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Parasite Populations and Polycyclic Aromatic Hydrocarbons (PAHS) in Biota from the
Sydney Tar Ponds, Cape Breton, Nova Scotia, Canada: Investigation of Potential Long-

term Biomonitors

By: Lydia Sabrina Rockwell Thompson

Abstract

Historical industrialization around the Sydney Tar Ponds resulted in contaminated
water and sediment. This study determined baseline levels of polycyclic aromatic
hydrocarbons (PAHs) in sediments and biota from the Tar Ponds and explored the use of
a diversity of resident organisms as potential biomonitors of remediation. European
green crab (Carcinus maenas) and grass shrimp (Palaemonetes spp.) were found to
accumulate a greater number and concentration of PAHs than American eel (dnguilla
rostrata) and mummichog (Fundulus heteroclitus). Of the biota sampled, Carcinus
maenas are suggested to be the best biomonitor. The diminished parasite levels of F.
heteroclitus, found in the Tar Ponds, are also an effective biomonitor. As remediation of
the Tar Ponds proceeds, it is proposed that the levels of parasites will increase to a

healthy level.
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Abundance:

Acanthocephalans:

Aging:

Bioremediation:

Black carbon (BC):

Bioavailability:

Catabolism:

Cestodes:

Condition Factor (K):

GLOSSARY

in parasitologyi, it is the number of individual parasites of a
particular species found in one fish whether or not the host is
infected (Bush ef al., 1997).

(Phylum: Acanthocephala) are endoparasites commonly
known as thorny-head worms and are found as adults in its
host’s digestive system. Their life cycle requires at least two
hosts, such as an arthropod (or insect) and a fish (Roberts
and Janovy, 2000).

in sediments, this is the phenomenon when the
bioavailability of organic contaminants in soils and
sediments decreases over time and there is no net change of
the contaminant concentration (Lu ef al., 2006; Semple ef al.,
2003; White et al., 1999).

is the process by which contaminants are degraded by
biological means, such as microorganisms (Atlas and Bartha,
1998; Newman and Unger, 2003).

is also referred to as soot or charcoal particles and is a type
of carbonaceous material generally formed from incomplete
combustion of biomass and fossil fuels (Cornelissen and
Gustafsson, 2004, 2005; Cretney and Yunker, 2000)

is the fraction of the total contaminant concentration for
uptake into an organism (Newman and Unger, 2003).

is the rhicrobial metabolism or breakdown of a compound,
which often produces energy for other microbial activities
(Atlas and Bartha, 1998).

(Phylum: Platyhelminthes) are endoparasites commonly
known as tapeworms and are found as adults in the digestive
system of its host. Their life cycle can be quite complex and
typically involves a series of intermediate hosts and a
definitive (or final) host (Roberts and Janovy, 2000).

is a value used to compare the health of an organisms, where
a higher K value corresponds to an healthier organism. K is
calculated by the following equation (Moyle and Cech,
2004):

K= 100 X [total body weight (g)/(total length in cm)*]
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Cytochrome P-450
monooxygenase
(CYP1A) system:

Definitive host:

Ectoparasites:

Encyst:

Endoparasites:

Free-living stage:

Fugacity (f):

Fugacity capacity (Z):

Intermediate hosts:

Interstitial water:

is a series of metabolic steps that decrease the
hydrophobicity of contaminants by the attachment of
hydroxyl (-OH) groups, which increases the organisms’
ability to excrete contaminants from its body (Newman and
Unger, 2003).

this is the host where the parasite develops from a larval
stage into an adult and reaches sexual maturity (Roberts and
Janovy, 2000).

are parasites, such as monogenes and parasitic copepods,
which live on the gills, fins, and/or surface of the organism
(Roberts and Janovy, 2000).

this is the process by which a larval parasite forms protective
coating around its self, which may allow the parasite to enter
a resting stage (Roberts and Janovy, 2000)

are parasites, such as acanthocephalans, cestodes,
trematodes, and nematodes, which live in or on the internal
organs of the organism (Roberts and Janovy, 2000).

a parasite larval form which is not found in a host. These
larval forms are often encysted on vegetation or coated to
protect the parasite from the environment (Roberts and
Janovy, 2000).

is a partial pressure (Pa) measurement of the leaving or
escaping tendency of a compound from a particular phase
(Mackay, 2004).

is a measurement of the ability of an organism to
bioaccumulate a contaminant, which is related to the lipid
content of the organism and is inversely related to fugacity
of the organism (Klosterhaus ez al., 2002; Mackay, 2004;
Russell ef al., 1999).

is an organism required for the development of the larval
parasite (Roberts and Janovy, 2000).

1s water between and around sediment particles and is often
higher in organic contaminant concentration compared to the
concentration in the water column (Lu ef al., 2004; Mitra and
Dickhut, 1999).
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Lipophilic:

Monogenes:

Mean intensity:

Nematodes:

Non-point sources:

Parasitic copepods:

Paratenic host:

Parts per billion
(ppb):

Parts per million

(ppm):

Prevalence:

is a characterisitic of many organic contaminants, such as
PAHSs and PCBs, which tend to accumulate in the lipids (or
fat) of organisms (Horton ef al., 2002; vanLoon and Duffy,
2000).

(Phylum: Platyhelminthes) are ectoparasites with highly
adapted holdfasts for attachment to a specific host. Their life
cycle typically only include one host (Roberts and Janovy,
2000).

in parasitology, it is the mean total number of parasites per
infected fish from one site (Bush ez al., 1997).

(Phylum: Nematoda) are endoparasites with a digestive
system. Their life cycle requires four moults to reach sexual
maturity (Roberts and Janovy, 2000).

release contaminants which cannot be traced to one
particular location. Long range transport of PAHs from
highly contaminated sites via atmospheric circulation is a
non-point source (Roche et al., 2002; Zhang ef al., 2008).

(Phylum: Arthropoda) are ectoparasites commonly found on
the gills of fish. Their life cycle has eight free living larval
stages and one host (Roberts and Janovy, 2000)

this is a host which bridges an ecological barrier and is not
needed in parasite development. For example, paratenic
hosts assist in transmitting the host from a lower to higher
level in a food chain to increase the likelihood a parasite
being consumed by either an intermediate or definitive host
(Roberts and Janovy, 2000).

1s a measurement unit of trace contaminants; it is
synonymous with the units ng/g, pg/kg and pg/L.
1000ppb = 1ppm

is a measurement unit of trace contaminants; it is
synonymous with the units pg/g, mg/kg and mg/L.
1000ppb = 1ppm

in parasitology, it is the percentage of fish infected with at

least one parasite divided by the number of fish examined
(Bush et al., 1997).
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Point sources:

n-Octanol/water
partition coefficient
(Kow):

Organic carbon/water
partition coefficient
(Koo):

Sedimentary organic
carbon:

Toxic effects response

low (ERL):

Toxic effects response
median (ERM):

Type 1
Biomonitoring:
Type 2
Biomonitoring:
Type 3
Biomonitoring:

Type 4
Biomonitoring:

release contaminants which originate from one location.
Examples of point sources of PAH are industrial sites such
as coke ovens or aluminum smelters (Avci et al., 2005; Mitra
et al., 2002; Secco et al., 2005).

is the concentration of a chemical in octanol (often n-
octanol) divided by the concentration of the same chemical
in water at equilibrium and is a measure of the chemical
partitioning from water into organisms (vanLoon and Duffy,
2000).

is the concentration of a chemical sorbed in or to sediment
divided by the concentration of the same chemical in water
at equilibrium and is used to describe the partitioning of
organic chemicals between water and sediment (vanLoon
and Duffy, 2000).

is carbonaceous material which has not undergone
combustion (Jonker and Koelmans, 2002).

is a toxicological value which predicts that biota which live
in environments with lower contaminant concentrations will
rarely exhibit toxic effects (Wade et al., 2008).

is a toxicological value which predicts that biota which live
in environments with higher contaminant concentrations will
often exhibit toxic effects (Wade et al., 2008).

traces the change in species composition in an ecosystem
(Walker et al., 2001).

traces the change in the chemical concentration in biota by
either measuring the concentration in the organism or its

dietary items (Walker et al., 2001).

traces the toxicological effects induced, on or in the
organism, by the contaminant (Walker ef al., 2001)

traces the development of organismal genetic resistance as a
biomonitor (Walker et al., 2001)
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1. INTRODUCTION

1.1  Sydney Tar Ponds

The Sydney Tar Ponds is one of Canada’s most contaminated sites (AMEC, 2005;
Tay et al., 2003), which is located in Sydney, Cape Breton, Nova Scotia. The Sydney Tar
Ponds are composed of four parts: the North Tar Pond, the South Tar Pond, Coke Ovens
Brook Connector, and the former Coke Ovens site (Figure 1). The North and South Tar
Ponds are part of Muggah Creek, which empties into the South Arm of the Sydney
Harbour (Figure 1).

The Sydney Tar Ponds support a wide array of species. Terrestrial habitats
surrounding the Tar Ponds support red fox (Vulpes vulpes), muskrat (Ondatra zibethicus),
coyote (Canis latrans), and white tailed deer (Odocoileus virginianus) (AMEC, 2005).
Many invertebrate and fish species, such as European green crabs (Carcinus maenas),
blue mussels (Myftilus edulis), mummichogs (Fundulus heteroclitus), sticklebacks
(Gasterosteus aculeatus, Gasterosteus wheatlandi, and Apeltes quadracus), American
eels (Anguilla rostrata), tomcod (Microgadus tomcod), and brown bullheads (Ameiurus
nebulosus) reside in the Sydney Tar Ponds or at the mouth of the North Pond where it
empties into the Sydney Harbour (AMEC, 2005; Jones, 2007).

Biological surveys on the Sydney Harbour are based mainly on fishery surveys
(Vandermeulen, 1989). Several fish species, such as cod, mackerel, winter flounder
(Pseudopleuronectes americanus), hake (Urophycis tenuis), and cunnef (Tautoglobrus
acesperus) have been caught there (Vandermeulen, 1989). Shrimp, mussels (Mytilus
edulis and Modiolus modiolus) and lobster (Homarus americanus) are also found in the

Sydney Harbour (Ernst ef al., 1999; Vandermeulen, 1989). Studies have indicated that
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pollution released from the Sydney Tar Ponds into the Sydney Harbour has negatively
impacted biota in the Sydney Harbour (Ernst et al., 1999; IWEL-IT, 1996a; Tay et al.,
2003; Vandermeulen, 1989). The South Arm of the Sydney Harbour receives direct input
from Muggah Creek; it has a depauperate benthic community, which is dominated by
polychaetes and sea anemones (Vandermeulen, 1989). The North Arm of the Sydney
Harbour does not have direct input from Muggah Creek and has been noted to have a
healthier benthic community (Vandermeulen, 1989).

Pollution in the Sydney Tar Ponds resulted from 100 years of unregulated
industrial activities. Industries that developed around the Tar Ponds included coke and
steel production, rail yards, and dump sites (AMEC, 2005). It is thought that the coking
ovens and the steel plant released contamination, which migrated into the South and then
North Tar Pond of Muggah Creek (JWEL-IT, 19964, b). Contaminants were then
released from the North Tar Pond into the South Arm of the Sydney Harbour (JWEL-IT,
1996a, b; Matheson et al., 1983; Sirota et al., 1983, A1984). This has resulted in high
levels of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs),
and heavy metals in biota, sediment, and water from Muggah ‘Creek and Sydney Harbour
(AMEC, 2005; Acres, 1984; Emst et al., 1999; Furimsky, 2002; Jones, 2007; JWEL-IT,
1996a, b; Vandermeulen, 1989). A brief description of PCBs and metals in the Sydney
Tar Ponds will be provided. The rest of this thesis will focus on PAHs in the Sydney Tar
Ponds.

PCBs are a foreign organic, environmental contaminant, which are not naturally
found in the environment (Ceccarini and Giannarelli, 2006). PCBs primarily
bioaccumulate in the lipids of organisms (Christensen ef al., 2005; Maruya and Lee,

1998; Tanabe et al., 2004; Tay et al., 2003). PCBs may act as endocrine disruptors and
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environmental estrogens (Ceccarini and Giannarelli, 2006; Ross ef al., 1996). They may
alter an organism’s neurobehavior, reproduction, and development (Ceccarini and
Giannarelli, 2006). Many different PCB congeners have been found in sediment and
biota from the Sydney Tar Ponds (Jones, 2007; JWEL-IT, 1996b).

Metals are inorganic contaminants, which can be toxic to organisms above critical
concentrations. JWEL-IT (1996b) found copper, lead, nickel, and zinc from all Sydney
Harbour sediment cores to be higher than Canadian Council of Ministers of the
Environment (CCME) Marine Sediment Guidelines (MacDonald et al., 1992). They also
found chromium and manganese in some Sydney Harbour sediment cores to be higher
than CCME Marine Sediment Guidelines (MacDonald ef al., 1992). High levels of
cadmium, lead, mercury, and zinc have been found in Sydney Tar Pond sediments

(Vandermeulen, 1989).

1.2 Polycyclic Aromatic Hydrocarbons (PAHs)

Polycyclic aromatic hydrocarbons (PAHs), also referred to as polynuclear
aromatic hydrocarbons, are a class of organic compounds which are a combination of at
least two aromatic rings with at least one common carbon-carbon bond (Figure 2).

PAHs have been present in the environment since the formation of the earth (Wakeham et
al., 1980a, b). PAHs are ubiquitous and can be formed from natural and anthropogenic
activities. Naturally formed PAHs may occur from forest fires, microbial biosynthesis,
and weathering of petroleum seeps or ancient sediments (Wakeham e al., 1980a, b). The
environmental concentration of PAHs has dramatically increased since the industrial

revolution (LaFlamme and Hites, 1978; Wakeham, 1980a; Yunker et al., 1999).
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Anthropogenic PAHs are generally formed by incomplete combustion of organic
matter (vanLoon and Duffy, 2000). Incomplete combustion is the result of impurities in
organic matter, low temperature, and limited concentration of oxygen (vanLoon and
Duffy, 2000). PAHs may be formed from industrial activities (coke ovens and
alumininum smelters), incineration, and vehicle engines (Bieri et al., 1986; Connell,

1997; McGowin, 2006).

1.2.1 Physiochemical Properties of PAHs

The smaller PAHs (e.g. naphthalene) are volatile, more prone to microbial
catabolism, and less lipophilic, compared to larger PAHs (e.g. benzo[a]pyrene) (Atlas and
Bartha, 1998; Bamforth and Singleton, 2005; vanLoon and Duffy, 2000). Microbial
catabolism is the metabolism or breakdown of a compound, which often produces energy
for other microbial activities (Atlas and Bartha, 1998). Lipophilic refers to the tendency
- of a contaminant to enter the lipid or fat of an organism (vanLoon and Duffy, 2000). Less
lipophilic contaminants have a lower tendency to enter and to accumulate in organismal
lipid. Lipophilicity is often related to the hydrophobicity, which is the tendency of a
contaminant to enter water. A decrease in lipophilicity often corresponds with a decrease
in hydrophicity, which is a decrease in tendency of a contaminant to enter water
(vanLoon and Duffy, 2000).

Hydrophobicity is often described by the n-octanol/water partition coefficient
(Kow). Kow is the concentration of a chemical in octanol (often n-octanol) divided by the
concentration of the same chemical in water at equilibrium and is a measure of the
chemical partitioning from water into organisms (vanLoon and Dufty, 2000). A higher

Kow value reflects a greater hydrophobic nature of a contaminant compared to a
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contaminant with a lower K. The organic carbon/water partition coefficient (K,.) is
the concentration of a chemical sorbed in or to sediment divided by the concentration of
the same chemical in water at equilibrium and is used to describe the partitioning of
organic chemicals between water and sediment (vanLoon and Duffy, 2000). K, can be
approximated by the K. The log K, and log K. of PAHs typically range from 2-7 and

3-6 respectively (Table 1).

1.2.2 PAHs in the Environment

PAHs enter the environment from point or non-point sources. Point sources
release contaminants which originate from one location. Examples of point sources of
PAH are iﬂdustrial sites such as coke ovens or aluminum smelters (Avci ef al., 2005;
Mitra et al., 2002; Secco et al., 2005). Non-point sources release contaminants which
cannot be traced to one particular location. Long range transport of PAHs from highly
contaminated sites via atmospheric circulation is a non-point source (Roche et al., 2002;
Zhang et al., 2008). Contaminated run-off water from streets and fields into water bodies
and subsequent transport by moving water is another possible non-point source (Brezonik
and Stadelmann, 2002; Schiff and Bay, 2003; Tsihrintzis and Hamid, 1997).

In aquatic environments PAHs are often associated with organic matter (Chin and
Gschwend, 1992; Lu et al., 2003; Socha and Carpenter, 1987). PAHs have low water
solubility (Table 1). In relatively pristine aquatic environments, the concentration of each
PAH not associated with sediment in the water column is generally less than 5 ng/kg
(Barbee et al., 2008). In contaminated aquatic environments, the concentrations of freely
dissolved individual PAHs are generally less than 1000 pg/kg or 1 mg/kg (Readman et

al., 1982).
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Due to their hydrophobic nature, PAHs are generally associated with sediments
(Gustafsson et al., 1997; Khim et al., 2001; Kraaij et al., 2002) or dissolved organic
matter in the water column (Déring and Marschner, 1998; Haitzer ef al., 1998; Landrum
et al., 1985). PAHs may also be found in interstitial water, which is water between and
around sediment particles (Lu ef al., 2004; Mitra and Dickhut, 1999). The concentration
of PAHs associated with sediments is greater than PAHs in interstitial water, which are in
turn greater than concentrations in the water column (Gao ef al., 1998; Hyun et al., 2007;
Maskaoui et al., 2002). The concentrations of PAHs in sediments distant from
contaminated sites are generally below 1mg/kg (Barbee et al., 2008; Djomo et al., 1996;
Kim et al., 2008; Krauss ef al., 2000: Tables 2 and 3). Sediments from contaminated sites
vary in their dégree of contamination (Cornelissen et al., 2008; Johnson-Restrepo et al.,
2008; Khim et al., 2001: Tables 4 and 5). Differences in PAH concentration among
contaminated sites are due to the concentration of PAHs and the rate of elimination of
PAHs from that particular environment.

Once PAHs have been introduced into the environment, several processes may
occur. PAHs may be degraded by microbial catabolism (Dabestani and Ivanov, 1999).
Also, PAHs may be degraded abiotically by photolysis, which is a process where light
breaks chemical bonds (Dabestani and Ivanov, 1999). PAHs may volatilize into air and
be removed from the immediate area by atmospheric transport (Fernandez et al., 2003;
Simpson et al., 1996). PAHs may leach from one environmental compartment to another
(Reid et al., 2000). In the terrestrial environment PAHs may leach from the soil
compartment into the groundwater compartment. PAHs may be sequestered in and/or on

organic matter (Gustafsson et al., 1997; Haitzer et al., 1998; Kraaij ef al., 2002). Non-

26



metabolizable or slowly metabolizing PAHs may bioaccumulate in biota (DeLeon, 1988;

Meador et al., 1995).

1.2.3 PAHs in Biota

The concentration of PAHSs in biota is highly variable among sampling sites from
different parts of the world. In remote areas the concentration of specific PAHs in biota
are generally below 1pg/kg and do not exceed 1000 pg/kg or 1 mg/kg (Pancirov and
Brown, 1977, Vives et al., 2004: Table 6). Concentrations of PAHs in biota from
contaminated areas are highly variable (Table 7). In both remote and contaminated sites,
the concentrations of PAHs are generally higher in liver and hepatopancreas tissues than
in muscle or other biota tissues (Hellou and Warren, 1997; Hellou ef al., 1994).

The uptake and bioaccumulation of PAHs in biota depends on a combination of
biotic and abiotic factors, which varies between species and environments (Bender e? al.,
1988; Hellou et al., 1994). PAHs may be taken up from the water column or interstitial
water (Leady e? al., 1999). Also, PAHs may be ingested by feeding on sediments or prey
items (Forbes et al., 1998; Hickey et al., 1995; Lee et al., 1976). The concentration of
PAHs in biota depends on many factors including: the rate of PAH uptake and
elimination (Bender et al., 1988), the organism’s ability to metabolize the PAHs
(Gewurtz et al., 2000), the physiochemical properties of the compound (Baumard et al.,
1998; Krauss ef al., 2000), and the bioavailability of the PAHs (Landrum ez al., 1992;
McCarthy and Jimenez, 1985). Bioavailability is the fraction of the total contaminant
concentration available for uptake into an organism (Newman and Unger, 2003).

The uptake and bioaccumulation of PAHs depends on the fugacity of the organism

in relation to its surrounding environment (Klosterhaus et al., 2002; Mackay, 2004;
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Russell et al., 1999). Fugacity (f) is a measurement of the leaving or escaping tendency
of a compound from a particular phase. The fugacity capacity (Z) of an organism to
bioaccumulate hydrophobic contaminants is related to the lipid content of the organism
and is inversely related to the fugacity of the organism (Klosterhaus et al., 2002; Mackay,
2004; Russell ef al., 1999). Organisms with higher lipid content will have a lower
fugacity and a higher fugacity capacity compared to organisms with lower lipid content.
If the fugacity capacity of the organism is greater than the environment, there will be a

net movement of the contaminant into the organism.

1.3 Bioaccumulation and Bioavailability of PAHs

The presence of PAHs or other contaminants in the environment does not
necessarily mean that the contaminant will be toxic to or bioaccumulate in biota (Ehlers
and Luthy, 2003, Erickson et al., 1993; Reid et al., 2000). The toxicological effects and
bioaccumulation of the contaminant is related to the fraction of the contaminant which is
available to biota; this is the bioavailable fraction, also called the bioavailability, of the
contaminant. Many biological and chemical techniques have been developed to assess
bioavailability (Kelsey et al., 1997; Krauss and Wilcke, 2001; Kukkonen et al., 2004,
Nilsson et al., 2006; Reid et al., 2000). The contaminant bioavailability is influenced by
a combination of many abiotic (Kraaij ef al., 2001; Lamoureux and Brownawell, 1999;
Zeng et al., 2003) and biotic factors (Nakata et al., 2006; Thomann e al., 1992; Van Hoof
et al., 2001).

Studies have shown the bioavailability of organic contaminants to be influenced

by the type of organic carbon in or on the sediment (Accardi-dey and Gschwend, 2002;
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Chin and Gschwend, 1992; Déring and Marschner, 1998; Gustafsson ez al. 1997). Black
carbon (BC) is a type of carbonaceous material formed from incomplete combustion of
biomass and fossil fuels. BC is also referred to as soot or charcoal particles. Due to its
aromatic and condensed structure, BC is able to strongly sorb organic contaminants
(Cornelissen and Gustafsson, 2005; Rust ez al., 2004). Jonker and Koelmans (2002)
found that the sorption of PAHs to BC to be 1000 times stronger than PAHs to
sedimentary organic carbon, which is carbonaceaous material which has not undergone
combustion. It is thought that the strong sorption of organic contaminants to BC may
account for the limited bioavailability and decreased effectiveness in the bioremediation
of organic contaminants (Cornelissen and Gustafsson, 2004, 2005; Cretney and Yunker,
2000). Bioremediation is the process by which contaminants are degraded by biological
means, such as microorganisms (Atlas and Bartha, 1998).

