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Parasite Populations and Polycyclic Aromatic Hydrocarbons (PAHs) in Biota from the 

Sydney Tar Ponds, Cape Breton, Nova Scotia, Canada: Investigation of Potential Long-

term Biomonitors 

By: Lydia Sabrina Rockwell Thompson 

Abstract 

Historical industrialization around the Sydney Tar Ponds resulted in contaminated 

water and sediment. This study determined baseline levels of polycyclic aromatic 

hydrocarbons (PAHs) in sediments and biota from the Tar Ponds and explored the use of 

a diversity of resident organisms as potential biomonitors of remediation. European 

green crab {Carcinus maenas) and grass shrimp (Palaemonetes spp.) were found to 

accumulate a greater number and concentration of PAHs than American eel {Anguilla 

rostrata) and mummichog (Fundulus heteroclitus). Of the biota sampled, Carcinus 

maenas are suggested to be the best biomonitor. The diminished parasite levels of F. 

heteroclitus, found in the Tar Ponds, are also an effective biomonitor. As remediation of 

the Tar Ponds proceeds, it is proposed that the levels of parasites will increase to a 

healthy level. 
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Condition Factor (K): 

in parasitology, it is the number of individual parasites of a 
particular species found in one fish whether or not the host is 
infected (Bush et ai, 1997). 

(Phylum: Acanthocephala) are endoparasites commonly 
known as thorny-head worms and are found as adults in its 
host's digestive system. Their life cycle requires at least two 
hosts, such as an arthropod (or insect) and a fish (Roberts 
and Janovy, 2000). 

in sediments, this is the phenomenon when the 
bioavailability of organic contaminants in soils and 
sediments decreases over time and there is no net change of 
the contaminant concentration (Lu et ai, 2006; Semple et ah, 
2003; White ef ai, 1999). 

is the process by which contaminants are degraded by 
biological means, such as microorganisms (Atlas and Bartha, 
1998; Newman and Unger, 2003). 

is also referred to as soot or charcoal particles and is a type 
of carbonaceous material generally formed from incomplete 
combustion of biomass and fossil fuels (Cornelissen and 
Gustafsson, 2004, 2005; Cretney and Yunker, 2000) 

is the fraction of the total contaminant concentration for 
uptake into an organism (Newman and Unger, 2003). 

is the microbial metabolism or breakdown of a compound, 
which often produces energy for other microbial activities 
(Atlas and Bartha, 1998). 

(Phylum: Platyhelminthes) are endoparasites commonly 
known as tapeworms and are found as adults in the digestive 
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definitive (or final) host (Roberts and Janovy, 2000). 

is a value used to compare the health of an organisms, where 
a higher K value corresponds to an healthier organism. K is 
calculated by the following equation (Moyle and Cech, 
2004): 

K = 100 X [total body weight (g)/(total length in cm)3] 
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Cytochrome P-450 
monooxygenase 

(CYP1A) system: 

Definitive host: 

Ectoparasites: 

Encyst: 

is a series of metabolic steps that decrease the 31 
hydrophobicity of contaminants by the attachment of 
hydroxyl (-OH) groups, which increases the organisms' 
ability to excrete contaminants from its body (Newman and 
Unger, 2003). 

this is the host where the parasite develops from a larval 40 
stage into an adult and reaches sexual maturity (Roberts and 
Janovy, 2000). 

are parasites, such as monogenes and parasitic copepods, 38 
which live on the gills, fins, and/or surface of the organism 
(Roberts and Janovy, 2000). 

this is the process by which a larval parasite forms protective 83 
coating around its self, which may allow the parasite to enter 
a resting stage (Roberts and Janovy, 2000) 

Endoparasites: are parasites, such as acanthocephalans, cestodes, 
trematodes, and nematodes, which live in or on the internal 
organs of the organism (Roberts and Janovy, 2000). 

38 

Free-living stage: 

Fugacity (/): 

Fugacity capacity (Z): 

Intermediate hosts: 

Interstitial water: 

a parasite larval form which is not found in a host. These 37 
larval forms are often encysted on vegetation or coated to 
protect the parasite from the environment (Roberts and 
Janovy, 2000). 

is a partial pressure (Pa) measurement of the leaving or 28 
escaping tendency of a compound from a particular phase 
(Mackay, 2004). 

is a measurement of the ability of an organism to 28 
bioaccumulate a contaminant, which is related to the lipid 
content of the organism and is inversely related to fugacity 
of the organism (Klosterhaus et al., 2002; Mackay, 2004; 
Russell et al, 1999). 

is an organism required for the development of the larval 37 
parasite (Roberts and Janovy, 2000). 

is water between and around sediment particles and is often 26 
higher in organic contaminant concentration compared to the 
concentration in the water column (Lu et al, 2004; Mitra and 
Dickhut, 1999). 
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Lipophilic: is a characteristic of many organic contaminants, such as 
PAHs and PCBs, which tend to accumulate in the lipids (or 
fat) of organisms (Horton et al., 2002; vanLoon and Duffy, 
2000). 

Monogenes: (Phylum: Platyhelminthes) are ectoparasites with highly 
adapted holdfasts for attachment to a specific host. Their life 
cycle typically only include one host (Roberts and Janovy, 
2000). 

24 

39 

Mean intensity: in parasitology, it is the mean total number of parasites per 
infected fish from one site (Bush et al., 1997). 

52 

Nematodes: (Phylum: Nematoda) are endoparasites with a digestive 
system. Their life cycle requires four moults to reach sexual 
maturity (Roberts and Janovy, 2000). 

40 

Non-point sources: 

Parasitic copepods: 

Paratenic host: 

Parts per billion 
(ppb): 

Parts per million 
(ppm): 

Prevalence: 

release contaminants which cannot be traced to one 25 
particular location. Long range transport of PAHs from 
highly contaminated sites via atmospheric circulation is a 
non-point source (Roche et al, 2002; Zhang et al, 2008). 

(Phylum: Arthropoda) are ectoparasites commonly found on 39 
the gills offish. Their life cycle has eight free living larval 
stages and one host (Roberts and Janovy, 2000) 

this is a host which bridges an ecological barrier and is not 212 
needed in parasite development. For example, paratenic 
hosts assist in transmitting the host from a lower to higher 
level in a food chain to increase the likelihood a parasite 
being consumed by either an intermediate or definitive host 
(Roberts and Janovy, 2000). 

is a measurement unit of trace contaminants; it is 
synonymous with the units ng/g, ug/kg and ug/L. 
1000ppb=lppm 

is a measurement unit of trace contaminants; it is 
synonymous with the units ug/g, mg/kg and mg/L. 
1000ppb=lppm 

in parasitology, it is the percentage offish infected with at 36 
least one parasite divided by the number of fish examined 
(Bush et al, 1997). 
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Point sources: 

H-Octanol/water 
partition coefficient 

(JT0W): 

Organic carbon/water 
partition coefficient 

(Koc): 

Sedimentary organic 
carbon: 

Toxic effects response 
low (ERL): 

Toxic effects response 
median (ERM): 

Typel 
Biomonitoring: 

Type 2 
Biomonitoring: 

release contaminants which originate from one location. 
Examples of point sources of PAH are industrial sites such 
as coke ovens or aluminum smelters (Avci et al., 2005; Mitra 
et al, 2002; Secco et al, 2005). 

is the concentration of a chemical in octanol (often n-
octanol) divided by the concentration of the same chemical 
in water at equilibrium and is a measure of the chemical 
partitioning from water into organisms (vanLoon and Duffy, 
2000). 

is the concentration of a chemical sorbed in or to sediment 
divided by the concentration of the same chemical in water 
at equilibrium and is used to describe the partitioning of 
organic chemicals between water and sediment (vanLoon 
and Duffy, 2000). 

is carbonaceous material which has not undergone 
combustion (Jonker and Koelmans, 2002). 

is a toxicological value which predicts that biota which live 
in environments with lower contaminant concentrations will 
rarely exhibit toxic effects (Wade et al, 2008). 

is a toxicological value which predicts that biota which live 
in environments with higher contaminant concentrations will 
often exhibit toxic effects (Wade et al, 2008). 

traces the change in species composition in an ecosystem 
(Walker^ al, 2001). 

traces the change in the chemical concentration in biota by 
either measuring the concentration in the organism or its 
dietary items (Walker et al, 2001). 

25 

Type 3 traces the toxicological effects induced, on or in the 
Biomonitoring: organism, by the contaminant (Walker et al., 2001) 

Type 4 traces the development of organismal genetic resistance as a 
Biomonitoring: biomonitor (Walker et al., 2001) 
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1. INTRODUCTION 

1.1 Sydney Tar Ponds 

The Sydney Tar Ponds is one of Canada's most contaminated sites (AMEC, 2005; 

Tay et ah, 2003), which is located in Sydney, Cape Breton, Nova Scotia. The Sydney Tar 

Ponds are composed of four parts: the North Tar Pond, the South Tar Pond, Coke Ovens 

Brook Connector, and the former Coke Ovens site (Figure 1). The North and South Tar 

Ponds are part of Muggah Creek, which empties into the South Arm of the Sydney 

Harbour (Figure 1). 

The Sydney Tar Ponds support a wide array of species. Terrestrial habitats 

surrounding the Tar Ponds support red fox (Vulpes vulpes), muskrat (Ondatra zibethicus), 

coyote (Canis latrans), and white tailed deer (Odocoileus virginianus) (AMEC, 2005). 

Many invertebrate and fish species, such as European green crabs (Carcinus maenas), 

blue mussels (Mytilus edulis), mummichogs (Fundulus heteroclitus), sticklebacks 

(Gasterosteus aculeatus, Gasterosteus wheatlandi, and Apeltes quadracus), American 

eels (Anguilla rostrata), tomcod (Microgadus tomcod), and brown bullheads (Ameiurus 

nebulosus) reside in the Sydney Tar Ponds or at the mouth of the North Pond where it 

empties into the Sydney Harbour (AMEC, 2005; Jones, 2007). 

Biological surveys on the Sydney Harbour are based mainly on fishery surveys 

(Vandermeulen, 1989). Several fish species, such as cod, mackerel, winter flounder 

(Pseudopleuronectes americanus), hake (Urophycis tenuis), and cunner (Tautoglobrus 

acesperus) have been caught there (Vandermeulen, 1989). Shrimp, mussels (Mytilus 

edulis and Modiolus modiolus) and lobster (Homarus americanus) are also found in the 

Sydney Harbour (Ernst et ah, 1999; Vandermeulen, 1989). Studies have indicated that 
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pollution released from the Sydney Tar Ponds into the Sydney Harbour has negatively 

impacted biota in the Sydney Harbour (Ernst et al, 1999; JWEL-IT, 1996a; Tay et al, 

2003; Vandermeulen, 1989). The South Arm of the Sydney Harbour receives direct input 

from Muggah Creek; it has a depauperate benthic community, which is dominated by 

polychaetes and sea anemones (Vandermeulen, 1989). The North Arm of the Sydney 

Harbour does not have direct input from Muggah Creek and has been noted to have a 

healthier benthic community (Vandermeulen, 1989). 

Pollution in the Sydney Tar Ponds resulted from 100 years of unregulated 

industrial activities. Industries that developed around the Tar Ponds included coke and 

steel production, rail yards, and dump sites (AMEC, 2005). It is thought that the coking 

ovens and the steel plant released contamination, which migrated into the South and then 

North Tar Pond of Muggah Creek (JWEL-IT, 1996a, b). Contaminants were then 

released from the North Tar Pond into the South Arm of the Sydney Harbour (JWEL-IT, 

1996a, b; Matheson et al, 1983; Sirota et al, 1983, 1984). This has resulted in high 

levels of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), 

and heavy metals in biota, sediment, and water from Muggah Creek and Sydney Harbour 

(AMEC, 2005; Acres, 1984; Ernst et al, 1999; Furimsky, 2002; Jones, 2007; JWEL-IT, 

1996a, b; Vandermeulen, 1989). A brief description of PCBs and metals in the Sydney 

Tar Ponds will be provided. The rest of this thesis will focus on PAHs in the Sydney Tar 

Ponds. 

PCBs are a foreign organic, environmental contaminant, which are not naturally 

found in the environment (Ceccarini and Giannarelli, 2006). PCBs primarily 

bioaccumulate in the lipids of organisms (Christensen et al, 2005; Maruya and Lee, 

1998; Tanabe et al, 2004; Tay et al, 2003). PCBs may act as endocrine disruptors and 
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environmental estrogens (Ceccarini and Giannarelli, 2006; Ross et al., 1996). They may 

alter an organism's neurobehavior, reproduction, and development (Ceccarini and 

Giannarelli, 2006). Many different PCB congeners have been found in sediment and 

biota from the Sydney Tar Ponds (Jones, 2007; JWEL-IT, 19966). 

Metals are inorganic contaminants, which can be toxic to organisms above critical 

concentrations. JWEL-IT (19966) found copper, lead, nickel, and zinc from all Sydney 

Harbour sediment cores to be higher than Canadian Council of Ministers of the 

Environment (CCME) Marine Sediment Guidelines (MacDonald et al, 1992). They also 

found chromium and manganese in some Sydney Harbour sediment cores to be higher 

than CCME Marine Sediment Guidelines (MacDonald et al., 1992). High levels of 

cadmium, lead, mercury, and zinc have been found in Sydney Tar Pond sediments 

(Vandermeulen, 1989). 

1.2 Poly cyclic Aromatic Hydrocarbons (PAHs) 

Polycyclic aromatic hydrocarbons (PAHs), also referred to as polynuclear 

aromatic hydrocarbons, are a class of organic compounds which are a combination of at 

least two aromatic rings with at least one common carbon-carbon bond (Figure 2). 

PAHs have been present in the environment since the formation of the earth (Wakeham et 

al., 1980a, b). PAHs are ubiquitous and can be formed from natural and anthropogenic 

activities. Naturally formed PAHs may occur from forest fires, microbial biosynthesis, 

and weathering of petroleum seeps or ancient sediments (Wakeham et al., 1980a, b). The 

environmental concentration of PAHs has dramatically increased since the industrial 

revolution (LaFlamme and Hites, 1978; Wakeham, 1980a; Yunker et al, 1999). 
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Anthropogenic PAHs are generally formed by incomplete combustion of organic 

matter (vanLoon and Duffy, 2000). Incomplete combustion is the result of impurities in 

organic matter, low temperature, and limited concentration of oxygen (vanLoon and 

Duffy, 2000). PAHs may be formed from industrial activities (coke ovens and 

alumininum smelters), incineration, and vehicle engines (Bieri et al., 1986; Connell, 

1997; McGowin, 2006). 

1.2.1 Physiochemical Properties of PAHs 

The smaller PAHs (e.g. naphthalene) are volatile, more prone to microbial 

catabolism, and less lipophilic, compared to larger PAHs (e.g. benzo[a]pyrene) (Atlas and 

Bartha, 1998; Bamforth and Singleton, 2005; vanLoon and Duffy, 2000). Microbial 

catabolism is the metabolism or breakdown of a compound, which often produces energy 

for other microbial activities (Atlas and Bartha, 1998). Lipophilic refers to the tendency 

of a contaminant to enter the lipid or fat of an organism (vanLoon and Duffy, 2000). Less 

lipophilic contaminants have a lower tendency to enter and to accumulate in organismal 

lipid. Lipophilicity is often related to the hydrophobicity, which is the tendency of a 

contaminant to enter water. A decrease in lipophilicity often corresponds with a decrease 

in hydrophicity, which is a decrease in tendency of a contaminant to enter water 

(vanLoon and Duffy, 2000). 

Hydrophobicity is often described by the n-octanol/water partition coefficient 

(Kov/). Kow is the concentration of a chemical in octanol (often n-octanol) divided by the 

concentration of the same chemical in water at equilibrium and is a measure of the 

chemical partitioning from water into organisms (vanLoon and Duffy, 2000). A higher 

Kov/ value reflects a greater hydrophobic nature of a contaminant compared to a 
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contaminant with a lower Kow. The organic carbon/water partition coefficient (JT0C) is 

the concentration of a chemical sorbed in or to sediment divided by the concentration of 

the same chemical in water at equilibrium and is used to describe the partitioning of 

organic chemicals between water and sediment (vanLoon and Duffy, 2000). Koc can be 

approximated by the Kow. The log Kov, and log Koc of PAHs typically range from 2-7 and 

3-6 respectively (Table 1). 

1.2.2 PAHs in the Environment 

PAHs enter the environment from point or non-point sources. Point sources 

release contaminants which originate from one location. Examples of point sources of 

PAH are industrial sites such as coke ovens or aluminum smelters (Avci et al, 2005; 

Mitra et al., 2002; Secco et al., 2005). Non-point sources release contaminants which 

cannot be traced to one particular location. Long range transport of PAHs from highly 

contaminated sites via atmospheric circulation is a non-point source (Roche et ah, 2002; 

Zhang et al., 2008). Contaminated run-off water from streets and fields into water bodies 

and subsequent transport by moving water is another possible non-point source (Brezonik 

and Stadelmann, 2002; Schiff and Bay, 2003; Tsihrintzis and Hamid, 1997). 

In aquatic environments PAHs are often associated with organic matter (Chin and 

Gschwend, 1992; Lu et al., 2003; Socha and Carpenter, 1987). PAHs have low water 

solubility (Table 1). In relatively pristine aquatic environments, the concentration of each 

PAH not associated with sediment in the water column is generally less than 5 |ag/kg 

(Barbee et al., 2008). In contaminated aquatic environments, the concentrations of freely 

dissolved individual PAHs are generally less than 1000 ug/kg or 1 mg/kg (Readman et 

al, 1982). 
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Due to their hydrophobic nature, PAHs are generally associated with sediments 

(Gustafsson et al., 1997; Khim et al., 2001; Kraaij et al., 2002) or dissolved organic 

matter in the water column (Doring and Marschner, 1998; Haitzer et al, 1998; Landrum 

et al, 1985). PAHs may also be found in interstitial water, which is water between and 

around sediment particles (Lu et al., 2004; Mitra and Dickhut, 1999). The concentration 

of PAHs associated with sediments is greater than PAHs in interstitial water, which are in 

turn greater than concentrations in the water column (Gao et al, 1998; Hyun et al., 2007; 

Maskaoui et al, 2002). The concentrations of PAHs in sediments distant from 

contaminated sites are generally below lmg/kg (Barbee et al., 2008; Djomo et al., 1996; 

Kim et al., 2008; Krauss et al., 2000: Tables 2 and 3). Sediments from contaminated sites 

vary in their degree of contamination (Cornelissen et al., 2008; Johnson-Restrepo et al., 

2008; Khim et al., 2001: Tables 4 and 5). Differences in PAH concentration among 

contaminated sites are due to the concentration of PAHs and the rate of elimination of 

PAHs from that particular environment. 

Once PAHs have been introduced into the environment, several processes may 

occur. PAHs may be degraded by microbial catabolism (Dabestani and Ivanov, 1999). 

Also, PAHs may be degraded abiotically by photolysis, which is a process where light 

breaks chemical bonds (Dabestani and Ivanov, 1999). PAHs may volatilize into air and 

be removed from the immediate area by atmospheric transport (Fernandez et al., 2003; 

Simpson et al., 1996). PAHs may leach from one environmental compartment to another 

(Reid et al., 2000). In the terrestrial environment PAHs may leach from the soil 

compartment into the groundwater compartment. PAHs may be sequestered in and/or on 

organic matter (Gustafsson et al., 1997; Haitzer et al., 1998; Kraaij et al., 2002). Non-
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metabolizable or slowly metabolizing PAHs may bioaccumulate in biota (DeLeon, 1988; 

Meador etal., 1995). 

1.2.3 PAHs in Biota 

The concentration of PAHs in biota is highly variable among sampling sites from 

different parts of the world. In remote areas the concentration of specific PAHs in biota 

are generally below lug/kg and do not exceed 1000 ug/kg or 1 mg/kg (Pancirov and 

Brown, 1977; Vives et al, 2004: Table 6). Concentrations of PAHs in biota from 

contaminated areas are highly variable (Table 7). In both remote and contaminated sites, 

the concentrations of PAHs are generally higher in liver and hepatopancreas tissues than 

in muscle or other biota tissues (Hellou and Warren, 1997; Hellou et al, 1994). 

The uptake and bioaccumulation of PAHs in biota depends on a combination of 

biotic and abiotic factors, which varies between species and environments (Bender et al, 

1988; Hellou et al, 1994). PAHs may be taken up from the water column or interstitial 

water (Leady et al, 1999). Also, PAHs may be ingested by feeding on sediments or prey 

items (Forbes et al, 1998; Hickey et al, 1995; Lee et al., 1976). The concentration of 

PAHs in biota depends on many factors including: the rate of PAH uptake and 

elimination (Bender et al., 1988), the organism's ability to metabolize the PAHs 

(Gewurtz et al, 2000), the physiochemical properties of the compound (Baumard et al., 

1998; Krauss et al, 2000), and the bioavailability of the PAHs (Landrum et al, 1992; 

McCarthy and Jimenez, 1985). Bioavailability is the fraction of the total contaminant 

concentration available for uptake into an organism (Newman and Unger, 2003). 

The uptake and bioaccumulation of PAHs depends on the fugacity of the organism 

in relation to its surrounding environment (Klosterhaus et al, 2002; Mackay, 2004; 
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Russell et al, 1999). Fugacity (/) is a measurement of the leaving or escaping tendency 

of a compound from a particular phase. The fugacity capacity (Z) of an organism to 

bioaccumulate hydrophobic contaminants is related to the lipid content of the organism 

and is inversely related to the fugacity of the organism (Klosterhaus et al, 2002; Mackay, 

2004; Russell et al, 1999). Organisms with higher lipid content will have a lower 

fugacity and a higher fugacity capacity compared to organisms with lower lipid content. 

If the fugacity capacity of the organism is greater than the environment, there will be a 

net movement of the contaminant into the organism. 

1.3 Bioaccumulation and Bioavailability ofPAHs 

The presence of PAHs or other contaminants in the environment does not 

necessarily mean that the contaminant will be toxic to or bioaccumulate in biota (Ehlers 

and Luthy, 2003, Erickson et al., 1993; Reid et al., 2000). The toxicological effects and 

bioaccumulation of the contaminant is related to the fraction of the contaminant which is 

available to biota; this is the bioavailable fraction, also called the bioavailability, of the 

contaminant. Many biological and chemical techniques have been developed to assess 

bioavailability (Kelsey et al., 1997; Krauss and Wilcke, 2001; Kukkonen et al, 2004; 

Nilsson et al, 2006; Reid et al, 2000). The contaminant bioavailability is influenced by 

a combination of many abiotic (Kraaij et al, 2001; Lamoureux and Brownawell, 1999; 

Zeng et ah, 2003) and biotic factors (Nakata et al., 2006; Thomann et al., 1992; Van Hoof 

et al, 2001). 

