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Abstract

Identifying Users and Activities from Brain Wave Signals Recorded from a Wearable

Headband

by Glavin B. Wiechert

This paper studies the supervised classification of electroencephalogram (EEG)

brain signals to identify persons and their activities. The brain signals are obtained

from a commercially available and modestly priced wearable headband. Such wear-

able devices generate a large amount of data and due to their attractive pricing struc-

ture are becoming increasingly commonplace. As a result, the data generated from

such wearables will increase exponentially, leading to many interesting data mining

opportunities.

This paper proposes a representation that reduces variable length signals to more

manageable and uniformly fixed length distributions, and then explores the effective-

ness of a variety of data mining techniques on the biometric signals. The proposed

approach is demonstrated through data collected from a wearable headband that

recorded EEG brain signals. The brain signals are recorded for a number of partici-

pants performing various tasks. The experiments use a number of classification and

clustering techniques, including decision trees, SVM, neural networks, random forests,

K-means clustering, and semi-supervised crisp and rough K-medoid clustering.

The results show that it is possible to identify both the persons and the activities

with a reasonable degree of precision. Furthermore, for identifying persons the evolu-

tionary semi-supervised crisp and rough K-medoid clustering is shown to favourably

compare with the conventional unsupervised algorithms such as K-means.

April, 2016
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Chapter 1

Introduction

Wearable devices include wristbands, armbands, watches, headbands that record sig-

nals from different parts of the body. Typically, the devices record all the signals from

the muscles they are in contact with or the brain, leading to a large amount of data.

Both the volume and velocity of the data makes it a big data problem. It is not easy

to analyze a long sequence of numbers recorded on different channels for meaningful

data mining activities.

This paper presents data collection from a wearable headband called Muse. Among

other variables such as acceleration and facial movements, the Muse headband records

four signals from four different locations around a person’s head. The data streams

from the headband can be very long. It is necessary to create a more compact repre-

sentation of the data streams from various channels without losing the essence of the

data pattern.

This paper describes an approach to create a summarized frequency distribution of

the signals. The approach is tested for a data collection consisting of five individuals

performing a number of tasks; listening to music, reading, relaxing, watching a video,

playing computer games, and listening to music. These activities are repeated a

number of times to test the validity of the knowledge representation and subsequent

1
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data mining. The dataset with the proposed knowledge representation is used with

a number of supervised classification [8] techniques including decision trees [1, 2, 34],

support vector machines (SVM) [3, 4, 36, 37, 38], neural networks [5, 9, 40], and

random forests [2, 10, 34, 35]. The variety of classification techniques demonstrated

the ability of the summarized frequency distribution to represent the time series of

signals independent of the classification techniques used. The classification process

was successful in predicting the persons as well as the activities.

Clustering, a supervised learning technique, is one of the first data mining tech-

niques applied to any new dataset to explore the patterns that may exist. A good

clustering algorithm should minimize the within-cluster scatter and maximize the

distance between clusters. Since there are nk different possible clustering schemes for

clustering n objects into K-clusters, a straightforward optimization is an NP hard

problem. K-means is one of the popular clustering algorithms that can find a reason-

ably optimal clustering scheme. K-medoid clustering is a variation of the K-means

algorithm. The K-means approach determines the centroid of a cluster, whereas K-

medoid clustering finds an object that is most similar to all the other objects in the

cluster. The search space for K-medoid is discrete and limited by the total number

of objects in a dataset. This can be an advantage in evolutionary searching. The

standard K-means and K-medoids algorithms focus on the distance-based metrics,

such as within-cluster scatter and separation between clusters. It is not possible to

include additional optimization criteria in these algorithms. Combining K-medoids

with an evolutionary algorithm makes it possible to perform multi-objective clustering
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depending on the need of an application. Peters [11] first proposed the use of evolu-

tionary computing in the context of rough set theory, Lingras [12, 13] subsequently

explored both K-means and K-medoids based on rough set theory.

The clustering approaches group the data based on the distances between ob-

jects. They do not and cannot accommodate any other known categorization of these

objects. In some cases, it is possible that we may have additional information re-

garding the categorization of some of the objects in a dataset. This paper extends

the evolutionary rough K-medoid algorithm to optimize the precision of the known

categorization in the dataset. The need and usefulness of the proposed approach is

demonstrated for a dataset consisting of biometric signals from a wearable device.

The dataset is categorized using the K-means algorithm. The results are compared

with the proposed evolutionary semi-supervised crisp and rough K-medoid algorithm.

The results show that a repeated application of the proposed semi-supervised tech-

nique may be able to create a clustering scheme that can improve the precision of

known category information.



Chapter 2

Literature Review

2.1 Wearables

Wearable technologies are evolving quickly and companies are discovering innovative

ways to utilize the enormous amount of data to which they now have access. Experts

estimate the Internet of Things (IoT) will consist of almost 50 billion objects by 2020

[14]. The IoT is a network of physical objects, or things, that are embedded with

sensors and software that can collect, transmit, and receive data over a network. A

common example of a wearable technology is a smart watch, such as the Pebble or

Apple Watch. Such devices provide the portability and convenience of a watch and

include an embedded computer that can connect to your smart phone to perform

complex tasks, such as managing SMS messages, providing turn-by-turn navigation,

and even perform commands activated by voice.

There are many different categories of wearables. Each category collects its own

unique type of data that can be used for meaningful data mining activities. This

paper will specifically investigate the collection of electroencephalogram (EEG) brain

signals from a Muse headband.

4
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2.1.1 Wristbands and Watches

Smart watches such as the Pebble or the Apple Watch provide an interface to no-

tifications, such as messages, calendar events, or breaking news, that are typically

viewed on a smartphone. Additionally, as a wearable they have their own sensors

such as GPS, accelerometers, magnetometers, and heart rate sensors [15, 16]. These

sensors provide additional capabilities for users, who can now track activity levels or

health information.

Wristbands, such as Fitbit devices or the Nymi band provide more specialized

functionality and typically do not rely on an ongoing connection to a smartphone. The

Nymi band for example measures an individual’s electrocardiogram (ECG) to create

a unique biometric identifier that can be used in place of a traditional password [17].

Fitness trackers such as the Jawbone UP or Fitbit devices are wearable wristbands

that can measure health and activity information. They can record information such

as how long and how far the individual has performed a specific exercise, the duration

and quality of their sleep, and heart rate levels. Fitness tracker wearables such as the

Fitbit devices aim to motivate users and provide feedback through the measurements

they gather [18, 19]. Fitness trackers often tie in to smartphone or online applications

to better analyze the data they collect, and to provide feedback to users.

2.1.2 Armbands

Armband wearables, such as the Myo, use sensors to monitor the user’s gestures

and movements [20]. The Myo, for example uses electromyography (EMG) sensors
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to detect the electrical activity changes as the user activates different muscles and

combines the EMG input with gyroscope, accelerometer, and magnetometer sensors

[21].

2.1.3 Headbands, Headsets, and Smartglasses

Figure 2.1: EEG Cap

Head-mounted wearables in general either augment the

wearer’s capabilities by displaying additional information

through a heads-up display, as in the case of Google Glass

or the Microsoft HoloLens, or use sensors to measure the

wearer’s brain activity, as in the case of the Emotiv and

Muse headbands.

The Google Glass headset provides a display and sen-

sors to show the information found on a smart watch or

smartphone. Additionally, a camera in the device can be used not only for taking

pictures, but also for computer vision tasks such as object recognition or, in combi-

nation with the display, augmented reality where computer generated graphics are

displayed as an overlay to highlight objects in the real world [22]. Other headsets,

such as the Microsoft HoloLens are expected to provide a similar augmented reality

experience [23], serving as a way to both improve creation and consumption of multi-

media. The HoloLens also promises to improve interactions with real world objects,

such as providing step-by-step instructions on repairing a light switch [24].

Headbands such as Muse or Emotiv provide brain-computer interfaces (BCI). The
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Muse headband uses four EEG sensors, two on the forehead and two behind the ears,

and three additional reference sensors [25]. Muse can also record blinking and jaw

clenching. These sensors are used to detect and measure electrical activity in the

brain. Currently the Muse headband is targeted as a mindfulness training device,

helping users calm their minds. However, developers have used the device as a BCI

to control robots and perform research. Similarly, the Emotiv makes use of even

more EEG channels, accelerometer sensors, magnetometers, and gyroscope sensors to

detect a wide variety of facial expressions, emotional states, and mental commands,

such as push, pull, left, or right. [26, 27].

2.1.4 E-textiles – Smart clothing, smart textiles, smart fabrics

E-textiles comprise various clothing and fabrics with integrated electronics that al-

low them to communicate, measure and transform [28]. Smart clothing, such as the

smart shirts developed by OMsignal and Hexoskin, provide in-depth biometric mea-

surements including heart rate, breathing rate, step counts, calorie counts and more

[29, 30]. The smart clothing is used by athletes to improve training and athletic

performance, and by researchers to research sleep patterns, stress levels, respiratory

ability, and air pollution [31].

Smart fabrics such as Smart Skin, while currently not a wearable for humans, are

used for products on packaging lines to measure various factors such as pressure and

orientation to provide higher levels of quality assurance [32].
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Fabrics that enable electronics to be embedded in them and do things “that tra-

ditional fabrics cannot, including communicate, transform, conduct energy and even

grow”. [33, 28]

2.2 Decision tree

This section contains some of the basic concepts of decision trees used for classification

as described in [1], [2], and [34].

An advantage of using a decision tree technique for classification is the inter-

pretability of the resulting model [34]. Figure 2.3 shows a simple decision tree that

can be used to correctly classify the positive instances and negative instances, denoted

by P and N respectively, developed from a training set shown in Figure 2.2.

There are two types of nodes in a decision tree: branch nodes and leaf nodes [34].

