

Application and Implementation of Transducer Tools in

Answering Certain Questions About Regular Languages

By

Meng Yang

A Thesis Submitted to

Saint Mary’s University, Halifax, Nova Scotia

in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Applied Science

December 3, 2012, Halifax, Nova Scotia

Copyright Meng Yang, 2012

Approved: Dr. Stavros Konstantinidis

 Supervisor

Department of Mathematics and

Computing Science

Approved: Dr. Rogerio Reis

 External Examiner

 Departamento de Ciência de Computadores

 da Universidade do Porto

Approved: Dr. Cezar Campeanu

 Supervisory Committee Member

 Department of Computer Science

 University of Prince Edward Island

Approved: Dr. Wendy Finbow-Singh

 Supervisory Committee Member

Department of Mathematics and

Computing Science

Approved: Dr. Cristian Suteanu

 Graduate Studies Representative

Date: December 3, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Saint Mary's University, Halifax: Institutional Repository

https://core.ac.uk/display/354992397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Application and Implementation of Transducer Tools in Answering

Certain Questions About Regular Languages

By

Meng Yang

Abstract: In this research, we investigate, refine, and implement algorithmic tools that

allow us to answer decision questions about regular languages. We provide a thorough

presentation of existing algorithmic tools to answer the satisfaction questions of

whether a given language satisfies a given property described by an input-preserving

transducer, which is equivalent to the question of whether a given language is

error-detecting for the channel realized by the same input-preserving transducer;

whether a given language is error-correcting for the channel realized by an

input-preserving transducer; whether a given regular language satisfies the code

property. In the process, we give a thorough presentation of an existing algorithm to

decide whether a transducer is functional and an algorithm about how to translate a

normal form transducer into a real-time transducer. We also introduce our method to

provide counterexamples in cases where the answers to the satisfaction questions are

negative. In addition, we discuss our new method to estimate the edit distance of a

regular language by the error-correction property, which is much faster than the

existing method of computing the edit distance via error-detection. Finally, we deliver

an open implementation of these algorithms and methods via a web interface –

I-LaSer, and add the implementation of transducer classes into our copy of the FAdo

libraries.

 December 3, 2012.

Acknowledgements

I would like to thank my supervisor, Dr. Stavros Konstantinidis for his guidance, kind

advice, and his support for my study and research at Saint Mary’s University. I also

appreciate the support given to me by my thesis committee members, Dr. Cezar

Campeanu and Dr. Wendy Finbow Singh, and the external examiner Dr. Rogerio Reis.

Special thanks go to Dr. Pawan Lingras, who not only provided the access of the

super computer for us to run the performance tests at Saint Mary’s University, but also

gave me many suggestions about my research and career choosing. Thank you for

your help.

I would also like to thank my fiancée, Nancy, for her understanding and supporting

during my research. In addition, many thanks also give to my parents who supported

me to come to Canada to take this program.

Many thanks go to all my friends and colleagues in department of mathematics and

computing science. I appreciate your help and kind advice very much.

Finally, many thanks go to faculty of graduate studies and research and Saint Mary’s

University for provide this precious opportunity for me to make my dream of studying

abroad come true.

Halifax, Nova Scotia Meng Yang

December 2012

Table of Contents

Chapter 1 Introduction 1

 1.1 About our research ∙ 1

 1.2 Thesis structure ∙ 3

Chapter 2 Basic notions and notation 6

 2.1 Set, words, languages, relations ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 6

 2.1.1 Set ∙ 6

 2.1.2 Alphabet, word, and language ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 6

 2.1.3 Binary relation ∙ 7

 2.2 Regular language and automata ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 7

 2.3 Cartesian product of two automata ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 12

 2.4 Finite state transducers ∙ 15

 2.4.1 Definition ∙ 15

 2.4.2 Real-time transducer ∙ 21

 2.5 Combinatorial channels ∙ 23

 2.6 Cartesian products of a transducer and an automaton ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 24

Chapter 3 Language properties 29

 3.1 Various language properties ∙ 29

 3.1.1 Code property ∙ 29

 3.1.2 Code related properties ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 30

 3.2 Describing language properties using input-altering and input-preserving

 transducers ∙ 32

 3.2.1 Input-altering transducer ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 33

 3.2.2 Input-preserving transducer ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 37

 3.3 Error detection and error-correction ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 38

 3.3.1 Error-detection ∙ 38

 3.3.2 Error-correction ∙ 40

 3.3.3 Two propositions ∙ 41

Chapter 4 Algorithmic tools and decision algorithms 43

 4.1 Deciding functionality of a transducer ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 44

 4.1.1 Functionality of a restricted sequential transducer ∙ ∙ ∙ ∙ ∙ ∙ ∙ 45

 4.1.2 Functionality of a standard form transducer or a real-time

 transducer ∙ 48

 4.1.3 Pre-functionality test of a real-time transducer ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 53

 4.2 Deciding whether a language satisfies the property described by an input-

 preserving transducer (deciding the error-detection property) ∙ ∙ ∙ ∙ ∙ 54

 4.2.1 Constructing the transducer 𝑇 ↓ 𝐴 ↑ 𝐴 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 56

 4.2.2 Deciding the functionality of 𝑇′ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 60

 4.3 Deciding the error-correction property ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 60

 4.4 Deciding the code property ∙ 62

 4.5 Counterexample ∙ 66

 4.6 Constructing input-altering transducer describing code related

 properties ∙ 78

 4.7 Translating a normal form transducer to an equivalent real-time

 transducer ∙ 81

Chapter 5 Computing the edit distance of a regular language 86

 5.1 Edit distance ∙ 86

 5.2 Computing the edit distance using the error-detection property ∙ ∙ ∙ ∙ 88

 5.3 Estimating the edit distance using the error-correction property ∙ ∙ ∙ ∙ 89

 5.4 Performance tests ∙ 95

Chapter 6 Implementation 100

 6.1 Implementation of the algorithms ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 101

 6.2 User interface ∙ 106

Chapter 7 Conclusion and future work 114

 7.1 Conclusion ∙ 114

 7.2 Future work ∙ 115

Bibliography 117

1

Chapter 1

Introduction

1.1 About our research

In computer science and information transmission, the information that needs to be

stored or transmitted usually has to be encoded into a certain format. For example,

sending an image via a network requires encoding the image into a certain binary

word whose bits are interpreted as signals that can be transmitted over the network. In

most applications, such as data compression and signal transmission, the information

involved is represented by words of a formal language over some alphabets, which are

required to follow a certain restriction or posses a certain common feature. A language

property is the set of all languages that follow a certain restriction or posses a certain

common characteristic.

There are many language properties, such as the code property, the prefix code

property, the suffix code property, etc. A regular language may satisfy particular

properties, which can be described by transducers. Researchers [15, 16] have

investigated algorithms and methods to answer the question of whether a given

language satisfies a particular code related property, and have delivered an

implementation of these algorithms and methods which is accessible via a web

interface – LaSer [36]. The motivation of our research is to enhance the capabilities of

the existing LaSer. The limitation of LaSer is that it can only answer the satisfaction

2

question for language properties described by input-altering transducers. Some

language properties are described by input-preserving transducers, and we usually use

input-preserving transducers to simulate channels, in order to decide the

error-detection and error-correction properties of a regular language. The question of

deciding whether a language satisfies a given language property described by an

input-preserving transducer is not addressed in [15, 16]. In addition, LaSer does not

solve the problem of deciding whether a language satisfies the code property. Also, the

error-detection property of a regular language is investigated in [10, 11] only for

sequential transducers, and the question of deciding the error-correction property is

not addressed there.

The objectives of our research are to refine and implement algorithmic tools that allow

us to answer the above unresolved and related questions, and to strengthen the

capabilities of LaSer. These algorithmic tools involve automaton tools and transducer

tools. The main contributions of our research are:

1. Thorough presentation of an existing algorithm to decide whether a

transducer is functional. This algorithm applies to different types of

transducers: restricted sequential transducer, standard form transducer, and

real-time transducer. In the case of real-time transducers, we introduce a

pre-functionality test to speed up, in some cases, the decision process.

2. Thorough presentation of existing algorithmic tools to answer the following

satisfaction questions:

3

A. Whether a given language satisfies a given property described by an

input-preserving transducer, which is equivalent to the question of

whether a given language is error-detecting for the channel realized by

the same input-preserving transducer.

B. Whether a given language is error-correcting for the channel realized by

an input-preserving transducer.

C. Whether a given regular language satisfies the code property.

3. Propose an algorithm to generate counterexamples in cases where the

answers to the above satisfaction questions are negative.

4. Present an algorithm to translate a given transducer in normal form into an

equivalent real-time transducer, based on the mathematical method of [42].

5. Provide a new method to estimate the edit distance of a regular language in

quadratic time, improving the previous known method in terms of time

complexity.

6. Implementation of transducer classes and their integration into our copy of

the FAdo libraries [2, 18]. Implementation of the above algorithmic tools and

development of a new web interface – I-LaSer [24], which is an upgraded

version of the existing LaSer.

1.2 Thesis structure

Following we present an overview of the structure of this thesis.

4

In Chapter 2 we give some general notions, notation and background information

about words, languages, automata, transducers, and Cartesian product operations that

are crucial to our research.

In Chapter 3 we look at some known language properties, as well as the methods of

describing language properties using input-altering transducers and input-preserving

transducers. We explain two language properties for a combinatorial channel: the

error-detection property and the error-correction property. We also provide two

propositions about how to decide the error-detection property and the error-correction

property.

In Chapter 4 we mainly focus on the algorithmic tools and decision algorithms to

answer the questions we mentioned above. We explain how to construct product

machines and how to decide the functionality of a given transducer. Afterwards, we

show how to answer the satisfaction questions, such as whether a given language is

error-detecting or error-correcting for a channel, and whether a given language is a

code. In addition, we present our algorithm to generate a counterexample in the case

where a transducer is not functional. Also, we give an algorithm to construct

input-altering transducers that describe certain fixed properties over a given alphabet,

and an algorithm to translate a transducer in normal form into an equivalent real-time

transducer.

5

In Chapter 5 we discuss the concept of edit distance, and two methods to compute the

edit distance of a regular language using the error-detection property and the

error-correction property. We present an algorithm to construct an input-preserving

transducer realizing the channel 𝑆𝐼𝐷(𝑚, ∞) , based on a given positive integer

number 𝑚 and a given alphabet 𝛴 . In addition, we explain how to use the

algorithmic tools in Chapter 2 and Chapter 4 to estimate the edit distance of a given

regular language by the error-correction property. We also provide two performance

tests, where the result shows that our new method is much faster than the existing

method.

In Chapter 6 we deliver an implementation of our research through a web interface.

We discuss the implementation of our methods and the architecture of this web

interface. We also list the basic functions of our web interface and illustrate different

file formats that our web application will use. In addition, we give examples of the

files in different formats in our system.

The final Chapter 7 contains a summary of our research and directions for future

research and implementations.

6

Chapter 2

Basic notions and notation

In this chapter we give some general notions, notation and background information

about words, languages, automata, transducers, and Cartesian product operations that

are important to our research. Readers are referred to [17, 22, 31, 37, 42, 47] for more

information about these concepts.

2.1 Sets, words, languages, relations

2.1.1 Set

The cardinality of a finite set 𝑆, denoted by |𝑆|, is the number of elements in 𝑆. The

power set of a set 𝑆, denoted by 2𝑠, is the set of all the subsets of 𝑆.

2.1.2 Alphabet, word, and language

An alphabet is a finite, nonempty set of symbols. Conventionally, we use the symbol

𝛴 for an alphabet. A word (also called string or message) 𝑤 is a finite sequence of

symbols chosen from an alphabet. The empty word, denoted by 𝜆, is the string with

zero occurrences of symbols. If 𝛴 is an alphabet, then 𝛴∗ is the set of all words over

𝛴 including the empty word 𝜆, and 𝛴+ is 𝛴∗ − {𝜆}. The standard notation for the

length of a word 𝑤 is |𝑤|. Any set of words is called a language. The basic operation

on words is concatenation. Let 𝑥 and 𝑦 be words. Then 𝑥𝑦 denotes the

concatenation of 𝑥 and 𝑦.

7

Example: The alphabet 𝛴 = {0, 1} consists of two symbols: 0 and 1. The set

𝐿 = {0, 11, 01} is a language consisting of three words over 𝛴. If 𝑥 = 11 and

𝑦 = 01, then the concatenation of 𝑥 and 𝑦 is 𝑥𝑦 = 1101, and the length of 𝑥𝑦

is |𝑥𝑦| = |1101| = 4.

2.1.3 Binary relation

A binary word relation 𝑅 over two alphabets 𝐴 and 𝐵 is a subset of 𝐴∗ × 𝐵∗. The

binary relation 𝑅 consists of pairs of words (𝑢, 𝑣) for some 𝑢 ∈ 𝐴∗ and 𝑣 ∈ 𝐵∗ .

The domain of 𝑅 is {𝑢|(𝑢, 𝑣) ∈ 𝑅}, and the co-domain of 𝑅 is {𝑣|(𝑢, 𝑣) ∈ 𝑅}. The

inverse of 𝑅, denoted by 𝑅−1, is the binary relation {(𝑏, 𝑎)|(𝑎, 𝑏) ∈ 𝑅} over 𝐵 and

𝐴. Unless specified otherwise, we use the term relation to refer to binary relation in

this thesis.

In this thesis, two relations play an important role. The relation 𝑅 ∩ (𝐿 × 𝐵∗) =

{(𝑎, 𝑏) ∈ 𝑅|𝑎 ∈ 𝐿}, denoted by 𝑅 ↓ 𝐿, is the relation 𝑅 with its domain restricted to

𝐿. Also, the relation 𝑅 ∩ (𝐴∗ × 𝐿) = {(𝑎, 𝑏) ∈ 𝑅|𝑏 ∈ 𝐿}, denoted by 𝑅 ↑ 𝐿, is the

relation 𝑅 with its co-domain restricted to 𝐿.

The relation 𝑅 is functional if (𝑎, 𝑏1) ∈ 𝑅 and (𝑎, 𝑏2) ∈ 𝑅 imply that 𝑏1 = 𝑏2.

2.2 Regular languages and automata

In this research, we focus on regular languages which are exactly all the languages

8

that can be accepted by finite state automata. In addition, regular languages can be

described by regular expressions. Readers are referred to [8, 22, 47] for more

information about regular languages and regular expressions.

A 𝜆-NFA (Lambda Nondeterministic Finite Automaton) consists of a finite set of

states and a set of transitions. The transitions set the change of the current state when

reading a given input. Formally, a 𝜆-NFA is a 5-tuple 𝐴 = (𝑄, 𝛴, 𝐸, 𝑞0, 𝐹) such

that:

 𝑄 is a finite nonempty set of states.

 𝛴 is the input alphabet.

 𝐸 is the set of transitions, which are 3-tuples of the form (𝑝, 𝑥, 𝑞) with

𝑝, 𝑞 ∈ 𝑄 and 𝑥 ∈ 𝛴 ∪ {𝜆}. The element 𝑥 is called the label of the transition.

A transition labeled with the empty word 𝜆 is called a 𝜆-transition.

 𝑞0 is the start state.

 𝐹 is the set of final states.

It is convenient to present 𝜆-NFAs as directed graphs as in Figure 2.1. In Figure 2.1,

states are portrayed as small circles. Transitions are denoted by edges with arrows

pointing from the origin state to the end state. Transitions are labeled with symbols

from 𝛴 ∪ {𝜆}. The start state 𝑞0 is shown with a short incoming arrow pointing to it.

The final states are represented as two concentric circles.

9

Figure 2.1: An example 𝜆-NFA with 𝑄 = {0, 1, 2}, 𝛴 = {𝑎, 𝑏}, the start

state 𝑞0 = 0 and the set of final states 𝐹 = {2}.

If every transition in 𝐸 of a 𝜆-NFA has a nonempty label, then the automaton is

called NFA. The example in Figure 2.1 is also an NFA. In an NFA, if for every input

label 𝑥 ∈ 𝛴 and every state 𝑝 ∈ 𝑄, there is at most one transition (𝑝, 𝑥, 𝑞) going to

some 𝑞 ∈ 𝑄, then the NFA is called DFA (Deterministic Finite Automaton). The

example in Figure 2.1 is not a DFA because when given a symbol 𝑎 to the current

state 0, there are two different states 0 and 1 that can be reached from to the

current state 0. An example of DFA is illustrated in Figure 2.2. Unless specified, we

use the term automaton to refer to 𝜆-NFA in this thesis.

Figure 2.2: An example of DFA.

We say that a word is accepted by an automaton if that word is formed by

concatenating the transition labels in a path that begins from the start state to a final

state. An automaton 𝐴 can process the input words and decide whether or not to

accept these words. In particular, given any input word 𝑤 to the start state 𝑞0, the

10

word 𝑤 is accepted if the automaton reads all the symbols in 𝑤 by following a

sequence of the available transitions

(𝑞0, 𝑥1, 𝑞1), (𝑞1, 𝑥2, 𝑞2),∙∙∙, (𝑞𝑛−1, 𝑥𝑛, 𝑞𝑛),

such that 𝑤 = 𝑥1𝑥2 ∙∙∙ 𝑥𝑛 and the state 𝑞𝑛 is in the set of final states 𝐹.

We say that a language 𝐿 is accepted or represented by an automaton 𝐴, if every

word in this language 𝐿 is accepted by 𝐴 and every word accepted by 𝐴 belongs to

𝐿. We say that the path from the start state to a final state, which accepts a given input

word, is an accepting path. The diameter of an automaton 𝐴, denoted by 𝑑𝑖𝑎𝑚(𝐴), is

the largest number of states in a computation 𝑝0𝑎1𝑝1,∙∙∙, 𝑎𝑛𝑝𝑛 for which 𝑝0 is the

start state and no state occurs more than once, that is, 𝑖 ≠ 𝑗 implies 𝑝𝑖 ≠ 𝑝𝑗. For

example, the diameter of the automaton 𝐴 in Figure 2.1 is 𝑑𝑖𝑎𝑚(𝐴) = 3.

Example: Let us consider the automaton 𝐴 in Figure 2.1. In 𝐴, state 0 is the start

state. There are three transitions in 𝐴. The transition (0, 𝑎, 1) takes us from the start

state 0 to state 1 while accepting the symbol 𝑎 . From state 1, the transition

(1, 𝑏, 2) takes us to state 2, which is a final state. Therefore, 𝑎𝑏 is one of the words

accepted by 𝐴. Note that there is also another transition (0, 𝑎, 0) taking us from

state 0 to state 0. This means that we can accept infinitely many symbols 𝑎 when

we start at state 0. The set of words that the automaton in Figure 2.1 will accept is

{𝑎𝑏, 𝑎𝑎𝑏, 𝑎𝑎𝑎𝑏, 𝑎𝑎𝑎𝑎𝑏, . . . } . Therefore, the automaton 𝐴 accepts the language

𝐿 = 𝑎∗𝑏.

11

For every 𝜆-NFA we can construct an equivalent NFA with no 𝜆-transitions. Methods

for constructing NFA based on 𝜆-NFA are well known and therefore we will not

present them in this thesis. Readers are referred to [22, 37, 47] where such methods

are discussed.

The automaton is said to have accessible states if, for every state 𝑞 in the state set 𝑄,

there is a path from the start state 𝑞0 to 𝑞. In some cases, some states in an

automaton cannot be reached from the start state, or none of the final states can be

reached from such states. The process of erasing such states is called a trimming

operation and the obtained automaton is called a trimmed automaton. Technically, an

automaton is called trim if it has accessible states and, for every accessible state 𝑞,

there is a path from 𝑞 to one of the final states in final state set 𝐹. The trimming

operation does not affect the language accepted by an automaton.

Therefore, for the sake of complexity of automata processing and operating, we

sometimes need to make an automaton trim. From now on, all the automata in this

paper are assumed to be trim. If an automaton, after operating, is not trim, we need to

make it trim. Readers can refer to details of the trimming processing in [9, 37]. An

example of an automaton before and after the trimming operation is shown in Figure

2.3.

12

(a) Untrimmed automaton (b) Trimmed automaton

Figure 2.3: An automaton accepting the language 𝐿 = 𝑎∗𝑏

untrimmed (left) and trimmed (right).

2.3 Cartesian product of two automata

In automaton theory, the Cartesian product construction produces a new automaton

out of two given automata. If the automaton 𝐴1 accepts the language 𝐿1 and the

automaton 𝐴2 accepts the language 𝐿2, then we can construct a new automaton

𝐴3 = 𝐴1 ∩ 𝐴2 accepting the language 𝐿3 = 𝐿1 ∩ 𝐿2 as follows:

1. The states of the automaton 𝐴3 are pairs of (𝑝1, 𝑝2) of states where 𝑝1 is a

state in 𝐴1 and 𝑝2 is a state in 𝐴2.