Aging or weathering of sediments has also been found to limit the
bioaccumulation and bioavailability of PAHs (Lu ef al., 2006; Semple et al., 2003; White
et al., 1999). Aging in sediments is the phenomenon when the bioavailability of organic
contaminants in soils and sediments decreases over time and there is no net change of the
contaminant concentration (Lu et al., 2006; Semple et al., 2003; White ez al., 1999). This
results in reduction of exposure and toxicity of contaminants over time, but does not
completely eliminate the threat of the contaminant in the environment (Alexander, 1995,
2000; Hatzinger and Alexander, 1995). This was demonstrated by Alexander and
Alexander (1999) where they exposed Pseudomonas patida, a bacterium, to PAH-spiked
soil. After seven days, the rate of mutations induced by PAHs in P. patida had decreased
by 72% compared to the initial rate of mutations. They concluded that the genotoxicity of

PAH declines with increased aging of the soil.
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There are differences in the bioavailability of organic contaminants within
ecosystems. The hydrophobicity, size, and structure of an organic contaminant may
influence the contaminant bioavailability (Burkhard ef al., 2004; Kukkonen et al., 2005;
Schuler et al., 2003). Studies have found a negative correlation between hydrophobicity
and bioaccumulation of contaminants (Maruya and Lee, 1998). Kannen ef al. (1998a)
found bioaccumulation of PCBs dependent on hydrophobicity and molecular size.
Studies have suggested that molecular size of organic contaminants may restrict or
prevent membrane permeability (Kannen et al., 1998a, b; Ma et al., 1998). Opperhulzen
et al. (1985) suggested that PAHs with widths over 9.5A could not penetrate the cell
membrane, thus preventing the accumulation of PAHs in fishes.

Biotic factors may also play a role in the variation in bioaccumulation and
bioavailability of organic contaminants. Organismal behaviour influences contaminant
bioaccumulation (Forbes ef al., 1998; Millward ef al., 2001; Noblet et al., 2003).
Ingestion of sediments is considered to be a major source of organic contaminants to biota
(Croce et al., 2005; Loonen ef al., 1997). Some organisms selectively feed on sediment
particles with higher total organic carbon (Boese ef al., 1996; Lee et al., 1990; Krauss and
Wilcke, 2001). Since the concentration of organic contaminants is often related to
organic carbon concentration, the selective consumption of these particles may increase
an organism’s exposure to contaminants.

The presence of other organisms may also affect bioaccumulation and
bioavailability. Ciarelli ef al. (1999) found a linear relationship between uptake of the
PAH fluoranthene in mussels (Mytilus edulis) and the density of amphipods (crustacean:
Corophium volutator) in the sediment. They found that amphipod activity increased the

total suspended sediments in the water column. This resulted in increased suspended
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particles and associated fluoranthene in mussels filter feeding. In a later study by Ciarelli
et al. (2000), they found the bioaccumulation of fluoranthene to be greater in polychaetes
(Neris virens) in sediments with more amphipods compared to sediments with fewer or

no amphipods.

1.4 Toxicological Properties of PAHs

The uptake of PAHs causes a diversity of physiological responses in organisms
(Bacanskas et al., 2004; Bard et al., 2002; Burchiel and Luster, 2001; Mann ef al., 1999).
The resultant physiological responses can be harmful to the organism’s health and/or
reproductive success (Avci ef al., 2005; Bain, 2002; Bléha ef al., 2002; Incardona et al.,
in press). PAHs are generally not directly toxic to organisms (Barbee ef al., 2008;
Dabestabi and Ivanov, 1999; McGowin, 2006). However, after PAHs react with
organismal enzymes, the resultant PAH metabolites become potential mutagens or
carcinogens. The cytochrome P-450 monooxygenase (CYP1A) system, also called the
mixed-function oxidase (MFO) system, is found in both invertebrates (Livingston et al.,
1990; Walker ef al., 2001) and vertebrates (Fragoso et al., 2006; Shailaja and D’Silva,
2003). The CYP1A system functions by adding hydroxyl groups to PAHs. The addition
of hydroxyl groups increases water solubility of PAHs, thus allowing an efficient
excretion of the PAH metabolite (Newman and Unger, 2003; Walker ef al.,2001). In
many contaminated environments, the activity of CYP1A systems is often increased
(Hansson et al., 2006; Sturve et al., 2006; Wassenberg et al., 2002).

Despite the benefits of CYP1A, the reactions result in an intermediate epoxide

functional group on the PAH (Dabestani and Ivanov, 1999: Figure 3). The epoxide is
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highly reactive with DNA and hemoglobin. The initial toxicological responses are
formation of liver and skin tumours (Arcand-Hoy and Metcalfe, 1999; Pinkney and
Harshbarger, 2006; Pinkney et al., 2004). Over time, interactions between the epoxide
and the tissues may result in lung, bladder, and/or skin cancer and high PAH
concentrations may result in immunosuppression (McGowin, 2006; Newman and Unger,
2003; Rose et al., 2001). In some highly contaminated areas, organisms have a
suppressed expression of CYP1A (Arzuaga and Elskus, 2002; Meyer et al., 2002; Nacci
et al., 1999), which varies between species (Anulacion e al., 1998; Vuorinen et al., 2006;
Wirgin et al., 1996). Nacci et al. (2002) suggested that the decrease in levels of
metabolizing enzymes, such as CYP1A, may be an adaptation to prevent DNA damage
and cancer.

Liver damage has been found in a diversity of organisms from contaminated sites
(Harshbarger and Clark, 1990; Marty et al., 2003; Stine ef al., 2004; Vogelbein et al.,
1990, 1999). Myers et al. (1998) found that fishes exposed to sediment with total PAH
concentration greater than 500-1000pg/kg (0.5-1mg/kg) would develop liver lesions.
PAH exposure may also result in fin erosion, change in diet and eating habits, no weight
gain, and/or cloudy eyes (Hargis et al., 1984)

The toxicological effects of PAHs generally occur after the organism has been
exposed to or has bioaccumulated a threshold concentration. The value may change
depending on the health of the organism and the environmental conditions (Weis, 2002;
Weis and Weis, 1989). “Toxic effects response low” and “toxic effects response median”
are threshold values to aid in predicting the onset of PAH toxic effects (Wade et al., 2008:
Table 8). Biota which live in or near sediments with PAH concentrations below the toxic

effects response low (ERL) will rarely exhibit toxic effects. Biota which live in or near
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sediments with PAH concentrations above the toxic effects response median (ERM)
will often exhibit toxic effects (Wade ef al., 2008).

The CCME (2002) developed interim sediment quality guidelines (Table 9). In
marine sediments individual PAH concentrations should be <0.2 mg/kg dry weight (wt).
Also, marine sediments with individual PAH concentrations < 1.5 mg/kg will result in
over 50% of organisms experiencing toxicological effects. For example, 0.763 mg/kg dry
wt of benzo[a]pyrene in marine sediments results in 78% of organisms experiencing

toxicological effects (CMME, 2002).

1.5  Effects of PAHs in the Sydney Tar Ponds

The harmful effects of the contamination in the Sydney Tar Ponds became
apparent when lobsters (Homarus americanus) collected from the adjacent Sydney
Harbour were highly contaminated with PAHs and PCBs (Prouse, 1994; Sirota ef al.,
1983). This resulted in the closure of the Sydney Harbour lobster fishery (Prouse, 1994;
Sirota et al., 1983). Researchers have linked the high PAH and PCB concentrations in H.
americanus tissue with an influx of pollutants from the Sydney Tar Ponds (Tay et al.,
2003).

Past research on the Sydney Tar Ponds had an abiotic focus. Studies examined
the type, concentrations, and distribution of contaminants (AMEC, 2005; Furimsky,
2002). There are limited studies investigating the magnitude of contaminants in biota
from the Sydney Tar Ponds and the surrounding areas (AMEC, 2005; Emst ef al., 1999;

Jones, 2007; Hale, 2004). There are fewer studies which address the toxicological effects
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of contamination on the organisms which live in or around the Sydney Tar Ponds
(Paetzold et al., 2009; Tay et al., 2003; Vandermeulen and Mossman, 1996).

Little research has focused on the bioaccumulation of PAHs in fishes or
invertebrates from the Sydney Tar Ponds. Preliminary ecotoxicology analyses by J.
Hellou and M. Jones for the presence of 85 PAHs found high levels of PAHs in three
mummichogs (Fundulus heteroclitus) (J. Hellou and M. Jones, unpublished data).
Among the F. heteroclitus analyzed from the Tar Ponds, there was high variability in the
PAH concentrations. In the reference F. heteroclitus the PAH concentrations were low or
below detection limits. The five PAHs detected at the highest concentrations in the Tar
Pond F. heteroclitus included compounds such as: acenaphthene, anthracene, fluorene,
fluoranthene, and phenanthrene. Jones (2007) suggested that more ecotoxicological

research is needed prior to commencement of the remediation project in the Tar Ponds.

1.6  Assessment of Ecosystem Health

Aquatic organisms are often used as biological monitors and have provided
qualitative and quantitative information on the levels of contaminant emissions
(Namiesnik, 2001). Fof effective biomonitoring, the organism must be carefully selected
(Walker et al., 2001). The species should be easy to locate and collect at statistically
relevant levels to compare between the contaminated and reference sites. It should have
measurable and reproducible responses to the contaminant. Finally, the results should be
reproducible (Walker et al. 2001).

There are many different types of biomonitoring studies. Some biomonitoring

studies require the species to be tolerant of adverse environmental conditions and/or to
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bioaccumulate the contaminant. Organisms used to assess environmental quality include:
bivalves (Devier et al., 2005; Gewurtz ef al., 2003), crabs (Eickhoff et al., 2003;
Ikonomou et al., 2002), fishes (BarSien¢ et al., 2006; Hansson et al., 2006; Oliveira
Ribeiro et al., 2005; Said and El Agroudy, 2006), parasites (Marcogliese and Cone,
1997a, 1998; Turcekova et al., 2002; Williams et al., 1992), plants (Hale, 2004), and
animals (Ross ef al., 2004).

Biomonitoring studies are very diverse. The various types of biomonitoring can
be broadly grouped into four categories (Walker ef al., 2001). Type 1 biomonitoring
traces the change in species composition in an ecosystem (Iliopoulou-Georgudaki ef al.,
2003; Kiilkoyliioglu, 2004). Type 2 biomonitoring traces the change of chemical
concentration in biota (Levinton et al., 2006; Vuorinen ef al., 2006; Yunker et al., 2002).
It does not necessarily require the analysis of the species of concern. For example; for the
monitoring of protected or endangered species, their dietary items could be analyzed to
approximate the potential for contaminant bioaccumulation (Moriarty, 1999). Type 3
biomonitoring traces the toxicological effects induced, on or in the organism, by the
contaminant (Bright and Ellis, 1990; Simms and Ross, 2000; Weis et al., 2003). Type 4
biomonitoring traces the development of genetic resistance as a biomonitor (Minier et

al., 1999).
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1.7  Parasites as Indicators of Ecosystem Health

Many studies have demonstrated that parasites can be used in assessing ecosystem
health (Cone et al., 1993; Hanzelova, 1992; Landsberg ef al., 1998; MacKenzie, 1999;
Marcogliese, 2001; Thompson ef al., 2005). Parasites can be used in Type 1 (Cone et al.,
1993; Sanchez-Ramirez et al., 2007; Sasal et al., 2007) and Type 2 biomonitoring (Eira et
al., 2005; Howell, 1983; Sures, 2001; Sures and Siddall, 2001; Sures ef al., 1999; Sures et
al., 2003). The utilization of parasite biomonitors has been explored for both terrestrial
and aquatic hosts such as: birds (Barus et al., 2000), cattle (Sures et al., 1998), fishes
(Brotheridge et al., 1998; Landsberg et al., 1998), harbour porpoises (Szefer et al., 1998),
and rabbits (Eira et al., 2005). The majority of studies on the potential use of parasites as
biomonitors have focused on sites contaminated with inorganics (Gheorgiu ef al., 2006;
Hernandez et al., 2007; Pascual and Abolto, 2005; Schludermann ef al., 2003). Few
studies have investigated the use of parasites as biomonitors in sites contaminated with
PAHs (Diamant et al., 1999; Faulkner and Lochmiller, 2000; Khan, 2003), or the effect of
these contaminants on parasite communities in host populations in situ (Schmalz Jr. et al.,
2002). Even fewer published studies have examined parasite communities in hosts

residing in such highly contaminated environments as the Sydney Tar Ponds.

1.7.1 Using Parasites in Type 1 Biomonitoring

Type 1 biomonitoring traces the change in parasite prevalence, abundance, and/or
communities in a host population (Cone et al., 1993; Sanchez-Ramirez et al., 2007; Sasal
et al., 2007). Prevalence is the number of hosts infected with at least one parasite
divided by the number of fish examined and multiplied by 100 (Bush ef al., 1997).

Abundance is the quantity of a particular parasite species found in one host regardless of
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whether or not the host is infected (Bush et al., 1997). In a stressed ecosystem, the
changes in prevalence and abundance of parasite infection will vary based on a variety of
factors. Parasites vary in their life cycles. Some parasites have a complex life cycle,
which is when several hosts, called intermediate hosts, are required for parasite
development. If one or more of the intermediate hosts are not present in the ecosystem,
the parasite will not be transmitted and overtime will be removed from the ecosystem
(Hechinger et al., 2007; Hudson ef al., 2006; Marcogliese, 2005; Whitney et al., 2007:
Figure 4). Many parasites utilize intermediate hosts which are sensitive to changes in the
environment (Bellas and Thor, 2007; Holcombe et al., 1987; Kiilkéyliioglu, 2004,
Raisuddin et al., 2007). In contaminated environments these intermediate hosts may have
decreased population levels or be extinct from that ecosystem. The result may be a
decreased level of parasite infection or complete removal of that parasite from the
ecosystem (Cone et al., 1993; Koprivnikar et al., 2002; Whitney et al., 2007). Parasite
life cycles may include a free-living stage, which is a larval parasite not found in a host.
Environmental contaminants generally decrease the survival of free-living parasite stages
(Cross et al., 2005; Pietrock and Marcogliese, 2003; Pietrock et al., 2002; Reddy et al.,
2004). Many free-living stages have a protective coating, but studies have found it
ineffective in protecting parasites from contaminant toxicity (Pietrock and Marcogliese,
2003).

In contaminated areas metals or 6rganic contaminants may accumulate in parasite
tissues (Sures ef al., 1999; Sures and Siddall, 2003). Highly tolerant parasite species may
be more prevalent in contaminated environments compared to less tolerant species which
would succumb to the toxic effects of the accumulated contaminants (Bhuthimethee ez al.,

2005; Cone et al., 1993). Parasites vary in their physiology and thus in their abilities to
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bioaccumulate contaminants; acanthocephalans and cestodes have been found to
accumulate metals at a higher level compared to nematodes (Sures e? al., 1998).
Nematodes are examples of parasites with a lower bioaccumulation efficiency. This may
allow nematodes to live in hosts residing in highly contaminated environments where
parasites with high bioaccumulation efficiency, similar to acanthocephalans and cestodes,
could not. In contaminated environments, parasites with high tolerance to contaminants
and low bioaccumulation efficiency may be favoured.

Some studies have found that increased pollution results in increased parasitism
(Brotheridge et al., 1998; Gendron ef al., 2003; Khan, 2003). This may possibly be
caused by: an exclusion of parasite predators, a decrease in the host’s resistance, or an
optimization of the intermediate host’s habitat (Moller, 1987). Other studies have found
pollution to have an antagonistic effect on parasitism (Bhuthimethee e al., 2005; Pietrock
and Marcogliese, 2003; Whitney ef al., 2007). In theory, as a contaminated site is
remediated, the parasite populations should be restored to similar prevalences and
abundances as reference sites (Huspeni and Lafferty, 2004; Marcogliese and Cone;

1997a).

1.7.2 Parasite Fauna Used in Biomonitoring

Parasites are extremely diverse and many different groups have been evaluated for
their utilization in biomonitoring (Eira ef al., 2005; Pascual and Abollo, 2005; Sanchez-
Ramirez et al., 2007; Sasal ef al., 2007; Sures et al., 2003; Szefer et al., 1998).
Monogenes and parasitic copepods are ectoparasites, which live on the gills, fins, or
surface of the fish. Acanthocephalans, cestodes, trematodes, and nematodes are

endoparasites, which live in or on the internal organs of the fish. Brief descriptions of
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each major group of ectoparasites and endoparasites are included here, but additional
information on parasites found in/on Nova Scotia fishes is in Appendix A.

Monogenes (Phylum: Platyhelminthes) are parasites with high host- and site-
specificity, which implies they will only attach to a few types of hosts and in a narrow
range of locations on the host (Pechenik, 2000; Roberts and Janovy, 2000). At the
posterior end of monogenes is a holdfast of hooks or suckers, which are structured
specifically to attach to a particular loca‘;ion on its host. Typically, they have only one
host in their lifecycle. Sexually mature monogenes release eggs into the environment,
which then hatch to release a free-living, ciliated larval phase. The larval monogene finds
a host and attaches itself using its holdfast (Pechenik, 2000; Roberts and Janovy, 2000). .

Parasitic copepods (Phylum: Arthropoda) are commonly found on the gills of
North American fishes (Bere, 1930; Kabata, 1979; Wilson, 1788). Parasitic copepods
have adaptive antennas modified into sharp claws to attach to fish gill filaments (Bere,
1936; Kabata, 1979). Their life cycle has eight free-living larval stages after which they
attach themselves to a fish gill filament (Roberts and Janovy, 2000).

Acanthocephalans (Phylum: Acanthocephala) are commonly known as thorny-
headed worms. Mature acanthocephalans have an unsegmented, elongated body, with a
thorny-head, called a proboscis, which is used as a holdfast in its host’s digestive system.
Proboscides variation is used in the identification of acanthocephalan species (Margolis
and Arthur, 1979). Acanthocephalans have no digestive syétem and rely on the
absorption of nutrients from their host (Roberts and Janovy, 2000). Acanthocephalan life
cycles require at least two hosts. The definitive host releases fertilized eggs into the

water. The eggs are ingested by an arthropod, such as an insect or crustacean, where the
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eggs hatch and develop. The arthropod is then ingested by the definitive host, where the
parasite reaches sexual maturity (Roberts and Janovy, 2000).

Cestodes (Phylum: Platyhelminthes) are commonly know as tape worms. They
lack a digestive system and feed by absorbing nutrients from digestive juices in the
intestine of vertebrates. Cestodes are a segmented flatworm and have a holdfast, called a
scolex, composed of suckers, grooves, hooks, spines, and/or tentacles (Roberts and
Janovy, 2000). Cestode life cycles are highly variable and may be extremely complex
(Roberts and Janovy, 2000). The definitive host releases fertilized eggs, which are then
generally ingested by an arthropod. The intermediate host is then ingested by another
intermediate host or the definitive host (Pechenik, 2000). The number of intermediate
hosts depends on the cestode species.

Nematodes (Phylum: Nematoda) are commonly known as roundworms (Roberts
and Janovy, 2000). Nematodes are elongated, tapered at both ends, and have a protective
covering called a cuticle. Nematode development requires the moulting of the cuticle
layer four times to reach maturity and a series of intermediate hosts. Unlike
acanthocephalans and cestodes, nematodes have a digestive system (Rdberts and Janovy,

2000).
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1.8  Potential Biomonitors for the Sydney Tar Ponds

The Sydney Tar Ponds are currently in the initial stages of remediation. Over a
number of years the Sydney Tar Ponds and the surrounding contaminated areas will be
remediated by an in situ solidification and stabilization process, which isolates the
contaminants on site (W. Kaiser, personal communication). Stabilization and
solidification was first utilized in the 1970s and is currently a commonly utilized
remediation technology (Conner and Hoeffner, 1998a). Solidification reduces the
permeability of the contaminant from the soil, by the injection of liquid substances, like
cement, into the sediment to form a solid block (Conner and Hoeffner, 1998a).
Solidification prevents the movement of water through the contaminated sediment, which
decreases the movement of contaminants into the surrounding environment (Conner and
Hoeffner, 1998b; Mulligan et al., 2001; Oosterhoudt ez al., 2004). Stabilization reduces
the leachability of the contaminant through the formation of chemical bonds to
chemically immobilize and/or reduce the solubility of the contaminant (Conner and
Hoeffner, 1998b; Mulligan ef al., 2001; Oosterhoudt et al., 2004).

In order to track and evaluate the effectiveness of the remediation, baseline values
of the degree of contamination need to be established. Many studies have determined the
concentration of inorganic and organic contaminants in the soil (AMEC, 2005; Furimsky,
2002; JWEL-IT, 1996a, b; Vandermeulen, 1989). Little research has been conducted to
determine the concentrations of any contaminants in biota that live in or around the Tar
Ponds (AMEC, 2005; Ernst ef al., 1999; Hale, 2004; Jones, 2007).

Many invertebrate and vertebrate species reside in the Sydney Tar Ponds (AMEC,
2005; Jones, 2007). This study focused on grass shrimp (Palaemonetes spp.), European

green crab (Carcinus maenas), American eels (Anguilla rostrata), and mummichog
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(Fundulus heteroclitus). Palaemonetes spp. occur in freshwater and marine habitats; they
are commonly found in estuaries near submerged vegetation (Pechenik, iOOO; Squires,
1990). Detritus and diatoms have been found in their stomachs (Squires, 1990). They are
prey for larger crustaceans and fishes.

Carcinus maeanas is an invasive species found in shallow marine and estuarine
habitats (Naczk ef al., 2004; Pechenik, 2000). They are thought to have been introduced
to the North American Atlantic coast in the mid-1800s and spread to Nova Scotia around
the 1950s. Carcinus maenas has a high reproductive output, is tolerant of a wide range of
salinity and temperature, and thrives in high densities; these qualities allow C. maeanas to
invade a diversity of aquatic habitats (Naczk et al., 2004). They are aggressive
omnivores and gut content analyses have found bivalves, snails, annelids, crustaceans,
and algae (Naczk et al., 2004).

