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Energy Management and Control Systems for Hybrid Wind-Solar Energy 

System with Battery Storage 

By 

Khandker Tawfique Ahmed 

Abstract 

A hybrid wind solar energy system with battery storage and its control systems are presented in 

this dissertation. The proposed system consists of a wind turbine, a solar panel, a battery storage 

unit and a set of loads. A power electronics interface, based on various converters, is used to 

integrate the renewable energy sources and the storage device to the main DC-bus feeding a 

single phase AC load. The main challenge of the hybrid system is to maintain the load demand 

under constraints. The objective of the proposed controllers is to ensure a proper control and 

coordination between all the sources of the system. At the wind energy side, a speed controller is 

used to keep the rotor speed under control for safe operation of the wind turbine.  At the solar 

energy side, an incremental conductance method approach is realized to extract the maximum 

power from solar irradiance. A bidirectional DC-DC converter is employed to control the 

charging and discharging of the battery storage system. An energy management system is 

developed to keep a balanced energy in the hybrid system. A load voltage regulator enables the 

system to fix the output voltage and frequency. An experimental setup of the hybrid energy 

system is developed using electrical devices from Festo (formerly LabVolt) and rapid control 

prototyping is achieved using the real-time OPAL-RT digital control system. Experimental results 

for various conditions are presented to validate the control algorithms developed in this work. 

June 30th, 2016 

  



ii 
 

Acknowledgement 

 

I would like to thank Saint Mary‘s University for providing me the opportunity to pursue the MSc 

in Applied Science program with funding and research fellowship. I am thankful to TechnoCentre 

for funding this research work. I would like to express my sincere gratitude to my supervisor Dr. 

Adel Merabet for his valuable advice and help. I am thankful for the support provided by my co-

supervisor Dr. Hussein Ibrahim, from the TechnoCentre, Gaspe, Quebec. 

I would like to thank my supervisory committee member Dr. David Swingler and the external 

examiner Dr. Alain Joseph for their valuable comments and suggestions provided for my thesis. 

Without their guidance and feedback, the thesis work could not have been a success. I would also 

like to thank the entire research group of Laboratory of Control Systems and Mechatronics 

(LCSM), Division of Engineering at Saint Mary‘s University for their support and help. And I 

would also like to thank all the University officials who directly or indirectly helped me 

throughout my program of study. 

Finally, I would like to express my deepest gratitude to all of my family members and relatives. 

 

June 30th, 2016 

 

 

 

 

 

 



iii 
 

Table of Contents 
 

List of Figures ...................................................................................................................... vi 

Nomenclature .................................................................................................................... viii 

List of Abbreviations ........................................................................................................... xi 

 

Chapter 1 ..............................................................................................................................1 

Introduction ..........................................................................................................................1 

1.1 Background ............................................................................................................................ 2 

1.2 Literature Review................................................................................................................... 3 

1.2.1 Hybrid operation ............................................................................................................. 4 

1.2.2 Wind Energy Control ...................................................................................................... 7 

1.2.3 Solar Energy Control ...................................................................................................... 8 

1.2.4 Load Side Control ........................................................................................................... 9 

1.2.5 Energy Storage System ................................................................................................. 11 

1.3 Proposed System Diagram and Control Structure ............................................................... 13 

1.4 Objectives, Scope and Contribution .................................................................................... 14 

1.5 Outline of the Dissertation ................................................................................................... 15 

 

Chapter 2 ............................................................................................................................ 17 

Wind and Solar Energy Conversion Systems ...................................................................... 17 

2.1 Introduction .......................................................................................................................... 17 

2.2 Wind Energy Conversion System ........................................................................................ 17 

2.2.1 Wind Turbine ................................................................................................................ 17 

2.2.2 Permanent Magnet Synchronous Generator.................................................................. 19 

2.2.3 Machine Side Converter Control .................................................................................. 20 

2.3 Solar Energy Conversion System ........................................................................................ 22 

2.3.1 Solar Cell ...................................................................................................................... 22 

2.3.2 DC-DC Buck Converter ................................................................................................ 23 

2.3.3 Maximum Power Point Tracking .................................................................................. 24 



iv 
 

2.4 Load Side Control ................................................................................................................ 25 

2.5 Conclusion ........................................................................................................................... 27 

 

Chapter 3 ............................................................................................................................ 28 

Energy Management System............................................................................................... 28 

3.1 Introduction .......................................................................................................................... 28 

3.2 Battery Modeling ................................................................................................................. 28 

3.3 Battery Types ....................................................................................................................... 30 

3.4 Energy Storage System ........................................................................................................ 31 

3.4.1 DC-DC Buck-Boost Converter ..................................................................................... 32 

3.4.2 DC-Link Voltage Control ............................................................................................. 33 

3.4.3 Energy Management System Algorithm ....................................................................... 34 

3.5 Conclusion ........................................................................................................................... 35 

 

Chapter 4 ............................................................................................................................ 36 

Rapid Control Prototyping ................................................................................................. 36 

4.1 Introduction .......................................................................................................................... 36 

4.2 RT-Lab Overview ................................................................................................................ 37 

4.3 Hardware & Software Details .............................................................................................. 38 

4.3.1 OP5600 Real Time Simulator ....................................................................................... 38 

4.3.2 OP8660 Controller and data Acquisition Interface ....................................................... 39 

4.3.3 OPAL-RT‘s RT-LAB Software .................................................................................... 39 

4.4 RT-Lab Modeling for Real Time Monitoring ...................................................................... 41 

4.5 Conclusion ........................................................................................................................... 43 

 

Chapter 5 ............................................................................................................................ 44 

Experimentation & Results ................................................................................................. 44 

5.1 Introduction .......................................................................................................................... 44 

5.2 Experimental Setup .............................................................................................................. 44 

5.3 Methodology ........................................................................................................................ 46 



v 
 

5.4 Limitations ........................................................................................................................... 47 

5.5 Experimental Results ........................................................................................................... 47 

5.5.1 System Performance under Variable Wind Power ........................................................ 48 

5.5.2 System Performance under Variable Solar PV Power .................................................. 53 

5.5.3 System Performance under Low Renewable Power ..................................................... 55 

5.5.4 System Performance under Variable Load Power Demand .......................................... 58 

5.6 Conclusion ........................................................................................................................... 60 

 

Chapter 6 ............................................................................................................................ 61 

Conclusion .......................................................................................................................... 61 

6.1 Contribution ......................................................................................................................... 61 

6.2 Recommendations for future work ...................................................................................... 62 

 

Appendix ............................................................................................................................ 63 

A. Specifications ........................................................................................................................ 63 

B. Steps required for executing Simulink model in RT-Lab ..................................................... 65 

References .......................................................................................................................... 69 

 

  



vi 
 

List of Figures 
 

Figure 1 Proposed hybrid wind-solar energy system with battery storage .................................... 13 

Figure 2 Proposed Control Structure ............................................................................................. 14 

Figure 3 Generator side converter control scheme of the WECS .................................................. 21 

Figure 4 Equivalent Circuit of a solar cell ..................................................................................... 22 

Figure 5 Solar Energy Conversion System .................................................................................... 23 

Figure 6 Flow chart of Incremental Conductance Method ............................................................ 25 

Figure 7 Load side converter control for a single phase AC load .................................................. 27 

Figure 8 Simple Electrical Model of a Battery .............................................................................. 29 

Figure 9 Thevenin Electrical Model of a Battery .......................................................................... 29 

Figure 10 Buck-Boost Converter ................................................................................................... 33 

Figure 11 ESS and control structure .............................................................................................. 34 

Figure 12 Energy management flowchart ...................................................................................... 35 

Figure 13 Application categories of Real Time Simulation System .............................................. 37 

Figure 14 Front view of OP5600 Real-Time Simulator ................................................................ 39 

Figure 15 Real time system for the HIL hybrid energy with storage system................................. 41 

Figure 16 Model Subsystems in RT-Lab ....................................................................................... 42 

Figure 17 Experimental setup of the laboratory scale hybrid wind solar system with storage ...... 45 

Figure 18 Hardware connections of the experimental set-up......................................................... 46 

Figure 19 Wind turbine-generator speed ....................................................................................... 50 

Figure 20 PV module current ......................................................................................................... 50 

Figure 21 Power at different locations in the system (variable wind power) ................................ 51 

Figure 22 DC-bus voltage .............................................................................................................. 52 

Figure 23 Battery current ............................................................................................................... 52 



vii 
 

Figure 24 Load Voltage (zoom) ..................................................................................................... 52 

Figure 25 Load Current (zoom) ..................................................................................................... 52 

Figure 26 Load current................................................................................................................... 52 

Figure 27 Frequency ...................................................................................................................... 52 

Figure 28 Power at different locations in the system (variable solar power) ................................. 54 

Figure 29 PV module current ......................................................................................................... 55 

Figure 30 Battery current ............................................................................................................... 55 

Figure 31 DC bus voltage .............................................................................................................. 55 

Figure 32 Load voltage (zoom) ...................................................................................................... 55 

Figure 33 Wind turbine-generator speed ....................................................................................... 57 

Figure 34 PV module current ......................................................................................................... 57 

Figure 35 Power at different locations in the system (low renewable power) ............................... 57 

Figure 36 DC-bus voltage .............................................................................................................. 58 

Figure 37 Battery current ............................................................................................................... 58 

Figure 38 Power at different locations in the system (variable load power).................................. 59 

Figure 39 DC bus voltage .............................................................................................................. 60 

Figure 40 Battery current ............................................................................................................... 60 

Figure 41 Function selection and settings in LVDAC-EMS window............................................ 67 



viii 
 

Nomenclature 

 

Permanent Magnet Synchronous Generator 

dL                                    d-axis inductance 

qL                                    q-axis inductance 

R                                     Resistance of the stator windings 

sdi                                    Stator d-axis current 

sqi                                    Stator q-axis current 

sdv                                   Stator d-axis voltage 

sqv                                   Stator q-axis voltage 

r                                   Angular velocity of the rotor 

v                                    Rotor Flux  

p                                    Number of pole pairs 

gT                                   Electromagnetic torque 

Wind Energy Conversion 

mP                                  Mechanical power produced by wind turbine 

                                    Air density 



ix 
 

wv                                   Wind speed 

pC                                   Power coefficient 

                                     Tip-speed ratio 

r                                    Rotational speed of the rotor blade 

r                                      Radius of the turbine blade 

rT                                     Torque produced by wind turbine 

Solar Energy Conversion 

I                                      Load current 

PHI                                   Photocurrent 

RSI                                   Diode reverse saturation current 

SI                                     Diode saturation current 

K                                     Boltzmann‘s Constant 

N                                     Diode ideality factor 

T                                      Temperature 

V                                      Terminal voltage 

maxV                                  Maximum Voltage 



x 
 

Load Voltage Control 

rmsV                                   RMS voltage 

refV                                    Reference voltage 

                                        Angle 

v                                        Instantaneous voltage 

                                       Angular velocity 

Battery Modeling 

rQ                                     Remaining capacity 

ratedQ                                 Rated capacity 

ocV                                     Open-circuit voltage 

sR                                      Series Resistance 

batI                                     Battery current 

batV                                     Battery voltage 

thV                                      Equivalent Thevenin voltage 

thR                                     Equivalent Thevenin resistance 

 



xi 
 

List of Abbreviations 

 

AC                              Alternating current 

DC                              Direct Current 

EMF                           Electromotive Force 

ESS                            Energy Storage System 

HRES                        Hybrid Renewable Energy System 

HIL                            Hardware-in-Loop 

IGBT                         Insulated Gate Bipolar Transistor 

Li-ion                         Lithium-ion Battery 

MGSet                       Motor-Generator Electric Drive 

MPP                          Maximum Power Point 

MPPT                        Maximum Power Point Tracking 

Ni-Cd                         Nickel- Cadmium Battery 

Ni-MH                       Nickel-metal hydride Battery 

PD                             Proportional-Derivative 

PI                               Proportional-Integral 

PID                            Proportional-Integral-Derivative 



xii 
 

PMSG                        Permanent Magnet Synchronous Generator 

P&O                            Perturb and Observe 

PS                                Pure Simulation 

PV                               Photovoltaic 

PWM                           Pulse Width Modulation 

RCP                             Rapid Control Prototyping 

SOC                             State of Charge 

VSC                             Voltage Source Converter 

WECS                          Wind Energy Conversion System 

XHP                              Extra High Performance  



1 
 

Chapter 1 

Introduction 
 

The demand for power is ever-increasing. Use of fossil fuels i.e. gas, coal, oil etc. in producing 

power is also increasing. Still, there are over 1.5 billion people over the world deprived of access 

of electricity living mostly in remote areas [1]. The source of electricity in those remote islands 

and villages is diesel generator. This is both costly and hazardous for the environment due to the 

global warming. Renewable energy resources like wind and solar energy are getting popularity 

for these reasons.  