2. The start state in 𝐴3 is the pair of start states from 𝐴1 and 𝐴2. For example

if 𝑝0 is the start state in 𝐴1 and 𝑝0
′ is the start state in 𝐴2 , then we

construct the pair of state (𝑝0, 𝑝0
′) as the start state in 𝐴3.

3. The set of final states in 𝐴3 consists of all states that are pairs of final states

from 𝐴1 and 𝐴2. For example if 𝑓 is a final state in 𝐴1 and 𝑓′ is a final

state in 𝐴2, then the pair (𝑓, 𝑓′) is a final state in 𝐴3.

4. For every two transitions with the same label, (𝑝1, 𝜎, 𝑞1) from 𝐴1 and

13

(𝑝2, 𝜎, 𝑞2) from 𝐴2, we add a transition ((𝑝1, 𝑝2), 𝜎, (𝑞1, 𝑞2)) to 𝐴3.

See [15, 22, 37, 47] for more information about the Cartesian product operation of two

automata. Next, we give an example of this operation.

Example: Let us consider two automata, 𝐴1 in Figure 2.4a and 𝐴2 in Figure 2.4b.

 (a) Automaton 𝐴1 (b) Automaton 𝐴2

Figure 2.4

The new automaton 𝐴3 we constructed after Cartesian product operation of 𝐴1 and

𝐴2 is illustrated in Figure 2.5. For example, as (0, 𝑏, 1) and (1, 𝑏, 1) are

transitions in 𝐴1 and 𝐴2, respectively, the tuple ((0,1), 𝑏, (1,1)) is a transition in

𝐴3.

Figure 2.5: Cartesian product of 𝐴1 and 𝐴2 after trimming operation.

14

The automata 𝐴1 and 𝐴2 in Figure 2.4 we discussed above are two automata with

no 𝜆-transitions. However, if one or both have 𝜆-transitions, we have to add self

𝜆-transitions to every state in the two automata (starting from each state and ending at

the state itself). Note that adding self 𝜆-transitions to the automaton does not affect

the accepted language. After adding self 𝜆-transitions to both automata, we apply the

Cartesian product operation in the same way we have discussed above in the case of

automata with no 𝜆-transitions, treating 𝜆 the same way as any other symbols in the

alphabet.

Example: Let us consider two automata 𝐴1 in Figure 2.6a and 𝐴2 in Figure 2.6b.

 (a) Automaton 𝐴1 (b) Automaton 𝐴2

Figure 2.6

Because both automata 𝐴1 and 𝐴2 have 𝜆-transitions, we have to expand both 𝐴1

and 𝐴2 with self 𝜆-transitions (Figure 2.7) in order to perform the Cartesian product

operation of the automata 𝐴1 and 𝐴2.

15

 (a) Automaton 𝐴1 expanded with (b) Automaton 𝐴2 expanded with

 self λ-transitions self 𝜆-transitions

Figure 2.7

2.4 Finite state transducers

2.4.1 Definition

A finite state transducer (FST) is a finite state machine that has two labels in each

transition; the input label and the output label. See Figure 2.8 for an example of a

transducer. The transducer contrasts with an ordinary finite state automaton, which has

a single label in each transition. A transducer is said to translate its input to its output,

by accepting its input word, as in the case of 𝜆-NFA, and generating its output word.

Formally, a finite transducer 𝑇 in general form is a 6-tuple 𝑇 = (𝑄, 𝛴, 𝛤, 𝑞0, 𝐹, 𝐸)

such that:

 𝑄 is the finite set of states.

 𝛴 is the input alphabet.

 𝛤 is the output alphabet.

 𝑞0 is the set of start states.

 𝐹 is the set of final states.

16

 𝐸 is the set of transitions, which are tuples of the form (𝑝, 𝑥/𝑦, 𝑞) such that

𝑝, 𝑞 ∈ 𝑄, 𝑥 ∈ 𝛴∗, and 𝑦 ∈ 𝛤∗.

Figure 2.8: An example of a transducer.

A transducer may operate nondeterministically and produce one of many possible

output words for a given input word. A transducer may also generate no output for a

given input word, in which case it is said to reject the input word.

Similar to an automaton, a transducer processes the input words and decides whether

or not to accept these input words and obtain the output words. In particular, the

computation process is that given any input word 𝑢 = 𝑥1𝑥2 ∙∙∙ 𝑥𝑛 at the start state 𝑞0,

the transducer reads each part 𝑥1, 𝑥2,∙∙∙, 𝑥𝑛 of the word 𝑢 by following a sequence of

the available transitions

(𝑞0, 𝑥1/𝑦1, 𝑞1), (𝑞1, 𝑥2/𝑦2, 𝑞2),∙∙∙, (𝑞𝑛−1, 𝑥𝑛/𝑦𝑛, 𝑞𝑛).

The input word 𝑢 = 𝑥1𝑥2 ∙∙∙ 𝑥𝑛 is accepted and the word 𝑣 = 𝑦1𝑦2 ∙∙∙ 𝑦𝑛 is

outputted if the state 𝑞𝑛 is in the set of final states 𝐹. In this case, we say that the

pair of words (𝑢, 𝑣) is realized, or accepted, by the transducer. In general, a

transducer 𝑇 realizes the binary relation consisting of all pairs (𝑢, 𝑣) accepted by 𝑇.

17

Two transducers are called equivalent if they realize the same relation.

Similarly to 𝜆-NFA, a transducer may have transitions which can involve 𝜆 as the

input label, called 𝜆-input transitions, or 𝜆 as the output label, called 𝜆-output

transitions, or both, called 𝜆-transitions. Examples of transducer with transitions

involving 𝜆 are illustrated in Figure 2.9.

(a) Transducer with (b) Transducer with

𝜆-input transition. 𝜆-output transition.

(c) Transducer with 𝜆-transitions.

Figure 2.9 Transducers with transitions involving 𝜆.

The transducer we defined above is in general form. A transducer is in standard form

if, for every transition (𝑝, 𝑥/𝑦, 𝑞), we have that 𝑥 ∈ 𝛴 ∪ {𝜆}, and 𝑦 ∈ 𝛤 ∪ {𝜆}. A

transducer is in normal form if it is in standard form and for every transition

(𝑝, 𝑥/𝑦, 𝑞), at least one of 𝑥 or 𝑦 is 𝜆. Examples of transducers in general form,

standard form, and normal form are illustrated in Figure 2.10.

18

 (a) A transducer in general form (b) A transducer in standard form

(c) A transducer in normal form

Figure 2.10

A transducer 𝑇 is called restricted sequential if it is in standard form and, for every

transition (𝑝, 𝑥/𝑦, 𝑞) in 𝑇, we have that 𝑥 ∈ 𝛴 and 𝑦 ∈ 𝛤, that is, both 𝑥 and 𝑦

are not 𝜆. The standard form transducer in Figure 2.10b is also a restricted sequential

transducer.

For every transducer 𝑇 in general form, we can translate 𝑇 into an equivalent

transducer in standard form. Also, for every transducer 𝑇′ in standard form, we can

translate 𝑇′ into an equivalent transducer in normal form [42]. An example of

translating a transducer 𝑇 in general form to an equivalent transducer in standard

form, and then going on to translate it into a normal form one is illustrated in Figure

2.11 and Figure 2.12.

19

(a) A transducer 𝑇 in general form

(b) The transducer 𝑇′ in standard form equivalent to the one in Figure 2.11a

Figure 2.11

Example: Let us consider the transducer 𝑇 in general form in Figure 2.12a. In order

to translate 𝑇 into a transducer 𝑇′ in standard form, we delete the transition

(0, 𝑎/𝑎𝑏, 1) that is not in accordance with the definition of standard form transducer,

and we add a new state 2 and two new transitions (0, 𝑎/𝑎, 2) and (2, 𝜆/𝑏, 1) to

𝑇.Using this method, we obtain the transducer 𝑇′ in standard form (Figure 2.11b)

equivalent to the transducer 𝑇 in general form (Figure 2.11a).

(a) A transducer 𝑇′ in standard form

(b) The transducer 𝑇′′ in normal form equivalent to the one in Figure 2.12a

Figure 2.12

20

Example: Let us consider the transducer 𝑇′ in standard form in Figure 2.12a. In

order to translate 𝑇′ into a transducer 𝑇′′ in normal form, we delete the transition

(0, 𝑎/𝑏, 1) that is not in accordance with the definition of normal from transducer,

and we add a new state 2 and two new transitions (0, 𝑎/𝜆, 2) and (2, 𝜆/𝑏, 1) to

𝑇′′. Using this method we obtain the transducer 𝑇′′ in normal form (Figure 2.12b)

equivalent to the transducer 𝑇′ in standard form (Figure 2.12a).

Unless specified otherwise, all the transducers in this paper are always assumed to be

in standard form.

The inverse of a transducer 𝑇, denoted by 𝑇−1, is defined to be the transducer

constructed by switching the input label with output label for every transition in the

transducer 𝑇, without any changes to the states. See Figure 2.13 for example. Note

that if transducer 𝑇 realizes a binary relation 𝑅 , then 𝑇−1 realizes the binary

relation 𝑅−1.

(a) An example transducer 𝑇

(b) The inverse transducer 𝑇−1 of transducer 𝑇 in Figure 2.13a

Figure 2.13

21

2.4.2 Real-time transducer

A real-time transducer is an extension of a finite state transducer. A transducer 𝑇 is

said to be real-time [42], if for every transition, the input label is a letter in 𝛴 and the

output label is a regular expression over 𝛤, where 𝛴 and 𝛤 are the input and output

alphabets of 𝑇. We write 𝑅𝐸𝑋(𝛤) for the set of regular expressions over 𝛤.

Formally, a real-time transducer 𝑇 is a 6-tuple (𝑄, 𝐼, 𝐹, 𝛴, 𝛤, 𝐸) where:

 𝑄 is the finite set of states.

 𝐼: 𝑄 → 𝑅𝐸𝑋(𝛤) is the start states function; 𝐼(𝑞) is the regular expression

describing the possible words to output before a computation starts at state

𝑞 ∈ 𝑄. If 𝐼(𝑞) = ∅, then 𝑞 is not a start state.

 𝐹: 𝑄 → 𝑅𝐸𝑋(𝛤) is the final states function; 𝐹(𝑞) is the regular expression

describing the possible words to output after a computation ends at state

𝑞 ∈ 𝑄. If 𝐹(𝑞) = ∅, then 𝑞 is not a final state.

 𝛴 and 𝛤 are finite sets corresponding respectively to the input and output

alphabets of the transducer.

 𝐸 is the set of transitions of the form (𝑝, 𝑥/𝑒, 𝑞) where 𝑝, 𝑞 ∈ 𝑄, 𝑥 ∈ 𝛴, and

𝑒 ∈ 𝑅𝐸𝑋(𝛤), that is, 𝑒 is a regular expression over 𝛤.

Example: The Figure 2.14 shows an example of a real-time transducer. The start

states are 1, 2, 3, and 4, and the final state are 1 and 2. We have that 𝐼(2) =

(a + b) and 𝐹(1) = 𝐹(2) = 𝜆.

22

Figure 2.14: An example of a real-time transducer.

A real-time transducer processes the input words and decides whether or not to accept

the input words and obtain the output words. The computation process is that given

any input word 𝑢 = 𝑥1𝑥2 ∙∙∙ 𝑥𝑛 at the start state 𝑞0, that is 𝐼(𝑞0) ≠ ∅, the real-time

transducer reads each part 𝑥1, 𝑥2,∙∙∙, 𝑥𝑛 of the word 𝑢 by following a sequence of the

available transitions

(𝑞0, 𝑥1/𝑒1, 𝑞1), (𝑞1, 𝑥2/𝑒2, 𝑞2),∙∙∙, (𝑞𝑛−1, 𝑥𝑛/𝑒𝑛, 𝑞𝑛).

The input word 𝑢 = 𝑥1𝑥2 ∙∙∙ 𝑥𝑛 is accepted and a word 𝑣 ∈ 𝐼(𝑞0)𝑒1𝑒2 ∙∙∙ 𝑒𝑛𝐹(𝑞𝑛) is

outputted, if the state 𝑞𝑛 is in the set of final states 𝐹, that is, 𝐹(𝑞𝑛) ≠ ∅. In this

case, the pair of words (𝑢, 𝑣) is realized or accepted by the real-time transducer. In

general, a real-time transducer 𝑇 realizes the binary relation consisting of the set of

all pairs (𝑢, 𝑣) such that there is a computation of 𝑇 where the input word

𝑢 = 𝑥1𝑥2 ∙∙∙ 𝑥𝑛 is accepted and the word 𝑣 ∈ 𝐼(𝑞0)𝑒1𝑒2 ∙∙∙ 𝑒𝑛𝐹(𝑞𝑛) is outputted.

23

Given a transducer 𝑇 in normal form, we can translate 𝑇 into an equivalent

real-time transducer. In Chapter 4, we present an algorithm to translate 𝑇 into an

equivalent real-time transducer, based on the mathematical methods of [42].

2.5 Combinatorial channels

In data communications, a binary message at the site of the sender is sent through a

communication channel and arrives at the site of the receiver, and the channel possibly

changes some of the bits in the message – called transmission errors. Transducers can

be used to simulate communication channels [33], as we give an input word to the

transducer and we get a word that may be different from the original given input word,

a situation similar to communication channels.

A binary relation 𝐶 is input-preserving, if for every word 𝑤 in the domain of 𝐶, the

pair of words (𝑤, 𝑤) ∈ 𝐶. A (combinatorial) channel 𝐶 is a binary relation that is

input-preserving. This means that, given input 𝑤 to the channel 𝐶, an output equal to

𝑤 can be obtained. If (𝑤, 𝑤′) ∈ 𝐶 and 𝑤 ≠ 𝑤′, then we say that 𝑤′ contains errors.

The concept of channel is necessary when defining the language properties of

error-detection and error-correction in Chapter 3.

There exist many different kinds of channels, such as 𝑆𝐼𝐷 channels and Homophonic

channels. Definitions and constructions of these channels can be found in [10, 27, 30,

32, 38]. For example, the channel 𝑆𝑢𝑏(𝑚, ∞) consists of all pairs (𝑢, 𝑣), such that

24

𝑣 results by substituting at most 𝑚 symbols in 𝑢 with 𝑚 different symbols. More

precisely, 𝑢 = 𝑥1𝜎1𝑥2 ∙∙∙ 𝜎𝑘𝑥𝑘+1, with each 𝜎𝑖 being a symbol, and 𝑣 = 𝑥1𝜎1
′𝑥2 ∙∙∙

𝜎𝑘
′𝑥𝑘+1, with each 𝜎𝑖

′ being a symbol other than 𝜎𝑖, where 𝑘 ≤ 𝑚.

Example: Let us consider the transducer in Figure 2.15 realizing the channel

𝑆𝑢𝑏(1, ∞) . In Figure 2.15, symbols 𝜎 and 𝜎′ represent any symbol from the

alphabet, but with 𝜎 ≠ 𝜎′. If 𝜎 represents 0 from the alphabet 𝛴 = {0, 1}, then 𝜎′

can only represent 1. For example, if the input word is 1111, then output of the

channel can be 1111 (no error), or one word from {1110, 1101, 1011, 0111} (one

substitution error).

Figure 2.15: The channel 𝑆𝑢𝑏(1, ∞).

2.6 Cartesian products of a transducer and an automaton

Given an automaton 𝐴 accepting the regular language 𝐿 and a transducer 𝑇 in

standard form realizing the binary relation 𝑅, we can build a new transducer 𝑇′,

denoted by 𝑇 ↓ 𝐴, realizing the binary relation 𝑅 ↓ 𝐿 by intersecting the input label

in transitions of 𝑇 with the label in transition of 𝐴 (also called input Cartesian

product of a transducer and an automation). Therefore, if a pair of words (𝑢, 𝑣) is

accepted by 𝑇′, then (𝑢, 𝑣) is accepted by 𝑇 and the word 𝑢 is accepted by 𝐴.

25

We construct this new transducer 𝑇′ using an operation similar to the Cartesian

product of two automata. If the automaton 𝐴 contains 𝜆-transitions or the transducer

𝑇 contains 𝜆 -input transitions, then we have to add self 𝜆 -transitions to the

automaton 𝐴 or the transducer 𝑇 by the following rules:

1. If 𝑇 has 𝜆-input transitions, then add self 𝜆-transitions to 𝐴 only. Examples

can be found in Figure 2.6 and Figure 2.9.

2. If 𝑇 doesn’t have 𝜆-input transitions and 𝐴 has 𝜆-transitions, then add self

𝜆-transitions, which are in the form of (𝜆/𝜆), to 𝑇 only. An example is

illustrated in Figure 2.16b.

 (a) A transducer with 𝜆-input transition (b) The same transducer expanded

 with self 𝜆-transition

Figure 2.16: Example transducer expanded with self 𝜆-transitions.

The construction of the input Cartesian product of the transducer 𝑇 and automaton 𝐴

is as follows: for every transition (𝑝1, 𝑥/𝑦, 𝑞1) in 𝑇 and (𝑝2, 𝑥, 𝑞2) in 𝐴 where the

input label in (𝑝1, 𝑥/𝑦, 𝑞1) is the same as the label in (𝑝2, 𝑥, 𝑞2), we add a transition

((𝑝1, 𝑝2), 𝑥/𝑦, (𝑞1, 𝑞2)) to the new transducer 𝑇′; we construct the start state and the

26

set of final states of 𝑇′ in the same way we construct the Cartesian product of two

automata as discussed in Section 2.3.

Example: Let us consider the transducer 𝑇 in Figure 2.17a and the automaton 𝐴 in

Figure 2.17b.

 (a) A transducer 𝑇 (b) An automaton 𝐴

Figure 2.17

In order to construct the input Cartesian product 𝑇′ of 𝑇 and 𝐴, we add a pair

(0,0) as the start state to 𝑇′. For the transitions (0, 𝑏/𝑎, 0) in 𝑇 and (0, 𝑏, 1) in

𝐴, we add the transition ((0,0), 𝑏/𝑎, (0,1)) to 𝑇′. Also, for the transition (0, 𝑏/𝑏, 1)

in 𝑇 and (0, 𝑏, 1) in 𝐴, we add the transition ((0,0), 𝑏/𝑏, (1,1)) to 𝑇′. For the

transition (1, 𝑎/𝑏, 1) in 𝑇 and (1, 𝑎, 1) in 𝐴 , we add the transition ((1,1), 𝑎/

𝑏, (1,1)) to 𝑇′, and for transition (0, 𝑏/𝑏, 1) in 𝑇 and (1, 𝑏, 1) in 𝐴 we add a

transition ((0,1), 𝑏/𝑏, (1,1)) to 𝑇′. Finally we designate the pair (1,1) as the final

state in 𝑇′ . The new transducer 𝑇′ we constructed after performing the input

Cartesian product operation of 𝑇 and 𝐴 and after the trimming operation is

illustrated in Figure 2.18.

27

Figure 2.18: Input Cartesian product 𝑇′ of 𝑇 and 𝐴 after trimming operation.

Similarly, given an automaton 𝐴 accepting the regular language 𝐿 and a transducer

𝑇 in standard form realizing the binary relation 𝑅, we can build a new transducer 𝑇′,

denoted by 𝑇 ↑ 𝐴, realizing the binary relation 𝑅 ↑ 𝐿 by intersecting the output label

in transitions of 𝑇 with the label in transitions of 𝐴 (also called output Cartesian

product of a transducer and an automaton). In other words, if a pair of words (𝑢, 𝑣) is

accepted by 𝑇′, then (𝑢, 𝑣) is accepted by 𝑇 and the word 𝑣 is accepted by 𝐴.

The method of construction the output Cartesian product 𝑇′ is similar to the method

we mentioned above, except that for every transition (𝑝1, 𝑥/𝑦, 𝑞1) in 𝑇 and

(𝑝2, 𝑦, 𝑞2) in 𝐴 where the output label in (𝑝1, 𝑥/𝑦, 𝑞1) is the same as the label in

(𝑝2, 𝑦, 𝑞2), we add a transition ((𝑝1, 𝑝2), 𝑥/𝑦, (𝑞1, 𝑞2)) to the new transducer 𝑇′.

Example: Let us consider the transducer 𝑇 in Figure 2.19a and the automaton 𝐴 in

Figure 2.19b.

