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ABSTRACT
We study 23 previously published Kepler targets to perform a consistent grid-based Bayesian
asteroseismic analysis and compare our results to those obtained via the Asteroseismic Mod-
elling Portal. We find differences in the derived stellar parameters of many targets and their
uncertainties. While some of these differences can be attributed to systematic effects between
stellar evolutionary models, we show that the different methodologies deliver incompatible
uncertainties for some parameters. Using non-adiabatic models and our capability to mea-
sure surface effects, we also investigate the dependency of these surface effects on the stellar
parameters. Our results suggest a dependence of the magnitude of the surface effect on the
mixing length parameter which also, but only minimally, affects the determination of stellar
parameters. While some stars in our sample show no surface effect at all, the most significant
surface effects are found for stars that are close to the Sun’s position in the Hertzsprung–Russell
diagram.
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1 IN T RO D U C T I O N

Ultraprecise long-term photometric time series from space have
revolutionized the study of stellar variability in recent years. The
Convection, Rotation and Planetary Transits (CoRoT; Michel et al.
2008) and the Kepler (Borucki et al. 2010) space telescopes in par-
ticular have produced high-quality data sets for thousands of stars
in order to detect planets down to Earth size and below. Particularly
interesting for the study of stellar interiors and stellar evolution is
their ability to detect solar-type oscillations from giants to subd-
warfs. The pulsational characteristics of these stars adhere, at least
to a very good first approximation, to scaling relations (e.g. Huber
et al. 2011) permitting the study of large populations of stars with
‘ensemble asteroseismology’ (Chaplin et al. 2011) and even Galac-
tic archaeology (Miglio et al. 2013).

The same information can also be exploited to infer the parame-
ters of individual stars, e.g. to better constrain their planets’ prop-
erties. For stellar astrophysics, however, the ultimate goal is to use
asteroseismology to study stellar interiors. Instead of direct inver-
sion of the pulsation information, asteroseismology usually employs
a comparison between observed and modelled pulsation frequen-
cies (e.g. Guenther & Brown 2004). Various new tools have been
developed to facilitate a state-of-the-art version of such a compar-
ison using different approaches, such as the Asteroseismic Mod-
elling Portal (AMP; Metcalfe, Creevey & Christensen-Dalsgaard
2009) and Bayesian grid-based analysis (Gruberbauer, Guenther &
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Kallinger 2012, hereafter Paper I). The major differences between
these methods lie in their different statistical basis and their differ-
ent applications of what is known as the surface effect correction
(see Paper I for an in-depth discussion). Already, the AMP has
been used to analyse some Kepler targets in detail and to compare
the results with those from other modellers (Metcalfe et al. 2010,
2012). Such a comparison is advantageous, because asteroseismic
modelling often relies on a specific set of stellar models with a spe-
cific set of input physics. Slight systematic differences among these
models are therefore not only plausible but unavoidable, resulting
in underestimated uncertainties. A different approach is to study a
larger sample of stars self-consistently with one particular method
and model base to facilitate a pool of results to be compared with
other researcher’s results (Mathur et al. 2012).

In this paper we re-examine some of the previously published
studies based on Kepler data with a strong emphasis on AMP re-
sults, employing our own set of models and our Bayesian method
described in Paper I. We will discuss how the results differ and
whether the methodologies themselves introduce systematic devia-
tions. We will also perform the first detailed study on surface effects
for a sample of stars with our flexible method.