Studies have shown the bioavailability of organic contaminants to be influenced 

by the type of organic carbon in or on the sediment (Accardi-dey and Gschwend, 2002; 
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Chin and Gschwend, 1992; Doring and Marschner, 1998; Gustafsson et al. 1997). Black 

carbon (BC) is a type of carbonaceous material formed from incomplete combustion of 

biomass and fossil fuels. BC is also referred to as soot or charcoal particles. Due to its 

aromatic and condensed structure, BC is able to strongly sorb organic contaminants 

(Cornelissen and Gustafsson, 2005; Rust et al., 2004). Jonker and Koelmans (2002) 

found that the sorption of PAHs to BC to be 1000 times stronger than PAHs to 

sedimentary organic carbon, which is carbonaceaous material which has not undergone 

combustion. It is thought that the strong sorption of organic contaminants to BC may 

account for the limited bioavailability and decreased effectiveness in the bioremediation 

of organic contaminants (Cornelissen and Gustafsson, 2004, 2005; Cretney and Yunker, 

2000). Bioremediation is the process by which contaminants are degraded by biological 

means, such as microorganisms (Atlas and Bartha, 1998). 

Aging or weathering of sediments has also been found to limit the 

bioaccumulation and bioavailability of PAHs (Lu et ah, 2006; Semple et al., 2003; White 

et al., 1999). Aging in sediments is the phenomenon when the bioavailability of organic 

contaminants in soils and sediments decreases over time and there is no net change of the 

contaminant concentration (Lu et al., 2006; Semple et al., 2003; White et al., 1999). This 

results in reduction of exposure and toxicity of contaminants over time, but does not 

completely eliminate the threat of the contaminant in the environment (Alexander, 1995, 

2000; Hatzinger and Alexander, 1995). This was demonstrated by Alexander and 

Alexander (1999) where they exposed Pseudomonas patida, a bacterium, to PAH-spiked 

soil. After seven days, the rate of mutations induced by PAHs in P. patida had decreased 

by 72% compared to the initial rate of mutations. They concluded that the genotoxicity of 

PAH declines with increased aging of the soil. 
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There are differences in the bioavailability of organic contaminants within 

ecosystems. The hydrophobicity, size, and structure of an organic contaminant may 

influence the contaminant bioavailability (Burkhard et al, 2004; Kukkonen et ah, 2005; 

Schuler et al, 2003). Studies have found a negative correlation between hydrophobicity 

and bioaccumulation of contaminants (Maruya and Lee, 1998). Kannen et al. (1998a) 

found bioaccumulation of PCBs dependent on hydrophobicity and molecular size. 

Studies have suggested that molecular size of organic contaminants may restrict or 

prevent membrane permeability (Kannen et ah, 1998a, b; Ma et ah, 1998). Opperhulzen 

et al. (1985) suggested that PAHs with widths over 9.5A could not penetrate the cell 

membrane, thus preventing the accumulation of PAHs in fishes. 

Biotic factors may also play a role in the variation in bioaccumulation and 

bioavailability of organic contaminants. Organismal behaviour influences contaminant 

bioaccumulation (Forbes et al., 1998; Millward et al., 2001; Noblet et al, 2003). 

Ingestion of sediments is considered to be a major source of organic contaminants to biota 

(Croce et al., 2005; Loonen et ah, 1997). Some organisms selectively feed on sediment 

particles with higher total organic carbon (Boese et al, 1996; Lee et al., 1990; Krauss and 

Wilcke, 2001). Since the concentration of organic contaminants is often related to 

organic carbon concentration, the selective consumption of these particles may increase 

an organism's exposure to contaminants. 

The presence of other organisms may also affect bioaccumulation and 

bioavailability. Ciarelli et al. (1999) found a linear relationship between uptake of the 

PAH fluoranthene in mussels {Mytilus edulis) and the density of amphipods (crustacean: 

Corophium volutator) in the sediment. They found that amphipod activity increased the 

total suspended sediments in the water column. This resulted in increased suspended 
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particles and associated fluoranthene in mussels filter feeding. In a later study by Ciarelli 

et al. (2000), they found the bioaccumulation of fluoranthene to be greater in polychaetes 

{Neris virens) in sediments with more amphipods compared to sediments with fewer or 

no amphipods. 

1.4 Toxicological Properties ofPAHs 

The uptake of PAHs causes a diversity of physiological responses in organisms 

(Bacanskas et al., 2004; Bard et al., 2002; Burchiel and Luster, 2001; Mann et al., 1999). 

The resultant physiological responses can be harmful to the organism's health and/or 

reproductive success (Avci et al., 2005; Bain, 2002; Blaha et al., 2002; Incardona et al., 

in press). PAHs are generally not directly toxic to organisms (Barbee et al, 2008; 

Dabestabi and Ivanov, 1999; McGowin, 2006). However, after PAHs react with 

organismal enzymes, the resultant PAH metabolites become potential mutagens or 

carcinogens. The cytochrome P-450 monooxygenase (CYP1A) system, also called the 

mixed-function oxidase (MFO) system, is found in both invertebrates (Livingston et al., 

1990; Walker et al., 2001) and vertebrates (Fragoso et al., 2006; Shailaja and D'Silva, 

2003). The CYP1A system functions by adding hydroxyl groups to PAHs. The addition 

of hydroxyl groups increases water solubility of PAHs, thus allowing an efficient 

excretion of the PAH metabolite (Newman and Unger, 2003; Walker et al.,,2001). In 

many contaminated environments, the activity of CYP1A systems is often increased 

(Hansson et al., 2006; Sturve et al., 2006; Wassenberg et al., 2002). 

Despite the benefits of CYP1A, the reactions result in an intermediate epoxide 

functional group on the PAH (Dabestani and Ivanov, 1999: Figure 3). The epoxide is 
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highly reactive with DNA and hemoglobin. The initial toxicological responses are 

formation of liver and skin tumours (Arcand-Hoy and Metcalfe, 1999; Pinkney and 

Harshbarger, 2006; Pinkney et al, 2004). Over time, interactions between the epoxide 

and the tissues may result in lung, bladder, and/or skin cancer and high PAH 

concentrations may result in immunosuppression (McGowin, 2006; Newman and Unger, 

2003; Rose et al, 2001). In some highly contaminated areas, organisms have a 

suppressed expression of CYP1A (Arzuaga and Elskus, 2002; Meyer et al, 2002; Nacci 

et al, 1999), which varies between species (Anulacion et al, 1998; Vuorinen et al, 2006; 

Wirgin et al, 1996). Nacci et al. (2002) suggested that the decrease in levels of 

metabolizing enzymes, such as CYP1A, may be an adaptation to prevent DNA damage 

and cancer. 

Liver damage has been found in a diversity of organisms from contaminated sites 

(Harshbarger and Clark, 1990; Marty et al, 2003; Stine et al, 2004; Vogelbein et al, 

1990, 1999). Myers et al (1998) found that fishes exposed to sediment with total PAH 

concentration greater than 500-1000^g/kg (0.5-lmg/kg) would develop liver lesions. 

PAH exposure may also result in fin erosion, change in diet and eating habits, no weight 

gain, and/or cloudy eyes (Hargis et al, 1984) 

The toxicological effects of PAHs generally occur after the organism has been 

exposed to or has bioaccumulated a threshold concentration. The value may change 

depending on the health of the organism and the environmental conditions (Weis, 2002; 

Weis and Weis, 1989). "Toxic effects response low" and "toxic effects response median" 

are threshold values to aid in predicting the onset of PAH toxic effects (Wade et al, 2008: 

Table 8). Biota which live in or near sediments with PAH concentrations below the toxic 

effects response low (ERL) will rarely exhibit toxic effects. Biota which live in or near 
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sediments with PAH concentrations above the toxic effects response median (ERM) 

will often exhibit toxic effects (Wade et al., 2008). 

The CCME (2002) developed interim sediment quality guidelines (Table 9). In 

marine sediments individual PAH concentrations should be <0.2 mg/kg dry weight (wt). 

Also, marine sediments with individual PAH concentrations < 1.5 mg/kg will result in 

over 50% of organisms experiencing toxicological effects. For example, 0.763 mg/kg dry 

wt of benzo[a]pyrene in marine sediments results in 78% of organisms experiencing 

toxicological effects (CMME, 2002). 

1.5 Effects ofPAHs in the Sydney Tar Ponds 

The harmful effects of the contamination in the Sydney Tar Ponds became 

apparent when lobsters {Homarus americanus) collected from the adjacent Sydney 

Harbour were highly contaminated with PAHs and PCBs (Prouse, 1994; Sirota et al., 

1983). This resulted in the closure of the Sydney Harbour lobster fishery (Prouse, 1994; 

Sirota et al., 1983). Researchers have linked the high PAH and PCB concentrations in H. 

americanus tissue with an influx of pollutants from the Sydney Tar Ponds (Tay et al., 

2003). 

Past research on the Sydney Tar Ponds had an abiotic focus. Studies examined 

the type, concentrations, and distribution of contaminants (AMEC, 2005; Furimsky, 

2002). There are limited studies investigating the magnitude of contaminants in biota 

from the Sydney Tar Ponds and the surrounding areas (AMEC, 2005; Ernst et al., 1999; 

Jones, 2007; Hale, 2004). There are fewer studies which address the toxicological effects 
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of contamination on the organisms which live in or around the Sydney Tar Ponds 

(Paetzold et ah, 2009; Tay et al., 2003; Vandermeulen and Mossman, 1996). 

Little research has focused on the bioaccumulation of PAHs in fishes or 

invertebrates from the Sydney Tar Ponds. Preliminary ecotoxicology analyses by J. 

Hellou and M. Jones for the presence of 85 PAHs found high levels of PAHs in three 

mummichogs {Fundulus heteroclitus) (J. Hellou and M. Jones, unpublished data). 

Among the F. heteroclitus analyzed from the Tar Ponds, there was high variability in the 

PAH concentrations. In the reference F. heteroclitus the PAH concentrations were low or 

below detection limits. The five PAHs detected at the highest concentrations in the Tar 

Pond F. heteroclitus included compounds such as: acenaphthene, anthracene, fluorene, 

fluoranthene, and phenanthrene. Jones (2007) suggested that more ecotoxicological 

research is needed prior to commencement of the remediation project in the Tar Ponds. 

1.6 Assessment of Ecosystem Health 

Aquatic organisms are often used as biological monitors and have provided 

qualitative and quantitative information on the levels of contaminant emissions 

(Namiesnik, 2001). For effective biomonitoring, the organism must be carefully selected 

(Walker et al., 2001). The species should be easy to locate and collect at statistically 

relevant levels to compare between the contaminated and reference sites. It should have 

measurable and reproducible responses to the contaminant. Finally, the results should be 

reproducible (Walker et al. 2001). 

There are many different types of biomonitoring studies. Some biomonitoring 

studies require the species to be tolerant of adverse environmental conditions and/or to 
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bioaccumulate the contaminant. Organisms used to assess environmental quality include: 

bivalves (Devier et al, 2005; Gewurtz et al, 2003), crabs (Eickhoff et al, 2003; 

Ikonomou et al, 2002), fishes (Barsiene et al, 2006; Hansson et al, 2006; Oliveira 

Ribeiro et al, 2005; Said and El Agroudy, 2006), parasites (Marcogliese and Cone, 

1997a, 1998; Turcekova et al, 2002; Williams et al, 1992), plants (Hale, 2004), and 

animals (Ross et al, 2004). 

Biomonitoring studies are very diverse. The various types of biomonitoring can 

be broadly grouped into four categories (Walker et al, 2001). Type 1 biomonitoring 

traces the change in species composition in an ecosystem (Iliopoulou-Georgudaki et al, 

2003; Kulkoyluoglu, 2004). Type 2 biomonitoring traces the change of chemical 

concentration in biota (Levinton et al, 2006; Vuorinen et al., 2006; Yunker et al., 2002). 

It does not necessarily require the analysis of the species of concern. For example^ for the 

monitoring of protected or endangered species, their dietary items could be analyzed to 

approximate the potential for contaminant bioaccumulation (Moriarty, 1999). Type 3 

biomonitoring traces the toxicological effects induced, on or in the organism, by the 

contaminant (Bright and Ellis, 1990; Simms and Ross, 2000; Weis et al, 2003). Type 4 

biomonitoring traces the development of genetic resistance as a biomonitor (Minier et 

al, 1999). 
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/. 7 Parasites as Indicators of Ecosystem Health 

Many studies have demonstrated that parasites can be used in assessing ecosystem 

health (Cone et al, 1993; Hanzelova, 1992; Landsberg et al, 1998; MacKenzie, 1999; 

Marcogliese, 2001; Thompson et al, 2005). Parasites can be used in Type 1 (Cone et al, 

1993; Sanchez-Ramirez et al, 2007; Sasal et al, 2007) and Type 2 biomonitoring (Eira et 

al, 2005; Howell, 1983; Sures, 2001; Sures and Siddall, 2001; Sures et al, 1999; Sures et 

al, 2003). The utilization of parasite biomonitors has been explored for both terrestrial 

and aquatic hosts such as: birds (Barus et al, 2000), cattle (Sures et al, 1998), fishes 

(Brotheridge et al, 1998; Landsberg et al, 1998), harbour porpoises (Szefer et al, 1998), 

and rabbits (Eira et al, 2005). The majority of studies on the potential use of parasites as 

biomonitors have focused on sites contaminated with inorganics (Gheorgiu et al, 2006; 

Hernandez et al, 2007; Pascual and Abolto, 2005; Schludermann et al, 2003). Few 

studies have investigated the use of parasites as biomonitors in sites contaminated with 

PAHs (Diamant et al, 1999; Faulkner and Lochmiller, 2000; Khan, 2003), or the effect of 

these contaminants on parasite communities in host populations in situ (Schmalz Jr. et al, 

2002). Even fewer published studies have examined parasite communities in hosts 

residing in such highly contaminated environments as the Sydney Tar Ponds. 

1.7.1 Using Parasites in Type 1 Biomonitoring 

Type 1 biomonitoring traces the change in parasite prevalence, abundance, and/or 

communities in a host population (Cone et al, 1993; Sanchez-Ramirez et al, 2007; Sasal 

et al, 2007). Prevalence is the number of hosts infected with at least one parasite 

divided by the number offish examined and multiplied by 100 (Bush et al, 1997). 

Abundance is the quantity of a particular parasite species found in one host regardless of 
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whether or not the host is infected (Bush et al, 1997). In a stressed ecosystem, the 

changes in prevalence and abundance of parasite infection will vary based on a variety of 

factors. Parasites vary in their life cycles. Some parasites have a complex life cycle, 

which is when several hosts, called intermediate hosts, are required for parasite 

development. If one or more of the intermediate hosts are not present in the ecosystem, 

the parasite will not be transmitted and overtime will be removed from the ecosystem 

(Hechinger et al, 2007; Hudson et al, 2006; Marcogliese, 2005; Whitney et al, 2007: 

Figure 4). Many parasites utilize intermediate hosts which are sensitive to changes in the 

environment (Bellas and Thor, 2007; Holcombe et al, 1987; Kulkoyliioglu, 2004; 

Raisuddin et al., 2007). In contaminated environments these intermediate hosts may have 

decreased population levels or be extinct from that ecosystem. The result may be a 

decreased level of parasite infection or complete removal of that parasite from the 

ecosystem (Cone et ah, 1993; Koprivnikar et al, 2002; Whitney et al , 2007). Parasite 

life cycles may include a free-living stage, which is a larval parasite not found in a host. 

Environmental contaminants generally decrease the survival of free-living parasite stages 

(Cross et al, 2005; Pietrock and Marcogliese, 2003; Pietrock et al, 2002; Reddy et al, 

2004). Many free-living stages have a protective coating, but studies have found it 

ineffective in protecting parasites from contaminant toxicity (Pietrock and Marcogliese, 

2003). 

In contaminated areas metals or organic contaminants may accumulate in parasite 

tissues (Sures et al, 1999; Sures and Siddall, 2003). Highly tolerant parasite species may 

be more prevalent in contaminated environments compared to less tolerant species which 

would succumb to the toxic effects of the accumulated contaminants (Bhuthimethee et al, 

2005; Cone et al, 1993). Parasites vary in their physiology and thus in their abilities to 
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bioaccumulate contaminants; acanthocephalans and cestodes have been found to 

accumulate metals at a higher level compared to nematodes (Sures et al, 1998). 

Nematodes are examples of parasites with a lower bioaccumulation efficiency. This may 

allow nematodes to live in hosts residing in highly contaminated environments where 

parasites with high bioaccumulation efficiency, similar to acanthocephalans and cestodes, 

could not. In contaminated environments, parasites with high tolerance to contaminants 

and low bioaccumulation efficiency may be favoured. 

Some studies have found that increased pollution results in increased parasitism 

(Brotheridge et al, 1998; Gendron et al, 2003; Khan, 2003). This may possibly be 

caused by: an exclusion of parasite predators, a decrease in the host's resistance, or an 

optimization of the intermediate host's habitat (Moller, 1987). Other studies have found 

pollution to have an antagonistic effect on parasitism (Bhuthimethee et al, 2005; Pietrock 

and Marcogliese, 2003; Whitney et al, 2007). In theory, as a contaminated site is 

remediated, the parasite populations should be restored to similar prevalences and 

abundances as reference sites (Huspeni and Lafferty, 2004; Marcogliese and Cone; 

1997a). 

/. 7.2 Parasite Fauna Used in Biomonitoring 

Parasites are extremely diverse and many different groups have been evaluated for 

their utilization in biomonitoring (Eira et al, 2005; Pascual and Abollo, 2005; Sanchez-

Ramirez et al, 2007; Sasal et al, 2007; Sures et al, 2003; Szefer et al, 1998). 

Monogenes and parasitic copepods are ectoparasites, which live on the gills, fins, or 

surface of the fish. Acanthocephalans, cestodes, trematodes, and nematodes are 

endoparasites, which live in or on the internal organs of the fish. Brief descriptions of 
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each major group of ectoparasites and endoparasites are included here, but additional 

information on parasites found in/on Nova Scotia fishes is in Appendix A. 

Monogenes (Phylum: Platyhelminthes) are parasites with high host- and site-

specificity, which implies they will only attach to a few types of hosts and in a narrow 

range of locations on the host (Pechenik, 2000; Roberts and Janovy, 2000). At the 

posterior end of monogenes is a holdfast of hooks or suckers, which are structured 

specifically to attach to a particular location on its host. Typically, they have only one 

host in their lifecycle. Sexually mature monogenes release eggs into the environment, 

which then hatch to release a free-living, ciliated larval phase. The larval monogene finds 

a host and attaches itself using its holdfast (Pechenik, 2000; Roberts and Janovy, 2000). 

Parasitic copepods (Phylum: Arthropoda) are commonly found on the gills of 

North American fishes (Bere, 1930; Kabata, 1979; Wilson, 1788). Parasitic copepods 

have adaptive antennas modified into sharp claws to attach to fish gill filaments (Bere, 

1936; Kabata, 1979). Their life cycle has eight free-living larval stages after which they 

attach themselves to a fish gill filament (Roberts and Janovy, 2000). 

Acanthocephalans (Phylum: Acanthocephala) are commonly known as thorny-

headed worms. Mature acanthocephalans have an unsegmented, elongated body, with a 

thorny-head, called a proboscis, which is used as a holdfast in its host's digestive system. 

Proboscides variation is used in the identification of acanthocephalan species (Margolis 

and Arthur, 1979). Acanthocephalans have no digestive system and rely on the 

absorption of nutrients from their host (Roberts and Janovy, 2000). Acanthocephalan life 

cycles require at least two hosts. The definitive host releases fertilized eggs into the 

water. The eggs are ingested by an arthropod, such as an insect or crustacean, where the 
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eggs hatch and develop. The arthropod is then ingested by the definitive host, where the 

parasite reaches sexual maturity (Roberts and Janovy, 2000). 

Cestodes (Phylum: Platyhelminthes) are commonly know as tape worms. They 

lack a digestive system and feed by absorbing nutrients from digestive juices in the 

intestine of vertebrates. Cestodes are a segmented flatworm and have a holdfast, called a 

scolex, composed of suckers, grooves, hooks, spines, and/or tentacles (Roberts and 

Janovy, 2000). Cestode life cycles are highly variable and may be extremely complex 

(Roberts and Janovy, 2000). The definitive host releases fertilized eggs, which are then 

generally ingested by an arthropod. The intermediate host is then ingested by another 

intermediate host or the definitive host (Pechenik, 2000). The number of intermediate 

hosts depends on the cestode species. 

Nematodes (Phylum: Nematoda) are commonly known as roundworms (Roberts 

and Janovy, 2000). Nematodes are elongated, tapered at both ends, and have a protective 

covering called a cuticle. Nematode development requires the moulting of the cuticle 

layer four times to reach maturity and a series of intermediate hosts. Unlike 

acanthocephalans and cestodes, nematodes have a digestive system (Roberts and Janovy, 

2000). 
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1.8 Potential Biomonitors for the Sydney Tar Ponds 

The Sydney Tar Ponds are currently in the initial stages of remediation. Over a 

number of years the Sydney Tar Ponds and the surrounding contaminated areas will be 

remediated by an in situ solidification and stabilization process, which isolates the 

contaminants on site (W. Kaiser, personal communication). Stabilization and 

solidification was first utilized in the 1970s and is currently a commonly utilized 

remediation technology (Conner and Hoeffner, 1998a). Solidification reduces the 

permeability of the contaminant from the soil, by the injection of liquid substances, like 

cement, into the sediment to form a solid block (Conner and Hoeffner, 1998a). 

Solidification prevents the movement of water through the contaminated sediment, which 

decreases the movement of contaminants into the surrounding environment (Conner and 

Hoeffner, 19986; Mulligan et ah, 2001; Oosterhoudt et ah, 2004). Stabilization reduces 

the leachability of the contaminant through the formation of chemical bonds to 

chemically immobilize and/or reduce the solubility of the contaminant (Conner and 

Hoeffner, 19986; Mulligan et ah, 2001; Oosterhoudt et ah, 2004). 

In order to track and evaluate the effectiveness of the remediation, baseline values 

of the degree of contamination need to be established. Many studies have determined the 

concentration of inorganic and organic contaminants in the soil (AMEC, 2005; Furimsky, 

2002; JWEL-IT, 1996a, b; Vandermeulen, 1989). Little research has been conducted to 

determine the concentrations of any contaminants in biota that live in or around the Tar 

Ponds (AMEC, 2005; Ernst et ah, 1999; Hale, 2004; Jones, 2007). 

Many invertebrate and vertebrate species reside in the Sydney Tar Ponds (AMEC, 

2005; Jones, 2007). This study focused on grass shrimp (Palaemonetes spp.), European 

green crab {Carcinus maenas), American eels (Anguilla rostratd), and mummichog 
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{Fundulus heteroclitus). Palaemonetes spp. occur in freshwater and marine habitats; they 

are commonly found in estuaries near submerged vegetation (Pechenik, 2000; Squires, 

1990). Detritus and diatoms have been found in their stomachs (Squires, 1990). They are 

prey for larger crustaceans and fishes. 

Carcinus maeanas is an invasive species found in shallow marine and estuarine 

habitats (Naczk et al., 2004; Pechenik, 2000). They are thought to have been introduced 

to the North American Atlantic coast in the mid-1800s and spread to Nova Scotia around 

the 1950s. Carcinus maenas has a high reproductive output, is tolerant of a wide range of 

salinity and temperature, and thrives in high densities; these qualities allow C. maeanas to 

invade a diversity of aquatic habitats (Naczk et al., 2004). They are aggressive 

omnivores and gut content analyses have found bivalves, snails, annelids, crustaceans, 

and algae (Naczk et al., 2004). 