In Figure 2.3 the ‘outlook’, ‘humidity’, and ‘windy’ nodes are branch nodes, and ‘N’

and ‘P’ are leaf nodes [1]. The branch node at the top, in this case ‘outlook’ node,

is called the root node and represents the entire feature space. Branch nodes below

the root node, the children nodes, represent a disjoint subspace of their parent node’s

entire feature space [34]. The paths from each branch node to its child nodes, the

possible outcomes, represent classification rules that test the value of a specific at-

tribute. For example, branch node ‘humidity’ is applicable to those instances where

the attribute ‘outlook’ was tested and is equal to ‘sunny’, and branch node ‘windy’

has its classification rule applied only to the subspace where the attribute ‘outlook’

is ‘rain’. The values for the attributes in Figure 2.2 are discrete, such as the value of
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attribute ‘Windy’ could be either ‘true’ or ‘false’, and the value of attribute ‘Temper-

ature’ could be ‘cold’, ‘mild’, or ‘hot’. A classification rule can handle either discrete,

mutually exclusive values [1], such as this simple training set, or numeric values with

inequality expressions that describe the decision boundaries [34, 2].

Figure 2.2: A simple decision tree training set [1]

The objective of a decision tree is to determine classification rules that can predict

the class of any instance, or row in the case of Figure 2.2, from the value of its

attributes and be expressed as a decision tree [1]. The attributes shown in the training

set, Figure 2.2, are ‘Outlook’, ‘Temperature’, ‘Humidity’, and ‘Windy’, and there are

14 instances (rows) provided to train and test with. It is important to consider if the

training set and its attributes are sufficient for developing the classification rules to

predict accurately. If two instances have identical values for each attribute, although
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Figure 2.3: A simple decision tree for training set 2.2 [1]

they belong to different classes, this indicates that the training set is inadequate [1].

While this simple training set does not have any conflicting instances, it is critical

that you consider the quality of your training set to ensure it is not inadequate.

Classification and Regression Trees (CARTs) are created by recursively partition-

ing – also called splitting – instances into groups with similar attribute values [2].

The possible combination of rules includes all partitions that can be obtained from

the process of recursively splitting [2]. Multiple splits on the same attribute is also al-

lowed [2]. Impurity reduction is used to determine the optimal attribute for splitting

and the corresponding cut-point value [2]. After splitting with the optimal attribute

and cut-point value the child nodes are more pure than the parent node [2]. The

impurity reduction is measured by the difference between the impurity in the parent

node and the average impurity in the child nodes [2]. The impurity in each node is
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calculated with Entropy measures, such as the Gini Index or the Shannon Entropy

measures [2].

The stopping criteria for the recursive decision tree algorithm is commonly a

threshold for the minimum number of remaining instances in a node’s partition or a

threshold for the minimum difference in impurity calculated [2]. To mitigate over-

fitting, tree pruning techniques [34, 2] and statistical stopping criteria [2] have been

used. A classification model that performs well when tested on the training data and

then performs poorly on unseen data is said to be overfitting the training data [2, 34].

Furthermore, a simpler decision tree is often preferable because it is more likely to

have generalized the problem and will adapt well to predicting for new test data [1].

Figure 2.4 shows a more complex decision tree, in contrast to the simpler decision

tree shown in Figure 2.3, that is equally as accurate on the same training set shown

in Figure 2.2 [1]. Pruning a decision tree after it has been grown means removing the

branches that do not contribute to improving the prediction accuracy when testing

with cross-validation [2].

A disadvantage of recursive decision tree models is the instability with respect

to small changes in training data [2]. If the first split and/or cut-point was chosen

differently because of a small change in input training data, then the entire decision

tree could be changed [2]. Figure 2.5 illustrates the high variability in decision trees

with small changes in input training data [2].
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Figure 2.4: A complex decision tree for training set 2.2 [1]

Figure 2.5: Four different decision trees generated with only small changes in training
data [2]
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2.3 Random forest

This section contains some of the basic concepts of random forest used for classifica-

tion as described in [2], [34], and [35].

The random forest technique was proposed by Breiman (2001) and leverages mul-

tiple decision trees to predict an outcome [35]. Its output is determined by the

prediction that appears the most often, the mode, of each of the individual decision

trees [35, 2]. This technique is considered an ‘ensemble learning’ technique because it

uses multiple models, in this case multiple decision trees [35]. In comparison to using

a single decision tree, ensemble methods improve prediction accuracy [34, 2, 35], with

the tradeoff being in their loss of interpretability of the resulting model [34].

Multiple trees, or an ensemble of trees, can be used to mitigate the instability

of a single decision tree [2]. An ensemble of trees is created with random samples

picked from the input training data [2, 34]. The instances excluded with each random

sample can be considered out-of-bag and used as test samples for measuring out-of-

bag prediction accuracy, which is more realistic and conservative [2]. In random

forests, the attributes used for generating the tree are restricted and decided by

variable selection, where a subset of attributes is randomly chosen from all of the

attributes available in the data [2]. In contrast, the bagging [2, 34] method (not

covered within the scope of this review) performs the same variable selection process

as generating a single decision tree [2] along with similarly choosing random samples

from the training data [2, 34]. The added restriction, in random forest over-bagging,

of randomly selecting a subset of attributes for each split, helps to produce more
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diverse trees in the ensemble [2]. See Figure 2.6 for an example of a random forest

ensemble of classification trees.

The three steps of a conventional random forest algorithm as described by Fernndez-

Blanco [35] are:

1. Get n random samples from the original training dataset to use them as tree

seeds.

2. For each tree seed, grow a non-pruned tree, and for each node, randomly choose

m attributes, also called predictors, and determine the best cut-point to split

with for those attributes.

3. Evaluate the different decision trees and the output is the mode of the predicted

outcomes from each of the individual decision trees in the ensemble.

The Random forest technique provides a solution to overfitting experienced by

single decision trees [35]. Using the fact that classification decision trees are, on aver-

age, correct with their predictions, known as ‘unbiased predictors’, [2], tree ensembles

minimize overfitting with a set of diverse trees that tend to converge when the set

is sufficiently large [35]. Randomly restricting the attributes to split and generate

a tree with allows attributes that would otherwise not be chosen, and consequently

discovers cross-attribute correlations and patterns that otherwise would have been

missed [2]. An ensemble of trees provides an opportunity for less-likely attributes to

be used with different attributes and produces a complex change on the predicted

outcome [2]. The random restricting of attributes to split creates locally suboptimal
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splits that often improve the global prediction accuracy of the overall ensemble of

decision trees [2].

Random forests have been shown to perform as well as Classification and Regres-

sion Tree (CART) single tree predictors [35]. This makes sense, given that when the

decision trees are being grown the search is only performed on a smaller, random

sample of data and there is no need for pruning the trees [35].

Figure 2.6: Example of a random forest ensemble of classification trees based on four
random samples of smoking data (grown without stopping or pruning and with two
attributes randomly selected in each split) [2]
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2.3.1 Variable Importance

As you can see in Figure 2.6 interpreting the resulting model generated by random

forests algorithm is not as simple as it would be with a single classification tree. The

ensembles of trees in random forests are not nested and their attributes can appear

in different positions throughout different trees, if they appear at all [2]. Variable

importance is computed to quantify the relevance of each attribute, also referred to

as a predictor variable, contributing to the overall ensemble of trees [2]. Figure 2.7

shows the variable importance scores for the predictor variables of smoking data [2].

Figure 2.7: Example of permutation variable importance scores for the predictor
variables of the smoking data from random forests [2]

The permutation accuracy importance measure is the most advanced variable

importance method [2] and the measure that was used in this paper. The measure for

variable importance is computed as the difference between the out-of-bag prediction

accuracy before and after randomly permuting a variable and then averaged over all

of the trees [2]. For example, permuting the ‘temperature’ variable from Figure 2.2
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would mean randomly changing the value of ‘temperature’ between ‘hot’, ‘mild’, and

‘cool’. Along with the variable importance being zero – indicating the variable is

irrelevant – it can also be negative in cases where permuting the variable actually

improves prediction accuracy unexpectedly [2]. In Figure 2.7 the ‘age’ predictor

variable is fairly irrelevant and in using the permutation accuracy importance measure

it appears to have a negative importance score.

2.4 Support vector machine

This section summarizes the basic concepts of support vector machine (SVM) used

for classification as described in [3], [4], [36], [37], and [38].

Support vector machine (SVM), also referred to as a support-vector network, is

used for binary classification [4, 36, 3, 37]. The attributes of the input training data

are referred to as features. SVM works by first mapping the input data into a higher

dimensional feature space. A simple 1-dimension to 2-dimension mapping, Φ, could

be:

Φ : (x)→ (x, x2) (2.1)

See Figure 2.8 for a graphical representation of mapping the input data into higher

dimensional feature space.

Then, the SVM model works to produce an optimal hyperplane in the new high

dimensional feature space. The hyperplane separates the data into two groups, rep-

resenting the two classes of the input data. In two-dimensional space we can separate

instances into two groups with a line. In higher dimensional space we use hyperplanes.
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Figure 2.8: Graphical representation of mapping the input data into higher dimen-
sional feature space [3]

An optimal hyperplane maximizes the margin or separation between the two groups.

See Figure 2.9 for an example optimal hyperplane separating a 2-dimensional space.

The instances on the margin of the hyperplane, marked with grey squares, are called

the support vectors.

An advantage of SVM is the use of the kernel function [38]. The kernel function

provides flexibility to SVM because it is not required to be linear [38] and you can even

develop a custom kernel function specifically for the problem with human expertise. A

kernel function is applied to pairs of vectors in the input space and acts as a distance

measure, mapping data into their inner products with a simpler, one-dimensional

feature space. Use of a kernel function is often referred to as a ‘kernel trick’ [36]

because using inner product kernels in the input space allows classification without the

computation cost of mapping and computing in higher dimensional feature spaces [37].
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Figure 2.9: An example of a separable problem in a 2-dimensional space. The support
vectors, marked with grey squares, define the margin of largest separation between
the two classes. [4]

The linear kernel is used in this paper and defined as

K(xi, xi′) = (xi · xi′) (2.2)

for all pairs of vectors where xi · xi′ is the dot-product of vectors xi and xi′ .