2 M E T H O D S , M O D E L S A N D O B S E RVAT I O N S

2.1 Target selection and observations

In order to investigate the impact of the stellar models and method-
ologies in the most general sense, we analyse stars for which the p-
mode frequency sets and detailed prior information used in previous
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asteroseismic fitting procedures are available in the literature. We
furthermore constrain ourselves to stars that do not show strong
signatures of deviations from the asymptotic relation, i.e. avoided
crossings such as in KIC 11026764 (Metcalfe et al. 2010). While
those signatures are very valuable for asteroseismic inferences and
can be easily taken into account with our method as mentioned
in Paper I, they would constitute special cases in the comparison
between methods. We therefore postpone such an analysis to a fu-
ture paper and restricted ourselves to 20 of the 22 stars analysed
by Mathur et al. (2012, hereafter Mathur20), the solar analogues
16 Cyg A&B (Metcalfe et al. 2012), and the planet-host Kepler-36
(Carter et al. 2012). Where available in the previously cited pa-
pers, we use prior constraints on log Teff, log L/L�, Z/X (adopting
[Fe/H]� = 0.0245) and log g. Following our description in Paper
I, these prior constraints are modelled as separate Gaussian proba-
bility distributions.

As is common in recent asteroseismic analyses, we treat the
frequency of maximum power νmax as an additional and independent
observable by using the scaling relation

νmax,mod ≈ M/M�
(
Teff/Teff,�

)3.5

L/L�
νmax,�, (1)

where we employ the solar value νmax,� = 3120.0 ± 5 µHz given
by Kallinger et al. (2010) based on VIRGO data. For Mathur20,
the observed values and uncertainties of νmax have been taken from
Mathur20, and for Kepler-36 we have used the value published in
Carter et al. (2012). For 16 Cyg A&B, we have determined the
values ourselves by performing a Bayesian multicomponent model
fit, consisting of a flat background, three super-Lorentzian profiles
and a Gaussian power hump, to the power density spectra of both
data sets.1 In this case, the central frequency of the Gaussian power
hump and the corresponding uncertainties are interpreted as a good
proxy for νmax. The method employs the nested sampling algorithm
MULTINEST (Feroz, Hobson & Bridges 2009) and is described in more
detail in Kallinger et al. (2010). We find νmax = 2215.6 ± 6.5 µHz
for 16 Cyg A, and νmax = 2571.9 ± 12.6 µHz for 16 Cyg B.

2.2 Models

A wide parameter range has to be spanned in order to perform a
meaningful grid-based analysis. We therefore employed YREC (De-
marque et al. 2008) to produce a set of dense grids covering a wide
range in initial masses, and several values for the initial helium
mass fraction Y0, initial metal mass fraction Z0 and mixing length
parameter αml.

Our model tracks begin as completely convective Lane–Emden
spheres (Lane 1869; Chandrasekhar 1957) with the stellar age reset
to zero when the star crosses the birthline (10−5 M� yr−1; Palla &
Stahler 1999). They are evolved from the Hayashi track (Hayashi
1961) through the zero-age-main-sequence (ZAMS) to the base
of the red giant branch. Constitutive physics include the OPAL98
(Iglesias & Rogers 1996) and Alexander & Ferguson (1994) opacity
tables, as well as the Lawrence Livermore equation of state tables
(Rogers 1986; Rogers, Swenson & Iglesias 1996). Convective en-
ergy transport was modelled using the Böhm-Vitense mixing length
theory (MLT; Böhm-Vitense 1958). The atmosphere is implemented
using Eddington grey atmosphere. Nuclear reaction cross-sections

1 Note that only Q7 data obtained between 2010 September to 2010 Decem-
ber have been used in Metcalfe et al. (2012). We therefore restrict ourselves
to this data set as well.

were taken from Bahcall, Pinsonneault & Basu (2001) and the nu-
clear reaction rates from table 21 in Bahcall & Ulrich (1988). The
effects of helium and heavy element diffusion (Bahcall, Pinson-
neault & Wasserburg 1995) were included. The model grid contains
models with M/M� from 0.8 to 1.3 in steps of 0.01 and Y0 from
0.210 to 0.315 in steps of 0.005. Furthermore, Z0 is varied from
0.005 to 0.04 in steps of 0.005, but with the overall constraint that
X0 ≥ 0.68. Lastly, we also vary αml from 1.8 to 2.4 in steps of 0.1.