28

 (a) Transducer 𝑇 (b) Automaton 𝐴

Figure 2.19

In order to construct the output Cartesian product 𝑇′ of 𝑇 and 𝐴, we add a pair

(0,0) as the start state to 𝑇′. For the transitions (0, 𝑎/𝑏, 0) in 𝑇 and (0, 𝑏, 1) in

𝐴, we add the transition ((0,0), 𝑎/𝑏, (0,1)) to 𝑇′. Also, for the transition (0, 𝑏/𝑏, 1)

in 𝑇 and (0, 𝑏, 1) in 𝐴, we add the transition ((0,0), 𝑏/𝑏, (1,1)) to 𝑇′. For the

transition (1, 𝑏/𝑎, 1) in 𝑇 and (1, 𝑎, 1) in 𝐴 , we add a transition ((1,1), 𝑏/

𝑎, (1,1)) to 𝑇′, and for transition (0, 𝑏/𝑏, 1) in 𝑇 and (1, 𝑏, 1) in 𝐴 we add a

transition ((0,1), 𝑏/𝑏, (1,1)) to 𝑇′. Finally we designate the pair (1,1) as the final

state in 𝑇′. The new transducer 𝑇′ we constructed from the output Cartesian product

operation of 𝑇 and 𝐴, and after applying the trimming operation is illustrated in

Figure 2.20.

Figure 2.20: Output Cartesian product 𝑇′ of 𝑇 and 𝐴 after trimming operation.

29

Chapter 3

Language properties

In this chapter we discuss some known language properties, as well as methods of

describing language properties using input-altering transducer. Afterwards, we mainly

focus on using input-preserving transducers to describe language properties. We

present two language properties for a channel: the error-detection property and the

error-correction property. Also we provide two propositions that are important to the

question of whether a given language satisfies a given property.

3.1 Various language properties

We define a language property to be a set of languages. In practice, these languages

posses a certain common feature of interest. If a given language belongs to the set of

languages defining a particular language property, we say that this given language

satisfies this particular property. Here we enumerate the code property and some

classical code related properties used during our research, such as the

well-investigated prefix code property, the suffix code property, the infix code

property, and so on.

3.1.1 Code property

One of the most important and widely studied language properties is the code property

(also called unique decodability) [5, 39]. Codes are useful for data compression.

30

However, a code would be useless if the code words cannot be identified in a unique

way from the encoded message. A language 𝐿 satisfies the code property if there is

only one possible way to decompose the message 𝑤1𝑤2 ⋯ 𝑤𝑛 into the words

𝑤1, 𝑤2, ⋯ , 𝑤𝑛 ∈ 𝐿.

Example: Consider the language 𝐿 = {0, 10, 010, 101} . A message such as

‘0100101010’ can be decomposed over 𝐿 in more than one ways. For example,

‘0100101010’ can be interpreted in at least two ways: ‘(0)(10)(010)(101)(0)’ and

‘(010)(0)(101)(010)’ . Therefore, the language 𝐿 = {0, 10, 010, 101} does not

satisfy the code property and therefore cannot be used for data compression.

To our knowledge, although an algorithm for deciding whether a given regular

language is a code is given in [21], no one has provided an open web interface for

executing such an algorithm. One goal of this research is to implement the algorithm

in [21] to decide whether a given regular language satisfies the code property and to

provide a web interface which is hosted on the university server and available to

unrestricted users. The algorithm will be presented in Chapter 4 and we implement

this algorithm in our web interface in Chapter 6.

3.1.2 Code related properties

Code related properties are well investigated. Next, we provide examples of five

different code related properties:

31

 A language satisfies the prefix code property if no word in this language is a

prefix of any other word in the same language. For example, the language

𝐿1 = {𝑎𝑏, 𝑎𝑎, 𝑏𝑎𝑏} satisfies the prefix code property (also we say that 𝐿1

is a prefix code). However, the language 𝐿2 = {𝑎𝑏, 𝑎𝑎, 𝑎𝑏𝑎𝑎} is not a

prefix code because 𝑎𝑏 is a prefix of 𝑎𝑏𝑎𝑎.

 A language satisfies the suffix code property if no word in this language is a

suffix of any other word in the same language. For example, the language

𝐿1 = {𝑎𝑏, 𝑎𝑎, 𝑏𝑏𝑏} satisfies the suffix code property (also we say that 𝐿1

is a suffix code). However, the language 𝐿2 = {𝑎𝑏, 𝑎𝑎, 𝑏𝑎𝑏} is not a suffix

code because 𝑎𝑏 is a suffix of 𝑏𝑎𝑏.

 A language satisfies the infix code property if no word in this language is an

infix of any other word in the same language. An infix of a word 𝑤 is a

word of the form 𝑢 such that 𝑤 = 𝑥𝑢𝑦 for some prefix 𝑥 and suffix 𝑦 of

𝑤. For example, the language 𝐿1 = {𝑎𝑏, 𝑏𝑎, 𝑎𝑎𝑎} satisfies the infix code

property (also we say that 𝐿1 is an infix code). However, the language

𝐿2 = {𝑏𝑎, 𝑏𝑏, 𝑎𝑏𝑏𝑎𝑏} is not an infix code because both 𝑏𝑎 ad 𝑏𝑏 are

infixes of 𝑎𝑏𝑏𝑎𝑏.

 A language satisfies the outfix code property if no word in this language is an

outfix of any other word in the same language. An outfix of a word 𝑤 is a

word of the form 𝑥𝑦 such that 𝑤 = 𝑥𝑢𝑦 for some infix 𝑢 of 𝑤 . For

example, the language 𝐿1 = {𝑎𝑏, 𝑎𝑎, 𝑏𝑎𝑏𝑏} satisfies the outfix code

property (also we say that 𝐿1 is an outfix code). However, the language

32

𝐿2 = {𝑎𝑏, 𝑎𝑎, 𝑎𝑎𝑏𝑎𝑏} is not an outfix code because both 𝑎𝑏 and 𝑎𝑎 are

outfixes of 𝑎𝑎𝑏𝑎𝑏.

 A language satisfies the hypercode property if no word in the language is a

scattered subword of another word in the same language. A word 𝑢 is a

scattered subword of a word 𝑤, if 𝑢 is of the form 𝑢1𝑢2 ⋯ 𝑢𝑛 and 𝑤 is of

the form 𝑥1𝑢1𝑥2𝑢2 ⋯ 𝑥𝑛𝑢𝑛𝑥𝑛+1 . For example, the language 𝐿1 =

 {𝑎𝑏, 𝑎𝑎, 𝑏𝑏𝑏} satisfies the hypercode property (also we say that 𝐿1 is a

hypercode). However, the language 𝐿2 = {𝑎𝑏𝑎, 𝑎𝑎, 𝑎𝑎𝑏𝑎𝑏} is not a

hypercode because both 𝑎𝑏𝑎 and 𝑎𝑎 are subwords of 𝑎𝑎𝑏𝑎𝑏.

Other language properties, such as overlap-free language property, solid code property,

and thin language property are also well investigated. Readers are referred to [7, 20,

26, 28, 41, 46] for more details about these code related properties.

3.2 Describing language properties using input-altering and

input-preserving transducers

There are different ways to describe a language property. Usually, we use general

mathematical methods [45] or formal methods to represent language properties. Three

main formal methods for describing language properties are discussed in [15, 16]:

1. Implication conditions [25], which use first order logic formulas to describe

language properties.

2. Regular Trajectories [13, 14], which describe language properties by regular

33

expressions.

3. Transducer methods, which describe language properties using various types

of transducers.

In this thesis, we use transducers to describe language properties. As discussed in

Chapter 2, a transducer can be used to realize a binary relation between words. Some

language properties are defined by a relation between words within the language. Next,

we discuss input-altering transducers that describe the code related properties we

mentioned above.

3.2.1 Input-altering transducer

In [15, 16], the authors have used transducers to formally describe code related

properties as in the examples in the previous section, and present methods for deciding

whether a regular language satisfies a particular language property described by a

transducer. However, the method in [15, 16] does have limitations. One of these

limitations is that the transducer describing the language property is required to be an

input-altering transducer.

A transducer 𝑇 is called input-altering if for any given input word over the alphabet,

this input word is not contained in the set of output words of 𝑇, that is, ∀𝑥 ∈ 𝛴∗, 𝑥 ∉

𝑇(𝑥). Formally, the language property 𝒫𝑇 described by an input-altering transducer

𝑇 is defined as follows:

34

 𝒫𝑇 = {𝐿 ⊆ 𝛴∗ | 𝑇(𝐿) ∩ 𝐿 = ∅}. (3.1)

In [15, 16], all of the transducers used to describe language properties are

input-altering transducers, such as the transducers describing the prefix code, the

suffix code, and the infix code property. For example, we can construct an

input-altering transducer 𝑇𝑝 such that, for any given input word, 𝑇𝑝 can generate

every possible proper prefix of this input word. Proper prefix of word means that the

prefix of the word does not equal the original word itself. See Figure 3.1 for example.

Figure 3.1: Input-altering transducer 𝑇𝑝 describing the prefix code property.

Example: Let us consider the input-altering transducer 𝑇𝑝 in Figure 3.1. In 𝑇𝑝,

symbol 𝜎 represents any symbol in a given alphabet. If a word 𝑏𝑎𝑏𝑏 is sent to the

transducer 𝑇𝑝 , the possible outputs is the set of proper prefixes of 𝑏𝑎𝑏𝑏 :

{𝜆 , 𝑏, 𝑏𝑎, 𝑏𝑎𝑏}.

Similar to transducer 𝑇𝑝 describing the prefix code property, we can also construct an

input-altering transducer 𝑇𝑠 such that for any given input word, 𝑇𝑠 can generate

every possible proper suffix of this input word. Transducer 𝑇𝑠 in Figure 3.2 describes

the suffix code property.

35

Figure 3.2: Input-altering transducer 𝑇𝑠 describing the suffix code property.

Example: Let us consider the input-altering transducer 𝑇𝑠 in Figure 3.2. If a word

𝑏𝑎𝑏𝑏 is sent to 𝑇𝑠, the possible outputs of 𝑇𝑠 is the set of proper suffixes of 𝑏𝑎𝑏𝑏:

{𝜆 , 𝑏, 𝑏𝑏, 𝑎𝑏𝑏}.

We can also construct an input-altering transducer 𝑇𝑖 such that for any given input

word, 𝑇𝑖 can generate every possible proper infix words of this input word.

Transducer 𝑇𝑖 in Figure 3.3 describes the infix code property.

Figure 3.3: Input-altering transducer 𝑇𝑖 describing the infix code property.

Example: Let us consider the input-altering transducer 𝑇𝑖 in Figure 3.3 for example.

If a word 𝑏𝑎𝑏𝑏 is sent to 𝑇𝑖, the possible outputs of 𝑇𝑖 is the set of proper infixes

of 𝑏𝑎𝑏𝑏: { 𝜆 , 𝑏, 𝑏𝑏, 𝑎𝑏𝑏, 𝑏𝑎, 𝑏𝑎𝑏, 𝑎𝑏}.

36

We present the input-altering transducers describing the outfix code property and the

hypercode property in Figure 3.4 and Figure 3.5.

Figure 3.4: Input-altering transducer 𝑇𝑜 describing the outfix code property

Figure 3.5: Input-altering transducer 𝑇ℎ describing the hypercode property

The question of deciding whether a language 𝐿 satisfies a given language property

𝒫𝑇 described by input-altering transducer 𝑇 equals to testing the following condition:

𝑇(𝐿) ∩ 𝐿 = ∅.

This question is resolved by an algorithm mainly relying on the Cartesian product

operation between two automata that we mentioned in Section 2.3. In order to use

some of the functions in the web interface [36], we implemented algorithms to

construct input-altering transducers describing these fixed code-related properties

based on a given alphabet. We discuss these algorithms in Chapter 4.

37

3.2.2 Input-preserving transducer

Some language properties are described by input-preserving transducers, a method

which is more general than that of input-altering transducers. Especially, we use

input-preserving transducers to simulate combinatorial channels and decide the

error-detection and error-correction properties. The question of deciding whether a

language satisfies a given language property described by an input-preserving

transducer is not addressed in [15]. It is addressed in [16], but without any details that

would allow for time complexity estimates, and method of implementation.

Contrary to an input-altering transducer, a transducer 𝑇 is called input-preserving, if

for any given input word over the alphabet, the original input word is included in the

set of output words of 𝑇, that is, ∀𝑥 ∈ 𝛴∗, 𝑥 ∈ 𝑇(𝑥). Formally, the language property

𝒫𝑇
′ described by an input-preserving transducer 𝑇 is defined as follows:

 𝒫𝑇
′ = {𝐿 ⊆ 𝛴∗ | ∀𝑥 ∈ 𝐿, 𝑇(𝑥) ∩ (𝐿 − 𝑥) = ∅}. (3.2)

Example: Let us consider the input-preserving transducer 𝑇𝑝
′ describing the prefix

code property in Figure 3.6. If a word 𝑏𝑎𝑏𝑏 is sent to 𝑇𝑝
′, the possible outputs of

𝑇𝑝
′ is the set of prefixes of 𝑏𝑎𝑏𝑏 including itself: {𝜆 , 𝑏, 𝑏𝑎, 𝑏𝑎𝑏, 𝑏𝑎𝑏𝑏}. 𝑇𝑝 and

𝑇𝑝
′ both describe the prefix code property. The difference between 𝑇𝑝 and 𝑇𝑝

′ is

that in 𝑇𝑝, state 0 is not a final state while, in 𝑇𝑝
′ state 0 is a final state, which

makes 𝑇𝑝
′ input-preserving. Similarly, the transducers describing the suffix code and

infix code properties are illustrated in Figure 3.7.

38

Figure 3.6: Input-preserving transducer 𝑇𝑝
′ describing the prefix code property.

(a) Input-preserving transducer 𝑇𝑠
′ describing the suffix code property.

(b) Input-preserving transducer 𝑇𝑖
′ describing the infix code property.

Figure 3.7

One goal of this thesis is to present the details of an algorithm to answer the

satisfaction question: whether a given regular language satisfies the language property

described by given input-preserving transducer. We discuss this algorithm in Chapter

4 and implementation of this algorithm in our web interface in Chapter 6.

3.3 Error-detection and error-correction

3.3.1 Error-detection

A major objective in data communication systems is to process reliably a message that

was transmitted via some communication channel 𝐶 capable of introducing errors,

39

such as substitution, insertion, and deletion errors. In [31, 33], if 𝐶 is a channel, a

language 𝐿 satisfies the error-detection property for 𝐶 (also we say that language 𝐿

is error-detecting for 𝐶), if

 ∀ 𝑤′, 𝑥 ∶ 𝑥 ∈ 𝐿 ∧ 𝑤′ ∈ 𝑇(𝑥) ∧ 𝑤′ ∈ 𝐿 → 𝑥 = 𝑤′ (3.3)

which means, if a pair of words (𝑥, 𝑤′) ∈ 𝐶, and 𝑥, 𝑤′ ∈ 𝐿, then 𝑥 = 𝑤′. In other

words, if a word 𝑤′ is received via the channel 𝐶 and 𝑤′ ∈ 𝐿, then 𝑤′ must be

correct and equal to 𝑥 ∈ 𝐿 that was sent to 𝐶. However, if the received word 𝑤′ ∉ 𝐿,

then there must be a transmission error. An equivalent formulation is that the channel

𝐶 cannot translate a word in the language 𝐿 into another word that is also in 𝐿:

 L is error-detecting for C ↔ ∀ x ∈ L, T(x) ∩ (L-x) = ∅ . (3.4)

Therefore, from Equation 3.2 and 3.4, we conclude that the question of deciding

whether a given language 𝐿 satisfies the property 𝒫𝑇
′ described by an

input-preserving transducer 𝑇 is equivalent to decide whether 𝐿 is error-detecting

for the channel 𝐶 realized by 𝑇.

Example: Let us consider the channel 𝑆𝐼𝐷(2, ∞). 𝑆𝐼𝐷(2, ∞) is the relation that

consists of all pairs of words (𝑢, 𝑣) such that 𝑣 results by performing at most 2

substitutions/insertions/deletions/ in 𝑢 . For example, the pair (00000,0100) ∈

𝑆𝐼𝐷(2, ∞) , while (00000,111) ∉ 𝑆𝐼𝐷(2, ∞) . In Figure 3.8, we show an

input-preserving transducer realizing 𝑆𝐼𝐷(2, ∞). According to Equation 3.4, the

transducer in Figure 3.8 describes the error-detection property for 𝑆𝐼𝐷(2, ∞)

40

channel.

Figure 3.8: Input-preserving transducer realizing the 𝑆𝐼𝐷(2, ∞) channel.

3.3.2 Error-correction

In data communication systems, an error is detected exactly when a word 𝑤 is

received via a channel 𝐶 and 𝑤 is not in the language 𝐿 (transmission error). In

this situation, it is possible to find out which input word was transmitted, if 𝐿 is

error-correcting for 𝐶. Formally, a language 𝐿 satisfies the error-correction property

for 𝐶 (we also say that 𝐿 is error-correcting for 𝐶), if

𝑥 ∈ 𝐿, (𝑥, 𝑤) ∈ 𝐶, 𝑎𝑛𝑑 𝑣 ∈ 𝐿, (𝑣, 𝑤) ∈ 𝐶 → 𝑥 = 𝑣.

This means that, even if 𝑤 has been received and contains errors, we can find out the

unique input word 𝑥 = 𝑣 ∈ 𝐿, correcting thus the errors in 𝑤. In other words, if 𝐿 is

error-correcting for 𝐶, then for any different two words in the language 𝐿, the

channel 𝐶 cannot change these two words into the same output word.

Note that, if a language 𝐿 is error-correcting for the channel 𝐶, then it is also

error-detecting for channel 𝐶. Readers can refer to [31, 33] for details about the

error-detection and error-correction property.

41

Although there are algorithms proposed for deciding whether a given language 𝐿 is

error-detecting or error-correcting for a channel 𝐶 realized by transducer 𝑇, no one

has provided an open implementation of these algorithms, with the exception of [10]

in which the error-detection property is implemented for channels realized by

sequential transducers. In this paper, we also focus on answering the questions about

whether a given language is error-detecting for a channel realized by an

input-preserving transducer (equivalent to the question of whether a given language

satisfies a given language property described by an input-preserving transducer) and

whether a given language is error-correcting for the channel realized by a given

transducer.

3.3.3 Two propositions

We present two propositions for answering these error-detection and error-correction

questions next. Algorithms and examples for answering these questions will be

discussed in Chapter 4.

Proposition 3.1: Let 𝐶 be a channel. A language 𝐿 is error-detecting for 𝐶 if and

only if the relation 𝐶 ↓ 𝐿 ↑ 𝐿 is functional. Equivalently, let 𝒫𝑇
′ be a language

property described by an input-preserving transducer 𝑇, A language 𝐿 satisfies 𝒫𝑇
′

if and only if the transducer 𝑇 ↓ 𝐴 ↑ 𝐴 is functional.

Proposition 2: Let 𝐶 be a channel. A language 𝐿 is error-correcting for 𝐶 if and

42

only if the relation 𝐶−1 ↑ 𝐿 is functional.

In our research, we use these two propositions and the tools discussed in Chapter 2 to

decide whether a language 𝐿 accepted by an automaton 𝐴 is error-detecting or

error-correcting for the channel 𝐶 realized by a given input-preserving transducer 𝑇.

We will describe how to use these two propositions to address this error-detecting and

error-correcting question in Chapter 4.

43

Chapter 4

Algorithmic tools and decision algorithms

In this chapter, we focus on presenting the algorithmic tools and decision algorithms

to answer the following questions:

1. Given a transducer 𝑇, decide whether 𝑇 is functional.

2. Given a transducer 𝑇 realizing a channel 𝐶 and an automaton 𝐴 accepting a

language 𝐿, construct transducers realizing the relations 𝐶 ↓ 𝐿 ↑ 𝐿 and 𝐶−1 ↑ 𝐿.

3. Given a language property 𝒫𝑇
′ described by an input-preserving transducer 𝑇,

and a language 𝐿 accepted by an automaton 𝐴, decide whether 𝐿 satisfies the

property 𝒫𝑇
′. If not, we generate a counterexample to prove why 𝐿 does not

satisfy the property 𝒫𝑇
′.

4. Given a channel 𝐶 realized by an input-preserving transducer 𝑇 and a language

𝐿 accepted by an automaton 𝐴, decide whether 𝐿 is error-detecting for 𝐶. If not,

we generate a counterexample to prove why 𝐿 is not error-detecting for 𝐶.

5. Given a channel 𝐶 realized by an input-preserving transducer 𝑇 and a language

𝐿 accepted by an automaton 𝐴, decide whether 𝐿 is error-correcting for 𝐶. If not,

we generate a counterexample to prove why 𝐿 is not error-correcting for 𝐶.

6. Given a language 𝐿 , decide whether 𝐿 is a code. If not, we generate a

counterexample to prove why 𝐿 is not a code.

7. For certain fixed properties 𝒫, given an alphabet 𝛴, construct an input-altering

transducer 𝑇 that describes 𝒫, that is, 𝒫 = 𝒫𝑇.

44

8. Given a transducer 𝑇 in normal formal, translate 𝑇 into an equivalent real-time

transducer 𝑇′.

We follow the two propositions in Chapter 3 and apply the tools discussed in Chapter

2 to answer these questions. Also, we use plenty of examples to illustrate to readers

the details of these methods.