Anguilla rostrata is a catadromous fish, which means that sexually mature
individuals migrate from fresh water to salt water for spawning. Within a year, larval 4.
rostrata migrate into Canadian waters from the Sargasso Sea where the adults congregate
to spawn (Scott and Crossman, 1973; Scott and Scott, 1988). The main food source for
young 4. rostrata is plankton (Scott and Scott, 1988). Once the young eels reach
Canadian waters, they metamorphose into juvenile eels, and begin to feed on a diversity
of fishes and invertebrates. In estuaries and freshwater, A. rostrata spend the day buried
in the sediments and feed actively in the evening (Scott and Crossman, 1973). They are
generally solitary fish, with a restricted home range (Barker, 1997; Smith and Tighe,
2002). Anguilla rostrata overwinter buried in sediments (Scott and Scott, 1988). The
females can grow about 1m in length, while the males generally do not grow larger than

0.6 m (Scott and Scott, 1988). Larval 4. rostrata, elvers, are prey for other fishes and

42



older A. rostrata (Scott and Scott, 1988). Adult 4. rostrata are rarely prey, but great
black-backed gulls (Larus marinus) and some diving birds, such as double-crested
cormorants (Phalacrocorax auritus), have been documented to eat them in Nova Scotian
waters (M. Jones, personal communication; Scott and Crossman, 1973; Scott and Scott,
1988).

Fundulus heteroclitus is tolerant to a wide range of salinities, dissolved oxygen,
and turbidity (Scott and Crossman, 1973; Scott and Scott, 1988). They are commonly
found in salt marshes and estuaries, but can also be found in freshwater (Scott and
Crossman, 1973). Fundulus heteroclitus are found in shoreline vegetative areas and are
highly tolerant to environmental change (Able, 2002). They are not known to undertake
migrations (Scott and Scott, 1988). Fundulus heteroclitus have limited home ranges and
have high site fidelity (Lotrich, 1995; Paetzold et al., 2009; Skinner et al., 2005; Sweeney
et al., 1998). In Canadian waters, F. heteroclitus generally do not exceed 13cm (Scott
and Crossman, 1973). During the breeding season, mature males and females can be
distinguished by colouration patterns. Males have a dark appearance with thin, silvery
vertical bars. Females have a silvery appearance with thin, black vertical bars (Scott and
Crossman, 1973). Their heads are adapted for surface feeding, but they are opportunistic,
omnivorous feeders. They feed on: small crustaceans, polychaetes, insect larvae,
vegetation, and small fishes (Scott and Crossman, 1973; Scott and Scott, 1988). Stomach
analyses have found them to ingest detritus, but this is suggested to be from accidental
ingestion (Able, 2002).

Anguilla rostrata and shrimp (Palaemonetes pugio, Pandalus borealis) have
previously been evaluated for their uptake, toxicology and elimination of organic

contaminants (Oliveira Ribeiro et al., 2005; Dillon, 1981, 1982; Hellou et al., 1997).
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Many studies have focused on the bioaccumulation of organic contaminations in crabs
(Ikonomou ef al., 2002; Pancirov and Brown, 1977; Rouleau ef al., 1999; Yunker and
Cretney, 2000). Studies have demonstrated crabs to be effective biomonitors (Burkhard
et al., 1997; Hale, 1988; Hellou et al., 1994; Mothershead et al., 1991; Yunker and
Cretney, 2000). Fundulus heteroclitus has been examined for its potential use as a Type
2 biomonitor (Couillard and Nellis, 1999).

The parasites living in and on F. heteroclitus and A. rostrata may be used in Type
1 biomonitoring. Fundulus heteroclitus are hosts to a diversity of parasites. Past studies
have found parasites in or on the eyes, gills, intestine, liver, skin, and stomach of F.
heteroclitus (Dillon, 1966; Harris and Vogelbein, 2006; Hawley, 1998; Marcogliese,
1995).

Parasite populations have been extensively studied for Anguilla spp. (Aguilar et
al., 2005; Gollock et al., 2004; Graynoth and Taylor, 2004; Kennedy et al., 1998; Sures et
al., 2003; Rodriguez et al., 2005), but there are limited studies on 4. rostrata (Barker and
Cone, 2000; Marcogliese and Cone, 1998). Despite the limited studies, the parasités of 4.
rostrata have been found to be useful biomonitors of ecosystem stress (Cone et al., 1993;
Marcogliese and Cone, 1997a). There is a possibility that parasites in these fish hosts

may be used as biomonitors.
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1.9 Objectives of this Study

This study evaluated biota for their potential use in Type 1 or 2 biomonitoring of
the Sydney Tar Ponds remediation. This study measured PAH concentrations in grass
shrimp (Palaemonetes spp.), European green crab (C. maenas), American eel (4.
rostrata), mummichog (F. heteroclitus), and sediment of the Sydney Tar Ponds and
reference estuaries. These PAH concentrations will provide baseline data for the long-
term monitoring of the effectiveness of the remediation project on the biota and sediment
of the Sydney Tar Ponds. Also, this study compared the parasite communities in 4.
rostrata and F. heteroclitus from Sydney Tar Ponds to reference sites. The goal of the
parasitological component of this study was to determine the prevalence and abundance
of various parasite species in the fishes from Sydney Tar Ponds and to investigate the

potential use of parasites as part of a biomonitoring protocol for the Sydney Tar Ponds.
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2. METHODS

2.1  Field Collection

Biota and sediment samples were collected from the Notth and South Tar Ponds,
Sydney, Cape Breton, Nova Scotia, and two Cape Breton reference sites: Mira River and
River Ryan (Figure 5). The approximate locations of biota and sediment Tar Pond
collections are illustrated in Figure 6. Sampling localities within the reference sites were
selected based on such physical parameters as topography, tidal regime, and salinity.
Aquatic biota were collected during the summer of 2006 from these sites using minnow
traps baited with white bread and eel pots baited with sardines. Fishes were anesthetised
using clove oil in accordance with animal care guidelines of both Cape Breton University
and Saint Mary’s University Animal Care Committees. Biota were frozen and stored in a
freezer at -20°C until chemical analysis. The invertebrate and vertebrate species collected
for chemical analysis included: grass shrimp (Palaemonetes spp.), European green crab
(C. maenas), and mummichog (F. heteroclitus) from the Sydney Tar Ponds, Mira River,
and River Ryan (Tables 10-11). American eel (4. rostrata) were collected from the Tar
Ponds and Mira River, but not River Ryan.

Sediment samples were collected from the North and South Tar Ponds, Mira
River, and River Ryan during July 2007. Prior to collection, all glassware was rinsed
several times with hexane to remove organic contaminants from the inner surface.
Sediment samples were collected in triplicate using a Petite Ponar grab and then frozen at
-20°C within 24 hours of collection until extraction and instrumental chemical analysis.

Anguilla rostrata and F. heteroclitus were collected for parasitological analysis in

June-August 2007. Anguilla rostrata were collected from Sydney Harbour (n = 5), Mira
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River (n = 10), and the North Tar Pond (n = 6) using eel pots baited with sardines.
Sydney Harbour was used as a reference site for parasite analysis, because A. rostrata
were not caught in River Ryan (Figure 5). Anguilla rostrata were sampled where the
Wentworth Park duck pond empties into Sydney Harbour. F. heteroclitus were collected
from River Ryan (n = 62), Mira River (n = 60), and North Tar Pond (n = 49) (Table 12).
Fundulus spp. were collected from River Ry}an (n =7), Mira River (n = 4), and the North
Tar Pond (n = 4) (Table 12); these fishes could not be identified to the species
taxonomical level. Fundulus spp. displayed morphological characteristics of both F.
heteroclitus and F. diaphanus. Other studies have found Fundulus hybrids in Nova
Scotia (Chavez and Turgeon, 2007; Fritz and Garside, 1974). In the reference sites,
Fundulus heteroclitus and Fundulus spp. were collected using minnow traps baited with

" white bread or a beach seine. In the North Tar Pond, Fundulus heteroclitus and Fundulus
spp. were only collected using minnow traps baited with white bread. After initial
external parasitological analysis (see 2.3 Parasitological Analysis section for details),

fishes were anesthetised with clove oil and frozen (-20°C) within 12 hours of collection.

2.2  PAHs Analysis

Biota and sediment samples were a{nalyzed by the Research and Productivity
Council (RPC), Fredericton, New Brunswick. Analyses were based on U.S.
Environmental Protection Agency (EPA) Method 3540C (US EPA, 1996a) and 3510 (US
EPA, 1996b) for PAH extraction from sediment and biota samples respectively and EPA
method 8270C for gas chromatography/mass spectrometry (GC/MS) analysis (US EPA,

1996¢).
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Five grams of sediment were ground by mortar and pestle in 10g of anhydrous
sodium sulfate and placed in an extraction thimble of a Soxhlet extractor. One ml of
surrogate solution consisting of 2-fluorbiphenyl and p-terphenyl-d;4 was added to the
sediment and sodium sulfate mixture. Boiling chips and 300mL of acetone:hexane (1:1)
extraction solution was placed in a S00mL round bottom flask and attached to the Soxhlet
extractor. The mixture was refluxed in the Soxhlet extractor for 16 to 24 hours at 4 to 6
cycles/hour. The solution was removed from the round bottom flask and placed in a 1L
separatory funnel with 300mL double distilled water and mixed for 1-2 minutes to
partition the extract. The hexane solution was removed from the separatory funnel and
dried by passing through a short column (35 cm X 2.1 cm ID) filled with anhydrous
sodium sulfate. The column was washed with 100-125ml of hexane. The resulting eluate
was concentrated to 10mL on a rotary evaporator. Sample fractionation and cleanup was
performed by Gel Permeation Chromatography (GPC) and the final volume was adjusted
to 10ml using hexane.

Biological data were collected prior to sending biota samples for chemical
analyses (Table 10-11). The sex, length, and weight were recorded for each organism.
Carapace length of C. maenas was recorded, which is the longest width across the
carapace, or shell. Standard and total lengths were recorded for most F. heteroclitus. If
the caudal (tail) fin was damaged, only the standard length was recorded. Total length
was recorded for 4. rostrata. The standard length is the distance between the tip of the

~snout to the posterior end of the vertebral column. The total length is the distance’
between the tip of the snout to the anterior end of the tail. A 5g wet weight tissue sample
was submitted for PAH analysis,. Several organisms of the same épecies were pooled

where individuals weighed less than 5g (Table 10-11).
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Tissues were homogenized to a free flowing power with a mortar and pestle.
Following homogenization, the biota samples were saponified with 20 mL 6N ethanolic
potassium hydroxide for 18 hours at 40°C. One mL of surrogate standard was added to
the saponified sample. The saponified sample was placed in a 1L separatory funnel and
extracted with 60 mL of hexane. The hexane solvent was collected after the mixture was
allowed to settle for at least 30 min. As with the sediment PAH extraction, the biota
hexane extract was dried on a sodium sulfate column, concentrated by rotary evaporator,
and finally cleanup and fractionation via GPC.

Both the hexane extracts from the sediment and biota samples were analyzed by
an Agilent gas chromatograph coupled with a mass spectrometer (GC/MS). Sample
analysis was accomplished by GC/MS on a 30m X 0.32mm I.D., 1pum film thickness
fused silica DB-5 column. Ultra high purity helium, supplied at a constant flow of 2
mL/min, was used as a carrier gas. On column injection was programmed: 50°C initial
temperature ramped to 270°C at 100°C/min with with a 1pl injection volume. Oven
temperature was programmed 50°C for 1 min ramped at 25°C/min to 270°C.

Organic carbon content of Sydney Tar Pond sediment samples was determined by
a Leco combustion analyzer. Organic carbon content was not determined for Mira River
or River Ryan. Lipid content of biota samples was determined gravimetrically. A known
amount of the biota hexane extract was weighed and then heated. After heating, the
extract was reweighed. By comparing the differences in weight before and after heating,
the percent of lipid was determined. The raw data from PAH sediment and biota
concentrations, biota lipid analysis, and organic carbon are in Appendix B.

For quality assurance and quality control (QA/QC) samples were analyzed in

batches not exceeding fifteen. Reagent blanks, duplicates, and spiked blanks were each
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run at least once per preparation batch. Surrogate standards included 2-fluorobiphenyl and

p-terphenyl-d;s. Detection limits for PAH analysis were 0.1 to 0.01 mg/kg.

2.3 Parasitological Analysis

An 1nitial external parasitological analysis was conducted prior to anesthetising
the fish. The fins and skin were examined for the presence and abundance of parasitic
crustaceans, such as sea lice (Argulus spp.). Argulus spp., a brachiurid, were removed
and preserved in formalin for future reference and identification. After anesthetising the
fish, the standard and total lengths, weight, and sex were recorded for each F. heteroclitus
and Fundulus spp. Only total length and weight were recorded for 4. rostrata.

Fundulus heteroclitus and A. rostrata were thawed prior to necropsy. The gills
were removed from the branchial chamber and the gill arches were separated to examine
the gill filaments for the presence and number of parasitic crustaceans, monogenes, and
trematode metacercaria. All ectoparasites, except Argulus spp., were preserved in 95%
ethanol. Parasites were preserved in ethanol to allow for potential genetic work.

The musculature, body cavity, gonads, and viscera, which includes the stomach,
intestine, liver, heart, and spleen, were thoroughly examined for macroparasites using a
dissecting microscope. For A. rostrata, the swim bladder was also examined. The
location, abundance, and general group of each parasite were recorded for each individual
fish. The genus of each group of parasite was determined with microscopic examination.
Endoparasites were preserved in 95% ethanol.

Fundulus spp. were necropsied as dicussed for F. heteroclitus. Only a few

unidentified Fundulus spp. (i.e. potential hybrids) were collected from River Ryan (n =

50



6), Mira River (n = 4), and the North Tar Pond (n = 4). Because of the uncertainty if the
Fundulus spp. were hybrids, F. heteroclitus, or F. diaphanus, these fishes were not
included in data analysis. The raw data from the Fundulus spp., F. heteroclitus, and 4.
rostrata necropsies are in Appendix C and D, respectively.

Glycerine mounts of a subsample of each type of parasite were prepared for
taxonomic identification. The mounts were prepared by placing several drops of water on
a slide, and ethanol-preserved or freshly removed parasites were placed in the water.
Several drops of 95% glycerine were placed on top, and the parasite was covered with a

cover slip. Slides were left for at least 24 hours prior to microscopic examination.

2.4  Data Analysis

The Ryan-Joiner method was used to assess normality in the Tar Pond sediment
PAH data, which was subsequently found to be normally distributed (ITha ef al., 2009;
Quijon et al., 2008; Robinson et al., 2007). A two way analysis of variance (ANOVA)
was performed on the Tar Pond sediment data only. The control sites were not included
in the ANOVA due to the high proportion of non-detects (observations below the
detection limit). There were only seven and six detects of PAHs (n=51 PAH
measurements/site) respectively in Mira River and Ryan River. There were §7% non-
detects in the control sites. Non-detects were not observed in Tar Ponds sediment PAH
data.

Biota PAH values were highly variable and were often left-censored data, which
is data below detection limits. These nondetection values prevented the calculation of

descriptive statistics, such as the mean and standard error. Various methods were
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investigated to allow the calculation of descriptive statistics. The Kaplan-Meier or
product limit estimator method was the most appropriate analytical method for these data
due to the small sample size and non-normal distribution (Helsel, 2006; Helsel and
Hirsch, 2002). This method is normally used for right-censored, which is data that
exceeds the detection limits; thus, the data were inverted to transform the left-censored
data set to right-censored. The Kaplan-Meier method was performed on the transformed
data using Minitab version 15. The total PAH concentration (ZPAH) was calculated
based on the sum of the 18 PAHs analyzed.

Studies typically utilize lipid-adjusted biota PAH values in comparing PAH
concentrations among different species (Brunson et al., 1998; Galloway et al., 2004,
Hickey et al., 1995; Landrum ef al., 2007; Moermond et al., 2007). Generally, organisms
with higher lipid content will have a higher capacity to bioaccumulate organic
contaminants compared to organisms with lower lipid content (Di Toro et al., 1991;
Klosterhaus et al., 2002, Mackay, 2004; Russell ef al., 1999). Thus, the utilization of
lipid-adjusted values accounts for the variation in organismal bioaccumulation capacity.
Initially, the wet weight PAH values were converted to lipid-adjusted PAH concentrations
(see Appendix B). Kruskal-Wallis tests showed no significant difference between wet
weight and lipid-adjusted biota PAH concentrations (Table 16). The use of lipid-adjusted
PAH cohcentrations instead of wet weight PAH values did not provide any advantage,
thus, wet weight PAH concentrations were utilized in comparison among biota due to
their inherent simplicity.

Many of the PAHs were not detected in the fishes; thus, six PAHs which were
detected in C. maenas, F. heteroclitus, A. rostrata, and Palaemonetes spp. were compared

among the biota. Acenaphthalene, fluorene, fluoranthene, and phenanthrene were
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normally distributed. Naphthalene and pyrene were not normally distributed.
Concentrations of naphthalene and pyrene were naturally log transformed to increase
normality. A multivariate analysis of variance (MANOVA) was performed. If the
Hotelling-Lawley test indicated a significant difference among the biota, individual
univariate F tests were completed. A Levene’s test was used to test of homogeneity of
variances.

For the fish parasitological data the abundance, prevalence, and mean intensity for
A. rostrata and F. heteroclitus were calculated for each site. Abundance is the number of
individuals of a particular species of parasite found in one fish (Bush et al., 1997).
Prevalence is the percent of fish infected with at least one parasite divided by the number
of fish examined (Bush et al., 1997). Mean intensity is the mean total number of
parasites per infected fish from one site (Bush et al., 1997). Also, the number of parasite
species per F. heteroclitus was compared among the sites. There were too few samples of
A. rostrata collected and necropsied to draw any conclusions about differences in parasite
assemblages among study sites.

| A condition factor (K), or index of plumpness, was calculated to compare the
health of F. heteroclitus among sites. A higher K value corresponds to a healthier
organism than an organism with a lower K value. K is calculated by the following
equation (Moyle and Cech, 2004):
K= 100 X [total body weight (g)/(total length in cm)]

A Kruskal-Wallis was performed to determine if there were differences among the
condition factors. If significant results were discovered, Dunn’s method was used for

pairwise multiple comparisons.
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3. RESULTS

3.1  PAHs in Sediments

The majority of the eighteen PAHs analyzed were below detection limits in the
two reference sites, Mira River and River Ryan (< 0.01 mg/kg dry wt; Table 13). In Mira
River sediment samples, fluoranthene and pyrene were both detected at mean
concentrations of 0.02 mg/kg dry wt. In River Ryan sediment samples, anthracene was
detected at a mean concentration of 0.01 mg/kg dry wt. In one of the sediment samples
from River Ryan, chrysene/triphenylene was detected at 0.08 mg/kg dry wt.

All eighteen PAHs analyzed were detected above detection limits in both the
North and South Tar Ponds (Table 13). The range of PAH concentrations varied between
the Tar Ponds. In the North Tar Pond, acenaphthylene had the lowest mean concentration
of 0.5 mg/kg dry wt, while benz[a]anthracene had the highest mean concentrations of 4.6
mg/kg dry wt. In the South Tar Pond, acenaphthylene had the lowest mean éoncentration
(2.0 mg/kg dry wet) while fluoranthene had the lowest concentration of 187 mg/kg dry
wt.

PAH concentrations were significantly different between the North and South Tar
Ponds (ANOVA: Table 14). There were no significant differences (p = 0.655) among
PAHs. Additionally, there was no interaction between site and PAH (p = 0.772) at the
Tar Ponds. Higher concentrations of all eighteen PAHs were detected in South Tar Pond
sediments than in the North Tar Pond (Figure 7).

- Generally, the South Tar Pond had higher organic carbon concentrations

compared to the North Tar Pond (Appendix B: Table B2). The range of organic carbon

concentrations varied between the Tar Ponds. In the North Tar Pond, the concentration
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varied between 2.3 and 7.6% weight. In the South Tar Pond, the concentration varied
between 6.7 and 52.9% weight. The organic carbon concentration of 52.9% is an
extremely high value compared to the other organic carbon concentrations (Appendix B:
Table B2). It is uncertain what caused the high organic carbon concentration. It is likely
that there was a concentration of organic industrial waste, such as an aromatic compound,
in that sediment sample which would have caused a spike in the organic carbon

concentration.

3.2  PAHs in Biota

The majority of biota samples analyzed from Mira River and River Ryan, had
PAH concentrations below detection limits (<0.05 mg/kg wet wt: Appendix B). All PAH
concentrations from control sites were below detection limits in C. maenas (n = 3 per
site), Palaemonetes spp. (n = 2 and 1, for Mira River and River Ryan, respectively) and
A. rostrata (n =2 from Mira River only). All PAH concentrations in F. heteroclitus from
the Mira River (n = 3) were below detection limits, while one F. heteroclitus sample from
River Ryan had traces of pyrene and benz[a]anthracene both at mean concentrations of
0.04 mg/kg wet wt (Appendix B: B10).

PAHs were detected in thirteen of the fifteen biota samples analyzed from the
Sydney Tar Ponds (Appendix B). One A. rostrata and one F. heteroclitus had PAH
concentrations below detection limits (<0.10 and <0.05 mg/kg wet wt respectively). The
composition and concentration of PAHs varied among specimens from each species

analyzed and among species collected from the Sydney Tar Ponds.

55



PAHs were detected in all of the C. maenas analysed from the Tar Ponds (n = 3
non-pooled samples). XPAHs varied from 0.5 to 5.0 mg/kg wet wt in C. maenas (Table
15). The type of individual PAHs were not detected with any consistency in C. maenas
(Appendix B: Table B4). In all C. maenas samples, phenanthrene, fluoranthene, and
pyrene were detected. The concentration of phenanthrene, fluoranthene, and pyrene
varied from 0.06 - 1.06, 0.06 - 0.99, and 0.06 - 0.82 mg/kg wet wt respectively among
samples. The only PAH not detected in any of the C. maenas samples was
dibenzo[a,h]anthracene (Appendix B: Table B4).

PAHs were detected in all of the Palaemonetes spp. samples analysed from the
Tar Ponds (3 pooled samples). XPAHs varied from 1.8 to 3.1 mg/kg wet wt in
Palaemonetes spp. (Table 15). The number of PAHs detected in F;alaeomonetes Spp.
were not detected with any consistency (Appendix B: Table B6), similar to C. maenas
sampled from the Tar Ponds. Unlike the C. maenas samples, only eight or nine of the
PAHs were detected in Palaemonetes spp. above detection limits. The PAHs with the
highest mean concentrations were fluoranthene, pyrene, and phenanthrene at 0.77, 0.47,
and 0.24 mg/kg wet wt respectively.

From the five 4. rostrata samples from the Tar Ponds, one sample had PAH
concentrations below detection limits (Appendix B: Table B8). The ZPAHs
concentrations were highly variable with ZPAHs ranging from not detected to 2.3 mg/kg
wet weight (Table 15). Similar to the other biota analyzed, PAHs were not detected
consistently in the five 4. rostrata samples. Acenaphthene, fluoranthene, naphthalene,
and phenanthrene were the only PAHs detected in three of the five 4. rostrata samples.

Of the PAHs detected in 4. rostrata the PAHs with the highest mean concentrations were
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fluoranthene, phenanthrene, and naphthalene at 0.23, 0.24, and 0.22 mg/kg wet wt
respectively (Appendix B: Table Bg).