The pulsation spectra were computed using the stellar pulsa-
tion code of Guenther (1994), which solves the linearized, non-
radial, non-adiabatic pulsation equations using the Henyey relax-
ation method. The non-adiabatic solutions include radiative energy
gains and losses but do not include the effects of convection. We
estimate the random 1σ uncertainties of our model frequencies to be
of the order of 0.1 µHz. These uncertainties are properly propagated
into all further calculations.

2.3 Bayesian asteroseismic grid fitting

Our Bayesian fitting method is explained in detail in Paper I, and
it has been previously applied to analyse the Sun (Gruberbauer
& Guenther 2013). We compare theoretical (fm) and observed (fo)
frequencies by calculating the likelihood that the two values agree
were it not for the presence of random and systematic errors, i.e.

fo − fm = γ� + e. (2)

Here, the random errors e are assumed to be independent and Gaus-
sian. The systematic errors γ� in the case of solar-like stars are as-
sumed to be similar to ‘surface effects’. At higher orders, observed
frequencies are systematically lower than model frequencies, and
the absolute frequency differences increase with frequency. This is
modelled by introducing � as free parameters for each observed
mode and by setting γ = −1.

These � terms are then allowed to become larger at higher ra-
dial orders. The upper limit �max for each model frequency fm is
determined by the large frequency separation and a power law sim-
ilar to the standard correction introduced by Kjeldsen, Bedding &
Christensen-Dalsgaard (2008) so that

�max = �ν

(
fm

fmax,m

)b

, (3)

where b = 4.9, �ν is the large frequency separation of the corre-
sponding model and fmax, m is the frequency of the highest order in
the model.2

The � parameter is incorporated in a completely Bayesian fash-
ion, using a β prior to prefer smaller values over larger ones (see
Paper I for more details). In addition, we always allow for the pos-
sibility that a mode is not significantly affected by any kind of
systematic error by explicitly including the null hypothesis, that is
by combining the probabilities of two hypotheses: one with and one
without the � parameter. Altogether, this allows us to fully propa-
gate uncertainties originating from the surface effects, or other po-
tential systematic differences, into all our results. At the same time it
gives us more flexibility than the standard surface-effect correction.
Whereas the latter prescribes a fixed power-law behaviour for the
actual surface effects, our method only prescribes such a behaviour

2 This means that for the highest order in the model �max = �ν and guar-
antees that we do not introduce ambiguities in the radial orders by imple-
menting the � terms.
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for the upper limits of the surface effects for the individual radial
model frequencies.

For each model in our grid, all the likelihood terms from the
different frequencies are combined to yield an overall weighted
likelihood for the model, where the weights are provided either via
prior information or using ignorance priors (i.e. information that
simply encodes the dimension of the grid). These weights provide
correctly normalized probabilities that allow us to derive distribu-
tions for all model properties (e.g. mass, age, fractional radius of
the base of the convection zone RBCZ, mixing length parameter αML

and so on).
In summary, we obtain probabilities for every evolutionary track

in our grid, and within the tracks also for every model. We also
obtain the correctly propagated distributions for systematic errors
so that the model-dependent surface effect can be measured. In or-
der to fully resolve the changes in stellar parameters and details
in the stellar-model mode spectra, we oversample the evolutionary
tracks via linear interpolation until the (normalized) probabilities
no longer change significantly. Eventually, we obtain so-called ev-
idence values, equivalent to the prior-weighted average likelihood,
for the grid as a whole. These could, in principle, be used to perform
a quantitative evaluation of different input physics (see Gruberbauer
& Guenther 2013) or even different stellar evolution and pulsation
codes. We will use them in this study to analyse the significance of
the measured surface effects.

In order to facilitate this, we propose two alternative systematic
error models in addition to the standard surface effect (SSE) model
described above. First, we employ a less restrictive systematic error
model where

�max = �ν/2 (4)

for every frequency of each particular model. Furthermore, the ob-
served frequencies are allowed to deviate in either direction (first
γ = 1 is evaluated, then γ = −1 follows and then both results are
combined using the sum rule). We call this model the ‘arbitrary sys-
tematic error’ (ASE) model since it allows, in principle, very large
differences between observed and calculated frequencies without
prescribing any systematic behaviour or preferred sign. Note that
this is not equivalent to simply increasing the Gaussian uncertainties
of the observed frequencies to �ν/2.