Two or more renewable energy resources can be utilized in a hybrid renewable energy system 

(HRES) which can work as a standalone or grid connected system. A hybrid renewable energy 

system offers better quality in terms of reliability compared to single source based system. This is 

due to the fact that one power source can supply power to the load when other sources are either 

generating low or no power. The selection of renewable resources in HRES depends on the 

particular location. In this research work a wind-solar HRES is considered. Wind and solar 

combination is most promising source of generating energy primarily due to their complementary 

nature advantage. Wind power generation could be low in time when solar power generation is in 

its peak. On the other hand, the wind is often stronger in seasons when there is less solar 

irradiance. Wind and solar energy are unpredictable in nature, as they depend on climate 

condition. To improve the reliability of a wind-solar hybrid system other sources like battery 

storage, fuel cell, diesel generator can also be integrated. 
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This research work focuses on the development of energy management system and control 

systems for wind-solar hybrid energy system. The proposed control algorithms are tested to 

validate the algorithms using RT-LAB real-time simulator. In this chapter, detailed backgrounds 

of the system and literature review are discussed.  

1.1 Background 

In 2014, electric utilities and industry in Canada generated 639 terawatt hours [2]. 

Hydroelectricity accounts for 59.3 per cent of the country‘s electricity supply. Other sources 

include coal, uranium, natural gas, petroleum and non-hydro renewable sources. Apart from 

hydro resources, only 5.2% of the Canada‘s electricity supply comes from the renewable 

resources. With its large landmass and diversified geography, Canada has substantial renewable 

resources that can be used to produce energy. Moving water, wind, biomass, solar, geothermal, 

and ocean energy are some of these resources. Wind and solar photovoltaic energy are the 

fastest growing sources of electricity in Canada. About half of Canada‘s residential electricity 

requirements could be met by installing solar panels on the roofs of residential buildings [3]. As 

of December 31, 2014, Canada had over 5,130 wind turbines operating on 225 wind farms for a 

total installed capacity of 9,694 megawatts and solar power reached 1,843 megawatts of 

installed capacity [3].  

There are approximately 292 off-grid remote communities in Canada where the power 

generation depends on diesel generator [4]. As diesel contributes to carbon emission an 

alternative solution is required to minimize its usage. Also, electricity demand in Canada is 

expected to grow at an annual rate of 1 per cent between 2014 and 2040 [5]. Most of the growth 

in energy demand would come from the industrial sector, where overall energy demand is 

expected to grow at a rate of 0.7 per cent. In order to meet increasing demand, Canadian 
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producers need to increase their generation capacity. Hydroelectricity generation is expected to 

continue to dominate the electricity supply mix but its share will decrease from 55 to 51 per 

cent in 2040. In total generation, the share of wind power is projected to increase from over 7 

per cent of total electricity generation in 2014 to close to 11 per cent by 2040, while the share of 

biomass, solar and geothermal will account for about 5 per cent by 2040. A combination of 

wind-solar energy will increase the efficiency of power generation. So hybrid energy system 

based on wind and solar is gaining popularity among the researcher these days. 

A non-profit organization named TechnoCentre éolien has developed an infrastructure of hybrid 

renewable energy operation in Gaspe, Quebec to support the development of the wind industry. 

The main purpose of this project is to study the potentialities and operation of hybrid energy 

systems in Canada. Current infrastructure consists of a wind power plant, a photovoltaic (PV) 

power plant, a diesel power plant, a compressed air storage unit, a motor-generator electric drive 

(MGSet), a battery bench, a heat exchanger, a resistive load, secondary loads and a remote 

monitoring system [6]. This research work is a part of that project.  

1.2 Literature Review 

 

Literature review on hybrid energy system is very extensive. A brief literature review is done in 

this section. Since the study includes the operation of hybrid system consisting solar, wind and 

battery, following topics are considered for literature review.  

1. Hybrid operation 

2. Wind Energy Control 

3. Solar Energy Control 
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4. Load Side Control 

5. Energy Storage System 

 

1.2.1 Hybrid operation 

 

HRES is a combination of two or more renewable energy resources with a storage or utility grid. 

In this section, a combination of wind and solar, with an energy storage is considered for HRES 

with a discussion from different authors about the configurations and control strategies used to 

operate such systems. The HRES configuration proposed in [7] comprised of wind and solar 

photovoltaic (PV) connected to grid. A multi input DC-DC converter is used to implement the 

maximum power point tracking (MPPT). If one of the sources is unable to generate power, this 

DC-DC converter can still transfer the maximum power from the other source. A full bridge 

converter converts the DC power into the AC power. The control strategy is implemented using a 

microcontroller.  

A similar HRES approach is discussed in [8]. Here a single phase current hysteresis PWM control 

strategy is proposed for the three-phase DC-AC inverter. Although hysteresis control provides a 

fast dynamic response and good accuracy [9], it generates a variable switching frequency in the 

converter [10],[11].  

In [12], a DC and AC linked solar- wind based HRES is proposed. A dSPACE based controller is 

used to implement both grid connected and standalone mode. In this HRES configuration, all the 

sources are connected in parallel to the common DC bus through their individual DC-DC 

converter. A MPPT algorithm is also applied. But the battery storage is uncontrolled as it is 

directly connected to the DC bus. 
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The work in [13] presented a DC and AC bus linked HRES consisting of wind, solar and fuel cell. 

In this configuration, the DC-DC converters of the PV and wind sources are incorporated with 

voltage-based MPPT control technique to extract the maximum power from the sources. Fuel cell 

is used as a storage device. This is also a grid connected system. The output voltage from each 

source is controlled via a voltage controller. A single-phase current controlled inverter connecting 

the DC and AC bus controls the current injected into the grid and also regulates the DC bus 

voltage.   

A similar DC and AC linked HRES approach is presented in [14]. In this configuration, a current 

control voltage source inverter is connected to the utility grid. In this control strategy [15], the DC 

bus voltage is controlled to ensure sufficient injection of the active power into the grid. This 

controller generates reference active power for inverter control. Using rotating reference frame, 

the components of the inverter output currents are generated. The inner current control loops 

control the active and reactive power injected into the utility by independently controlling the 

current components. However, this control approach is more suitable for three-phase load.  

In [16], a HRES system comprised of wind, solar, battery and super-capacitor is presented. A 

field orientation based speed control is realized by setting one current component reference to 0 

and the other component current is used to control the rotational speed of the permanent magnet 

synchronous generator (PMSG) according to the variation in the wind speed. The converter of the 

storage unit is controlled using the current control strategy.  A DC bus control strategy similar to 

[15] is used to regulate the active and reactive power flow.  The proposed system also works with 

three-phase load.  

In [17], a standalone microgrid model is presented by combining three renewable energy 

resources. An active power and voltage control scheme is adopted in this standalone single three-
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phase inverter control. This control strategy consists of two cascade loops to regulate the active 

power injection and also maintain the magnitude of the AC bus. The inner current control loops 

independently regulate the components of the inverter output current in the rotating reference 

frame. The reference value of the inverter output current is obtained from the controlled active 

power and voltage in the outer loop. The compensated outputs of the two current controllers are 

used to generate the gate control signals of the inverter switches.  

A fuzzy based PV control strategy for standalone three-phase voltage source inverter is proposed 

in [18]. In this controller, fuzzy rules are used to set the parameters of a proportional-integral (PI) 

controller to achieve a greater response. 

The work in [19] presents three individual renewable energy resources with energy storage and a 

grid interfacing inverter with virtual inductance at its output. The virtual inductance in the 

proposed control strategy effectively decouples and can accurately control the real and reactive 

power in both standalone and grid-connected mode. However, in virtual inductance, the 

differentiation of line current can cause high frequency noise amplification, which in turn may 

destabilize the voltage control scheme especially during transient events. To avoid noise 

amplification a low pass filter is added [20],[21]. A high pass filter is added to avoid the 

introduction of excessive noise [22]. However, this approach is the tradeoff between the overall 

control scheme stability and the virtual inductor control accuracy.   

HRES consists of different types of controllers. A speed controller is used to protect the wind 

turbine. The maximum power from the solar PV is extracted by a maximum power point tracking 

algorithm. To get the desired voltage at the output, a voltage controller is needed. Lastly an 

energy management system is required to charge/discharge the storage according to the power 

generation from the renewable sources. 
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There are significant differences between wind power and conventional power generation system. 

Wind turbines often utilize different converter based generating systems. Wind is the prime 

mover of the wind turbines, which is not controllable and fluctuates randomly. Besides, the 

typical capacity of individual wind turbines is much smaller compared to the conventional utility 

generators. Due to these differences, wind generation interacts differently with the network and 

wind generation may have both local and system-wide impacts on the operation of the power 

system. The wind energy configuration in TechnoCentre éolien is developed with a permanent 

magnet synchronous generator (PMSG) based wind energy conversion system with two-level 

voltage source converter (VSC).  A typical configuration, where PMSG is directly coupled with 

the wind turbine, is used in this study [23]. Two back to back IGBT converters are used to 

convert AC signal to DC and then back to AC at the load side [24].   

1.2.2 Wind Energy Control 

 

A major concern of wind energy conversion system (WECS) is to control the speed of the wind 

turbine. A control system is required to operate the wind turbine at rated wind speed maintaining 

a desired voltage level. Speed control of wind turbine is also important to ensure the safety of the 

WECS, converters, transformers and loads. A rotor speed estimation based non-linear speed 

controller is presented in [25]. The proposed control system has two parts, a machine side 

converter control and a grid side converter control. Machine side converter control is used to run 

the wind turbine in maximum power point (MPP) for maximum power generation. 

Another approach uses a proportional-integral-derivative (PID) based pitch regulation to control 

the speed [26]. A transfer function of wind turbine is derived to apply the PID controller.  This 

PID controller is designed considering the non-linearity and the step response of the wind turbine.  
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In [27], a control scheme for an interior permanent magnet synchronous generator based variable 

speed wind turbine with battery storage is discussed. The speed control of the wind turbine is 

achieved by controlling the two components of the stator current. 

Adaptive sliding mode controller is another method to solve this problem [28]. This adaptation 

strategy consists of updating the sliding gain and the turbine torque, which is considered 

unknown by the controller. The adaptation algorithms for the sliding gain and the torque 

estimation are carried out using the sliding surface to overcome the drawbacks of the 

conventional sliding mode control. 

1.2.3 Solar Energy Control 

 

Since the dawn of the civilization human being have been harnessing solar energy, radiant light 

and heat from the sun, using a range of ever-evolving technologies. Since the scaling of the input 

power source is easy, solar PV systems are an excellent choice in remote areas for low and 

medium level power generation. The building block of PV array is a solar cell, which is basically 

a p-n semiconductor junction that directly converts the solar irradiation into a DC current using 

the photovoltaic effect. Maximum power point tracking (MPPT) is an integral part of solar PV 

systems. MPPT is a technique that ensures the maximum power extraction from non-linear 

energy resources like solar photovoltaic, wind energy systems and tidal energy etc. For solar PV 

systems, MPPT algorithm allows the controller to follow the optimum voltage and current from a 

photovoltaic module. Perturb & Observe (P&O) is the most widely used among the existing 

MPPT techniques. In this method, the operating voltage of PV array is perturbed by small 

increment and the corresponding change in power due to that is used to calculate the maximum 

power point (MPP) [29],[30]. At the MPP, the derivative of the power with respect to the voltage 

should be zero. If the derivative is greater than zero, the operating point is on the left of MPP. If 
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the derivative is less than zero, the operating point is on the right of MPP. This method is the 

most popular because of its simplicity, low cost, ease of implementation and its operation doesn‘t 

rely on the knowledge of PV characteristics [31]-[34]. One of the biggest drawbacks of this 

algorithm is that it has a poor performance under rapid changing irradiation [35],[36]. 

Another technique is incremental conductance method, which is based on comparing the changes 

in voltage and current. This algorithm calculates the incremental changes in current and voltage 

[37]. The incremental conductance algorithm is derived by differentiating the PV array power 

with respect to voltage and setting the result equal to zero.  As the control decision is based on 

two distinct variables, incremental conductance method has good robustness to measurement 

noise compared to the P&O method [38].  

Another MPPT method named constant voltage MPPT algorithm relies on the current-voltage (I-

V) curve of the PV array. In the simplest from, the open circuit voltage has a linear relation with 

MPP. The constant of proportionality is selected between 0.78 and 0.92 [29]. As this is an 

estimation technique based on PV cells under uniform condition, it is unable to accurately find 

MPP location under non-uniform conditions. 