Anguilla rostrata is a catadromous fish, which means that sexually mature 

individuals migrate from fresh water to salt water for spawning. Within a year, larval A. 

rostrata migrate into Canadian waters from the Sargasso Sea where the adults congregate 

to spawn (Scott and Crossman, 1973; Scott and Scott, 1988). The main food source for 

young A. rostrata is plankton (Scott and Scott, 1988). Once the young eels reach 

Canadian waters, they metamorphose into juvenile eels, and begin to feed on a diversity 

of fishes and invertebrates. In estuaries and freshwater, A. rostrata spend the day buried 

in the sediments and feed actively in the evening (Scott and Crossman, 1973). They are 

generally solitary fish, with a restricted home range (Barker, 1997; Smith and Tighe, 

2002). Anguilla rostrata overwinter buried in sediments (Scott and Scott, 1988). The 

females can grow about lm in length, while the males generally do not grow larger than 

0.6 m (Scott and Scott, 1988). Larval A. rostrata, elvers, are prey for other fishes and 
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older A. rostrata (Scott and Scott, 1988). Adults, rostrata are rarely prey, but great 

black-backed gulls {Larus marinus) and some diving birds, such as double-crested 

cormorants (Phalacrocorax auritus), have been documented to eat them in Nova Scotian 

waters (M. Jones, personal communication; Scott and Crossman, 1973; Scott and Scott, 

1988). 

Fundulus heteroclitus is tolerant to a wide range of salinities, dissolved oxygen, 

and turbidity (Scott and Crossman, 1973; Scott and Scott, 1988). They are commonly 

found in salt marshes and estuaries, but can also be found in freshwater (Scott and 

Crossman, 1973). Fundulus heteroclitus are found in shoreline vegetative areas and are 

highly tolerant to environmental change (Able, 2002). They are not known to undertake 

migrations (Scott and Scott, 1988). Fundulus heteroclitus have limited home ranges and 

have high site fidelity (Lotrich, 1995; Paetzold et al, 2009; Skinner et al., 2005; Sweeney 

et al, 1998). In Canadian waters, F. heteroclitus generally do not exceed 13cm (Scott 

and Crossman, 1973). During the breeding season, mature males and females can be 

distinguished by colouration patterns. Males have a dark appearance with thin, silvery 

vertical bars. Females have a silvery appearance with thin, black vertical bars (Scott and 

Crossman, 1973). Their heads are adapted for surface feeding, but they are opportunistic, 

omnivorous feeders. They feed on: small crustaceans, polychaetes, insect larvae, 

vegetation, and small fishes (Scott and Crossman, 1973; Scott and Scott, 1988). Stomach 

analyses have found them to ingest detritus, but this is suggested to be from accidental 

ingestion (Able, 2002). 

Anguilla rostrata and shrimp (Palaemonetes pugio, Pandalus borealis) have 

previously been evaluated for their uptake, toxicology and elimination of organic 

contaminants (Oliveira Ribeiro et al, 2005; Dillon, 1981, 1982; Hellou et al, 1997). 

43 



Many studies have focused on the bioaccumulation of organic contaminations in crabs 

(Ikonomou et al, 2002; Pancirov and Brown, 1977; Rouleau et al, 1999; Yunker and 

Cretney, 2000). Studies have demonstrated crabs to be effective biomonitors (Burkhard 

et al, 1997; Hale, 1988; Hellou et al, 1994; Mothershead et al, 1991; Yunker and 

Cretney, 2000). Fundulus heteroclitus has been examined for its potential use as a Type 

2 biomonitor (Couillard and Nellis, 1999). 

The parasites living in and on F. heteroclitus and A. rostrata may be used in Type 

1 biomonitoring. Fundulus heteroclitus are hosts to a diversity of parasites. Past studies 

have found parasites in or on the eyes, gills, intestine, liver, skin, and stomach of F. 

heteroclitus (Dillon, 1966; Harris and Vogelbein, 2006; Hawley, 1998; Marcogliese, 

1995). 

Parasite populations have been extensively studied for Anguilla spp. (Aguilar et 

al, 2005; Gollock et al, 2004; Graynoth and Taylor, 2004; Kennedy et al, 1998; Sures et 

al, 2003; Rodriguez et al, 2005), but there are limited studies on A. rostrata (Barker and 

Cone, 2000; Marcogliese and Cone, 1998). Despite the limited studies, the parasites of A. 

rostrata have been found to be useful biomonitors of ecosystem stress (Cone et al, 1993; 

Marcogliese and Cone, 1997a). There is a possibility that parasites in these fish hosts 

may be used as biomonitors. 
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1.9 Objectives of this Study 

This study evaluated biota for their potential use in Type 1 or 2 biomonitoring of 

the Sydney Tar Ponds remediation. This study measured PAH concentrations in grass 

shrimp {Palaemonetes spp.), European green crab (C. maenas), American eel (A. 

rostrata), mummichog (F. heteroclitus), and sediment of the Sydney Tar Ponds and 

reference estuaries. These PAH concentrations will provide baseline data for the long-

term monitoring of the effectiveness of the remediation project on the biota and sediment 

of the Sydney Tar Ponds. Also, this study compared the parasite communities in A. 

rostrata and F. heteroclitus from Sydney Tar Ponds to reference sites. The goal of the 

parasitological component of this study was to determine the prevalence and abundance 

of various parasite species in the fishes from Sydney Tar Ponds and to investigate the 

potential use of parasites as part of a biomonitoring protocol for the Sydney Tar Ponds. 
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2. METHODS 

2.1 Field Collection 

Biota and sediment samples were collected from the North and South Tar Ponds, 

Sydney, Cape Breton, Nova Scotia, and two Cape Breton reference sites: Mira River and 

River Ryan (Figure 5). The approximate locations of biota and sediment Tar Pond 

collections are illustrated in Figure 6. Sampling localities within the reference sites were 

selected based on such physical parameters as topography, tidal regime, and salinity. 

Aquatic biota were collected during the summer of 2006 from these sites using minnow 

traps baited with white bread and eel pots baited with sardines. Fishes were anesthetised 

using clove oil in accordance with animal care guidelines of both Cape Breton University 

and Saint Mary's University Animal Care Committees. Biota were frozen and stored in a 

freezer at -20°C until chemical analysis. The invertebrate and vertebrate species collected 

for chemical analysis included: grass shrimp (Palaemonetes spp.), European green crab 

(C. maenas), and mummichog (F. heteroclitus) from the Sydney Tar Ponds, Mira River, 

and River Ryan (Tables 10-11). American eel (A. rostrata) were collected from the Tar 

Ponds and Mira River, but not River Ryan. 

Sediment samples were collected from the North and South Tar Ponds, Mira 

River, and River Ryan during July 2007. Prior to collection, all glassware was rinsed 

several times with hexane to remove organic contaminants from the inner surface. 

Sediment samples were collected in triplicate using a Petite Ponar grab and then frozen at 

-20°C within 24 hours of collection until extraction and instrumental chemical analysis. 

Anguilla rostrata and F. heteroclitus were collected for parasitological analysis in 

June-August 2007. Anguilla rostrata were collected from Sydney Harbour (n = 5), Mira 
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River (n = 10), and the North Tar Pond (n = 6) using eel pots baited with sardines. 

Sydney Harbour was used as a reference site for parasite analysis, because A. rostrata 

were not caught in River Ryan (Figure 5). Anguilla rostrata were sampled where the 

Wentworth Park duck pond empties into Sydney Harbour. F. heteroclitus were collected 

from River Ryan (n = 62), Mira River (n = 60), and North Tar Pond (n = 49) (Table 12). 

Fundulus spp. were collected from River Ryan (n = 7), Mira River (n = 4), and the North 

Tar Pond (n = 4) (Table 12); these fishes could not be identified to the species 

taxonomical level. Fundulus spp. displayed morphological characteristics of both F. 

heteroclitus and F. diaphanus. Other studies have found Fundulus hybrids in Nova 

Scotia (Chavez and Turgeon, 2007; Fritz and Garside, 1974). In the reference sites, 

Fundulus heteroclitus and Fundulus spp. were collected using minnow traps baited with 

white bread or a beach seine. In the North Tar Pond, Fundulus heteroclitus and Fundulus 

spp. were only collected using minnow traps baited with white bread. After initial 

external parasitological analysis (see 2.3 Parasitological Analysis section for details), 

fishes were anesthetised with clove oil and frozen (-20°C) within 12 hours of collection. 

2.2 PAHs A nalysis 

Biota and sediment samples were analyzed by the Research and Productivity 

Council (RPC), Fredericton, New Brunswick. Analyses were based on U.S. 

Environmental Protection Agency (EPA) Method 3540C (US EPA, 1996a) and 3510 (US 

EPA, 1996b) for PAH extraction from sediment and biota samples respectively and EPA 

method 8270C for gas chromatography/mass spectrometry (GC/MS) analysis (US EPA, 

1996c). 
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Five grams of sediment were ground by mortar and pestle in lOg of anhydrous 

sodium sulfate and placed in an extraction thimble of a Soxhlet extractor. One ml of 

surrogate solution consisting of 2-fluorbiphenyl and/?-terphenyl-di4 was added to the 

sediment and sodium sulfate mixture. Boiling chips and 300mL of acetone :hexane (1:1) 

extraction solution was placed in a 500mL round bottom flask and attached to the Soxhlet 

extractor. The mixture was refluxed in the Soxhlet extractor for 16 to 24 hours at 4 to 6 

cycles/hour. The solution was removed from the round bottom flask and placed in a 1L 

separatory funnel with 300mL double distilled water and mixed for 1-2 minutes to 

partition the extract. The hexane solution was removed from the separatory funnel and 

dried by passing through a short column (35 cm X 2.1 cm ID) filled with anhydrous 

sodium sulfate. The column was washed with 100-125ml of hexane. The resulting eluate 

was concentrated to lOmL on a rotary evaporator. Sample fractionation and cleanup was 

performed by Gel Permeation Chromatography (GPC) and the final volume was adjusted 

to 10ml using hexane. 

Biological data were collected prior to sending biota samples for chemical 

analyses (Table 10-11). The sex, length, and weight were recorded for each organism. 

Carapace length of C. maenas was recorded, which is the longest width across the 

carapace, or shell. Standard and total lengths were recorded for most F. heteroclitus. If 

the caudal (tail) fin was damaged, only the standard length was recorded. Total length 

was recorded for A. rostrata. The standard length is the distance between the tip of the 

snout to the posterior end of the vertebral column. The total length is the distance 

between the tip of the snout to the anterior end of the tail. A 5g wet weight tissue sample 

was submitted for PAH analysis,. Several organisms of the same species were pooled 

where individuals weighed less than 5g (Table 10-11). 
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Tissues were homogenized to a free flowing power with a mortar and pestle. 

Following homogenization, the biota samples were saponified with 20 mL 6N ethanolic 

potassium hydroxide for 18 hours at 40°C. One mL of surrogate standard was added to 

the saponified sample. The saponified sample was placed in a 1L separatory funnel and 

extracted with 60 mL of hexane. The hexane solvent was collected after the mixture was 

allowed to settle for at least 30 min. As with the sediment PAH extraction, the biota 

hexane extract was dried on a sodium sulfate column, concentrated by rotary evaporator, 

and finally cleanup and fractionation via GPC. 

Both the hexane extracts from the sediment and biota samples were analyzed by 

an Agilent gas chromatograph coupled with a mass spectrometer (GC/MS). Sample 

analysis was accomplished by GC/MS on a 30m X 0.32mm I.D., 1 urn film thickness 

fused silica DB-5 column. Ultra high purity helium, supplied at a constant flow of 2 

mL/min, was used as a carrier gas. On column injection was programmed: 50°C initial 

temperature ramped to 270°C at 100°C/min with with a lul injection volume. Oven 

temperature was programmed 50°C for 1 min ramped at 25°C/min to 270°C. 

Organic carbon content of Sydney Tar Pond sediment samples was determined by 

a Leco combustion analyzer. Organic carbon content was not determined for Mira River 

or River Ryan. Lipid content of biota samples was determined gravimetrically. A known 

amount of the biota hexane extract was weighed and then heated. After heating, the 

extract was reweighed. By comparing the differences in weight before and after heating, 

the percent of lipid was determined. The raw data from PAH sediment and biota 

concentrations, biota lipid analysis, and organic carbon are in Appendix B. 

For quality assurance and quality control (QA/QC) samples were analyzed in 

batches not exceeding fifteen. Reagent blanks, duplicates, and spiked blanks were each 
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run at least once per preparation batch. Surrogate standards included 2-fluorobiphenyl and 

p-terphenyl-di4. Detection limits for PAH analysis were 0.1 to 0.01 mg/kg. 

2.3 Parasitological Analysis 

An initial external parasitological analysis was conducted prior to anesthetising 

the fish. The fins and skin were examined for the presence and abundance of parasitic 

crustaceans, such as sea lice (Argulus spp.). Argulus spp., a brachiurid, were removed 

and preserved in formalin for future reference and identification. After anesthetising the 

fish, the standard and total lengths, weight, and sex were recorded for each F. heteroclitus 

and Fundulus spp. Only total length and weight were recorded for A. rostrata. 

Fundulus heteroclitus and A. rostrata were thawed prior to necropsy. The gills 

were removed from the branchial chamber and the gill arches were separated to examine 

the gill filaments for the presence and number of parasitic crustaceans, monogenes, and 

trematode metacercaria. All ectoparasites, except Argulus spp., were preserved in 95% 

ethanol. Parasites were preserved in ethanol to allow for potential genetic work. 

The musculature, body cavity, gonads, and viscera, which includes the stomach, 

intestine, liver, heart, and spleen, were thoroughly examined for macroparasites using a 

dissecting microscope. For A. rostrata, the swim bladder was also examined. The 

location, abundance, and general group of each parasite were recorded for each individual 

fish. The genus of each group of parasite was determined with microscopic examination. 

Endoparasites were preserved in 95% ethanol. 

Fundulus spp. were necropsied as dicussed for F. heteroclitus. Only a few 

unidentified Fundulus spp. (i.e. potential hybrids) were collected from River Ryan (n = 
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6), Mira River (n = 4), and the North Tar Pond (n = 4). Because of the uncertainty if the 

Fundulus spp. were hybrids, F. heteroclitus, or F. diaphanus, these fishes were not 

included in data analysis. The raw data from the Fundulus spp., F. heteroclitus, and A. 

rostrata necropsies are in Appendix C and D, respectively. 

Glycerine mounts of a subsample of each type of parasite were prepared for 

taxonomic identification. The mounts were prepared by placing several drops of water on 

a slide, and ethanol-preserved or freshly removed parasites were placed in the water. 

Several drops of 95% glycerine were placed on top, and the parasite was covered with a 

cover slip. Slides were left for at least 24 hours prior to microscopic examination. 

2.4 Data Analysis 

The Ryan-Joiner method was used to assess normality in the Tar Pond sediment 

PAH data, which was subsequently found to be normally distributed (Iha et ah, 2009; 

Quijon et ah, 2008; Robinson et ah, 2007). A two way analysis of variance (ANOVA) 

was performed on the Tar Pond sediment data only. The control sites were not included 

in the ANOVA due to the high proportion of non-detects (observations below the 

detection limit). There were only seven and six detects of PAHs (n = 51 PAH 

measurements/site) respectively in Mira River and Ryan River. There were 87% non-

detects in the control sites. Non-detects were not observed in Tar Ponds sediment PAH 

data. 

Biota PAH values were highly variable and were often left-censored data, which 

is data below detection limits. These nondetection values prevented the calculation of 

descriptive statistics, such as the mean and standard error. Various methods were 
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investigated to allow the calculation of descriptive statistics. The Kaplan-Meier or 

product limit estimator method was the most appropriate analytical method for these data 

due to the small sample size and non-normal distribution (Helsel, 2006; Helsel and 

Hirsch, 2002). This method is normally used for right-censored, which is data that 

exceeds the detection limits; thus, the data were inverted to transform the left-censored 

data set to right-censored. The Kaplan-Meier method was performed on the transformed 

data using Minitab version 15. The total PAH concentration (EPAH) was calculated 

based on the sum of the 18 PAHs analyzed. 

Studies typically utilize lipid-adjusted biota PAH values in comparing PAH 

concentrations among different species (Brunson et al, 1998; Galloway et al, 2004; 

Hickey et al, 1995; Landrum et al, 2007; Moermond et al, 2007). Generally, organisms 

with higher lipid content will have a higher capacity to bioaccumulate organic 

contaminants compared to organisms with lower lipid content (Di Toro et al, 1991; 

Klosterhaus et al, 2002, Mackay, 2004; Russell et al, 1999). Thus, the utilization of 

lipid-adjusted values accounts for the variation in organismal bioaccumulation capacity. 

Initially, the wet weight PAH values were converted to lipid-adjusted PAH concentrations 

(see Appendix B). Kruskal-Wallis tests showed no significant difference between wet 

weight and lipid-adjusted biota PAH concentrations (Table 16). The use of lipid-adjusted 

PAH concentrations instead of wet weight PAH values did not provide any advantage, 

thus, wet weight PAH concentrations were utilized in comparison among biota due to 

their inherent simplicity. 

Many of the PAHs were not detected in the fishes; thus, six PAHs which were 

detected in C. maenas, F. heteroclitus, A. rostrata, and Palaemonetes spp. were compared 

among the biota. Acenaphthalene, fluorene, fluoranthene, and phenanthrene were 
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normally distributed. Naphthalene and pyrene were not normally distributed. 

Concentrations of naphthalene and pyrene were naturally log transformed to increase 

normality. A multivariate analysis of variance (MANOVA) was performed. If the 

Hotelling-Lawley test indicated a significant difference among the biota, individual 

univariate F tests were completed. A Levene's test was used to test of homogeneity of 

variances. 

For the fish parasitological data the abundance, prevalence, and mean intensity for 

A. rostrata and F. heteroclitus were calculated for each site. Abundance is the number of 

individuals of a particular species of parasite found in one fish (Bush et al, 1997). 

Prevalence is the percent of fish infected with at least one parasite divided by the number 

offish examined (Bush et al, 1997). Mean intensity is the mean total number of 

parasites per infected fish from one site (Bush et al, 1997). Also, the number of parasite 

species per F. heteroclitus was compared among the sites. There were too few samples of 

A. rostrata collected and necropsied to draw any conclusions about differences in parasite 

assemblages among study sites. 

A condition factor (K), or index of plumpness, was calculated to compare the 

health of F. heteroclitus among sites. A higher K value corresponds to a healthier 

organism than an organism with a lower K value. K is calculated by the following 

equation (Moyle and Cech, 2004): 

K = 100 X [total body weight (g)/(total length in cm)3] 

A Kruskal-Wallis was performed to determine if there were differences among the 

condition factors. If significant results were discovered, Dunn's method was used for 

pairwise multiple comparisons. 
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3. RESULTS 

3.1 PAHs in Sediments 

The majority of the eighteen PAHs analyzed were below detection limits in the 

two reference sites, Mira River and River Ryan (< 0.01 mg/kg dry wt; Table 13). In Mira 

River sediment samples, fluoranthene and pyrene were both detected at mean 

concentrations of 0.02 mg/kg dry wt. In River Ryan sediment samples, anthracene was 

detected at a mean concentration of 0.01 mg/kg dry wt. In one of the sediment samples 

from River Ryan, chrysene/triphenylene was detected at 0.08 mg/kg dry wt. 

All eighteen PAHs analyzed were detected above detection limits in both the 

North and South Tar Ponds (Table 13). The range of PAH concentrations varied between 

the Tar Ponds. In the North Tar Pond, acenaphthylene had the lowest mean concentration 

of 0.5 mg/kg dry wt, while benz[a]anthracene had the highest mean concentrations of 4.6 

mg/kg dry wt. In the South Tar Pond, acenaphthylene had the lowest mean concentration 

(2.0 mg/kg dry wet) while fluoranthene had the lowest concentration of 187 mg/kg dry 

wt. 

PAH concentrations were significantly different between the North and South Tar 

Ponds (ANOVA: Table 14). There were no significant differences (p = 0.655) among 

PAHs. Additionally, there was no interaction between site and PAH (p = 0.772) at the 

Tar Ponds. Higher concentrations of all eighteen PAHs were detected in South Tar Pond 

sediments than in the North Tar Pond (Figure 7). 

Generally, the South Tar Pond had higher organic carbon concentrations 

compared to the North Tar Pond (Appendix B: Table B2). The range of organic carbon 

concentrations varied between the Tar Ponds. In the North Tar Pond, the concentration 
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varied between 2.3 and 7.6% weight. In the South Tar Pond, the concentration varied 

between 6.7 and 52.9% weight. The organic carbon concentration of 52.9% is an 

extremely high value compared to the other organic carbon concentrations (Appendix B: 

Table B2). It is uncertain what caused the high organic carbon concentration. It is likely 

that there was a concentration of organic industrial waste, such as an aromatic compound, 

in that sediment sample which would have caused a spike in the organic carbon 

concentration. 

3.2 PAHs in Biota 

The majority of biota samples analyzed from Mira River and River Ryan, had 

PAH concentrations below detection limits (<0.05 mg/kg wet wt: Appendix B). All PAH 

concentrations from control sites were below detection limits in C. maenas (n = 3 per 

site), Palaemonetes spp. (n = 2 and 1, for Mira River and River Ryan, respectively) and 

A. rostrata (n = 2 from Mira River only). All PAH concentrations in F. heteroclitus from 

the Mira River (n = 3) were below detection limits, while one F. heteroclitus sample from 

River Ryan had traces of pyrene and benz[a]anthracene both at mean concentrations of 

0.04 mg/kg wet wt (Appendix B: BIO). 

PAHs were detected in thirteen of the fifteen biota samples analyzed from the 

Sydney Tar Ponds (Appendix B). One A. rostrata and one F. heteroclitus had PAH 

concentrations below detection limits (<0.10 and <0.05 mg/kg wet wt respectively). The 

composition and concentration of PAHs varied among specimens from each species 

analyzed and among species collected from the Sydney Tar Ponds. 
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PAHs were detected in all of the C. maenas analysed from the Tar Ponds (n = 3 

non-pooled samples). EPAHs varied from 0.5 to 5.0 mg/kg wet wt in C. maenas (Table 

15). The type of individual PAHs were not detected with any consistency in C. maenas 

(Appendix B: Table B4). In all C. maenas samples, phenanthrene, fluoranthene, and 

pyrene were detected. The concentration of phenanthrene, fluoranthene, and pyrene 

varied from 0.06 - 1.06, 0.06 - 0.99, and 0.06 - 0.82 mg/kg wet wt respectively among 

samples. The only PAH not detected in any of the C. maenas samples was 

dibenzo[a,/z]anthracene (Appendix B: Table B4). 