PAHs were detected in all of the F. heteroclitus samples from the Tar Ponds (2
non-pooled; 2 pooled samples) except one (Appendix B: Table B10). PAHs ranged
from not detected to 0.7 mg/kg wet wt (Table 15). In the F. heteroclitus samples where
PAHs were detected (three of the four samples) only phenanthrene and fluoranthene were
detected constantly at concentrations ranging from 0.08 — 0.15 and 0.06 — 0.19 mg/kg wet
wt respectively (Appendix B: Table B10). Of the seven PAHs detected in F. heteroclitus,
the PAHs with the highest mean concentrations were phenanthrene and fluoranthene at
0.10 and 0.09 mg/kg wet wt. The other five PAHs detected in F. heteroclitus had mean
concentrations ranging fom 0.04 to 0.06 mg/kg wet wt. Like the other biota samples,
there was variability in the concentrations of the PAHs among the F. heteroclitus sampled
(Appendix B).

There was also variability in the composition and concentration of PAH among
species collected from the Tar Ponds (Figure 8). Acenaphthene, fluoranthene, fluorene,
naphthalene, phenanthrene, and pyrene were detected in 4. rostrata, C. maenas,
Palaemonetes spp., and F. heteroclitus. Anguilla rostrata accumulated only the above six
PAHs. Fundulus heteroclitus accumulated one additional PAH: anthracene.
Palaemonetes spp. accumulated the above six PAHs along with anthracene and
chrysene/triphenylene. Carcinus maenas accumufated all of the PAHs analyzed except
dibenz[a,h]anthracene; thus, C. maenas accumulated the greatest number of PAHs
compared to the other biota analyzed.

The concentration of PAHs appears to be generally higher in C. maenas and

Palaemonetes spp. compared to A. rostrata and F. heteroclitus (Figure 8). Only
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fluoranthene and pyrene were significantly different among the six PAHs which were
found in all biota (MANOVA: Table 16). Palaemonetes spp. compared to both 4.
rostrata and F. heteroclitus had significantly different fluoranthene concentrations
(Tukey test: Table 17). Palaemonetes spp. and F. heteroclitus had significantly different
pyrene concentrations (Tukey test: Table 17). All other pair-wise comparisons were not
significant (p >0.05). Homogeneity of variances was confirmed by Levene’s test for all

PAHs (p > 0.05).

3.3  Parasitological Analysis

In total, nine parasite genera were found in or on F. heteroclitus (n=171).
Fundulus heteroclitus from the Sydney Tar Ponds had the lowest prevalence and
abundance of parasites compared to River Ryan and Mira River (Tables 18-19). River
Ryan had the highest diversity of parasite genera (Tables 18-19). Several ectoparasites
were found on the gills and skin of F. heteroclitus from River Ryan and Mira River.
Parasitic crustaceans, Argulus spp., were found on the gills and skin. Larval trematodes,
echinostome metacercariae, and another parasitic copepod, Ergasilus manicatus, were
found on the gills of F. heteroclitus from River Ryan and Mira River. The monogene,
Salsuginus sp., were found on the gills of F. heteroclitus from all three sites.

The only ectoparasite found on F. heteroclitus from the Tar Ponds was Salsuginus
sp. with a prevalence of 8.2% (Table 18). Salsuginus sp. had a higher prevalence on F.
heteroclitus from Mira River and River Ryan of 76.7% and 59.7% respectively. On the
gills of F. heteroclitus from River Ryan Salsuginus sp. were the most prevalent, whilé

echinostome metacercariae were the least prevalent ectoparasite (Table 18). On the gills
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of F. heteroclitus from Mira River echinostome metacerariae were the most prevalent and
Argulus sp. was the least prevalent ectoparasite (Table 18).

Endoparasites were found in a diversity of tissues and organs within F.
heteroclitus, such as the connective tissue, gonads, heart, liver, and spleen (Appendix C).
Fundulus heteroclitus from the Tar Ponds had the lowest prevalence and abundance of
endoparasites compared to the other sites (Table 19). An unidentifiable acanthocephalan
and third larval stage (L.3) ascarid nematode were the most prevalent endoparasites in F.
heteroclitus from the Tar Ponds. An unidentifiable cestode and trematode were the least
prevalent endoparasite in F. heteroclitus from the Tar Ponds. For F. heteroclitus from the
Mira River, acanthocephalans, Neoechinochynchus sp., were the most prevalent
endoparasite, while unidentifiable metacerariae and the trematode, Hamalometron
pallidum, were the least prevalent. Unlike the Mira River results, the unidentifiable
metacerariae in F. heteroclitus from River Ryan were the most prevalent and abundant
endoparasite. The cestode, Proteocephalus sp., was the least prevalent endoparasite in F.
heteroclitus from River Ryan.

Parasite populations and community compositions varied among sites. In over
75% of F. heteroclitus from the Tar Ponds there were no parasites (Figure 9). A
maximum of three parasite species were observed in 2% of F. heteroclitus from the Tar
Ponds. In contrast, on average there were two parasite species per individual F.
heteroclitus from River Ryan (Figure 9); and less than 5% of F. heteroclitus from River
Ryan had no parasites. Fundulus heteroclitus from Mira River had at least two, to a
maximum of six, parasite species per fish. On average each Mira River F. heteroclitus

had three to four parasite species per fish (Figure 9).

59



With respect to fish health, the condition factors (K) for F. heteroclitus varied
among the sites. Fundulus heteroclitus from the Mira River had the highest K values
(1.35 +/- 0.02 std.err.), followed by River Ryan (1.33 +/-0.03), and Tar Ponds (1.22 +/-
0.02). There were significant differences in K among the sites (Kruskal-Wallis, H = 27.1,
df =2, and p < 0.05). Mira River and River Ryan were not significantly different from
each other; however, both reference sites were significantly higher than the Tar Ponds.

In total, only three parasite genera could be identified in or on A. rostrata (n = 21).
Parasitic copepbds, L3 nematodes, acanthocephalans, and another type of nematode were
found (Table 20). A monogene, Pseudodactylogyurus anguillae, and an unidentifiable
parasitic copepod were found on the gills. There were three unidentifiable endoparasites.
An unidentifiable acanthocephalan was found in the intestine and stomach. An L3
nematode and an unidentifiable nematode were found in the connective tissue and swim
bladder respectively. The endoparasite genera which could be identified in fhe digestive
tract and swimbladder were cestode, Bothriocephalus sp., and nematode, Anguillicoloides
crassus, respectively.

The parasite populations and communities within 4. rostrata differed among sites
(Appendix D), as observed with F. heteroclitus. There were only three parasite species
identified in the Tar Ponds; however, in Mira River and Sydney Harbour there were seven
and three parasite species identified, respectively. Thus, 4. rostrata from the Mira River

had the greatest parasite species diversity.
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4. DISCUSSION

4.1  PAHs in Sediments

PAHs in sediments from the reference sites exhibited trace levels (< 0.05 dry wt
mg/kg) of three PAHs: anthracene, fluoranthene, and pyrene (Table 13). The PAH
concentrations in Mira River and River Ryan were comparable to PAH concentrations
found in reference sites used in other studies around the world (Barbee et al., 2008;
Djomo et al., 1996; Kim et al., 2008; Krauss ef al., 2000). For example, Kim et al.
(2008) and Barbee et al. (2008) evaluated PAH concentrations in various remote lakes
around the world. Both of theses studies found the concentration of PAHs to be below 1
mg/kg dry wt. Thus, the level of PAHs in Mira River and River Ryan are similar to PAH
concentrations in other reference sites.

The geography of the Tar Ponds may account for the South Tar Pond being more
contaminated with PAHs than the North Tar Pond. Since the North Tar Pond is further
away from industrial activities, one would expect the PAH concentration to be lower.
Water currents move sediments through the Coke Ovens Brook Connector, into the South
Tar Pond, and finally into the North Tar Pond. As sediments move to lower tidal energy
sections of the Tar Ponds, particles could settle out of the water column and onto the
sediment bed. The net result of this action would be fewer contaminated particles moving
into the North Pond compared to the South Pond. Since PAHs are generally sorbed to
sediment particles (Arfi and Bouvy, 1995; Kukkonen and Landrum, 1995; Talley ef al.,
2002), this would result in lower PAH concentrations in the North Pond compared to the

South Pond.
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There is little research on the differential in PAH concentrations between the
North and South Tar Ponds. Querbach (2002) analyzed the distribution of contaminants
in sediments from the Sydney Harbour North and South Arm. She collected sediment
cores from varying distances from where the North Tar Pond emptied into the harbour.
Sediment cores collected at 0.00, 0.57, and 0.92 km from the mouth of Muggah Creek
had PAH concentrations of 353.6, 208.3, and 95.0 mg/kg respectively. Sediment cores
collected at 0.00, 0.57, and 0.92 km from the mouth of Muggah Creek had PCB
concentrations of 7.1, 3.3, and 1.5 mg/kg respectively. In general, there was a decrease in
PAH and PCB sediment concentrations with an increased distance from Muggah Creek.
JWEL-ITb (1996) also collected sediment samples from the Sydney Harbour. PAHs
were detected at all sampling stations in the Harbour, but PAH concentration was the
highest in the South Arm. They also found that the PAH concentration decreased with an

-increased distance from Muggah Creek. Although these studies were conducted in the
Harbour, it demonstrates a general pattern that sediment PAH concentration decreases
with increased distance from contamination.

A similar pattern has been found in other sites. Upon examining the sediments
around Ulsan Bay, Korea, Khim et al. (2001) found the concentrations of PCBs and
PAHs to decrease further away from industrial activities. Simpson ef al. (1996) and Bieri
et al. (1986) also found that levels of PAH decreased with increased distances from
industrial activities. Since the North Tar Pond is further away from industrial activity, the
South Tar Pond should be higher in contaminations.

The sediment PAH concentrations in the Sydney Tar Ponds were higher than other
contaminated sites (Bieri et al., 1986; Leite et al., 2008; Voparil et al., 2004). Elizabeth

River, Virginia, USA, had a similar history to the Sydney Tar" Ponds. Both Elizabeth
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River and the Tar Ponds experienced many years of unregulated dumping and many
shoreline industrial activities (AMEC, 2005; Huggett et al., 1984; JWEL-IT, 19964, b;
Mitra et al., 1999; Mulvey et al., 2002; Walker and Dickhut, 2001). In sediment samples
from Elizabeth River, PAH concentrations varied between 6-42 mg/kg dry wt for
benzo[e]pyrene and fluoranthene respectively (Bieri ef al., 1986: Table 5). The North Tar
Pond sediment concentrations were similar to or lower than Elizabeth River sediment
concentrations. Yet the South Tar Pond sediment concentrations were higher than
Elizabeth River sediment concentrations. Benzo[e]pyrene and fluoranthene
concentrations were 41 and 187 mg/kg dry wt respectively in the South Tar Pond, and 6
and 42 mg/kg dry wt respectively in Elizabeth River sediments (Bieri ez al., 1986).

The PAH concernations in the Tar Ponds are well beyond the CCME guidelines
for marine sediments (Table 9; Figure 7). Acenaphthylene had the lowest mean
concentration in both the North (0.5 mg/kg dry wt) and South (2.0 mg/kg dry wt) Tar
Ponds. The acenaphthylene CCME interm marine sediment guideline is 0.00587 mg/kg
dry wt; thus, the acenaphthylene levels in both the Tar Ponds are about 100 fold higher
than CCME guidelines (CCME, 2002). According to CCME (2002), 51% of biota
exposed to 0.128 mg/kg dry wt acenaphthylene concentrations will exhibit adverse
toxicological effects. Acenaphthylene sediment concentrations of 0.64 mg/kg will often
cause biota which live in or near sediments to exhibit toxicological effects (CCME, 2002;
Wade et al., 2008; Tables 8-9). Thus, the sediment concentrations are potentially toxic to
biota, which live in or near the Tar Pond sediments.

High variability (i.e. standard errors) was observed among samples from each
respective site. All sediment samples were collected within 1m of each other. Despite

the samples being sampled from the same locality, there was high variability. Also,
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ANOVA revealed no significant differences among the PAHs (p = 0.655). Both these
factors suggest that the concentrations of PAHs were not homogeneously distributed
throughout the Tar Ponds. Previous studies have demonstrated heterogenous distribution
of PCBs in the Tar Ponds (AMEC, 2005) and the Sydney Harbour (JWEL-ITb, 1996).
The precise mechanism of the spatial heterogeneity is unknown.

Numerous studies have documented seasonal activities causing heterogeneity in
PAH sediment concentrations (Bierman, 1990; Liang et al., 2007; Moermond et al.,
2005). Maruya et al. (1997) observed heterogeneity in sediment PAH concentrations.
Heterogeneity was attributed to variation in black carbon content of the sediment
particles. PAHs sorbed to the black carbon, and during the rainy season particles washed
into the marsh by surface runoff. During the dry season, winds and tidal activity
resuspended and transported particles through the system. Particles settled out onto the
sediment bed when they entered lower tidal energy portions of the marsh. The Tar Ponds
do not have a rainy and dry season. In the Tar Ponds, PAHs may partition to the black
carbon and be suspended in the water column. The particles would be transported though
the Tar Ponds to low energy areas of the estuary; thus, in low energy portions of the Tar
Ponds, there would be higher levels of PAHs compared to higher energy portions of the
Tar Ponds.

Unregulated dumping would be the most likely source of heterogeneity. For over
100 years industries were established around the Muggah Creek estuary (AMEC, 2005).
At the time there were few waste mangament guidelines, and these industries released
many of their wastes into the Muggah Creek. Also, material dump sites were established

along Muggah Creek (AMEC, 2005). The unregulated dumping may have resulted in
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pockets of contamination where the contaminats were released into the environment, thus,

causing heterogeneity in the Tar Ponds.

4.2 PAHs in Biota

The mean PAH concentrations in biota from the two reference sites were below
0.05 mg/kg. In relatively uncontaminated environments, like Mira River and River Ryan,
studies have found biota from these sites to have PAH concentrations typically less than
0.01 mg/kg (Pancirov and Brown, 1977; Vives et al., 2004: Table 6). The concentrations
of PAHs in biota from the Tar Ponds were much higher compared to biota from other
contaminated sites in other studies (Eickhoff ef al., 2003a; Lima et al., 2008; Nakata et
al., 2003: Table 7). Typically the concentration of organic contaminants is higher in the
hepatopancreas of crabs and muscle tissue of fishes, respectively (Fernandes et al., 2007,
Hale, 1988; Hellou et al., 1994). Eickhoff ef al. (2003a) found the concentration of PAHs
to be less than 5 pg/kg (0.005mg/kg) wet wt in the hepatopancreas of Dungeness crab
(Cancer magister) from an aluminum contaminated site in Kitimat Arm, British
Columbia. Anthracene, fluoranthrene, and chrysene were the PAHs with the highest
concentrations at 2.09, 4.29, and 2.95 pg/kg wet wt respectively (Eickhoff et al., 20034).
Lima et al. (2008) analyzed the PAH concentrations in fish (shanny, Lipophrys pholis)
muscle from a contaminated site in northwest Europe. The tissue PAH concentrations
were below 6 pg/kg wet wt. Phenanthrene and fluoranthene were at highest

concentrations of 3.3 and 6.0 ppb wet wt respectively (Lima et al., 2008).

In this study, whole samples, not specific organs, were evaluated for PAHs.

Carcinus maenas samples from the Tar Ponds had mean anthracene and fluoranthene
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concentrations of 80 and 490 pg/kg wet wt respectively (Appendix B: Table B4).
Fundulus heteroclitus from the Tar Ponds had mean phenanthrene and fluoranthene
concentrations of 100 and 90 pg/kg wet wt respectively (Appendix B: Table B10).
Anguilla rostrata had mean phenanthrene and fluoranthene concentrations of 240 and 230
pg/kg wet wt respectively (Appendix B: Table Bl 8). Thus, the biota from the Tar Ponds
is extremely contaminated compared to other contaminated sites. Also, the analysis of
whole samples would most likely dilute concentrations of accumulated PAHs in the
hepatopancreas and muscle. Yet, the concentration of PAHs of the whole organisms from
the Tar Ponds were over 1000 times higher than the concentration of organ and tissue

PAHs found by Eickhoff e al. (2003a) and Lima et al. (2008).

4.3  Differential Bioaccumulation of PAHs in Invertebrates and Vertebrates

Carcinus maenas and Palaemonetes spp. from the Sydney Tar Ponds accumulated
a greater range and concentration of PAHs than A. rostrata and F. heteroclitus (Table 15;
Figure 8). Carcinus maenas accumulated all of the PAHs analyzed, but
dibenz[a,h]anthracene was not detected in C. maenas. Palaemonetes spp. accumulated
the same six PAHs accumulated by A. rostrata and F. heteroclitus, as well as anthracene
and chrysene/triphenylene. Invertebrates accumulated greater concentrations of PAHs in
their tissues than vertebrates. Carcinus maenas and Palaemonetes spp. accumulated 2.6
and 2.4 mg/kg wet wt of ZPAHs, respectively, while F. heteroclitus and A. rostrata
accumulated 0.7 and 1.3 mg/kg wet wt of XPAHs, respectively (Table 15).

Nakata ef al. (2003) measured greater PAH concentrations in Japanese mud crab

(Macrophthalmus japonicus) and other lower trophic organisms than in coastal fishes,
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squid, and finless porpoises. The authors suggested this to be due to crabs directly
ingesting sediment. The differences in bioaccumulation may also be due to association

with interstitial water and differing biotransformational abilities among taxa.

4.3.1 Role of Ingesting Sediment

Carcinus maenas is strongly associated with sediment and may ingest sediments
during feeding. Carcinus maenas from the Tar Ponds were observed with thick patches
of tar attached to their abdomens, indicating burrowing behaviours (M. Jones, personal
communication). The association of C. maenas with the sediment could increase the
probability of sediment ingestion with food. Carcinus maenas prey on a variety of
species such as algae, bivalves, juvenile crustaceans, and juvenile fishes (Cohen ef al.,
1995). Carcinus maenas are known to ingest bryozoa, hydrozoa, nemertea, nematode,
oligichaeta, photonida, polychaeta, and turbelaria (Cohen ef al., 1995). These organisms
are found in sediments. The ingestion of these organisms may also result in the
accidental ingestion of sediment.

The ingestion of contaminated sediments or prey items is considered to be a key
route in the accumulation of organic contaminants in biota (Forbes et al., 1998; Sormunen
et al., 2008; Thomann et al., 1992; Voparil et al., 2004). The digestive process of many
organisms involves secretion of surfactants into the digestive lumen (Bock and Mayer,
1999; Rubas and Grass, 1991; Zimmer, 1997). Surfactants are both hydrophobic and
hydrophilic in nature allowing the hydrophilic portion to interact with the digestive juices,
while the hydrophobic portion interacts with the lipids (Horton et al., 2002). The
advantage of surfactants in the absorption of lipids is that surfactants aid in the absorption

of organic contaminants associated with lipids. Surfactants are believed to increase the
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solubility of PAH by forming micelles around the PAH (Mayer et al., 1996). Carcinus
maenas may increase their exposure to PAHs by ingesting sediments while foraging for
benthic infauna (e.g. nemerteans, nematodes, platyhelminthes, oligochaetes, polychaetes,
etc.) (Cohen et al., 1995).

Ciarelli ef al. (2000) and Croce et al. (2005) found that increased ingestion of
contaminated sediment particles increases organic contaminant burden in organisms.
Ciarelli et al. (1999) studied the effect of amphipod activity on the bioaccumulation of
fluoranthene in mussels. These authors found that increased density of amphipods,
(Corophium volutator) in the sediment resulted in increased uptake of fluoranthene in
mussels. Corophium volutator activity also increased total suspended sediments in the
water column resulting in increased suspended particles, and associated fluoranthene,
entering the mussels during filter feeding. The burrowing behaviour of C. maenas may
also result in sediments being suspended in the water column.

On numerous occasions, the Tar Ponds can be extremely turbid (M. Jones,
personal communication). It has been suggested that the shallow nature of the Tar Ponds
increased the tendency of wind currents to suspend sediments in the water column (M.
Jones, personal communication). The suspended sediments in the water column of the
Tar Ponds may result in sediment-associated organisms, such as C. maenas and
Palaemonetes spp., having a higher exposure to PAHs, since PAHs are often sorped to
sediment particles (Gewurtz et al., 2000). Organisms which are not as closely associated
with the sediment, such as F. heferoclitus and A. rostrata, would most likely not show
similarly elevated PAH accumulation with sediment suspension. A similar phenomenon
was found by Maruya et al. (2001) in a study on various fishes. The small, bottom

dwelling finfish had higher levels of toxaphene, an organéchlorine pesticide, compared to
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larger predatory fish which are not as closely associated with sediment. Thus, degree of

sediment association is important in evaluating bioaccumulation of PAHs.

4.3.2  Role of Interstitial Water

Based on K,, organic contaminants should partition between the sediment and
interstitial water. Through the partitioning there will be higher concentrations of PAHs in
interstitial water compared to water column (Maskaoui et al., 2002; McGroddy et al.,
1995). Interstitial water is an important source of contaminants in the accumulation and
toxicology of PAHs (Cornelissen et al., 2006; Kosian et al., 1998; Sverdrup et al., 2002).
Hawthorne et al. (2007) found sediments with lower total PAH concentrations to be more
toxic to amphipods than sediments with higher total PAH concentrations. By exposing
the amphipods to extracted interstitial water, they found that concentration of total PAH
in interstitial water was positively associated with toxic effects. Thus Hawthorne e? al.
(2007) found sediment PAH concentration to not relate with toxic effects. Instead, they
found interstitial water PAH concentration to positively correlate with toxic effects.

Gewurtz et al. (2000) compared the levels of PAHs and PCBs in various
organisms in Lake Erie. Mayflies (Hexagenia spp.) accumulated the greatest
concentrations of PAHs and PCBs. The authors suggested this was due to Hexagenia
spp. ingesting sediment and detritus, and inhabiting sediments. Mussels ranked with the
second highest PAH and PCB loading. Mussels are ﬁlterjfeeders; Gewurtz et al. (2000)
suggested that they accumulated PAHs by filtering suspended sediment. Mussels are
strongly associated with sediments and interstitial water; thus, the movement of

interstitial water across gills may increase the bioaccumulation of PAHs. A similar
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mechanism may have augmented PAH accumulation in C. maenas and Palaemonetes
spp. in this study. Both C. maenas and Palaemonetes spp. were more highly associated
with sediments than fishes, 4. rostrata and F. heteroclitus. Thus, C. maenas and
Palaemonetes spp. experienced greater exposure to interstitial water than the fishes.

