impacted the results of this study. Despite this, the high points in the 

melanophore coverage data (Figure 9) were not the fish with the highest qualitative 

breeding colour score. Future work should complete the skin sampling procedures on site 
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in the field to avoid any long-term chromatophore changes related to lab acclimation that 

could affect the study. This should focus on sampling males at their maximal nuptial 

colouration, as well as males outside of the breeding season to investigate how the 

chromatophores change in the field over time.  

4.2 Chromatophore Morphology in Threespine Stickleback  

My results indicate that common males have a higher melanophore coverage and 

fewer isolated iridophores in the deep dermal layer than the white males. However, most 

of my results were not significantly different between the groups. The number of 

melanophores in each layer and the surface melanophore coverage was not significantly 

different between the common and white males.  Additionally, the iridophore coverage in 

each layer and the percent of isolated iridophores in the surface layer did not differ between 

the two groups. These finding indicate that the skin of these males is notably more 

morphologically similar than predicted. This result is similar to what is seen in turbot; the 

number of iridophores in the brown/gray turbot is the same as in the dark turbot but the 

dark turbot has a greater number of melanophores (Faílde et al., 2014).  

My results showed the predicted two dermal melanophore layers (Burton, 1978), in 

addition to two dermal iridophore layers, previously undocumented in stickleback (Figure 

5). The iridophores and melanophores were also very closely associated with each other in 

a melano-iridophore complex. Iridophores were found both above and below melanophores 

in each layer as if the melanophores were embedded within the iridophores. This melano-

iridophore complex arranged in two dermal layers is seen in many other teleost fish 

including salmonids (Djurdjevič et al., 2015; Leclercq et al., 2010).  
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Another observation was that the melanophores present in the deep dermal layer of 

chromatophores appeared larger in diameter than in the surface layer in both ecotypes, but 

the difference in the layers appeared greater in the commons. Previously, the deep layer of 

melanophores has been described as continuous (Burton, 1978), but my results show that 

the deep layer still consists of visible discrete melanophores. Perhaps the morphology of 

the deep chromatophores are simply wider than those of the surface layer, but it is also 

possible that the K+ rich saline solution was unable to penetrate through the dermis into 

the deep layer as effectively. Another study that also aimed to completely aggregate 

pigment granules was performed with zebrafish, a teleost fish with scales (Sugimoto et al., 

2005). In this study, the scales were removed before being submerged in norepinephrine to 

contract the melanophores, therefore complete submersion would allow complete 

aggregation (Sugimoto et al., 2005). In future work, thinner skin samples should be taken 

in order to allow solutions to penetrate throughout the entire sample. Additionally, 

alternative chemicals, such as norepinephrine, should be explored to find the most effective 

solution for contracting chromatophores. 

 Other morphological differences in the chromatophores of the common and white 

Threespine Stickleback that were not measured in this study, may reveal differences 

between the ecotypes. One example is the thickness of the iridophores. In many of the 

photos, the dermis of the fish appeared to be stretched so we could not measure the 

thickness of the chromatophores or the dermis layer. In another fish, the domino 

damselfish, an increase in the thickness of the iridophore layer has been found to be 

responsible for the bright white spot on the fishes’ forehead (Goda & Fujii, 2001). Although 
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this did not appear to be the case from qualitative observations, it would be worth-while to 

further look into the thickness of the iridophore layer.  

 

4.3 Future Directions  

 In this study I have found that common males have a higher deep melanophore 

coverage and fewer isolated iridophores in the deep dermal layer than the white males. 

However, the number of melanophores in each layer, the surface melanophore coverage, 

the iridophore coverage in each layer, and the percent of isolated iridophores in the surface 

layer did not differ between the two groups. These findings indicate that the morphology 

of the chromatophores in the white and common Threespine Stickleback are more similar 

than predicted, but more studies should be done to ensure all fish are in maximal nuptial 

colouration in addition to incorporating other measures, such as the thickness of the skin 

and chromatophore layers. Furthermore, the orientation of and spacing between the platelet 

crystals within iridophore cells are an important factor influencing skin colour (Goda, 

2017; Mäthger, Land, Siebeck, & Marshall, 2003; Szydłowski, Madej, & Mazurkiewicz-

Kania, 2017; Teyssier, Saenko, Van Der Marel, & Milinkovitch, 2015). Transmission 

Electron Microscopy (TEM) has been used in several other studies to reveal the orientation 

and spacing of iridophore platelet crystals and their influence on animal skin colour (Goda, 