PAHs were detected in all of the Palaemonetes spp. samples analysed from the 

Tar Ponds (3 pooled samples). EPAHs varied from 1.8 to 3.1 mg/kg wet wt in 

Palaemonetes spp. (Table 15). The number of PAHs detected in Palaeomonetes spp. 

were not detected with any consistency (Appendix B: Table B6), similar to C. maenas 

sampled from the Tar Ponds. Unlike the C. maenas samples, only eight or nine of the 

PAHs were detected in Palaemonetes spp. above detection limits. The PAHs with the 

highest mean concentrations were fluoranthene, pyrene, and phenanthrene at 0.77, 0.47, 

and 0.24 mg/kg wet wt respectively. 

From the five A. rostrata samples from the Tar Ponds, one sample had PAH 

concentrations below detection limits (Appendix B: Table B8). The SPAHs 

concentrations were highly variable with SPAHs ranging from not detected to 2.3 mg/kg 

wet weight (Table 15). Similar to the other biota analyzed, PAHs were not detected 

consistently in the five A. rostrata samples. Acenaphthene, fluoranthene, naphthalene, 

and phenanthrene were the only PAHs detected in three of the five A. rostrata samples. 

Of the PAHs detected in A. rostrata the PAHs with the highest mean concentrations were 
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fluoranthene, phenanthrene, and naphthalene at 0.23, 0.24, and 0.22 mg/kg wet wt 

respectively (Appendix B: Table B8). 

PAHs were detected in all of the F. heteroclitus samples from the Tar Ponds (2 

non-pooled; 2 pooled samples) except one (Appendix B: Table BIO). EPAHs ranged 

from not detected to 0.7 mg/kg wet wt (Table 15). In the F. heteroclitus samples where 

PAHs were detected (three of the four samples) only phenanthrene and fluoranthene were 

detected constantly at concentrations ranging from 0.08 - 0.15 and 0.06 - 0.19 mg/kg wet 

wt respectively (Appendix B: Table B10). Of the seven PAHs detected in F. heteroclitus, 

the PAHs with the highest mean concentrations were phenanthrene and fluoranthene at 

0.10 and 0.09 mg/kg wet wt. The other five PAHs detected in F. heteroclitus had mean 

concentrations ranging fom 0.04 to 0.06 mg/kg wet wt. Like the other biota samples, 

there was variability in the concentrations of the PAHs among the F. heteroclitus sampled 

(Appendix B). 

There was also variability in the composition and concentration of PAH among 

species collected from the Tar Ponds (Figure 8). Acenaphthene, fluoranthene, fluorene, 

naphthalene, phenanthrene, andpyrene were detected in A. rostrata, C. maenas, 

Palaemonetes spp., and F. heteroclitus. Anguilla rostrata accumulated only the above six 

PAHs. Fundulus heteroclitus accumulated one additional PAH: anthracene. 

Palaemonetes spp. accumulated the above six PAHs along with anthracene and 

chrysene/triphenylene. Carcinus maenas accumulated all of the PAHs analyzed except 

dibenz[a,ft]anthracene; thus, C. maenas accumulated the greatest number of PAHs 

compared to the other biota analyzed. 

The concentration of PAHs appears to be generally higher in C. maenas and 

Palaemonetes spp. compared to A. rostrata and F. heteroclitus (Figure 8). Only 
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fluoranthene and pyrene were significantly different among the six PAHs which were 

found in all biota (MANOVA: Table 16). Palaemonetes spp. compared to both A. 

rostrata and F. heteroclitus had significantly different fluoranthene concentrations 

(Tukey test: Table 17). Palaemonetes spp. andi7. heteroclitus had significantly different 

pyrene concentrations (Tukey test: Table 17). All other pair-wise comparisons were not 

significant (p >0.05). Homogeneity of variances was confirmed by Levene's test for all 

PAHs (p > 0.05). 

3.3 Parasitological Analysis 

In total, nine parasite genera were found in or on F. heteroclitus (n = 171). 

Fundulus heteroclitus from the Sydney Tar Ponds had the lowest prevalence and 

abundance of parasites compared to River Ryan and Mira River (Tables 18-19). River 

Ryan had the highest diversity of parasite genera (Tables 18-19). Several ectoparasites 

were found on the gills and skin of F. heteroclitus from River Ryan and Mira River. 

Parasitic crustaceans, Argulus spp., were found on the gills and skin. Larval trematodes, 

echinostome metacercariae, and another parasitic copepod, Ergasilus manicatus, were 

found on the gills of F. heteroclitus from River Ryan and Mira River. The monogene, 

Salsuginus sp., were found on the gills of F. heteroclitus from all three sites. 

The only ectoparasite found on F. heteroclitus from the Tar Ponds was Salsuginus 

sp. with a prevalence of 8.2% (Table 18). Salsuginus sp. had a higher prevalence on F. 

heteroclitus from Mira River and River Ryan of 76.7% and 59.1% respectively. On the 

gills of F. heteroclitus from River Ryan Salsuginus sp. were the most prevalent, while 

echinostome metacercariae were the least prevalent ectoparasite (Table 18). On the gills 
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of F. heteroclitus from Mira River echinostome metacerariae were the most prevalent and 

Argulus sp. was the least prevalent ectoparasite (Table 18). 

Endoparasites were found in a diversity of tissues and organs within F. 

heteroclitus, such as the connective tissue, gonads, heart, liver, and spleen (Appendix C). 

Fundulus heteroclitus from the Tar Ponds had the lowest prevalence and abundance of 

endoparasites compared to the other sites (Table 19). An unidentifiable acanthocephalan 

and third larval stage (L3) ascarid nematode were the most prevalent endoparasites in F. 

heteroclitus from the Tar Ponds. An unidentifiable cestode and trematode were the least 

prevalent endoparasite in F. heteroclitus from the Tar Ponds. For F. heteroclitus from the 

Mira River, acanthocephalans, Neoechinochynchus sp., were the most prevalent 

endoparasite, while unidentifiable metacerariae and the trematode, Hamalometron 

pallidum, were the least prevalent. Unlike the Mira River results, the unidentifiable 

metacerariae in F. heteroclitus from River Ryan were the most prevalent and abundant 

endoparasite. The cestode, Proteocephalus sp., was the least prevalent endoparasite in F. 

heteroclitus from River Ryan. 

Parasite populations and community compositions varied among sites. In over 

75% of F. heteroclitus from the Tar Ponds there were no parasites (Figure 9). A 

maximum of three parasite species were observed in 2% of F. heteroclitus from the Tar 

Ponds. In contrast, on average there were two parasite species per individual F. 

heteroclitus from River Ryan (Figure 9); and less than 5% of F. heteroclitus from River 

Ryan had no parasites. Fundulus heteroclitus from Mira River had at least two, to a 

maximum of six, parasite species per fish. On average each Mira River F. heteroclitus 

had three to four parasite species per fish (Figure 9). 
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With respect to fish health, the condition factors (K) for F. heteroclitus varied 

among the sites. Fundulus heteroclitus from the Mira River had the highest K values 

(1.35 +/- 0.02 std.err.), followed by River Ryan (1.33 +/-0.03), and Tar Ponds (1.22 +/-

0.02). There were significant differences in K among the sites (Kruskal-Wallis, H = 27.1, 

df = 2, and p < 0.05). Mira River and River Ryan were not significantly different from 

each other; however, both reference sites were significantly higher than the Tar Ponds. 

In total, only three parasite genera could be identified in or on A. rostrata (n = 21). 

Parasitic copepods, L3 nematodes, acanthocephalans, and another type of nematode were 

found (Table 20). A monogene, Pseudodactylogyurus anguillae, and an unidentifiable 

parasitic copepod were found on the gills. There were three unidentifiable endoparasites. 

An unidentifiable acanthocephalan was found in the intestine and stomach. An L3 

nematode and an unidentifiable nematode were found in the connective tissue and swim 

bladder respectively. The endoparasite genera which could be identified in the digestive 

tract and swimbladder were cestode, Bothriocephalus sp., and nematode, Anguillicoloides 

crassus, respectively. 

The parasite populations and communities within A. rostrata differed among sites 

(Appendix D), as observed with F. heteroclitus. There were only three parasite species 

identified in the Tar Ponds; however, in Mira River and Sydney Harbour there were seven 

and three parasite species identified, respectively. Thus, A. rostrata from the Mira River 

had the greatest parasite species diversity. 
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4. DISCUSSION 

4.1 PAHs in Sediments 

PAHs in sediments from the reference sites exhibited trace levels (< 0.05 dry wt 

mg/kg) of three PAHs: anthracene, fluoranthene, andpyrene (Table 13). The PAH 

concentrations in Mira River and River Ryan were comparable to PAH concentrations 

found in reference sites used in other studies around the world (Barbee et al., 2008; 

Djomo et al, 1996; Kim et al, 2008; Krauss et al, 2000). For example, Kim et al. 

(2008) and Barbee et al. (2008) evaluated PAH concentrations in various remote lakes 

around the world. Both of theses studies found the concentration of PAHs to be below 1 

mg/kg dry wt. Thus, the level of PAHs in Mira River and River Ryan are similar to PAH 

concentrations in other reference sites. 

The geography of the Tar Ponds may account for the South Tar Pond being more 

contaminated with PAHs than the North Tar Pond. Since the North Tar Pond is further 

away from industrial activities, one would expect the PAH concentration to be lower. 

Water currents move sediments through the Coke Ovens Brook Connector, into the South 

Tar Pond, and finally into the North Tar Pond. As sediments move to lower tidal energy 

sections of the Tar Ponds, particles could settle out of the water column and onto the 

sediment bed. The net result of this action would be fewer contaminated particles moving 

into the North Pond compared to the South Pond. Since PAHs are generally sorbed to 

sediment particles (Arfi and Bouvy, 1995; Kukkonen and Landrum, 1995; Talley et al., 

2002), this would result in lower PAH concentrations in the North Pond compared to the 

South Pond. 
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There is little research on the differential in PAH concentrations between the 

North and South Tar Ponds. Querbach (2002) analyzed the distribution of contaminants 

in sediments from the Sydney Harbour North and South Arm. She collected sediment 

cores from varying distances from where the North Tar Pond emptied into the harbour. 

Sediment cores collected at 0.00, 0.57, and 0.92 km from the mouth of Muggah Creek 

had PAH concentrations of 353.6, 208.3, and 95.0 mg/kg respectively. Sediment cores 

collected at 0.00, 0.57, and 0.92 km from the mouth of Muggah Creek had PCB 

concentrations of 7.1, 3.3, and 1.5 mg/kg respectively. In general, there was a decrease in 

PAH and PCB sediment concentrations with an increased distance from Muggah Creek. 

TWEL-TTb (1996) also collected sediment samples from the Sydney Harbour. PAHs 

were detected at all sampling stations in the Harbour, but PAH concentration was the 

highest in the South Arm. They also found that the PAH concentration decreased with an 

increased distance from Muggah Creek. Although these studies were conducted in the 

Harbour, it demonstrates a general pattern that sediment PAH concentration decreases 

with increased distance from contamination. 

A similar pattern has been found in other sites. Upon examining the sediments 

around Ulsan Bay, Korea, Khim et al. (2001) found the concentrations of PCBs and 

PAHs to decrease further away from industrial activities. Simpson et al. (1996) and Bieri 

et al. (1986) also found that levels of PAH decreased with increased distances from 

industrial activities. Since the North Tar Pond is further away from industrial activity, the 

South Tar Pond should be higher in contaminations. 

The sediment PAH concentrations in the Sydney Tar Ponds were higher than other 

contaminated sites (Bieri et ah, 1986; Leite et al, 2008; Voparil et al., 2004). Elizabeth 

River, Virginia, USA, had a similar history to the Sydney Tar Ponds. Both Elizabeth 
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River and the Tar Ponds experienced many years of unregulated dumping and many 

shoreline industrial activities (AMEC, 2005; Huggett et al, 1984; JWEL-IT, 1996a, b; 

Mitra et al., 1999; Mulvey et al., 2002; Walker and Dickhut, 2001). In sediment samples 

from Elizabeth River, PAH concentrations varied between 6-42 mg/kg dry wt for 

benzo[e]pyrene and fluoranthene respectively (Bieri et al., 1986: Table 5). The North Tar 

Pond sediment concentrations were similar to or lower than Elizabeth River sediment 

concentrations. Yet the South Tar Pond sediment concentrations were higher than 

Elizabeth River sediment concentrations. Benzo[e]pyrene and fluoranthene 

concentrations were 41 and 187 mg/kg dry wt respectively in the South Tar Pond, and 6 

and 42 mg/kg dry wt respectively in Elizabeth River sediments (Bieri et al., 1986). 

The PAH concernations in the Tar Ponds are well beyond the CCME guidelines 

for marine sediments (Table 9; Figure 7). Acenaphthylene had the lowest mean 

concentration in both the North (0.5 mg/kg dry wt) and South (2.0 mg/kg dry wt) Tar 

Ponds. The acenaphthylene CCME interm marine sediment guideline is 0.00587 mg/kg 

dry wt; thus, the acenaphthylene levels in both the Tar Ponds are about 100 fold higher 

than CCME guidelines (CCME, 2002). According to CCME (2002), 51% of biota 

exposed to 0.128 mg/kg dry wt acenaphthylene concentrations will exhibit adverse 

toxicological effects. Acenaphthylene sediment concentrations of 0.64 mg/kg will often 

cause biota which live in or near sediments to exhibit toxicological effects (CCME, 2002; 

Wade et al, 2008; Tables 8-9). Thus, the sediment concentrations are potentially toxic to 

biota, which live in or near the Tar Pond sediments. 

High variability (i.e. standard errors) was observed among samples from each 

respective site. All sediment samples were collected within lm of each other. Despite 

the samples being sampled from the same locality, there was high variability. Also, 
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ANOVA revealed no significant differences among the PAHs (p = 0.655). Both these 

factors suggest that the concentrations of PAHs were not homogeneously distributed 

throughout the Tar Ponds. Previous studies have demonstrated heterogenous distribution 

of PCBs in the Tar Ponds (AMEC, 2005) and the Sydney Harbour (JWEL-IT6, 1996). 

The precise mechanism of the spatial heterogeneity is unknown. 

Numerous studies have documented seasonal activities causing heterogeneity in 

PAH sediment concentrations (Bierman, 1990; Liang et al, 2007; Moermond et ah, 

2005). Maruya et al. (1997) observed heterogeneity in sediment PAH concentrations. 

Heterogeneity was attributed to variation in black carbon content of the sediment 

particles. PAHs sorbed to the black carbon, and during the rainy season particles washed 

into the marsh by surface runoff. During the dry season, winds and tidal activity 

resuspended and transported particles through the system. Particles settled out onto the 

sediment bed when they entered lower tidal energy portions of the marsh. The Tar Ponds 

do not have a rainy and dry season. In the Tar Ponds, PAHs may partition to the black 

carbon and be suspended in the water column. The particles would be transported though 

the Tar Ponds to low energy areas of the estuary; thus, in low energy portions of the Tar 

Ponds, there would be higher levels of PAHs compared to higher energy portions of the 

Tar Ponds. 

Unregulated dumping would be the most likely source of heterogeneity. For over 

100 years industries were established around the Muggah Creek estuary (AMEC, 2005). 

At the time there were few waste mangament guidelines, and these industries released 

many of their wastes into the Muggah Creek. Also, material dump sites were established 

along Muggah Creek (AMEC, 2005). The unregulated dumping may have resulted in 
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pockets of contamination where the contaminats were released into the environment, thus, 

causing heterogeneity in the Tar Ponds. 

4.2 PAHs in Biota 

The mean PAH concentrations in biota from the two reference sites were below 

0.05 mg/kg. In relatively uncontaminated environments, like Mira River and River Ryan, 

studies have found biota from these sites to have PAH concentrations typically less than 

0.01 mg/kg (Pancirov and Brown, 1977; Vives et al., 2004: Table 6). The concentrations 

of PAHs in biota from the Tar Ponds were much higher compared to biota from other 

contaminated sites in other studies (Eickhoff et al., 2003a; Lima et al., 2008; Nakata et 

ah, 2003: Table 7). Typically the concentration of organic contaminants is higher in the 

hepatopancreas of crabs and muscle tissue of fishes, respectively (Fernandes et ah, 2007; 

Hale, 1988; Hellou et al, 1994). Eickhoff et al. (2003a) found the concentration of PAHs 

to be less than 5 ug/kg (0.005mg/kg) wet wt in the hepatopancreas of Dungeness crab 

{Cancer magister) from an aluminum contaminated site in Kitimat Arm, British 

Columbia. Anthracene, fluoranthrene, and chrysene were the PAHs with the highest 

concentrations at 2.09, 4.29, and 2.95 ug/kg wet wt respectively (Eickhoff et al, 2003a). 

Lima et al. (2008) analyzed the PAH concentrations in fish (shanny, Lipophrys pholis) 

muscle from a contaminated site in northwest Europe. The tissue PAH concentrations 

were below 6 ug/kg wet wt. Phenanthrene and fluoranthene were at highest 

concentrations of 3.3 and 6.0 ppb wet wt respectively (Lima et al., 2008). 

In this study, whole samples, not specific organs, were evaluated for PAHs. 

Carcinus maenas samples from the Tar Ponds had mean anthracene and fluoranthene 
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concentrations of 80 and 490 ug/kg wet wt respectively (Appendix B: Table B4). 

Fundulus heteroclitus from the Tar Ponds had mean phenanthrene and fluoranthene 

concentrations of 100 and 90 ug/kg wet wt respectively (Appendix B: Table B10). 

Anguilla rostrata had mean phenanthrene and fluoranthene concentrations of 240 and 230 

ug/kg wet wt respectively (Appendix B: Table Bl 8). Thus, the biota from the Tar Ponds 

is extremely contaminated compared to other contaminated sites. Also, the analysis of 

whole samples would most likely dilute concentrations of accumulated PAHs in the 

hepatopancreas and muscle. Yet, the concentration of PAHs of the whole organisms from 

the Tar Ponds were over 1000 times higher than the concentration of organ and tissue 

PAHs found by Eickhoff et al. (2003a) and Lima et al. (2008). 

4.3 Differential Bioaccumulation of PAHs in Invertebrates and Vertebrates 

Carcinus maenas and Palaemonetes spp. from the Sydney Tar Ponds accumulated 

a greater range and concentration of PAHs than A. rostrata and F. heteroclitus (Table 15; 

Figure 8). Carcinus maenas accumulated all of the PAHs analyzed, but 

dibenz[a,/z] anthracene was not detected in C. maenas. Palaemonetes spp. accumulated 

the same six PAHs accumulated by A. rostrata and F. heteroclitus, as well as anthracene 

and chrysene/triphenylene. Invertebrates accumulated greater concentrations of PAHs in 

their tissues than vertebrates. Carcinus maenas and Palaemonetes spp. accumulated 2.6 

and 2.4 mg/kg wet wt of ZPAHs, respectively, while F. heteroclitus and A. rostrata 

accumulated 0.7 and 1.3 mg/kg wet wt of EPAHs, respectively (Table 15). 

Nakata et al. (2003) measured greater PAH concentrations in Japanese mud crab 

{Macrophthalmus japonicus) and other lower trophic organisms than in coastal fishes, 
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squid, and fmless porpoises. The authors suggested this to be due to crabs directly 

ingesting sediment. The differences in bioaccumulation may also be due to association 

with interstitial water and differing biotransformational abilities among taxa. 

4.3.1 Role of Ingesting Sediment 

Carcinus maenas is strongly associated with sediment and may ingest sediments 

during feeding. Carcinus maenas from the Tar Ponds were observed with thick patches 

of tar attached to their abdomens, indicating burrowing behaviours (M. Jones, personal 

communication). The association of C. maenas with the sediment could increase the 

probability of sediment ingestion with food. Carcinus maenas prey on a variety of 

species such as algae, bivalves, juvenile crustaceans, and juvenile fishes (Cohen et ah, 

1995). Carcinus maenas are known to ingest bryozoa, hydrozoa, nemertea, nematode, 

oligichaeta, photonida, polychaeta, and turbelaria (Cohen et al., 1995). These organisms 

are found in sediments. The ingestion of these organisms may also result in the 

accidental ingestion of sediment. 

The ingestion of contaminated sediments or prey items is considered to be a key 

route in the accumulation of organic contaminants in biota (Forbes et al., 1998; Sormunen 

et al., 2008; Thomann et al., 1992; Voparil et al., 2004). The digestive process of many 

organisms involves secretion of surfactants into the digestive lumen (Bock and Mayer, 

1999; Rubas and Grass, 1991; Zimmer, 1997). Surfactants are both hydrophobic and 

hydrophilic in nature allowing the hydrophilic portion to interact with the digestive juices, 

while the hydrophobic portion interacts with the lipids (Horton et al., 2002). The 

advantage of surfactants in the absorption of lipids is that surfactants aid in the absorption 

of organic contaminants associated with lipids. Surfactants are believed to increase the 
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solubility of PAH by forming micelles around the PAH (Mayer et al., 1996). Carcinus 

maenas may increase their exposure to PAHs by ingesting sediments while foraging for 

benthic infauna (e.g. nemerteans, nematodes, platyhelminthes, oligochaetes, polychaetes, 

etc.) (Cohen et al, 1995). 

Ciarelli et al. (2000) and Croce et al. (2005) found that increased ingestion of 

contaminated sediment particles increases organic contaminant burden in organisms. 

Ciarelli et al. (1999) studied the effect of amphipod activity on the bioaccumulation of 

fluoranthene in mussels. These authors found that increased density of amphipods, 

(Corophium volutator) in the sediment resulted in increased uptake of fluoranthene in 

mussels. Corophium volutator activity also increased total suspended sediments in the 

water column resulting in increased suspended particles, and associated fluoranthene, 

entering the mussels during filter feeding. The burrowing behaviour of C. maenas may 

also result in sediments being suspended in the water column. 

On numerous occasions, the Tar Ponds can be extremely turbid (M. Jones, 

personal communication). It has been suggested that the shallow nature of the Tar Ponds 

increased the tendency of wind currents to suspend sediments in the water column (M. 

Jones, personal communication). The suspended sediments in the water column of the 

Tar Ponds may result in sediment-associated organisms, such as C. maenas and 

Palaemonetes spp., having a higher exposure to PAHs, since PAHs are often sorped to 

sediment particles (Gewurtz et al., 2000). Organisms which are not as closely associated 

with the sediment, such as F. heteroclitus and A. rostrata, would most likely not show 

similarly elevated PAH accumulation with sediment suspension. A similar phenomenon 

was found by Maruya et al. (2001) in a study on various fishes. The small, bottom 

dwelling finfish had higher levels of toxaphene, an organochlorine pesticide, compared to 
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larger predatory fish which are not as closely associated with sediment. Thus, degree of 

sediment association is important in evaluating bioaccumulation of PAHs. 

4.3.2 Role of Interstitial Water 

Based on Koc, organic contaminants should partition between the sediment and 

interstitial water. Through the partitioning there will be higher concentrations of PAHs in 

interstitial water compared to water column (Maskaoui et al., 2002; McGroddy et ah, 

1995). Interstitial water is an important source of contaminants in the accumulation and 

toxicology of PAHs (Cornelissen et ah, 2006; Kosian et al, 1998; Sverdrup et al, 2002). 