The equation for an optimal hyperplane in the feature space is

0 = w · x + b (2.3)

where w ∈ Rn represents the weights, x is the feature vector in feature space, and

b ∈ R is the bias [4, 36]. The weights, w, can be written as a linear combination of
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support vectors,

w =
∑

support vectors

aizi (2.4)

where ai are weights and zi are the support vectors [4]. Thus, the linear decision

function I(z) in the feature space using the linear kernel can be written as:

I(z) = sign(
∑

support vectors

aizi · x + b), (2.5)

where zi · x is the dot-product between support vectors zi and vector x in the feature

space [4].

The dataset used in this paper has more than 2 classes. There are five classes

of activities and three to four classes representing the persons. Since support vec-

tor machines are explicitly designed to classify into two groups, a specialized ap-

proach is required to handle multiple classes in the classification dataset, referred to

as multiclass-classification. The implementation of SVM used in this paper used the

‘one-against-one’, or ‘one-versus-one’, approach for multiclass-classification [39]. For

k classes there are k(k−1)
2

binary classifiers trained, and then a voting scheme decides

the appropriate single class predicted [39, 36]. Each binary classifier is given a newly

constructed training dataset, such that one class is considered the positive class and

another class is considered the negative class [36]. Finally, each of the binary classi-

fiers can vote on the single class that they predict is correct, and the class with the

most votes is considered the combined prediction.

In the case where the training data cannot be separated into 2 groups without
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errors the hyperplane with the minimal number of errors is optimal [4]. This is

called the soft margin hyperplane [4]. Fortunately, optimizing the hyperplane for the

minimal number of errors is a convex programming problem [4, 38]. This means there

will be a unique solution to the convex problem representing the optimal hyperplane,

and is an advantage over Neural Networks, which have multiple solutions for local

minima [38]. A disadvantage of SVM is the transparency of its results, since it may

be a very high dimension [38].

2.5 Neural network

This section summarizes the basic concepts of artificial neural networks (ANNs), also

referred to as simply ‘neural networks’, used for classification as described in [5].

Artificial neural networks, used for information processing, are inspired by the

interactions within the biological nervous system of the human brain [5]. Figure 2.10

shows the interaction between two biological neurons. The neurons are connected and

communicate to each other through synapses, dendrites and axons. The dendrites of a

neuron act as a set of inputs while, in contrast, the axon acts to as the neuron’s ouput.

The synapse is a junction that bridges the communication between one neuron’s

output, the axon, and another neuron’s input, the dendrites.

Neurons communicate by “firing” an electrical impulse, called an action poten-

tial. This electrical impulse travels from the cell body through their axon towards

the synapse. Upon reaching the synapse the electrical impulse triggers a release of
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chemical neurotransmitters that travel to the next neuron. Synapse can either be ex-

citatory or inhibitory which increases or decreases the probability of the next neuron

firing, respectively. Each synapse determines the magnitude of the impulse on the

next neuron with an associated strength, or weight value. As a result, each neuron

computes a weighted sum of the inputs received from the other neurons. If the total

weighted sum received by the neuron is greater than some threshold then the neuron

will fire.

There are typically 1011 active neurons in the human brain, each with thousands

of connections to other neurons. This results in the total number of synapses exceed-

ing 1014 throughout the human brain. Biological neural networks allow for massive

parallelism of information processing by distributing signals over a large number of

synapses simultaneously.

Figure 2.10: Simplified diagram of two biological neurons [5].

Both biological and artificial neural networks learn by changing their weight val-

ues, which is the strength of the synapses in biological networks [5]. For supervised
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learning, the backpropagation algorithm is used to quickly train artificial neural net-

works and adjust the weights to minimize the error between predicted and desired

outputs [40, 5]. Figure 2.11 shows a model of an artificial neuron proposed by Mc-

Culloch and Pitts in 1943 [5]. Artificial neurons receive a set of d input variables

Figure 2.11: The McCulloch-Pitts model of a single neuron. x1, . . . , xd are inputs,
w1, . . . , wd are weights, such that a =

∑
iwixi and z = g(a) with a non-linear activa-

tion function g() [5].

x1, . . . , xd, which is analogous to the signals received from the dendrites in a biolog-

ical neuron. The value xi at input i is first multiplied by the respective weight wi,

which corresponds to the strength of the synapse in a biological network. The total

input value a is the sum of the products of the input and weight values with the

addition of an offset parameter w0. Thus we can write the following equation for a:

a =
d∑
i=1

wixi + w0 (2.6)

The offset parameter w0 is called a bias and is similar to the firing threshold in a

biological neuron. The output z of the artificial neuron is obtained by applying a

non-linear activation function g() to a giving the equation

z = g(a). (2.7)
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The value of the output z can be considered the average firing rate of a neuron.

Figure 2.12 shows four typical activation functions. The linear activation function

shown in Figure 2.12(a) is not very interesting and can be written simply as

g(a) = a. (2.8)

The sigmoidal activation function shown in Figure 2.12(d) is used in most networks

of practical interest, including this paper, and can be written as

g(a) =
1

1 + exp(−a)
. (2.9)

Figure 2.12: Four typical activation functions: (a) linear, (b) threshold, (c) threshold
linear, (d) sigmoidal [5].
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Artificial neural networks have been used for computing vision and speech recog-

nition, including learning to recognize different characters from image pixels, known

as optical character recognition (OCR), handwriting recognition, speech to text, and

much more. Neural networks are strong candidates to solving problems which posses

a subset of the following characteristics: (i) there is plenty of data to train with;

(ii) it is difficult to provide a simple yet accurate model; (iii) new data needs to be

processed quickly; (iv) the input data has modest levels of noise.

The advantages of being able to learn from modestly noisy input training data

comes at the cost of requiring plenty of training data to begin with. Neural networks

have the ability to learn a general solution to a problem, however this requires a

sufficient training dataset that spans the possible input space. Another disadvantage

is training the neural network is computationally intensive [5], especially given the

large volume of input training data that is required. Fortunately, once the weight

values have been trained in the neural network, new data can be processed very

quickly and is ideal for processing a large volume of data or real-time applications.

2.6 K-means clustering

This section summarizes the basic concepts of K-means clustering algorithm as de-

scribed in [41] and [42].

The K-means algorithm is given the number of clusters k to find, which also

determines the number of centroids used [41]. A centroid is the average position of all

the points or the middle of the cluster. The objective of the K-means algorithm for
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clustering is to start with random centroids, that are effectively initial guesses, and

then determine the optimal and stable centroids for the clusters through subsequent

iterations.

The k initial centroids can be selected randomly from the dataset or randomly

created locations within the input space. Each of the input data instances are then

assigned to the closest centroid. The closest centroid is determined by a distance

metric, which is commonly the Euclidian distance. After each instance has been

assigned to a centroid, a new centroid is calculated for each cluster. A new centroid

is calculated as the average of all of the instances assigned to it.

This process is repeated and the entire dataset are reassigned to the new centroids.

The algorithm will repeat until the cluster centroids do not change with subsequent

iterations [41]. The k clusters can then represented as the final centroids.

An advantage of the K-means algorithm is its simplicity, and it is consequently

easy to understand and implement [42]. However, a disadvantage of using K-means for

clustering is the number of clusters needs to be provided in advance [42]. Fortunately,

in this paper the number of clusters was known and equal to number of persons in

the classification dataset.

2.7 Rough set theory

This section contains some of the basic concepts of rough set theory proposed by

Pawlak [43] as described in [6]. The basic concept of rough set theory is representing a

set as both lower and upper approximations instead of the traditional non-overlapping
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sets. A couple of disadvantages of the conventional non-overlapping sets are: Bound-

aries of sets or clusters are not always clearly defined, and objects may be equidistant

from the center of multiple clusters. These are not weaknesses of rough sets, and in

contrast rough sets are more flexible because they allow overlapping clusters and also

less descriptive (specific) than fuzzy sets.

Let U denote a non-empty set of finite elements, also known as the universe. Let

R ⊆ U×U be an equivalence relation on U . The set U is then partitioned into disjoint

subsets called the equivalence classes, denoted by U/R = (E1, E2, ..., En), where Ei

is said to be an equivalence class of R. The equivalence classes are important to

determine which elements are indistinguishable, or equivalent with respect to the

equivalence relation R, from each other. Elements are considered indistinguishable

from each other if they belong to the same equivalence class.

For example, let U = {a, b, c} then

U × U = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)} (2.10)

such that

R ⊆ {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}. (2.11)

A possible equivalence relation on U could then be

R = {(a, a), (b, b), (b, c), (c, b), (c, c)}. (2.12)
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The respective equivalence classes would be

U/R = {{a}, {b, c}}, (2.13)

meaning that element a is only indistinguishable with itself, and elements b and c are

indistinguishable from each other.

The approximation space is denoted by the pair A = (U,R). The equivalence

classes, U/R, are called the elementary or atomic sets in the approximation space,

A. A composed set in A is the union of multiple elementary sets, with the empty set

being considered a special composed set.

For an arbitrary set X ⊆ U it may not be possible to determine a precise repre-

sentation with elementary sets in A. Rough sets account for this by using both lower

and upper approximations to represent the set, X.

The lower approximation, denoted by A(X), is a set comprised of only elements

that definitely belong to the subset X, and is also known as the positive region. The

elements that definitely belong to the subset X are determined by the composed set

with all elementary sets which are subsets of X.

A(X) = {Ei|Ei ⊆ X} (2.14)

The upper approximation, denoted by A(X), is a set comprised of elements that

both definitely and possibly belong to the subset X. The elements that possibly

belong to the subset X are determined by the composed set with all of the elementary
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sets that have a non-empty intersection with X.