2017; Mäthger et al., 2003; Szydłowski et al., 2017). Iridophores have also been found to 

be the chromatophore responsible for colour change in chameleons (Teyssier et al., 2015), 

so it would be fitting to further investigate the morphology of iridophore platelets within 

sticklebacks.  
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 Future studies should also aim to measure the hormones that regulate skin pigment 

content in fish, to determine which pathways are most likely responsible for the nuptial 

colouration of Threespine Sticklebacks. It is also important to note that the common and 

white Threespine Stickleback males possess a great deal of plasticity when it comes to their 

colouration (Haley et al., 2019). With disturbance, bright white males become darker and 

more cryptically coloured whereas common males rapidly blanche, making them difficult 

to distinguish between after being caught (Blouw & Hagen, 1990; Haley, 2018). Therefore, 

determining which regulators are involved in this colour change will allow us to pre-treat 

samples to look at white males in their maximal and minimal brightness.  Many 

chromatophores in teleost fish are known to disperse when regulated by increases in the 

levels of the neuropeptide a-melanocyte stimulating hormone (a-MSH), and in some fish, 

such as the cichlid, it also causes more aggressive behaviour (Djurdjevič et al., 2015). 

Increased overall melanocortin and receptor levels associated with darker colouration are 

generally correlated with higher sexual activity and aggressiveness, however, several 

studies have found that white Threespine Stickleback males have higher sexual activity and 

similar aggressiveness (Blouw & Hagen, 1990; Blouw, 1996; Haley, 2018; Samuk et al., 

2014). Determining which pathways are responsible for colouration can lead to increased 

understanding of the mechanistic links between colouration and animal behaviour.  

Furthermore, this Threespine Stickleback species complex is a good model system 

for determining the genetic basis of colouration evolution. There are several candidate 

genes involved in the evolution of colour patterns identified from previous research (Irion 

& Nüsslein-Volhard, 2019). For example, the countershading colour present in many fish 

is dependent on Agouti signalling, encoded by the ASIP gene (Cal et al., 2019). A low level 
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of expression of asip1 dorsally leads to a dark dorsum in the Zebrafish (Cal et al., 2019). 

In the Japanese flounder, the expression of the three melanocortin receptors mc1r, mc5r, 

and melanin-concentrating hormone receptor 2, are increased in darker, more pigmented 

areas (Matsuda et al., 2018).  The gene responsible for darker skin in a marine population 

of sticklebacks compared to a freshwater population was found to be the Kit ligand (Miller 

et al., 2007), however this has not been investigated in the common and white marine 

Threespine Stickleback. Future research should investigate whether these same genes have 

repeatedly evolved in stickleback, or if different populations use different mechanisms to 

vary skin colouration.  

Furthermore, candidate genes for iridophore content in stickleback should be 

investigated. In zebrafish, endothelin signalling is required for iridophore development and 

proliferation (Frohnhöfer et al., 2013). Mutations in the shady gene (encoding leukocyte 

tyrosine kinase) as well as the rose gene (encoding endothelin receptor b1a) are known to 

inhibit iridophore development in zebrafish (Frohnhöfer et al., 2013), and zebrafish with 

mutations in fhl2a/fhl2b, gpnmb, and saiyan display significantly fewer iridophores (Salis 

et al., 2019). Additionally, the overexpression of edn3b has been shown to increase 

iridophore coverage in zebrafish (Spiewak et al., 2018). A number of other genes (pnp4a, 

prtfdc1, tfec, etc.) are also known to be important in the function and development of 

iridophores in teleost fish (Salis et al., 2019), and these genes should be investigated in the 

white and common Threespine Stickleback in order to gain a more cohesive understanding 

on the evolution of white nuptial colouration.  
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4.4 Conclusion  

The white and common Threespine Stickleback are a species complex that possess 

contrasting nuptial colouration making them a good model species for studying how male 

nuptial colouration might evolve (Haley, 2018). In this study, I quantified several 

characteristics of melanophores and iridophores to better understand the cellular 

mechanisms underlying white nuptial colouration. My results indicate that the 

integumental chromatophores in both white and common males are more morphologically 

similar in number and distribution than predicted. Future studies investigating further 

chromatophore measures such as thickness of chromatophores and skin, and the orientation 

of the platelets in iridophores is warranted. Additionally, investigating the genes and 

hormones responsible for white colouration would be beneficial to gain a complete 

understanding of the evolution of white nuptial colouration.  
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