Lu et al. (2004) found phenanthrene uptake from interstitial water was the major
contributor to PAH accumulation in oligochaetes. The authors suggested that ingested
sediment contributed less than 20% of total phenanthrene uptake. The importance of
interstitial water in PAH accumulation is dependant on hydrophobicity. Lu ef al. (2004)
observed that benzo[a]pyrene, a PAH with a higher hydrophobicity than phenanthrene,
was accumulated only from ingested sediment by oligoachetes. The authors suggested
that interstitial water contributed less than 5% for benzo[a]pyrene. A similar pattern may
exist in this study. For the less hydrophobic PAHs like fluoranthene, pyrene, aﬁd
chrysene/triphenylene, the levels of the respective PAHs were similar in C. maenas and
Palaemonetes spp. Yet for the more hydrophobic PAHs like benz[a]anthracene,
benzo[b]fluoranthene, and benzo[a]pyrene, C. maenas had greater concentrations of these
PAHs than Palaemonetes spp. PAHs with a log K,y greater than 5.80 were not detected
in Palaemonetes spp. Similar to findings by Lu ez al. (2004), the hydrophobicity of the
PAH may determine the importance of interstitial water in the uptake of PAHs in biota.
The PAHs with a log K, less than 5.80 may be taken up by C. maenas and Palaemonetes
spp. via interstitial water. The uptake of PAHs with log K, greater than 5.80 may be
caused by another mechanism. The burrowing behaviour of C. maenas could cause
ingestion of sediments. Since Palaemonetes spp. are more pelagic than C. maenas,
Palaemonetes spp. are less likely to ingest sediments. PAHs with log K, greater than

5.80 may be taken up by ingestion of sediment instead of interstitial water.
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4.3.3 Role of Varying Biotransformation Abilities

Differences in bioaccumulation of PAHs among C. maenas and Palaemonetes
spp. and fishes, 4. rostrata and F. heteroclitus, may also be due to differences in
biotransformation abilities. Invertebrates are able to metabolize PAHs and other organic
contaminants (Burkhard et al., 1997; Eickhoff et al., 2003a, b; Jorgensen et al., 2008; Lee
et al., 1976; Watson et al., 2004), but not as quickly as fishes and other vertebrates
(Eickhoff et al., 2003a; Gewurtz et al., 2000). Erickhoff ez al. (2003a) detected PAHs in
Dungeness crab (Cancer magister) tissues, but previous analysis found only traces of
PAH in the ground fish from the same area. Similar results were found between
invertebrates and vertebrates in this study. Carcinus maenas and Palaemonetes spp. had
high PAH concentrations while only traces of selected PAHs were detected in A. rostrata
and F'. heteroclitus.

The rate and importance of biotransformation varies between trophic levels
(Corsolini et al., 2007; Thomann and Komlos, 1999; Wan ef al., 2008). Baumard ef al.
(1998) collected and analyzed the concentration of PAHs in a diversity of marine species.
The importance of biotransformation in the bioaccumulation of PAHs was low in
mussels. In fishes, biotransformation was more important compared to mussels, in the
type and concentration of PAHs accumulated. Other studies found bioaccumulation of
organic contaminants variable between trophic levels (Burkhard, 2003; Froese ef al.,

1998; Veltman et al., 2005).
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4.4  Factors in Depressed Bioaccumlation

With the high sediment PAH levels, one would expect a high bioaccumulation of
PAHs. The lower than expected bioaccumulation of PAHs may also result from aging of
sediments, decreased affinity for lipid relative to sediment, and/or another sorptive phase
(Bervoets et al., 2005; Corneliseen and Gustafsson, 2005; Krauss et al., 2000; Sundelin e?
al., 2004). Aging results over a period of time when the organic contaminant is sorbed
onto or into the organic matter of the sediment (Alexander, 2000; Kraaij ef al., 2001; Reid
et al., 2000). When the contaminant is released into the environment, it is thought that
the contaminant is quickly adsorped to the sediment through hydrogen bonding and/or
van der Waals forces (Semple et al., 2003). Over a period of time (weeks to months), the
contaminant may move into the organic matter of the sediment and/or form stronger
bonds such as covalent bonds with the organic matter (Semple ef al., 2003). Through
these stronger interactions, the bioavailability and toxicity of the organic contaminant
decreases (Hatzinger and Alexander, 1995; Kraaij ef al., 2001; White ef al., 1999).

Erickson et al. (1993) studied the microbial community during the bioremediation
of a manufactured gas plant site. They found that the PAHs in the site were not
metabolized by the microorganisms. The PAHs in the soil did not appear to be toxic to
the microbial communities. If PAHs were spiked into the soil, there was a rapid decrease
in PAH concentration. The spiked sediments had not formed strong interactions with the
organic matrix of the sediment; thus, were bioavailable for microbial uptake (Erickson et
al., 1993; Semple et al., 2003). Similar results were found by Kraaij et al. (2001) where a
portion of sediment previously contaminated by PAHs was was spiked with PAHs.
Kraaij et al. (2001) found PAH bioaccumulation for amphipods was significantly higher

for spiked sediments compared to aged soil.
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PAHs have been deposited in the Tar Ponds over the past century, so it is
plausible that aging has occurred. The operation of the coke ovens and the production of
steel ceased in 1988 and 2000, respectively (AMEC, 2005). The extent of the aging
process occurring in the Sydney Tar Ponds is unknown. However, the extent of aging is a
time-dependent process; thus there will be a decrease in bioavailability of contaminant.

The low bioaccumulation may also be due to decreased affinity for biota lipid
relative to sediment, and/or another sorptive phase (Kukkonen et al., 2005; Lu et al.,
2006; Maruya et al., 1997; Moermond et al., 2005). Bervoets ef al. (2005) found high
variation in the uptake of trace metals, PCBs, and pesticides in mussels. The authors
suggested this to be due to mussel physiology and differential partitioning between
mussel tissues and sediment.

Black carbon has a high affinity for many organic contaminants (Cornelissen et
al., 2004a, b; ten Hulscher ef al., 2003). The decrease or variability of the uptake of
contaminants has been attributed to the presence of black carbon (Cornelissen and
Gustafsson, 2005; Cretney and Yunker, 2000; Hauck et al., 2007). It was suggested that
black carbon has influenced the uptake of contaminants for a diversity of species (Cretney
and Yunker, 2000; Lamoureux and Brownawell, 1999; Thorsen et al., 2004). The
presence of black carbon in sediment may increase sediment capacity to sorb PAHs,
which would decrease the fugacity, the leaving tendency, of the PAH (Rust ef al., 2004).

Black carbon is formed by incomplete combustion of fossil fuels such as coal
(Cornelissen and Gustafsson, 2005; Mitra et al., 2002). Due to the past industrial
| activities around the Tar Ponds, it is plausible that black carbon was introduced into the
Tar Ponds. Studies have indicated that black carbon is ubiquitous and accounts for 1-

15% of total organic carbon in soils and sediments (Accardi-Dey and Gschwend, 2002;
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Gustafsson and Gschwend, 1998; Middelburg ef al., 1999). Black carbon may become
associated with PAHs through industrial activities. The black carbon with the sorbed
PAH would then be introduced into the Tar Ponds. PAHs formed from fossil fuels and
associated with black carbon have lower bioavailability, thus depressed bioaccumlation of
PAHs, compared to PAHs associated with other types of carbons (Jonker and Koelmans,

2002; Kukonen et al., 2005; Rust et al., 2004; Thorsen et al., 2004).

4.5 Variation in the Bioaccumulation of PAHs Within a Species

There was great variation in the bioaccumulation of PAHs in biota from the Tar
Ponds. The variation in PAH accumulation in biota from the Tar Ponds may be related to
abiotic and/or biotic factors. Some organisms have a greater potential to accumulate
contaminants than other organisms (Lu ef al., 2006; Maruya et al., 2001; Veltman ef al.,
2005). Contaminant concentration alone is not an indicator of bioaccumulation, and
species differences should be considered. Schuler ef al. (2003) examined the uptake of
benzo[a]pyrene and hexachlorobiphenyl from aged sediments into freshwater
invertebrates. Schuler et al. (2003) found the decrease in bioavailability of contaminants
to vary among species. The variation in the bioaccumulation of PAH in Tar Pond biota
may be due to differences in behaviour, physiology, and combination of uptake routes.

Individual organisms may vary in their food selection. Organisms which ingest
particles or live in or around environments comprised of much organic matter may be
exposed to greater concentrations of PAHs. Forbes ez al. (1998) studied polychaete
behaviour and found that worms select particles high in organic mattér, which resulted in

greater PAH exposure compared to polychaetes which selected low organic matter

74



sediments. Forbes ef al. (1998) also suggested that polychaete behaviour may influence
exposure. They suggested that the modification of the environment by polychaete worms
(burrowing and irrigating the sediment) may influence the diffusion and movement of
contaminants in and out of the sediments, thus, increasing polychaete exposure to PAHs.
Leppédnen and Kukkonen (2004) studied the effects of intraspecific differences in feeding
behaviour among oligochaetes. They found that individuals which ingested sediment
particles accumulated greater concentrations of polybrominated diphenylethers, a flame
retardant, than oligochaetes which did not ingest sediment particles.

The variation in the Tar Pond biota PAH concentrations may be caused by
individual differences in biotransformation. Many organisms are able to biotransform
PAHSs and other harmful organic contaminants (Corsolini et al., 2007; Drouillard ef al.,
2007; Tomruk and Guven, 2008). Biotransformation of organic contaminants is
individual- and species-specific (Anulacion ef al., 1998; Moisey ef al., 2001; Wirgin et
al., 1996). Leadley et al. (1999) exposed brown bullheads (Ameiurus nebulosus) to
hydrocarbon contaminated sediments. Brown bullheads were selected for similarities
based on size, feeding status, and exposure history. Despite the selection criteria, there
was variability in biotransformation of hydrocarbons in bullheads. Vandermeulen and
Mossman (1996) collected winter flounder (Pleuronectes americanus) from the Sydney
Harbour, NS, Canada. Similar to Leadley ef al. (1999), Vandermeulen and Mossman
(1996) found high variability in biotransformation activity in winter flounder. Only 20-
40% of the variability in biotransformation activity could be explained by differences in
location, sex, maturity, and season. Other studies also indicate that there are complex,
confounded interactions which affect the bioaccumulation of organic contaminants

(Baumard et al., 1998; Bustnes et al., 2008). The varying effects of growth rates and
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aging, differences in individual organismal food preference, and differences in individual
ability to biotransform PAHs may all result in high variability in contaminant

accumulation. It is uncertain which of these factors, if any of them, influenced the uptake
or elimination of PAHs in Tar Ponds biota. Additional research is required to investigate

which of these factors are responsible for the observed variability.

4.6  Potential Type 2 Biomonitor for the Sydney Tar Ponds

Type 2 biomonitors trace the change of chemical concentrations in biota
(Levinton et al., 2006; Vuorinen et al., 2006; Yunker et al., 2002). Carcinus maenas is
the most suitable Type 2 biomonitor of the four potential species assessed. Carcinus
maenas have a high reproductive output (Naczk et al., 2004); indicating potentially large
populations of C. maenas in the Tar Ponds. Secondly. C. maenas can tolerate adverse
environmental conditions (Naczk et al., 2004). The tolerance to adverse conditions
allows this species to successfully inhabit and flourish at degraded sites. Finally, C.
maenas are easily collected and identified.

Carcinus maenas has measurable and reproducible responses to the contaminant.
This study documented greater accumulation of PAHs in C. maenas than in Palaemonetes
spp., F. heteroclitus, or A. rostrata. The goal of Tar Ponds remediation efforts is to
decrease the level of contamination in the biota, sediment, and water. By selecting a
biomonitor with the highest initial PAH concentration, one is able to trace the decrease in
PAH concentrations for a longer period of time. Also, C. maenas bioaccumulated 16-17
different types of PAHs, while the other species assessed did not bioaccumulate as great a

range of PAHs. This may be due to C. maenas having a lower ability to metabolize
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PAHs and a higher fugacity capacity compared to F'. heteroclitus and A. rostrata. Thus,
C. maenas allows the biomonitoring of a greater range of PAHs compared to other
species.

In this study, C. maenas were not assessed for their ability to trace changes in
environmental contaminant concentrations. An effective Type 2 biomonitor should
accumulate the contaminant at concentrations which correlate to the environmental (i.e.
water and/or sediment) contaminant concentrations. Thus, as the concentration of PAHs
increases in the environment, PAHs increase to a corresponding degree in C. maenas.
This relationship should be further investigated before C. maenas are used as
biomonitors.

Although this relationship was not investigated for C. maenas in this other crab
species have accumulated contaminants at concentrations which correlate with its
environment (Baumard et al., 1998; Hale, 1988; Humason and Gadbois, 1982; Ikonomou
et al., 2002; Mothershead et al., 1991; Pancirov and Brown, 1977). Eickhoff et al.
(20034a) evaluated the accumulation of PAHs in Dungeness crabs (Cancer magister)
downstream from an aluminum smelter. The concentration of PAHs in the
hepatopancreas and muscle tissues correlated with the environmental PAH
concentrations. Another study using C. magister also demonstrated C. magister can be
used as a Type 2 biomonitor. They found a decrease in the concentration of
polychlorinated dibenzo-p-dioxin in the hepatopancreas of C. magister as the site was
remediated (Yunker and Cretney 2000). Thus, these studies demonstrate that the levels of

organic contaminants in the environment can be reflected in crab tissue concentrations.
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4.7  Fish Parasite Populations and Communities

This is one of the first parasitological surveys of F. heteroclitus and A. rostrata
from Cape Breton estuaries. A number of studies have been conducted on the parasites of
fundulids and A4. rostrata sampled from Nova Scotia (Barker, 1997; Barker and Cone,
2000; Fantham and Porter, 1948; Fantham et a/., 1940; Gowanloch, 1927; Hawley, 1998;
Marcogliese, 1995; Wiles, 1975). All of the parasite species observed in F. heteroclitus
were previously observed in F. heteroclitus throughout the Atlantic coast of North
America (Harris and Vogelbein, 2006: see Appendix A).

A recent parasitological survey of F. heteroclitus from Lawrencetown Lake, Nova
Scotia found that they all were infected with the monogene, Gyrodactylus sp., on the skin
and fins (Hawley 1998). Also, over 50% of F. heteroclitus were infected with Argulus
Sunduli and/or Ergasilus funduli. The present study did not examine F. heferoclitus for
Gyrodactylus spp., but the monogene, Salsuginus sp. was found on the gills of F.
heteroclitus from all sites. Argulus sp. and E. manicatus were found on the gills, but at
prevalences less than 50% of what Hawley (1998) observed. In River Ryan, Argulus sp.
and E. manicatus were found at 9.7% and 14.5% prevalence respectively. In Mira River,
Argulus sp. and E. manicatus were found at 25.0% and 73.3% prevalence respectively.
Parasitic copepods were not observed on F. heteroclitus from the Tar Ponds.

Hawley (1998) also found a high diversity of endoparasites in F. heteroclitus from
Lawrencetown Lake. In 76% of the F. heteroclitus metacercaria were found in the fish
viscera, which consist of the digestive system, excretory system, and associated tissues.
Acanthocephalans (Acanthocephalus sp. and Neochinorhynchus sp.), cestodes
(Proteocephalus sp.), and unknown nematodes were also found in the viscera of F.

heteroclitus (Hawley, 1998). Similar parasites were found in F. heteroclitus from Cape
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Breton, but at different prevalences than reported by Hawley (1998). Fundulus
heteroclitus from River Ryan and Mira River were infected with Neochinorhynchus sp. at
33.9% and 70.0% prevalence respectively. Similar to prevalence observed by Hawley
(1998), this study found 66.1% of F. heteroclitus from River Ryan were infected with
metaceraceriae in the viscera. In Mira River only 5% of F. heteroclitus had
metaceraceriae in the viscera. Only River Ryan F. heteroclitus were infected with
Proteocephalus sp. In all three sites, L3 ascarid nematodes were found in connective
tissues, but at varying prevalences (Table 19).

Parasite populaﬁons have been extensively studied in Anguilla spp. (Aguilar et al.,
2005; Graynoth and Taylor, 2004; Gollock et al., 2004; Sures et al., 2003; Rodriguez et
al., 2005), but there are limited studies on A. rostrata (Barker and Cone, 2000;
Marcogliese and Cone, 1998). Anguilla rostrata accumulate copepods, cestodes,
trematodes, monogenes, and nematédes on and/or in the gills, intestine, stomach, and
swimbladder (Barker, 1997; Barker and Cone,>2000; Gollock et al., 2004). Barker (1997)
found a diversity of trematodes in the intestine, but Paraquimperia tenerrima had the
highest prevalence. Cestodes and nematodes also were found in the intestine. Gills were
infected with the monogene, Pseudodactylogrus anguillae, and the copepod, Ergasilus
celestis. Like Barker (1997), this study observed P. anguillae on the gills.
Paraquimperia tenerrima were not found in the intestine, but Bothriocephulus sp., a
cestode was found in the digestive system. Unlike Barker (1997), nematodes were not
found in the intestine, but L3 nematodes were found on connective tissues throughout 4.
rostrata.

The exotic swimbladder nematode, Anguillicoloides crassus, was found in the

swimbladders of 4. rostrata. Anguillicoloides crassus 1s an exotic species which has
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been found in Anguilla spp.from Asia, Europe, and North America (Barse ef al., 2001;
Evans and Matthews, 1999; Fries et al., 1996; Kirk, 2003; Moser et al., 2001; Peters and
Hartmann, 1986). Although 4. crassus has been found in the United States, this is the

first identification of A. crassus in Canadian waters (Rockwell ef al., 2009).

4.8  Parasitism and Host Stress

It is well established that contaminants increase the susceptibility of an organism
to diseases and parasitism (Khan and Thulin, 1991; Lafferty and Kuris, 1999; Rapport et
al., 1998; Vethaak and Rheinallt, 1992). The high concentration of PAHs, along with
PCBs and metals, in the Sydney Tar Ponds, is a likely source of stress on F. heteroclitus.
Fundulus heteroclitus from the Tar Ponds were thinner and had less food in their
stomachs compared to fishes from the reference sites. This is reinforced by F.
heteroclitus from the Tar Ponds having a significantly lower calculated K value than F.
heteroclitus from River Ryan and Mira River. The lower K values F. heteroclitus
indicate a lower body condition compared to the reference sites. These characteristics are
indicative of stressful environments (Weis, 2002; Weis and Weis, 1989; Weis et al.,
2003). Yet among the sites sampled, the Tar Ponds had the lowest parasite prevalence,
abundance, and species richness. The decrease in parasite levels in contaminated sites
has been found in other studies (Bhuthimethee et al., 2005; Diamant ef al., 1999;
Macrogliese and Cone, 1997). Faulkner and Lochmiller (2000) studied the trematode
communities in hispid cotton rat (Sigmodon hispidus) living near an oil refinery waste
site. The cestode, Schizotaenia sigmodontis, had a two-fold higher abundance in S.

hispidus from reference sites compared to S. hispidus from the waste site. Also, S.
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hispidus from the reference site had a greater diversity of trematode species richness
compared to S. hispidus from the waste site.

In contaminated environments changes in parasite populations and communities
can be related to where the parasite lives on its host. MacKenzie (1999) suggested that in
contaminated environments ectoparasites will increase in infection levels, while
endoparasites will decrease in infection levels. There have been studies which follow
these suggested trends (Cone et al., 1993; Faulkner and Lochmiller, 2000; Khan ef al.,

. 1994; Marcogliese et al., 1998). Other studies do not follow these suggested trends
(Brotheridge et al., 1998; Diamant et al., 1999; Hernandez et al., 2007, Pettersen et al.,
2006). There are confounding effects, which make it difficult to predict the result of
increased contamination on parasite fauna (Esch ez al., 1975; Lafferty and Kuris, 1999;
Lafferty and Holt, 2003; Morley et al., 2003).

Also, the parasite levels may depend on the level of contamination in the
surrounding environment. Sanchez-Ramirez et al. (2007) found the gill monogene
(Cichlidogyrus sclerosus) abundance to be higher on Nile tilapia (Oreochromis
nicloticus) exposed to low and moderately high polluted sediment. Cichlidogyrus
sclerosus abundance decreased when the O. nicloticus was exposed to higher pollutant
concentration. Similar to some of the sediments used by Sanchez-Ramirez et al. (2007),
the Sydney Tar Ponds are an extremely contaminated site (JWEL-IT, 19964, b;
Vandermeulen, 1989). The high level of inorganic and organic contaminants in the biota,
sediment, and water in the Tar Ponds could prevent the accumulation and survival of both

ectoparasites and endoparasites.

4.9 Parasite Local Extinction
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The Sydney Tar Ponds is a depauperate ecosystem. There are few published
studies on the fauna found in or around the Tar Ponds. It is established that sediment and
water from the Tar Ponds are highly contaminated with PAHs, PCBs, and metals (AMEC,
2005; JWEL-IT, 1996&, b; Vandermeulen, 1989). This could possibly result in a
hindrance to parasite health and survival. The contamination levels may prevent the
survival of parasite free-living larval stages and/or the intermediate hosts required for

parasite development.

4.9.1 Parasite Free-living Larval Stages and Contamination

Free-living stages are involved in many parasite lifecycles. These larval stages
oftén have a protective coating to survive in the environment. Cestodes, trematodes,
nematodes, and acanthocephalans release eggs from their respective hosts with a
protective coating. Some trematodes have metacercariae, a larval trematode stage that
encyst, form cysts, on vegetation. Nematodes have a thick waxy coating called a cuticle.
Pietrock and Marcogliese (2003) reasoned that although these protective coatings may
provide protection from the environment, the larval stages still must often rely on limited
energy reserves and unpredictable environmental conditions. Past studies have found
abiotic factors such as temperature, pH, salinity, and light to decrease the survival of a
diversity of free-living stages (Heinonen et al., 1999; Pietrock and Marcogliese, 2003).

Contaminants have toxic effects on free-living larval stages. Both inorganic
(Cross et al., 2001; Morley ef al., 2001; Wolmarans et al., 1988) and organic (Guttowa
and Boniecka, 1975; Kuntz and Stirewalt, 1946; Okafor and Igbinosa, 1988)
contaminants influence the survival and infectivity of free-living parasites. Also, it is

suggested that protective coatings offer little protection to anthropogenic contaminants
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(Pietrock and Marcogliese, 2003); although Reddy et al. (2004) did find encysted
metacercariae to be protected from the lethal effects of copper from copper sulfate
(CuSOy). They investigated the effects of copper, on trematode larval stages of
Echinostoma caproni and Echinostroma trivolvis and their snail host Biomphalaria
glabrata. They found that the concentrations of copper used to kill B. glabrata (1 hour in
0.001% CuSOy) killed both the cercariae and excysted metacercariae, but not the encysted
metacercariae. Excysted metacercariae are larval parasites which have broken out of the
protective cyst coating. Authors suggested that the cyst wall protected the encysted
metacercariae.