Hawthorne et al. (2007) found sediments with lower total PAH concentrations to be more 

toxic to amphipods than sediments with higher total PAH concentrations. By exposing 

the amphipods to extracted interstitial water, they found that concentration of total PAH 

in interstitial water was positively associated with toxic effects. Thus Hawthorne et al. 

(2007) found sediment PAH concentration to not relate with toxic effects. Instead, they 

found interstitial water PAH concentration to positively correlate with toxic effects. 

Gewurtz et al. (2000) compared the levels of PAHs and PCBs in various 

organisms in Lake Erie. Mayflies (Hexagenia spp.) accumulated the greatest 

concentrations of PAHs and PCBs. The authors suggested this was due to Hexagenia 

spp. ingesting sediment and detritus, and inhabiting sediments. Mussels ranked with the 

second highest PAH and PCB loading. Mussels are filter-feeders; Gewurtz et al. (2000) 

suggested that they accumulated PAHs by filtering suspended sediment. Mussels are 

strongly associated with sediments and interstitial water; thus, the movement of 

interstitial water across gills may increase the bioaccumulation of PAHs. A similar 
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mechanism may have augmented PAH accumulation in C. maenas and Palaemonetes 

spp. in this study. Both C. maenas and Palaemonetes spp. were more highly associated 

with sediments than fishes, A. rostrata and F. heteroclitus. Thus, C. maenas and 

Palaemonetes spp. experienced greater exposure to interstitial water than the fishes. 

Lu et al. (2004) found phenanthrene uptake from interstitial water was the major 

contributor to PAH accumulation in oligochaetes. The authors suggested that ingested 

sediment contributed less than 20% of total phenanthrene uptake. The importance of 

interstitial water in PAH accumulation is dependant on hydrophobicity. Lu et al. (2004) 

observed that benzo[a]pyrene, a PAH with a higher hydrophobicity than phenanthrene, 

was accumulated only from ingested sediment by oligoachetes. The authors suggested 

that interstitial water contributed less than 5% for benzo[a]pyrene. A similar pattern may 

exist in this study. For the less hydrophobic PAHs like fluoranthene, pyrene, and 

chrysene/triphenylene, the levels of the respective PAHs were similar in C. maenas and 

Palaemonetes spp. Yet for the more hydrophobic PAHs like benz[a]anthracene, 

benzo[Z>]fluoranthene, and benzo[a]pyrene, C. maenas had greater concentrations of these 

PAHs than Palaemonetes spp. PAHs with a log K0VI greater than 5.80 were not detected 

in Palaemonetes spp. Similar to findings by Lu et al. (2004), the hydrophobicity of the 

PAH may determine the importance of interstitial water in the uptake of PAHs in biota. 

The PAHs with a log -&T0w less than 5.80 may be taken up by C. maenas and Palaemonetes 

spp. via interstitial water. The uptake of PAHs with log Kov/ greater than 5.80 may be 

caused by another mechanism. The burrowing behaviour of C. maenas could cause 

ingestion of sediments. Since Palaemonetes spp. are more pelagic than C. maenas, 

Palaemonetes spp. are less likely to ingest sediments. PAHs with log Kow greater than 

5.80 may be taken up by ingestion of sediment instead of interstitial water. 
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4.3.3 Role of Varying Biotransformation A bilities 

Differences in bioaccumulation of PAHs among C. maenas and Palaemonetes 

spp. and fishes, A. rostrata and F. heteroclitus, may also be due to differences in 

biotransformation abilities. Invertebrates are able to metabolize PAHs and other organic 

contaminants (Burkhard et al, 1997; Eickhoff et al, 2003a, b; Jorgensen et al, 2008; Lee 

et al, 1976; Watson et al., 2004), but not as quickly as fishes and other vertebrates 

(Eickhoff et al, 2003a; Gewurtz et al, 2000). Erickhoff et al. (2003a) detected PAHs in 

Dungeness crab {Cancer magister) tissues, but previous analysis found only traces of 

PAH in the ground fish from the same area. Similar results were found between 

invertebrates and vertebrates in this study. Carcinus maenas and Palaemonetes spp. had 

high PAH concentrations while only traces of selected PAHs were detected in A. rostrata 

and F. heteroclitus. 

The rate and importance of biotransformation varies between trophic levels 

(Corsolini et al, 2007; Thomann and Komlos, 1999; Wan et al, 2008). Baumard et al. 

(1998) collected and analyzed the concentration of PAHs in a diversity of marine species. 

The importance of biotransformation in the bioaccumulation of PAHs was low in 

mussels. In fishes, biotransformation was more important compared to mussels, in the 

type and concentration of PAHs accumulated. Other studies found bioaccumulation of 

organic contaminants variable between trophic levels (Burkhard, 2003; Froese et al, 

1998; Veltman et al, 2005). 
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4.4 Factors in Depressed Bioaccumlation 

With the high sediment PAH levels, one would expect a high bioaccumulation of 

PAHs. The lower than expected bioaccumulation of PAHs may also result from aging of 

sediments, decreased affinity for lipid relative to sediment, and/or another sorptive phase 

(Bervoets et al, 2005; Corneliseen and Gustafsson, 2005; Krauss et al., 2000; Sundelin et 

al., 2004). Aging results over a period of time when the organic contaminant is sorbed 

onto or into the organic matter of the sediment (Alexander, 2000; Kraaij et al, 2001; Reid 

et ah, 2000). When the contaminant is released into the environment, it is thought that 

the contaminant is quickly adsorped to the sediment through hydrogen bonding and/or 

van der Waals forces (Semple et al., 2003). Over a period of time (weeks to months), the 

contaminant may move into the organic matter of the sediment and/or form stronger 

bonds such as covalent bonds with the organic matter (Semple et ah, 2003). Through 

these stronger interactions, the bioavailability and toxicity of the organic contaminant 

decreases (Hatzinger and Alexander, 1995; Kraaij et al., 2001; White et ah, 1999). 

Erickson et al. (1993) studied the microbial community during the bioremediation 

of a manufactured gas plant site. They found that the PAHs in the site were not 

metabolized by the microorganisms. The PAHs in the soil did not appear to be toxic to 

the microbial communities. If PAHs were spiked into the soil, there was a rapid decrease 

in PAH concentration. The spiked sediments had not formed strong interactions with the 

organic matrix of the sediment; thus, were bioavailable for microbial uptake (Erickson et 

al., 1993; Semple et al., 2003). Similar results were found by Kraaij et al. (2001) where a 

portion of sediment previously contaminated by PAHs was was spiked with PAHs. 

Kraaij et al. (2001) found PAH bioaccumulation for amphipods was significantly higher 

for spiked sediments compared to aged soil. 
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PAHs have been deposited in the Tar Ponds over the past century, so it is 

plausible that aging has occurred. The operation of the coke ovens and the production of 

steel ceased in 1988 and 2000, respectively (AMEC, 2005). The extent of the aging 

process occurring in the Sydney Tar Ponds is unknown. However, the extent of aging is a 

time-dependent process; thus there will be a decrease in bioavailability of contaminant. 

The low bioaccumulation may also be due to decreased affinity for biota lipid 

relative to sediment, and/or another sorptive phase (Kukkonen et al., 2005; Lu et al., 

2006; Maruya et al., 1997; Moermond et al, 2005). Bervoets et al. (2005) found high 

variation in the uptake of trace metals, PCBs, and pesticides in mussels. The authors 

suggested this to be due to mussel physiology and differential partitioning between 

mussel tissues and sediment. 

Black carbon has a high affinity for many organic contaminants (Cornelissen et 

al., 2004a, b; ten Hulscher et ah, 2003). The decrease or variability of the uptake of 

contaminants has been attributed to the presence of black carbon (Cornelissen and 

Gustafsson, 2005; Cretney and Yunker, 2000; Hauck et al, 2007). It was suggested that 

black carbon has influenced the uptake of contaminants for a diversity of species (Cretney 

and Yunker, 2000; Lamoureux and Brownawell, 1999; Thorsen et al., 2004). The 

presence of black carbon in sediment may increase sediment capacity to sorb PAHs, 

which would decrease the fugacity, the leaving tendency, of the PAH (Rust et al., 2004). 

Black carbon is formed by incomplete combustion of fossil fuels such as coal 

(Cornelissen and Gustafsson, 2005; Mitra et al., 2002). Due to the past industrial 

activities around the Tar Ponds, it is plausible that black carbon was introduced into the 

Tar Ponds. Studies have indicated that black carbon is ubiquitous and accounts for 1-

15% of total organic carbon in soils and sediments (Accardi-Dey and Gschwend, 2002; 

73 



Gustafsson and Gschwend, 1998; Middelburg et al., 1999). Black carbon may become 

associated with PAHs through industrial activities. The black carbon with the sorbed 

PAH would then be introduced into the Tar Ponds. PAHs formed from fossil fuels and 

associated with black carbon have lower bioavailability, thus depressed bioaccumlation of 

PAHs, compared to PAHs associated with other types of carbons (Jonker and Koelmans, 

2002; Kukonen et al, 2005; Rust et al, 2004; Thorsen et al, 2004). 

4.5 Variation in the Bioaccumulation of PAHs Within a Species 

There was great variation in the bioaccumulation of PAHs in biota from the Tar 

Ponds. The variation in PAH accumulation in biota from the Tar Ponds may be related to 

abiotic and/or biotic factors. Some organisms have a greater potential to accumulate 

contaminants than other organisms (Lu et al, 2006; Maruya et al, 2001; Veltman et al, 

2005). Contaminant concentration alone is not an indicator of bioaccumulation, and 

species differences should be considered. Schuler et al. (2003) examined the uptake of 

benzo[a]pyrene and hexachlorobiphenyl from aged sediments into freshwater 

invertebrates. Schuler et al. (2003) found the decrease in bioavailability of contaminants 

to vary among species. The variation in the bioaccumulation of PAH in Tar Pond biota 

may be due to differences in behaviour, physiology, and combination of uptake routes. 

Individual organisms may vary in their food selection. Organisms which ingest 

particles or live in or around environments comprised of much organic matter may be 

exposed to greater concentrations of PAHs. Forbes et al. (1998) studied polychaete 

behaviour and found that worms select particles high in organic matter, which resulted in 

greater PAH exposure compared to polychaetes which selected low organic matter 
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sediments. Forbes et al. (1998) also suggested that polychaete behaviour may influence 

exposure. They suggested that the modification of the environment by polychaete worms 

(burrowing and irrigating the sediment) may influence the diffusion and movement of 

contaminants in and out of the sediments, thus, increasing polychaete exposure to PAHs. 

Leppanen and Kukkonen (2004) studied the effects of intraspecific differences in feeding 

behaviour among oligochaetes. They found that individuals which ingested sediment 

particles accumulated greater concentrations of polybrominated diphenylethers, a flame 

retardant, than oligochaetes which did not ingest sediment particles. 

The variation in the Tar Pond biota PAH concentrations may be caused by 

individual differences in biotransformation. Many organisms are able to biotransform 

PAHs and other harmful organic contaminants (Corsolini et al., 2007; Drouillard et al., 

2007; Tomruk and Guven, 2008). Biotransformation of organic contaminants is 

individual- and species-specific (Anulacion et al, 1998; Moisey et al., 2001; Wirgin et 

ah, 1996). Leadley et al. (1999) exposed brown bullheads {Ameiurus nebulosus) to 

hydrocarbon contaminated sediments. Brown bullheads were selected for similarities 

based on size, feeding status, and exposure history. Despite the selection criteria, there 

was variability in biotransformation of hydrocarbons in bullheads. Vandermeulen and 

Mossman (1996) collected winter flounder {Pleuronectes americanus) from the Sydney 

Harbour, NS, Canada. Similar to Leadley et al. (1999), Vandermeulen and Mossman 

(1996) found high variability in biotransformation activity in winter flounder. Only 20-

40% of the variability in biotransformation activity could be explained by differences in 

location, sex, maturity, and season. Other studies also indicate that there are complex, 

confounded interactions which affect the bioaccumulation of organic contaminants 

(Baumard et ah, 1998; Bustnes et al., 2008). The varying effects of growth rates and 
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aging, differences in individual organismal food preference, and differences in individual 

ability to biotransform PAHs may all result in high variability in contaminant 

accumulation. It is uncertain which of these factors, if any of them, influenced the uptake 

or elimination of PAHs in Tar Ponds biota. Additional research is required to investigate 

which of these factors are responsible for the observed variability. 

4.6 Potential Type 2 Biomonitor for the Sydney Tar Ponds 

Type 2 biomonitors trace the change of chemical concentrations in biota 

(Levinton et al, 2006; Vuorinen et al, 2006; Yunker et al., 2002). Carcinus maenas is 

the most suitable Type 2 biomonitor of the four potential species assessed. Carcinus 

maenas have a high reproductive output (Naczk et al., 2004); indicating potentially large 

populations of C. maenas in the Tar Ponds. Secondly. C. maenas can tolerate adverse 

environmental conditions (Naczk et al., 2004). The tolerance to adverse conditions 

allows this species to successfully inhabit and flourish at degraded sites. Finally, C. 

maenas are easily collected and identified. 

Carcinus maenas has measurable and reproducible responses to the contaminant. 

This study documented greater accumulation of PAHs in C. maenas than in Palaemonetes 

spp., F. heteroclitus, or A. rostrata. The goal of Tar Ponds remediation efforts is to 

decrease the level of contamination in the biota, sediment, and water. By selecting a 

biomonitor with the highest initial PAH concentration, one is able to trace the decrease in 

PAH concentrations for a longer period of time. Also, C. maenas bioaccumulated 16-17 

different types of PAHs, while the other species assessed did not bioaccumulate as great a 

range of PAHs. This may be due to C. maenas having a lower ability to metabolize 
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PAHs and a higher fugacity capacity compared to F. heteroclitus and A. rostrata. Thus, 

C. maenas allows the biomonitoring of a greater range of PAHs compared to other 

species. 

In this study, C. maenas were not assessed for their ability to trace changes in 

environmental contaminant concentrations. An effective Type 2 biomonitor should 

accumulate the contaminant at concentrations which correlate to the environmental (i.e. 

water and/or sediment) contaminant concentrations. Thus, as the concentration of PAHs 

increases in the environment, PAHs increase to a corresponding degree in C. maenas. 

This relationship should be further investigated before C. maenas are used as 

biomonitors. 

Although this relationship was not investigated for C. maenas in this other crab 

species have accumulated contaminants at concentrations which correlate with its 

environment (Baumard et al., 1998; Hale, 1988; Humason and Gadbois, 1982; Ikonomou 

et al., 2002; Mothershead et al., 1991; Pancirov and Brown, 1977). Eickhoff et al. 

(2003a) evaluated the accumulation of PAHs in Dungeness crabs {Cancer magister) 

downstream from an aluminum smelter. The concentration of PAHs in the 

hepatopancreas and muscle tissues correlated with the environmental PAH 

concentrations. Another study using C. magister also demonstrated C. magister can be 

used as a Type 2 biomonitor. They found a decrease in the concentration of 

polychlorinated dibenzo-j9-dioxin in the hepatopancreas of C. magister as the site was 

remediated (Yunker and Cretney 2000). Thus, these studies demonstrate that the levels of 

organic contaminants in the environment can be reflected in crab tissue concentrations. 
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4.7 Fish Parasite Populations and Communities 

This is one of the first parasitological surveys of F. heteroclitus andyi. rostrata 

from Cape Breton estuaries. A number of studies have been conducted on the parasites of 

fundulids and A. rostrata sampled from Nova Scotia (Barker, 1997; Barker and Cone, 

2000; Fantham and Porter, 1948; Fantham et al, 1940; Gowanloch, 1927; Hawley, 1998; 

Marcogliese, 1995; Wiles, 1975). All of the parasite species observed inF. heteroclitus 

were previously observed in F. heteroclitus throughout the Atlantic coast of North 

America (Harris and Vogelbein, 2006: see Appendix A). 

A recent parasitological survey of F. heteroclitus from Lawrencetown Lake, Nova 

Scotia found that they all were infected with the monogene, Gyrodactylus sp., on the skin 

and fins (Hawley 1998). Also, over 50% of F. heteroclitus were infected with Argulus 

funduli and/or Ergasilus funduli. The present study did not examine F. heteroclitus for 

Gyrodactylus spp., but the monogene, Salsuginus sp. was found on the gills of F. 

heteroclitus from all sites. Argulus sp. and E. manicatus were found on the gills, but at 

prevalences less than 50% of what Hawley (1998) observed. In River Ryan, Argulus sp. 

and E. manicatus were found at 9.7% and 14.5% prevalence respectively. In Mira River, 

Argulus sp. and E. manicatus were found at 25.0% and 73.3% prevalence respectively. 

Parasitic copepods were not observed on F. heteroclitus from the Tar Ponds. 

Hawley (1998) also found a high diversity of endoparasites in F. heteroclitus from 

Lawrencetown Lake. In 76% of the F. heteroclitus metacercaria were found in the fish 

viscera, which consist of the digestive system, excretory system, and associated tissues. 

Acanthocephalans (Acanthocephalus sp. and Neochinorhynchus sp.), cestodes 

(Proteocephalus sp.), and unknown nematodes were also found in the viscera of F. 

heteroclitus (Hawley, 1998). Similar parasites were found in F. heteroclitus from Cape 
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Breton, but at different prevalences than reported by Hawley (1998). Fundulus 

heteroclitus from River Ryan and Mira River were infected with Neochinorhynchus sp. at 

33.9% and 70.0% prevalence respectively. Similar to prevalence observed by Hawley 

(1998), this study found 66.1% of F. heteroclitus from River Ryan were infected with 

metaceraceriae in the viscera. In Mira River only 5% of F. heteroclitus had 

metaceraceriae in the viscera. Only River Ryan F. heteroclitus were infected with 

Proteocephalus sp. In all three sites, L3 ascarid nematodes were found in connective 

tissues, but at varying prevalences (Table 19). 

Parasite populations have been extensively studied in Anguilla spp. (Aguilar et al, 

2005; Graynoth and Taylor, 2004; Gollock et al, 2004; Sures et al, 2003; Rodriguez et 

al, 2005), but there are limited studies on .4. rostrata (Barker and Cone, 2000; 

Marcogliese and Cone, 1998). Anguilla rostrata accumulate copepods, cestodes, 

trematodes, monogenes, and nematodes on and/or in the gills, intestine, stomach, and 

swimbladder (Barker, 1997; Barker and Cone, 2000; Gollock et al, 2004). Barker (1997) 

found a diversity of trematodes in the intestine, but Paraquimperia tenerrima had the 

highest prevalence. Cestodes and nematodes also were found in the intestine. Gills were 

infected with the monogene, Pseudodactylogrus anguillae, and the copepod, Ergasilus 

celestis. Like Barker (1997), this study observed P. anguillae on the gills. 

Paraquimperia tenerrima were not found in the intestine, but Bothriocephulus sp., a 

cestode was found in the digestive system. Unlike Barker (1997), nematodes were not 

found in the intestine, but L3 nematodes were found on connective tissues throughout A 

rostrata. 

The exotic swimbladder nematode, Anguillicoloides crassus, was found in the 

swimbladders of A. rostrata. Anguillicoloides crassus is an exotic species which has 
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been found in Anguilla spp.from Asia, Europe, and North America (Barse et al., 2001; 

Evans and Matthews, 1999; Fries et al, 1996; Kirk, 2003; Moser et al, 2001; Peters and 

Hartmann, 1986). Although A. crassus has been found in the United States, this is the 

first identification of A. crassus in Canadian waters (Rockwell et ah, 2009). 

4.8 Parasitism and Host Stress 

It is well established that contaminants increase the susceptibility of an organism 

to diseases and parasitism (Khan and Thulin, 1991; Lafferty and Kuris, 1999; Rapport et 

ah, 1998; Vethaak and Rheinallt, 1992). The high concentration of PAHs, along with 

PCBs and metals, in the Sydney Tar Ponds, is a likely source of stress on F. heteroclitus. 

Fundulus heteroclitus from the Tar Ponds were thinner and had less food in their 

stomachs compared to fishes from the reference sites. This is reinforced by F. 

heteroclitus from the Tar Ponds having a significantly lower calculated K value than F. 

heteroclitus from River Ryan and Mira River. The lower K values F. heteroclitus 

indicate a lower body condition compared to the reference sites. These characteristics are 

indicative of stressful environments (Weis, 2002; Weis and Weis, 1989; Weis et al., 

2003). Yet among the sites sampled, the Tar Ponds had the lowest parasite prevalence, 

abundance, and species richness. The decrease in parasite levels in contaminated sites 

has been found in other studies (Bhuthimethee et al., 2005; Diamant et al., 1999; 

Macrogliese and Cone, 1997). Faulkner and Lochmiller (2000) studied the trematode 

communities in hispid cotton rat (Sigmodon hispidus) living near an oil refinery waste 

site. The cestode, Schizotaenia sigmodontis, had a two-fold higher abundance in 5. 

hispidus from reference sites compared to S. hispidus from the waste site. Also, S. 
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hispidus from the reference site had a greater diversity of trematode species richness 

compared to S. hispidus from the waste site. 

In contaminated environments changes in parasite populations and communities 

can be related to where the parasite lives on its host. MacKenzie (1999) suggested that in 

contaminated environments ectoparasites will increase in infection levels, while 

endoparasites will decrease in infection levels. There have been studies which follow 

these suggested trends (Cone et al., 1993; Faulkner and Lochmiller, 2000; Khan et al., 

1994; Marcogliese et al., 1998). Other studies do not follow these suggested trends 

(Brotheridge et al., 1998; Diamant et al, 1999; Hernandez et al., 2007; Pettersen et al., 

2006). There are confounding effects, which make it difficult to predict the result of 

increased contamination on parasite fauna (Esch et ah, 1975; Lafferty and Kuris, 1999; 

Lafferty and Holt, 2003; Morley et al, 2003). 

Also, the parasite levels may depend on the level of contamination in the 

surrounding environment. Sanchez-Ramirez et al. (2007) found the gill monogene 

(Cichlidogyrus sclerosus) abundance to be higher on Nile tilapia (Oreochromis 

nicloticus) exposed to low and moderately high polluted sediment. Cichlidogyrus 

sclerosus abundance decreased when the O. nicloticus was exposed to higher pollutant 

concentration. Similar to some of the sediments used by Sanchez-Ramirez et al. (2007), 

the Sydney Tar Ponds are an extremely contaminated site (JWEL-IT, 1996a, b; 

Vandermeulen, 1989). The high level of inorganic and organic contaminants in the biota, 

sediment, and water in the Tar Ponds could prevent the accumulation and survival of both 

ectoparasites and endoparasites. 

4.9 Parasite Local Extinction 
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The Sydney Tar Ponds is a depauperate ecosystem. There are few published 

studies on the fauna found in or around the Tar Ponds. It is established that sediment and 

water from the Tar Ponds are highly contaminated with PAHs, PCBs, and metals (AMEC, 

2005; JWEL-IT, 1996a, b; Vandermeulen, 1989). This could possibly result in a 

hindrance to parasite health and survival. The contamination levels may prevent the 

survival of parasite free-living larval stages and/or the intermediate hosts required for 

parasite development. 