4.1 Deciding functionality of a transducer

We first consider the question of whether a given transducer 𝑇 is functional, as this

question is fundamental to answering other questions: deciding whether a language 𝐿

accepted by an automaton 𝐴 is error-detecting or error-correcting for a channel 𝐶

realized by an input-preserving transducer 𝑇, and whether a given language 𝐿 is a

code.

A transducer 𝑇 realizes the relation 𝑅 consisting of all pairs (𝑢, 𝑣) accepted by 𝑇.

The relation 𝑅 is called functional, if (𝑢, 𝑣1) ∈ 𝑅 and (𝑢, 𝑣2) ∈ 𝑅 imply that

𝑣1 = 𝑣2 , therefore deciding the functionality of 𝑇 means to decide whether the

relation 𝑅 realized by 𝑇 is functional, and vice versa.

Previous researchers have already proposed algorithms to decide the functionality of a

transducer [3, 21, 23, 40], after it was realized in [44] that transducer functionality is

decidable. Head & Weber [21] firstly brought forward an algorithm to decide the

45

functionality of a restricted sequential transducer in quadratic time. Mohri [40] then

proposed a more generalized algorithm to decide the functionality of a transducer in

standard form. Also, Béal et al [3] introduced a very similar algorithm to Mohri’s

algorithm, in order to decide the functionality of a real-time transducer. We find that

Mohri’s algorithm and Béal et al’s algorithms can be used to decide the functionality

of a transducer either in standard form or in real-time. We present their algorithms that

apply to different types of transducers: restricted sequential transducer, standard form

transducer, and real-time transducer. In addition, when given a real-time transducer,

we introduce a pre-functionality test to make a quick decision related to the

functionality of a real-time transducer.

4.1.1 Functionality of a restricted sequential transducer

In [21], the following algorithm is brought forward to decide the functionality of a

restricted sequential transducer in quadratic time (see Figure 4.1 for example):

Algorithm 4.1:

Let 𝑇 = (𝑄, 𝛴, 𝛤, 𝑞0, 𝐹, 𝐸) be a restricted sequential transducer. We build an NFA

𝐺′ = (𝑄 × 𝑄, (0,1), 𝐸′, (𝑞0, 𝑞0), 𝐹 × 𝐹) as follows:

1. Set the pair (𝑞0, 𝑞0) as the start state of 𝐺′, where 𝑞0 is the start state of 𝑇.

2. We build the transition set 𝐸′ as follows. Each pair of pairs (𝑝, 𝑝′) and

(𝑞, 𝑞′) will be connected by at most one transition in 𝐺′. The pair will be

connected by a transition ((𝑝, 𝑝′), 𝑏𝑖𝑡, (𝑞, 𝑞′)) in 𝐸′ if and only if there is a

symbol 𝑥 in 𝛴 for which there are transitions (𝑝, 𝑥/𝑦, 𝑞) and (𝑝′, 𝑥/

46

𝑦′, 𝑞′) in 𝐸. If, for every such 𝑥 in 𝛴, 𝑦 = 𝑦′ then 𝑏𝑖𝑡 = 0, otherwise

𝑏𝑖𝑡 = 1.

3. Set all the pairs in 𝐹 × 𝐹 as the final states of 𝐺′, where 𝐹 is the set of

final states in 𝑇.

4. Apply the trimming operation on 𝐺′ to obtain the trimmed NFA 𝐺

equivalent to 𝐺′.

5. 𝑇 is functional if and only if symbol 1 does not appear as the label of any

transition of 𝐺.

Figure 4.1: A restricted sequential transducer

Example: Let us consider the restricted sequential transducer 𝑇 in Figure 4.1. First

of all we construct the start state (0, 0) of 𝐺′ in Figure 4.2a. As, there is a transition

(0, 𝑎/𝑎, 1) in 𝑇 which matches the input label with itself, so we add a transition

((0, 0), 𝑏𝑖𝑡, (1,1)) , where 𝑏𝑖𝑡 is determined later, and record the information

{𝑎, (𝑎, 𝑎)} which tells us that on the same input 𝑎, there are two transitions with

outputs (𝑎, 𝑎). Also for the transition (0, 𝑏/𝑏, 1) in 𝑇, we also add the transition

((0, 0), 𝑏𝑖𝑡, (1,1)) and record the information {𝑏, (𝑏, 𝑏)}. Then we conclude that

𝑏𝑖𝑡 = 0, as for 𝑎 in the set of information, the output 𝑎 = 𝑎 and for 𝑏 in the set of

information, 𝑏 = 𝑏 . So we change the transition ((0, 0), 𝑏𝑖𝑡, (1,1)) to

47

((0, 0), 0, (1,1)) in Figure 4.2b. Similarly, we add the transition ((1, 1), 0, (2,2)) in

Figure 4.2c. For the transitions (0, 𝑏/𝑏, 1) and (1, 𝑏/𝑏, 2), we add two transitions

((0, 1), 𝑏𝑖𝑡, (1,2)) and ((1, 0), 𝑏𝑖𝑡, (2,1)), and record the information {𝑏, (𝑏, 𝑏)}.

We can conclude that 𝑏𝑖𝑡 = 0 and change these transitions to ((0, 1), 0, (1,2)) and

((1, 0), 0, (2,1)) respectively as shown in Figure 4.2c. And finally, we designate state

(2,2) as the final state of 𝐺′ in Figure 4.2d.

 (a) Start state of 𝐺′ (b) Add transition ((0, 0), 0, (1,1))

 (c) Add transition ((1, 1), 0, (2,2)), (d) Deciding the final state of 𝐺′

 ((0, 1), 0, (1,2)), and ((1, 0), 0, (2,1))

(e) The trimmed NFA 𝐺 equivalent to 𝐺′

Figure 4.2: Processing of constructing 𝐺′ using Algorithm 4.1.

Then we perform the trimming operation on the NFA 𝐺′ in Figure 4.2d. As the

48

transitions ((0, 1), 0, (1,2)) and ((1, 0), 0, (2,1)) are not accessible from the start

state (0, 0), we delete these two transitions and the four related states. The trimmed

NFA 𝐺 equivalent to 𝐺′ is shown in Figure 4.2e.

For the NFA 𝐺 in Figure 4.2e, all the labels in the transitions are 0. Therefore, the

restricted sequential transducer 𝑇 in Figure 4.1 is functional. Note that Algorithm

4.1 can only decide the functionality of a restricted sequential transducer.

4.1.2 Functionality of a standard form transducer or a real-time

transducer

As Mohri’s [40] and Béal et al’s [3] algorithms are very similar, we only give one

description as follows:

Algorithm 4.2:

Given a transducer 𝑇 in standard form (or real-time) with start state 𝑠, construct the

product machine 𝑈 as follows:

1. If (𝑝, 𝑎/𝑥, 𝑞) and (𝑝′, 𝑎/𝑥′, 𝑞′) are transitions in 𝑇 then add to 𝑈 the

transition ((𝑝, 𝑝′), (𝑥, 𝑥′), (𝑞, 𝑞′)).

2. The start state of 𝑈 is (𝑠, 𝑠).

3. The final states of 𝑈 are all pairs (𝑓, 𝑓′) where both 𝑓 and 𝑓′ are final

states in 𝑇.

4. Only keep states that can be reached from (𝑠, 𝑠) and can reach a final state

(𝑓, 𝑓′).

49

After constructing 𝑈, assign to each state of 𝑈 a value, which is either 𝑍𝐸𝑅𝑂, or a

pair of words in {(𝜆, 𝜆), (𝜆, 𝑢), (𝑢, 𝜆)}, where 𝜆 is the empty word and 𝑢 is a

nonempty word, as follows:

1. The start state gets the value (𝜆, 𝜆).

2. If a state (𝑝, 𝑝′) has a value (𝑦, 𝑦′) and there is a transition

((𝑝, 𝑝′), (𝑥, 𝑥′), (𝑞, 𝑞′)) then (𝑞, 𝑞′) gets a value as follows:

(a) If 𝑦𝑥 is a prefix of 𝑦′𝑥′, so that 𝑦′𝑥′ = 𝑦𝑥𝑢, then 𝑣𝑎𝑙𝑢𝑒 = (𝜆, 𝑢).

(b) If 𝑦′𝑥′ is a prefix of 𝑦𝑥, so that 𝑦𝑥 = 𝑦′𝑥′𝑢, then 𝑣𝑎𝑙𝑢𝑒 = (𝑢, 𝜆).

(c) If 𝑦𝑥 equals 𝑦′𝑥′, then 𝑣𝑎𝑙𝑢𝑒 = (𝜆, 𝜆).

(d) Else, 𝑣𝑎𝑙𝑢𝑒 = 𝑍𝐸𝑅𝑂.

3. Repeat until a state gets two different values, or the state value is 𝑍𝐸𝑅𝑂, or

every state gets one value.

If a state has two different values, or a state value is 𝑍𝐸𝑅𝑂, or the value of a final

state is not (𝜆, 𝜆), then output NO (in other words, 𝑇 is not functional). If every state

has one value AND every final state of 𝑈 has value (𝜆, 𝜆) then output YES (in other

words, 𝑇 is functional).

Example: Let us consider the standard form transducer 𝑇 in Figure 4.1 again for

constructing the product machine 𝑈. The start state of 𝑈 is (0,0) and the final state

of 𝑈 is (2,2). As (0, 𝑎/𝑎, 1) is a transition in 𝑇 which matches the input label

with itself, we add the transition ((0, 0), (𝑎, 𝑎), (1,1)) to 𝑈. Also, as (1, 𝑏/𝑏, 2) is a

transition in 𝑇, we add the transition((1, 1), (𝑏, 𝑏), (2,2)) to 𝑈. For the transitions

50

(0, 𝑏/𝑏, 1) and (1, 𝑏/𝑏, 2) , we add two transitions ((0, 1), (𝑏, 𝑏), (1,2)) and

((1, 0), (𝑏, 𝑏), (2,1)) to 𝑈 . However, as the transitions ((0, 1), (𝑏, 𝑏), (1,2)) and

((1, 0), (𝑏, 𝑏), (2,1)) are not accessible from the start state (0, 0), we delete these

two transitions and the four related states. The product machine 𝑈 we constructed

using Algorithm 4.2 is presented in Figure 4.3.

Figure 4.3: The product machine 𝑈 we constructed using Algorithm 4.2.

Next we add a value to every state in 𝑈 following the second part of Algorithm 4.2.

The value of the start state (0,0) is (𝜆, 𝜆) . Then, there is a transition

((0, 0), (𝑎, 𝑎), (1,1)) in 𝑈, so both 𝑦′𝑥′ and 𝑦𝑥 are 𝑎𝜆, therefore the value of

state (1,1) is (𝜆, 𝜆). Also, there is a transition ((0,0), (𝑏, 𝑏), (1,1)), so both 𝑦′𝑥′

and 𝑦𝑥 are 𝑏𝜆, so we add the value (𝜆, 𝜆) to state (1,1). As state (1,1) has

already got a value (𝜆, 𝜆), then we don’t have to add a new value to (1,1). Similarly,

the value for the final state (2,2) is (𝜆, 𝜆). The process of adding a value to each

state in 𝑈 is presented in Figure 4.4.

51

 (a) Give the start state a value (𝜆, 𝜆) (b) Give state (1,1) a value (𝜆, 𝜆)

(c) Give the final state (2,2) a value (λ, λ)

Figure 4.4

As every state has one value and the value of the final state is (𝜆, 𝜆), we conclude that

the standard form transducer 𝑇 in Figure 4.1 is functional.

As Figure 4.1 is a simple transducer, we now illustrate another transducer 𝑇 in

standard form in Figure 4.5 to provide a case where 𝑇 is not functional.

Figure 4.5: A standard form transducer 𝑇.

52

Example: Let us consider the standard form transducer 𝑇 in Figure 4.5 for

constructing the product machine 𝑈. For the transitions (0, 𝜆/𝑎, 1) and (0, 𝜆/𝑏, 1)

in 𝑇 , we add four transitions ((0, 0), (𝑎, 𝑎), (1,1)) , ((0, 0), (𝑎, 𝑏), (1,1)) ,

((0, 0), (𝑏, 𝑎), (1,1)) , and ((0, 0), (𝑏, 𝑏), (1,1)) to 𝑈 . Other transitions are

constructed similarly to the previous example. The trimmed product machine 𝑈 we

constructed using Algorithm 4.2 is presented in Figure 4.6. Note that for some

transitions in 𝑇, such as (0, 𝑏/𝑏, 2) and (1, 𝑏/𝑏, 3), we can add the transitions

((0, 1), (𝑏, 𝑏), (2,3)) and ((1, 0), (𝑏, 𝑏), (3,2)) to 𝑈. However, as these transitions

𝑎𝑟𝑒 not accessible from the start state (0, 0), they are not shown in Figure 4.6.

Figure 4.6: The product machine 𝑈 we constructed using Algorithm 4.2.

Next we add a value to every state in 𝑈. By the description of Algorithm 4.2, the

value of the start state (0,0) is (𝜆, 𝜆). As there is a transition ((0, 0), (𝑎, 𝑏), (1,1)),

so 𝑦𝑥 = 𝑎𝜆 and 𝑦′𝑥′ = 𝑏𝜆. Note that 𝑦′𝑥′ is not a prefix of 𝑦𝑥, and 𝑦𝑥 is not a

prefix of 𝑦′𝑥′, and 𝑦′𝑥′ ≠ 𝑦𝑥. Therefore the value of state (1,1) is 𝑍𝐸𝑅𝑂. We then

conclude that the transducer 𝑇 in Figure 4.6 is not functional.

53

4.1.3 Pre-functionality test of a real-time transducer

Recall that in Section 4.1.2, we can use Algorithm 4.2 to decide the functionality of a

real-time transducer. When given a real-time transducer, the output 𝐼(𝑞) of a start

state and the output 𝐹(𝑞) of a final state are regular expressions. In addition, the

output label of every transition (𝑝, 𝑥/𝑒, 𝑞) in a real-time transducer is also a regular

expression 𝑒 ∈ 𝑅𝐸𝑋(𝛤), that is, 𝑒 is a regular expression over 𝛤. If one of the

regular expressions, 𝐼(𝑞), 𝐹(𝑞), or 𝑒 ∈ 𝑅𝐸𝑋(𝛤), contains at least two words, we can

get at least two different outputs through the computation of this real-time transducer

based on the same given input, which means that the real-time transducer is not

functional. The following pre-functionality test decides if a regular expression

represents a language that contains at least two words:

1. First we use the following rules to simplify a regular expression 𝑅𝐸:

a) 𝜆 ∙ 𝑅𝐸 = 𝑅𝐸 ∙ 𝜆 = 𝑅𝐸.

b) ∅ ∙ 𝑅𝐸 = 𝑅𝐸 ∙ ∅ = ∅

c) ∅ + 𝑅𝐸 = 𝑅𝐸 + ∅ = 𝑅𝐸.

d) 𝜆 + 𝑅𝐸 = 𝑅𝐸 + 𝜆 = 𝑅𝐸, where 𝜆 ∈ 𝐿(𝑅𝐸).

e) If a regular expression unions the same regular expression to itself, the

simplification result is the regular expression itself. For example,

𝑎𝑏𝑐 + 𝑎𝑏𝑐 = 𝑎𝑏𝑐.

f) (𝑅𝐸∗)∗ = 𝑅𝐸∗.

g) ∅∗ = 𝜆∗ = 𝜆.

2. After simplification, if the symbol + or ∗ is included in the regular

54

expression 𝑅𝐸, the language 𝐿 represented by 𝑅𝐸 contains two or more

words, because the union symbol + indicates that the left part of 𝑅𝐸 is

different from the right part of 𝑅𝐸 and the Kleene start symbol ∗ indicates

that 𝑅𝐸 contains infinitely many words. Either of the symbols + or ∗

implies that |𝐿| ≥ 2, where 𝐿 is the language represented by 𝑅𝐸.

3. Examine all the regular expressions in the real-time transducer. If one regular

expression represents a language containing at least two words, then the

real-time transducer is not functional. If every regular expression contains

only one word, then continue to use Algorithm 4.2 to test the functionality of

the real-time transducer.

The above simplification process in the pre-functionality test only takes linear time,

where we allow that the given regular expression is represented as a tree. Algorithm

4.2 takes quadratic time to decide whether a given real-time transducer is functional,

therefore the pre-functionality test is faster.

4.2 Deciding whether a language satisfies the property

described by an input-preserving transducer (deciding the

error-detection property)

In this section, we focus on addressing the following two equivalent questions:

1. Given a language property 𝒫𝑇
′ described by an input-preserving transducer

𝑇 and a language 𝐿 accepted by an automaton 𝐴, decide whether 𝐿 satisfies

55

the property 𝒫𝑇
′.

2. Given a channel 𝐶 realized by an input-preserving transducer 𝑇 and a

language 𝐿 accepted by an automaton 𝐴 , decide whether 𝐿 is

error-detecting for 𝐶.

Recall that, as discussed in Chapter 3, the above two questions are equivalent. We pick

the first problem to demonstrate the algorithm. We have two steps for answering the

first question following Proposition 3.1:

1. Construct a transducer 𝑇′ that equals to transducer 𝑇 ↓ 𝐴 ↑ 𝐴.

2. Test whether 𝑇′ is functional using Algorithm 4.2.

Next, we provide an example involving the input-preserving transducer 𝑇 describing

the suffix code property over the alphabet {𝑎, 𝑏} (Figure 4.7) and an automaton 𝐴

accepting the language 𝐿 = {𝑎𝑏, 𝑏𝑏} (Figure 4.8). For any given input word, the

possible outputs of 𝑇 is the set of suffixes of the input word, including the input word

itself. In order to decide whether 𝐿 satisfies the suffix code property, we construct the

transducer 𝑇′ = 𝑇 ↓ 𝐴 ↑ 𝐴, and then decide whether 𝑇′ is functional.

Figure 4.7: The input-preserving transducer 𝑇 describing the suffix code property.

56

Figure 4.8: The automaton 𝐴 accepting the language 𝐿 = {𝑎𝑏, 𝑏𝑏}.

4.2.1 Constructing the transducer 𝑻 ↓ 𝑨 ↑ 𝑨

Recall that in Proposition 3.1, a language 𝐿 satisfies a given language property

described by an input-preserving transducer 𝑇 if and only if the transducer 𝑇 ↓ 𝐴 ↑ 𝐴

is functional. We now show the steps of constructing 𝑇 ↓ 𝐴 ↑ 𝐴 based on the tools in

Chapter 2. First we use the input Cartesian product operation of a transducer and an

automaton (see Section 2.6) to construct the transducer 𝑀 = 𝑇 ↓ 𝐴.

Then, the next step would be to construct another transducer 𝑇′ = 𝑀 ↑ 𝐴 = 𝑇 ↓ 𝐴 ↑ 𝐴.

However, instead of using 𝑀 ↑ 𝐴 as a new operation, we use the following fact:

𝑅 ↑ 𝐿 = (R−1 ↓ 𝐿)−1.

More specifically, we define 𝑇′ = (𝑀−1 ↓ 𝐴)−1 = 𝑀 ↑ 𝐴 = 𝑇 ↓ 𝐴 ↑ 𝐴. Therefore,

after we constructed 𝑀 = 𝑇 ↓ 𝐴, we build the inverse transducer 𝑀−1 of 𝑀 and

construct the input Cartesian product 𝑀′ = 𝑀−1 ↓ 𝐴 of the transducer 𝑀−1 and the

automaton 𝐴. Finally, we further construct 𝑇′ = (𝑀′)−1 = (𝑀−1 ↓ 𝐴)−1, which is

equal to the transducer 𝑇 ↓ 𝐴 ↑ 𝐴.

Example: Let us consider the input-preserving transducer 𝑇 describing the suffix

code property (Figure 4.7) and the automaton 𝐴 (Figure 4.8) representing the

57

language 𝐿 = {𝑎𝑏, 𝑏𝑏}. Given the word 𝑎𝑏 to 𝑇, we can get the following set of

possible outputs: {𝑎𝑏, 𝑏, 𝜆}. In order to construct a new transducer 𝑀 = 𝑇 ↓ 𝐴, we

have to examine firstly whether 𝑇 has 𝜆-input transitions, or 𝐴 has 𝜆-transitions,

and determine whether to add self 𝜆-transitions to both 𝑇 or 𝐴. Next, we construct

the transducer 𝑀 = 𝑇 ↓ 𝐴 (see Figure 4.9 for the process).

 (a) Start state of the product transducer (b) Transitions going out of the start state

 (c) Building new transitions going out (d) Building new transitions going out

 of the state (1,1) of the state (0,1) and it’s the final product

Figure 4.9: The process of constructing the input Cartesian product of 𝑇 and 𝐴.