Finally, we will also employ a third error model which only
consists of the probabilities obtained without any � parameters.
This model therefore assumes that no systematic errors are present
so that fo − fm = e. We will call this the ‘no systematic error’ (NSE)
model. Together, the three systematic error models will allow us
to estimate the significance of surface effects or other systematic
differences between observed and calculated frequencies.

3 D E P E N D E N C E O F S U R FAC E EF F E C T S O N
N O N - A D I A BATI C I T Y A N D M I X I N G L E N G T H

The advantage of our method to include systematic frequency errors
over the standard surface correction is its universality. The SSE
exponent of b = 4.9 as obtained by Kjeldsen et al. (2008) has been
derived for adiabatic pulsation frequencies and for a solar-calibrated
model with a calibrated parametrization of the mixing length.3 More

3 As explained in the previous section, technically we also use b = 4.9 for
our surface effect modelling, but the exponent is only employed to derive
an upper limit for the surface effect for each mode. This does not enforce
the usual power-law-like behaviour of the surface effect.

advanced pulsation models and different stellar models (see e.g.
Grigahcène et al. 2012) are not necessarily consistent with such
a relation. This is also the case for our non-adiabatic pulsation
frequencies. Since the only way to improve our modelling of outer
layers is to compare more advanced models to observations, it is
necessary to relax the constraint of a definite empirical surface
correction relation dependent on adiabatic pulsation codes. Aside
from the surface effect, our method also allows various other kind
of parametrization for systematic errors, such as our ASE model.

The drawback of our method, as discussed in Paper I, is that in
the absence of strong prior information about the stellar parameters,
a lack of lower order modes will potentially result in an underesti-
mated magnitude of the surface effects. This follows from the fact
that we always obtain the most probable result given our state of
information including the new data set; if we cannot constrain the
stellar model parameters using our prior knowledge, the pulsation
frequencies are our only reference. When conditions are encoun-
tered under which the empirical correction law of Kjeldsen et al.
(2008) does not apply, or if one rejects such a correction on other
grounds, we have to evaluate the models acknowledging the pres-
ence of less well-specified systematic errors.

As described in Paper I, neglecting lower order modes leads to
overestimated αml, mass and metallicity for the Sun, simply be-
cause such models can fit the higher order modes better. The same
models cannot fit the lower order modes as well, but when they
are not included in the list of fitted modes no penalty ensues. For
stars other than the Sun, we usually do not have a complete list of
lower order modes, nor do we have as accurate non-seismic con-
straints (e.g. mass, luminosity, age). Even in such cases, however,
stellar metallicity, Teff and L can be estimated from spectroscopic
and photometric observations. Furthermore, equation (1) reveals
that νmax provides valuable if approximate constraints for the fun-
damental parameters, including the stellar mass, in particular when
spectroscopic constraints are available.

Two adjustable parameters of the stellar model, the helium abun-
dance and αml, affect the structure of the surface layers. The mixing
length parameter is normally tuned to produce a model of the Sun
at the observed composition and (meteoritic) age that matches the
limb-darkening-corrected radius of the Sun. The helium abundance
is either derived also from a tuned model of the Sun, matching its
luminosity, or extrapolated from the observed rate of Galactic nucle-
osynthesis. Both the helium abundance and the αml affect the depth
of the convection zone (i.e. the fitted adiabat) and the temperature
gradient in the superadiabatic layer (SAL)4 via the MLT. We stress
that the mixing length parameter of the MLT is used primarily to
control the efficiency of convection and its adjustment is primarily
used to fix the radius of the star. As is well known for the case of the
Sun the MLT does not correctly predict the temperature gradients
in the SAL so even though it may be providing an accurate radius
for the star it may, at the same time, be providing a poor model of
the SAL (e.g. Robinson et al. 2003). The surface effect is sensitive
to αml since the p-mode frequencies are sensitive to the SAL. But
at the same time the large frequency spacings are also sensitive to
the αml via its effect on the star’s radius. The interplay of the two
effects of the mixing length parameter on the frequencies makes it
difficult to isolate the surface effect completely from αml.