4.9.1 Parasite Free-living Larval Stages and Contamination 

Free-living stages are involved in many parasite lifecycles. These larval stages 

often have a protective coating to survive in the environment. Cestodes, trematodes, 

nematodes, and acanthocephalans release eggs from their respective hosts with a 

protective coating. Some trematodes have metacercariae, a larval trematode stage that 

encyst, form cysts, on vegetation. Nematodes have a thick waxy coating called a cuticle. 

Pietrock and Marcogliese (2003) reasoned that although these protective coatings may 

provide protection from the environment, the larval stages still must often rely on limited 

energy reserves and unpredictable environmental conditions. Past studies have found 

abiotic factors such as temperature, pH, salinity, and light to decrease the survival of a 

diversity of free-living stages (Heinonen et al, 1999; Pietrock and Marcogliese, 2003). 

Contaminants have toxic effects on free-living larval stages. Both inorganic 

(Cross et al., 2001; Morley et al., 2001; Wolmarans et ah, 1988) and organic (Guttowa 

and Boniecka, 1975; Kuntz and Stirewalt, 1946; Okafor and Igbinosa, 1988) 

contaminants influence the survival and infectivity of free-living parasites. Also, it is 

suggested that protective coatings offer little protection to anthropogenic contaminants 
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(Pietrock and Marcogliese, 2003); although Reddy et al. (2004) did find encysted 

metacercariae to be protected from the lethal effects of copper from copper sulfate 

(Q1SO4). They investigated the effects of copper, on trematode larval stages of 

Echinostoma caproni and Echinostroma trivolvis and their snail host Biomphalaria 

glabrata. They found that the concentrations of copper used to kill B. glabrata (1 hour in 

0.001% CUSO4) killed both the cercariae and excysted metacercariae, but not the encysted 

metacercariae. Excysted metacercariae are larval parasites which have broken out of the 

protective cyst coating. Authors suggested that the cyst wall protected the encysted 

metacercariae. 

Although the copper dose which Reddy et al. (2004) applied did not cause acute 

effects to encysted metacercariae, the copper may have caused chronic effects which may 

not be easily measurable. For example the copper may affect the parasite development. 

The copper may decreases the parasite's health, which may hinder the parasite's ability to 

transform into later larval developmental stages or produce viable eggs. Koprivnikar et 

al. (2006a) investigated the effects of the herbicide, atrazine, on the cercariae of four 

species of trematodes. Between species there was varying cercariae sensitivity to 

atrazine. Atrazine was found to decrease the longevity and ability to infect larval 

amphibians, thus demonstrating that the long-term effects of contaminants must be 

considered. 

Contaminants may reduce the survival of the free-living stage. Pietrock et al. 

(2002) found that heavy metal concentrations affected the health of free-living stages of 

trematodes. Cercariae of the trematode Diplostomum sp. were exposed to cadmium 

concentrations ranging between 0.2 and 200 ug/1 (Pietrock et al. 2002). Cadmium 

concentrations greater than 20 ug/1 resulted in a change in the rate of cercariae mortality 
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and a reduced cercariae survival time. The authors suggested that the effects of 

contaminants on free-living stages, like cercariae, may be due to two reasons. Firstly, 

contaminants may reduce the time for the free-living stage to find an acceptable host to 

infect. Secondly, contaminants may decrease the ability of the free-living stage to 

transform in the next stage of the life cycle. Reddy et al. (2004) found contaminants to 

interfere with the ability of cercariae to infect a second intermediate host. 

Contaminants may also decrease the motility of free-living stages. Cross et al. 

(2005) exposed the gastropod Littorina littorea infected with trematode Cryptocotyle 

lingua to heavy metal contaminated water. The C. lingua cercariae released from L. 

littorea exposed to contaminated water had a slower swimming rate compared to 

cercariae released from L. littorea not exposed to contaminated water. Authors also 

observed that cercariae from contaminated water swam in less direct routes and had 

decreased life spans. Authors suggested that contaminants affected the development of 

the cercariae anatomy used in swimming. 

The Sydney Tar Ponds has often been referred to as Canada's most contaminated 

site. The high levels of PAHs, PCBs, and metals may be lethal to many, if not all, free-

living larval stages. Although no studies have investigated the effects of these high 

contaminant levels, there are studies which have found lower levels of contaminants to be 

toxic to free-living parasites (Cross et al, 2001; Pietrock et al. 2002; Reddy et ah, 2004). 

Thus, it is quite likely free-living stages of parasites would not be able to survive in the 

Tar Ponds. 
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4.9.2 Parasite Intermediate Hosts and Contamination 

The lack of parasites in the Tar Ponds may also be due to the lack of intermediate 

hosts. The abundance and presence of potential parasite hosts can influence the 

prevalence and abundance of parasite species (Hechinger and Lafferty, 2005; Huspeni 

and Lafferty, 2004; Whitney et al, 2007). Johnson and Chase (2004) investigated the 

link between the abundance of Planorbella spp. and the level of amphibian parasitic 

infection. From 27 ponds in Michigan, they found that higher densities of Planorbella 

spp. correlated with increased abundance of R. ondatrae in amphibians. Thus, as the 

levels of the intermediate host increased the level of parasitic infection in amphibian 

populations increased. In a study of the blood fluke, Schistosoma haematobium, Stauffer 

et al. (1997) also found that increases in snail hosts caused increases in parasitic infection. 

Moller (1987) suggested that increased parasite levels may be due to an increased 

suitability of the environment for the host. Both Stauffer et al. (1997) and Johnson and 

Chase (2004) concluded that changes in the environment increased the suitability of the 

environment for the host. Stauffer et al. (1997) found that over-fishing led to an increase 

in habitat range for the snail, an intermediate host of the blood fluke Schistosoma 

haematobium. The decreased competition between the fish and snail resulted in an 

increased abundance of the snail. Stauffer et al. (1997) suggested the increased level of 

snails resulted in an increase of parasitic infection prevalence among school children. 

Eutrophication is another type of environmental contamination, which may 

increase the suitability of an environment for parasite hosts. Eutrophication is a process 

where runoff water from agriculture and urbanization enters water bodies (Andersen et 

ah, 2006; Ryther and Dunstan, 1971). The runoff water is often high in nutrients, such as 

nitrate and phosphate, which can increase the amount of potential parasite hosts (Boesch 
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et ah, 2001; Bostrom et ah, 2002; Lafferty and Kuris, 2005; Valtonen et ah, 1997; 

Verdonschot, 2006). Johnson and Chase (2004) found eutrophication increased the 

biomass of the snail, Planorbella spp., in Michigan ponds. Johnson and Chase (2004) 

suggested that the increased levels of nutrients, caused by eutrophication, would decrease 

the mortality of infected snails. The longer life span of snails could result in a longer 

period for the snail to release more cercariae into the environment. Another result from 

eutrophication may be the environment being able to support a higher density of snails, 

which would also result in possibly more cercariae in the environment to infect the 

amphibians. 

Both Johnson and Chase (2004) and Stauffer et ah (1997) demonstrate that 

alterations in the levels of intermediate hosts will affect the distribution of parasites in an 

ecosystem. If increased intermediate host levels cause an increase in parasite levels, then 

decreased intermediate host levels should cause decreases in parasite levels. Cone et ah 

(1993) examined the parasite communities of A. rostrata from Nova Scotia. They found 

A. rostrata from acidic sites (pH 4.5 - 5.0) had a lower species diversity compared to A. 

rostrata from limed, more alkaline, sites (pH 6.0 - 7.0). The parasites with sensitive 

intermediate hosts or free-living larval stages were absent from acidic rivers. Field 

studies found a decline and elimination of these intermediate hosts in the acidic rivers 

compared to the other sites. The parasites with acid-tolerant intermediate hosts were 

found in all the sites studied. 

Whitney et ah (2007) investigated how the loss of the endangered bird, the Light-

footed clapper rail (Rallus longirostris levipes), would affect trematode communities in a 

California wetland. They found R. levipes to be an intermediate host to four trematode 

species. It was suggested that the removal of R. levipes from the ecosystem may decrease 
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the abundance of these trematodes and possibly alter the parasite communities of many 

other organisms in that ecosystem. 

In three Ontario lakes, the prevalence of eight species of a myxozoan parasite 

Myxobolus spp. were evaluated (Koprivnikar et al., 2002). The species of oligochaete in 

each lake was also noted. Although the importance of a particular oligochaete species for 

Myxobolus spp. development is unclear, Koprivnikar et al. (2002) found that the 

prevalence of certain oligochaetes corresponded with the absence or presence of certain 

Myxobolus spp. Thus, Cone et al. (1993), Koprivnikar et al. (2002), and Whitney et al. 

(2007) demonstrated that decreases in parasite hosts result in a corresponding decrease in 

parasite prevalence and abundance. 

A similar phenomenon may have occurred in the Tar Ponds. Unlike the reference 

sites, the F. heteroclitus from the Tar Ponds had a very depauperate parasite assemblage. 

The majority of the F. heteroclitus from Mira River and River Ryan were infected with 

parasites which utilized crustaceans and gastropods as intermediate hosts. Copepods, 

ostracods, and snails are intermediate hosts for Proteocephalus spp., Neoechinorhynchus 

spp., and Homalometronpallidum life cycles respectively (see Appendix A for more 

details). These organisms have been found to be sensitive to environmental contaminant 

concentrations (Bellas and Thor, 2007; Holcombe et al, 1987; Raisuddin et al., 2007). 

DiPinto et al. (1993) examined the effects of PCB Aroclor 1254 on the 

reproductive output of copepods (Microarthridion littorale). Copulating pairs of M. 

littorale were exposed to PCB sediment concentrations as high as 83 mg/kg. The number 

of larval copepods and nauplii produced were reduced from exposure to PCB 

contaminated sediment. Low sediment PCB concentrations of 4 mg/kg negatively 

affected copepod reproduction. 
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Barata et al. (2005) evaluated the acute toxicity of PAHs on adult copepods 

(Oithona davisae). After 48 hours exposure to 56.1 and 0.8 umol/L of naphthalene and 

pyrene respectively, the survival of the O. davisae was affected. Also, Barata et al. 

(2005) observed that O. davisae exposed to a mixture of PAHs demonstrated additive 

toxic effects. These studies demonstrate that low concentrations of PAHs and PCBs are 

harmful to copepods. The additive effects of these harmful organic contaminants could 

possibly mean that environments contaminated with a diversity of organic contaminants 

and/or trace levels of organic contaminants could be lethal to copepods. The separate and 

additive concentrations of organic contaminants in the Sydney Tar Ponds well exceed the 

toxic PAH and PCB values observed to affect copepods (AMEC, 2005; Barata et al., 

2005; DiPinto et al, 1993; JWEL-IT, 1996a, b; Vandermeulen, 1989). Also, the total 

concentrations of PAHs and/or PCBs would be extremely toxic, if not unbearable, for 

copepods to live. 

Ostracods are potential intermediate hosts for Neoechinorhynchus sp., which have 

been found in Fundulus heteroclitus (Dickson and Threlfall, 1975; Hopp, 1954; 

Marcogliese, 1995; Walkey, 1967; Ward, 1940). In this study, Neoechinorhynchus spp. 

were found in F. heteroclitus from Mira River and River Ryan, but a limited number were 

found in F. heteroclitus from the Sydney Tar Ponds. The sensitivity of ostracods to 

environmental changes, such as the introduction of environmental contaminants, has been 

documented. In sites with lower water quality, Kulkoyluoglu (2004, 2005) found the 

diversity of ostracods to decrease. Kulkoyluoglu (2005) found the number of ostracods to 

decrease about 50% compared to non-impacted sites. In sites with lower water quality, 

ostracods which were able to tolerate large ranges of environmental predominated 

(Kulkoyluoglu 2004, 2005). 
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No zooplankton or benthic invertebrate surveys have been conducted in the 

Sydney Tar Ponds. It is unknown if any or some of these intermediate hosts are present 

in the Tar Ponds. It is possible that the high concentrations of PAHs, PCBs, and metals 

hinder the development and survival of copepods, ostracods, and snails, which are 

contaminant-sensitive intermediate hosts (Bellas and Thor, 2007; Holcombe et al., 1987; 

Raisuddin et al., 2007). The high levels of contamination in the Sydney Tar Ponds pose a 

high risk in conducting such biological surveys. Despite the lack of planktonic and 

sediment-infauna data, the high level of contamination and lack of parasites in F. 

heteroclitus indicate that the presence of these intermediate hosts is quite unlikely. 

4.10 Sydney Tar Pond Parasite Biomonitors 

The Sydney Tar Ponds are under the initial stages of remediation (W. Kaiser, 

personal communication). The old city dump was capped, which terminated the leakage 

of contaminated groundwater into the former coke ovens sites; thus, this prevented more 

contamination entering the Tar Ponds. The Coke Ovens Brook was rerouted, which 

prevented contaminants from moving from the coke ovens sites into the South and 

subsequently the North Tar Pond. The solidification and stabilization process of the Tar 

Ponds is scheduled to commence in 2009. Through the solidification and stabilization 

process the PAH, PCB, and metal contaminant levels are expected to decrease (W. 

Kaiser, personal comunciation). As the contamination levels decrease, the environment 

will hopefully become more hospitable for these sensitive intermediate hosts such as 

copepods and snails. The return of crustaceans and gastropods to the former Tar Ponds 
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will most likely result in an increased prevalence and abundance of parasites with 

complex life cycles. 

Parasite communities can recolonize and recover in remediated areas (Cone et al., 

1993; Huspeni and Lafferty, 2004; Marcogliese and Cone, 1997a). As discussed earlier, 

Cone et al. (1993) founds, rostrata from acidic sites lacked parasites which had sensitive 

intermediate hosts. In a continuation of the study by Cone et al. (1993), Marcogliese and 

Cone (1997a) found that as the pH of the acidic site increased, the parasite species 

diversity increased. This study suggests that as contaminated sites are remediated that 

parasite communities can recolonize and recover (Marcogliese and Cone, 1997a). 

Parasites are effective and reliable biomonitors (Lafferty, 1997; MacKenzie et al., 

1995; Marcogliese and Cone, 1997a; Poulin, 1992; Sasal et al, 2007; Sures, 2004). 

Landsberg et al. (1998) and Sures et al. (1997) suggested that parasites are more sensitive 

biomonitors than their fish or crustacean hosts. Also, parasites may be an even more 

sensitive biomonitor of contaminants compared to other invertebrates often used as 

indicator species. Reddy et al. (2004) found cercariae and metacercariae to be less 

tolerant to copper than its snail host. 

Marcogliese and Cone (1997a) suggested several reasons why macroparasites are 

effective biomonitors. Firstly, parasites are easy to sample by collecting and necropsying 

host organs. Secondly, the collection and necropsy of hosts is inexpensive compared to 

other types of biomonitoring protocols. Thirdly, the identification of the basic parasite 

groups requires little training. Finally, parasites generally have a shorter life span 

compared to their hosts. Any changes in the contaminant levels will be reflected quicker 

in the host's parasite community than the types of hosts in the environment. 
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4.11 Predictions for Levels of Parasitism for Remediated Sydney Tar Ponds 

After remediation it is unclear which parasite species will be in theTar Ponds. It is 

quite possible that in the future, the parasite species found in Mira River and Ryan River 

will be noted in F. heteroclitus from the former Tar Ponds. Before and after a salt marsh 

restoration project, Huspeni and Lafferty (2004) measured the prevalence and abundance 

of larval trematodes in the California horn snail (Cerithidea californica). Before 

restoration, the salt marsh and control sites had 12% and 28% respective mean trematode 

prevalence and 4.5 and 7 respective trematode species. After restoration, the salt marsh 

had 43% mean trematode prevalence and 9 trematode species, while at the control site the 

trematode community structure was unchanged. After restoration, the trematode 

communities at the salt marsh and control site were similar. The authors linked the return 

of trematodes to be caused to the return of birds and other vertebrates to the salt marshes 

(Huspeni and Lafferty 2004). Also, the length of time required for parasites to recolonize 

the former Tar Ponds in not known. Annual collection of Fundulus spp. will allow 

tracking of changes in parasite levels. 

The re-introduction of the intermediate hosts and parasites may possibly lead to 

high initial levels of parasitism in the former Tar Ponds. Fundulus heteroclitus surviving 

the remediation process would have been historically chronically exposed to extremely 

toxic levels of inorganic and organic contaminants. Since contamination has been found 

to alter the development, immunity, and health of organisms (Grinwis et ah, 1998, 2000; 

Lafferty and Holt, 2003; Sandland and Carmosini, 2006), the F. heteroclitus surviving the 

remediation of the Tar Ponds may have a higher susceptibility to parasitism. Also, the 

effects of chronic contaminant exposure may be passed onto future generations. Nacci et 

al. (1999, 2002) studied the long-term effects of organic environmental contamination on 
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F. heteroclitus. The parent F. heteroclitus were chronically exposed to highly 

contaminated sediments. In response to the chronic toxic effects, the parent F. 

heteroclitus had a suppressed CYP1A system. The first generation of lab-reared F. 

heteroclitus had similar levels of a suppressed CYP1A system compared to the parent F. 

heteroclitus. The second generation of F. heteroclitus still had a suppressed CYP1A 

system, but the CYP1A activity levels were higher compared to the parent F. heteroclitus. 

The suppressed CYP1A system is thought to decrease the formation of tumours and/or 

cancer of the skin and liver often associated with organism exposure to PAH and/or PCB 

contaminated sediment (Arcand-Hoy and Metcalfe, 1999; Arzuaga and Elskus, 2002; 

Meyer et al, 2002; Pinkney and Harshbarger, 2006; Rose et al., 2001). The long-term 

effects of a suppressed CYP1A system are unknown. Also, there are probably other 

effects from chronic exposure to high levels of organic and inorganic contaminants, 

which may decrease the health of future F. heteroclitus generations; thus leaving them 

prone to parasitic infection. 

Contamination often leaves fishes and other organisms more prone to parasitism 

(Christine^/., 2003; Khan and Thulin, 1991; Rapport et al, 1998; Taylor et al, 1999; 

Vethaak and Rheinallt, 1992). In a study on Atlantic cod {Gadus morhud) and longhorn 

sculpins (Myoxocephalus octodecemspinosus), Khan (1990) found fishes chronically 

exposed to petroleum hydrocarbons had higher levels of ciliated parasites on their gills. 

Gadus morhua and M. octodecemspinosus had 88% and 95% of their gills infected with 

102.3 (+/-3.4) and 19.0 (+/-0.9) parasites per infected fish (+/- standard error), 

respectively. Gadus morhua and M. octodecemspinosus from the control site had 9% and 

48% of their gills infected with 0.9 (+/-0.1) and 1.1 (+/-0.3) parasites per infected fish (+/-

standard error) respectively. Khan (1990) suggested contaminant stress to cause the 
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higher prevalence and mean intensity. Thus, it is possible that after remediation of the 

Sydney Tar Ponds, there could be a high level of parasitic infection for F. heteroclitus in 

the Tar Ponds compared to Mira River and River Ryan. 

4.12 Future Parasitological Work 

This study provided background levels of parasitism in the Sydney Tar Ponds. 

Yet for optimal use of parasite biomonitors, an understanding of the influences on the 

ecosystem, host ecology, and parasite lifecycles is needed (Schludermann et ah, 2003; 

Sasal et ah, 2007; Siddall et al., 1994). Because of the highly toxic contaminant 

concentrations, there is little knowledge on the structure of the ecosystem in the Sydney 

Tar Ponds. Until the Tar Ponds are remediated, only limited biological surveys may be 

conducted safely. Few macroparasitological studies have been conducted in Atlantic 

Canada and even fewer have been conducted in Cape Breton. This limits the 

understanding of the exact intermediate hosts utilized in the transmission of parasites in 

Cape Breton estuaries. Through the necropsy of crustaceans and gastropods, the needed 

intermediate hosts in parasites of F. heteroclitus in Cape Breton may be identified. This 

will increase our understanding of these parasites' transmission patterns. By the re

appearance of a particular parasite species in Tar Ponds fishes post-remediation, these 

surveys may allow better inference of species re-introduced into the ecosystem 

(Marcogliese, 2005; Marcogliese and Cone, 1997b; Thompson et al, 2005) 
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4.13 Concluding Statements 

1. The South Tar Pond is higher in sediment bound PAHs than the North Tar Ponds. 

2. In both the North and South Tar Ponds the PAH sediment concentrations is above the 

CCME sediment guidelines. According to previous studies and CCME guidelines, 

the high PAH levels are at levels expected to be toxic to biota. 

3. The level of PAHs in Tar Pond sediments and biota is extremely high compared to 

other contaminated sites. 

4. In the Tar Ponds, C. maenas and Palaemonetes spp. accumulated a greater range and 

concentration of PAHs compared to A. rostrata andi7. heteroclitus. 

5. Of the biota studied C. maenas is the best biomonitor due to bioaccumulating the 

highest concentration and greatest diversity of PAHs. Also, C. maenas bioaccumlate 

PAHs at concentrations that reflect the environmental concentrations. 

6. Fundulus heteroclitus and A. rostrata had lower prevalences and abundance of 

ectoparasites and endoparasites in the Tar Ponds compared to fishes from reference 

sites. The high level of contaminants may hinder parasite health and survival. Also, 

the high levels of contaminants may prevent the survival of parasite free-living larval 

stages and/or the intermediate hosts required for parasite development. 
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7. The predicted effects of Tar Ponds remediation on parasite ecology is unclear. 

Parasite species which are found in other parts of Cape Breton, such as in the Mira 

River and River Ryan, will most likely become established in the remediated Tar 

Ponds. Also, it is thought that as the contaminant levels decrease the level of 

parasitism will likely increase in fishes. 
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Table 8: Sediment toxic effects range low (ERL) and toxic effects range median 

(ERM) guidelines for selected polycyclic aromatic hydrocarbons 

(PAHs) (Wade et al., 2008). Benthic biota which live in or near sediments 

below the effects range low (ERL) will rarely exhibit toxicological effects. 

Benthic biota which live in or near sediment over the effects range median 

(ERM) will often exhibit toxicological effects. 

Polycyclic Aromatic 

Hydrocarbon (PAH) 

Concentration (fig/kg) 

Effects range low 

(ERL) 

Effects range median 

(ERM) 

Low Molecular Weight PAHs 

Acenaphthene 

Acenaphthylene 

Anthracene 

Fluorene 

Naphthalene 

16 

44 

85.3 

19 

160 

500 

640 

1100 

540 

2100 

High Molecular Weight PAHs 

Benz[<3]anthracene 

Benzo[a]pyrene 

Chrysene 

Dibenzo [a,h] anthracene 

Fluoranthene 

Pyrene 

261 

430 

384 

63.4 

600 

665 

1600 

1600 

2800 

260 

5100 

2600 

182 



Table 9: Canadian marine sediment quality guidelines for selected poly cyclic 

aromatic hydrocarbons (PAHs) (CCME, 2002). Abbreviations: Interim 

sediment quality guidelines (ISQC); probable effect levels (PEL); 

incidence of adverse organismal effects at the PEL (IPEL). 