A(X) = {Ei|Ei ∩X 6= ∅} (2.15)

Note that A(X) ⊆ A(X), or in other words, the lower approximation is a subset of

the upper approximation for X.

The negative region is defined as elements that definitely do not belong to X and

is expressed as the difference between the universe and the upper approximation, or

U − A(X). The region that is covered by the upper approximation and not covered

by the lower approximation is known as the boundary region, or A(X)− A(X).

Figure 2.13 illustrates the lower (positive region) and upper approximation and

negative region within the universe.

Figure 2.13: Rough set approximations [6]

The final representation of an ordinary set of X is the pair of lower and upper

approximations, expressed as [A(X), A(X)].
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For example, consider U = {a, b, c, d} and the equivalence classes

U/R = {{a}, {b, c}, {d}} (2.16)

and set X = {a, b}. Note the element c is not contained in X, thus the elementary

class {b, c} is not a subset of X, or {b, c} 6⊆ X. However, the elementary class

containing a is {a} is a subset of X, or {a} ⊆ X. Thus, the lower approximation is

determined to be A(X) = {a}.

We create a composed (union) set of all equivalence classes, denoted by Ei ⊆ U/R,

where Ei ∩ X 6= ∅ is true. The equivalence class Ei = {a} definitely belongs to X,

since a is in the lower approximation, A(X). However, we can verify this again

with the equation {a} ∩ X = {a} 6= ∅. For Ei = {b, c} we determine {b, c} is also

possibly in X by {b, c} ∩ X = {b} 6= ∅. We determine that {d} is not in the upper

approximation of X by {d} ∩X = ∅. Thus, the upper approximation is determined

to be A(X) = {a, b, c}.

The resulting representation of an ordinary set of X is

[A(X), A(X)] = [{a}, {a, b, c}]. (2.17)

The negative region is

U − A(X) = {a, b, c, d} − {a, b, c} = {d}, (2.18)
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and the boundary region is

A(X)− A(X) = {a, b, c} − {a} = {b, c}. (2.19)

2.8 Adaptation of rough set theory for clustering

Let U be a set of objects. Rough sets were originally proposed using equivalence

relations on U . However, it is possible to define a pair of lower and upper bounds(
A(C), A(C)

)
, or a rough set for every set C ⊆ U as long as the properties specified by

Pawlak [44, 43] are satisfied. Yao et al. [45] described various generalizations of rough

sets by relaxing the assumptions of an underlying equivalence relation. Such a trend

towards generalization is also evident in rough mereology proposed by Polkowski and

Skowron [46], and the use of information granules in a distributed environment by

Skowron and Stepaniuk [47]. The present study uses a generalized view of rough sets.

If one adopts a more restrictive view of rough set theory, the rough sets developed in

this paper may have to be looked upon as interval sets [48].

Let us consider a hypothetical clustering scheme

U/P = {C1, C2, . . . , Ck} (2.20)

that partitions the set U based on an equivalence relation P . Let us assume that due

to insufficient knowledge it is not possible to precisely describe the sets Ci, 1 ≤ i ≤ k,
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in the partition. However, it is possible to define each set Ci ∈ U/P using its lower

A(Ci) and upper A(Ci) bounds based on the available information. We will use vector

representations, ~u,~v for objects and ~ci for cluster Ci.

We are considering the upper and lower bounds of only a few subsets of U . There-

fore, it is not possible to verify all the properties of the rough sets [44, 43]. However,

the family of upper and lower bounds of ~ci ∈ U/P are required to follow some of the

basic rough set properties, such as:

(P1) An object ~v can be part of at most one lower bound

(P2) ~v ∈ A(~ci) =⇒ ~v ∈ A(~ci)

(P3) An object ~v is not part of any lower bound

m

~v belongs to two or more upper bounds.

Property (P1) emphasizes the fact that a lower bound is included in a set. If two sets

are mutually exclusive, their lower bounds should not overlap. Property (P2) confirms

the fact that the lower bound is contained in the upper bound. Property (P3) is

applicable to the objects in the boundary regions, which are defined as the differences

between upper and lower bounds. The exact membership of objects in the boundary

region is ambiguous. Therefore, property (P3) states that an object cannot belong to

only a single boundary region. Note that (P1)-(P3) are not necessarily independent

or complete. However, enumerating them will be helpful in understanding the rough
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Genetic Algorithm:
generate initial population, G(0);
evaluate G(0);
for(t = 1; solution is not found; t++)

generate G(t) using G(t− 1);
evaluate G(t);

Figure 2.14: Abstract view of a generational genetic algorithm

set adaptation of evolutionary, neural, and statistical clustering methods.

2.9 Genetic Algorithms

The origin of Genetic Algorithms (GAs) is attributed to Holland’s [49] work on cellular

automata. There has been significant interest in GAs over the last two decades.

The range of applications of GAs includes such diverse areas as job shop scheduling,

training neural nets, image feature extraction, and image feature identification [50].

This section contains some of the basic concepts of genetic algorithms as described

in [50].

A genetic algorithm is a search process that follows the principles of evolution

through natural selection. The domain knowledge is represented using a candidate

solution called an organism. Typically, an organism is a single genome represented

as a vector of length n:

c = (ci | 1 ≤ i ≤ n) , (2.21)

where ci is called a gene.

An abstract view of a generational GA is given in Fig. 2.14 and Fig. 2.15. A group

of organisms is called a population. Successive populations are called generations. A
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Figure 2.15: Flowchart of a generational genetic algorithm [7]

generational GA starts from initial generation G(0), and for each generation G(t),

generates a new generation G(t + 1) using genetic operators such as mutation and

crossover. The mutation operator creates new genomes by changing values of one or

more genes at random. The crossover operator joins segments of two or more genomes

to generate a new genome.

2.10 Genetic Algorithms for Rough K-Medoid Clustering

This section describes a variation of the evolutionary rough K-means approach pro-

posed by Lingras [12]. The proposal replaces K-means with K-medoids. A medoid

is the most centrally located object in a given cluster. For k clusters, we will have

k medoids. A genetic algorithm can be used to search for the most appropriate k
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medoids. The genome will contain k genes, each corresponding to a medoid. This

reduces the size of a genome from k×m by a factor of m to k. The smaller genomes

will reduce the space requirements and facilitate faster convergence. The genes in

the rough K-means algorithm were continuous real variables with no restriction on

their values. The values of genes for the medoids will be discrete and limited to the

number of objects in the dataset. If we number the objects from 1 to n, then each

gene can take an integer value in the range 1 . . . n. This restriction on the values of

genes will further reduce the search space allowing for even faster convergence.

The next step in the development of a rough K-medoid algorithm is to assign an

object to the lower and/or upper bound of one of the clusters. The process is similar

to the rough K-means algorithm. The major difference is that we use medoids instead

of centroids of the clusters.

Let us assume that the clusters are represented by k medoids: ~c1,~c2, . . . ,~ck. For

each object vector, ~v, let d(~v,~cj) be the distance between itself and the medoid of

cluster ~cj. Let

d(~v,~ci) = min
1≤j≤k

d(~v,~cj). (2.22)

The ratios

d(~v,~ci)

d(~v,~cj)
, 1 ≤ i, j ≤ k, (2.23)

are used to determine the membership of ~v. Let

T = {j :
d(~v,~ci)

d(~v,~cj)
≤ threshold and i 6= j}. (2.24)
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1. If T 6= ∅, ~v ∈ A(~ci) and ~v ∈ A(~cj),∀j ∈ T . Furthermore, ~v is not part of any

lower bound. The above criterion guarantees that property (P3) is satisfied.

2. Otherwise, if T = ∅, ~v ∈ A(~ci). In addition, by property (P2), ~v ∈ A(~ci).

It should be emphasized that the approximation space A is not defined based on any

predefined relation on the set of objects. The lower and upper bounds are constructed

based on the criteria described above.

The next step in calculating the fitness of a genome is to measure the validity

of a clustering scheme. We will use one of the most intuitive distance-based validity

measures. The measure will accumulate the distances of the objects assigned to a

cluster and its medoid as determined by the GAs:

4 =
k∑

i = 1

∑
~u∈~ci

d(~u,~ci), (2.25)

where the function d provides the distance between two vectors. The distance d(~u,~v)

is given by:

d(~u,~v) =

√∑m
j=1(uj − vj)2

m
. (2.26)

We need to adapt the above measure for rough set theory by creating lower and

upper versions of the error as:

4 =
k∑

i = 1

∑
~u∈A(~ci)

d(~u,~ci), and (2.27)
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4 =
k∑

i = 1

∑
~u∈A(~ci)−A(~ci)

d(~u,~ci). (2.28)

The rough error is then calculated as a combination of the lower and upper error:

4rough = wl ×4+ wu ×4. (2.29)

The rough error described above is based on the distances between patterns. How-

ever, we know the categorization of the patterns based on activity and the person

performing the activity. In this experiment, we will focus on the categorization of the

data based on the person. We first need to make a correspondence between a cluster

and the most predominant class in the upper bound of that cluster. We then count

the number of correctly classified patterns. The error in classification will be the

number of incorrectly classified patterns, wrongClasses. We then take a weighted

combination of 4rough and wrongClasses:

objective = wd ×4rough + wc × wrongClasses, (2.30)

where wd is the weight attached to the rough error and wc is the weight attached

to the classification error. Our GAs will minimize the objective functions given by

Eq. 2.30.
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Study Data and Design of Experiments

3.1 Study Data

Figure 3.1: Labelled Muse headband

The Muse headband uses four sensors, two located on the forehead, and two behind

the ears. Three additional sensors on the forehead are used as reference sensors by

the device [25]. See Figure 3.1 for a labelled Muse headband. Although the Muse API

also provides access to the signals for muscle movement and accelerometer data, our

research focussed on the EEG data. Muse provides this data in a variety of formats.