A variety of artificial intelligence based MPPT techniques have been proposed in different 

papers. A fuzzy logic based MPPT is proposed in [39],[40]. Artificial Neural Network provides a 

mechanism to predict the MPP based on PV systems experience in environmental conditions [41].  

1.2.4 Load Side Control 

 

Most of the appliances in North America operate in 120V voltage and 60Hz frequency. So there 

is requirement to control the output voltage and frequency of HRES. There exist many methods to 

control the frequency and the voltage.  In [42], an IGBT based voltage and frequency controller 
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with a battery at its DC link for an asynchronous generator is proposed at the load side. This 

controller has bidirectional active and reactive power flow capability by which it can control the 

system voltage and frequency.  The control scheme is based on the generation of reference source 

current. The active component of reference source current is used to control the magnitude of 

generated voltage and the reactive component of reference source current is used to regulate the 

frequency of the generated voltage. A PI controller is used to accomplish these tasks.  

Different topologies for single phase inverter are discussed in [43]. Control of both single stage 

and multi-stage inverter are discussed in the paper.  A direct-quadrature (d-q) rotating frame 

control method for single phase full bridge inverter in a hybrid energy system is presented in [44]. 

To achieve this d-q transformation, an imaginary orthogonal circuit was created by differentiating 

the state variables from the original inverter circuit in order to emulate the q-axis dynamics. The 

proposed controller attains infinite loop gain in the rotating coordinate, thus providing zero 

steady-state error at the fundamental frequency of the converter. 

In [45], the inverter is controlled with a fast inner current loop with a slower outer voltage loop 

which eliminates the weakly damped inductive-capacitive LC filter of the inverter. While this 

method results in improved performance of the inverter under linear loads, it deteriorates under 

nonlinear loads. 

In [46], a common inner AC current loop has been presented. In [47], the inverter controls the 

active power flow from the renewable energy source to the grid and also performs the nonlinear 

load current harmonic compensation by keeping the grid current almost sinusoidal. The control 

scheme employs a current reference generator based on sinusoidal signal integrator and 

instantaneous reactive power (IRP) theory together with a dedicated repetitive current controller. 

Another approach based on repetitive controller gained attention nowadays [48]. However, they 
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require quite complex compensation or a continuous knowledge of the load. They are also known 

to be slow and only effective for disturbances that are of the harmonics of the fundamental. 

1.2.5 Energy Storage System 

 

Energy storage system (ESS) is the heart of HRES. The purpose of an energy storage system is to 

regulate energy balance between the sources and the load of HRES. Several methods have been 

proposed by different authors for ESS. 

A dual mode hybrid wind-solar energy system is proposed in [12]. It proposes an energy 

management program that communicates the value of power references to wind and solar sources. 

System variables such as voltages and currents are used to make decision by the supervisory 

system. The main purpose of the supervisory control is to keep the battery charged by keeping the 

DC-Link voltage at nominal level. One problem with this approach is that battery cannot 

discharge when the power generations from the sources are reduced.   

An energy management system for PMSG based standalone wind energy system is discussed in 

[49]. The energy storage system consists of battery and super-capacitor both connected to the 

DC-bus.  The energy management algorithm depends on the power generation from wind and 

load power. If there is an excess power, battery is charged and vice versa. It didn‘t consider a 

hybrid system. Also it is a simulation based work.  

Authors in [50] have proposed a method to improve the battery life in a small-scale wind energy 

system using super-capacitor. Different control strategies for battery/super-capacitor are 

presented in [51]. It discussed how these control can be used in hybrid energy storage system. 

Application of super-capacitor in grid connected Doubly Fed Induction Generator (DFIG) system 

is demonstrated in [52].  
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In [53], a DC-link voltage based energy management scheme is proposed for a PV-based hybrid 

energy system. The main purpose of the energy management system is to reduce the stress on the 

battery. A lab-scale grid connected PV generation system with battery storage is proposed in [54]. 

The energy management system is responsible for charging the battery from the utility grid or PV 

and discharge to supply power to the local load and the utility grid. A simulation based wind-

diesel system with battery storage is proposed in [55]. The energy management system is used to 

send a command to the dumping load and to the battery to regulate the system frequency. 

However, management and control coordination of a hybrid energy system consisting of a 

PMSG, solar PV and energy storage have received a very little research attention. 
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1.3 Proposed System Diagram and Control Structure 

The main purpose of this research work is to develop an experimental model of hybrid wind solar 

energy system with battery storage. The main components of this system are wind turbine, solar 

panel, battery, converters, inverters, filter and resistive loads. A diagram of the proposed hybrid 

system is depicted in Fig.1. 

 

Figure 1 Proposed hybrid wind-solar energy system with battery storage 

Several controllers are used in this hybrid system. Fig. 2 shows a brief flowchart of the controller 

developed in this research work. A speed controller is used to control the speed of PMSG. MPPT 

ensures the maximum power extraction from the solar panel. Energy management system is 

required to keep the power balance of the system. Finally, load voltage regulator keeps the load 

voltage and frequency constant. Detailed explanations of these controllers are provided in the 

next chapters. 
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Figure 2 Proposed Control Structure 

 

1.4 Objectives, Scope and Contribution  

 

1)  To implement an experimental laboratory model for wind energy conversion system (WECS), 

solar energy conversion system  and apply a maximum power point tracking algorithm to extract 

the maximum power.  

2) To develop an experimental laboratory model for stand-alone wind-solar hybrid energy 

system. 
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3) To develop a battery charging-discharging system to use the battery as a back-up power in this 

hybrid system. 

4) To develop an energy management system to share the power generated by the hybrid system, 

to increase the system reliability. 

Contribution – A part of the research infrastructure at TechnoCentre éolien focuses on 

integrating the wind turbine system with Solar PV generation unit and control the power 

generation of both to supply test loads. For this, TechnoCentre éolien requires to develop control 

systems for HRES. The thesis project is envisaged to provide knowledge on technical feasibility 

of control systems development for optimization of power generated from HRES. The main 

contribution of the research is presented in chapters 2, 3 and 5. 

1.5 Outline of the Dissertation  

 

Chapter 2:  

In this chapter, the wind energy conversion system (WECS) and the solar energy conversion 

system are studied through a background with fundamental components and control strategies for 

both systems. 

Chapter 3: 

An energy management system is analyzed to operate the energy storage (battery) and the DC-

DC converter through adequate control schemes.  

Chapter 4: 

Real time simulation environment and rapid control prototyping (RCP) are used to build the 

hybrid renewable energy system. Starting with a brief overview, this chapter discusses the 
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hardware details, real-time simulation environment and RT-LAB modeling. Also includes 

discussion on how to execute model under RT-LAB. 

Chapter 5: 

Experimental setup to emulate the hybrid wind-solar energy conversion system with battery 

storage and experimental results are presented and discussed in this chapter.  

Chapter 6: 

This chapter concludes the thesis with the suggestions of some future work. 
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Chapter 2 

Wind and Solar Energy Conversion Systems 
 

2.1 Introduction 

 

Due to the ever increasing demand in commercial, industrial, agricultural and domestic 

sectors, fossil fuel resources are becoming scarce. For this reason, alternative energy resources 

like wind, solar, hydro, tidal and geothermal etc. are being utilized largely to generate power in 

recent years. A renewable energy based hybrid system offers a better option than a single source 

based system in terms of cost, reliability and efficiency. Wind-solar is a promising combination 

due to their complementary nature advantage [56]. 

This chapter demonstrates the fundamental components and control strategies of wind energy 

conversion system (WECS) and solar energy conversion system. Mathematical equations for the 

wind turbine, the permanent magnet synchronous generator and the solar cell are briefly 

discussed. In WECS, a machine side controller is applied to control the speed. In solar system, to 

ensure the maximum power extraction, a maximum power point tracking algorithm is applied. 

Finally, the load side converter control of the hybrid system, to regulate the load voltage and 

frequency, is discussed and detailed in this chapter. 

2.2 Wind Energy Conversion System 
 

2.2.1 Wind Turbine 

 

The wind turbine is the heart of the wind energy conversion system (WECS). Wind rotates the 

blades of the wind turbine, which drives electrical generator to produce electrical power. The 
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power extracted by the wind turbine is related to the available wind power and the power 

coefficient of the machine as expressed by equation (1) [57] 

                                                
32)(

2

1
wpm vrCP                                                            (1) 

where, ρ is the air density, r is the radius of turbine blades, vw is the wind speed and Cp is the 

power coefficient of the wind turbine as a function of the tip-speed ratio λ . 

The tip-speed ratio is defined as 
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where, ωr is the turbine rotor speed. 

From the tip-speed ratio expression (2), any change in the wind speed, while keeping the 

rotor speed constant, will modify the tip-speed ratio, which leads to the change of the power 

coefficient Cp, as well as the generated power from the wind turbine.  

The torque produced by the wind turbine can be expressed using (1) and (2) as 
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In this study, a 3-blades wind turbine is considered as the wind energy source in the hybrid 

system and emulated by a four-quadrant dynamometer through the Turbine Emulator control 

function in LVDAC software [58].  
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2.2.2 Permanent Magnet Synchronous Generator 

 

The function of an electrical generator is to provide a mean for energy conversion between the 

mechanical torque from the wind turbine rotor and the load or the electric grid. Different types of 

generators are being used for this purpose. In recent years, the use of permanent magnet 

synchronous generator (PMSG) is more attractive than before because of its increasing 

performance and decreasing cost. Apart from the benefit that no additional power supply is 

needed for magnetic field excitation, PMSG has advantages like higher efficiency, better thermal 

characteristics, solid field structure, high power to weight ratio and improved dynamic stability 

[59].  In this research thesis, the PMSG is considered in order to emulate the WECS infrastructure 

in TechnoCentre éolien, Quebec. 

The three-phase permanent magnet synchronous generator is modeled in the (d, q) reference 

frame as 
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                                     (4) 

where, vsd and vsq are the d-q components of the stator voltage; isd and isq are the d-q components 

of the stator current; 
v is the permanent magnet magnetic flux linkage, R is the stator resistance; 

Ld and Lq are the stator winding d-q components of the inductance and p is the number of pair 

poles. 

  



20 
 

2.2.3 Machine Side Converter Control 

 

The size of the experimental wind turbine is small and the external stiffness is neglected 

compared to the other quantities. Therfore, its drive train can be represented as a single lumped 

mass with the following model 

                       grr
r TKT

Jdt

d
 

 1
                                                        (5) 

where, ωr is the rotor angular speed, J is the total moment of inertia and K is total damping and Tg 

is the generator electromagnetic torque. 

The model (5), as an approximation of the rotor dynamics, has been considered suitable for 

control purpose and been used in several works [60],[61]. 

A flux weakening vector control scheme is used for controlling the PMSG as shown in 

Fig. 3 [62]. The complete PMSG drive system consists of: three-phase power converter, 

generator and machine side speed and current controllers. The vector controller generates 

PWM signals through a three-phase current regulator. An optimal control is employed to 

regulate the line current amplitude corresponding to desired torque reference Tref; 

consequently the nominal value of flux is maintained. A proportional-integral (PI) controller 

based speed control is used for obtaining the torque reference. The equations used to develop 

the control system are given below. Equation (6) and (7) are used in modeling simple PI-

controller for speed control, equation (8) and (9) are used for modeling the inputs for the 

current regulator, which is a simple hysteresis controller [63]. 

error ref r                                                                     (6) 

( ) ( ( ))ref ptorque error itorque errorT K K t dt                                (7) 
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* 0sdi                                                                            (9) 

The park transformation (dq to abc) for Isd* and Isq* and electrical angle is used for 

calculating the stator reference current Iabc
*. By using Iabc

*
 and three phase stator current Iabc , 

the current regulator produces control signals for power converter. Thus the machine is 

controlled through power converter by using a vector control scheme.
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Generator side converter control scheme of the WECS 
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2.3 Solar Energy Conversion System 

2.3.1 Solar Cell 

 

Solar cells are made of semiconductors, usually silicon. When solar energy or photon hits the 

solar cell, electrons are knocked out from the atoms in the semiconductor material, creating 

electron-hole pairs. If electrical conductors are then attached to the positive and negative sides, 

forming an electrical circuit, the electrons are captured in the form of electric current 

(photocurrent). The equivalent circuit of a solar photovoltaic (PV) cell can be expressed as 

follows [64] 

 

Figure 4 Equivalent Circuit of a solar cell 

A mathematical equation of load current can be obtained from the equivalent circuit in Fig 4. The 

load current equation is given below [65]: 

( )
( )

1
sq V IR

sNKT
PH S

SH

V IR
I I I e

R

  
    

 
                                                (10)  

Where, I is the load current, IPH is the photocurrent, IS is the diode saturation current, q is the 

electron charge, V is the cell terminal voltage, N is the diode ideality factor, K is the Boltzman 

constant, T is the cell Temperature, RS and RSH is the series and shunt resistance respectively. The 

behavior of a solar cell directly depends on these parameters.  
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2.3.2 DC-DC Buck Converter 

 

A DC/DC buck converter regulates the voltage to operate the solar energy conversion system at 

maximum power point. The basic configuration is shown in Fig. 5.  