Although the copper dose which Reddy ef a/. (2004) applied did not cause acute
effects to encysted metacercariae, the copper may have caused chronic effects which may
not be easily measurable. For example the copper may affect the parasite development.
The copper may decreases the parasite’s health, which may hinder the parasite’s ability to
transform into later larval developmental stages or produce viable eggs. Koprivnikar et
al. (2006a) investigated the effects of the herbicide, atrazine, on the cercariae of four
species of trematodes. Between species there was varying cercariae sensitivity to
atrazine. Atrazine was found to decrease the longevity and ability to infect larval
amphibians, thus demonstrating that the long-term effects of contaminants must be
considered.

Contaminants may reduce the survival of the free-living stage. Pietrock et al.
(2002) found that heavy metal concentrations affected the health of free-living stages of
trematodes. Cercariae of the trematode Diplostomum sp. were exposed to cadmium
concentrations ranging between 0.2 and 200 pg/1 (Pietrock et al. 2002). Cadmium

concentrations greater than 20 pg/l resulted in a change in the rate of cercariaec mortality
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and a reduced cercariae survival time. The authors suggested that the effects of
contaminants on free-living stages, like cercariae, may be due to two reasons. Firstly,
contaminants may reduce the time for the free-living stage to find an acceptable host to
infect. Secondly, contaminants may decrease the ability of the free-living stage to
transform in the next stage of the life cycle. Reddy ef al. (2004) found contaminants to
interfere with the ability of cercariae to infect a second intermediate host.

Contaminants may also decrease the motility of free-living stages. Cross ef al.
(2005) exposed the gastropod Littorina littorea infected with trematode Cryptocotyle
lingua to heavy metal contaminated water. The C. /ingua cercariae released from L.
littorea exposed to contaminated water had a slower swimming rate compared to
cercariae released from L. litforea not exposed to contaminated water. Authors also
observed that cercariae from contaminated water swam in less direct routes and had
decreased life spans. Authors suggested that contaminants affected the development of
the cercariae anatomy used in swimming.

The Sydney Tar Ponds has often been referred to as Canada’s most contaminated
site. The high levels of PAHs, PCBs, and metals may be lethal to many, if not all, free-
living larval stages. Although no studies have investigated the effects of these high
contaminant levels, there are studies which have found lower levels of contaminants to be
toxic to free-living parasites (Cross ef al., 2001; Pietrock et al. 2002; Reddy et al., 2004).
Thus, it is quite likely free-living stages of parasites would not be able to survive in the

Tar Ponds.
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4.9.2 Parasite Intermediate Hosts and Contamination

The lack of parasites in the Tar Ponds may also be due to the lack of intermediate
hosts. The abundance and presence of potential parasite hosts can influence the
prevalence and abundance of parasite species (Hechinger and Lafferty, 2005; Huspeni
and Lafferty, 2004; Whitney et al., 2007). Johnson and Chase (2004) investigated the
link between the abundance of Planorbella spp. and the level of amphibian parasitic
infection. From 27 ponds in Michigan, they found that higher densities of Planorbella
spp. correlated with increased abundance of R. ondatrae in amphibians. Thus, as the
levels of the intermediate host increased the level of parasitic infection in amphibian
populations increased. In a study of the blood fluke, Schistosoma haematobium, Stauffer
et al. (1997) also found that increases in snail hosts caused increases in parasitic infection.

Moller (1987) suggested that increased parasite levels may be due to an increased
suitability of the environment for the host. Both Stauffer et al. (1997) and Johnson and
Chase (2004) concluded that changes in the environment increased the sﬁitability of the
environment for the host. Stauffer et al. (1997) found that over-fishing led to an increase
in habitat range for the snail, an intermediate host of the blood fluke Schistosoma
haematobium. The decreased competition between the fish and snail resulted in an
increased abundance of the snail. Stauffer ef al. (1997) suggested the increased level of
snails resulted in an increase of parasitic infection prevalence among school children.

Eutrophication is another type of environmental contamination, which may
increase the suitability of an environment for parasite hosts. Eutrophication is a process
where runoff water from agriculture and urbanization enters water bodies (Andersen et
al., 2006; Ryther and Dunstan, 1971). The runoff water is often high in nutrients, such as

nitrate and phosphate, which can increase the amount of potential parasite hosts (Boesch
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et al., 2001; Bostrom et al., 2002; Lafferty and Kuris, 2005; Valtonen et al., 1997,
Verdonschot, 2006). Johnson and Chase (2004) found eutrophication increased the
biomass of the snail, Planorbella spp., in Michigan ponds. Johnson and Chase (2004)
suggested that the increased levels of nutrients, caused by eutrophication, would decrease
the mortality of infected snails. The longer life span of snails could result in a longer
period for the snail to release more cercariae into the environment. Another result from
eutrophication may be the environment being able to support a higher density of snails,
which would also result in possibly more cercariae in the environment to infect the
amphibians.

Both Johnson and Chase (2004) and Stauffer et al. (1997) demonstrate that
alterations in the levels of intermediate hosts will affect the distribution of parasites in an
ecosystem. If increased intermediate host levels cause an increase in parasite levels, then
decreased intermediate host levels should cause decreases in parasite levels. Cone et al.
(1993) examined the parasite communities of A. rostrata from Nova Scotia. They found
A. rostrata from acidic sites (pH 4.5 — 5.0) had a lower species diversity compared to 4.
rostrata from limed, more alkaline, sites (pH 6.0 — 7.0). The parasites with sensitive
intermediate hosts or free-living larval stages were absent from acidic rivers. Field
studies found a decline and elimination of these intermediate hosts in the acidic rivers
compared to the other sites. The parasites with acid-tolerant intermediate hosts were
found in all the sites studied.

Whitney et al. (2007) investigated how the loss of the endangered bird, the Light-
footed clapper rail (Rallus longirostris levipes), would affect trematode communities in a
California wetland. They found R. /levipes to be an intermediate host to four trematode

species. It was suggested that the removal of R. levipes from the ecosystem may decrease
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the abundance of these trematodes and possibly alter the parasite communities of many
other organisms in that ecosystem.

In three Ontario lakes, the prevalence of eight species of a myxozoan parasite
Myxobolus spp. were evaluated (Koprivnikar et al., 2002). The species of oligochaete in
each lake was also noted. Although the importance of a particular oligochaete species for
Myxobolus spp. development is unclear, Koprivnikar et al. (2002) found that the
prevalence of certain oligochaetes corresponded with the absence or presence of certain
Myxobolus spp. Thus, Cone et al. (1993), Koprivnikar ef al. (2002), and Whitney e? al.
(2007) demonstrated that decreases in parasite hosts result in a corresponding decrease in
parasite prevalence and abundance.

A similar phenomenon may have occurred in the Tar Ponds. Unlike the reference
sites, the F. heteroclitus from the Tar Ponds had a very depauperate parasite assemblage.
The majority of the F. heteroclitus from Mira River and River Ryan were infected with
parasites which utilized crustaceans and gastropods as intermediate hosts. Copepods,
ostracods,band snails are intermediate hosts for Proteocephalus spp., Neoechinorhynchus
spp., and Homalometron pallidum life cycles respectively (see Appendix A for more
details). These organisms have been found to be sensitive to environmental contaminant
concentrations (Bellas and Thor, 2007; Holcombe e? al., 1987; Raisuddin ef al., 2007).

DiPinto et al. (1993) examined the effects of PCB Aroclor 1254 on the
reproductive output of copepods (Microarthridion littorale). Copulating pairs of M.
littorale were exposed to PCB sediment concentrations as high as 83 mg/kg. The number
of larval copepods and nauplii produced were reduced from exposure to PCB
contaminated sediment. Low sediment PCB concentrations of 4 mg/kg negatively

affected copepod reproduction.
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Barata ef al. (2005) evaluated the acute toxicity of PAHs on adult copepods
(Oithona davisae). After 48 hours exposure to 56.1 and 0.8 pmol/L of naphthalene and
pyrene respectively, the survival of the O. davisae was affected. Also, Barata et al.
(2005) observed that O. davisae exposed to a mixture of PAHs demonstrated additive
toxic effects. These studies demonstrate that low concentrations of PAHs and PCBs are
harmful to copepods. The additive effects of these harmful organic contaminants could
possibly mean that environments contaminated with a diversity of organic contaminants
and/or trace levels of organic contaminants could be lethal to copepods. The separate and
additive concentrations of organic contaminants in the Sydney Tar Ponds well exceed the
toxic PAH and PCB values observed to affect copepods (AMEC, 2005; Barata ef al.,
2005; DiPinto et al., 1993; JWEL-IT, 19964, b; Vandermeulen, 1989). Also, the total
concentrations of PAHs and/or PCBs would be extremely toxic, if not unbearable, for
copepods to live.

Ostracods are potential intermediate hosts for Neoechinorhynchus sp., which have
been found in Fundulus heteroclitus (Dickson and Threlfall, 1975; Hopp, 1954;
Marcogliese, 1995; Walkey, 1967; Ward, 1940). In this study, Neoechinorhynchus spp.
were found in F'. heteroclitus from Mira River and River Ryan, but a limited number were
found in F. heteroclitus from the Sydney Tar Ponds. The sensitivity of ostracods to
environmental changes, such as the introduction of environmental contaminants, has been
documented. In sites with lower water quality, Kiilkéyltioglu (2004, 2005) found the
diversity of ostracods to decrease. Kiilkoyliioglu (2005) found the number of ostracods to
decrease about 50% compared to non-impacted sites. In sites with lower water quality,
ostracods which were able to tolerate large ranges of environmental predominated

(Kiilkoyliioglu 2004, 2005).
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No zooplankton or benthic invertebrate surveys have been conducted in the
Sydney Tar Ponds. It is unknown if any or some of these intermediate hosts are present
in the Tar Ponds. It is possible that the high concentrations of PAHs, PCBs, and metals
hinder the development and survival of copepods, ostracods, and snails, which are
contaminant-sensitive intermediate hosts (Bellas and Thor, 2007; Holcombe et al., 1987,
Raisuddin et al., 2007). The high levels of contamination in the Sydney Tar Ponds pose a
high risk in conducting such biological surveys. Despite the lack of planktonic and
sediment-infauna data, the high level of contamination and lack of parasites in F.

heteroclitus indicate that the presence of these intermediate hosts is quite unlikely.

4.10 Sydney Tar Pond Parasite Biomonitors

The Sydney Tar Ponds are under the initial stages of remediation (W. Kaiser,
personal communication). The old city dump was capped, which terminated the leakage
of contaminated groundwater into the former coke ovens sites; thus, this prevented more
contamination entering the Tar Ponds. The Coke Ovens Brook was rerouted, which
prevented contaminants from moving from the coke ovens sites into the South and
subsequently the North Tar Pond. The solidification and stabilization process of the Tar
Ponds is scheduled to commence in 2009. Through the solidification and stabilization
process the PAH, PCB, and metal contaminant levels are expected to decrease (W.
Kaiser, personal comunciation). As the contamination levels decrease, the environment
will hopefully become more hospitable for these sensitive intermediate hosts such as

copepods and snails. The return of crustaceans and gastropods to the former Tar Ponds
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will most likely result in an increased prevalence and abundance of parasites with
complex life cycles.

Parasite communities can recolonize and recover in remediated areas (Cone et al.,
1993; Huspeni and Lafferty, 2004; Marcogliese and Cone, 1997a). As discussed earlier,
Cone et al. (1993) found A. rostrata from acidic sites lacked parasites which had sensitive
intermediate hosts. In a continuation of the study by Cone et al. (1993), Marcogliese and
Cone (1997a) found that as the pH of the acidic site increased, the parasite species
diversity increased. This study suggests that as contaminated sites are remediated that
parasite communities can recolonize and recover (Marcogliese and Cone, 1997a).

Parasites are effective and reliable biomonitors (Lafferty, 1997; MacKenzie et al.,
1995; Marcogliese and Cone, 1997a; Poulin, 1992; Sasal et al., 2007; Sures, 2004).
Landsberg ef al. (1998) and Sures et al. (1997) suggested that parasites are more sensitive
biomonitors than their fish or crustacean hosts. Also, parasites may be an even more
sensitive biomonitor of contaminants compared to other invertebrates often used as
indicator species. Reddy ef al. (2004) found cercariae and metacercariae to be less
tolerant to copper than its snail host.

Marcogliese and Cone (1997a) suggested several reasons why macroparasites are
effective biomonitors. Firstly, parasites are easy to sample by collecting and necropsying
host organs. Secondly, the collection and necropsy of hosts is inexpensive compared to
other types of biomonitoring protocols. Thirdly, the identification of the basic parasite
groups requires little training. Finally, parasites generally have a shorter life span
compared to their hosts. Any changes in the contaminant levels will be reflected quicker

in the host’s parasite community than the types of hosts in the environment.
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4.11 Predictions for Levels of Parasitism for Remediated Sydney Tar Ponds

After remediation it is unclear which parasite species will be in theTar Ponds. It is
quite possible that in the future, the parasite species found in Mira River and Ryan River
will be noted in F. heteroclitus from the former Tar Ponds. Before and after a salt marsh
restoration project, Huspeni and Lafferty (2004) measured the prevalence and abundance
of larval trematodes in the California horn snail (Cerithidea californica). Before
restoration, the salt marsh and control sites had 12% and 28% respective mean trematode
prevalence and 4.5 and 7 respective trematode species. After restoration, the salt marsh
had 43% mean trematode prevalence and 9 trematode species, while at the control site the
trematode community structure was unchanged. After restoration, the trematode
communities at the salt marsh and control site were similar. The authors linked the return
of trematodes to be caused to the return of birds and other vertebrates to the salt marshes
(Huspeni and Lafferty 2004). Also, the length of time required for parasites to recolonize
the former Tar Ponds in not known. Annual collection of Fundulus spp. will allow
tracking of changes in parasite levels.

The re-introduction of the intermediate hosts and parasites may possibly lead to
high initial levels of parasitism in the former Tar Ponds. Fundulus heteroclitus surviving
the remediation process would have been historically chronically exposed to extremely
toxic levels of inorganic and organic contaminants. Since contamination has been found
to alter the development, immunity, and health of organisms (Grinwis et al., 1998, 2000;
Lafferty and Holt, 2003; Sandland and Carmosini, 2006), the F. heteroclitus surviving the
remediation of the Tar Ponds may have a higher susceptibility to parasitism. Also, the
effects of chronic contaminant exposure may be passed onto future generations. Nacci ef

al. (1999, 2002) studied the long-term effects of organic environmental contamination on
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F. heteroclitus. The parent F. heteroclitus were chronically exposed to highly
contaminated sediments. In response to the chronic toxic effects, the parent F.
heteroclitus had a suppressed CYP1A system. The first generation of lab-reared F.
heteroclitus had similar levels of a suppressed CYP1A system compared to the parent F.
heteroclitus. The second generation of F. heteroclitus still had a suppressed CYP1A
system, but the CYP1A activity levels were higher compared to the parent F. heteroclitus.
The suppressed CYP1A system is thought to decrease the formation of tumours and/or
cancer of the skin and liver often associated with organism exposure to PAH and/or PCB
contaminated sediment (Arcand-Hoy and Metcalfe, 1999; Arzuaga and Elskus, 2002;
Meyer et al., 2002; Pinkney and Harshbarger, 2006; Rose ef al., 2001). The long-term
effects of a suppressed CYP1A system are unknown. Also, there are probably other
effects from chronic exposure to high levels of organic and inorganic contaminants,
which may decrease the health of future F. heteroclitus generations; thus leaving them
prone to parasitic infection.

Contamination often leaves fishes and other organisms more prone to parasitism
(Christin ef al., 2003; Khan and Thulin, 1991; Rapport et al., 1998; Taylor et al., 1999;
Vethaak and Rheinallt, 1992). In a study on Atlantic cod (Gadus morhua) and longhorn
sculpins (Myoxocephalus octodecemspinosus), Khan (1990) found fishes chronically
exposed to petroleum hydrocarbons had higher levels of ciliated parasites on their gills.
Gadus morhua and M. octodecemspinosus had 88% and 95% of their gills infected with
102.3 (+/-3.4) and 19.0 (+/-0.9) parasites per infected fish (+/- standard error),
respectively. Gadus morhua and M. octodecemspinosus from the control site had 9% and
48% of their gills infected with 0.9 (+/-0.1) and 1.1 (+/-0.3) parasites per infected fish (+/-

standard error) respectively. Khan (1990) suggested contaminant stress to cause the
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higher prevalence and mean intensity. Thus, it is possible that after remediation of the
Sydney Tar Ponds, there could be a high level of parasitic infection for F. heteroclitus in

the Tar Ponds compared to Mira River and River Ryan.

4.12  Future Parasitological Work

This study provided background levels of parasitism in the Sydney Tar Ponds.
Yet for optimal use of parasite biomonitors, an understanding of the influences on the
ecosystem, host ecology, and parasite lifecycles is needed (Schludermann et al., 2003;
Sasal et al., 2007; Siddall et al., 1994). Because of the highly toxic contaminant
concentrations, there is little knowledge on the structure of the ecosystem in the Sydney
Tar Ponds. Until the Tar Ponds are remediated, only limited biological surveys may be
conducted safely. Few macroparasitological studies have been conducted in Atlantic
Canada and even fewer have been conducted in Cape Breton. This limits the
understanding of the exact intermediate hosts utilized in the transmission of parasites in
Cape Breton estuaries. Through the necropsy of crustaceans and gastropods, the needed
intermediate hosts in parasites of F. heteroclitus in Cape Breton may be identified. This
will increase our understanding of these parasites’ transmission patterns. By the re-
appearance of a particular parasite species in Tar Ponds fishes post-remediation, these
surveys may allow better inference of species re-introduced into the ecosystem

(Marcogliese, 2005; Marcogliese and Cone, 1997b; Thompson et al, 2005)
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4.13 Concluding Statements

[um—y

The South Tar Pond is higher in sediment bound PAHs than the North Tar Ponds.

In both the North and South Tar Ponds the PAH sediment concentrations is above the
CCME sediment guidelines. According to previous studies and CCME guidelines,

the high PAH levels are at levels expected to be toxic to biota.

The level of PAHs in Tar Pond sediments and biota is extremely high compared to

other contaminated sites.

In the Tar Ponds, C. maenas and Palaemonetes spp. accumulated a greater range and

concentration of PAHs compared to A. rostrata and F. heteroclitus.

Of the biota studied C. maenas is the best biomonitor due to bioaccumulating the
highest concentration and greatest diversity of PAHs. Also, C. maenas bioaccumlate

PAHs at concentrations that reflect the environmental concentrations.

Fundulus heteroclitus and A. rostrata had lower prevalences and abundance of
ectoparasites and endoparasites in the Tar Ponds compared to fishes from reference
sites. The high level of contaminants may hinder parasite health and survival. Also,
the high levels of contaminants may prevent the survival of parasite free-living larval

stages and/or the intermediate hosts required for parasite development.
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7. The predicted effects of Tar Ponds remediation on parasite ecology is unclear.
Parasite species which are found in other parts of Cape Breton, such as in the Mira
River and River Ryan, will most likely become established in the remediated Tar
Ponds. Also, it is thought that as the contaminant levels decrease the level of

parasitism will likely increase in fishes.
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Table 8: Sediment toxic effects range low (ERL) and toxic effects range median
(ERM) guidelines for selected polycyclic aromatic hydrocarbons
(PAHSs) (Wade ef al., 2008). Benthic biota which live in or near sediments
below the effects range low (ERL) will rarely exhibit toxicological effects.
Benthic biota which live in or near sediment over the effects range median
(ERM) will often exhibit toxicological effects.
Polycyclic Aromatic Concentration (ug/kg)
Hydrocarbon (PAH) Effects range low Effects range median
(ERL) (ERM)
Low Molecular Weight PAHs
Acenaphthene 16 500
Acenaphthylene 44 640
Anthracene 85.3 1100
Fluorene 19 540
Naphthalene 160 2100
High Molecular Weight PAHs
Benz[a]anthracene 261 1600
Benzo[alpyrene 430 1600
Chrysene 384 2800
Dibenzo[a,h]anthracene 63.4 260
Fluoranthene 600 5100
Pyrene 665 2600
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Table 9: Canadian marine sediment quality guidelines for selected polycyclic
aromatic hydrocarbons (PAHs) (CCME, 2002). Abbreviations: Interim
sediment quality guidelines (ISQC); probable effect levels (PEL);

incidence of adverse organismal effects at the PEL (IPEL).

PAH ISQC PEL IPEL
(ng/kg dry wt) (ng/kg dry wt) ()
Acenaphthene 6.71 88.9 57
Acenaphthylene 5.87 128 51
Anthracene 46.9 245 75
Benz[a]anthracene 74.8 693 78
Benzo[a]pyrene 88.8 763 71
Chrysene 108 846 72
Dibenz[a,s]anthracene 6.22 135 65
Fluoranthene 113 1494 80
Fluorene 21.2 144 70
Naphthalene 34.6 391 71
Phenanthrene 86.7 544 78
Pyrene 153 1398 83
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Table 12: Numbers of female and male Fundulus heteroclitus and unidentified
Fundulus spp. from the Tar Ponds and reference estuaries used for

parasitological analysis.

Sample Site Month n Fundulus spp. Sex
Females Males

June 12 3 Fundulus sp. 3 0

North Tar Pond 9 F. heteroclitus 5 4
July 17 0 Fundulus sp. 0 0

17 F. heteroclitus 4 13

August 24 1 Fundulus sp. 1 0
23 F. heteroclitus 13 10

TOTAL 53 4 Fundulus sp. 4 0
49 F. heteroclitus 22 27

June 32 3 Fundulus sp. 3 0

Mira River 29 F. heteroclitus 20 9
July 16 1 Fundulus sp. 1 0

15 F. heteroclitus 9 6

August 16 0 Fundulus sp. 0 0

16 F. heteroclitus 11 5

TOTAL 64 4 Fundulus sp. 4 0

60 F. heteroclitus 40 20

June 28 4 Fundulus sp. 3 1

River Ryan 24 F. heteroclitus 12 12
July 20 2 Fundulus sp. 2 0

18 F. heteroclitus 10 8

August 21 1 Fundulus sp. 1 0

20 F. heteroclitus 9 11

TOTAL 69 7 Fundulus sp. 6 1

62 F. heteroclitus 31 31

Total 186 15 Fundulus sp. 14 1

ALL SITES 171 F. heteroclitus 95 78
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Table 14:

Two way analysis of variance (ANOVA) results for dry weight

polycyclic aromatic hydrocarbon (PAH) concentrations between

North and South Tar Pond sediments.

Degrees of Mean-Square F-ratio Probability
Freedom (df) (MS) 1)) (p)
PAH 16 3.80 0.823 0.655
Site 1 5.55 1.20 0.001
PAH*Site 16 3.28 0.712 0.772
Error 68 4.61
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Table 16: Kruskal-Wallis comparison of wet weight and lipid adjusted PAH

concentrations (mg/kg) in biota.

Wet Wt, Lipid Adj.