38
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At the lowest level, the analog microvolts signals are recorded by the four sensors

which, by default, are sampled at a rate of 220 Hz. These EEG signals are then

compressed in order to stream the data over Bluetooth. The signals are compressed

via Golomb Encoding and further quantized to reduce their size. Full details on

Muse’s compression algorithm are available via their online manual [51]. Muse offers

both absolute band powers and relative band powers. The absolute band power is

computed as the logarithm of the sum of the power spectral data of the EEG over

the specified frequency range (alpha, beta, delta, gamma, theta). The power spectral

density is computed via Fast Fourier Transform on the device. The relative band

powers normalize the absolute power bands as a percentage of the total absolute

power bands [52], resulting in values between 0 and 1. This is calculated by:

sr =
10sabs

10αabs + 10βabs + 10δabs + 10γabs + 10θabs
(3.1)

where sr is the relative frequency range (alpha, beta, delta, gamma or theta) being

calculated and sabs is the frequency range’s absolute value.

It was assumed that the signals will be able to help us extract signature patterns

for individual users as well as various activities. Five individuals participated in the

original data collection programs. These individuals worked very closely with each

other and used similar setups for data collection. Five activities that represent day-to-

day functions performed by most people were identified as a proof of concept. These

activities were as follows:

1. Reading: A user read a magazine for 1-3 minutes
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2. Doing nothing: A user sat quietly for 1-3 minutes

3. Watching video: A user watched a video for 1-3 minutes

4. Game playing: A user played a computer game for 1-3 minutes

5. Listening to music: A user listened to music for 1-3 minutes

The above activities were repeated ten times for five individuals resulting in a

total of fifty datasets.

3.2 Knowledge Representation

One of the key aspects of any data mining activity is representing real world entities

using the pertinent numeric data available for them. In our case, we want to capture

individuals and their activities using the signals emanating from their brain. As

mentioned before, the Muse headband collects data from four positions around the

head. Each position provides five types of waves: alpha, beta, gamma, delta, and

theta. That means at any given point in time we receive a record with twenty values.

There will be a stream of these twenty-valued records that will be recorded at a

discrete time interval of 0.1 seconds. That means if we record activity for one person

for one minute we will have a total of 600 records. Realistically, if we are recording

an activity for a person, we cannot put an exact time limit on each person. In our

experiment, the recording time per activity ranged anywhere from 60 to 180 seconds.

Tables 3.1 and 3.2 show the summary statistics for all the five waves: alpha, beta,

gamma, delta, and theta for each of the four locations for all the participants. It can
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Location Wave Min 25% Median 75% Max Mean Std. Dev
Front Right Alpha 0.01 0.15 0.22 0.30 0.80 0.23 0.11
Front Right Beta 0.01 0.09 0.14 0.20 0.68 0.15 0.09
Front Right Delta 0.00 0.11 0.17 0.23 0.68 0.18 0.09
Front Right Gamma 0.01 0.14 0.21 0.29 0.77 0.23 0.12
Front Right Theta 0.00 0.09 0.15 0.21 0.59 0.16 0.08
Front Left Alpha 0.01 0.09 0.16 0.24 0.62 0.17 0.10
Front Left Beta 0.00 0.08 0.15 0.21 0.60 0.16 0.10
Front Left Delta 0.00 0.09 0.15 0.22 0.62 0.16 0.10
Front Left Gamma 0.01 0.21 0.32 0.47 0.95 0.35 0.17
Front Left Theta 0.02 0.23 0.38 0.56 0.96 0.40 0.21
Back Right Alpha 0.01 0.25 0.39 0.54 0.98 0.41 0.20
Back Right Beta 0.00 0.20 0.32 0.47 0.95 0.34 0.18
Back Right Delta 0.00 0.05 0.08 0.12 0.52 0.09 0.06
Back Right Gamma 0.00 0.07 0.13 0.19 0.68 0.14 0.09
Back Right Theta 0.00 0.05 0.09 0.15 0.69 0.11 0.08
Back Left Alpha 0.00 0.04 0.08 0.13 0.62 0.10 0.08
Back Left Beta 0.01 0.12 0.17 0.22 0.59 0.17 0.07
Back Left Delta 0.01 0.09 0.13 0.18 0.58 0.14 0.07
Back Left Gamma 0.01 0.10 0.15 0.20 0.52 0.15 0.07
Back Left Theta 0.01 0.11 0.16 0.22 0.62 0.17 0.08

Table 3.1: Statistical summary of signals from all the channels - Used for the classi-
fication experiments

be seen that the values for each wave have similar ranges. However, the ranges for

different waves vary considerably. For example, alpha values range from 9 Hz to 13

Hz, while beta values range from 12 Hz to 30 Hz [52]. In our dataset, using relative

band powers with values between 0 and 1, the alpha values range from 0.00 to 0.98,

while delta values range from 0.00 to 0.68. Therefore, we normalized the values for

each wave using 90% of the maximum value for that wave. That made sure that the

values for all the waves were in the same range.

Another issue with the data collection was the variable length of time for different

activities as well as the length of each record. The length of the record could vary

anywhere from 60 to 180 seconds. Figure 3.2 shows an example of one of the waves,
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Location Wave Min 25% Median 75% Max Mean Std. Dev
Front Right Alpha 0.01 0.16 0.24 0.32 0.80 0.25 0.12
Front Right Beta 0.01 0.10 0.15 0.22 0.68 0.16 0.09
Front Right Delta 0.00 0.12 0.18 0.25 0.68 0.19 0.09
Front Right Gamma 0.01 0.15 0.23 0.32 0.77 0.25 0.13
Front Right Theta 0.00 0.10 0.15 0.22 0.59 0.16 0.09
Front Left Alpha 0.01 0.09 0.16 0.24 0.62 0.17 0.10
Front Left Beta 0.00 0.11 0.17 0.22 0.60 0.17 0.09
Front Left Delta 0.00 0.10 0.15 0.23 0.62 0.17 0.11
Front Left Gamma 0.01 0.19 0.29 0.43 0.95 0.32 0.18
Front Left Theta 0.02 0.21 0.36 0.55 0.96 0.39 0.21
Back Right Alpha 0.01 0.23 0.35 0.53 0.98 0.38 0.19
Back Right Beta 0.00 0.17 0.28 0.44 0.95 0.32 0.19
Back Right Delta 0.00 0.05 0.09 0.13 0.46 0.09 0.06
Back Right Gamma 0.00 0.07 0.12 0.18 0.64 0.14 0.09
Back Right Theta 0.00 0.06 0.10 0.16 0.55 0.11 0.07
Back Left Alpha 0.00 0.05 0.08 0.14 0.62 0.10 0.08
Back Left Beta 0.01 0.11 0.16 0.21 0.59 0.17 0.07
Back Left Delta 0.01 0.09 0.13 0.18 0.58 0.14 0.07
Back Left Gamma 0.01 0.09 0.14 0.19 0.52 0.14 0.07
Back Left Theta 0.01 0.10 0.14 0.20 0.62 0.15 0.08

Table 3.2: Statistical summary of signals from all the channels - Used for the clustering
experiments

alpha, from position 3 while player 1 was playing a game for 60 seconds. In order

to fix the length of the record to a fixed and more manageable value, we studied the

frequency distribution of the records. After experimenting with different numbers of

bins, we decided to use 8 bins with 5%, 15%, 25%, 50%, 75%, 85%, 95% values to

represent the histogram. Here if x is 5% value, it means that 5% of the values will be

less than or equal to x. Figure 3.3 shows the histogram of values for the wave shown in

Figure 3.2. As we can see, the representation consists of only 8 values and captures

the essence of each wave, the position, and the person in a concise and consistent

manner. Since we have a total of four positions, five waves, and eight histogram bins,

we have a total of 4× 5× 8 = 160 values to represent each record of an activity. For
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Figure 3.2: The alpha wave from position 3 for person 1 playing a game

five persons and five activities this process was repeated ten times, giving a total of

5 × 5 × 10 = 250 records. We will use these records to train classification models

to predict the person as well as the activity based on a recording from the Muse

headband.

3.3 Experimental design

There were five individuals involved in the data collection. However, the number of

records collected for each of the individuals varied. The individuals with a very small

number of records tended to get neglected by the techniques in favour of individuals

with a larger number of records. Therefore, in the initial experiments reported in this
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Figure 3.3: The histogram of the alpha wave from position 3 for person 1 playing a
game

paper, we have used data from three and four of the original five individuals for the

classification and clustering experiments, respectively.

3.3.1 Classification

In the initial classification experiments reported in this paper, we have used data

from four individuals. Individual 0 had 23 records, individuals 1 and 2 had 50 records

each, and individual 3 had 55 records, resulting in a total of 178 records.

The dataset used to develop the classification models therefore consists of 178

records. Each record contains 160 attributes. We used the following four well-known

classifiers:
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1. Decision tree

2. Random forests

3. Support vector machine (SVM)

4. Neural network

The decision tree classifier was used in eight experimental groups corresponding to

eight different values {1, 2, 3, 4, 5, 10, 15, 20} for the minsplit parameter, representing

the minimum number of instances that must exist in a node in order for a split to

be attempted. The mtry parameter – representing the number of randomly chosen

attributes in the variable selection step – for the random forest classifier was set to

100. The linear kernel was used for the SVM classifier, as shown in Equation 2.5.

The sigmoidal activation function was used for neural network classifier, as shown in

Equation 2.9. The maxit parameter – representing the maximum number of iterations

– of the neural network classifier was set to be 10, 25, 50, 100, or 1,000 for each of

the predictions.