 

 

 

 

Figure 5 Solar Energy Conversion System 

 When S1 is turned on, current begins flowing from the input source through S1 and inductor, and 

then into capacitor and the load. The magnetic field in inductor therefore builds up, storing 

energy in the inductor. When S1 is turned off, the inductor opposes any drop in current by 

suddenly reversing its EMF, and now supplies current to the load itself via flywheel diode. The 

DC output voltage which appears across the load is a fraction of the input voltage according to 

equation 

out inV V D                                                           (11) 

Where, D is the duty cycle. So varying the duty cycle the buck converter‘s output voltage can be 

varied. MPPT controller generates the duty cycle to operate the buck converter. 
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2.3.3 Maximum Power Point Tracking 

 

The MPPT controller ensures maximum power from the non-linear PV source. MPPT allows 

the PV module to operate at optimum voltage and current. Hence, the extraction of maximum 

power is ensured. There are several methods for MPPT and the most common are [66] 

1. Perturb & Observe (P&O) method 

2. Constant Voltage method  

3. Incremental Conductance method 

Among these methods, incremental conductance method is recommended due to the fact that it 

offers good yield under rapidly changing atmospheric conditions. Incremental conductance 

method measures the incremental change in the voltage and the current to predict the effect of a 

voltage change. It estimates the relation between the operating point voltage, V, and the 

maximum power point voltage, Vmax [66]. When light intensity and temperature changes, the 

incremental conductance method control the output voltage smoothly and also reduces oscillation 

phenomena near the maximum power point [67]. 

The method can be expressed following the three conditions: 

;( 0)
dI I dp

dV V dV
    at MPP thus V=Vmax                                             (12.a) 

;( 0)
dI I dp

dV V dV
   left of MPP thus V<Vmax                                      (12.b) 

;( 0)
dI I dp

dV V dV
   right of MPP thus V>Vmax                                    (12.c) 

The flowchart of this algorithm is shown in Fig. 6. 
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Figure 6 Flow chart of Incremental Conductance Method 

 

2.4 Load Side Control 

 

The single phase load is connected to the hybrid energy conversion system through a single 

phase DC-AC inverter, as shown in Fig. 7, which is controlled to regulate the load side voltage 

and the frequency. An inductive-capacitive (LC) filter is used to remove the higher order 

harmonics from the output AC voltage. 

The instantaneous output voltage is converted to DC RMS voltage. If the instantaneous value of 

1( ) 2 sin( )rmsv t V t    and 2( ) 2 cos( )rmsv t V t   are known, RMS value can be 

calculated using the below trigonometric function, shown in equation (13) [68] 
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2 2 2{ 2 sin( )} { 2 cos( )} ( 2 )rms rms rmsV t V t V                                  (13) 

When the inverter output voltage 1( ) 2 sin( )rmsv t V t   is sensed via the data acquisition, 

then the voltage 2( ) 2 cos( )rmsv t V t   can be calculated by differentiating 1( )v t  and 

dividing by ω. This computation is done using Simulink. Therefore the RMS value is obtained by 

the following equation 

2 21 1 ( )
{ ( ) ( . ) }

2
rms

dv t
V v t

dt
                                       (14) 

The calculated Vrms is compared with reference voltage Vref and the error signal is passed to a 

PI controller. The output of the PI controller is multiplied with a modulating sinusoidal wave. 

Finally this signal is used to generate PWM for inverter.  As far as the frequency of the output AC 

voltage is concerned, it can be maintained at specified value by choosing the frequency of 

sinusoidal reference signal while generating the PWM pulses.  
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Figure 7 Load side converter control for a single phase AC load 

 

2.5 Conclusion 

 

In this chapter, an overview of wind energy conversion system and solar energy conversion 

system has been presented. The construction and principle components of these systems are 

briefly discussed. The controllers associated with these systems are also introduced in this 

chapter, 
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Chapter 3 

Energy Management System 
 

3.1 Introduction 

 

Distributed power generation systems based on renewable resources like wind, solar etc. are 

gaining popularity these days. An energy management system is necessary to keep the energy 

balance of this hybrid system.  

In this chapter, the essential components of an energy storage system and its control schemes are 

briefly discussed. Battery modeling, battery types and an algorithm for energy management 

system is also detailed in this chapter.  

3.2 Battery Modeling 

 

The battery has the characteristics of high energy density and relatively low power density. The 

internal resistance is the major factor for the limited charging and discharging current capability 

[69]. The internal equivalent series resistance has different values under charging and discharging 

operating conditions. The charging and discharging efficiency are nonlinear functions of current 

and state of charge (SOC). The SOC is defined as the percentage of the remaining capacity of a 

battery.  SOC can be expressed as equation (15) 

( ) 100%r

rated

Q
SOC

Q
                                                                 (15) 

Where, Qr and Qrated are remaining capacity and rated capacity of the battery respectively, both in 

Ampere-Hour (Ah). 
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A simple battery model contains two parts, a controlled voltage source or open circuit voltage Voc 

and a variable series resistor Rs as shown in fig. 8 [70].  

 

Figure 8 Simple Electrical Model of a Battery 

The current flowing into the battery from cathode is regarded as the positive direction. The 

electrical behavior of this model can be expressed as equation (16) 

bat oc bat sV V I R                                                                    (16) 

This simple model doesn‘t consider the dynamic response of a battery. A more accurate Thevenin 

model connects a parallel RC network in series based on the simple model, describing the 

dynamic characteristics of the battery [71]. As shown in Figure 9, it is mainly composed of three 

parts including open-circuit voltage Voc, internal resistances and equivalent capacitance.  

 

Figure 9 Thevenin Electrical Model of a Battery 
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The internal resistances include the ohmic resistance Rs and the polarization resistance Rth. The 

equivalent capacitance Cth is used to describe the transient response during charging and 

discharging. Vth is the voltages across Cth. Ith is the outflow current of Cth. The electrical behavior 

of the Thevenin model can be expressed by equation (17). 

.
th bat

th

th th th

bat oc th bat s

V I
V

R C C

V V V I R


  


   

                                                        (17) 

3.3 Battery Types 

 

There are mainly two types of battery: primary and secondary battery.  Primary batteries which 

are also known as disposable batteries often have higher energy density and lower self-discharge 

than the secondary batteries [72]. The major disadvantage of this type of battery is that they are 

not reusable mainly due to the irreversible chemical reactions in these batteries.  On the other 

hand, the chemical reaction in secondary batteries or rechargeable batteries is reversible. These 

make them suitable for energy storage system. There are many different rechargeable battery 

technologies available. But only four among them are leading the world market. These are: 

Nickel- Cadmium (Ni-Cd), Nickel-metal hydride (Ni-MH), Lead-Acid and lithium-ion (Li-ion) 

batteries. 

In Ni-Cd batteries nickel oxide hydroxide and metallic cadmium is used as electrodes and an 

alkaline such as potassium hydroxide is used as electrolyte [73]. Ni-Cd batteries have several 

advantages. Compared to other rechargeable batteries they are more endurable during deep 

discharge cycles.  They have a low internal resistance which helps them to achieve higher 

discharge rate. But a higher self-discharge rate and use of cadmium, a toxic and expensive 

material has prevented Ni-Cd to be used in large scale [74]. 
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Ni-MH battery is designed to replace the Ni-Cd battery. Ni-MH battery uses hydrogen absorbing 

alloy as negative electrode instead of cadmium. As it doesn‘t use cadmium as its electrode, Ni-

MH is considered as environment friendly battery [75]. Like Ni-Cd batteries, Ni-MH batteries 

also have a low internal resistance and high deep discharge cycle durability. However, Ni-MH 

batteries has similar self-discharge rate as Ni-Cd batteries [76]. 

Lead-acid batteries are the oldest but still popular rechargeable batteries. This battery technology 

uses lead and lead dioxide as electrodes and sulphuric acid as electrolyte [77]. Lead-acid batteries 

have deep discharge cycle durability and high discharge rates. Compared to Nickel batteries they 

have lower self-discharge rate. However, the energy densities in these batteries are not high. Also, 

lead is a toxic for both human body and environment, lead-acid batteries need to be recycled 

properly [78].      

Nowadays, most portable devices use lithium-ion batteries. Lithium-ion batteries have highest 

amount of energy densities among the rechargeable batteries [77]. They are also capable of deep 

discharge and high discharge rate, with a slow self-discharge rate. Also, there is no danger of 

leaking in these batteries due to the fact that there is no liquid electrolyte involvement. However, 

lithium-ion batteries are expensive compared to lead acid batteries.      

3.4 Energy Storage System 

 

There are various types of energy storage systems including battery, compressed air, flywheel, 

super-capacitor, fuel cell, pumped hydro etc. Each of them has their own advantages and 

disadvantages. 

Pumped hydro is the oldest form of energy storage. It consists of two reservoirs located in 

different height, a pump, a turbine, a motor and a generator. The water is released from the higher 
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one through a turbine to collect energy [79]. A Flywheel is a method of storing mechanical 

kinetic energy. It uses a high accelerated flywheel to store energy and the flywheel is decelerated 

to discharge energy [80]. Compressed air uses air pressure to store energy. The access energy can 

be stored as compressed air and can be released to generator when the load demand is high [81].  

A capacitor is an electrical device that store energy in an electric field between a pair of 

conductors. Super capacitor works in a similar way, but it has a higher energy density. Fuel cell is 

another technology that gains popularity due to its environment friendliness. It converts the 

chemical energy in the fuel to electric current. It doesn‘t need to be recharged as it will only 

supply electric energy in the presence of active fuel supply [82]. Batteries are the most widely 

used form of energy storage.  Batteries are capable of converting chemical and electrical energy 

to each other by chemical reaction [77]. The oxidation and reduction reactions in the two 

electrodes of battery lead to the current through the external circuit when discharging to provide 

energy.  

The proposed energy storage system (ESS) consists of a lead acid battery and a bidirectional DC-

DC buck-boost converter connected at the DC-link of the hybrid system.  The role of this 

converter is to maintain the DC-link voltage constant despite the power changes in the sources 

and the load. The DC-link voltage is controlled in the ESS through a PI control cascade strategy. 

3.4.1 DC-DC Buck-Boost Converter 

 

The main components in a buck-boost converter are much the same as in the buck and boost 

types, but they are configured in a different way. The adopted bidirectional DC/DC buck-boost 

converter is able to transfer energy between its two ports, supporting both positive and negative 

currents [83]. Fig. 10 shows the bidirectional boost-buck converter used to decrease the voltage 

from input Vbat, i.e. storage device, to the DC bus voltage level VDC. Such a converter also 

supports the inverse power flow in boost operation mode from VDC  to Vbat. It is noted that d1 and 



33 
 

d2 IGBTs activation are complementary to avoid battery short-circuits: in boost mode the d1 

IGBT is the independent one and d2 is activated by a complementary signal, while in buck mode 

the d2 IGBT is the independent one and d1 is activated by a complementary signal. The voltage 

conversion ratio of a non-inverting buck-boost converter can be expressed as (18) [84] 

1

out

in

V D

V D



                                                                (18) 

Where, D is the duty cycle. Vin and Vout are the battery voltage and dc-link voltage respectively. 

The bidirectional converter is controlled by means of a 10 kHz PWM (Pulse Width Modulation). 

Depending on VDC , the controller drives d1 and d2 IGBTs by means of a PI controller.  

 

 

 

 

Figure 10 Buck-Boost Converter 

3.4.2 DC-Link Voltage Control 

 

Bi-directional converter is used to charge and discharge the battery according to power generation 

and load demand. This control is also necessary to keep dc link voltage constant. When the dc 

link voltage is greater than reference voltage it will charge the battery. Again, when the dc link 

voltage is less than the reference voltage it will discharge to the load. Fig. 11 shows the schematic 

of the controller. 

The controller is designed with two PI controllers. The error between the reference DC-link 

voltage and actual DC-link voltage is fed to PI which generates reference battery current signal. 
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The outer PI controller maintains a fixed DC-Link voltage, while the inner PI controller is used to 

charge and discharge the battery according to generated power. 