PAH 

Acenaphthene 

Acenaphthylene 

Anthracene 

B enz [a] anthracene 

Benzo[a]pyrene 

Chrysene 

Dibenz [a,h] anthracene 

Fluoranthene 

Fluorene 

Naphthalene 

Phenanthrene 

Pyrene 

ISQC 
(^g/kg dry wt) 

6.71 

5.87 

46.9 

74.8 

88.8 

108 

6.22 

113 

21.2 

34.6 

86.7 

153 

PEL 
(ug/kg dry wt) 

88.9 

128 

245 

693 

763 

846 

135 

1494 

144 

391 

544 

1398 

IPEL 
(%) 
57 

51 

75 

78 

71 

72 

65 

80 

70 

71 

78 

83 

183 
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Table 12: Numbers of female and male Fundulus heteroclitus and unidentified 
Fundulus spp. from the Tar Ponds and reference estuaries used for 
parasitological analysis. 

Sample Site Month n Fundulus spp. Sex 
Females Males 

North Tar Pond 
June 

July 

August 

12 

17 

24 

3 Fundulus sp. 
9 F. heteroclitus 

0 Fundulus sp. 
17 F. heteroclitus 

1 Fundulus sp. 
23 F heteroclitus 

3 
5 

0 
4 

1 
13 

0 
4 

0 
13 

0 
10 

TOTAL 53 4 Fundulus sp. 4 0 
49 F heteroclitus 22 27 

Mira River 
June 

July 

August 

32 

16 

16 

3 Fundulus sp. 
29 F heteroclitus 

1 Fundulus sp. 
15 F. heteroclitus 

0 Fundulus sp. 
16 F. heteroclitus 

3 
20 

1 
9 

0 
11 

0 
9 

0 
6 

0 
5 

TOTAL 64 4 Fundulus sp. 4 0 
60 F heteroclitus 40 20 

River Ryan 
June 

July 

August 

28 

20 

21 

4 Fundulus sp. 
24 F heteroclitus 

2 Fundulus sp. 
18 F heteroclitus 

1 Fundulus sp. 
20 F heteroclitus 

3 
12 

2 
10 

1 
9 

1 
12 

0 
8 

0 
11 

TOTAL 69 7 Fundulus sp. 
62 F heteroclitus 

6 
31 

1 
31 

ALL SITES 
Total 186 " 15 Fundulus sp. 14 1 

171F heteroclitus 95 78 

187 



T
ab

le
 1

3:
 

C
al

cu
la

te
d 

co
nc

en
tr

at
io

ns
 o

f 
se

le
ct

ed
 p

ol
yc

yc
li

c 
ar

om
at

ic
 h

yd
ro

ca
rb

on
s 

(P
A

H
s)

 i
n 

se
di

m
en

ts
 f

ro
m

 t
w

o 

C
ap

e 
B

re
to

n 
re

fe
re

nc
e 

si
te

s,
 M

ir
a 

R
iv

er
 a

nd
 R

iv
er

 R
ya

n,
 a

nd
 t

he
 S

yd
ne

y 
T

ar
 P

on
ds

, N
ov

a 
S

co
ti

a.
 

Se
le

ct
ed

 P
A

H
 

N
ap

ht
ha

le
ne

 
A

ce
na

ph
th

yl
en

e 
A

ce
na

ph
th

en
e 

F
lu

or
en

e 
P

he
na

nt
hr

en
e 

A
nt

hr
ac

en
e 

F
lu

or
an

th
en

e 
P

yr
en

e 
B

en
z[

a]
 a

nt
hr

ac
en

e 
C

hr
ys

en
e/

T
ri

ph
en

yl
en

e 
B

en
zo

 [b
] f

lu
or

an
th

en
e 

B
en

zo
 [k

] f
lu

or
an

th
en

e 
B

en
zo

 [e
] p

yr
en

e 
B

en
zo

[a
]p

yr
en

e 
In

de
no

py
re

ne
 

B
en

zo
 [g

,/i
,/]

pe
ry

le
ne

 
D

ib
en

z 
[a

,h
] a

nt
hr

ac
en

e 

M
ea

n 
C

on
ce

nt
ra

ti
on

 (
m

g/
kg

 d
ry

 w
t)

 
R

ef
er

en
ce

 S
ite

s 
M

ir
a 

R
iv

er
 

<0
.0

1 
<0

.0
1 

<0
.0

1 
<0

.0
1 

<0
.0

1 
<0

.0
1 

0.
02

 
0.

02
 

<0
.0

1 
<0

.0
1 

<0
.0

1 
<0

.0
1 

<0
.0

1 
<0

.0
1 

<0
.0

1 
<0

.0
1 

<0
.0

1 

R
iv

er
 R

ya
n 

<0
.0

1 
<0

.0
1 

<0
.0

1 
<0

.0
1 

<0
.0

1 
0.

01
 

<0
.0

1 
<0

.0
1 

<
0.

01
 

<0
.0

1 
<

0.
01

 
<0

.0
1 

<0
.0

1 
<0

.0
1 

<0
.0

1 
<0

.0
1 

<0
.0

1 

N
or

th
 T

ar
 P

on
d 

M
ea

n 
(+

/-
 S

ta
nd

ar
d 

er
ro

r)
 

1.
7 

(+
/-

0.
2)

 
0.

5 
(+

/-
0.

1)
 

0.
12

 
(+

/-
0.

02
) 

0.
7 

(+
/-

0.
1)

 
3.

5 
(+

/-
0.

5)
 

1.
6 

(+
/-

0.
2)

 
8 

(+
/-

1)
 

6 
(+

/-
1)

 
4.

6 
(+

/-
0.

8)
 

3.
8 

(+
/-

0.
6)

 
5 

(+
/-

1)
 

5 
(+

/-
1)

 
5 

(+
/-

1)
 

7 
(+

/-
1)

 
5 

(+
/-

1)
 

5 
(+

/-
1)

 
1.

2 
(+

/-
0.

3)
 

S
ou

th
 T

ar
 P

on
d 

M
ea

n 
(+

/-
 S

ta
nd

ar
d 

er
ro

r)
 

11
 

(+
/-

2)
 

2.
1 

(+
/-

0.
4)

 
23

 
(+

/-
4)

 
21

 
(+

/-
4)

 
80

 
(+

/-
13

) 
27

 
(+

/-
5)

 
27

1 
(+

/-
45

) 
21

1 
(+

/-
35

) 
78

 
(+

/-
 1

3)
 

83
 

(+
/-

 1
4)

 
67

 
(+

/-
11

) 
67

 
(+

/-
11

) 
50

 
(+

/-
8)

 
54

 
(+

/-
9)

 
42

 
{+

1-
1)

 
36

 
(+

/-
6)

 
12

 
(+

/-
2)

 

18
8 



Table 14: Two way analysis of variance (ANOVA) results for dry weight 

polycyclic aromatic hydrocarbon (PAH) concentrations between 

North and South Tar Pond sediments. 

PAH 
Site 

PAH*Site 
Error 

Degrees of 
Freedom (df) 

16 
1 
16 
68 

Mean-Square 
(MS) 
3.80 
5.55 
3.28 
4.61 

F-ratio 
(F) 

0.823 
1.20 

0.712 

Probability 
(P) 

0.655 
0.001 
0.772 

189 
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Table 16: Kruskal-Wallis comparison of wet weight and lipid adjusted PAH 

concentrations (mg/kg) in biota. 

PAH 

Acenaphthene 

Fluorene 

Phenanthrene 

Fluoranthene 

Naphthalene 

Pyrene 

Wet Wt. 

H 

0.55 

0.62 

2.87 

6.45 

1.89 

7.99 

P 

0.9 

0.9 

0.4 

0.09 

0.6 

0.05 

Lipid Adj. 

H 

1.11 

0.67 

2.97 

7.16 

1.73 

7.75 

P 

0.8 

0.9 

0.4 

0.07 

0.6 

0.05 

191 



Table 17: One way multivariate analysis of variance (MANOVA) results for wet 

weight concentrations of selected polycyclic aromatic hydrocarbons 

(PAHs) in Tar Pond biota. 

Univariate F-Tests 

PAH 

Acenaphthene 
Error 

Fluorene 
Error 

Phenanthrene 
Error 

Fluoranthene 
Error 

Naphthalene* 
Error 

Pyrene* 
Error 

Degrees of 
Freedom (df) 

3 
10 
3 
10 
3 
10 
3 
10 
3 
10 
3 
10 

Mean-Square 
(MS) 

0.0010 
0.0055 
0.0003 
0.0015 
0.0829 
0.0688 
0.3091 
0.0615 
0.4882 
0.7294 
3.9453 
0.8729 

F-ratio 
(F) 

0.188 

0.177 

1.205 

5.025 

0.669 

4.520 

Probability 
(P) 

0.902 

0.910 

0.358 

0.022 

0.590 

0.030 

*These PAHs were natural logarithm transformed. 

Multuvariate Test Statistic 

Statistic 
Hotelling-

Lawley Trace 

Value 

15.5 

F-Statistic 

3.16 

df 

18,11 

P 

0.028 

192 



Table 18: Tukey test pairwise comparison probability values from testing for 

significance between biota from the Sydney Tar Ponds. Biota 

analyzed: Carcinus maenas, Anguilla rostrata, Fundulus heteroclitus, and 

Palaemonetes spp. 

Tukey (df= 10) 

C. maenas XA. rostrata 
C. maenas X F. heteroclitus 

C. maenas X Palaemonetes spp. 
A. rostrata X F. heteroclitus 

A. rostrata X Palaemonetes spp. 
F. heteroclitus X Palaemonetes spp. 

Pairwise Comparison Probabilities 
Fluoranthene 

0.31 
0.30 
0.55 
0.99 
0.03 
0.04 

Pyrene 

0.31 
0.12 
0.91 
0.78 
0.10 
0.04 

193 
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FIGURES 
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Map of the Sydney Tar Ponds, Nova Scotia, Canada (AMEC, 2005). 

The Sydney Tar Ponds are composed of four parts: the North Tar Pond 

(A), the South Tar Pond (B), the former Coke Ovens site (C), and Cove 

Ovens Brook Connector (D). 
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Figure 2: Structures of selected poly cyclic aromatic hydrocarbons (PAHs). 

(A) Naphthalene, (B) Phenanthrene, and (C) Benzo[a]pyrene. 
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Benzo[6]fluoranthene 

OH 

Figure 3: The formation of epoxides through cytochrome P-450 (CYP1A) 

metabolism of a selected polycyclic aromatic hydrocarbon, 

benzo[#]fluoranthene (from Dabestani and Ivanov, 1999). 
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Definitive 
Host 

Definitive 
Host 

( A ) Healthy ( B ) Disrupted 

Figure 4: Schematic of a hypothetical, complex parasite life cycle. Int is an 

abbreviation for intermediate. Arrows indicate the transmission of parasite 

between hosts. (A) In a healthy ecosystem, all hosts required for the 

development of the parasite are present. The parasite is transmitted 

between hosts and is sexually mature in the definitive host. (B) In a 

disrupted ecosystem, where one of the intermediate hosts is removed, the 

parasite will not be transmitted through its life cycle. The infective 

definitive host releases the immature parasite into the environment. The 

immature parasite infects and develops in intermediate host A. Since 

intermediate host B is removed from the ecosystem, the immature parasite 

cannot infect or develop in intermediate hosts C or D or reach maturity in 

the definitive host. Thus, the lifecycle and development of the parasite is 

halted in the disrupted ecosystem. 
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Figure 5: Locations of study sites. (A) Samples were collected from Cape Breton, 

Nova Scotia (http://www.gov.ns.ca/snsmr/freemaps/ Accessed March 6, 2009). (B) 

Locations of the four sampling sites: River Ryan, Sydney Tar Ponds, Wentworth Park, 

and Mira River. 
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Approximate locations of biota and sediment sampling in the 

Sydney Tar Ponds, Nova Scotia. Map adapted from AMEC (2006). The 

dotted ellipse indicates biota sampling location at the Ferry Street Bridge. 

Black stars indicate sediment sampling locations. 
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Selected Polycyclic Aromatic Hydrocarbons (PAHs) 

Figure 7: Average concentrations of selected polycyclic aromatic hydrocarbons 

from the North (n = 3) and South (n = 3) Tar Ponds sediment. Error 

bars represent the standard error. PEL is the probable effects level where 

at a particular concentration biota near contaminated sediment will 

experience toxicological effects (CCME, 2002). Compound identification: 

NAP, naphthalene; ANY, acenaphthylene; ANA, acenaphthene; FLU, 

fluorene; PHA, phenanthrene; ANT, anthracene; FLA, fluoranthene; PYR, 

pyrene; BAA, benz[a]anthracene; C/T, chrysene/triphenylene; BBF, 

benzo[b]fluoranthene; BKF, benzo[k]fluoranthene; BEY, benzo [ejpyrene; 

BAY, benzo[a]pyrene; INP, indenopyrene; BGP, benzo[g,/u]perylene; 

DAN, dibenz[a,/z]anthracene. 
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Figure 8: Average concentrations of selected polycyclic aromatic hydrocarbons 

in Sydney Tar Pond biota. Error bars represent the standard error. 

Compound identification: NAP, naphthalene; ANY, acenaphthylene; 

ANA, acenaphthene; FLU, fluorene; PHA, phenanthrene; ANT, 

anthracene; FLA, fluoranthene; PYR, pyrene; BAA, benz[a]anthracene; 

C/T, chrysene/triphenylene; BBF, benzo[6]fluoranthene; BKF, 

benzo[£]fluoranthene; BEY, benzo[e]pyrene; BAY, benzo[a]pyrene; INP, 

indenopyrene; BGP, benzo[g,/z,z']perylene; DAN, dibenz[a,/z]anthracene. 
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CD Sydney Tar Ponds 
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2 3 4 

Number of Parasites per Fish 

Figure 9: The distribution of parasites in/on Fundulus heteroclitus from two 

Cape Breton reference sites, Mira River and River Ryan, and the 

Sydney Tar Ponds, Nova Scotia. 
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Appendix A: Ecology of Selected Parasites of Fundulus 

heteroclitus from Nova Scotia, Canada. 

Outline: 

Al. Neoechinorhynchus spp. (Acanthocephalan) 

A2. Proteocephalus spp. (Cestode) 

A3. Argulus spp. (Parasitic Crustacean) 

A4. Ergasilus manicatus (Parasitic Crustacean) 

A5. Homalometron pallidum (Trematode) 
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Al. Neoechinorhynchus spp. (Acanthocephalan) 

Species previously found in Fundulus heteroclitus (mummichog) from the East coast of 

North America: 

adult stage Neoechinorhynchus rutili (Newfoundland, Canada, Dickson and 

Threlfall, 1975) 

cystacanth N. cylindratus (Nova Scotia, Canada, Marcogliese, 1995), N. 

rostratum (Maine, USA, Manter, 1926; Massachusetts, USA, 

Amin and Bullock, 1998) 

Characteristics: 

Neoechinorhynchus spp. are generally l-2cm long (Amin and Bullock, 1998; 

Crompton, 1970; Marcogliese, 1995; Roberts and Janovy Jr., 2000). Males tend to be 

smaller than females of the same species. Their body is unsegmented with a holdfast, the 

proboscis, at the anterior end. The proboscis allows the adult acanthocephalan to attach 

its self to the intestine of its host. Larval acanthocephalans are typically found in the liver 

of its host (Amin and Bullock, 1998; Crompton, 1970; Marcogliese, 1995; Roberts and 

Janovy Jr., 2000). 

Lifecycle: 

Fertilized eggs are released with the feces from the definitive host (Lassiere and 

Crompton, 1988; Hopp, 1954; Schmidt, 1985). An egg is ingested by an intermediate 

host, which is typically an ostracod crustacean. The ingested egg hatches to release an 

acanthor, a larval acanthocephalan. The acanthor develops into an acanthella, the second 

210 



larval stage. After this point in the life cycle two different life histories may occur. 

Firstly, the ostracod may be consumed by a fish. The acanthella will penetrate the gut of 

the fish and develop into a cystacanth, the third larval stage. Even though parasite 

development occurs in this fish it is not considered an intermediate host. The fish is not 

necessary for the development of the parasite; therefore, the fish is considered a 

paratenic host. This fish is consumed by another fish, wherein the cystacanth develops 

into the adult stage. Secondly, in the ostracod the acanthella may develop into a 

cystacanth. The cystacanth is then consumed by a fish. In this case, the acanthocephalan 

reaches sexual maturity in the first fish infected (Lassiere and Crompton, 1988; Hopp, 

1954; Schmidt, 1985). 

Potential Hosts: 

The ostracod species Cypria globula, Cypria maculate, and Cypridopsis vidua, are 

established intermediate hosts in this acanthocephalan life cycle (Hopp, 1954; Walkey, 

1967; Ward, 1940). A diversity of paratenic hosts may be utilized in transmission. Ward 

(1940) studied the lifecycle of' Neoechinorhynchus cylindratus. She found the infected 

ostracods were ingested by the bluegill sunfish, Lepomis macrochirus, which is in turn 

consumed by final hosts such as piscivorous basses {Micropterus spp.). Since bass and 

other piscivorous fishes generally do not prey on ostracods, and are more likely to prey on 

bluegill sunfish, the bluegill sunfish is considered a paratenic host in this lifecycle. In the 

lifecycle of N. emydis, snails may act as a paratenic host. Hopp (1954) found that snails, 

Campeloma rufum, may ingest infected ostracods. Map turtles, Graptemys geographica, 

consume a large amount of snails in their diet, which infected turtles with N. emydis. 

Lassiere and Crompton (1988) found adult N. rutili in brown trout, Salmo trutta, and 
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three-spined sticklebacks, Gasterosteus aculeatus. They observed that uninfected brown 

trout which fed on infected three-spined sticklebacks would become infected. Therefore, 

sticklebacks may act as a vector to infect other fish species. 
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A2. Proteocephalus spp. (Cestode) 

Species previously found in F. heteroclitus from the East coast of North America: 

immature Proteocephalus sp. (Virginia, USA, Harris and Vogelbein, 2006; 

Newfoundland, Canada, Dickinson and Threlfall, 1975) 

Proteocephalus macrocephalus (Nova Scotia, Canada, 

Marcogliese, 1995) 

Characteristics: 

Like other cestodes, Proteocephalus spp. are segmented with both male and 

female reproductive organs in each segment called a proglottid (Roberts and Janovy Jr., 

2000). Cestodes attach to their hosts by an attachment organ called a scolex. 

Proteocephalus spp. are often characterized by a four suckered scolex (Roberts and 

Janovy Jr., 2000). 

Lifecycle: 

The release of cestode eggs from the definitive host and into the aquatic 

environment may occur in a number of ways (Mackiewicz, 1988; Scholz, 1999). 

Firstly, the eggs may be directly released into the intestine of the fish, and the eggs are 

excreted with the fish waste. Secondly, a fragment of the cestode may be released into 

the aquatic environment. Thirdly, Proteocephalus spp. may protrude part of their body 

from the fish's anus and expel eggs directly into the water. Once the eggs are released 

into the water, the eggs increase in volume; this allows the eggs to float on the water 

surface, which increases the likelihood of egg ingestion by pelagic copepods, the 
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intermediate host. After an egg has been ingested the oncosphere, the first larval stage, is 

rapidly released from the egg. The oncosphere penetrates the gut and into the body cavity 

of the copepod. It is there that the oncosphere develops into a metacestode (also known 

as a plerocercoid). The infected copepod is ingested by a fish. The fish may be a 

paratenic or definitive host. If the fish is a paratenic host, Proteocephalus spp. will not 

grow or reach sexual maturity. If the fish is a definitive host, Proteocephalus spp. will 

grow and develop to sexual maturity in the intestine (Mackiewicz, 1988; Scholz, 1999). 

Potential Hosts: 

The majority of known intermediate hosts of Proteocephalus spp. belong to the 

order Copepoda (families Diaptomidae and Cyclopidae; Scholz, 1999). These are pelagic 

copepods, which feed primarily on free-floating, surface phytoplankton (Pechenik, 2000). 

Willemse (1968) suggested that organisms from the order Copepoda are attracted to the 

free-floating eggs of Proteocephalus spp. Small fish may act as paratenic hosts. 

Proteocephalus spp have been found to reach high abundances in small prey fish. The 

definitive host, a larger fish, were then exposed to high concentrations of Proteocephalus 

spp. from consuming the paratenic host (Scholz, 1999). 
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A3. Argulus spp. (Parasitic Crustacean) 

Species previously found on Fundulus heteroclitus from the east coast of North America: 

Argulus funduli New Brunswick, Canada, Bere, 1930; Rhode Island, USA, 

Mulkana, 1966 

Argulus megalops Massachusetts, USA, Wilson, 1904 

Characteristics: 

Argulus spp. are commonly known as sea lice. In healthy ecosystems, Argulus 

spp. are often found at low prevalences (Pickering and Willoughby, 1977). In highly 

enclosed areas, such as aquaculture farms, Argulus spp. may reach high prevalences. 

Argulus spp. require the blood of its fish host for subsistence. Unlike many other parasite 

species, Argulus spp. are able to unattach from one host and attach to another host. Thus 

Argulus spp. may feed on many different fish hosts. Their feeding produces ulcerated 

blood lesions, which can leave the fish open to fungal and/or bacterial infections 

(Pickering and Willoughby, 1977). 

Lifecycle: 

The male and female adult Argulus spp. may mate on the fish host, in the water 

column, or on an aquatic substrate (Bower-Shore, 1940; Hakalahti et al., 2004). The 

female lays eggs on substrata. All of the larval nauplius stages occur within the egg. 

After the Argulus spp completes the various nauplius development stages, a juvenile 

Argulus spp emerges. This larval stage is a smaller version of the adult Argulus spp. The 

215 



juvenile Argulus spp. seeks out a suitable fish host for feeding and maturity to adult stage 

(Bower-Shore, 1940; Hakalahti et al, 2004). 

Potential Hosts: 

Argulus spp. are not very host-specific (Pasternak et al., 2000). They can infect a 

diversity of fishes. On a study offish parasites in Lake Huron, Bangham (1955) found 

Argulus spp. on lake herring (Leucichthys A. artedi) and trout perch {Percopsis 

omiscomaycus). 
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A4. Ergasilus manicatus (Parasitic Crustacean) 

Species previously found on Fundulus heteroclitus from the east coast of North America: 

Ergasilus manicatus Massachusetts, USA, Roberts, 1970; Virgina, USA, 

Zwerner and Lawler, 1972; Maryland, USA, Barse, 1998 

Ergasilus funduli Virgina, USA, Harris and Vogelbein, 2006 

Characteristics: 

Ergasilus spp. are found on the gills of many freshwater and marine fishes. The 

females have modified antennae which allow them to strongly attach to a gill filament of 

the fish. Females are larger than males, but are the only sex found on fish gills. Males 

are found in the water column and have not been reported to parasitize fishes (Kabata, 

1979; Roberts and Janovy, 2000; Wilson, 1911). 