Now we build the inverse transducer 𝑀−1 of 𝑀 and construct the input Cartesian

product 𝑀−1 ↓ 𝐴 of the transducer 𝑀−1 and the automaton 𝐴.

Example: Let us consider the product transducer 𝑀 in Figure 4.9d. To build the

58

inverse transducer 𝑀−1 of 𝑀, we need to switch the input label with the output label

for every transition in 𝑀, without any change to the states in 𝑀. The result of inverse

operation of 𝑀 is presented in Figure 4.10b.

 (a) The final product 𝑀 in Figure 4.9d (b) The inverse transducer 𝑀−1 of 𝑀

Figure 4.10

Afterwards, we construct the transducer 𝑀′ = 𝑀−1 ↓ 𝐴 by applying the input

Cartesian product operation again. Also, before applying the operation, we have to

examine firstly whether 𝑀−1 has 𝜆-input transitions or 𝐴 has 𝜆-transitions. In this

case, as 𝑀−1 has 𝜆-input transitions, we add self 𝜆-transitions to the automaton 𝐴

as illustrated in Figure 4.11.

Figure 4.11: Automaton 𝐴 expanded with 𝜆-transitions, representing language 𝐿 = {𝑏𝑎, 𝑏𝑏}.

59

We apply the input Cartesian product operation between the transducer 𝑀−1 (Figure

4.10b) and the automaton 𝐴 with self 𝜆-transitions (Figure 4.11). The process of

constructing 𝑀′ = 𝑀−1 ↓ 𝐴 is presented in Figure 4.12.

(a) Start state of the product transducer 𝑀′ (b) Transitions going out of the start state

(c) Building new transitions going out of the state ((1,1),1) and it is the final product

Figure 4.12: The process of constructing the input Cartesian product of 𝑀−1 and 𝐴

Finally, we further construct 𝑇′ = (𝑀′)−1 = (𝑀−1 ↓ 𝐴)−1 , which is equal to

𝑇 ↓ 𝐴 ↑ 𝐴. We need to construct the inverse transducer 𝑇′ = (𝑀′)−1 of 𝑀′ in Figure

4.12c. Note that in this case, the inverse transducer 𝑇′ is the same as the transducer

𝑀′ itself, as the input label is equal to the output label in every transition in

transducer 𝑀′.

The transducer 𝑇′ = 𝑇 ↓ 𝐴 ↑ 𝐴 in Figure 4.12c after the final operation is the one

that we are going to use to test whether it is functional, in order to decide whether the

language 𝐿 satisfies the suffix code property.

60

4.2.2 Deciding the functionality of 𝑻′

Finally, we apply Algorithm 4.2 to decide whether the transducer 𝑇′ in Figure 4.12c

is functional. Note that the transducer 𝑇′ in Figure 4.12c is equivalent to the

transducer in Figure 4.1, and we have already proved that the transducer in Figure 4.1

is functional. Then we conclude that the transducer 𝑇′ = 𝑇 ↓ 𝐴 ↑ 𝐴 in Figure 4.12c is

functional. According to Proposition 3.1, we conclude that the language 𝐿 =

{𝑎𝑏, 𝑏𝑏} accepted by the automaton 𝐴 in Figure 4.8 satisfies the suffix code property

described by the input-preserving transducer 𝑇 in Figure 4.7.

The above example is reasonable for deciding whether a given language satisfies a

language property. We won’t show another example to demonstrate how to decide

whether a given language is error-detecting for a channel, because the process for

answering this question is the same as the process we discussed above.

4.3 Deciding the error-correction property

Now we consider the question of deciding whether a language 𝐿 is error-correcting

for a channel 𝐶, where 𝐿 is accepted by an automaton 𝐴 and 𝐶 is realized by an

input-preserving transducer 𝑇 . We have two steps for answering this question

following Proposition 3.2:

1. Construct a transducer 𝑇 realizing the relation 𝐶−1 ↑ 𝐿.

2. Test whether 𝑇 is functional using Algorithm 4.2.

61

Similar to deciding whether a language 𝐿 accepted by an automaton 𝐴 is

error-detecting for the channel 𝐶 realized by a given input-preserving transducer 𝑇,

to decide the error-correction property, we can construct the transducer 𝑀 via the

input Cartesian product operation such that:

𝑀 = 𝑇 ↓ 𝐴.

Again, as 𝑅 ↑ 𝐿 = (𝑅−1 ↓ 𝐿)−1, and (𝑅 ↓ 𝐿)−1 = (𝑅−1 ↑ 𝐿), we build the inverse

transducer 𝑀−1 of 𝑀, such that:

𝑀−1 = (𝑇 ↓ 𝐴)−1 = 𝑇−1 ↑ 𝐴.

Note that 𝑀−1 realizes the relation 𝐶−1 ↑ 𝐿. Then, the problem of deciding whether

𝐿 is error-correcting for 𝐶 reduces to the question of deciding whether 𝑀−1 is

functional.

Example: We provide an example involving the input-preserving transducer 𝑇

realizing the 𝐷𝑒𝑙(1, ∞) channel 𝐶 (Figure 4.13) and an automaton 𝐴 accepting

the language 𝐿 = {𝑎𝑏, 𝑏𝑏} (Figure 4.8). For any given input word, the possible

outputs of 𝑇 is the set of words that are obtained by applying at most one deletion in

the input word. In order to decide whether 𝐿 is error-correcting for 𝐶, we construct

the transducer 𝑀−1 realizing the relation 𝐶−1 ↑ 𝐿 , which is equivalent to the

transducer in Figure 4.5.

62

Figure 4.13: The input-preserving transducer 𝑇 realizing the channel 𝐷𝑒𝑙(1, ∞).

Recall that in Section 4.1, we have already concluded that the transducer 𝑇 in Figure

4.5 is not functional. According to Proposition 3.2, we conclude that the language

𝐿 = {𝑎𝑏, 𝑏𝑏} accepted by the automaton 𝐴 in Figure 4.8 is not error-correcting for

the channel 𝐷𝑒𝑙(1, ∞) realized by the input-preserving transducer 𝑇 in Figure 4.13.

4.4 Deciding the code property

Head & Weber [21] provided an algorithm to decide whether a language described by

an NFA is a code. In this section we present this algorithm and give an example to

illustrate how this algorithm works.

Algorithm 4.3:

Given a language 𝐿 recognized by an NFA 𝐺 = {𝑄, 𝐴, 𝐸, 𝑞0, 𝐹}, decide whether 𝐿 is

a code as follows:

1. If the start state 𝑞0 is in the set of final states 𝐹, then 𝜆 is accepted by 𝐺,

which means that 𝜆 is in 𝐿. Therefore, 𝐿 is not a code.

2. If the start state 𝑞0 is not in the set of final states 𝐹, let 𝑇 be the transducer

𝑇 = {𝑄, 𝐴, {0,1}, 𝐸′, 𝑞0, {𝑞0}}, in which the output label in every transition

63

can only be a symbol 0 or symbol 1, and state 𝑞0 is the start state and the

only final state.

3. The transition set 𝐸′ is constructed as follows: for each edge (𝑝, 𝑎, 𝑞) in 𝐸,

where 𝑝, 𝑞 ∈ 𝑄 and 𝑎 ∈ 𝐴, add (𝑝, 𝑎/0, 𝑞) in 𝐸′ and, if 𝑞 is in the set of

final states 𝐹, then add (𝑝, 𝑎/1, 𝑞0) in 𝐸′ also.

4. Use Algorithm 4.1 to decide whether 𝑇 is functional. If 𝑇 is functional, the

language 𝐿 is a code. If 𝑇 is not functional, then 𝐿 is not a code.

We provide an example to demonstrate the details of Algorithm 4.3 in this section. By

the definition of code, the language 𝐿 = {0,01,110} is a code. We will use

Algorithm 4.3 to decide that 𝐿 = {0,01,110} is a code.

Example: Let us consider the language 𝐿 = {0,01,110} described by the NFA 𝐺 in

Figure 4.14. We now construct the transducer 𝑇 according to the step 2 and step 3 in

Algorithm 4.3 as follows. The start state 0 of 𝐺 is the only start state and final state

of 𝑇. As shown in Figure 4.14, the NFA 𝐺 has transitions: (0,0,2), (0,1,3), and

(3,1,4), in which the end state of each transition (state 2, state 3, and state 4) is not

the final state of 𝐺. Therefore, we add three transitions to 𝑇: (0,0/0,2), (0,1/0,3),

and (3,1/0,4), as shown in Figure 4.15a. Also, the NFA G has three transitions

(0,0,1), (2,1,1), and (4,0,1), in which the end state of each transition is a final state

in 𝐺. Therefore, we add three transitions to 𝑇: (0,0/1,0), (2,1/1,0), and (4,0/1,0),

as shown in Figure 4.15b. The transducer 𝑇 in Figure 4.15b is the final result of this

64

construction, and we test the functionality of 𝑇 to decide whether 𝐿 is a code.

Figure 4.14: NFA 𝐺 accepting the language 𝐿 = {0,01,110}.

 (a) (b)

Figure 4.15

The transducer 𝑇 in Figure 4.15b tells us that for any pair (𝑢, 𝑣) ∈ 𝑇, where the

input word 𝑢 = 𝑢1𝑢2 ⋯ 𝑢𝑛 ∈ 𝐿∗ and 𝐿 is accepted by 𝐺 , the output word 𝑣

consists of 0s and 1s and |𝑢| = |𝑣|. The symbol 1s in 𝑣 indicates that if 𝑣𝑖 = 1,

65

then after process 𝑢𝑖, the computation of 𝑇 is currently in the position of the final

state, and 𝑢𝑖−𝑛 ⋯ 𝑢𝑖−2𝑢𝑖−1𝑢𝑖 ∈ 𝐿, where 𝑛 ≥ 0, such that 𝑣𝑖−𝑛, ⋯ , 𝑣𝑖−2, 𝑣𝑖−1 = 0

and 𝑣𝑖−𝑛−1 = 1. In other words, the output word 𝑣 indicates how the input word 𝑢

is decomposed. For example, giving 𝑢 = 11001 ∈ 𝐿∗ to 𝑇 , the output word

𝑣 = 00101, and 𝑣 indicates that the input word 𝑢 = 11001 can be decomposed by

110 ∈ 𝐿 and 01 ∈ 𝐿.

As the transducer T in Figure 4.15b is a restricted sequential transducer, we use

Algorithm 4.1 to decide whether 𝑇 is functional. Intermediate steps of applying

Algorithm 4.1 are not shown here. Readers are referred to Section 4.1 for details of

this algorithm. We here give the final NFA 𝐺′ constructed following Algorithm 4.1

in Figure 4.16. In the NFA 𝐺′, all the symbols in the transitions are 0. Hence, we

conclude that the transducer 𝑇 in Figure 4.15b is functional, which means that for

any input word giving to 𝑇, we can only get one output word and this output word

indicates the only way to decompose the input word. Hence, we conclude that the

language 𝐿 = {0,01,110} is a code.

66

Figure 4.16: The NFA 𝐺′ constructed by Algorithm 4.2.

4.5 Counterexample

In [15], in the context of deciding whether a given language 𝐿 satisfies a given

property 𝒫𝑇 described by an input-altering transducer 𝑇 , the author provides a

method to give a counterexample in case where the answer is negative. In particular,

the counterexample is a pair of different words 𝑢, 𝑣 ∈ 𝐿 violating the property 𝒫𝑇,

that is, 𝑣 ∈ 𝑇(𝑢). Here, we also design and implement the feature of providing

counterexamples for the following three situations:

1. If a given language 𝐿 is not error-detecting for a channel 𝐶 realized by an

input-preserving transducer 𝑇, which is equivalent to the situation that 𝐿

does not satisfy the language property 𝒫𝑇
′ described by 𝑇.

2. If a given language 𝐿 is not error-correcting for a channel 𝐶 realized by an

input-preserving transducer 𝑇.

3. If a given language 𝐿 is not a code.

67

As discussed before, these three questions are eventually reduced to deciding

functionality of the final product transducers, which are constructed following

Sections 4.2, 4.3, and 4.4. For example, recall that in Section 4.2, the functionality of

the transducer 𝑇′ realizing the relation 𝐶 ↓ 𝐿 ↑ 𝐿 indicates whether or not the given

language 𝐿 is error-detecting for 𝐶. If it is not, then there must be at least one pair of

words (𝑢, 𝑣) ∈ 𝐶, where 𝑢, 𝑣 ∈ 𝐿 and 𝑢 ≠ 𝑣. We refer to such a pair of words as a

counterexample. This pair corresponds to a situation where 𝑇′ is not functional, as

𝑢 ∈ 𝑇′(𝑢), 𝑣 ∈ 𝑇′(𝑢), and 𝑢 ≠ 𝑣. Therefore, providing a counterexample to prove

that a given language 𝐿 is not error-detecting for a channel 𝐶 reduces to finding a

pair of words that makes the transducer 𝑇′ realizing the relation 𝐶 ↓ 𝐿 ↑ 𝐿 not

functional.

Our algorithm to find the desired counterexample is a modification of Algorithm 4.2

as follows:

Algorithm 4.4:

Given a transducer 𝑇 with start state 𝑠, construct product the machine 𝑈 as follows:

1. If (𝑝, 𝑥/𝑦, 𝑞) and (𝑝′, 𝑥/𝑦′, 𝑞′) are transitions in 𝑇, then add to 𝑈 the

transition ((𝑝, 𝑝′), (𝑥, 𝑦, 𝑦′), (𝑞, 𝑞′)), where the label (𝑥, 𝑦, 𝑦′) is a tuple

recording the input label 𝑥 of (𝑝, 𝑥/𝑦, 𝑞) and (𝑝′, 𝑥/𝑦′, 𝑞′), and the output

labels 𝑦 and 𝑦′ of (𝑝, 𝑥/𝑦, 𝑞) and (𝑝′, 𝑥/𝑦′, 𝑞′). We say that 𝑦 is the

first output label and 𝑦′ is the second output label.

2. The start state of 𝑈 is (𝑠, 𝑠).

68

3. The final states of 𝑈 are all pairs (𝑓, 𝑓′), where both 𝑓 and 𝑓′ are final

states in 𝑇.

4. Only keep states that can be reached from (𝑠, 𝑠) and can reach a final state

(𝑓, 𝑓′).

After constructing 𝑈, assign to each state (𝑝, 𝑝′) of 𝑈 two values:

A. A path value, which is a tuple of the form (𝑥1 ⋯ 𝑥𝑛, 𝑦1 ⋯ 𝑦𝑛, 𝑦1
′ ⋯ 𝑦𝑛

′),

where 𝑥1 ⋯ 𝑥𝑛 is the concatenation of the input labels in a path that begins

from the start state (𝑠, 𝑠) to state (𝑝, 𝑝′), 𝑦1 ⋯ 𝑦𝑛 is the concatenation of

the first output labels in every transition in this path, and 𝑦1
′ ⋯ 𝑦𝑛

′ is the

concatenation of the second output labels in every transition in this path.

B. A state value, which is either 𝑍𝐸𝑅𝑂 , or a pair of words in

{(𝜆, 𝜆), (𝜆, 𝑢), (𝑢, 𝜆)}, where 𝜆 is the empty word and 𝑢 is a nonempty

word.

The path value and state value are determined as follows:

1. The start state gets the path value (𝜆, 𝜆, 𝜆) and the state value (𝜆, 𝜆).

2. If a state (𝑝, 𝑝′) has a path value (𝑥1, 𝑦1, 𝑦1
′) and a state value (𝑦, 𝑦′) and

there is a transition ((𝑝, 𝑝′), (𝑥2, 𝑦2, 𝑦2
′), (𝑞, 𝑞′)), then (𝑞, 𝑞′) gets the path

value (𝑥1𝑥2, 𝑦1𝑦2, 𝑦1
′𝑦2

′) and the state value as follows:

a) If 𝑦𝑦2 is a prefix of 𝑦′𝑦2
′, so that 𝑦′𝑦2

′ = 𝑦𝑦2𝑢, then the state value is

(𝜆, 𝑢).

b) If 𝑦′𝑦2
′ is a prefix of 𝑦𝑦2, so that 𝑦𝑦2 = 𝑦′𝑦2

′𝑢, then the state value is

(𝑢, 𝜆).

69

c) If 𝑦𝑦2 equals 𝑦′𝑦2
′, then the state value is (𝜆, 𝜆).

d) Else, the state value is 𝑍𝐸𝑅𝑂.

3. Repeat until a state gets two different state values, or a state gets a state value

𝑍𝐸𝑅𝑂, or every state gets one value. Given a state that already has a path

value 𝑣1, if the state gets a new path value 𝑣1
′, then the path value for this

state will now be 𝑣1
′, independently of how the state value is updated.

4. If a state (𝑝, 𝑝′), with a path value (𝑥1𝑥2, 𝑦1𝑦2, 𝑦1
′𝑦2

′), has two different

state values, or (𝑝, 𝑝′) has a state value that is 𝑍𝐸𝑅𝑂, where (𝑝, 𝑝′) is not

a final state, then find any path from (𝑝, 𝑝′) to a final state (𝑓, 𝑓′) in 𝑈:

((𝑝, 𝑝′), (𝑥3, 𝑦3, 𝑦3
′), (𝑞1, 𝑞1

′)) , ((𝑞1, 𝑞1
′), (𝑥4, 𝑦4, 𝑦4

′), (𝑞2, 𝑞2
′)),

⋯ , ((𝑞𝑛, 𝑞𝑛
′), (𝑥𝑛, 𝑦𝑛, 𝑦𝑛

′), (𝑓, 𝑓′)). The counterexample can be extracted

from the path value that corresponds to the path from (𝑠, 𝑠) to (𝑓, 𝑓′):

(𝑥1𝑥2𝑥3𝑥4 ⋯ 𝑥𝑛, 𝑦1𝑦2𝑦3𝑦4 ⋯ 𝑦𝑛, 𝑦1
′𝑦2

′𝑦3
′𝑦4

′ ⋯ 𝑦𝑛
′).

5. If a final state (𝑓, 𝑓′) has two different state values, or (𝑓, 𝑓′) has a state

value that is 𝑍𝐸𝑅𝑂, or a state value that is not equal to (𝜆, 𝜆), then the path

value of (𝑓, 𝑓′) will be used to extract the counterexample.

When we get the path value:

(𝑥1𝑥2𝑥3𝑥4 ⋯ 𝑥𝑛, 𝑦1𝑦2𝑦3𝑦4 ⋯ 𝑦𝑛, 𝑦1
′𝑦2

′𝑦3
′𝑦4

′ ⋯ 𝑦𝑛
′),

according to different situations, we further extract the different words from the path

value, depending on the particular situations as follows:

1. In the case where 𝐿 is not error-detecting for 𝐶, we extract the first word

70

𝑥 = 𝑥1𝑥2𝑥3𝑥4 ⋯ 𝑥𝑛 and 𝑧 , where 𝑧 is one of 𝑦 = 𝑦1𝑦2𝑦3𝑦4 ⋯ 𝑦𝑛 or

𝑦′ = 𝑦1
′𝑦2

′𝑦3
′𝑦4

′ ⋯ 𝑦𝑛
′ that is different from 𝑥, as our counterexample. The

pair (𝑥, 𝑧) is a valid counterexample, because it corresponds to a situation in

which, on the same input 𝑥 ∈ 𝐿, the transducer 𝑇 can output 𝑧 ∈ 𝐿 such

that 𝑥 ≠ 𝑧.

2. In the case where 𝐿 is not error-correcting for 𝐶, we extract the second

word 𝑦 = 𝑦1𝑦2𝑦3𝑦4 ⋯ 𝑦𝑛 and the third word 𝑦′ = 𝑦1
′𝑦2

′𝑦3
′𝑦4

′ ⋯ 𝑦𝑛
′ as

our counterexample. This pair (𝑦, 𝑦′) is a valid counterexample because it

corresponds to a situation in which, on some input 𝑥 ∈ 𝐿, the transducer 𝑇

can output 𝑦 ∈ 𝐿 and 𝑦′ ∈ 𝐿 such that 𝑦 ≠ 𝑦′.

3. In the case where 𝐿 is not a code, we simply extract the first word

𝑥 = 𝑥1𝑥2𝑥3𝑥4 ⋯ 𝑥𝑛 as our counterexample. The word 𝑥 ∈ 𝐿∗ and the path

value tell us that 𝑥 can be decomposed over 𝐿 in two different ways as

indicated in 𝑦 and 𝑦′.

Example: Let us consider the suffix code property 𝒫𝑇
′ described by the

input-preserving transducer 𝑇 in Figure 4.7 and the language 𝐿 = {𝑎𝑏, 𝑏𝑎𝑏}

accepted by the automaton 𝐴 in Figure 4.17. Through the steps discussed in Section

4.2, we conclude that 𝐿 does not satisfy the suffix code property. Now we give a

counterexample to prove that why 𝐿 does not satisfies the suffix code property. We

first construct a transducer 𝑇′ = 𝑇 ↓ 𝐴 ↑ 𝐴 – see Section 4.2. The final transducer

 𝑇′ is illustrated in Figure 4.18.