Each classifier was applied to three predictions:

1. Predicting a person - Four classes corresponding to four persons

2. Predicting an activity - Five classes corresponding to five activities

• Reading

• Doing nothing

• Watching a video
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• Playing a game

• Listening to music

3. Predicting a person as well as the activity - Twenty classes corresponding to

the cross-product of the set of persons and the set of activities

To test how well our knowledge representation and classifiers describe the activities

we first applied the classifiers to the entire dataset. This allowed us to study the

importance of different attributes in the classification process.

In Tables 4.5, 4.6, and 4.7 you can see the most significant independent vari-

ables obtained by the random forest classifier when classifying by Person, Activity,

or Person and Activity, respectively. The most significant independent variable for

predicting a person, activity, or person and activity was bin 1 (0% to 5%) of the beta

wave at location 1, bin 1 (0% to 5%) of the theta wave at location 2, and bin 7 (85%

to 95%) of the theta wave at location 4, respectively. The theta wave at location 2 is

significant for predicting the person or the activity.

In tables 4.8, 4.9, and 4.10 you can see the least ten significant independent

variables obtained by the random forest classifier when classifying by Person, Activity,

or Person and Activity, respectively. The least significant independent variable for

predicting a person, activity, or person and activity was bin 8 (95% to 100%) of

the alpha wave at location 4, bin 8 (95% to 100%) of the theta wave at location 4,

and bin 8 (95% to 100%) of the theta wave at location 4, respectively. The signals

from locations 3 and 4 are shown to be often the least significant variable overall for

predicting person, activity, or person and activity. This could indicate that the back
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of the brain, the occipital lobe, is not as significant for differentiating the activities

studied.

Using a complete dataset for training can lead to over training of the classifiers.

The classifier may not work for new datasets. In order to see if the models were

general enough to predict new recordings, we applied ten-fold cross-validation.

In ten-fold cross-validation [53] 10% of randomly selected data from the dataset is

set aside for testing the model. The remaining 90% of the dataset is used for training

the model. This process is repeated ten times and the results are summarized. From

our tests we learned that our knowledge representation paired with SVM, random

forest, or neural networks could predict a class for person or activity with fairly high

precision. However, using a decision tree classifier proved to be ineffective.

The primary objective of this experiment was to explore the effectiveness of a

number of well-known classification techniques combined with a data representation

that reduces variable length signals to more manageable and uniformly fixed length

distributions. Using this representation and the classification techniques, the hypoth-

esis was that the EEG brain signals will be identifiable for both persons and activities

with a reasonable degree of precision.

3.3.2 Semi-Supervised Evolutionary Learning

In the initial clustering and semi-supervised evolutionary learning experiments re-

ported in this paper, we used data from three individuals. Individual 0 had 23

records, individuals 1 and 2 had 50 records each, resulting in a total of 123 records.
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We used the two-point crossover technique for the genetic algorithm. The two-

point crossover technique uses two points to divide both of the parents’ genomes into

three partial genomes. As shown in Fig. 3.4, the children genomes are generated

by swapping the middle partial genome, between the two points, of the parents’

genomes [54].

Figure 3.4: Two-Point Crossover for Genetic Algorithms [7]

The parameters for rough clustering were set as follows: threshold = 1.1, wu =

0.7, wl = 0.3. For multi-objective optimization, the weight for distance-based opti-

mization wd was set at 0.75, and the weight for classification wc was equal to 0.25.

Since the assignment of patterns to clusters is based on distance measure, the distance

tended to influence the optimization more than the wrong classification. Therefore,

the evolutionary semi-supervised crisp and rough clustering was run multiple times

and solutions that provided the best classifications were chosen. These multiple runs

also allowed us to steer out of locally optimal solutions.

The primary objective of this experiment was to explore the effectiveness of Eu-

clidean distance between brain signals to identify an individual person. The hypothe-

sis was that signals from an individual will be similar and belong to the same cluster.

The hypothesis can be tested with the well-known K-means clustering algorithm.
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The K-means clustering algorithm was selected because of its simplicity. Further-

more, the study explored the possibility of influencing the clustering with the known

categorization using evolutionary crisp and rough K-medoid algorithms. We used

confusion matrices for detailed analysis and the precision of clustering in identifying

the individuals as two evaluation measures.



Chapter 4

Classification

Tables 4.1, 4.2, 4.3, and 4.4 and Figures 4.1, 4.2 4.3 show the precision [55, 56] of

prediction for the four classifiers: decision tree, SVM, neural networks, and random

forest, respectively. For each classifier, Tables 4.1, 4.2, 4.3, and 4.4 report the accuracy

for predicting either the activity, person, or both. The results include training for the

entire dataset as well as by ten-fold cross-validation.

Our tests from training on the entire dataset showed SVM and random forest were

able to successfully predict a class for person, activity, or person and activity with

100% precision. Furthermore, neural networks were also able to predict person with

100% and activity with 95%, although this method did not perform well for predicting

person and activity together. Overfitting was most prominent for predicting activity;

however, the precision values remained fairly high after switching to using ten-fold

cross-validation.

Precision tells us the likelihood of the classifier being correct when predicting a

class. Precision can be calculated by dividing the diagonal value in a row by the

sum of the rows of a confusion matrix [57]. The precision values for ten-fold cross-

validation are all above 92% for predicting the person with SVM, neural networks, or

random forest. By comparison, the precision values in Table 4.1 show that decision

50
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Classifier Prediction Variable
Precision

Entire Dataset Ten-Fold Cross Validation
1 Decision Tree (minsplit: 1) Person 71.35 64.1
2 Decision Tree (minsplit: 1) Activity 23.03 23.1
3 Decision Tree (minsplit: 1) Person+Activity 6.18 5.65
4 Decision Tree (minsplit: 2) Person 71.35 65.2
5 Decision Tree (minsplit: 2) Activity 23.03 23.05
6 Decision Tree (minsplit: 2) Person+Activity 6.18 5.64
7 Decision Tree (minsplit: 3) Person 71.35 59.99
8 Decision Tree (minsplit: 3) Activity 23.03 23.05
9 Decision Tree (minsplit: 3) Person+Activity 6.18 5.65

10 Decision Tree (minsplit: 4) Person 71.35 63.51
11 Decision Tree (minsplit: 4) Activity 23.03 23.07
12 Decision Tree (minsplit: 4) Person+Activity 6.18 5.64
13 Decision Tree (minsplit: 5) Person 71.35 65.2
14 Decision Tree (minsplit: 5) Activity 23.03 23.05
15 Decision Tree (minsplit: 5) Person+Activity 6.18 5.65
16 Decision Tree (minsplit: 10) Person 71.35 62.33
17 Decision Tree (minsplit: 10) Activity 23.03 23.02
18 Decision Tree (minsplit: 10) Person+Activity 6.18 5.64
19 Decision Tree (minsplit: 15) Person 71.35 61.62
20 Decision Tree (minsplit: 15) Activity 23.03 23.11
21 Decision Tree (minsplit: 15) Person+Activity 6.18 5.65
22 Decision Tree (minsplit: 20) Person 71.35 62.37
23 Decision Tree (minsplit: 20) Activity 23.03 23.1
24 Decision Tree (minsplit: 20) Person+Activity 6.18 5.63

Table 4.1: Prediction accuracy of Decision Tree classifiers

Classifier Prediction Variable
Precision

Entire Dataset Ten-Fold Cross Validation
25 Support Vector Machine (Linear) Person 100 95.39
26 Support Vector Machine (Linear) Activity 100 77.51
27 Support Vector Machine (Linear) Person+Activity 100 84.97

Table 4.2: Prediction accuracy of Support Vector Machine classifiers
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Classifier Prediction Variable
Precision

Entire Dataset Ten-Fold Cross Validation
28 Neural Network (maxit: 10) Person 43.82 55.07
29 Neural Network (maxit: 10) Activity 28.09 33.28
30 Neural Network (maxit: 10) Person+Activity 12.36 10.58
31 Neural Network (maxit: 25) Person 40.45 64.57
32 Neural Network (maxit: 25) Activity 41.01 33.34
33 Neural Network (maxit: 25) Person+Activity 11.24 14.72
34 Neural Network (maxit: 50) Person 57.87 71.96
35 Neural Network (maxit: 50) Activity 34.27 37.11
36 Neural Network (maxit: 50) Person+Activity 15.73 16.26
37 Neural Network (maxit: 100) Person 80.34 82.62
38 Neural Network (maxit: 100) Activity 46.63 40
39 Neural Network (maxit: 100) Person+Activity 17.98 25.93
40 Neural Network (maxit: 1000) Person 100 94.46
41 Neural Network (maxit: 1000) Activity 94.94 69.77
42 Neural Network (maxit: 1000) Person+Activity 24.16 51.33

Table 4.3: Prediction accuracy of Neural Network classifiers

Classifier Prediction Variable
Precision

Entire Dataset Ten-Fold Cross Validation
43 Random Forest Person 100 92.85
44 Random Forest Activity 100 75.78
45 Random Forest PersonAndActivity 100 77.71

Table 4.4: Prediction accuracy of Random Forest classifiers
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Figure 4.1: Comparison of prediction accuracy of person for decision tree, SVM,
neural network, random forest classifiers
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Figure 4.2: Comparison of prediction accuracy of activity for decision tree, SVM,
neural network, random forest classifiers
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Figure 4.3: Comparison of prediction accuracy of person and activity for decision
tree, SVM, neural network, random forest classifiers
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Rank Variable Significance Score
1 B1.Beta.1 25.32
2 B3.Theta.2 8.29
3 B1.Delta.3 7.04
4 B8.Gamma.3 6.43
5 B4.Delta.1 4.04
6 B1.Gamma.1 3.93
7 B4.Alpha.1 3.74
8 B5.Delta.4 3.50
9 B2.Delta.1 3.07
10 B1.Beta.2 2.92

Table 4.5: Person - Most significant independent variables using random forest clas-
sifiers

Rank Variable Significance Score
1 B1.Theta.2 5.59
2 B6.Beta.3 4.66
3 B3.Delta.4 4.33
4 B1.Delta.3 4.10
5 B7.Delta.4 4.05
6 B8.Theta.1 3.49
7 B5.Beta.1 3.11
8 B8.Gamma.4 2.82
9 B8.Gamma.1 2.80
10 B2.Gamma.4 2.76

Table 4.6: Activity - Most significant independent variables using random forest
classifiers

tree classifiers do not perform well using our knowledge representation of the EEG

data and at best only achieve a precision of 65%.