Fig. 1 shows the effect of fitting one of the stars in our sample,
KIC 8006161, to a specific evolutionary track with M = 1.11 M�,
Y0 = 0.22 and Z0 = 0.04, but varying values of αml (note that

4 Below the SAL, the temperature gradient is adiabatic.
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Figure 1. Systematic differences between observed and computed l = 0
modes for KIC 8006161 when fitted by models with varying mixing length
but otherwise fixed initial parameters.

these models are not equivalent to our most probable models as
determined in the next section). At the highest frequencies, the
larger αml values clearly reduce the measured surface effect by
almost 50 per cent, and the effect is even more pronounced at the
lower orders.5 On the other hand, the plot suggests that at the lowest
observed radial order, the frequencies for the higher αml models
are somewhat too low. Fig. 2 presents the echelle diagram for the
l = 0, 2 modes of the αml = 1.8 and 2.2 models. We observe that
if the set of l = 2 modes extended below ∼3000 µHz, we would
be able to clearly distinguish between these two models. At the
l = 0 orders below ∼2000 µHz the two models show small but
systematic differences as well. With the current set of observed
modes, however, we cannot clearly determine whether a lower or
higher mixing length parameter value is more probable. Yet, we
want to find the model with the smallest surface effects that still
fits all other constraints. Therefore, in our example the higher αml

values become more probable automatically. As long as we have
limited knowledge on the magnitude of the surface effects across
the Hertzsprung–Russell (HR) diagram, however, this increase in
probability might not be warranted. In the given example, it does
seem as if the αml = 2.2 model is more consistent with the observed
small spacing, but we know that the solar-calibrated value is closer
to αml ∼ 1.8, so deviations from this value should not be taken
lightly.6 Nonetheless, studying the possible variation of the mixing
length parameter across the HR diagram and its interplay with the
surface effects is important, so setting a fixed (calibrated) value is
also not desirable.

We therefore propose the following solution: we perform our
analysis using three different approaches to constraining the mixing
length. The first approach is to not use any prior on αml. The second
approach is to employ a Gaussian prior with αml = 1.8 ± 0.075,

5 It is necessary to point out, however, that for adiabatic frequencies, the
relative impact of the mixing length is not as big as for the non-adiabatic
frequencies.
6 Note that such deviations are also a non-negligible problem when applying
the standard surface correction since it relies on the solar-calibrated values
at the solar mixing length parameter.

Figure 2. Echelle diagrams for the l = 0 (right-hand sequence) and 2 (left-
hand sequence) modes of KIC 8006161 and two models with different αml.
The uncertainties of the observed frequencies are of the order of the symbol
size.

based on the solar calibrated value. The standard deviation of the
prior (0.075) is somewhat arbitrary, but we choose it to permit devi-
ations from the calibrated value in the presence of strong evidence.
As the maximum value of αml in our grid is 2.4, such a model would
represent an a priori 8σ outlier. For such a model to still be more
probable, it would require differences in likelihood of about 14 or-
ders of magnitude, and therefore a large amount of evidence from
the frequencies and the fit to the other stellar parameters. The prior
should therefore only lead to αml > 2.1 for stars that can be matched
very well both in terms of their frequencies and in terms of their
fundamental parameters. Lastly, the third approach is to constrain
ourselves to αml = 1.8 in reference to the Sun-calibrated value for
Eddington atmospheres. This set of different constraints on αml will
allow us to show its impact on the stellar parameters and the surface
effects. By comparing the Bayesian evidence for the result obtained
with different priors, we can also quantify the formal preference of
one prior over the others.