71

Figure 4.17: The automaton 𝐴 accepting the language 𝐿 = {𝑎𝑏, 𝑏𝑎𝑏}.

Figure 4.18: The transducer 𝑇′ = 𝑇 ↓ 𝐴 ↑ 𝐴.

Now we follow Algorithm 4.4 to construct the product machine 𝑈 in Figure 4.19.

72

Figure 4.19: The product machine 𝑈.

Then we follow Algorithm 4.4 to add to every state a path value and a state value

until we find a state gets two different state values, or a state gets a state value 𝑍𝐸𝑅𝑂,

or a final state (𝑓, 𝑓′) has a state value that not equals (𝜆, 𝜆). For the start state

(0,0), we add a path value (𝜆, 𝜆, 𝜆) and a state value (𝜆, 𝜆). There is a transition

((0, 0), (𝑏, 𝑏, 𝜆), (3, 2)) , therefore, we add a path value (𝜆𝑏, 𝜆𝑏, 𝜆𝜆) which is

(𝑏, 𝑏, 𝜆) and a state value (𝑏, 𝜆) to state (3,2) . Then there is transition

((3, 2), (𝑎, 𝑎, 𝑎), (1, 1)) , therefore we add a path value (𝑏𝑎, 𝑏𝑎, 𝜆𝑎) which is

(𝑏𝑎, 𝑏𝑎, 𝑎) and a state value (𝑏, 𝜆) to state (1, 1). We illustrate the current status of

the product machine 𝑈 in Figure 4.20.

73

Figure 4.20: Current status of the product machine 𝑈.

As there is a transition ((0, 0), (𝑏, 𝜆, 𝑏), (2, 3)), therefore, we add a path value

(𝜆𝑏, 𝜆𝜆, 𝜆𝑏) which is (𝑏, 𝜆, 𝑏) and a state value (𝜆, 𝑏) to state (2,3). Also, as there

is a transition ((2, 3), (𝑎, 𝑎, 𝑎), (1, 1)), therefore we add a path value (𝑏𝑎, 𝜆𝑎, 𝑏𝑎),

which is (𝑏𝑎, 𝑎, 𝑏𝑎), and a state value (𝜆, 𝑏) to state (1, 1). However, state (1, 1)

has already got a state value (𝑏, 𝜆) ≠ (𝜆, 𝑏), so we finish adding values to the states.

As state (1, 1) is not a final state, we have to find a path from state (1, 1) to a final

state in 𝑈 and the path value of the final state will be used to extract the

counterexample. In this case, from state (1, 1) , there is a path

((1, 1), (𝑏, 𝑏, 𝑏), (4, 4)) take us from state (1, 1) to the final state (4, 4). We then

add a path value (𝑏𝑎𝑏, 𝑎𝑏, 𝑏𝑎𝑏) to state (4, 4). We conclude that 𝐿 = {𝑎𝑏, 𝑏𝑎𝑏}

accepted by the automaton in Figure 4.17 is does not satisfies the suffix code property

𝒫𝑇
′ described by the transducer 𝑇 in Figure 4.5. We extract the first word 𝑏𝑎𝑏 and

74

the second word 𝑎𝑏, which is different from 𝑏𝑎𝑏 as our counterexample. The pair of

words (𝑏𝑎𝑏, 𝑎𝑏) is the counterexample to prove that 𝐿 does not satisfy 𝒫𝑇
′, as 𝑎𝑏

is a suffix of 𝑏𝑎𝑏, that is, 𝑎𝑏 ∈ 𝑇(𝑏𝑎𝑏), and 𝑏𝑎𝑏, 𝑎𝑏 ∈ 𝐿 such that 𝑏𝑎𝑏 ≠ 𝑎𝑏,

which violates the definition of the suffix code property.

Example: Let us consider the 𝐷𝑒𝑙(1, ∞) channel 𝐶 realized by the input-preserving

transducer 𝑇 in Figure 4.13 and a language 𝐿 = {𝑎𝑏, 𝑏𝑏} accepted by the

automaton 𝐴 in Figure 4.8 again. In Section 4.3, we have already concluded that 𝐿

is not error-correcting for 𝐶. Now we use Algorithm 4.4 to provide a counterexample

to prove why 𝐿 is not error-correcting for 𝐶. Note that we construct the transducer

𝑀−1 realizing the relation 𝐶−1 ↑ 𝐿 which is equivalent to the transducer in Figure

4.5 and 𝑀−1 is not functional. We follow Algorithm 4.4 to construct the product

machine 𝑈 in Figure 4.21.

Figure 4.21: The product machine U constructed following Algorithm 4.4.

Then we follow Algorithm 4.4 to add to every state a path value and a state value

75

until we find a state gets two different state values, or a state gets a state value 𝑍𝐸𝑅𝑂,

or a final state (𝑓, 𝑓′) has a state value that not equals (𝜆, 𝜆). For the start state

(0,0), we add a path value (𝜆, 𝜆, 𝜆) and a state value (𝜆, 𝜆). There is transition

((0, 0), (𝜆, 𝑎, 𝑏), (1, 1)), therefore we add a path value (𝜆𝜆, 𝜆𝑎, 𝜆𝑏), which is (𝜆, 𝑎, 𝑏),

and a state value 𝑍𝐸𝑅𝑂 to state (1, 1), and we finish adding values to the states. We

illustrate the current status of the product machine 𝑈 in Figure 4.22.

Figure 4.22: Current status of the product machine 𝑈.

As state (1, 1) is not a final state, we have to find a path from state (1, 1) to a final

state in 𝑈 and the path value of the final state will be used to extract the

counterexample. In this case, from state (1, 1) , there is a path

((1, 1), (𝑏, 𝑏, 𝑏), (4, 4)) take us from state (1, 1) to the final state (4, 4). We then

add a path value (𝑏, 𝑎𝑏, 𝑏𝑏) to state (4, 4) . We conclude that 𝐿 = {𝑎𝑏, 𝑏𝑏}

accepted by the automaton 𝐴 in Figure 4.8 is not error-correcting for 𝐶 described

by the transducer 𝑇 in Figure 4.13. We extract the second word 𝑎𝑏 and the third

76

word 𝑏𝑏 from the path value (𝑏, 𝑎𝑏, 𝑏𝑏) as our counterexample. The pair of words

(𝑎𝑏, 𝑏𝑏) is the counterexample to prove that 𝐿 is not error-correcting for 𝐶, as

(𝑎𝑏, 𝑏) ∈ 𝐶 , (𝑏𝑏, 𝑏) ∈ 𝐶 , and 𝑎𝑏, 𝑏𝑏 ∈ 𝐿 such that 𝑎𝑏 ≠ 𝑏𝑏 , which violates the

definition of error-correction property..

Example: Let us consider the language 𝐿 = {0,01,10,11} described by the NFA 𝐺

in Figure 4.23. Following the steps in Section 4.4, we conclude that 𝐿 is not a code.

Now we give a counterexample to prove why L is not a code. We construct the

transducer 𝑇 according to the step 2 and step 3 in Algorithm 4.3 – see Section 4.4.

The final transducer 𝑇 we constructed following Algorithm 4.3 is illustrated in

Figure 4.24.

Figure 4.23: The NFA 𝐺 accepting the language 𝐿 = {0,01,10,11}.

77

Figure 4.24: The final transducer 𝑇 we constructed following Algorithm 4.3.

In next step, we decide the functionality of 𝑇 in order to decide whether L is not a

code. We follow Algorithm 4.4 to construct the product machine 𝑈 in Figure 4.25.

Figure 4.25: The product machine 𝑈 constructed following Algorithm 4.4.

Then we follow Algorithm 4.4 to add to every state a path value and a state value

until we find the path value to extract the counterexample. For the start state (0,0),

78

we add a path value (𝜆, 𝜆, 𝜆) and a state value (𝜆, 𝜆) . There is a transition

((0, 0), (0,1, 0), (0, 2)), therefore we should add a path value (𝜆0, 𝜆1, 𝜆0) which is

(0,1, 0) and a state value 𝑍𝐸𝑅𝑂 to state (0, 2) and we finishing adding values to

the states.

As state (0, 2) is not a final state, we find a path from state (0, 2) to the final state

(0, 0) in 𝑈 and the path value of (0, 0) will be used to extract the counterexample.

In this case, from state (0, 2) , there is a path ((0, 2), (1,0, 1), (3, 0)) and

((3, 0), (0,1, 1), (0, 0)) take us from state (0, 2) to the final state (0, 0). We then

add a path value (010,101, 011) to state (0, 0) . We conclude that

𝐿 = {0,01,10,11} accepted by the automaton 𝐺 in Figure 4.23 is not a code. We

extract the first word 010 from the path value (010,101, 011) . 010 is the

counterexample to prove that 𝐿 is not a code, as 010 could be interpreted in two

ways: (0)(10) and (01)(0), which indicated by the two outputs 101 and 011 in

the path value.

4.6 Constructing input-altering transducers describing code

related properties

Recall that in Chapter 3, we present five different code related properties: the prefix

code property, the suffix code property, the infix code property, the outfix code

property, and the hypercode property. We provide graphical presentations of

input-altering transducers describing these properties. In order to use some of the

79

functions [15, 36] in our web interface, we need to construct input-altering transducers

based on a given alphabet to describe these properties. As these algorithms are similar,

we choose to only present the algorithm to construct the input-altering transducer 𝑇ℎ

describing the hypercode property in Figure 3.5.

Given an alphabet 𝛴, construct the input-altering transducer 𝑇ℎ = (𝑄, 𝐴, 𝛤, 𝑞0, 𝐹, 𝐸)

describing the hypercode property as follows:

Algorithm 4.5:

1. Add a state 0 to 𝑄, and set state 0 as the start state of 𝑇ℎ, that is, 𝑞0 = 0.

2. For every symbol 𝜎 in the alphabet 𝛴, add a transition (0, 𝜎/𝜎, 0) to the

set of transitions 𝐸.

3. Add a state 1 to 𝑄, and set state 1 as the only final state of 𝑇ℎ, that is,

𝐹 = {1}.

4. For every symbol 𝜎 in the alphabet 𝛴, add a transition (0, 𝜎/𝜆, 1) to the

set of transitions 𝐸.

5. For every symbol 𝜎 in the alphabet 𝛴, add two transitions (1, 𝜎/𝜆, 1) and

(1, 𝜎/𝜎, 1) to the set of transition 𝐸.

6. Set the input alphabet and the output alphabet the same as the given alphabet

𝛴, that is, 𝐴 = 𝛤 = 𝛴.

Example: Let us consider a given alphabet 𝛴 = {𝑎, 𝑏}. We follow Algorithm 4.5 to

construct an input-altering transducer 𝑇ℎ describing the hypercode property. First

80

we add a state 0, and set state 0 as the start state of 𝑇ℎ in Figure 4.26a. Then for

each symbol 𝑎 or 𝑏 in the alphabet 𝛴, we add two transitions (0, 𝑎/𝑎, 0) and

(0, 𝑏/𝑏, 0) to 𝑇ℎ in Figure 4.26b. Afterwards, we add a state 1 and set state 1 as

the final state of 𝑇ℎ in Figure 4.26c. Finally, we add two transitions (0, 𝑎/𝜆, 1) and

(0, 𝑏/𝜆, 1) to 𝑇ℎ, and we add four transitions (1, 𝑎/𝜆, 1), (1, 𝑏/𝜆, 1), (1, 𝑎/𝑎, 1),

and (1, 𝑎/𝑎, 1) to 𝑇ℎ in Figure 4.26d.

 (a) (b)

 (c) (d)

Figure 4.26: Constructing an input-altering transducer describing

the hypercode property over the alphabet 𝛴 = {𝑎, 𝑏}.

Transducer 𝑇ℎ in Figure 4.26d is the input-altering transducer describing the

hypercode property over the alphabet 𝛴 = {𝑎, 𝑏}. As algorithms for constructing other

81

code related properties are similar to Algorithm 4.5, we won’t provide these

algorithms here. Readers are referred to Section 3.2.1 for details of using

input-altering transducers to describe code related properties.

4.7 Translating a normal form transducer to an equivalent

real-time transducer

In this section, we present an algorithm that translates a given transducer in normal

form to an equivalent real-time transducer. Our algorithm is based on the method of

[3], which uses matrix representation for transducers.

Given a transducer 𝑇 in normal form, construct an equivalent real-time transducer 𝑇′

as follows:

Algorithm 4.6:

1. The states of 𝑇 are also the states of 𝑇′.

2. The start state function 𝐼 of 𝑇′ is determined as follows: for every state 𝑝

in 𝑇, consider all paths from the start state 𝑠 to 𝑝 involving only 𝜆-input

transitions. If there exists no such paths, then 𝐼(𝑝) = ∅, which means that 𝑝

is not a start state in 𝑇′. Else, 𝐼(𝑝) is the language obtained by concatenating

all output labels in those paths, that is, 𝐼(𝑝) ≠ ∅, which means that 𝑝 is a

start state in 𝑇′. For example, if (𝑠, 𝜆/𝑎, 𝑞) and (𝑞, 𝜆/𝑏, 𝑞′) are transitions

in 𝑇′ , then 𝑞 and 𝑞′ will be start states of 𝑇′ with initial output is

𝐼(𝑞) = 𝑎 and 𝐼(𝑞′) = 𝑎𝑏, respectively.

82

3. For every state 𝑝, every state 𝑞 , and every state 𝑟 in 𝑇, consider any

transition of the form (𝑝, 𝜎/𝜆, 𝑟), with 𝜎 ∈ 𝛴, and all the paths from state 𝑟

to state 𝑞 involving only 𝜆-input transitions. Then, add to 𝑇′ the transition

(𝑝, 𝜎/𝑒, 𝑞), where 𝑒 is the regular expression representing the language

obtained by concatenating all output labels in those paths from the state 𝑟 to

state 𝑞 involving only 𝜆-input transitions in 𝑇. In other words, 𝑒 represents

the language accepted by the automaton, whose start state is 𝑟, the only final

state is 𝑞, and has transitions (𝑖, 𝑥, 𝑗) for all transitions (𝑖, 𝜆/𝑥, 𝑗) in 𝑇. For

example, if (𝑝, 𝑎/𝜆, 𝑟), (𝑟, 𝜆/𝑎, 𝑞), and (𝑟, 𝜆/𝑏, 𝑞) are transitions in 𝑇, then

(𝑝, 𝑎/(𝑎 + 𝑏), 𝑞) is a transition in 𝑇′, where (𝑎 + 𝑏) is a regular expression.

4. The final state function 𝐹 of 𝑇′ is as follows: 𝐹(𝑞) = 𝜆, if 𝑞 is a final

state in 𝑇, and 𝐹(𝑞) = ∅, if 𝑞 is not a final state in 𝑇.

We provide an example of translating a normal form transducer in Figure 4.27 to an

equivalent real-time transducer by using the Algorithm 4.6.

Figure 4.27: A normal form transducer 𝑇.

83

Example: Let us consider the transducer 𝑇 in normal form (Figure 4.27). In the first

step in Algorithm 4.6, we construct the states of the real-time transducer 𝑇′, which

are the same as the states in 𝑇 (Figure 4.28). Then for step 2, we consider all paths

from the start state 𝑠 to state 𝑝 involving only 𝜆-input transitions. For example,

there is a path from state 1 to state 3 with the transition (1, 𝜆/𝑎, 3), which means

from the start state 1, we can reach state 3 without consuming any input symbol and

we can get the output symbol 𝑎. Therefore, state 3 is defined to be one of the start

states of 𝑇′ , that is, 𝐼(3) = 𝑎 . Also, let us consider the path (1, 𝜆/𝑎, 2) and

(1, 𝜆/𝑏, 2) from start state 1 to state 2, which means that we can reach state 2

from start state 1 without consuming any input symbol and we can get the output

symbol 𝑎 or 𝑏. Therefore, state 2 is also defined to be one of the start states in 𝑇′,

that is, that is, 𝐼(2) = 𝑎 + 𝑏, which is a regular expression. The real-time transducer

𝑇′ we constructed after step 2 in Algorithm 4.6 is presented in Figure 4.28. Note that

there are arrows pointing to some of the states in the real-time transducer 𝑇′. This

means that these states are the start states of 𝑇′, and the label or regular expression

in the arrows represents the output of the state, respectively.

84

Figure 4.28

Then we add transitions to 𝑇′. Let us consider the path (3, 𝑎/𝜆, 1), (1, 𝜆/𝑎, 3) from

state 3 to state 1 and from state 1 to state 3 itself. According to step 3 in

Algorithm 4.6, state 3 will be the state 𝑝, and state 1 will be the state 𝑟, and state

3 will be the state 𝑞. For (3, 𝑎/𝜆, 1), the input label is 𝑎 ∈ 𝛴, and the path from

state 𝑟 to state 𝑞 involving only 𝜆-input transitions, that is, (1, 𝜆/𝑎, 3). Therefore,

we add the transition (3, 𝑎/𝑎, 3) to 𝑇′, in which the input label is the same to the

input label in transition (3, 𝑎/𝜆, 1) and the output label is the language of

concatenating all output labels in those paths from the state 1 to state 3 involving

only 𝜆-input transitions in 𝑇, which is only one symbol word 𝑎. Also, let us consider

the path (3, 𝑎/𝜆, 1) , (1, 𝜆/𝑎, 2) or (3, 𝑎/𝜆, 1) (1, 𝜆/𝑏, 2) . We apply the same

process to add two transitions (3, 𝑎/𝑎, 2) and (3, 𝑎/𝑏, 2) from state 3 to state 2.

Or more precisely, we add one transition (3, 𝑎/(𝑎 + 𝑏),2) from state 3 to state 2.

The real-time transducer 𝑇′ we constructed after step 3 in Algorithm 4.6 is presented

in Figure 4.29.

85

Figure 4.29

Finally we designate state 1 and state 2, which are the two final states in 𝑇, as the

final states of 𝑇′. The final result of 𝑇′, which is equivalent to 𝑇, is presented in

Figure 4.30.

Figure 4.30: The real-time transducer 𝑇′ equivalent to 𝑇 in Figure 4.27.

86

Chapter 5

Computing the edit distance of a regular language

In this chapter, we look at the problem of computing the edit distance of a given

regular language. We discuss a known method that uses the error-detection property,

and we introduce a new method that uses the error-correction property to estimate the

edit distance of a regular language. Our method is inexact, as it produces two possible

values for the desired edit distance, but it is faster than the existing method. We use

the algorithmic tools in Chapter 2 and Chapter 4 to estimate the edit distance, and we

present examples to illustrate how these algorithmic tools work. Also, we provide a

few performance tests for the existing method and our method.

5.1 Edit distance

The concept of edit distance [38] is important in various information processing

applications, such as speech processing and bioinformatics [43]. The edit distance

(also called Levenshtein Distance) of two words 𝑎 and 𝑏, denoted by 𝐷(𝑎, 𝑏), is the

minimum number of possible edits (substitutions, insertions, and deletions) required to

transform 𝑎 into 𝑏. The edit distance of a regular language 𝐿, denoted by 𝐷(𝐿), is

the smallest edit distance between any two distinct words in 𝐿, that is,

𝐷(𝐿) = min {𝐷(𝑢, 𝑣)|𝑢, 𝑣 ∈ 𝐿, 𝑢 ≠ 𝑣}.

Exmaple: The edit distance between 010011 and 1110011 is

87

𝐷(010011, 1110011) = 2. Although, there are many ways to transform 010011 to

1110011 and vice versa, the shortest way to transform 010011 to 1110011 is by

inserting a 1 at the beginning of 010011 to get 1010011, and then substituting the

first 0 with 1 in 1010011 to get 1110011. Therefore, 2 is the minimum number

of possible edits required to transform 010011 to 1110011 , that is,

𝐷(010011, 1110011) = 2. The edit distance of the regular language

𝐿 = {10110, 01100,101,01110} is 𝐷(𝐿) = 1, as the edit distance between 01100

and 01110 is 1, so 𝐷(01100, 01110) = 1 is the smallest edit distance between

any two distinct words in 𝐿.

Given a DFA 𝐴 accepting a regular language 𝐿, we have the following facts:

1. The edit distance 𝐷(𝐿) of a language 𝐿 is less than, or equal to, the

diameter of 𝐴, that is, 𝐷(𝐿) ≤ 𝑑𝑖𝑎𝑚(𝐴) [29].

2. Given a language 𝐿 and integer 𝑚 ≥ 0, we have that 𝐷(𝐿) > 𝑚 if and

only if 𝐿 is error-detecting for 𝑆𝐼𝐷(𝑚, ∞) [35, 38], where 𝑆𝐼𝐷(𝑚, ∞) is

the channel which allows a maximum of 𝑚 substitutions, insertions, and

deletions errors in any given input word, we have that.