 

 

 

 

Figure 11 ESS and control structure 

 

3.4.3 Energy Management System Algorithm 

 

The objective of energy management system is to help maintain the power balance of the 

hybrid system. In order to optimize the battery‘s charge and discharge state during the energy 

conversion and increase its life time, the following conditions must be satisfied [85] 

SOCmin ≤ SOC ≤ SOCmax                                                     (19) 

In case when the battery is fully charged, the excess power can be dumped. This case has not 

been studied due to limited resources of the current experimental system (no availability of a 

dump load with automatic switches); however, it can be added to the ESS algorithm in future 

work.  As the output load is resistive its power can be maintained by maintaining DC-Link 

voltage via the DC-Link voltage controller mentioned above. If the generated power is greater 

than the demand DC-Link voltage goes up. So battery is charged with excess power and load 

power remains constant. On the other hand, if the generated power is less than the demand DC-

Link voltage goes down. So battery discharges required power to the load and load power 

+ 

_ 

Σ PI 
V*DC I*bat + 

_ 

Σ PI PWM 

Imax 

_ 

+ 

+ 

_ 
Vbat VDC 

Ibat 

d1 

d2 

Imin 



35 
 

remains constant. The energy management of the renewable sources, the battery and the load 

demand is illustrated in the flowchart of Fig. 12. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Energy management flowchart 

3.5 Conclusion 

 

Energy management system is an essential part of a hybrid renewable energy system. This 

chapter presents an energy management strategy to improve the reliability of hybrid operation. 

The components and control strategies are also discussed in this chapter. 
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Chapter 4 

Rapid Control Prototyping 
 

4.1 Introduction 

 

Since its introduction, real-time simulation has gained popularity among engineers and 

researchers. Real time simulation is defined as a computer model of physical system that runs at 

the same rate as the actual physical system [86]. That brings benefits like fault detection at an 

early stage, increased productivity, reusability of the simulator and cost minimization. 

Real-time simulation can be divided broadly in three types [87],[88]. 

1. Rapid control prototyping (RCP) 

2. Hardware-in-Loop (HIL) 

3. Pure Simulation (PS) 

In rapid control prototyping application, a real-time simulator implements a plant controller 

model and connects to a physical system via input and output ports of the simulator. On the other 

hand, HIL can be used to test real controllers connected to simulated plant model. One advantage 

of HIL is the low cost of simulated plant compared to real plant in RCP.  Also, HIL helps to test a 

system with low cost and without risk. In PS application, a real-time simulator simulates both the 

controller model and the plant model [87],[88].  A depiction of this fact is shown in fig. 13.  
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The RCP kit includes hardware, software and accessories necessary to design and tests different 

controllers. By using OPAL-RT‘s powerful real-time simulation tools along with Festo Didactic‘s 

(formerly known as Lab-Volt) hardware, it is possible to design, troubleshoot and implement 

simple to complex real-world control strategies. The RCP tool used in this study is RCP-

EC200W. 

 

Figure 13 Application categories of Real Time Simulation System 

4.2 RT-Lab Overview 

 

The software used in this research work is RT-LAB version: v10.5.7.344. RT-LAB is a 

distributed real-time platform that enables engineers and researchers to run Simulink dynamic 

models at real-time with hardware-in-the-loop (HIL), at low cost, high accuracy and a very short 

time. Its scalability allows the developer to add computing power where and when it is needed. It 

is flexible enough to be applied to the most complex simulation and control problem, whether it is 

a real-time hardware-in-the-Loop application or for speeding up model execution, control and test 

[89]. The simulator used in this research is OP5600 real-time digital simulator. 
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4.3 Hardware & Software Details 

 

4.3.1 OP5600 Real Time Simulator 

 

The OP5600 is the core of RCP-EC200W system used in this research work. It is a complete 

simulation system comprising a powerful computer, a flexible high-speed front-end processor and 

a signal conditioning stage. With its multiple parallel cores, the OP5600 has the capacity to run, 

in real-time, elaborated Matlab models that can represent complex physical system, its associated 

controllers or both [90]. It‘s comprehensive set of digital and analog IO‘s enable‘s OP5600 

interface to real world systems. 

The technical benefits of this system are enhanced by OPAL-RT‘s software and the OP8660 

signal conditioning module. The front panel of the OP5600 gives access through RJ45 connectors 

to a large array of digital and analog IO‘s. Signals coming from the RJ45 connectors can be 

routed into mini-BNC outputs (up to 16 channels) that can be monitored by oscilloscopes. For the 

most part, even advanced users of the RCP-EC200W system will have access to all the OP5600‘s 

IO‘s they may need through the OP8660 module with the added feature of having high voltage 

and current conditioning. The OP5600 easily connects to the 8660 through clearly identified 

DB37 connectors located on its back panel [90],[91].  The front view of OP5600 simulator is 

shown in fig. 14. 
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Figure 14 Front view of OP5600 Real-Time Simulator 

4.3.2 OP8660 Controller and data Acquisition Interface 

 

The OP8660 controller and data acquisition interface is developed to enhance the usability of 

OP5600 system by providing multiple conditioned IO channels specifically tailored for power 

electronics and power systems applications. The OP8660 simplifies the connectivity between a 

virtual environment (real-time simulator) and real experimental systems by providing a secure, 

robust and easy to use interface. 

The main feature of OP8660 is its high voltage and current probes. It can also output the firing 

pulses to control two IGBT inverter modules and can read two ABZ position encoders. Finally 

wide arrays of digital and analog IO‘s are available for the users [90],[91]. 

4.3.3 OPAL-RT’s RT-LAB Software 

 

RT-LAB represents a complete software environment that integrates OPAL-RT‘s OP5600 

simulator with the powerful graphical and model-based capabilities of Matlab‘s Simulink. The 

process of having a Simulink model running in the OP5600 simulator is very illustrative of the 
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functionality and capacities of the RT-LAB software. This process can be summarized in the 

following sequence: 

1.  A model is created in Simulink 

2. Basic formatting and separation operations are carried out on the model to create sub-systems 

that suit RT-LAB‘s manipulation. 

3. RT-LAB‘s proprietary Simulink blocks are added to the model to allow communication among 

model‘s sub-systems and between the model and the IO channels. 

4. The model is compiled and the resulting C code is loaded into the real time simulator. 

5. Once the model is running in the real time simulator a Simulink-based interface (i.e. console) is 

created to give the user access in real time to the signals and parameters within the model. 

At any time while the model is running RT-LAB allows: fully configuring the data acquisition 

properties; modifying parameters of the system; monitoring the real time performance of the 

simulator etc. [90],[91]. A more step by step procedure can be found in Appendix B. 
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4.4 RT-Lab Modeling for Real Time Monitoring 

 

The real time model of hybrid wind solar system with battery storage is shown in Fig. 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 Real time system for the HIL hybrid energy with storage system 

Any Simulink model can be implemented in RT-LAB environment by performing the following 

steps. The block diagram of the Simulink model must be modified by regrouping the model into 

subsystems and inserting OpComm blocks. In RT-LAB, all the subsystems must be named with a 

prefix identifying their function. The prefixes are console subsystem (SC_) and master subsystem 

(SM_). For console subsystem (SC_), there is at most one OpComm in each real-time simulated 
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model. It contains all user interface blocks, such as scopes, displays, switches and gains, and this 

subsystem will run asynchronously from the other subsystems. Each master subsystem in RT 

LAB is represented by a core to perform their processes in efficient and fast way. In the RT-LAB 

model, there is always one master subsystem in each model. Master subsystem (SM_) contains all 

the computational elements of the model, the mathematical operations, the input and output 

blocks, and the signal generators. After grouping the model, OpComm blocks must be added to 

enable and save communication setup data. All inputs of subsystems must first go to OpComm 

block before being used. The subsystems of the model in are shown in figure 16. 

 

 

 

 

 

 

Figure 16 Model Subsystems in RT-Lab 

The Simulink model is first compiled in RT-LAB. Then it is loaded in OP5600 real time 

simulator for master subsystem. Finally all the subsystems are executed by OP5600 simulator. 
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4.5 Conclusion 

 

This chapter provides an overview of rapid control prototyping system RCP-EC200W.  This 

system consists of OP5600 Real Time Simulator, OP8660 Controller and data acquisition 

interface and RT-LAB software. A description of how to execute the model in RT-LAB is also 

provided. 
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Chapter 5  

Experimentation & Results 

 

5.1 Introduction 

 

Experimental results of proposed laboratory scale hybrid wind solar energy system with 

energy storage system are detailed in this chapter. Apart from the renewable sources, this hybrid 

system consists of AC load, battery storage and control system for operation and monitoring. 

Power electronics converters are used to allow controlling various devices in the hybrid system 

such as maximum power point tracking (MPPT) from the renewable, DC-bus voltage and load 

voltage/current regulation to increase the system‘s efficiency. In order to operate the system as a 

sustainable energy system, battery storage is incorporated and an energy management system is 

developed. 

5.2 Experimental Setup 

 

 The experimental setup is shown in Fig. 17. It consists of four-quadrant dynamometer which 

serves as wind turbine emulator, coupled with a permanent magnet synchronous generator 

(PMSG), a commercial solar panel, industrial lamps for varying the irradiation, a lead acid 

battery, power electronics converters, an encoder for generator speed measurement, inductive-

capacitive filter, a low power resistive load, a data acquisition interface (OP8660) with 

current/voltage measurement inputs, 6-pulse inverter outputs and encoder input, and the Opal-RT 

real-time simulator (OP5600). Opal-RT‘s real-time simulator has an Intel Xeon QuadCore 2.40 

GHz processor which makes it a powerful tool for rapid control prototyping and Hardware-in-
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Loop applications [92]. The control system is developed using MATLAB/Simulink. Then it is 

compiled and built in RT-LAB. Finally the model is executed in real time using Opal-RT digital 

simulator. The connection between all the components is shown in Fig. 18. The parameters of the 

equipment‘s used in this experiment can be found in the appendix. 

 

Figure 17 Experimental setup of the laboratory scale hybrid wind solar system with storage 
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Figure 18 Hardware connections of the experimental set-up 

5.3 Methodology 

 

An experimental setup shown as Fig. 18 is used to verify the proposed controllers. Four 

converters are used to control the system. The converter adjacent to PMSG controls the speed of 

PMSG, thus keeping the PMSG safe. The converter connected to solar panel implements MPPT. 

Energy management system is implemented using the converter attached to battery. Finally an 

inverter controls the voltage and frequency of the output load. The controllers are developed in 

the previous chapters. The controllers are implemented in MATLAB/Simulink. Then build and 

compiled using RT-LAB software. Compiled C codes are loaded in the OP5600 real time 

simulator. A detailed explanation of how to compile and load the Simulink model using RT-LAB 

can be found in appendix B. The OP5600 real time simulator interacts with the Festo (LabVolt) 

modules using OP8660 data acquisition interface. This data acquisition interface sends the 
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controller generated PWM‘s in OP5600 simulator to the real converters and inverter, thus 

controlling the overall system. 

5.4 Limitations 

 

Due to the system constraints there are some limitations in the developed hybrid energy system. 

We didn‘t consider the case of battery over charge. This problem could be solved using a 

dumping load. But as there is no dump load with automatic switches available in the experimental 

modules, this case is not considered. Also, there are some power generation mismatches in the 

system. For example, 260 W solar panel outputs 8-10 W power. The reason behind that is the 

irradiation and load. The solar panel is tested in the lab environment. The current generated from 

the panel is low compared to the panel specification. The output power will greatly increase if the 

panel is mounted outside. Also, the generator power is kept low due to the safe operation of wind 

emulator, which in turns reduces the DC-Link voltage and the output voltage.    

There are some abrupt changes in the experimental output due to the sudden change of power in 

the sources and the perturbation from the converters. Other sources of experimental error include 

the oscillation due to the gates‘ switching and manual starting and stopping of the hardware 

modules. 

5.5 Experimental Results 

 

Several experimental cases are considered for validating the proposed control system of 

hybrid renewable energy system based on wind and solar energy conversion system with battery 

storage. Experiments were carried out based on wind turbine speed, solar irradiation, variable 

load and low power conditions. Four scenarios are considered in this study. 

1. System performance under variable wind power 



48 
 

2. System performance under variable solar PV power 

3. System performance under low renewable power 

4. System performance under variable load power demand 

In the first scenario we considered variable wind power. Wind power is unpredictable in 

nature. To make a reliable energy system, the overall system needs to be stable in case of variable 

wind speed. A variable solar energy scenario is considered next. Solar energy depends on the 

irradiation. This scenario shows that the developed system performs well in case of variable solar 

irradiation. The third scenario deals with low renewable energy. There may be times when there 

is insufficient power generation from the renewable sources. Battery should discharge sufficient 

power to the loads during this time. Load demand varies throughout the day. Last scenario 

considers the effect of changing load demand in the system. All these scenarios verify the 

reliability of the developed hybrid system. 

These scenarios are implemented using rapid control prototyping system. The results from 

these scenarios could be verified using a detailed mathematical modeling. As the purpose of this 

research work is to create an experimental hybrid energy system, the mathematical verification is 

not considered here.  