Lifecycle: 

Ergasilus spp. metamorphose only during the free-living stages of the life cycle 

(Roberts and Janovy, 2000; Wilson, 1911). It is thought that the females are fertilized by 

the males in an early free-living larval stage of the life cycle. The spermatophores from 

the male are stored in order to fertilize all the eggs the female produces throughout her 

adult life. All of the eggs in the female's egg sacs hatch at the same time. The nauplii 

leave the egg sacs and over time undergo a series of moults to form three naupliar and 

five copepodid free-living larval stages (Roberts and Janovy, 2000; Wilson, 1911). 
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Potential Hosts: 

Ergasilus spp. are found on a diversity of fishes. Bere (1930) found E. manicalus 

on whitebait (Menidia notata), rainbow smelt (Osmerus mordax) and E. centrachidarum 

on Atlantic tomcod (Microgadus tomcod). Bere (1936) found Ergasilus lizae on 

mummichog (F. heteroclitus) and striped mullet (Mugil cephalus). Mueller (1937) found 

Ergasilus spp. on largemouth bass (Aplites salmonidae), bullhead (Ameiurus spp.), and 

forktail catfish {Ictalurus spp.). 
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A5. Homalometron pallidum (Trematode) 

Species previously found on Fundulus heteroclitus from the east coast of North America: 

adult stage Canadian Atlantic, Stafford, 1904; Maine, USA, Manther, 1926; 

Nova Scotia, Canada, Fantham and Porter, 1948; Newfoundland, 

Canada, Dickinson and Threlfall, 1975 

Characteristics: 

This trematode was first found in the intestine of F. heteroclitus (Stunkard, 1964). 

It is found in the intestines of fishes from marine, brackish, and freshwater. In Fundulus 

spp. sometimes high levels of larval H. pallidum was observed, but generally not more 

than two or three adult trematodes developed (Stunkard, 1964). 

Lifecycle: 

The life cycle of H. pallidum was described by Stunkard (1964). Eggs are 

released from the definitive host. From the egg a free-swimming larval stage, called the 

miracidium emerges. The miracidium penetrates a snail, the first intermediate host. In 

the snail, the miracidium metamorphoses into a sporocyst. Inside the sporocyst, the 

embryos develop into rediae. Each rediae may then produce one or more daughter rediae. 

The development of rediae and daughter rediae allows the development of many 

cercariae, free-living larval trematodes, by the process of asexual reproduction. Cercariae 

are released from the snail. Cercariae seek out and penetrate the second intermediate 

host, which is often a fish, where the parasite encysts as a metacercariae. The definitive 
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host feeds on either the second intermediate host or a paratenic host and the metacercariae 

matures into the adult stage. 

Potential Hosts: 

Like most trematodes, the first intermediate host is a snail such as Hydrobia 

minuta (Roberts and Janovy, 2000; Stunkard, 1964). Stunkard (1964) found encysted 

metacercarial H. pallidum stages in Gemma gemma and H. minuta. He also found that 

small polychaete worms could act as paratenic hosts and have encysted metacercarial H. 

pallidum stages as well. Adult H. pallidum can be found in mummichog (F. heteroclitus) 

and other fish species such as northern kingfish (Menticirrhus saxatilis), Morone 

americana, white perch (Pseudopleuronectes americanus), tautog (Tautoga onitis), silver 

perch (Bairdiella chrysura), and spot {Leiostomus xanthurus) (Cribb and Bray, 1999; 

Linton, 1940; Manter, 1931). 
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Appendix B: Raw data from Poly cyclic Aromatic 

Hydrocarbons (PAHs) Analysis in Sediment and Biota 

Outline: 

Bl. Raw data for sediments 

Table Bl: Calculated concentrations of selected polycyclic aromatic 

hydrocarbons (PAHs) from Mira River and River Ryan. 

Table B2: Calculated concentrations of selected polycyclic aromatic 

hydrocarbons (PAHs) from the North and South Tar Ponds, Nova 

Scotia. 

B2. Raw data for biota 

Table B3: Calculated concentrations of selected polycyclic aromatic 

hydrocarbons (PAHs) in European green crab {Carcinus maenas) 

from Mira River and River Ryan. 

Table B4: Calculated concentrations of selected polycyclic aromatic 

hydrocarbons (PAHs) in European green crab {Carcinus maenas) 

from the Sydney Tar Ponds. 

Table B5: Calculated concentrations of selected polycyclic aromatic 

hydrocarbons (PAHs) in grass shrimp {Palaemonetes species) from 

Mira River and River Ryan. 

Table B6: Calculated concentrations of selected polycyclic aromatic 
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hydrocarbons (PAHs) in grass shrimp (Palaemonetes species) from 

the Sydney Tar Ponds. 

Table B7: Calculated concentrations of selected polycyclic aromatic 

hydrocarbons (PAHs) in American eel {Anguilla rostrata) from 

Mira River. 

Table B8: Calculated concentrations of selected polycyclic aromatic 

hydrocarbons (PAHs) in American eel {Anguilla rostrata) from the 

Sydney Tar Ponds. 

Table B9: Calculated concentrations of selected polycyclic aromatic 

hydrocarbons (PAHs) in mummichog {Fundulus heteroclitus) from 

Mira River and River Ryan. 

Table BIO: Calculated concentrations of selected polycyclic aromatic 

hydrocarbons (PAHs) in mummichog {Fundulus heteroclitus) from 

the Sydney Tar Ponds. 

B3. Lipid analysis of biota 

Table Bl l : Lipid content of biota analyzed for polycyclic aromatic 

hydrocarbons (PAHs). 

B4. Lipid adjusted biota concentrations 

Table B12: Calculated lipid adjusted concentrations of selected 

polycyclic aromatic hydrocarbons (PAHs) in European green crab 

{Carcinus maenas) and American eel {Anguilla rostrata) from the 

Sydney Tar Ponds. 
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Table B13: Calculated lipid adjusted concentrations of selected 

polycyclic aromatic hydrocarbons (PAHs) in mummichog 

(Fundulus heteroclitus) from River Ryan and the Sydney Tar 

Ponds. 
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Appendix C: Raw data from Fundulus spp. 

Parasitological Analysis 

Outline: 

CI. Biological data of Fundulus spp. used in parasitological analysis 

Table CI: Biological data of Fundulus spp. (n = 53) from Sydney Tar 

Ponds used in parasitological analysis. 

Table C2: Biological data of Fundulus spp. (n = 69) from River 

Ryan used in parasitological analysis. 

Table C3: Biological data of Fundulus spp. (n = 64) from Mira River 

used in parasitological analysis. 

C2. Raw data of parasites found in Fundulus spp. 

Table C4: Parasites found in Fundulus spp (n = 53) from the Sydney Tar 

Ponds. 

Table C5: Ectoparasites found in Fundulus spp. (n = 69) from River 

Ryan. 

Table C6: Endoparasites and the total number of parasites found in 

Fundulus spp. (n = 69) from River Ryan. 

Table C7: Ectoparasites found in Fundulus spp. (n = 64) from Mira 

River. 

Table C8: Endoparasites and the total number of parasites found in 

Fundulus spp. (n = 64) from Mira River. 
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CI. Biological data oi Fundulus spp. used in parasitological analysis 

Table CI: Biological data oiFundulus spp. (n = 53) from Sydney Tar Ponds used 

in parasitological analysis. TL, total length; SL, standard length; 

FUNHET; Fundulus heteroclitus; FUNUID, Fundulus spp. 

Fish ID 

SYPO01 
SYPO02 
SYPO03 
SYPO04 
SYPO05 
SYPO06 
SYPO07 
SYPO08 
SYPO09 
SYPO10 
SYPOll 
SYP012 
SYP051 
SYP052 
SYPO100 
SYPO101 
SYPO102 
SYPO103 
SYPO104 
SYPO105 
SYPO106 
SYPO107 
SYPO108 
SYPO109 
SYPO110 
SYPOlll 
SYP0112 
SYP0113 
SYP0114 
SYPO150 
SYP0151 
SYP0152 
SYP0153 

Sex 
(M/F) 

F 
M 
F 
F 
M 
M 
F 
F 
M 
F 
F 
F 
F 
F 
M 
M 
M 
M 
M 
F 
M 
F 
M 
M 
M 
M 
M 
M 
M 
F 
F 
M 
M 

TL 
(mm) 
84.29 
64.5 
51.2 

49.36 
41.27 
51.04 
51.66 
89.51 
54.01 
51.85 
49.29 
50.76 
56.6 

51.87 
59.94 
51.87 
55.65 
47.1 
51.24 
61.53 
43.7 
95.32 
61.93 
53.98 
50.1 

55.15 
39.42 
54.11 
45.84 
72.48 
74.01 
63.68 
72.92 

SL 
(mm) 
68.89 
53.51 
42.26 
41.59 
33.88 
40.71 
42.8 
70.97 
45.27 
42.85 
41.11 
43.79 
45.23 
44.63 
50.23 
43.76 
46.04 
38.84 
42.42 
52.2 

36.17 
79.5 

51.71 
43.07 
42.74 
47.55 
33.86 
45.44 
37.13 
62.24 
61.80 
52.69 
61.98 

Weight 
(R) 

6.97 
2.76 
1.8 
1.81 
0.87 
1.72 
1.86 
8.3 
1.78 
1.87 
1.62 
1.68 

2 
1.8 

2.30 
1.83 
2.17 
1.22 
1.51 
3.55 
0.90 
12.09 
2.60 
1.51 
1.49 
1.97 
0.66 
1.86 
1.13 
4.95 
5.25 
3.34 
5.03 

Plump 
(mm) 
14.79 
11.24 
8.56 
9.71 
7.32 
9.92 
8.45 
13.67 
9.56 
8.62 
7.82 
7.98 
9.75 
8.55 
9.90 
9.70 
9.61 
7.96 
8.40 
10.59 
6.91 
18.20 
10.79 
9.48 
8.38 
9.65 
5.81 
9.04 
5.34 
11.69 
11.06 
11.35 
12.34 

Species 

FUNHET 
FUNHET 
FUNUID 
FUNUID 
FUNHET 
FUNHET 
FUNUID 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
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Table CI (continued): Biological data of Fundulus spp. (n = 53) from Sydney Tar 

Ponds used in parasitological analysis. TL, total length; SL, standard 

length; FUNHET; Fundulus heteroclitus; FUNUID, Fundulus spp. 

Fish ID 

SYP0154 
SYP0155 
SYP0156 
SYP0157 
SYP0158 
SYP0159 
SYPO160 
SYP0161 
SYP0162 
SYP0163 
SYP0164 
SYP0165 
SYP0166 
SYP0167 
SYP0168 
SYP0169 
SYPO170 
SYP0171 
SYP0172 
SYP0173 

Sex 
(M/F) 

F 
F 
M 
F 
F 
M 
M 
F 
M 
M 
F 
F 
F 
M 
M 
F 
F 
M 
F 
F 

TL 
(mm) 
66.66 
56.94 
51.89 
53.92 
46.53 
53.74 
55.78 
53.15 
50.14 
50.53 
51.07 
52.11 
51.00 
42.29 
45.03 
51.02 
45.06 
45.94 
44.85 
46.05 

SL 
(mm) 
55.69 
47.45 
43.36 
45.43 
38.23 
45.14 
48.67 
42.46 
41.47 
43.43 
44.18 
45.37 
44.26 
36.98 
38.32 
44.02 
37.87 
39.05 
37.61 
38.82 

Weight 
fe) 

3.62 
2.06 
1.71 
1.87 
1.31 
1.99 
2.21 
1.66 
1.38 
1.62 
1.57 
1.87 
1.60 
0.89 
1.06 
1.79 
1.2 

1.28 
1.09 
1.21 

Plump 
(mm) 
10.56 
8.82 
8.31 
7.86 
7.52 
9.24 
9.14 
7.71 
7.40 
8.09 
7.52 
8.56 
7.34 
6.32 
6.87 
7.92 
6.89 
7.65 
7.31 
7.55 

Species 

FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNUID 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
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Table C2 (continued): Biological data of Fundulus spp. ( n = 69) from River Ryan 

used in parasitological analysis. TL, total length; SL, standard length; 

FUNHET; Fundulus heteroclitus; FUNUID, Fundulus spp. 

Fish ID 

RIRY59 
RIRY60 
RIRY61 
RIRY62 
RIRY63 
RIRY64 
RIRY65 
RIRY66 
RIRY67 
RIRY68 
RIRY69 
RIRY100 
RIRY101 
RIRY102 
RIRY103 
RIRY104 
RIRY105 
RIRY106 
RIRY107 
RIRY108 
RIRY109 
RIRY110 
RIRY111 
RIRY112 
RIRY113 
RIRY114 
RIRY115 
RIRY116 
RIRY117 
RIRY118 
RIRY119 
RIRY120 

Sex 
(M/F) 

M 
F 
F 
F 
F 
M 
F 
F 
F 
M 
M 
F 
M 
F 
F 
M 
M 
M 
M 
M 
F 
F 
M 
F 
M 
M 
M 
F 
M 
F 
F 
F 

TL 
(mm) 
80.3 
57.4 
51.7 
56 

50.8 
55 

61.3 
53 

52.1 
49.1 
50.8 
69.78 
61.04 
65.11 
73.9 
73.62 
63.21 
70.8 
74.0 
42.0 
68.58 
59.59 
71.68 
61.85 
44.5 
61.35 
56.3 

64.01 
57.79 
69.89 
73.86 
46.34 

SL 
(mm) 
64.5 
47.8 
43.5 
47.5 
43 

46.5 
50.9 
45.1 
46.9 
40.9 
44 

58.39 
51.78 
55.12 
61.72 
61.74 
52.26 
57.46 
60.51 
35.28 
57.83 
49.79 
57.99 
50.62 
37.12 
50.96 
45.7 
53.78 
48.28 
58.57 
62.70 
37.72 

Weight 
(R) 

6.48 
2.91 
1.7 

2.59 
1.35 
2.56 
2.87 
2.38 
1.98 
1.45 
2.1 
5.08 
3.08 

3.327 
5.26 
5.59 
3.34 
4.8 
4.62 
0.89 
4.04 
2.75 
4.77 
3.23 
1.05 
3.14 
2.48 
3.39 
2.66 
4.28 
5.77 
1.18 

Plump 
(mm) 
20.71 
11.9 
8.6 
12.3 
7.5 
10.5 
11.5 
10.5 
10.4 
7.1 
10.1 
11.3 
11.22 
10.13 
12.71 
12.67 
10.37 
13.01 
14.87 
7.70 
11.28 
10.03 
12.35 
10.08 
6.89 
10.36 
9.48 
10.46 
10.42 
11.06 
11.93 
7.90 

Species 

FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNUID 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNUID 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
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Table C3: Biological data of Fundulus spp. (n = 64) from Mira River used in 

parasitological analysis. TL, total length; SL, standard length; FUNHET; 

Fundulus heteroclitus; FUNUID, Fundulus spp. 

Fish ID 

MIRI01 
MIRI03 
MIRI04 
MIRI05 
MIRI07 
MIRI08 
MIRI09 
MIRI10 
MIRI11 
MIRI12 
MIRI13 
MIRI14 
MIRI15 
MIRI16 
MIRI17 
MIRI18 
MIRI19 
MIRI20 
MIRI21 
MIRI22 
MIRI23 
MIRI24 
MIRI26 
MIRI27 
MIRI28 
MIRI29 
MIRI30 
MIRI31 
MIRI32 
MIRI33 
MIRI34 
MIRI35 
MIRI50 
MIRI51 
MIRI52 
MIRI53 
MIRI54 

Sex 
(M/F) 

F 
M 
F 
F 
F 
F 
M 
M 
F 
F 
M 
M 
F 
F 
F 
F 
F 
M 
F 
F 
F 
F 
M 
F 
M 
F 
F 
F 
F 
M 
F 
F 
F 
F 
F 
F 
M 

TL 
(mm) 
46.86 
58.77 
47.01 
74.95 
52.45 
64.28 
49.99 
51.7 

— 

57.66 
51.83 
68.79 
50.47 
57.53 

— 

55.76 
— 

73.33 
51.31 
53.73 
47.47 
55.36 

53 
59.18 
68.79 
60.79 
54.96 
56.03 
63.88 
57.1 
62.53 
53.02 
62.46 
67.29 
106.1 
56.11 
53.18 

SL 
(mm) 
37.77 
47.42 
38.25 
62.32 
43.34 
52.3 

41.46 
41.43 
65.06 
45.86 
41.37 
56.49 
41.01 
46.11 
42.84 
46.75 
64.61 
60.69 
43.2 
45.48 
37.78 
45.36 
42.39 
48.8 
58.87 
50.04 
44.61 
45.68 
51.75 
45.37 
49.96 
43.87 
52.14 
55.6 
87.91 
45.89 
43.7 

Weight 
GO 
1.48 
2.62 
1.5 

6.13 
1.9 

4.18 
1.63 
1.8 

6.69 
2.66 
1.59 
4.43 
1.5 

2.43 
1.65 
2.41 
6.33 
5.17 
1.87 
2.03 
1.18 
2.29 
1.62 
2.94 
4.82 
3.04 
2.21 
2.5 
3.57 
2.54 
3.71 
1.92 
3.19 
4.57 

20.36 
2.11 
1.95 

Plump 
(mm) 
7.7 

10.63 
8.94 
14.44 
9.2 

12.92 
8.92 
9.57 
14.42 
9.36 
8.03 
13.53 
8.15 
9.6 
9.36 
9.53 
14.11 
14.32 
9.4 

9.11 
7.68 
10.19 
8.52 
11.16 
12.99 
11.21 
10.41 
6.11 
10.47 
10.71 
12.58 
9.46 
11.37 
12.61 
21.85 
9.19 
9.18 

Species 

FUNUID 
FUNHET 
FUNHET 
FUNHET 
FUNUID 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNUID 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNUID 
FUNHET 
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Table C3 (continued): Biological data of Fundulus spp. (n = 64) from Mira River 

used in parasitological analysis. TL, total length; SL, standard length; 

FUNHET; Fundulus heteroclitus; FUNUID, Fundulus spp. 

Fish ID 

MIRI55 
MIRI56 
MIRI57 
MIRI58 
MIRI59 
MIRI60 
MIRI61 
MIRI62 
MIRI63 
MIRI64 
MIRI65 

MIRI100 
MIRI101 
MIRI102 
MIRI103 
MIRI104 
MIRI105 
MIRI106 
MIRI107 
MIRI108 
MIRI109 
MIRI110 
MIRI111 
MIRI112 
MIRI113 
MIRI115 
MIRI117 

Sex 
(M/F) 

M 
F 
F 
F 
M 
M 
F 
F 
M 
F 
M 
F 
M 
F 
F 
F 
M 
M 
M 
F 
F 
F 
F 
F 
F 
F 
M 

TL 
(mm) 
66.73 
61.73 
64.8 

54.58 
52.15 
55.93 
56.33 
53.58 
59.59 
66.38 
54.14 
72.95 
93.99 
101.13 
91.43 
102.02 
65.53 
100.7 
73.22 
76.8 
37.06 
95.28 
79.09 
83.74 
84.66 
77.58 
66.41 

SL 
(mm) 
52.82 
52.45 
51.82 
43.19 
42.67 
45.07 
46.83 
44.28 
50.24 
53.76 
44.69 
61.43 
78.58 
84.55 
77.44 
85.82 
54.92 
85.28 
61.23 
63.77 
30.82 
82.45 
64.88 
70.07 
71.46 
64.56 
55.06 

Weight 
Gs) 

3.71 
3.2 
3.48 
1.76 
1.64 
2.55 
2.47 
2.12 
2.69 
4.07 
2.01 
5.39 
11.43 
14.08 

11.781 
16.5 
3.5 

15.18 
4.94 
6.07 
0.59 
13.57 
6.51 
7.83 
9.48 
6.03 
3.812 

Plump 
(mm) 

12 
10.79 
10.89 
8.73 
8.24 
10.83 
9.42 
9.18 
10.22 
11.32 
8.97 
11.78 
17.21 
18.41 
18.11 
18.85 
10.27 
19.49 
12.76 
12.82 
5.56 
18.37 
13.59 
14.27 
15.56 
12.85 
12.62 

Species 

FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
FUNHET 
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Appendix D: Raw Data from American eel {Anguilla rostrata) 

Parasitological Analysis 

Outline: 

Dl. Biological data of American eel {Anguilla rostrata) used in parasitological 

analysis 

Table Dl: Biological data of American eel {Anguilla rostrata) used in 

parasitological analysis and the total number of parasites found in A. 

rostrata. 

D2. Raw data of Parasites Found in American eel {Anguilla rostrata) 

Table D2: Ectoparasites found on Anguilla rostrata from the North 

Tar Pond, Mira River, and Sydney Harbour. 

Table D3: Endoparasites found in Anguilla rostrata from the North 

Tar Pond, Mira River, and Sydney Harbour. 
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Dl. Biological data of American eel (Anguilla rostrata) used in parasitological 

analysis 

Table Dl : Biological data of American eel (Anguilla rostrata) used in 

parasitological analysis and the total number of parasites found in A. 

rostrata. 

Total 
Site Fish ID Length Weight Plump 

(mm) (g) (mm) 

North Tar Pond SYP013 395 94.59 19 
(n=6) SYP014 316 38.46 11.6 

SYP015 
SYPOXX 605 
SYP017 
SYPO50 532 261.3 35.5 

Mira River MIRI36 - 76.63 14.5 
(n=10) MIRI37 459 149.67 19.7 

MIRI38 388 100.25 19.8 
MIRI39 319 43.71 12.9 
MIRI66 344 62.54 14.8 
MIRI101 317 51.95 18.46 
MIRI102 260 26.18 13.99 
MIRI103 322 45.07 18.57 
MIRI104 255 23.17 14.52 
MIRIXX 

Sydney Harbour WEPA01 43.8 84.97 20.12 
(n = 5) WEPA02 48.4 129.98 23.73 

WEPA03 38.4 72.36 21.08 
WEPA04 48.1 161.83 27.22 
WEPA05 37.4 69.05 19.70 

TOTAL 
# # 

parasites species 

4 1 
0 0 
6 2 
1 1 
1 1 
0 0 

4 2 
2 1 
1 1 
3 1 
3 2 
7 1 
4 2 

52 4 
0 0 
1 1 

0 0 
0 0 
13 2 
1 1 
0 0 
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D2. Raw data of parasites found in American eel (Anguilla rostrata) 

Table D2: Ectoparasites found on Anguilla rostrata from the North Tar Pond, 

Mira River, and Sydney Harbour. UID: unidentified 

Site 

Organ: 

Parasite 
Species: 

Fish ID 

Gill 

UID Parastic 
Copepod 

Gill 

Pseudodactylogyurus 
anguillae 

North Tar Pond 
(n = 6) 

Mira River 
(n=10) 

Sydney Harbour 
(n = 5) 

SYP013 
SYP014 
SYP015 
SYPOXX 
SYP017 
SYPO50 

MIRI36 
MIRI37 
MIRI38 
MIRI39 
MIRI66 
MIRI101 
MIRI102 
MIRI103 
MIRI104 
MIRIXX 

WEPA01 
WEPA02 
WEPA03 
WEPA04 
WEPA05 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
3 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
3 
0 
0 
0 

0 
0 
0 
0 
0 
0 
1 
3 
0 
0 

0 
0 
0 
0 
0 
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