3. Given a language 𝐿 and integer 𝑚 ≥ 0, we have that 𝐷(𝐿) > 2𝑚 if and

only if 𝐿 is error-correcting for 𝑆𝐼𝐷(𝑚, ∞) [38].

In the next section, we discuss how to use the error-detection property to compute the

edit distance of a regular language.

88

5.2 Computing the edit distance using the error-detection

property

Recall that in Section 5.1, given a DFA 𝐴 accepting a regular language 𝐿 and an

integer 𝑚 ≥ 0, we have that 𝐷(𝐿) > 𝑚 if and only if 𝐿 is error-detecting for

𝑆𝐼𝐷(𝑚, ∞). Therefore, the question of computing the edit distance of a given regular

language accepted by 𝐴 is to find the largest integer 𝑚 in [0, 𝑑𝑖𝑎𝑚(𝐴)], such that

𝐿 is error-detecting for 𝑆𝐼𝐷(𝑚 − 1, ∞) but not error-detecting for 𝑆𝐼𝐷(𝑚, ∞) [35].

If such 𝑚 is found, then 𝐷(𝐿) = 𝑚.

Given a regular language 𝐿 accepted by a DFA 𝐴 and a channel 𝐶 realized by an

input-preserving transducer 𝑇, the time complexity of the Cartesian product operation

𝑇 ↓ 𝐴 is 𝑂(|𝑇||𝐴|), where |𝑇| is the size of the transducer 𝑇 and |𝐴| is the size of

the automaton 𝐴. The size of an automaton or a transducer is the sum of the number

of states and transitions. Therefore, the time complexity of constructing the transducer

𝑇′ realizing the relation 𝐶 ↓ 𝐿 ↑ 𝐿 is 𝑂(|𝑇||𝐴|2) . As the time complexity of

deciding whether the transducer 𝑇′ is functional is 𝑂(|𝑇′|2), the time complexity of

deciding whether 𝐿 is error-detecting for 𝐶 is 𝑂(|𝑇′|2) = 𝑂(|𝑇||𝐴|2)2 =

𝑂(|𝑇|2|𝐴|4).

In order to find the largest number 𝑚 in [0, 𝑑𝑖𝑎𝑚(𝐴)] , such that 𝐿 is

error-detecting for 𝑆𝐼𝐷(𝑚 − 1, ∞) but not error-detecting for 𝑆𝐼𝐷(𝑚, ∞), we have

to perform the algorithm to decide whether 𝐿 is error-detecting for the 𝑆𝐼𝐷 channel

89

for each 𝑚 in [0, 𝑑𝑖𝑎𝑚(𝐴)]. However, if we use binary search to find the desired 𝑚

in [0, 𝑑𝑖𝑎𝑚(𝐴)], the error-detection algorithm will be used 𝑂(𝑙𝑜𝑔 𝑑) times, where

𝑑 = 𝑑𝑖𝑎𝑚(𝐴) . Given an integer 𝑚 , the size of the transducer 𝑇 realizing

𝑆𝐼𝐷(𝑚, ∞) is determined by 𝑚 , that is, |𝑇| = 𝑂(𝑚) = 𝑂(𝑑𝑖𝑎𝑚(𝐴)) , where

0 ≤ 𝑚 ≤ 𝑑𝑖𝑎𝑚(𝐴). Therefore, the time complexity of computing the edit distance of

a given regular language 𝐿 accepted by a DFA 𝐴 using the error-detection property

is 𝑂(|𝐴|4 |𝑇|2𝑙𝑜𝑔 𝑑) = 𝑂(|𝐴|4 𝑑2𝑙𝑜𝑔 𝑑), where 𝑑 = 𝑑𝑖𝑎𝑚(𝐴).

In the next section, we introduce an algorithm to estimate the edit distance of a given

regular language using the error-correction property. Our algorithm is inexact, as it

produces two possible values, but it is faster than the above method.

5.3 Estimating the edit distance using the error-correction

property

Recall that in Section 5.1, given a language 𝐿 and an integer 𝑚 ≥ 0, we have that

𝐷(𝐿) > 2𝑚 if and only if 𝐿 is error-correcting for 𝑆𝐼𝐷(𝑚, ∞) . Therefore, the

question of computing the edit distance of a given regular language accepted by 𝐴 is

to find the largest positive integer number 𝑚 in [0, ⌈𝑑𝑖𝑎𝑚(𝐴)/2⌉], such that 𝐿 is

error-correcting for 𝑆𝐼𝐷(𝑚 − 1, ∞) but not error-correcting for 𝑆𝐼𝐷(𝑚, ∞). If such

𝑚 is found, then 𝐷(𝐿) > 2(𝑚 − 1), and 𝐷(𝐿) ≤ 2𝑚. Therefore the edit distance of

𝐿 is 𝐷(𝐿) = 2𝑚 − 1 or 𝐷(𝐿) = 2𝑚.

90

In order to use the error-correction property to estimate the edit distance of a regular

language, we have to construct an input-preserving transducer realizing the

𝑆𝐼𝐷(𝑚, ∞) channel based on a given positive integer number 𝑚 and a given

alphabet 𝛴. The algorithm to construct such transducer 𝑇 = (𝑄, 𝛴, 𝛤, 𝑞0, 𝐹, 𝐸) is as

follows:

Algorithm 5.1:

1. Set the state set 𝑄 = {0,1,2, ⋯ , 𝑚}. The total number of states in 𝑇 is

𝑚 + 1.

2. Set state 0 as the start state of 𝑇, that is, 𝑞0 = 0.

3. For every state 𝑝 ∈ 𝑄 = {0,1,2, ⋯ , 𝑚 − 1}, add the following transitions to

𝐸:

 (𝑝, 𝜎/𝜎, 𝑝) for all 𝜎 ∈ 𝛴

 (𝑝, 𝜎/𝜆, 𝑝 + 1) for all 𝜎 ∈ 𝛴

 (𝑝, 𝜆/𝜎, 𝑝 + 1) for all 𝜎 ∈ 𝛴

 (𝑝, 𝜎/𝜎′, 𝑝 + 1) for all 𝜎 ∈ 𝛴 and 𝜎′ ∈ 𝛴 − {𝜎}

4. For state 𝑝 = 𝑚, add the following transitions to 𝐸:

 (𝑝, 𝜎/𝜎, 𝑝) for all 𝜎 ∈ 𝛴

5. Set all states 𝑝 ∈ 𝑄 = {0,1,2, ⋯ , 𝑚} as final states of 𝑇 , that is, 𝐹 =

{0,1,2, ⋯ , 𝑚}.

Example: Let us construct an input-preserving transducer 𝑇 realizing the 𝑆𝐼𝐷(2, ∞)

channel based on a given positive integer number 𝑚 = 2 and a given alphabet

91

𝛴 = {𝑎, 𝑏}. Following Algorithm 5.1, we define the state set 𝑄 = {0,1,2}, and set the

state 0 as the start state of 𝑇 in Figure 5.1a. Then for state 0 and for every symbol

in 𝛴 = {𝑎, 𝑏} , we add the following transitions to 𝑇 : (0, 𝑎/𝑎, 0) , (0, 𝑏/𝑏, 0) ,

(0, 𝑎/𝜆, 1) , (0, 𝑏/𝜆, 1) , (0, 𝜆/𝑎, 1) , (0, 𝜆/𝑏, 1) , (0, 𝑎/𝑏, 1) , and (0, 𝑏/𝑎, 1) in

Figure 5.1b. Also, for state 1 and for every symbol in 𝛴 = {𝑎, 𝑏}, we add the

following transitions to 𝑇 : (1, 𝑎/𝑎, 1) , (1, 𝑏/𝑏, 1) , (1, 𝑎/𝜆, 2) , (1, 𝑏/𝜆, 2) ,

(1, 𝜆/𝑎, 2), (1, 𝜆/𝑏, 2), (1, 𝑎/𝑏, 2), and (1, 𝑏/𝑎, 2) in Figure 5.1c. Finally we add

the following transitions to 𝑇: (2, 𝑎/𝑎, 2), (2, 𝑏/𝑏, 2), and we set all the states

𝑄 = {0,1,2} as the final states of 𝑇 in Figure 5.1d, and the transducer 𝑇 in Figure

5.1d realizes the channel 𝑆𝐼𝐷(2, ∞).

(a)

(b)

92

(c)

(d)

Figure 5.1: The input-preserving transducer 𝑇 realizing the channel 𝑆𝐼𝐷(2, ∞).

Now, we can find the largest positive integer number 𝑚 in [0, ⌈𝑑𝑖𝑎𝑚(𝐴)/2⌉], such

that 𝐿 is error-correcting for 𝑆𝐼𝐷(𝑚 − 1, ∞) but not error-correcting for

𝑆𝐼𝐷(𝑚, ∞). We here only give examples to show how to find the integer 𝑚. Readers

are referred to Chapter 2 and Chapter 4 for the question of deciding whether a

language 𝐿 is error-correcting for a channel 𝐶.

93

Figure 5.2: Automaton accepting the language 𝐿 = {𝑏𝑏𝑎𝑎, 𝑎𝑏𝑏, 𝑎𝑏𝑏𝑏𝑎𝑏}.

Example: Let us consider the regular language 𝐿 = {𝑏𝑏𝑎𝑎, 𝑎𝑏𝑏, 𝑎𝑏𝑏𝑏𝑎𝑏} in Figure

5.2. Following the interpretation in Section 4.3, it can be decided that the language L

is error-correcting for 𝑆𝐼𝐷(1, ∞). We do not show the details of how this decision is

made. However, it is also decided that the language L is not error-correcting for

𝑆𝐼𝐷(2, ∞). The counterexample 𝑎𝑏𝑏 and 𝑏𝑏𝑎𝑎 can be found following Algorithm

4.4. It is easy to understand why 𝐿 = {𝑏𝑏𝑎𝑎, 𝑎𝑏𝑏, 𝑎𝑏𝑏𝑏𝑎𝑏} is not error-correcting

for 𝑆𝐼𝐷(2, ∞), as both 𝑎𝑏𝑏 and 𝑏𝑏𝑎𝑎 can be changed into 𝑏𝑏𝑎. Therefore, we

conclude that the edit distance of 𝐿 is 𝐷(𝐿) = 2𝑚 − 1 = 3 or 𝐷(𝐿) = 2𝑚 = 4.

Given a regular language 𝐿 accepted by a DFA 𝐴 and a channel 𝐶 realized by an

input-preserving transducer 𝑇, the time complexity of constructing the transducer 𝑇′

realizing the relation 𝐶−1 ↑ 𝐿 is 𝑂(|𝑇||𝐴|) . The time complexity of deciding

whether the transducer 𝑇′ is functional is 𝑂(|𝑇′|2). Therefore, the time complexity

of deciding whether 𝐿 is error-correcting for 𝐶 is 𝑂(|𝑇′|2) = 𝑂(|𝑇||𝐴|)2 =

𝑂(|𝑇|2|𝐴|2).

94

In order to find the largest positive integer number 𝑚 in [0, ⌈𝑑𝑖𝑎𝑚(𝐴)/2⌉], such that

𝐿 is error-correcting for 𝑆𝐼𝐷(𝑚 − 1, ∞) but not error-correcting for 𝑆𝐼𝐷(𝑚, ∞), we

have to perform the algorithm to decide whether 𝐿 is error-correcting for the 𝑆𝐼𝐷

channel for each 𝑚 in [0, ⌈𝑑𝑖𝑎𝑚(𝐴)/2⌉]. Again, if we use binary search algorithm to

find the desired 𝑚 in [0, ⌈𝑑𝑖𝑎𝑚(𝐴)/2⌉], the error-correction algorithm will be used

𝑂(𝑙𝑜𝑔 𝑑) times, where d = ⌈𝑑𝑖𝑎𝑚(𝐴)/2⌉ . Therefore, the time complexity of

computing the edit distance of a given regular language 𝐿 accepted by a DFA 𝐴

using the error-correction property is 𝑂(|𝑇|2|𝐴|2 𝑙𝑜𝑔 𝑑) = 𝑂(|𝐴|2(𝑑)2 𝑙𝑜𝑔 𝑑), where

d = ⌈𝑑𝑖𝑎𝑚(𝐴)/2⌉.

Obviously, estimating the edit distance of a regular language 𝐿 using the

error-correction property is faster than computing it using the error-detection property,

but the new algorithm produces two values for 𝐷(𝐿): 2𝑚 − 1 or 2𝑚, where 𝑚 is

the integer such that 𝐿 is error-correcting for 𝑆𝐼𝐷(𝑚 − 1, ∞) but not

error-correcting for 𝑆𝐼𝐷(𝑚, ∞). In order to compute exactly the edit distance of 𝐿,

we can test whether 𝐿 is error-detecting for 𝑆𝐼𝐷(2𝑚 − 1, ∞). If 𝐿 is error-detecting

for 𝑆𝐼𝐷(2𝑚 − 1, ∞), then 𝐷(𝐿) = 2𝑚, if not, 𝐷(𝐿) = 2𝑚 − 1. We conclude that

computing the exact edit distance of a regular language 𝐿 using the combination of

the error-correction property and error-detection property is still faster than computing

the edit distance of a regular language 𝐿 using only the error-detection property.

Example: Let us consider again the regular language 𝐿 = {𝑏𝑏𝑎𝑎, 𝑎𝑏𝑏, 𝑎𝑏𝑏𝑏𝑎𝑏} in

95

Figure 5.2. We have already concluded that the edit distance of 𝐿 is 𝐷(𝐿) = 2𝑚 −

1 = 3 or 𝐷(𝐿) = 2𝑚 = 4. In order to decide the exact edit distance of L, we decide

whether 𝐿 is error-detecting for 𝑆𝐼𝐷(3, ∞). Following the interpretation in Section

4.2, we conclude that 𝐿 is not error-detecting for 𝑆𝐼𝐷(3, ∞) , and the

counterexample is 𝑎𝑏𝑏 and 𝑏𝑏𝑎𝑎, as 𝑎𝑏𝑏 could be changed into 𝑏𝑏𝑎𝑎 that is also

in 𝐿. Therefore we conclude that the edit distance of 𝐿 = {𝑏𝑏𝑎𝑎, 𝑎𝑏𝑏, 𝑎𝑏𝑏𝑏𝑎𝑏} is

𝐷(𝐿) = 3.

5.4 Performance tests

We provide two performance tests in terms of time elapse for the existing method of

computing the edit distance of a regular language using only the error-detection

property, and for our new method of estimating the edit distance using the

error-correction property and computing the exact edit distance using the combination

of the error-correction property, and error-detection property. The performance tests

are executed on the compute resource named Mahone in ACEnet [1], which is located

at Saint Mary’s University, Halifax, Nova Scotia, Canada.

The first performance test involves the regular language 𝐿𝑛 = (𝑎𝑛)∗𝑏, for 𝑛 ≥ 2.

The automaton 𝐴𝑛 accepting 𝐿𝑛 is shown in Figure 5.3. The edit distance is

𝐷(𝐿𝑛) = 𝑛. In this sequence of automata, the number of states, the edit distance, and

the diameter grow with 𝑛. In particular, the number of states is 𝑛, and the diameter is

𝑛, so this presents a worst case input to the algorithm when it comes to the number of

96

times that the language is tested for the error-detection property and the

error-correction property.

Figure 5.3: The automaton 𝐴𝑛 accepting the language 𝐿𝑛 = (𝑎𝑛)∗𝑏, for 𝑛 ≥ 2.

The result of the first performance test is shown in Table 5.1. The time elapse for each

automaton is an approximate time, which is depending on different computers.

 Algorithm

Automaton

Error-detection only Error-correction only

Error-correction + one

error-detection

𝐴4 0.4s 0.04s 0.11s

𝐴6 11.6s 0.30s 2.75s

𝐴8 195.7s 1.8s 44.45s

𝐴10 2151.3s 8.7s 559.08s

𝐴12 13553.5s 32.3s 4388.38s

Table 5.1

The result of Table 5.1 shows that our method of estimating the edit distance of a

regular language is much faster than the existing method using only the

97

error-detection property. We can also see that computing the exact edit distance of a

regular language using the combination of the error-correction property and

error-detection property is still faster than computing the edit distance via only the

error-detection property.

We provide a more detailed result for our method in Table 5.2.

 Algorithm

Automaton
Error-correction only

𝐴4 0.04s

𝐴6 0.30s

𝐴8 1.84s

𝐴10 8.71s

𝐴12 32.31s

𝐴14 93.28s

𝐴16 340.74s

𝐴18 1049.76s

𝐴20 2764.68s

Table 5.2

The second performance test involves the well known codes

𝐿(𝑛) = {𝑏1𝑏2 ⋯ 𝑏𝑛| (∑ 𝑖 ∙ 𝑏𝑖

𝑛

𝑖=1

) ≡ 0(𝑚𝑜𝑑 (𝑛 + 1))}

98

for 𝑛 ≥ 2 of Levenshtein [38]. The edit distance of 𝐿(𝑛) is 𝐷(𝐿(𝑛)) = 2, for all

𝑛 ≥ 2. In the sequence of automata accepting 𝐿(𝑛), the number of states is 𝑂(𝑛2)

and the diameter is equal to 𝑛 + 1, but the edit distance is fixed for all 𝑛 ≥ 2 –

unlike the edit distance in the first performance test.

The result of the second performance test is shown in Table 5.3.

 Algorithm

Automaton

Error-detection only Error-correction only

Error-correction + one

error-detection

𝐵2 0.05s 0.02s 0.01s

𝐵4 1.46s 0.38s 0.40s

𝐵6 385.48s 3.96s 4.03s

𝐵8 63868.80s 265.60s 270.45s

𝐵10 N/A 2086.56s 2249.09s

Table 5.3

Also, the result of Table 5.3 shows that our method of estimating the edit distance of a

regular language is much faster than the existing method. Note that there is no such

obvious difference of time elapse between the method of using error-correction only

and the method of combination of error-correction and error-detection. This is because

for every 𝑛 ≥ 2, the edit distance of 𝐿(𝑛) is always 𝐷(𝐿(𝑛)) = 2. Therefore, the

time elapse difference between these two methods is the processing time of one test

99

for deciding if 𝐿(𝑛) is error-detecting for 𝑆𝐼𝐷(1, ∞), whose time complexity is only

𝑂(|𝐴|4|𝑇|2) = 𝑂(|𝐴|4𝑑2), where 𝑑 = 1.

100

Chapter 6

Implementation

In addition to our theoretical research, we develop an implementation of the

algorithms and a web interface. An existing web interface named LaSer (Language

Server) [36] is already established in [15], and another one in [10]. As our research is

a continuation of these works, we enhance the capabilities of LaSer and we deliver a

new web interface named I-LaSer [24], consisting of a web interface and

implementations of the algorithmic tools and methods discussed in the previous

chapters. In doing so, we also provided an implementation of transducer classes in our

copy of FAdo libraries.

In [15], the software consists of two main elements: implementations of the

algorithms and a web interface. The algorithms are implemented in the C++ language

with Boost libraries [6]. The web interface of [15] is developed using Python language

with Django web framework [12]. In our research, we do not make any changes to the

architecture of the web interface. We do not use C++ to implement our methods,

instead we implement our algorithms in Python language with FAdo libraries [2, 18],

as FAdo libraries are available during our research and are powerful libraries contain

most of basic implementations of concepts in automaton theory. This combination

allowed us to take advantage of both the convenience of the existing FAdo libraries

and the convenience of Django as a rapid web application development solution.

101

The architecture of our implementation is illustrated in Figure 6.1.

Figure 6.1 System Architecture.

6.1 Implementation of the algorithms

The back end functionality and data structures in the implementations of our

algorithms are encapsulated in three main classes:

 FA – the basic class for finite automata, encapsulating the logic of single

automaton and all the operations performed on automata. The classes of DFA

and NFA are derived from the FA class. These were already available in FAdo

libraries.

Web Client

Apache Web Server

Django (Python set of libraries)

Algorithm Implementation

C++ compiled code

with BOOST macros

Python code with

FAdo libraries

File System

102

 Transducer – encapsulate the logic of single transducer and all the operations

performed on transducer. This class is an outcome of this research.

 Real-time transducer – encapsulate the logic of real-time transducer and all

the operations performed on real-time transducer. This class is an outcome of

this research.

The FA class encapsulates the structure of an automaton, as a set of start states, a set of

final states, a list of states, a set of alphabet, and a dictionary of transitions. Note that

the data structure of dictionary in Python is similar to the data structure of hash table

in C++ and Java. The FA class also encapsulates the operations performed on

automata.

Example: The automaton in Figure 2.1 would be logically represented as follows:

 List of states: [′0′, ′1′, ′2′], where every element in this list is the string of the

name of the state.

 Set of start states: 𝑠𝑒𝑡([0]), where 0 is the index to find the start state in the

state list. For example, in this case, the start state is ‘0’.