Tables 4.5, 4.6, and 4.7 show the top ten significant variables obtained by the

random forest classifier when classifying by Person, Activity, or Person and Activ-

ity, respectively. The variable names include the bin number, wave, and location.

For example, bin 7 (85% to 95%) of the theta wave at location 4 would be named

‘B7.Theta.4’.
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Rank Variable Significance Score
1 B7.Theta.4 6.43
2 B7.Theta.3 5.02
3 B6.Beta.2 4.33
4 B1.Delta.3 4.30
5 B4.Delta.1 4.26
6 B2.Delta.1 4.14
7 B3.Alpha.2 4.00
8 B7.Theta.1 3.75
9 B2.Alpha.1 3.72
10 B4.Alpha.1 3.51

Table 4.7: Person+Activity - Most significant independent variables using random
forest classifiers

Rank Variable Significance Score
151 B1.Gamma.4 0.00
152 B2.Alpha.3 0.00
153 B3.Beta.4 0.00
154 B3.Gamma.4 0.00
155 B6.Alpha.4 0.00
156 B6.Delta.4 0.00
157 B6.Theta.4 0.00
158 B7.Beta.4 0.00
159 B7.Gamma.4 0.00
160 B8.Alpha.4 0.00

Table 4.8: Person - Least significant independent variables using random forest clas-
sifiers

Rank Variable Significance Score
151 B8.Alpha.4 0.01
152 B2.Delta.4 0.01
153 B1.Gamma.4 0.01
154 B8.Alpha.3 0.01
155 B3.Gamma.4 0.00
156 B1.Beta.4 0.00
157 B6.Alpha.4 0.00
158 B8.Delta.4 0.00
159 B6.Theta.4 0.00
160 B8.Theta.4 0.00

Table 4.9: Activity - Least significant independent variables using random forest
classifiers
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Rank Variable Significance Score
151 B6.Alpha.3 0.01
152 B3.Beta.4 0.01
153 B6.Theta.3 0.01
154 B6.Alpha.4 0.01
155 B6.Theta.4 0.00
156 B1.Beta.4 0.00
157 B1.Gamma.4 0.00
158 B8.Alpha.4 0.00
159 B6.Delta.4 0.00
160 B8.Theta.4 0.00

Table 4.10: Person+Activity - Least significant independent variables using random
forest classifiers

The most significant independent variable for predicting a person, activity, or

person and activity was bin 1 (0% to 5%) of beta wave at location 1 with a significance

score of 25%, bin 1 (0% to 5%) of theta wave at location 2 with a significance score

of 6%, and bin 7 (85% to 95%) of theta wave at location 4 with a significance score

of 6%, respectively. The theta wave at location 2 is significant for predicting either

person or activity with a significance score of 8% and 6%, respectively.

Tables 4.8, 4.9, and 4.10 show the bottom ten significant variables obtained by the

random forest classifier when classifying by Person, Activity, or Person and Activity,

respectively.

The least significant independent variable for predicting a person, activity, or

person and activity was bin 8 (95% to 100%) of alpha wave at location 4 with a

significance score of 0%, bin 8 (95% to 100%) of theta wave at location 4 with a

significance score of 0%, and bin 8 (95% to 100%) of theta wave at location 4 with a

significance score of 0%, respectively. The signals from locations 3 and 4 are shown to

be often the least significant variable overall for predicting person, activity, or person



59

Figure 4.4: The decision tree for predicting a person

and activity with a significance score of approximately 0%. Locations 3 and 4 are

the back right and back left sensors, respectively, where the occipital lobe is located.

Locations 1 and 2 are the front right and front left sensors, respectively, where the

frontal lobe is located. This could indicate that the back of the brain, the occipital

lobe, is not as significant for differentiating the activities specified.

Figure 4.4 shows a graphical representation of the decision tree classifier that

helps us understand the logical process of the person classification. Notice individual

0, with only 23 records instead of 50 records, is not included in the decision tree. This

demonstrates that individuals with fewer records were neglected.

The most accuracy classifiers are SVM, neural networks, and random forests. Ta-

bles 4.11, 4.12, 4.13, 4.14, 4.15, and 4.16 show the confusion matrices for the SVM
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0 1 2 3
0 23 0 0 0
1 0 50 0 0
2 0 0 50 0
3 0 0 0 55

Table 4.11: Confusion Matrix - Person - SVM - Entire dataset

0 1 2 3
0 11.13 0.00 0.56 0.56
1 0.00 27.55 0.00 0.59
2 1.14 0.59 27.58 0.59
3 0.59 0.00 0.00 29.13

Table 4.12: Confusion Matrix - Person - SVM - Ten-fold Cross Validation

classifier for classifying by Person or Activity or Person and Activity, respectively.

Tables 4.17, 4.18, 4.19, 4.20, 4.21, and 4.22 show the confusion matrices for the neu-

ral network classifier for classifying by Person or Activity or Person and Activity,

respectively. Tables 4.23, 4.24, and 4.25 show the confusion matrices for the random

forest classifier for classifying by Person or Activity or Person and Activity, respec-

tively. For the ten-fold cross-validation confusion matrices the entries are percentages

of table totals.

Tables 4.12, 4.18, and 4.23 show correctly predicting individual 0 is not as likely

as for the other persons, which can be expected since individual 0 has only 23 instead

of 50 records.

game music none reading video
game 41 0 0 0 0
music 0 35 0 0 0
none 0 0 34 0 0

reading 0 0 0 34 0
video 0 0 0 0 34

Table 4.13: Confusion Matrix - Activity - SVM - Entire dataset
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game music none reading video
game 21.40 1.15 0.00 2.89 3.41
music 0.00 13.50 1.67 0.00 0.00
none 0.00 2.75 15.70 0.53 0.00

reading 0.59 0.00 0.59 13.45 2.26
video 1.14 2.20 1.11 2.20 13.47

Table 4.14: Confusion Matrix - Activity - SVM - Ten-fold Cross Validation



62

0
1

2
3

G
M

N
R

V
G

M
N

R
V

G
M

N
R

V
G

M
N

R
V

0
ga

m
e

10
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
m

u
si

c
0

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

n
on

e
0

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

re
ad

in
g

0
0

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
v
id

eo
0

0
0

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

ga
m

e
0

0
0

0
0

10
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

m
u
si

c
0

0
0

0
0

0
10

0
0

0
0

0
0

0
0

0
0

0
0

0
1

n
on

e
0

0
0

0
0

0
0

10
0

0
0

0
0

0
0

0
0

0
0

0
1

re
ad

in
g

0
0

0
0

0
0

0
0

10
0

0
0

0
0

0
0

0
0

0
0

1
v
id

eo
0

0
0

0
0

0
0

0
0

10
0

0
0

0
0

0
0

0
0

0
2

ga
m

e
0

0
0

0
0

0
0

0
0

0
10

0
0

0
0

0
0

0
0

0
2

m
u
si

c
0

0
0

0
0

0
0

0
0

0
0

10
0

0
0

0
0

0
0

0
2

n
on

e
0

0
0

0
0

0
0

0
0

0
0

0
10

0
0

0
0

0
0

0
2

re
ad

in
g

0
0

0
0

0
0

0
0

0
0

0
0

0
10

0
0

0
0

0
0

2
v
id

eo
0

0
0

0
0

0
0

0
0

0
0

0
0

0
10

0
0

0
0

0
3

ga
m

e
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

11
0

0
0

0
3

m
u
si

c
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
11

0
0

0
3

n
on

e
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

11
0

0
3

re
ad

in
g

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

11
0

3
v
id

eo
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

11

T
ab

le
4.

15
:

C
on

fu
si

on
M

at
ri

x
-

P
er

so
n
+

A
ct

iv
it

y
-

S
V

M
-

E
n
ti

re
d
at

as
et



63

0
1

2
3

G
M

N
R

V
G

M
N

R
V

G
M

N
R

V
G

M
N

R
V

0
ga

m
e

5.
63

0.
00

0.
00

0.
50

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0
m

u
si

c
0.

00
1.

73
0.

56
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0

n
on

e
0.

00
0.

00
0.

56
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

62
0.

00
0.

00
0.

00
0

re
ad

in
g

0.
00

0.
00

0.
00

0.
56

0.
00

0.
00

0.
56

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0
v
id

eo
0.

00
0.

00
0.

00
0.

00
1.

11
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
1

ga
m

e
0.

00
0.

00
0.

00
0.

00
0.

00
4.

58
0.

56
0.

56
0.

00
0.

56
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
1

m
u
si

c
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
3.

44
1.

18
0.

00
1.

06
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
1

n
on

e
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

50
3.

90
0.

00
0.

56
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
1

re
ad

in
g

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

5.
63

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

1
v
id

eo
0.

00
0.

00
0.

00
0.

00
0.

00
1.

06
0.

59
0.

00
0.

00
3.

47
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
2

ga
m

e
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
5.

63
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
2

m
u
si

c
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
5.

08
0.

62
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
2

n
on

e
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

56
5.

01
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
2

re
ad

in
g

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

5.
08

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

2
v
id

eo
0.

00
0.

56
0.

56
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

56
5.

63
0.

00
0.

00
0.

00
0.

00
0.

00
3

ga
m

e
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
5.

55
0.

00
0.

00
0.

59
0.

00
3

m
u
si

c
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
5.

01
0.

00
0.

00
0.

00
3

n
on

e
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
6.

13
0.