5.5.1 System Performance under Variable Wind Power 

 

A random change in wind turbine-generator is used in this case as shown in fig. 19. Two 

lamps are turned on, which produces constant irradiation and PV current, as shown in Fig. 20. 

The objective is to supply a constant power to the load regardless of the produced power from all 

the sources. The powers at different locations in the system are depicted in Fig. 21. It can be 

observed that the power generated from the wind energy conversion system follows the generator 
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speed and the wind speed. As the irradiation is constant solar panel generates a constant power. 

The battery is charged with a power which follows the wind turbine power in order to maintain 

the required power at the load. The DC-bus voltage, shown in Fig. 22, is almost constant with 

small fluctuations around the voltage reference due to the changes in the wind turbine power and 

the battery power. It can be seen in Fig. 21 wind power is 14W at 7 seconds into the simulation. 

This along with solar power creates excess power in the system which charges the battery. Fig. 21 

also shows that highest wind power generated was 26W at 20s. Battery also charged to 10W in 

this time period. At t=35s, where the load power (Fig. 21.f) and the DC-bus voltage (Fig. 22) 

slightly decreases due to the PV power change and the perturbation from the inverter (oscillation 

due to the gates‘ switching), but rapidly reinstated to the appropriate values by the proposed 

controller, which proves its robustness to unknown perturbations. The battery current generated is 

shown in Fig. 23, follows the pattern of the wind power for an adequate charge of the battery. 

Overall, the voltage and the current at the load are maintained constant, as shown in Fig. 24 and 

25. Current remains within the limited region, as shown in Fig. 26, to keep constant load power 

despite the sudden changes in the wind turbine power generation and the battery charge. The 

frequency at the load side is constant as shown in Fig. 27. Table I summarizes above 

observations. From these observations it is prominent that the developed system can handle the 

variations in the wind power generation and give sufficient power to the load.  
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TABLE I 
IMPORTANT OBSERVATIONS (VARIABLE WIND ENERGY) 

Observation 

No. 

Time (s) DC-Link 

Voltage (V) 

Load 

Demand 

(W) 

Wind 

Power (W) 

Solar 

Power (W) 

Bat Power 

(W) 

1 7 20 5 14 5 2 (charge) 

2 20 20 5 26 5 10 (charge) 

3 36 20 5 7 5 0 

 

 

          

       Figure 19 Wind turbine-generator speed                          Figure 20 PV module current  
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Figure 21 Power at different locations in the system (variable wind power) 
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Figure 22 DC-bus voltage                                                    Figure 23 Battery current 

              

Figure 24 Load Voltage (zoom)                                              Figure 25 Load Current (zoom) 

                

 Figure 26 Load current                                                                    Figure 27 Frequency 
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5.5.2 System Performance under Variable Solar PV Power 

 

In this case, different numbers of lamps are used to vary the irradiation at different time 

instants. The wind turbine is running at a constant speed which produced a constant power as 

shown in Fig. 28.a. The PV panel power is varied based on the number of lamps turned on. This 

fact is depicted in Fig. 28.c. This change in irradiations impacts the PV current as shown in Fig. 

29. As the generated power is insufficient, battery discharged power following the variation of the 

PV panel power to provide a constant power at the load shown in Fig. 28.d. But when power 

generation from the PV starts to increase, battery charges power. The battery current is shown in 

Fig. 30, which followed the PV panel power changes to maintain adequate load power. The DC-

bus voltage is constant, as shown in Fig. 31, despite the changes at the solar panel. The solar 

panel generates highest amount of 8W power at time instants 6s and 35s. In this period of time, 

the hybrid system generates more power than the load demand. This excess power of 6W goes to 

the battery. At 20s solar power reduces to 2W. But the overall power generation from the hybrid 

system is just enough to fulfill the load demand. So the battery neither charge nor discharge at 

that time. After 23s solar power starts to increase, thus increasing the overall power generation 

from the hybrid system. It can be seen that battery is charged with excess power in this period of 

time. There are some interesting observations after the time instants t=15s and t=25s, where the 

load power (Fig. 28.f) and the DC-bus voltage (Fig. 31) slightly decreased and increased 

respectively due to the PV power change and the perturbation from the inverter (oscillation due to 

the gates‘ switching), but rapidly reinstated to the appropriate values by the proposed controller. 

The load voltage is well regulated and maintained within a limited region as shown in Fig. 32. 

These results verify that the developed system can reliably supply power to the load in case of 

changing irradiation. Table II summarizes above observations. 
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TABLE II 
IMPORTANT OBSERVATIONS (VARIABLE SOLAR ENERGY) 

Observation 

No. 

Time (s) DC-Link 

Voltage (V) 

Load 

Demand 

(W) 

Wind 

Power (W) 

Solar 

Power (W) 

Bat Power 

(W) 

1 7 20 5 14 8 6 (charge) 

2 20 20 5 14 2 0 

3 35 20 5 14 8 5 (charge) 

 

 

 

Figure 28 Power at different locations in the system (variable solar power) 
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Figure 29 PV module current                                         Figure 30 Battery current            

         

Figure 31 DC bus voltage                                               Figure 32 Load voltage (zoom) 

 

5.5.3 System Performance under Low Renewable Power 

 

In this case, the behavior of the proposed system is investigated under low renewable power of 

the sources. The wind turbine-geneartor speed reaches its minimum value at t= 15s, as shown in 

Fig. 33, and the PV panel power generation decreases by turning OFF the lamps one by one as 

can be observed in its current shown in Fig. 34. Due to these conditions, the total power from the 

renewable sources drops to zero, after t=15 s for the wind turbine and t=30s for the PV panel, as 
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shown in Fig. 35.a and 35.c respectively. The energy management and the control system reacts 

to fulfill the load demand. Before t=10 s, there is enough power from the renewable sources to 

maintain the required power at the load and the battery is at a state of charging with the excess 

power as shown in Fig. 35. d. After t=10 s, one small lamp is OFF and the PV power slightly 

drops with a drop in the load power as depicted in Fig. 35.c and 35.f respectively. The DC-bus 

voltage which is shown in Fig. 36, then, rapidily restored to their approriate values by stoping the 

battery charge process. Fig. 35.d shows the battery power in this whole process. After t=30s, it is 

obvious that there is no sufficient power form the renewable sources as can be seen in Fig. 35. 

But the current command generated by the power management controller perform rapid 

restoration in both load power and DC-bus voltage. This is done via discharging the battery by 

injecting the required current shown in Fig. 37. These results show that the developed energy 

management and control system is very reliable in case there is no power generation from the 

renewable sources. Also transition between charge-discharge states under different conditions are 

done smoothly. Table III summarizes above observations. 

TABLE III 
IMPORTANT OBSERVATIONS (LOW RENEWABLE ENERGY) 

Observation 

No. 

Time (s) DC-Link 

Voltage 

(V) 

Load 

Demand 

(W) 

Wind 

Power (W) 

Solar Power 

(W) 

Bat Power 

(W) 

1 7 20 5 8 8 2 (charge) 

2 15 20 5 0 8 0 

3 35 20 5 0 0 8 

(discharge) 
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Figure 33 Wind turbine-generator speed                        Figure 34 PV module current 

 

 

Figure 35 Power at different locations in the system (low renewable power) 
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Figure 36 DC-bus voltage                                            Figure 37 Battery current 

5.5.4 System Performance under Variable Load Power Demand 

 

Finally, in this case the wind turbine and the PV panel are running at constant speed and 

irradiation respectively to produce constant power.  The load power demand is changed by 

varying the load resistance at different instants. It can be observed from Fig. 38, that the battery 

charged with more power with the decrease of the load power demand. At 10s power generation 

from the wind and solar are 18W and 8W respectively. The resistive loads need 5W. So the 

excess 7W power goes to the battery.  At 20s load demand is reduced to 4W keeping the power 

generation from the renewable sources same as before. As we can see in Fig. 38 battery absorbs 

excess 8W power. The DC-bus voltage is regulated to be constant, as shown in Fig. 39, and it also 

regulate the battery current, shown in Fig. 40, which follows the behavior of the load power in 

order to charge the battery with sufficient power. After t=35s, the battery current (Fig. 40) 

slightly drops due to the perturbation from the converter (oscillation due to the gates‘ switching), 

but rapidly reinstated to the appropriate values by the proposed controller. This scenario shows 

that battery controller can keep the power balance in the hybrid system. It also proves that battery 

can absorb excess power during variation in the load demand. Table IV summarizes above 

observations. 
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TABLE IV 
IMPORTANT OBSERVATIONS (VARIABLE LOAD DEMAND) 

Observation 

No. 

Time (s) DC-Link 

Voltage 

(V) 

Load 

Demand 

(W) 

Wind 

Power (W) 

Solar 

Power (W) 

Bat Power 

(W) 

1 10 20 5 18 8 7 (charge) 

2 20 20 4 18 8 8 (charge) 

3 36 20 2.5 18 8 10 (charge) 

 

 

 

 

Figure 38 Power at different locations in the system (variable load power) 
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Figure 39 DC bus voltage                                                 Figure 40 Battery current 

5.6 Conclusion 

 

In this chapter the experimental results for the proposed control system is discussed. The 

experimental results show that the power is smoothly transferred to the battery when sources and 

load conditions change. A stable DC-bus voltage is guaranteed during the changing conditions 

and the power at the load is also maintained. The result also shows that the hybrid system can 

provide power to the loads reliably in different conditions. 
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Chapter 6 

Conclusion 
 

A hybrid wind-solar energy system can provide both environment friendly and cost effective 

approach to generate energy. This will help remote communities where grid connected supply is 

unavailable. A hybrid renewable energy system (HRES), based on wind and solar energy sources 

with battery storage, and control schemes are detailed in this research work. Energy management 

and control strategies are developed to harness maximum power from the renewable sources and 

to coordinate the power exchange between the sources, the battery and the load. The experimental 

results show that the power is smoothly transferred to the battery when sources and load 

conditions change. Also, a stable DC-bus voltage is guaranteed during the changing conditions 

and the power at the load is maintained. The proposed experimental HRES can be used as an 

education and research tool to understand and develop various configurations of hybrid systems 

and advanced control applications. 

6.1 Contribution 

 

The main contributions of this research work are summarized below: 

1)  Development of an experimental laboratory model for wind energy conversion system 

(WECS), solar energy conversion system and apply maximum power point tracking algorithm to 

extract maximum power.  

2) Development of an experimental laboratory model for standalone wind-solar energy system 

with battery storage. 



62 
 

3) Development of a battery charging-discharging system to use the battery as a back-up power in 

this hybrid system. 

4) Development of an energy management system to share the power generated by the hybrid 

system, to increase the system reliability. 

6.2 Recommendations for future work 

 

The controllers used in the proposed HRES are based on proportional-Integral (PI) control and 

vector control scheme. It is possible to improve the performance using advanced controllers such 

as fuzzy logic, neural network, predictive control etc. Also, the energy management in this 

research work is based on DC-Link voltage. It can be improved further by including different 

cases. Battery charging discharging can be improved using state of charge (SOC) in the control 

logic. Further, research can be conducted to improve the reliability and the power quality of the 

system. Depending on the utility size, it is possible to improve the energy management system by 

including more conditions and complex cases. Grid integration of such complex system would be 

very challenging and further research can be conducted in this area to improve the reliability and 

power quality. 
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Appendix 

A. Specifications 

 

TABLE V 
PARAMETERS OF THE HRES 

Load (W) 5 

DC-Link Voltage (V) 20 

Frequency (Hz) 60 

 

TABLE VI 
PARAMETERS OF THE EMULATED WIND TURBINE 

Number of blades 3 

Air density (kg/m
2
) 1.225 

Diameter (m) 1.15 

Pulley ratio  24:12 

Moment of inertia-Jr(kg·m
2
) 0.028 

 

TABLE VII 

SPECIFICATIONS OF CS6P-260M PV MODULE UNDER STANDARD TEST CONDITION 

Maximum Power (W) 260 

Open Circuit Voltage (V) 37.8 

Maximum Power Point Voltage (V) 30.7 

Short Circuit Current (A) 8.99 

Maximum Power Point Current (A) 8.48 
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TABLE VIII 
PARAMETERS OF THE PMSG 

Rated power (W) 260 

Rated current (A) 3 

Stator resistance-Rs (Ω) 1.3 

Stator d-axis inductance- Ld (mH) 1.5 

Stator q-axis inductance- Lq(mH) 1.5 

Flux linkage-
v (Wb) 0.027 

Number of pole pairs- p 3 

Moment of inertia-Jg(kg·m
2
) 1.7×10

-6
 

Coefficient of friction-Kg (Nm·s/rad) 0.314×10
-6

 

 

 

TABLE IX  

SPECIFICATIONS OF LEAD ACID BATTERY 

Type VRLA 

Voltage (A) 48 

Capacity (Ah) 10 

Maximum Charge Current (A) 4 

Maximum Discharge Current (A) 7 
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B. Steps required for executing Simulink model in RT-Lab 

 

The following steps are required to start simulation using RT-Lab 

1. Connect the OP5600 simulator to the OP8660 as shown in section 3.1 in the hardware user 

guide of High-Performance Real-Time Simulation and HIL Test Systems [93]. 