As an example, we present the results for the surface effect anal-
ysis of KIC 8006161, based on the complete grid rather than just
one evolutionary track, in Fig. 3. While for this star the prior does
not have a big effect at the lower order modes, we obtain signifi-
cantly larger surface effects beyond 3300 µHz with the αml priors.
Even with the Gaussian αml prior, as will be shown below, the most
probable posterior value for αml lies above 1.8.

4 R ESULTS

As described in the previous sections, we have analysed all 23 stars
in our sample with the same grid, using priors on their fundamental
parameters if available and three different models relating to the
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Figure 3. Systematic differences between all observed and computed
modes of KIC 8006161 for the whole grid, calculated with (black circles)
and without (blue triangles) αml prior. Results for only the αml = 1.8 models
(red squares) are also shown.

treatment of systematic errors. Moreover, we perform this analysis
three times, first setting αml = 1.8, then with a Gaussian prior and
lastly without a prior on αml. The results are given in Table 1, and
the most probable αml priors and surface effect models are also
indicated.

4.1 The influence of the αml priors

Before we move on to a comparison to the literature, we first study
the effect of the αml priors on our results. Fig. 4 shows the pos-
terior mean values and uncertainties of αml, M, Y0, log g, Z/X
and age for all stars and compares the results with and without
the Gaussian αml prior. The Gaussian αml prior leads to slightly
lower values of αml as was expected from the discussion in Sec-
tion 3. Furthermore, the stellar masses are also slightly lower with
an average difference 〈�M〉 = −0.021 M�, and, although there
is a larger scatter in Y0, slightly larger values in the initial he-
lium mass fraction are also preferred with an average difference of
〈�Y0〉 = 0.008. On the other hand, log g remains basically unaf-
fected as expected, since the radius of the stars are well constrained
by the large spacings (as we will see below, this also extends to
a comparison with the other αml prior and the literature). Z/X and
age also do not show strong systematic effects. Nonetheless, the
latter does exhibit a strong outlier with 16 Cyg B, for which the
age changes from 9.279 ± 0.473 to 6.532 ± 0.281 Gyr. Note that
even though the Bayesian evidence is clearly in favour of the older
model, the younger value is much more reasonable, given the re-
sults from Metcalfe et al. (2012) and also given the value of the
age for 16 Cyg A. This is a good test case for the impact of the
αml prior.

A comparison of the results from the Gaussian prior and the fixed
αml = 1.8 prior is presented in Fig. 5. In general, the results fall in
line with our expectations: the mass is now slightly larger for the
Gaussian prior with 〈�M〉 = 0.014, and Y0 is slightly smaller with
〈�Y0〉=−0.005. Z/X and age values are again quite comparable ex-
cept for a few outliers. In general the systematic differences between

Table 1. Mean parameters and uncertainties as a function of αml prior for KIC 3632418 to KIC 6603624. Bold font indicates the prior for which the highest
evidence was obtained, as well as other priors for which the evidence was comparable (within a factor of 5). Y0, Z0: initial helium and metal mass fractions;
Zs: metal mass fraction in the envelope; RBCZ: fractional radius of the base of the convection zone; αml: mixing length parameter; Sys: the most probable
systematic-error model is given (SSE = standard surface effect, ASE = arbitrary systematic errors, NSE = no systematic errors) and asterisks indicate a
probability contrast of less than an order of magnitude with respect to any of the other systematic-error models.