PAH H p H p
Acenaphthene 0.55 0.9 1.11 0.8
Fluorene 0.62 0.9 0.67 0.9
Phenanthrene 2.87 0.4 2.97 0.4
Fluoranthene 6.45 0.09 7.16 0.07
Naphthalene 1.89 0.6 1.73 0.6
Pyrene 7.99 0.05 7.75 0.05
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Table 17: One way multivariate analysis of variance (MANOVA) results for wet
weight concentrations of selected polycyclic aromatic hydrocarbons

(PAHs) in Tar Pond biota.

Univariate F-Tests

PAH Degrees of Mean-Square F-ratio Probability
Freedom (df) MS) (F) (p)

Acenaphthene 3 0.0010 0.188 0.902
Error 10 0.0055

Fluorene 3 0.0003 0.177 0.910
Error 10 0.0015

Phenanthrene 3 0.0829 1.205 0.358
Error 10 0.0688

Fluoranthene 3 0.3091 5.025 0.022
Error 10 0.0615

Naphthalene* 3 0.4882 0.669 0.590
Error 10 0.7294

Pyrene* 3 3.9453 4.520 0.030
Error 10 0.8729

*These PAHs were natural logarithm transformed.

Multuvariate Test Statistic

Statistic Value F-Statistic df P

Hotelling- 15.5 3.16 18,11 0.028
Lawley Trace
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Table 18: Tukey test pairwise comparison probability values from testing for
significance between biota from the Sydney Tar Ponds. Biota
analyzed: Carcinus maenas, Anguilla rostrata, Fundulus heteroclitus, and

Palaemonetes spp.

Tukey (df = 10) Pairwise Comparison Probabilities
Fluoranthene Pyrene

C. maenas X A. rostrata 0.31 0.31
C. maenas X F. heteroclitus 0.30 0.12
C. maenas X Palaemonetes spp. 0.55 0.91
A. rostrata X F. heteroclitus 0.99 0.78
A. rostrata X Palaemonetes spp. 0.03 0.10
F. heteroclitus X Palaemonetes spp. 0.04 0.04

193




1451

(T-/H) 01 a-1+L (61 -/+) 8L (€0/+H) ST Ayisuajuy ues]y
(1-/4)8 (1-/9)¢ (61 -/+) 9L (109 ¥0 souepuUNqy
vE-0 vy -0 898 - 0 9-0 a3uey
€€L L9L €86 0'ST aduoeAdlq (09=1)
h?»E BITA
o/ L1 Lo/ 8t €0/ T1 (S0-/+) 81 Ayrsusiuy BN
(60°0-/+) ¥T0 (S0-/+) 87T (¥0°0 -/+) 90°0 (80°0 -/+) 81°0 souepuUNqy
v-0 ST-0 -0 -0 a3uey
! L'6S 8 L'6 20UdeAdI] (z9=u)
UBAY JIATY
0 (-1v¢ 0 0 Ayisuojuy s\
0 To-/47T0 0 0 duUEpUNQY
0 9-0 0 0 a3uey
0 78 0 0 20Ud[BASI] (6 =u)
mﬁ—-o& I1e],
e’LIROIdOBIOW .
SmIDIIUDUL SISO ‘ds snur3nsipg m&oﬁoﬁﬁom dds snynsay
sapadg Arseaed s

oy} I0J PaIR[NOTED SeM JOLIS PIBpUR)S OY ], "SHIIJI0.421aY Snnpun,] uo punoj sdyisered [eu13)xd Jo Arewmng

*A)ISUSIUT UBSW PUB 90UEPUNGE

‘61 9L



S61

0 Go-H)sT (90-+) 07 To-1 el Lo-1vy Ajisuopu] Ueajy
0 (S0'0-/+) 0T'0 To-/HT10 (Tro-/7o0 (9010 T°¢ souepunqy
0 -0 €-0 z-0 €70 a3uey
0 L9 0's £'el 0'0L souRfeAdld (09 =w)
JOAR eIl
-1t o) LT S0/ 6°¢€ o/ el (60/+) 8T Ayisusyuy uealy
(S0°0 -/+) 90°0 (1o To t0-1+)9T (90'0-/+) 910 '0-+)60 oouEpUNQY
€-0 v-0 710 -0 LT-0 o3uey
¢ Syl 199 6'T1 6°€€ 9ous[eAdld (Ty=1u)
uely 19AR
00-/H0T1 (So-1HsT 0 001401 00-1+)0T Ayisuaju] Ues
(€0°0-) ¥0°0 (00 -/+) 900 0 (¥0'0 -+ 80°0 (#0°0 /+) 80°0 souepunqy
1-0 -0 0 1-0 1-0 oduey
«I'Y «I'Y 0 T8 +T'8 ooud|eAdld (v =mw
spuod JIe],
‘ds smypydasoajold wnpid EHEDIS0EIIM apojewdu PLILISY ¢ s
UOAJIUOIDUIOLT . paynusprun SnYouUAYo0UIY 202N
momuenw Ijiselded NS

oouEpuUNge 9} I0J PSJE[NOTED SBM IOLID PIEPUR)S oY, SMIIJ0042)2Yy snpnpuin,] Ul punoj sajseiedopus jo Lrewrming

"AJISUSIUT UBOW pUe

‘07 91q¢E L



961

0 z 0 0 :ANSUQIUT UBSN
0 &o-/+)+0 0 0 :2Juepunqy
0 -0 0 0 :oduey
0 00 0 0 RSl LI (c=u
InoqieH ASUpAS
(91 -/+) 61 9 (1-¢ € :Kyisuau] uesy
€-1)¥ (90-+) 90 (€0-/)¥0 (€0-1) €0 :ougpuUNqy
SE-0 9-0 £€-0 £€-0 :o3uey
002 001 00T 001 :90uaeAdId (o1 =1
TOATY eI
0 (1-4)07T £ 0 :Ayisusjuy ued|y
0 01 $o0 0 eduepunqy
0 V-0 £-0 0 a3uey
0 0°0¢ L'91 0 :P0uaeARld (9=1)
puod Je], YHON
Luereydosoyuedy I apojetaN €1 apjIndup podado)) snsered (11}
. snand30j ovpopnasg
JoruwIo)S “Qunsauy ANSSL], IANIDUUO)) NS

oouepunqe 9y} I0J PaIe[noed Sem IOII0 pIepue)s oY, ‘pIv4isod vjjinduy uo/ui punoj sajisered jo Lrewrmng

*KJISUSJUI UBSW pue

:1T91qe L




.61

"UONROYNUAPI 10] parmnbar st susuroads Jo Sururels roqin,] “ds vusuoyIUD(T 9q ABWL 3POYRWIRU (T[4 dS SHjnydasolyuvoy
10 ds snyoudy.rouryosy 1010 9q Aewr uereydosoyiuese (N (AIN) peynueprun aie sojisered o) JO [BISAIS JO UOHBOTJIIUIPI J0BXS Y[,

0 11 1 :AYISuLjuU UBSJA
0 (TT-1HTT . (To/H To :00UEpUNQY
0 I1-0 1-0 :e3uey
0 00T . 00T “a0ud[RARI] (c=u
INoqIeH ASUPAS
Fo-+) 01 (60/+) LT -1 s :Aysueyuy uedy
(Tro-+) 10 Lo-+)91 (80-/+) 60 :o0uepuUnqy
1-0 L-0 8-0 o3uey
001 009 002 :00Us[eAdI] 01=1v
JOATY eITIA
0 0 ¢ :AyIsusjuy US|y
0 0 S0 :20UEPUNQY
0 0 €-0 :o8uey
0 0 L9l :90UdRASI] (9=1u)
Uﬁom Ie] YHON
*x9POIBWAN (IN SNSSDAD SaPLOJO1|JINSUY “ds snjnydaooriyiog
Jappelq Wimg oewo)g ‘dunsau] s

‘DIV4IS04 piMm3uy uo/ul punoj sajisered jo Lrewuing :(ponunuod) 17 3qelL



FIGURES

198



Figure 1: Map of the Sydney Tar Ponds, Nova Scotia, Canada (AMEC, 2005).
The Sydney Tar Ponds are composed of four parts: the North Tar Pond
(A), the South Tar Pond (B), the former Coke Ovens site (C), and Cove

Ovens Brook Connector (D).
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A) (B) ©

Figure 2: Structures of selected polycyclic aromatic hydrocarbons (PAHs).

(A) Naphthalene, (B) Phenanthrene, and (C) Benzo[a]pyrene.
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Figure 3: The formation of epoxides through cytochrome P-450 (CYP1A)
metabolism of a selected polycyclic aromatic hydrocarbon,

benzo[b]fluoranthene (from Dabestani and Ivanov, 1999).
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Definitive Definitive
Host Host

/V

=

(A) Healthy (B) Disrupted

Figure 4: Schematic of a hypothetical, complex parasite life cycle. Intisan
abbreviation for intermediate. Arrows indicate the transmission of parasite
between hosts. (A) In a healthy ecosystem, all hosts required for the
development of the parasite are present. The parasite is transmitted
between hosts and is sexually mature in the definitive host. (B) Ina
disrupted ecosystem, where one of the intermediate hosts is removed, the
parasite will not be transmitted through its life cycle. The infective
definitive host releases the immature parasite into the environment. The
immature parasite infects and develops in intermediate host A. Since
intermediate host B is removed from the ecosystem, the immature parasite
cannot infect or develop in intermediate hosts C or D or reach maturity in
the definitive host. Thus, the lifecycle and development of the parasite is

halted in the disrupted ecosystem.
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Figure 5: Locations of study sites. (A) Samples were collected from Cape Breton,
Nova Scotia (http://www.gov.ns.ca/snsmr/freemaps/ Accessed March 6, 2009). (B)
Locations of the four sampling sites: River Ryan, Sydney Tar Ponds, Wentworth Park,

and Mira River.
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http://www.gov.ns.ca/snsmr/freemaps/

Hrth Tar Pond 1
o -

Nt

|

Approximate locations of biota and sediment sampling in the

Sydney Tar Ponds, Nova Scotia. Map adapted from AMEC (2006). The

dotted ellipse indicates biota sampling location at the Ferry Street Bridge.

Black stars indicate sediment sampling locations.
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Figure 7:

Selected Polycyclic Aromatic Hydrocarbons (PAHs)

Average concentrations of selected polycyclic aromatic hydrocarbons
from the North (n = 3) and South (n = 3) Tar Ponds sediment. Error
bars represent the standard error. PEL is the probable effects level where
at a particular concentration biota near contaminated sediment will
experience toxicological effects (CCME, 2002). Compound identification:
NAP, naphthalene; ANY, acenaphthylene; ANA, acenaphthene; FLU,
fluorene; PHA, phenanthrene; ANT, anthracene; FLA, fluoranthene; PYR,
pyrene; BAA, benz[a]anthracene; C/T, chrysene/triphenylene; BBF,
benzo[b]fluoranthene; BKF, benzo[k]fluoranthene; BEY, benzo[e]pyrene;
BAY, benzo[alpyrene; INP, indenopyrene; BGP, benzo[g, 4, ilperylene;

DAN, dibenz[a, #]anthracene.
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Polycyclic aromatic hydrocarbon (PAH)
Figure 8: Average concentrations of selected polycyclic aromatic hydrocarbons

in Sydney Tar Pond biota. Error bars represent the standard error.
Compound identification: NAP, naphthalene; ANY, acenaphthylene;
ANA, acenaphthene; FLU, fluorene; PHA, phenanthrene; ANT,
anthracene; FLA, fluoranthene; PYR, pyrene; BAA, benz[a]anthracene;
C/T, chrysene/triphenylene; BBF, benzo[b]fluoranthene; BKF,
benzo[k]fluoranthene; BEY, benzo[e]pyrene; BAY, benzo[a]pyrene; INP,

indenopyrene; BGP, benzo[g, 4, i]lperylene; DAN, dibenz[a, h]anthracene.
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Sydney Tar Ponds, Nova Scotia.

4

The distribution of parasites in/on Fundulus heteroclitus from two

Cape Breton reference sites, Mira River and River Ryan, and the
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Appendix A: Ecology of Selected Parasites of Fundulus

heteroclitus from Nova Scotia, Canada.

Outline:
Al. Neoechinorhynchus spp. (Acanthocephalan)
A2. Proteocephalus spp. (Cestode)
A3. Argulus spp. (Parasitic Crustacean)
A4, Ergasilus manicatus (Parasitic Crustacean)

AS. Homalometron pallidum (Trematode)
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Al. Neoechinorhynchus spp. (Acanthocephalan)

Species previously found in Fundulus heteroclitus (mummichog) from the East coast of
North America:
adult stage  Neoechinorhynchus rutili (Newfoundland, Canada, Dickson and
Threlfall, 1975)
cystacanth N, cylindratus (Nova Scotia, Canada, Marcogliese, 1995), N.
rostratum (Maine, USA, Manter, 1926; Massachusetts, USA,

Amin and Bullock, 1998)

Characteristics:

Neoechinorhynchus spp. are generally 1-2cm long (Amin and Bullock, 1998,
Crompton, 1970; Marcogliese, 1995; Roberts and Janovy Jr., 2000). Males tend to be
smaller than females of the same species. Their body is unsegmented with a holdfast, the
proboscis, at the anterior end. The proboscis allows the adult acanthocephalan to attach
its self to the intestine of its host. Larval acanthocephalans are typically found in the liver
of its host (Amin and Bullock, 1998; Crompton, 1970; Marcogliese, 1995; Roberts and

Janovy Jr., 2000).

Lifecycle:

Fertilized eggs are released with the feces from the definitive host (Lassiere and
Crompton, 1988; Hopp, 1954; Schmidt, 1985). An egg is ingested by an intermediate
host, which is typically an ostracod crustacean. The ingested egg hatches to release an

acanthor, a larval acanthocephalan. The acanthor develops into an acanthella, the second
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larval stage. After this point in the life cycle two different life histories may occur.
Firstly, the ostracod may be consumed by a fish. The acanthella will penetrate the gut of
the fish and develop into a cystacanth, the third larval stage. Even though parasite
development occurs in this fish it is not considered an intermediate host. The fish is not
necessary for the development of the parasite; therefore, the fish is considered a
paratenic host. This fish is consumed by another fish, wherein the cystacanth develops
into the adult stage. Secondly, in the ostracod the acanthella may develop into a
cystacanth. The cystacanth is then consumed by a fish. In this case, the acanthocephalan
reaches sexual maturity in the first fish infected (Lassiere and Crompton, 1988; Hopp,

1954; Schmidt, 1985).

Potential Hosts:

The ostracod species Cypria globula, Cypria maculate, and Cypridopsis vidua, are
established intermediate hosts in this acanthocephalan life cycle (Hopp, 1954; Walkey,
1967; Ward, 1940). A diversity of paratenic hosts may be utilized in transmission. Ward
(1940) studied the lifecycle of Neoechinorhynchus cylindratus. She found the infected
ostracods were ingested by the bluegill sunfish, Lepomis macrochirus, which is in turn
consumed by final hosts such as piscivorous basses (Micropterus spp.). Since bass and
other piscivorous fishes generally do not prey on ostracods, and are more likely to prey on
bluegill sunfish, the bluegill sunfish is considered a paratenic host in this lifecycle. In the
lifecycle of N. emydis, snails may act as a paratenic host. Hopp (1954) found that snails,
Campeloma rufum, may ingest infected ostracods. Map turtles, Graptemys geographica,
consume a large amount of snails in their diet, which infected turtles with N. emydis.

Lassiere and Crompton (1988) found adult N. rutili in brown trout, Salmo trutta, and
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three-spined sticklebacks, Gasterosteus aculeatus. They observed that uninfected brown
trout which fed on infected three-spined sticklebacks would become infected. Therefore,

sticklebacks may act as a vector to infect other fish species.
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A2. Proteocephalus spp. (Cestode)

Species previously found in F. heteroclitus from the East coast of North America:
immature Proteocephalus sp. (Virginia, USA, Harris and Vogelbein, 2006;
Newfoundland, Canada, Dickinson' and Threlfall, 1975)
Proteocephalus macrocephalus (Nova Scotia, Canada,

Marcogliese, 1995)

Characteristics:

Like other cestodes, Proteocephalus spp. are segmented with both male and
female reproductive organs in each segment called a proglottid (Roberts and Janovy Jr.,
2000). Cestodes attach to their hosts by an attachment organ called a scolex.
Proteocephélus spp. are often characterized by a four suckered scolex (Roberts and

Janovy Jr., 2000).

Lifecycle:

The release of cestode eggs from the definitive host and into the aquatic
environment may occur in a number of ways (Mackiewicz, 1988; Scholz, 1999).
Firstly, the eggs may be directly released into the intestine of the fish, and the eggs are
excreted with the fish waste. Secondly, a fragment of the cestode may be released into
the aquatic environment. Thirdly, Proteocephalus spp. may protrude part of their body
from the fish’s anus and expel eggs directly into the water. Once the eggs are released
into the water, the eggs increase in volume; this allows the eggs to float on the water

surface, which increases the likelihood of egg ingestion by pelagic copepods, the
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intermediate host. After an egg has been ingested the oncosphere, the first larval stage, is
rapidly released from the egg. The oncosphere penetrates the gut and into the body cavity
of the copepod. It is there that the oncosphere develops into a metacestode (also known
as a plerocercoid). The infected copepod is ingested by a fish. The fish may be a
paratenic or definitive host. If the fish is a paratenic host, Proteocephalus spp. will not
grow or reach sexual maturity. If the fish is a definitive host, Proteocephalus spp. will

grow and develop to sexual maturity in the intestine (Mackiewicz, 1988; Scholz, 1999).

Potential Hosts:

The majority of known intermediate hosts of Proteocephalus spp. belong to the
order Copepoda (families Diaptomidae and Cyclopidae; Scholz, 1999). These are pelagic
copepods, which feed primarily on free-floating, surface phytoplankton (Pechenik, 2000).
Willemse (1968) suggested that organisms from the order Copepoda are attracted to the
free-floating eggs of Proteocephalus spp. Small fish may act as paratenic hosts.
Proteocephalus spp have been found to reach high abundances in small prey fish. The
definitive host, a larger fish, were then exposed to high concentrations of Proteocephalus

spp. from consuming the paratenic host (Scholz, 1999).
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A3. Argulus spp. (Parasitic Crustacean)

Species previously found on Fundulus heteroclitus from the east coast of North America:
Argulus funduli New Brunswick, Canada, Bere, 1930; Rhode Island, USA,
Mulkana, 1966

Argulus megalops Massachusetts, USA, Wilson, 1904

Characteristics:

Argulus spp. are commonly known as sea lice. In healthy ecosystems, Argulus
spp. are often found at low prevalences (Pickering and Willoughby, 1977). In highly
enclosed areas, such as aquaculture farms, Argulus spp. may reach high prevalences.
Argulus spp. require the blood of its fish host for subsistence. Unlike many other parasite
species, Argulus spp. are able to unattach from one host and attach to another host. Thus
Argulus spp. may feed on many different fish hosts. Their feeding produces ulcerated
blood lesions, which can leave the fish open to fungal and/or bacterial infections

(Pickering and Willoughby, 1977).

Lifecycle:

The male and female adult Argulus spp. may mate on the fish host, in the water
column, or on an aquatic substrate (Bower-Shore, 1940; Hakalahti et al., 2004). The
female lays eggs on substrata. All of the larval nauplius stages occur within the egg.
After the Argulus spp completes the various nauplius development stages, a juvenile

Argulus spp emerges. This larval stage is a smaller version of the adult Argulus spp. The
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juvenile Argulus spp. seeks out a suitable fish host for feeding and maturity to adult stage

(Bower-Shore, 1940; Hakalahti et al., 2004).

Potential Hosts:

Argulus spp. are not very host-specific (Pasternak et al., 2000). They can infect a
diversity of fishes. On a study of fish parasites in Lake Huron, Bangham (1955) found
Argulus spp. on lake herring (Leucichthys 4. artedi) and trout perch (Percopsis

omiscomaycus).
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AA4. Ergasilus manicatus (Parasitic Crustacean)

Species previously found on Fundulus heteroclitus from the east coast of North America:
Ergasilus manicatus Massachusetts, USA, Roberts, 1970; Virgina, USA,
Zwerner and Lawler, 1972; Maryland, USA, Barse, 1998

Ergasilus funduli Virgina, USA, Harris and Vogelbein, 2006

Characteristics:

Ergasilus spp. are found on the gills of many freshwater and marine fishes. The
females have modified antennae which allow them to strongly attach to a gill filament of
the fish. Females are larger than males, but are the only sex found on fish gills. Males
are found in the water column and have not been reported to parasitize fishes (Kabata,

1979; Roberts and Janovy, 2000; Wilson, 1911).

Lifecycle:

Ergasilus spp. metamorphose only during the free-living stages of the life cycle
(Roberts and Janovy, 2000; Wilson, 1911). It is thought that the females are fertilized by
the males in an early free-living larval stage of the life cycle. The spermatophores from
the male are stored in order to fertilize all the eggs the female produces throughout her
adult life. All of the eggs in the female’s egg sacs hatch at the same time. The nauplii
leave the egg sacs and over time undergo a series of moults to form three naupliar and

five copepodid free-living larval stages (Roberts and Janovy, 2000; Wilson, 1911).
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Potential Hosts:

Ergasilus spp. are found on a diversity of fishes. Bere (1930) found E. manicalus
on whitebait (Menidia notata), rainbow smelt (Osmerus mordax) and E. centrachidarum
on Atlantic tomcod (Microgadus tomcod). Bere (1936) found Ergasilus lizae on
mummichog (F. heteroclitus) and striped mullet (Mugil cephalus). Mueller (1937) found
Ergasilus spp. on largemouth bass (Aplites salmonidae), bullhead (Ameiurus spp.), and

forktail catfish (Jctalurus spp.).
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AS. Homalometron pallidum (Trematode)

Species previously found on Fundulus heteroclitus from the east coast of North America:
adult stage = Canadian Atlantic, Stafford, 1904; Maine, USA, Manther, 1926;
Nova Scotia, Canada, Fantham and Porter, 1948; Newfoundland,

Canada, Dickinson and Threlfall, 1975

Characteristics:

This trematode was first found in the intestine of F. heteroclitus (Stunkard, 1964).
It is found in the intestines of fishes from marine, brackish, and freshwater. In Fundulus
spp. sometimes high levels of larval H. pallidum was observed, but generally not more

than two or three adult trematodes developed (Stunkard, 1964).

Lifecycle:

The life cycle of H. pallidum was described by Stunkard (1964). Eggs are
released from the definitive host. From the egg a free-swimming larval stage, called the
miracidium emerges. The miracidium penetrates a snail, the first intermediate host. In
the snail, the miracidium metamorphoses into a sporocyst. Inside the sporocyst, the
embryos develop into rediae. Each rediae may then produce one or more daughter rediae.
The development of rediae and daughter rediae allows the development of many
cercariae, free-living larval trematodes, by the process of ase*ual reproduction. Cercariae
are released from the snail. Cercariae seek out and penetrate the second intermediate

host, which is often a fish, where the parasite encysts as a metacercariae. The definitive
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host feeds on either the second intermediate host or a paratenic host and the metacercariae

matures into the adult stage.