2. Connect the OP5600 simulator with the host computer as shown in section 3.2 in the 

hardware user guide. 

3. Turn ON the OP5600 Real-time Digital Simulator. 

4. Open RT-LAB in the host computer. 

5. Make sure the ‗Targets‘ in ‗Project Explorer‘ window is connected with LCSM. To update the 

connection status, right click on the target LCSM and click Refresh. In case of failure to 

connect, check the blue LAN/Network cable. 

6.  Create a new RT-LAB Project or access an existing RT-LAB Project (i.e. TEST). 

7. Minimize RT-LAB, copy the required basic files, create a new folder (i.e. Control) in the 

following directory and paste all the files;  

Local Disk (C:) > Users> Professor Adel > workspaces > TEST > models > Control 

The folder must contain the Simulink model (.mdl) file named HRES.mdl, one (.bin) file and 

one (.conf) file. Both .bin and .conf files are required to define how the data acquisition 

read/write channels are assigned. Rename the file if required. 

8. To import Simulink model, double click on the project, right click on Models, go to Add 

select Existing Model. From the window click Import and select the file from the same 

directory where the model file (.mdl) was pasted before.  

Local Disk (C:) > Users> Professor Adel > workspaces > TEST1 > models > Control 

9. Open the RT-LAB window and select the imported file on the project.  
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10. To apply new control algorithm and modify/update the model, right click on the Simulink 

model, go to Edit with and select Matlab R2011B (32bit) 7.13. A new Matlab/Simulink 

window will appear to apply different control schemes and update the model as desired. 

11. Perform the connection depicted in Fig.18 between the OP8660 signal conditioning module 

and Lab-Volt‘s hardware. Make sure that the plugs of the DB9-8245 encoder cable are 

correctly connected to their corresponding encoder outputs in the front panel of the 8245 

module. 

12. Make sure that the selected converters and the PMSM module are fed through its 24V DC 

input, as shown in section 3.4.2 (hardware user guide). Turn ON the selected inverter.  

13. Turn ON the power input for the 8960-20 Dynamometer and make sure the USB cable is 

connected with the host computer. 

14. Open LVDAC-EMS software from the start menu. Select the network voltage and frequency, 

120V-60Hz, and then click Ok. 

15. A new LVDAC-EMS window will appear. From the Tool menu select Four-Quadrant 

Dynamometer/Power Supply. 

16. To run the 8960 Dynamometer as an Emulator, modification is required in the Function 

Settings, change the Function to Wind-Turbine Emulator and change Function Setting as per 

Fig. 41.  
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Figure 41 Function selection and settings in LVDAC-EMS window 

17. Save the model after modifying/updating, check the Development tab in RT-LAB and make 

sure that the Target Platform is set to Redhat for the selected Simulink model. 

18. Check the Execution tab and make sure that the Real-time Simulation Mode is set to 

Hardware Synchronized. 

19. To compile the simulation model click on Build, make sure the proper Simulink model is 

selected for compilation. 

20. Click on the Assignation tab and make sure that the Extra High Performance (XHP) mode in 

ON. Check the box to turn ON the XHP mode. 

21. To upload the model in the real-time simulator, click Load. Errors may appear while loading, 

look for the error description in the Display tab and load again after correcting them. 
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22. If the model is successfully loaded a monitoring console will appear automatically in a new 

Matlab/Simulink window. The console can be identified by a yellow note titled as 

‘Automatically generated by RT-LAB during compilation’.  

23. Click Execute to run the model. 

24. From the LVDAC console use slider to run the system with variable speed. The user console 

will allow user to modify the references of the machine during the operation. 

  



69 
 

References 
 

[1] G. Legros and World Health Organization, The Energy Access Situation in Developing 

Countries: A Review Focusing on the Least Developed Countries and Sub-Saharan Africa. World 

Health Organization, 2009. 

[2] ―Natural Resources Canada,‖ [Online]. Available: http://www.nrcan.gc.ca/energy/electricity-

infrastructure/about-electricity/7359.  

[3] ―Natural Resources Canada,‖ [Online]. Available: http://www.nrcan.gc.ca/energy/electricity-

infrastructure/about-electricity/7295.  

[4] J. Royer, "Status of Remote/Off-Grid Communities in Canada," Natural Resources 

Canada,[online].Available: Http://www.Nrcan.Gc.ca/energy/publications/sciences-

technology/renewable/smart-grid/11916, 2011. 

[5] National Energy Board, "Energy supply and demand projections to 2040 - energy market 

assessmen," 2016. 

[6] ―Wind Energy TechnoCentre,‖ [Online]. Available: 

https://www.eolien.qc.ca/en/infrastructures-en/microgrid-wind-diesel.html.  

[7] Y. Chen, C. Cheng and H. Wu, "Grid-connected hybrid PV/wind power generation system 

with improved DC bus voltage regulation strategy," in Applied Power Electronics Conference 

and Exposition, 2006. APEC'06. Twenty-First Annual IEEE, 2006, pp. 7 pp. 

[8] X. Li, D. Zhang, Y. Li and Y. Xu, "Multi-string photovoltaic grid-connected inverter based on 

alternate single-phase PWM control," in Power and Energy Engineering Conference (APPEEC), 

2012 Asia-Pacific, 2012, pp. 1-4. 

[9] F. Prutianu and V. Popescu, "Control of single phase inverters for wind energy conversion 

using PWM techniques," in Electronics and Telecommunications (ISETC), 2010 9th International 

Symposium on, 2010, pp. 95-98. 

[10] M. Almi and M. Marrouf, "Connection of photovoltaic generator to domestic three phase 

electrical network supply trough voltage source inverter," in Proceedings of the International 

Symposium on Environment Friendly Energies in Electrical Applications (EFEEA), 2010, pp. 2-

4. 

[11] E. Milton Filho, J. R. Gazoli and J. S. Alfeu Filho, "A control method for voltage source 

inverter without dc link capacitor," in Power Electronics Specialists Conference, 2008. PESC 

2008. IEEE, 2008, pp. 4432-4437. 



70 
 

[12] M. Dali, J. Belhadj and X. Roboam, "Hybrid solar–wind system with battery storage 

operating in grid-connected and standalone mode: control and energy management–experimental 

investigation," Energy, vol. 35, pp. 2587-2595, 2010. 

[13] N. A. Ahmed, A. Al-Othman and M. AlRashidi, "Development of an efficient utility 

interactive combined wind/photovoltaic/fuel cell power system with MPPT and DC bus voltage 

regulation," Electr. Power Syst. Res., vol. 81, pp. 1096-1106, 2011. 

[14] D. Das, R. Esmaili, L. Xu and D. Nichols, "An optimal design of a grid connected hybrid 

wind/photovoltaic/fuel cell system for distributed energy production," in Industrial Electronics 

Society, 2005. IECON 2005. 31st Annual Conference of IEEE, 2005, pp. 6 pp. 

[15] R. Esmaili, L. Xu and D. Nichols, "A new control method of permanent magnet generator 

for maximum power tracking in wind turbine application," in Power Engineering Society General 

Meeting, 2005. IEEE, 2005, pp. 2090-2095. 

[16] D. Bo, Y. Li and Z. Zheng, "Energy management of hybrid DC and AC bus linked 

microgrid," in Power Electronics for Distributed Generation Systems (PEDG), 2010 2nd IEEE 

International Symposium on, 2010, pp. 713-716. 

[17] Z. Jiang and X. Yu, "Active power—Voltage control scheme for islanding operation of 

inverter-interfaced microgrids," in Power & Energy Society General Meeting, 2009. PES'09. 

IEEE, 2009, pp. 1-7. 

[18] T. Nie, Q. Wei and D. Shao, "A fuzzy and decoupled dq based inverter control strategy for 

microgrid in islanding operation," in Strategic Technology (IFOST), 2011 6th International 

Forum on, 2011, pp. 425-428. 

[19] Y. W. Li and C. Kao, "An accurate power control strategy for power-electronics-interfaced 

distributed generation units operating in a low-voltage multibus microgrid," Power Electronics, 

IEEE Transactions on, vol. 24, pp. 2977-2988, 2009. 

[20] J. M. Guerrero, J. Matas, D. Vicuna, L. García, M. Castilla and J. Miret, "Wireless-control 

strategy for parallel operation of distributed-generation inverters," Industrial Electronics, IEEE 

Transactions on, vol. 53, pp. 1461-1470, 2006. 

[21] J. Matas, M. Castilla, L. G. de Vicuña, J. Miret and J. C. Vasquez, "Virtual impedance loop 

for droop-controlled single-phase parallel inverters using a second-order general-integrator 

scheme," Power Electronics, IEEE Transactions on, vol. 25, pp. 2993-3002, 2010. 

[22] J. M. Guerrero, D. Vicuña, L. García, J. Matas, M. Castilla and J. Miret, "Output impedance 

design of parallel-connected UPS inverters with wireless load-sharing control," Industrial 

Electronics, IEEE Transactions on, vol. 52, pp. 1126-1135, 2005. 

[23] H. Li and Z. Chen, "Design optimization and site matching of direct-drive permanent magnet 

wind power generator systems," Renewable Energy, vol. 34, pp. 1175-1184, 2009. 



71 
 

[24] S. Liu, S. Li and L. He, "Direct-driven permanent magnet synchronous wind-power 

generating system with two three-level converters based on SVPWM control," Procedia 

Engineering, vol. 29, pp. 1191-1195, 2012. 

[25] J. S. Thongam, R. Beguenane, M. Tarbouchi, A. F. Okou, A. Merabet, I. Fofana and P. 

Bouchard, "A rotor speed estimation algorithm in variable speed permanent magnet synchronous 

generator wind energy conversion system," International Journal of Robust and Nonlinear 

Control, vol. 23, pp. 1880-1890, 2013. 

[26] C. Jauch, S. M. Islam, P. Sørensen and B. B. Jensen, "Design of a wind turbine pitch angle 

controller for power system stabilisation," Renewable Energy, vol. 32, pp. 2334-2349, 2007. 

[27] A. Haruni, M. Haque, A. Gargoom and M. Negnevitsky, "Control of a direct drive IPM 

synchronous generator based variable speed wind turbine with energy storage," in IECON 2010-

36th Annual Conference on IEEE Industrial Electronics Society, 2010, pp. 457-563. 

[28] A. Merabet, R. Beguenane, J. S. Thongam and I. Hussein, "Adaptive sliding mode speed 

control for wind turbine systems," in IECON 2011-37th Annual Conference on IEEE Industrial 

Electronics Society, 2011, pp. 2461-2466. 

[29] T. Esram and P. L. Chapman, "Comparison of photovoltaic array maximum power point 

tracking techniques," IEEE Transactions on Energy Conversion EC, vol. 22, pp. 439, 2007. 

[30] G. Carannante, C. Fraddanno, M. Pagano and L. Piegari, "Experimental performance of 

MPPT algorithm for photovoltaic sources subject to inhomogeneous insolation," Industrial 

Electronics, IEEE Transactions on, vol. 56, pp. 4374-4380, 2009. 

[31] H. Al-Atrash, I. Batarseh and K. Rustom, "Effect of measurement noise and bias on hill-

climbing MPPT algorithms," Aerospace and Electronic Systems, IEEE Transactions on, vol. 46, 

pp. 745-760, 2010. 

[32] R. A. Mastromauro, M. Liserre and A. Dell'Aquila, "Control issues in single-stage 

photovoltaic systems: MPPT, current and voltage control," Industrial Informatics, IEEE 

Transactions on, vol. 8, pp. 241-254, 2012. 

[33] A. K. Abdelsalam, A. M. Massoud, S. Ahmed and P. Enjeti, "High-performance adaptive 

perturb and observe MPPT technique for photovoltaic-based microgrids," Power Electronics, 

IEEE Transactions on, vol. 26, pp. 1010-1021, 2011. 

[34] D. Sera, R. Teodorescu, J. Hantschel and M. Knoll, "Optimized maximum power point 

tracker for fast changing environmental conditions," in Industrial Electronics, 2008. ISIE 2008. 

IEEE International Symposium on,2008, pp. 2401-2407. 