Star α prior M/M� log Teff log L/L� log R/R� Age Y0 Z0 Zs Zs/Xs RBCZ αml Sys

3632418 αml = 1.8 1.273 3.802 0.696 0.268 3.926 0.252 0.0134 0.0130 0.0175 0.8397 1.80 SSE
±0.033 ±0.002 ±0.007 ±0.004 ±0.227 ±0.012 ±0.0024 ±0.0022 ±0.0030 ±0.0069

Gaussian 1.261 3.805 0.706 0.266 3.823 0.260 0.0130 0.0126 0.0172 0.8405 1.87 SSE
±0.030 ±0.003 ±0.012 ±0.004 ±0.221 ±0.024 ±0.0025 ±0.0022 ±0.0033 ±0.0088 ±0.05

no αml prior 1.264 3.807 0.713 0.266 3.738 0.264 0.0133 0.0129 0.0177 0.8386 1.91 SSE
±0.029 ±0.003 ±0.012 ±0.004 ±0.217 ±0.024 ±0.0024 ±0.0021 ±0.0032 ±0.0093 ±0.06

3656476 αml = 1.8 1.131 3.754 0.219 0.126 6.623 0.281 0.0310 0.0273 0.0373 0.6874 1.80 SSE
±0.025 ±0.004 ±0.017 ±0.003 ±0.729 ±0.011 ±0.0028 ±0.0026 ±0.0038 ±0.0090

Gaussian 1.159 3.754 0.230 0.130 6.871 0.276 0.0347 0.0308 0.0422 0.6732 1.94 SSE
±0.022 ±0.004 ±0.017 ±0.003 ±0.564 ±0.012 ±0.0034 ±0.0031 ±0.0045 ±0.0089 ±0.07

no αml prior 1.253 3.766 0.301 0.143 7.789 0.234 0.0400 0.0359 0.0473 0.6591 2.39 NSE∗
±0.013 ±0.002 ±0.007 ±0.002 ±0.287 ±0.010 ±0.0005 ±0.0005 ±0.0010 ±0.0015 ±0.02

4914923 αml = 1.8 1.228 3.759 0.297 0.154 5.409 0.259 0.0306 0.0271 0.0361 0.7097 1.80 SSE
±0.036 ±0.003 ±0.013 ±0.004 ±0.349 ±0.021 ±0.0017 ±0.0016 ±0.0025 ±0.0078

Gaussian 1.227 3.764 0.314 0.153 5.269 0.263 0.0299 0.0266 0.0357 0.7075 1.88 SSE
±0.037 ±0.004 ±0.018 ±0.004 ±0.446 ±0.021 ±0.0018 ±0.0017 ±0.0026 ±0.0092 ±0.05

no αml prior 1.245 3.769 0.343 0.157 6.802 0.242 0.0337 0.0302 0.0399 0.6812 2.19 SSE
±0.025 ±0.005 ±0.021 ±0.003 ±0.766 ±0.020 ±0.0035 ±0.0032 ±0.0044 ±0.0102 ±0.12

5184732 αml = 1.8 1.239 3.761 0.261 0.132 4.421 0.277 0.0394 0.0350 0.0483 0.7258 1.80 SSE∗
±0.024 ±0.005 ±0.023 ±0.003 ±0.594 ±0.008 ±0.0016 ±0.0015 ±0.0023 ±0.0143

Gaussian 1.253 3.764 0.278 0.135 4.951 0.271 0.0400 0.0360 0.0497 0.6995 2.03 SSE
±0.022 ±0.004 ±0.020 ±0.003 ±0.370 ±0.010 ±0.0004 ±0.0004 ±0.0009 ±0.0070 ±0.06

no αml prior 1.274 3.771 0.312 0.137 4.521 0.273 0.0399 0.0362 0.0502 0.7022 2.15 SSE
±0.016 ±0.003 ±0.016 ±0.002 ±0.257 ±0.008 ±0.0007 ±0.0006 ±0.0011 ±0.0049 ±0.05
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Table 1 – continued

Star α prior M/M� log Teff log L/L� log R/R� Age Y0 Z0 Zs Zs/Xs RBCZ αml Sys

5512589 αml = 1.8 1.106 3.756 0.408 0.216 7.843 0.272 0.0222 0.0192 0.0256 0.6620 1.80 SSE
±0.031 ±0.002 ±0.008 ±0.004 ±0.303 ±0.018 ±0.0026 ±0.0024 ±0.0036 ±0.0051