 Set of final states: 𝑠𝑒𝑡([2]), where 2 is the index to find the final state in the

state list.

 Alphabet: 𝑠𝑒𝑡([′𝑎′, ′𝑏′]).

 Dictionary of transitions: {0: {′𝑎′: 𝑠𝑒𝑡([1]), ′𝑎′: 𝑠𝑒𝑡([0])}, 1: {′𝑏′: 𝑠𝑒𝑡([2])}},

where the keys of this dictionary are the origin states in the transitions, and

103

the values are another dictionary in which the keys are the label in the

transitions and values are the end states.

Following are some important methods in the public interface under the FA class and

the derived class DFA and NFA:

 trim(): This method removes states that do not reach a final state, or,

inclusively, cannot be accessed from the start state. Only useful states remain.

 regexpSE(): This method generates a regular expression obtained by state

elimination whose language is accepted by the automaton.

 epsilonClosure(): This method returns the set of states connected only by

𝜆-transitions from the given state or set of states.

 __and__(): This method performs the Cartesian product operation of two

automata discussed in Chapter 2.

 addEpsilonTransition(): This method adds self 𝜆-transitions to every state

in the automaton.

 CodeP(): This is a method introduced in this research under the NFA class.

The method decides whether a language accepted by an NFA is a code using

Algorithm 4.3.

The Transducer class encapsulates the structure of a single transducer as a set of start

states, a set of final states, a list of states, a set of input alphabet, a set of output

alphabet, and a dictionary of transitions. The Transducer class also encapsulates the

104

operations performed on transducers.

Example: The transducer in Figure 4.7 would be logically represented as follows:

 List of states: [′0′, ′1′]

 Set of start states: 𝑠𝑒𝑡([0])

 Set of final states: 𝑠𝑒𝑡([0,1]), where 0 and 1 indicates that in this case the

transducer has two final states.

 Input alphabet: 𝑠𝑒𝑡([′𝑎′, ′𝑏′])

 Output alphabet: 𝑠𝑒𝑡([′𝑎′, ′𝑏′])

 Dictionary of transitions: {1: {′𝑎′: [[′𝑎′, 𝑠𝑒𝑡([1])]], ′𝑏′: [[′𝑏′, 𝑠𝑒𝑡([1])]]},

0: {′𝑎′: [[′@𝑒𝑝𝑠𝑖𝑙𝑜𝑛′, 𝑠𝑒𝑡([0])], [′𝑎′, 𝑠𝑒𝑡([1])]], 'b':[[′@𝑒𝑝𝑠𝑖𝑙𝑜𝑛′, 𝑠𝑒𝑡([0])],

[′𝑏′, 𝑠𝑒𝑡([1])]]}}

Following are some important functions in the public interface under the Transducer

class:

 toRealTimeREType(): This method translates a transducer in normal form to

an equivalent real-time transducer using Algorithm 4.6. The output labels of

this type of the real-time transducer are represented as regular expressions.

 toRealTimeAutomatonType(): This method translates a transducer in

normal form to an equivalent real-time transducer Algorithm 4.6. The output

labels of this type of the real-time transducer are represented as automata.

This method will export a file containing all the descriptions of the automata.

105

 __and__(): These two methods perform the input Cartesian product operation

𝑇 ↓ 𝐴 of a transducer 𝑇 and an automaton 𝐴 – see Section 2.6.

 outputIntersect(): This method performs the output Cartesian product

operation 𝑇 ↑ 𝐴 of a transducer 𝑇 and an automaton 𝐴 – see Section 2.6.

 inverse(): This method generates the inverse transducer 𝑇−1 of a given

transducer 𝑇 by switching the input label with the output label in every

transition. No start state or final states will be changed.

 epsilon(): This method tests whether a given transducer has 𝜆 -input

transitions.

 addEpsilonTransition(): This method adds self (𝜆/𝜆) transitions to every

state in the transducer.

 standardToNormalForm(): This method translates a given transducer in

standard form to an equivalent transducer in normal form.

 generalToStandardForm(): This method translates a given transducer in

general form to an equivalent transducer in standard form.

 functionalP(): This method decide whether a given transducer in standard

form is functional using Algorithm 4.2. In addition, if the transducer is not

functional, it will generate a counterexample to show why it is not functional

– see Algorithm 4.4.

 crossProductConstruction(): This method performs the cross product

construction between a standard form transducer and itself to construct the

product machine 𝑈 Algorithm 4.2.

106

The Real-time transducer class encapsulates the structure of a real-time transducer as a

dictionary of start states, a set of final states, a list of states, a set of input alphabet, a

set of output alphabet, and a dictionary of transitions. The Real-time transducer class

also encapsulates the operations performed on real-time transducers.

Following are some important functions in the public interface of the automaton class:

 simpleFunctionalP(): This method decides whether a restricted sequential

transducer is functional using Algorithm 4.1.

 functionalP():This method decides whether a given real-time transducer is

functional using Algorithm 4.2. In addition, if the transducer is not

functional, it will generate a counterexample to show why it is not functional

– see Algorithm 4.4.

6.2 User interface

Our software is accessible via a web interface, which is called I-LaSer (Independent

Language Server) under following URL:

http://laser.cs.smu.ca/independence/

The outlook of I-LaSer is illustrated in Figure 6.2.

http://laser.cs.smu.ca/independence/

107

Figure 6.2: The outlook of I-LaSer.

I-LaSer integrates the functions in LaSer and the algorithms in our research. For now,

I-LaSer is currently capable of answering the satisfaction question: given the

description of a regular language and the description of an independence property,

decide whether the language satisfies the property. Readers are referred to [27] for the

details about the general concept of independent language properties. In our research

we restrict our attention to 3-independence properties, or equivalently, properties

defined by binary relations [45].

Comparing to LaSer, I-LaSer has the following functional improvements:

1. Provide functions to answer the questions of whether a given regular

language satisfies a fixed property (Prefix, Suffix, Infix, Outfix, Hypercode,

108

Code).

2. Allow users to describe trajectories properties via regular expressions.

3. Provide the function to answer the question of whether a given regular

language satisfies a given language property described by an input-preserving

transducer (equivalently, whether a given regular language is error-detecting

for a channel realized by the same input-preserving transducer).

4. Provide the function to answer the question of whether a given regular

language is error-correcting for a channel realized by an input-preserving

transducer.

5. Allow users to upload files to describe the automaton and transducer in either

Grail or FAdo format.

6. Implement the feature of providing a counterexample when a given language

does not satisfies a given language property.

We allow user to describe the independence properties in the following three methods:

1. Via sets of trajectories [13]. Trajectory is a formal method for describing an

independence property via a regular expression 𝑒 over {0,1}, such that a

language 𝐿 satisfies the property if

 𝐿 ∩ (𝐿∐𝑒𝛴+) = ∅, (1)

Where ∐𝑒 is the shuffle operation on the trajectory set 𝑒. For example, 0∗1∗

describes the prefix code property and 0∗1∗0∗ describes the infix code

property.

109

2. Via input-altering transducers [15, 16]. In particular, a property is defined via

an input-altering transducer 𝑇 such that a language 𝐿 satisfies the property

if

 𝐿 ∩ 𝑇(𝐿) = ∅. (2)

3. Via input-preserving transducers [16]. A property is defined via an

input-preserving transducer 𝑇 such that a language 𝐿 satisfies the property

if, for all 𝑥 ∈ 𝐿,

 (𝐿 − 𝑥) ∩ 𝑇(𝑥) = ∅ (3)

In order to decide the satisfaction questions of a regular language and a property

described by one of the three decision methods we mentioned above, users are

required to specify a file containing the description of the automaton accepting the

regular language and a file containing the description of the language property via

trajectory or transducer. In each case, I-LaSer tests the corresponding condition (1),

(2), or (3) shown above, and returns the computation result displayed in the web

interface.

In addition, I-LaSer provides six fixed code related language properties for user to

choose. Decision of the “Code” property is implemented in Python with FAdo

libraries in our research – see Section 4.4. For the other five code related properties,

we inherit the implementations in LaSer [15]. As these code-related language

properties are fixed in the selection box, users do not have to specify any file

110

containing the description of these properties. I-LaSer will construct the

corresponding description via transducer based on user’s selection in the backend

using Algorithm 4.5.

Our interface inherited functions from LaSer, where the files must be in Grail format

[19]. Rules for describing automaton and transducer in Grail format can be found in

[15, 36]. We also allow users to use files in Grail format in I-LaSer. In addition, we

allow users to provide the files in FAdo format.

An automaton in FAdo format is described in a file as follows:

 @DFA or @NFA begins a new automata (and determines its type) and must be

followed by the list of the final states separated by blanks.

 The origin state of the first transition is the start state.

 A line of the form p σ q describes a single transition, where p is the origin

state of the transition, q is the destination state, and σ is the label of such

transition.

States have to be represented by non-negative integers. Labels can consist of a

sequence of alphanumerical symbols. However, in the transition, fields should be

separated by a blank (e.g. transition 1 a2 3 means that a2 is a label in the alphabet of

the language accepted by the automaton described in such file). Note that the label can

be described using any character sequence including @epsilon which is reserved for

111

representing the empty word 𝜆. An automaton can have multiple final states and only

one start state.

Example: Automaton accepting 𝑎𝑏 + 𝑏𝑏𝑎 in FAdo format:

@NFA 3

1 a 2

2 b 3

1 b 4

4 b 5

5 a 3

A transducer is described in a file in FAdo format as follows:

 @Transducer begins a new transducer and must be followed by the list of

the final states separated by blanks.

 The origin state of the first transition is the start state.

 A line of the form p x y q describes a single transition, where p is the origin

state of the transition, q is the destination state, and x is the input label and y

is the output label.

Similarly to an automaton, states in transducer have to be described by non-negative

integers. Both the input and output labels can be described using any character

sequence including @epsilon which is reserved for representing the empty word 𝜆.

A transducer can have multiple final states and only one start state.

Example: An example file that describes a transducer describing 𝑆𝐼𝐷(1, ∞) channel

112

in FAdo format:

@Transducer 0 1

0 a a 0

0 b b 0

0 a b 1

0 b a 1

0 a @epsilon 1

0 b @epsilon 1

0 @epsilon a 1

0 @epsilon b 1

1 a a 1

1 b b 1

For the sake of convenience for the users who may be familiar with one type of file

format, we provide a small Python script to carry out the translation from Grail format

to FAdo format and vice versa. Therefore in I-LaSer, users can use files either in Grail

format or FAdo format.

When using I-Laser, if users choose “Fixed” property to decide whether a language 𝐿

satisfies some code related language properties, for example the prefix code property,

users need to upload a file describing an automaton accepting 𝐿 and click the Submit

button. Afterwards, our application will compute the answer. If the language 𝐿

satisfies the prefix code property, user will simply get a confirmation of the fact, e.g.

“Yes, the language satisfies the prefix property”. Otherwise, they will get the

negative fact, e.g. “No, the language does not satisfy the prefix property” followed

by the counterexample. For other properties besides “Fixed”, after users submit a file

describing an automaton accepting 𝐿 and a file of a transducer describing the

113

language property and click the Submit button, users will simply get a confirmation of

that fact, such as “Yes, the language satisfies the property”, or “No, the language

does not satisfy for the property” followed by the counterexample.

114

Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis, we introduce our algorithmic tools and decision methods to answer the

satisfaction question for regular languages and language properties. These questions

include: decide whether a given language 𝐿 satisfies a given language property

described by an input-preserving transducer 𝑇, which is equivalent to the question of

whether 𝐿 is error-detecting for a channel realized by 𝑇; decide whether a given

language is error-correcting for a channel; decide whether a regular language is a code.

These algorithmic tools involve automaton tools and transducer tools. In addition, we

provide a new method to estimate the edit distance of a regular language using our

tools. Finally, we implement our algorithms and methods through establishing a web

interface, which strengthens the capabilities of an existing web interface.

In Chapter 4, we present algorithms to construct machine products and to decide

functionality of three types of transducer: restricted sequential transducer, standard

form transducer, and real-time transducer. We use the functionality decision

algorithms to decide the above satisfaction questions following the interpretation of

two propositions discussed in Chapter 3 and the algorithm in [21]. We introduce our

algorithms to provide counterexamples in cases where answers of these satisfaction

questions are negative. Moreover, we present an algorithm to translate a transducer in

115

standard form into an equivalent real-time transducer based on the mathematical

method in [42]. In Chapter 5, we discuss our method to estimate the edit distance of a

regular language using the error-correction property. We provide an algorithm to

construct an input-preserving transducer to realize 𝑆𝐼𝐷 channels. We also provide

two performance tests, where the result shows that our new method is much faster.

Our final research goal is to implement all of the algorithms involved and make them

accessible via a web application. We use the Python programming language and FAdo

libraries to implement our methods. Furthermore, we integrate the existing web

interface LaSer based on C++ and BOOST libraries to our new web application, and

establish a new web interface. Improvements are implemented when integrating two

web interfaces together. In Chapter 6, we include a brief tutorial on how to access and

use our system, as well as some examples of input files.

7.2 Future work

Combined with the existing methods to decide whether given languages satisfy

properties described by input-altering transducers, our research only answer the

general satisfaction questions for regular languages and independence properties:

given a language 𝐿 and a language property 𝑃, does 𝐿 satisfy 𝑃?

In our opinion, there are two main directions for future work: the maximality question

and the construction question. The maximality question is about deciding whether a

116

given language is maximal with respect to a given language property. Note that in

general, maximality question is PSPACE-hard. The construction question is to

generate a language that satisfies some given properties. The construction question

can be developed for finite languages, or if possible for infinite languages, where the

output would be an automaton recognizing the generated language.

For any software application, there must be places for improvement. Our web

interface also needs to be improved in the future. Besides implementing the above

maximality and construction question and adding these functions in our new web

interface, we hope our web interface would be more integrated to use one particular

programming language, either C++ or Python. In addition, time complexity and space

complexity are other important aspects for future improvement.

In conclusion, we hope that the technical ideas and methods in our research will shed

some light on other broader research directions for us to understand the world of

automaton and information theory comprehensively.

117

Bibliography

1. ACEnet, August 2012. http://www.ace-net.ca/wiki/Mahone.

2. A. Almeida, M. Almeida, J. Alves, N. Moreira and R. Reis. FAdo and GUItar:

Tools for automata manipulation and visualization. In: CIAA 2009. LNCS 5642,

Springer-Verlag, Berlin, 65 - 74, 2009.

3. M. P. Béal, O. Carton, C. Prieur and J. Sakarovitch. Squaring transducers: an

efficient procedure for deciding functionality and sequentiality. Theoretical

Computer Science, 292(1): 45 - 63, 2003.

4. J. Berstel. Transductions and Context-free Languages, Teubner, Leipzig, 1979.

5. J. Berstel and D. Perrin. Theory of codes. Academic Press Orlando, 1985.

6. Boost C++ libraries, August 2012. http://www.boost.org/.

7. A. Carpi. Overlap-free words and finite automata. Theoretical Computer Science,

115: 243 - 260, 1993.

8. N. Chomsky. Three models for the description of language. IRE Transactions on

Information Theory, 2:113 - 124, 1956.

9. B. Courcelle, D. Niwinski, and A. Podelski. A Geometrical View of the

Determinization and Minimization of Finite State Automata. Math Systems Theory,

24: 117 - 146, 1991.

10. A. Daka. Computing Error-Detecting Capabilities of Regular Languages. MSc

thesis, Department of Mathematical and Computing Science, Saint Mary’s

University, Canada, 2011.

11. A. Daka and S. Konstantinidis. Refinement and Implementation of Algorithmic

118

Tools for Deciding the Error-detection Property. Technical Report 002,

Department of Mathematics and Computing Science, Saint Mary’s University,

Canada, 2011.

12. Django web framework, August 2012. https://www.djangoproject.com/.

13. M. Domaratzki. Trajectory-based codes. Acta Information, 40(6-7): 491 - 527,

2004.

14. M. Domaratzki and K. Salomaa. Codes defined by multiple sets of trajectories.

Theoretical Computer Science, 366(3): 182 - 193, 2006.

15. K. Dudzinski. A system for describing and deciding properties of regular

languages using input altering transducers. MSc thesis, Department of

Mathematical and Computing Science, Saint Mary’s University, Canada, 2011.

16. K. Dudzinski, and S. Konstantinidis. Formal descriptions of code properties:

decidability, complexity, implementation. International Journal of Foundations of

Computer Science, 23(1): 67 - 85, 2012.

17. S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, New

York, 1974.

18. FAdo, August 2012, http://fado.dcc.fc.up.pt/.

19. Grail++, August 2012. http://www.csd.uwo.ca/Research/grail/.

20. Y. S. Han and D. Wood. Overlap-free regular languages. In Danny Chen and

D.Lee, editors, Computing and Combinatorics, volume 4112 of Lecture Notes in

Computer Science, pages 469 - 478. Springer Berlin / Heidelberg, 2006.

21. T. Head and A.Weber. Deciding code related properties by means of finite

119

transducers. Proc. Sequences II, Methods in Communication, Security, and

Computer Science, pages 260 - 272, 1993.

22. J. E. Hopcroft, R. Motwani, and J. Ullman. Introduction to automata theory,

languages, and computation (3rd edition). Addison-Wesley, MIT, 2006.

23. E.M. Gurari and O.H. Ibarra. A Note on Finite-Valued and Finitely Ambiguous

Transducers. Mathematical Systems Theory, 16: 61 - 66, 1983.

24. I-LaSer, August 2012. http://laser.cs.smu.ca/independence/.

25. H. Jürgensen. Syntactic monoids of codes. Acta Cybernetica, 14(1): 117 - 134,

1999

26. H. Jürgensen, M. Katsura, and S. Konstantinidis. Maximal solid codes. Journal of

Automata, Languages and Combinatorics, 6(1): 25 - 50, 2001.

27. H. Jürgensen and S. Konstantinidis, Codes, Handbook of formal languages, vol. 1,

Springer-Verlag, New York, 1997

28. H. Jürgensen and S. S. Yu. Solid codes. Journal of Information Processing and

Cybernetics, 26(10): 563 - 574,1990.

29. S. Konstantinidis. Computing the edit distance of a regular language. Information

and Computation, 205: 1307 - 1316, 2007.

30. S. Konstantinidis. An algebra of discrete channels that involve combinations of

three basic error types, Information and Computation, 167 (2): 120 - 131, 2001.

31. S.Konstantinidis. Classical-theoretical foundations of computing (a concise

textbook). Department of Mathematics and Computing Science, Saint Mary’s

University, Canada, 2010

120

32. S. Konstantinidis. Structural analysis of error-correcting codes for discrete

channels that involve combinations of three basic error types, IEEE Transactions

on Information Theory, 45 (1): 60 - 77, 1999.

33. S. Konstantinidis. Transducers and the Properties of Error-Detection,

Error-Correction and Finite-Delay Decodability. Journal of Universal Computer

Science, 8: 278 - 291, 2002.

34. S. Konstantinidis and A. O’Hearn. Error-Detecting Properties of Languages.

Theoretical Computer Science, 276: 355 - 375, 2002.

35. S. Konstantinidis and P. V. Silva. Maximal error-detecting capabilities of a formal

language. Journal of Automata, Languages and Combinatorics, 13(1): 55 - 71,

2008.

36. LaSer, August 2012. http://laser.cs.smu.ca/transducer/.

37. M. V. Lawson, Finite automata, CRC Press, 2003.

38. V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals. Soviet Physics Doklady, 10(8): 707 - 710, 1966.

39. Al. A. Markov. Nonrecurrent coding. Problemy Kibernetiki, 8: 169 - 186, 1961.

40. C. Allauzen and M. Mohri. Efficient algorithms for testing the twins property.

Journal of Automata, Languages and Combinatorics, 8(2): 117 - 144, 2003.

41. G. Paun and A. Salomaa. Thin and slender languages. Discrete Applied

Mathematics, 61(3): 257 - 270, 1995.

42. J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, Berlin,

2009.

121

43. D. Sankoff, J. Kruskal. Time Warps, String Edits, and Macromolecules: The

theory and practice of sequence comparison. CSLI Publications, 1999.

44. M.P. Schützenberger. Sur les Relations Rationnelles Entre Monoides Libres.

Theoretical Computer Science, 3: 243 - 259, 1976.

45. H. Shyr and G. Thierrin. Codes and binary relations. SÉMINAIRE D’ALGÈBRE

PAUL DUBREIL PARIS 1975 - 1976 (29ÈME ANNÉE). Lecture Notes in

Mathematics, 586: 180 - 188, 1977.

46. H. Shyr and S. Yu. Solid codes and disjunctive domains. Semigroup Forum, 41: 23

- 37, 1990.

47. S. Yu, Regular languages, Handbook of Formal Languages, Vol. 1(Chapter 2): 41

- 110, Springer Verlag, 1997.