[35] B. N. Alajmi, K. H. Ahmed, S. J. Finney and B. W. Williams, "Fuzzy-logic-control approach 

of a modified hill-climbing method for maximum power point in microgrid standalone 

photovoltaic system," Power Electronics, IEEE Transactions on, vol. 26, pp. 1022-1030, 2011. 



72 
 

[36] W. Jwo, C. Tong and C. Chao, "Firmware implementation of an adaptive solar cell 

maximum power point tracking based on PSoC," in Photovoltaic Specialists Conference (PVSC), 

2010 35th IEEE, 2010, pp. 000407-000411. 

[37] S. Kebaili and A. Betka, "Design and simulation of stand alone photovoltaic 

systems," WSEAS Transactions on Power Systems, vol. 6, pp. 89-99, 2011. 

[38] M. A. Elgendy, B. Zahawi and D. J. Atkinson, "Assessment of the incremental conductance 

maximum power point tracking algorithm," Sustainable Energy, IEEE Transactions on, vol. 4, 

pp. 108-117, 2013. 

[39] B. Yu, G. Yu and Y. Kim, "Design and experimental results of improved dynamic MPPT 

performance by EN50530," in Telecommunications Energy Conference (INTELEC), 2011 IEEE 

33rd International, 2011, pp. 1-4. 

[40] A. Al Nabulsi and R. Dhaouadi, "Efficiency optimization of a DSP-based standalone PV 

system using fuzzy logic and dual-MPPT control," Industrial Informatics, IEEE Transactions 

on, vol. 8, pp. 573-584, 2012. 

[41] H. H. Lee, L. M. Phuong, P. Q. Dzung, N. T. D. Vu and L. D. Khoa, "The new maximum 

power point tracking algorithm using ANN-based solar PV systems," in TENCON 2010-2010 

IEEE Region 10 Conference, 2010, pp. 2179-2184. 

[42] B. Singh and G. K. Kasal, "Solid state voltage and frequency controller for a stand alone 

wind power generating system," Power Electronics, IEEE Transactions on, vol. 23, pp. 1170-

1177, 2008. 

[43] Y. Xue, L. Chang, S. B. Kjær, J. Bordonau and T. Shimizu, "Topologies of single-phase 

inverters for small distributed power generators: an overview," Power Electronics, IEEE 

Transactions on, vol. 19, pp. 1305-1314, 2004. 

[44] A. Roshan, R. Burgos, A. C. Baisden, F. Wang and D. Boroyevich, "A DQ frame controller 

for a full-bridge single phase inverter used in small distributed power generation systems," 

in Applied Power Electronics Conference, APEC 2007-Twenty Second Annual IEEE, 2007, pp. 

641-647. 

[45] D. N. Zmood and D. G. Holmes, "Stationary frame current regulation of PWM inverters with 

zero steady-state error," Power Electronics, IEEE Transactions on, vol. 18, pp. 814-822, 2003. 

[46] D. Dong, T. Thacker, R. Burgos, D. Boroyevich, F. Wang and B. Giewont, "Control design 

and experimental verification of a multi-function single-phase bidirectional PWM converter for 

renewable energy systems," inPower Electronics and Applications, 2009. EPE'09. 13th European 

Conference on, 2009, pp. 1-10. 

[47] R. Bojoi, L. R. Limongi, D. Roiu and A. Tenconi, "Enhanced power quality control strategy 

for single-phase inverters in distributed generation systems," Power Electronics, IEEE 

Transactions on, vol. 26, pp. 798-806, 2011. 



73 
 

[48] Y. Tzou, R. Ou, S. Jung and M. Chang, "High-performance programmable AC power source 

with low harmonic distortion using DSP-based repetitive control technique," Power Electronics, 

IEEE Transactions on, vol. 12, pp. 715-725, 1997. 

[49] N. Mendis, K. M. Muttaqi and S. Perera, "Management of battery-supercapacitor hybrid 

energy storage and synchronous condenser for isolated operation of PMSG based variable-speed 

wind turbine generating systems,"Smart Grid, IEEE Transactions on, vol. 5, pp. 944-953, 2014. 

[50] A. M. Gee, F. V. P. Robinson and R. W. Dunn, "Analysis of Battery Lifetime Extension in a 

Small-Scale Wind-Energy System Using Supercapacitors," IEEE Transactions on Energy 

Conversion, vol. 28, pp. 24-33, 2013. 

[51] Y. Zhang, Z. Jiang and X. Yu, "Control strategies for Battery/Supercapacitor hybrid energy 

storage systems," in Energy 2030 Conference, 2008. ENERGY 2008. IEEE, 2008, pp. 1-6. 

[52] C. Abbey and G. Joos, "Supercapacitor Energy Storage for Wind Energy 

Applications," IEEE Transactions on Industry Applications, vol. 43, pp. 769-776, 2007. 

[53] N. R. Tummuru, M. K. Mishra and S. Srinivas, "Dynamic Energy Management of Hybrid 

Energy Storage System With High-Gain PV Converter," IEEE Transactions on Energy 

Conversion, vol. 30, pp. 150-160, 2015. 

[54] H. Jou, Y. Chang, J. Wu and K. Wu, "Operation strategy for a lab-scale grid-connected 

photovoltaic generation system integrated with battery energy storage," Energy Conversion and 

Management, vol. 89, pp. 197-204, 1/1, 2015. 

[55] R. Sebastián and R. P. Alzola, "Simulation of an isolated Wind Diesel System with battery 

energy storage," Electr. Power Syst. Res., vol. 81, pp. 677-686, 2, 2011. 

[56] S. Sinha and S. S. Chandel, "Review of recent trends in optimization techniques for solar 

photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy 

Reviews, vol. 50, pp. 755-769, 10, 2015. 

[57] O. Anaya-Lara, N. Jenkins, J. Ekanayake, P. Cartwright and M. Hughes, Wind Energy 

Generation: Modelling and Control, John Wiley & Sons, 2009. 

[58] Turbine Emulator, LabVolt Series, 8968-30, Festo Didactic, 2015. [Online]. Available: 

https://www.labvolt.com/downloads/datasheet_50-8968-3_en.pdf 

[59] P. Sharma, W. Sulkowski and B. Hoff, "Dynamic stability study of an isolated wind-diesel 

hybrid power system with wind power generation using IG, PMIG and PMSG: A 

comparison," International Journal of Electrical Power & Energy Systems, vol. 53, pp. 857-866, 

12, 2013. 

[60] M. Chinchilla, S. Arnaltes and J. C. Burgos, "Control of permanent-magnet generators 

applied to variable-speed wind-energy systems connected to the grid," IEEE Transactions on 

Energy Conversion, vol. 21, pp. 130-135, 2006. 



74 
 

[61] Y. Yang, K. T. Mok, S. C. Tan and S. Y. . Hui, "Nonlinear Dynamic Power Tracking of 

Low-Power Wind Energy Conversion System," IEEE Transactions on Power Electronics, vol. 

30, pp. 5223-5236, 2015. 

[62] V. Rajasekaran, "Modeling, simulation and development of supervision control system for 

hybrid wind diesel system," 2013. 

[63] MathWorks Inc., ―Mathworks Documentation Center, Simpower Systems,‖ 2014. [Online]. 

Available : http://www.mathworks.com/help/physmod/sps/powersys/index.html. 

[64] T. Salmi, M. Bouzguenda, A. Gastli and A. Masmoudi, "Matlab/simulink based modeling of 

photovoltaic cell," International Journal of Renewable Energy Research (IJRER), 2012. 

[65] M. A. Islam, A. Merabet, R. Beguenane and H. Ibrahim, "Modeling solar photovoltaic cell 

and simulated performance analysis of a 250W PV module," in Electrical Power & Energy 

Conference (EPEC), 2013 IEEE, 2013, pp. 1-6. 

[66] D. P. Hohm and M. E. Ropp, "Comparative study of maximum power point tracking 

algorithms using an experimental, programmable, maximum power point tracking test bed," 

in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth 

IEEE, 2000, pp. 1699-1702. 

[67] V. Salas, E. Olías, A. Barrado and A. Lázaro, "Review of the maximum power point tracking 

algorithms for stand-alone photovoltaic systems," Solar Energy Mater. Solar Cells, vol. 90, pp. 

1555-1578, 7/6, 2006. 

[68] Y. Nakata, K. Fujiwara, M. Yoshida, J. Itoh and Y. Okazaki, "Output voltage control for 

PWM inverter with electric double layer capacitor as DC power supply," in Power Electronics 

Conference (IPEC), 2010 International,2010, pp. 3099-3104. 

[69] A. Meskani, A. Haddi and M. Becherif, "Modeling and simulation of a hybrid energy source 

based on solar energy and battery," Int J Hydrogen Energy, vol. 40, pp. 13702-13707, 10/19, 

2015. 

[70] J. Appelbaum and R. Weiss, "An electrical model of the lead-acid battery," 

in Telecommunications Energy Conference, 1982. INTELEC 1982. International, 1982, pp. 304-

307. 

[71] H. He, R. Xiong and J. Fan, "Evaluation of Lithium-Ion Battery Equivalent Circuit Models 

for State of Charge Estimation by an Experimental Approach," Energies, vol. 4, pp. 582-598, 

2011. 

[72] A. Ter-Gazarian, Energy Storage for Power Systems. IET, 2011. 

[73] C. L. Mantell, Batteries and Energy Systems. McGraw-Hill, 1983. 



75 
 

[74] Z. Yanlin, L. Peihong, Z. Qiuyun and C. Wen, "Separation of cadmium(II) from spent 

nickel/cadmium battery by emulsion liquid membrane," The Canadian Journal of Chemical 

Engineering, vol. 88, pp. 95-100, 2010. 

[75] D. Berndt, Maintenance-Free Batteries: Lead-Acid, Nickel/Cadmium, Nickel/Hydride: A 

Handbook of Battery Technology. Research Studies Press, 1997. 

[76] J. Lee, K. Lee and J. Lee, "Self-discharge behaviour of sealed Ni-MH batteries using MmNi 

3.3+ x Co 0.7 Al 1.0− x anodes," Journal of Alloys and Compounds, vol. 232, pp. 197-203, 1996. 

[77] H. A. Kiehne, Battery Technology Handbook. CRC Press, 2003. 

[78] A. M. Bernardes, D. C. R. Espinosa and J. A. S. Tenório, "Recycling of batteries: a review of 

current processes and technologies," J. Power Sources, vol. 130, pp. 291-298, 5/3, 2004. 

[79] T. Ma, H. Yang, L. Lu and J. Peng, "Technical feasibility study on a standalone hybrid solar-

wind system with pumped hydro storage for a remote island in Hong Kong," Renewable 

Energy, vol. 69, pp. 7-15, 9, 2014. 

[80] H. Akagi and H. Sato, "Control and performance of a doubly-fed induction machine intended 

for a flywheel energy storage system," IEEE Transactions on Power Electronics, vol. 17, pp. 

109-116, 2002. 

[81] I. Glendenning, "Compressed air storage," Physics in Technology, vol. 12, pp. 103-110, 

1981. 

[82] C. Wang and M. H. Nehrir, "Power Management of a Stand-Alone Wind/Photovoltaic/Fuel 

Cell Energy System," IEEE Transactions on Energy Conversion, vol. 23, pp. 957-967, 2008. 

[83] M. H. Rashid, Power Electronics: Circuits, Devices, and Applications. Pearson Education 

India, 2003. 

[84] H. Fan, "Design Tips for an Efficient Non-inverting Buck-Boost," Analog Applications 

Journal, 2014. 

[85] L. Xu, X. Ruan, C. Mao, B. Zhang and Y. Luo, "An Improved Optimal Sizing Method for 

Wind-Solar-Battery Hybrid Power System," IEEE Transactions on Sustainable Energy, vol. 4, 

pp. 774-785, 2013. 

[86] Wikipedia, Real-time simulation, 2016 [online] 

Available: https://en.wikipedia.org/wiki/Real-time_simulation. 

[87] J. Belanger, P. Venne and J. N. Paquin, "The What, Where, and Why of Real 

Time Simulation." OPAL-RT Publication, 2010. 



76 
 

[88] C. Dufour, C. Andrade and B. langer, "Real-time simulation technologies in education: A 

link to modern engineering methods and practices," in 11
Th

 International Conference on 

Engineering and Technology Education, 2010. 

[89] "RT-LAB user guide." Opal-RT Technologies Inc., 2007. 

[90] "Real-time HIL/RCP laboratory," OPAL-RT Technologies Inc., 2013. 

[91] "0.2kW electrical motor laboratory kit," Opal-RT Technologies Inc., 2013. 

[92] "Rapid control prototyping energy conversion kit (RCP-EC200): Quick start guide," Opal-

RT Technologies, Inc., 2013. 

[93] "High performance real-time simulation and HIL test system," Opal-RT Technologies Inc., 

2013. 