00
0.

00
3

re
ad

in
g

0.
00

0.
00

0.
00

0.
56

0.
50

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
59

0.
00

0.
00

5.
60

0.
56

3
v
id

eo
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

56
0.

00
0.

00
5.

63

T
ab

le
4.

16
:

C
on

fu
si

on
M

at
ri

x
-

P
er

so
n
+

A
ct

iv
it

y
-

S
V

M
-

T
en

-f
ol

d
C

ro
ss

V
al

id
at

io
n



64

0 1 2 3
0 23 0 0 0
1 0 50 0 0
2 0 0 50 0
3 0 0 0 55

Table 4.17: Confusion Matrix - Person - Neural Network (1000 iterations) - Entire
dataset

0 1 2 3
0 10.08 0.00 0.53 0.00
1 0.00 27.61 1.11 0.00
2 1.64 0.53 25.91 0.00
3 1.14 0.00 0.59 30.86

Table 4.18: Confusion Matrix - Person - Neural Network (1000 iterations) - Ten-fold
Cross Validation

game music none reading video
game 41 1 0 2 5
music 0 33 0 0 0
none 0 1 34 0 0

reading 0 0 0 32 0
video 0 0 0 0 29

Table 4.19: Confusion Matrix - Activity - Neural Network (1000 iterations) - Entire
dataset

game music none reading video
game 19.18 0.56 1.18 1.18 4.52
music 0.53 14.07 3.90 1.05 2.16
none 0.56 3.31 12.92 1.08 2.26

reading 0.00 0.53 0.56 14.69 1.21
video 2.85 1.15 0.56 1.08 8.92

Table 4.20: Confusion Matrix - Activity - Neural Network (1000 iterations) - Ten-fold
Cross Validation
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0 1 2 3
0 11.20 0.00 0.59 0.53
1 0.00 25.96 0.00 0.59
2 0.00 1.05 25.96 0.00
3 1.64 1.14 1.61 29.73

Table 4.23: Confusion Matrix - Person - Random Forest - Ten-fold Cross Validation

game music none reading video
game 19.12 1.08 0.53 2.78 3.93
music 0.59 16.34 2.88 0.00 0.59
none 0.00 0.56 14.60 0.00 0.53

reading 0.56 0.56 0.00 14.02 2.32
video 2.82 1.14 1.11 2.25 11.70

Table 4.24: Confusion Matrix - Activity - Random Forest - Ten-fold Cross Validation
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Chapter 5

Semi-Supervised Evolutionary Learning

Table 5.1 shows the confusion matrix resulting from K-means clustering. The rows

represent clusters and columns represent classes. The correspondence between clus-

ters and classes was based on the most dominant class in a given cluster. It is clear

that cluster 1 matches class 1 reasonably well. Most members of cluster 2 are from

class 2. Cluster 0 is a little difficult to match with a class. Most of the members from

class 0 belong to cluster 0. However, the most dominant class in cluster 0 is class 2.

Since we had already assigned another cluster to class 2, we associated the cluster 0

with class 0. This assignment leads to the precision, recall, and, F-measure values

shown in Table 5.2 and Figure 5.1.

Precision tells us the likelihood of us being correct when we predict a class. Preci-

sion can be calculated by dividing the diagonal value in a row by the sum of the row.

With K-means clustering, our precision is quite high for persons 1 and 2. However,

the value is very low for person 0. The likelihood of us classifying a given person in

the correct cluster is given by recall. Recall is calculated by the diagonal value for a

column and the sum of the column. Recall of K-means for persons 0 and 1 are fairly

high, but quite low for person 2. F-measure is the harmonic mean of precision and

69



70

Cluster/Class 0 1 2

0 20 2 29
1 0 48 0
2 3 0 21

Table 5.1: Confusion Matrix - K-Means

Person Precision Recall F-Measure

0 20/51 = 39% 20/23 = 87% 54%
1 48/48 =100% 48/50 = 96% 98%
2 21/24 = 88% 21/50 = 42% 57%

Table 5.2: Precision and Recall and F-Measure - K-means

recall. F-measure is calculated as:

F = 2× precision× recall

precision + recall
(5.1)

Table 5.3 shows the confusion matrix resulting from the evolutionary semi-supervised

K-medoids clustering. As before, we matched the clusters and classes based on the

most dominant class in a given cluster. This assignment leads to the precision, recall,

and F-measure values shown in Table 5.4 and Figure 5.2. In comparison to the pre-

cision, recall, and F-measure values from K-means shown in Table 5.2 and Figure 5.1,

the evolutionary semi-supervised K-medoids provide more reasonable values. All the
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Figure 5.1: Precision and Recall and F-Measure - K-means

Cluster/Class 0 1 2

0 15 0 6
1 0 49 12
2 8 1 32

Table 5.3: Confusion Matrix
Semi-supervised K-Medoids
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Person Precision Recall F-Measure

0 15/21 = 71% 15/23 = 65% 68%
1 49/61 = 80% 49/50 = 98% 88%
2 32/41 = 78% 32/50 = 64% 70%

Table 5.4: Precision and Recall and F-Measure
Semi-supervised K-Medoids

Figure 5.2: Precision and Recall and F-Measure - K-Medoids
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Cluster/Class 0 1 2

0 18 0 6
1 3 50 13
2 7 13 49

Table 5.5: Confusion Matrix - Upper bound
Semi-supervised Rough K-Medoids

Cluster/Class 0 1 2

0 14 0 1
1 3 35 0
2 3 0 31

Table 5.6: Confusion Matrix - Lower bound
Semi-supervised Rough K-Medoids

precision, recall and F-measure values are above 64%, as opposed to the 39% and 42%

values seen for precision of person 0 and recall of person 2 with K-means clustering.

Since rough clustering provides upper and lower bounds of clustering, we analyze

them separately. It should be noted that the lower bounds are exclusive. A pattern

belongs to a lower bound when we are almost certain of its membership. The upper

bound, on the other hand, is inclusive. If there is a reasonable chance that a pattern

may belong to a class, we assign it to the class’s upper bound.

Table 5.5 shows the confusion matrix of upper bounds resulting from the evo-

lutionary semi-supervised Rough K-medoids clustering. As before, we matched the
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Person
Precision

Upper Bound Lower Bounds

0 18/24 = 75.00% 14/15 = 93.33%
1 50/66 = 75.75% 35/38 = 92.10%
2 49/69 = 71.01% 31/34 = 91.17%

Table 5.7: Precision of clustering
Semi-supervised Rough K-Medoids

Person
Recall

Upper Bound Lower Bounds

0 18/23 = 78% 14/23 = 61%
1 50/50 = 100% 35/50 = 70%
2 49/50 = 98% 31/50 = 62%

Table 5.8: Recall of clustering
Semi-supervised Rough K-Medoids
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Person
F-Measure

Upper Bound Lower Bounds

0 76% 74%
1 86% 80%
2 82% 74%

Table 5.9: F-Measure of clustering
Semi-supervised Rough K-Medoids

Figure 5.3: Precision and Recall and F-Measure - Semi-supervised Rough K-Medoids
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clusters and classes based on the most dominant class in a given cluster. The cluster

and class matching from the lower bounds was used to create the confusion matrix

shown in Table 5.6. The precision values for the lower and upper bounds are shown

in Table 5.7 and Figure 5.3. Since the boundary region represents ambivalence and

has a higher likelihood of containing the wrong classes, the precision of the upper

bounds is slightly lower than the corresponding K-medoids clustering. On the other

hand, the precision of the lower bounds is significantly higher (91-93%) than any of

the earlier clustering methods. The higher precision of the lower bound is due to its

exclusive nature, while the inclusive nature of the upper bound leads to slightly lower

precision.

The calculations of recall for the rough clustering shown in Table 5.8 and Fig-

ure 5.3 cannot use the sum of the columns because of the overlap between the upper

bound clusters. Instead we divide by the cardinality of the known classification. The

inclusive nature of upper bound provides us with higher recall values. On the other

hand, the exclusivity of lower bounds leads to somewhat lower recall values.



Chapter 6

Summary and Conclusions

The advent of wearable technology is producing a large number of signals of varying

length. These signals present exciting opportunities for data mining. This study

demonstrates a supervised data mining process for data collected from various indi-

viduals performing different tasks. The data consists of electroencephalogram (EEG)

brain signals from different points around the head collected using a Muse headband.

It was not possible to exactly control the duration of the activities even in an

experimental setting. In the real-world, the signals will have even more variation in

length. Most data mining techniques are based on fixed-length object representation.

This paper shows that histograms of brain signals can be a very useful representation

for data mining activities. One of the primary advantages of the histograms is that

they reduce the variable length of signals to fixed length representations. That means

a ten minute long brain signal will have the same representation as a one minute signal.

These representations were successfully used to identity persons with the follow-

ing classifiers: support vector machines, neural networks, random forests, and semi-

supervised crisp and rough K-medoids. The ten-fold cross-validation results varied

from 95% to 93% for SVM, neural networks, and random forests, with decision trees

providing the least precision with 65%. The results for predicting activities were a
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little less precise. However, SVM’s precision of 78% for activities and 85% for person

and activity showed that the proposed representation is quite credible for predicting

activities from the brain signals.

The crisp semi-supervised K-medoids clustering had reasonable precision and re-

call values for predicting persons. Rough clustering provides upper and lower bounds

of clustering, where the upper bounds are inclusive in nature. If a pattern has rea-

sonable chance of belonging to a cluster, it goes into its upper bound. This leads to

higher recall values. The lower bounds, on the other hand, are exclusive. A pattern

goes into the lower bound of a cluster only if there is a very high chance that the

pattern belongs to the cluster. This leads to lower recall and higher precision values

for the lower bounds of clustering. An analyst can use the upper bounds of a cluster

when higher recall is desired. Lower bounds of the clusters will be useful when the

precision is an overwhelming criterion.
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