Potential Hosts:

Like most trematodes, the first intermediate host is a snail such as Hydrobia
minuta (Roberts and Janovy, 2000; Stunkard, 1964). Stunkard (1964) found encysted
metacercarial H. pallidum stages in Gemma gemma and H. minuta. He also found that
small polychaete worms could act as paratenic hosts and have encysted metacercarial A.
pallidum stages as well. Adult H. pallidum can be found in mummichog (F. heteroclitus)
and other fish species such as northern kingfish (Menticirrhus saxatilis), Morone
americana, white perch (Pseudopleuronectes americanus), tautog (Tautoga onitis), silver
perch (Bairdiella chrysura), and spot (Leiostomus xanthurus) (Cribb and Bray, 1999;

Linton, 1940; Manter, 1931).
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Appendix B: Raw data from Polycyclic Aromatic

Hydrocarbons (PAHs) Analysis in Sediment and Biota

Outline:
B1. Raw data for sediments
Table B1: Calculated concentrations of selected polycyclic aromatic
hydrocarbons (PAHs) from Mira River and River Ryan.
Table B2: Calculated concentrations of selected polycyclic aromatic
hydrocarbons (PAHs) from the North and South Tar Ponds, Nova

Scotia.

B2. Raw data for biota

Table B3: Calculated concentrations of selected polycyclic aromatic
hydrocarbons (PAHs) in European green cbrab (Carcinus maenas)
from Mira River and River Ryan.

Table B4: Calculated concentrations of selected polycyclic aromatic
hydrocarbons (PAHSs) in European green crab (Carcinus maenas)
from the Sydney Tar Ponds.

Table BS: Calculated concentrations of selected polycyclic aromatic
hydrocarbons (PAHS) in grass shrimp (Palaemonetes species) from
Mira River and River Ryan.

Table B6: Calculated concentrations of selected polycyclic aromatic
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hydrocarbons (PAHs) in grass shrimp (Palaemonetes species) from
the Sydney Tar Ponds.

Table B7: Calculated concentrations of selected polycyclic aromatic
hydrocarbons (PAHs) in American eel (4nguilla rostrata) from
Mira River.

Table B8: Calculated concentrations of selected polycyclic aromatic
hydrocarbons (PAHs) in American eel (4nguilla rostrata) from the
Sydney Tar Ponds.

Table B9: Calculated concentrations of selected polycyclic aromatic
hydrocarbons (PAHS) in mummichog (Fundulus heteroclitus) from
Mira River and River Ryan.

Table B10: Calculated concentrations of selected polycyclic aromatic
hydrocarbons (PAHs) in mummichog (Fundulus heteroclitus) from

the Sydney Tar Ponds.

B3. Lipid analysis of biota
Table B11: Lipid content of biota analyzed for polycyclic aromatic

hydrocarbons (PAHs).

B4. Lipid adjusted biota concentrations
Table B12: Calculated lipid adjusted concentrations of selected
polycyclic aromatic hydrocarbons (PAHs) in European green crab
(Carcinus maenas) and American eel (Anguilla rostrata) from the

Sydney Tar Ponds.
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Table B13: Calculated lipid adjusted concentrations of selected
polycyclic aromatic hydrocarbons (PAHs) in mummichog
(Fundulus heteroclitus) from River Ryan and the Sydney Tar

Ponds.
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Appendix C: Raw data from Fundulus spp.

Parasitological Analysis

Outline:
C1. Biological data of Fundulus spp. used in parasitological analysis
Table C1: Biological data of Fundulus spp. (n = 53) from Sydney Tar
Ponds used in parasitological analysis.
Table C2: Biological data of Fundulus spp. (n = 69) from River
Ryan used in parasitological analysis.
Table C3: Biological data of Fundulus spp. (n = 64) from Mira River

used in parasitological analysis.

C2. Raw data of parasites found in Fundulus spp.

Table C4: Parasites found in Fundulus spp (n = 53) from the Sydney Tar
Ponds.

Table CS: Ectoparasites found in Fundulus spp. (n = 69) from River
Ryan.

Table C6: Endoparasites and the total number of parasites found in
Fundulus spp. (n = 69) from River Ryan.

Table C7: Ectoparasites found in Fundulus spp. (n = 64) from Mira
River.

Table C8: Endoparasites and the total number of parasites found in

Fundulus spp. (n = 64) from Mira River.
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C1. Biological data of Fundulus spp. used in parasitological analysis

Table C1: Biological data of Fundulus spp. (n = 53) from Sydney Tar Ponds used
in parasitological analysis. TL, total length; SL, standard length;

FUNHET; Fundulus heteroclitus; FUNUID, Fundulus spp.

Fish ID Sex TL SL Weight Plump Species
(M/F) (mm) (mm) (g) (mm)
SYPOO1 F 84.29 68.89 6.97 14.79 FUNHET
SYPOO02 M 64.5 53.51 2.76 11.24 FUNHET
SYPOO03 F 51.2 42.26 1.8 8.56 FUNUID
SYPO0O4 F 49.36 41.59 1.81 9.71 FUNUID
SYPOO5 M 41.27 33.88 0.87 7.32 FUNHET
SYPOO06 M 51.04 40.71 1.72 9.92 FUNHET
SYPOO07 F 51.66 42.8 1.86 8.45 FUNUID
SYPOOS8 F 89.51 70.97 8.3 13.67 FUNHET
SYPO09 M 54.01 45.27 1.78 9.56 FUNHET
SYPO10 F 51.85 42.85 1.87 8.62 FUNHET
SYPO11 F 49.29 41.11 1.62 7.82 FUNHET
SYPOI12 F 50.76 43.79 1.68 7.98 FUNHET
SYPOS1 F 56.6 4523 2 9.75 FUNHET
SYPO52 F 51.87 44.63 1.8 8.55 FUNHET
SYPO100 M 59.94 50.23 2.30 9.90 FUNHET
SYPO101 M 51.87 43.76 1.83 9.70 FUNHET
SYPO102 M 55.65 46.04 2.17 9.61 FUNHET
SYPO103 M 47.1 38.84 1.22 7.96 FUNHET
SYPO104 M 51.24 42.42 1.51 8.40 FUNHET
SYPO105 F 61.53 52.2 3.55 10.59 FUNHET
SYPO106 M 43.7 36.17 0.90 6.91 FUNHET
SYPO107 F 95.32 79.5 12.09 18.20 FUNHET
SYPO108 M 61.93 51.71 2.60 10.79 FUNHET
SYPO109 M 53.98 43.07 1.51 9.48 FUNHET
SYPO110 M 50.1 42.74 1.49 8.38 FUNHET
SYPO111 M 55.15 47.55 1.97 9.65 FUNHET
SYPO112 M 39.42 33.86 0.66 5.81 FUNHET
SYPO113 M 54.11 45.44 1.86 9.04 FUNHET
SYPO114 M 45.84 37.13 1.13 5.34 FUNHET
SYPO150 F 72.48 62.24 495 11.69 FUNHET
SYPO151 F 74.01 61.80 5.25 11.06 FUNHET
SYPO152 M 63.68 52.69 3.34 11.35 FUNHET
SYPO153 M 72.92 61.98 5.03 12.34 FUNHET
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Table C1 (continued): Biological data of Fundulus spp. (n = 53) from Sydney Tar

Ponds used in parasitological analysis. TL, total length; SL, standard

length; FUNHET; Fundulus heteroclitus; FUNUID, Fundulus spp.

Fish ID Sex TL SL Weight Plump Species
(M/F) (mm) (mm) (g) (mm)
SYPO154 F 66.66 55.69 3.62 10.56 FUNHET
SYPOI155 F 56.94 47.45 2.06 8.82 FUNHET
SYPO156 M 51.89 43.36 1.71 8.31 FUNHET
SYPO157 F 53.92 4543 1.87 7.86 FUNHET
SYPO158 F 46.53 38.23 1.31 7.52 FUNUID
SYPO159 M 53.74 45.14 1.99 9.24 FUNHET
SYPO160 M 55.78 48.67 2.21 9.14 FUNHET
SYPO161 F 53.15 42.46 1.66 7.71 FUNHET
SYPO162 M 50.14 41.47 1.38 7.40 FUNHET
SYPO163 M 50.53 43.43 1.62 8.09 FUNHET
SYPO164 F 51.07 44.18 1.57 7.52 FUNHET
SYPO165 F 52.11 4537 1.87 8.56 FUNHET
SYPO166 F 51.00 4426 1.60 7.34 FUNHET
SYPO167 M 42.29 36.98 0.89 6.32 FUNHET
SYPO168 M 45.03 38.32 1.06 6.87 FUNHET
SYPO169 F 51.02 44.02 1.79 7.92 FUNHET
SYPO170 F 45.06 37.87 1.2 6.89 FUNHET
SYPO171 M 4594 39.05 1.28 7.65 FUNHET
SYPO172 F 44 85 37.61 1.09 7.31 FUNHET
SYPO173 F 46.05 38.82 1.21 7.55 FUNHET
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Table C2: Biological data of Fundulus spp. (n = 69) from River Ryan used in
parasitological analysis. TL, total length; SL, standard length; FUNHET,

Fundulus heteroclitus; FUNUID, Fundulus spp.

Fish ID Sex TL SL Weight Plump Species
(M/F) (mm) (mm) (8) (mm) :

RIRY01 M 70.9 57.92 4.98 14.3 FUNHET
RIRYO02 M 63.37 50.97 3.2 11.95 FUNHET
RIRY03 M 67.07 55.57 345 10.95 FUNHET
RIRY04 M 43.18 34.94 0.87 8.11 FUNHET
RIRYO05 M 80.06 67.17 6.96 15.17 FUNHET
RIRYO07 M 66.17 54.99 4.03 12.61 FUNHET
RIRYO08 F 49.08 38.01 1.48 8.05 FUNHET
RIRY10 F 34 .45 28.27 0.41 4.99 FUNHET
RIRY11 F 45.44 38.11 1.07 6.94 FUNHET
RIRY12 M 40.83 33.43 0.77 6.43 FUNHET
RIRY13 F 88.46 74.09 10.49 16.22 FUNHET
RIRY14 M 46.62 38.01 1.1 7.56 FUNHET
RIRY15 F 41.99 34.96 0.8 6.41 FUNHET
RIRY16 F 75.21 64.45 6.28 14.08 FUNHET
RIRY17 F 50.3 41.14 1.65 8.68 FUNHET
RIRY18 F 80.76 68.25 6.71 13.93 FUNHET
RIRY19 F 95.18 81.16 13.05 19.09 FUNHET
RIRY20 M 71.64 59.88 43 12.54 FUNHET
RIRY21 F 46.87 394 1.16 7.64 FUNHET
RIRY22 M 42.19 33.62 0.82 7.25 FUNHET
RIRY23 M 91.56 76.3 10.19 18.13 FUNHET
RIRY24 F 44.85 36.77 0.99 7.56 FUNHET
RIRY?25 F 50.98 41.05 1.63 9.23 FUNHET
RIRY?26 M 38.8 32.49 1.74 6.54 FUNHET
RIRY?27 F 41.98 34.82 0.74 6.62 FUNUID
RIRY28 F 82.67 68.52 7.74 15.57 FUNUID
RIRY29 F 66.07 54.49 3.38 12.24 FUNUID
RIRY30 M 39.82 314 0.68 6.21 FUNUID
RIRY50 F 49.7 41.82 1.49 8.11 FUNUID
RIRYS1 F 103.32 89.82 18.41 20.82 FUNHET
RIRY52 F 49.63 40.33 1.43 7.13 FUNHET
RIRY53 M 48.64 40.25 1.49 7.88 FUNHET
RIRY54 M 52.17 42.78 1.99 9.13 FUNHET
RIRYS55 M 50.02 41 1.55 8.8 FUNHET
RIRY56 F 55.51 45.63 2.2 9.31 - FUNHET
RIRYS57 F 59.47 50.3 3.16 10.1 FUNHET
RIRY58 M 75.42 61.53 5.69 13.9 FUNHET
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Table C2 (continued): Biological data of Fundulus spp. ( n = 69) from River Ryan
used in parasitological analysis. TL, total length; SL, standard length;

FUNHET; Fundulus heteroclitus; FUNUID, Fundulus spp.

Fish ID Sex TL SL Weight Plump Species
(M/F) (mm) (mm) (g) (mm)
RIRY59 M 80.3 64.5 6.48 20.71 FUNHET
RIRY60 F 57.4 478 291 11.9 FUNHET
RIRY61 F 51.7 43.5 1.7 8.6 FUNHET
RIRY62 F 56 47.5 2.59 12.3 FUNHET
RIRY63 F 50.8 43 1.35 7.5 FUNUID
RIRY64 M 55 46.5 2.56 10.5 FUNHET
RIRY65 F 61.3 50.9 2.87 11.5 FUNHET
RIRY66 F 53 45.1 2.38 10.5 FUNHET
RIRY67 F 52.1 46.9 1.98 10.4 FUNHET
RIRY68 M 49.1 40.9 1.45 7.1 FUNHET
RIRY69 M 50.8 44 2.1 10.1 FUNHET
RIRY100 F 69.78 58.39 5.08 11.3 FUNHET
RIRY101 M 61.04 51.78 3.08 11.22 FUNHET
RIRY102 F 65.11 55.12 3.327 10.13 FUNUID
RIRY103 F 73.9 61.72 5.26 12.71 FUNHET
RIRY104 M 73.62 61.74 5.59 12.67 FUNHET
RIRY105 M 63.21 52.26 3.34 10.37 FUNHET
RIRY106 M 70.8 57.46 4.8 13.01 FUNHET
RIRY107 M 74.0 60.51 4.62 14.87 FUNHET
RIRY108 M 42.0 35.28 0.89 7.70 FUNHET
RIRY109 F 68.58 57.83 4.04 11.28 FUNHET
RIRY110 F 59.59 49.79 2.75 10.03 FUNHET
RIRY111 M 71.68 57.99 4,77 12.35 FUNHET
RIRY112 F 61.85 50.62 3.23 10.08 FUNHET
RIRY113 M 445 37.12 1.05 6.89 FUNHET
RIRY114 M 61.35 50.96 3.14 10.36 FUNHET
RIRY115 M 56.3 45.7 2.48 948 FUNHET
RIRY116 F 64.01 53.78 3.39 10.46 FUNHET
RIRY117 M 57.79 48.28 2.66 10.42 FUNHET
RIRY118 F 69.89 58.57 4.28 11.06 FUNHET
RIRY119 F 73.86 62.70 5.77 11.93 FUNHET
RIRY120 F 46.34 37.72 1.18 7.90 FUNHET
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Table C3: Biological data of Fundulus spp. (n =64) from Mira River used in
parasitological analysis. TL, total length; SL, standard length; FUNHET;

Fundulus heteroclitus; FUNUID, Fundulus spp.

Fish ID Sex TL SL Weight Plump Species
(M/F) (mm) (mm) (g) (mm)

MIRIO1 F 46.86 37.77 1.48 7.7 FUNUID
MIRIO3 M 58.77 47.42 2.62 10.63 FUNHET
MIRI04 F 47.01 38.25 1.5 8.94 FUNHET
MIRI05 F 74.95 62.32 6.13 14.44 FUNHET
MIRI07 F 52.45 43.34 1.9 9.2 FUNUID
MIRI08 F 64.28 523 4.18 12.92 FUNHET
MIRI09 M 49.99 41.46 1.63 8.92 FUNHET
MIRI10 M 51.7 41.43 1.8 9.57 FUNHET
MIRI11 F -- 65.06 6.69 14.42 FUNHET
MIRI12 F 57.66 45.86 2.66 9.36 FUNUID
MIRI13 M 51.83 41.37 1.59 8.03 FUNHET
MIRI114 M 68.79 56.49 4.43 13.53 FUNHET
MIRI15 F 5047 41.01 1.5 8.15 FUNHET
MIRI16 F 57.53 46.11 2.43 9.6 FUNHET
MIRI17 F - 42 .84 1.65 9.36 FUNHET
MIRI18 F 55.76 46.75 2.41 9.53 FUNHET
MIRI19 F - 64.61 6.33 14.11 FUNHET
MIRI20 M 73.33 60.69 5.17 14.32 FUNHET
MIRI21 F 51.31 432 1.87 9.4 FUNHET
MIRI22 F 53.73 45.48 2.03 9.11 FUNHET
MIRI23 F 47.47 37.78 1.18 7.68 FUNHET
MIRI124 F 55.36 45.36 2.29 10.19 FUNHET
MIRI26 M 53 42.39 1.62 8.52 FUNHET
MIRI27 F 59.18 43.8 2.94 11.16 FUNHET
MIRI28 M 68.79 58.87 4.82 12.99 FUNHET
MIRI29 F 60.79 50.04 3.04 11.21 FUNHET
MIRI30 F 54.96 44.61 2.21 10.41 FUNHET
MIRI31 F 56.03 45.68 2.5 6.11 FUNHET
MIRI32 F 63.88 51.75 3.57 10.47 FUNHET
MIRI33 ‘M 57.1 45.37 2.54 10.71 FUNHET
MIRI34 F 62.53 49.96 3.71 12.58 FUNHET
MIRI35 F 53.02 43.87 1.92 9.46 FUNHET
MIRIS0 F 62.46 52.14 3.19 11.37 FUNHET
MIRI51 F 67.29 55.6 4.57 12.61 FUNHET
MIRI52 F 106.1 87.91 20.36 21.85 FUNHET
MIRI53 F 56.11 45.89 2.11 9.19 FUNUID
MIRI54 M 53.18 43.7 1.95 9.18 FUNHET
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Table C3 (continued): Biological data of Fundulus spp. (n = 64) from Mira River
used in parasitological analysis. TL, total length; SL, standard length;

FUNHET; Fundulus heteroclitus; FUNUID, Fundulus spp.

Fish ID Sex TL SL Weight Plump Species
(M/F) (mm) (mm) (g (mm)

MIRISS M 66.73 52.82 3.71 12 FUNHET
MIRI56 F 61.73 52.45 3.2 10.79  FUNHET
MIRI57 F 64.8 51.82 3.48 10.89  FUNHET
MIRI58 F 54.58 43.19 1.76 8.73 FUNHET
MIRI59 M 52.15 42.67 1.64 8.24 FUNHET
MIRI60 M 55.93 45.07 2.55 10.83  FUNHET
MIRI61 F 56.33 46.83 247 9.42 FUNHET
MIRI62 F 53.58 44.28 2.12 9.18 FUNHET
MIRI63 M 59.59 50.24 2.69 1022  FUNHET
MIRI64 F 66.38 53.76 4.07 11.32  FUNHET
MIRI65 M 54.14 44.69 2.01 8.97 FUNHET
MIRI100 F 72.95 61.43 5.39 11.78  FUNHET
MIRI101 M 93.99 78.58 11.43 17.21 FUNHET
MIRI102 F 101.13 84.55 14.08 18.41 FUNHET
MIRI103 F 91.43 77 .44 11.781 18.11 FUNHET
MIRI104 F 102.02 85.82 16.5 18.85  FUNHET
MIRI105 M 65.53 54.92 3.5 10.27  FUNHET
MIRI106 M 100.7 85.28 15.18 19.49  FUNHET
MIRI107 M 73.22 61.23 4.94 12.76 ~ FUNHET
MIRI108 F 76.8 63.77 6.07 12.82  FUNHET
MIRI109 F 37.06 30.82 0.59 5.56 FUNHET
MIRI110 F 95.28 82.45 13.57 18.37  FUNHET
MIRI111 F 79.09 64.88 6.51 13.59  FUNHET
MIRI112 F 83.74 70.07 7.83 1427  FUNHET
MIRI113 - F 84.66 71.46 9.48 1556  FUNHET
MIRI115 F 77.58 64.56 6.03 12.85  FUNHET
MIRI117 M

66.41 55.06 3.812 12.62 FUNHET
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Appendix D: Raw Data from American eel (Anguilla rostrata)

Parasitological Analysis

Outline:
D1. Biological data of American eel (4dnguilla rostrata) used in parasitological
analysis
Table D1: Biological data of American eel (Anguilla rostrata) used in
parasitological analysis and the total number of parasites found in 4.

rostrata.

D2. Raw data of Parasites Found in American eel (4nguilla rostrata)
Table D2: Ectoparasites found on Anguilla rostrata from the North
Tar Pond, Mira River, and Sydney Harbour.
Table D3:  Endoparasites found in Anguilla rostrata from the North

Tar Pond, Mira River, and Sydney Harbour.
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D1. Biological data of American eel (dnguilla rostrata) used in parasitological

analysis
Table D1: Biological data of American eel (Anguilla rostrata) used in
parasitological analysis and the total number of parasites found in 4.
rostrata.
Total
Site FishID  Length Weight Plump TOTAL
# #
(mm) (2) (mm) parasites species

North Tar Pond SYPO13 395 94.59 19 4 1
(n=6) SYPO14 316 38.46 11.6 0 0
SYPO15 -- - - 6 2
SYPOXX 605 - - 1 1
SYPO17 - -- - 1 1
SYPOS50 532 261.3 35.5 0 0
Mira River MIRI36 - 76.63 14.5 4 2
(n=10) MIRI 37 459 149.67 19.7 2 1
MIRI38 388 100.25 19.8 1 1
MIRI39 319 43.71 12.9 3 1
MIRI66 344 62.54 14.8 3 2
MIRI101 317 51.95 18.46 7 1
MIRI102 260 26.18 13.99 4 2
MIRI103 322 45.07 18.57 52 4
MIRI104 255 23.17 14.52 0 0
MIRIXX -- - - 1 1
Sydney Harbour =~ WEPAOI 43.8 84.97 20.12 0 0
(n=15) WEPAO02 484 129.98 23.73 0 0
WEPAO3 384 72.36 21.08 13 2
WEPAO04 48.1 161.83 27.22 1 1
WEPAOQS 374 69.05 19.70 0 0
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D2. Raw data of parasites found in American eel (4nguilla rostrata)

Table D2: Ectoparasites found on Anguilla rostrata from the North Tar Pond,

Mira River, and Sydney Harbour. UID: unidentified

Organ: Gill Gill
Parasite UID Parastic Pseudodactylogyurus
Species: Copepod anguillae
Site Fish ID
North Tar Pond  SYPOI3 0 0
(n=16) SYPO14 0 0
SYPO15 0 3
SYPOXX 0 0
SYPO17 0 0
SYPOS50 0 0
Mira River MIRI36 0 0
(n=10) MIRI 37 0 0
MIRI38 0 0
MIRI39 0 0
MIRI66 0 0
MIRI101 0 0
MIRI102 3 1
MIRI1103 0 3
MIRI104 0 0
MIRIXX 0 0
Sydney Harbour WEPAO1 0 0
n=Y5) WEPAO02 0 0
WEPAO03 0 0
WEPA04 0 0
WEPAOS 0 0
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