Gaussian 1.111 3.757 0.414 0.217 7.722 0.272 0.0223 0.0194 0.0259 0.6629 1.82 SSE
±0.033 ±0.003 ±0.015 ±0.004 ±0.408 ±0.019 ±0.0026 ±0.0024 ±0.0036 ±0.0054 ±0.04

no αml prior 1.117 3.758 0.421 0.218 7.588 0.272 0.0225 0.0196 0.0261 0.6640 1.84 SSE
±0.034 ±0.004 ±0.019 ±0.004 ±0.472 ±0.019 ±0.0026 ±0.0025 ±0.0037 ±0.0057 ±0.05

6106415 αml = 1.8 1.184 3.772 0.243 0.101 4.536 0.243 0.0236 0.0204 0.0264 0.7446 1.80 SSE
±0.022 ±0.004 ±0.014 ±0.003 ±0.383 ±0.014 ±0.0023 ±0.0021 ±0.0029 ±0.0088

Gaussian 1.264 3.772 0.264 0.112 4.939 0.224 0.0300 0.0265 0.0341 0.7174 2.06 NSE
±0.012 ±0.002 ±0.010 ±0.001 ±0.170 ±0.005 ±< 0.0001 ±0.0001 ±0.0002 ±0.0038 ±0.05

no αml prior 1.267 3.774 0.271 0.112 4.922 0.223 0.0299 0.0265 0.0340 0.7163 2.10 NSE∗
±0.007 ±0.002 ±0.008 ±0.001 ±0.150 ±0.005 ±0.0008 ±0.0007 ±0.0009 ±0.0029 ±0.02

6116048 αml = 1.8 1.090 3.772 0.241 0.099 6.608 0.239 0.0159 0.0132 0.0166 0.7290 1.80 ASE
±0.014 ±0.003 ±0.011 ±0.002 ±0.420 ±0.009 ±0.0019 ±0.0017 ±0.0023 ±0.0073

Gaussian 1.066 3.763 0.200 0.097 9.328 0.237 0.0200 0.0167 0.0212 0.6747 2.01 SSE
±0.022 ±0.004 ±0.019 ±0.003 ±0.763 ±0.008 ±0.0003 ±0.0003 ±0.0004 ±0.0082 ±0.04

no αml prior 1.082 3.770 0.230 0.099 8.650 0.238 0.0197 0.0166 0.0212 0.6789 2.12 SSE
±0.027 ±0.005 ±0.024 ±0.004 ±0.865 ±0.009 ±0.0012 ±0.0010 ±0.0013 ±0.0100 ±0.06

6603624 αml = 1.8 1.052 3.735 0.029 0.067 9.830 0.264 0.0356 0.0301 0.0403 0.6625 1.80 SSE
±0.022 ±0.004 ±0.015 ±0.003 ±0.708 ±0.016 ±0.0040 ±0.0034 ±0.0050 ±0.0057

Gaussian 1.117 3.742 0.074 0.076 9.309 0.243 0.0373 0.0319 0.0418 0.6627 1.98 SSE∗
±0.028 ±0.004 ±0.017 ±0.004 ±0.593 ±0.015 ±0.0029 ±0.0026 ±0.0038 ±0.0043 ±0.05

no αml prior 1.192 3.751 0.129 0.086 8.321 0.219 0.0371 0.0321 0.0411 0.6687 2.16 NSE∗
±0.013 ±0.005 ±0.018 ±0.002 ±0.290 ±0.005 ±0.0025 ±0.0021 ±0.0027 ±0.0016 ±0.05

6933899 αml = 1.8 1.164 3.756 0.393 0.208 7.808 0.248 0.0245 0.0212 0.0275 0.6779 1.80 ASE
±0.047 ±0.004 ±0.022 ±0.006 ±0.571 ±0.018 ±0.0021 ±0.0020 ±0.0028 ±0.0154

Gaussian 1.140 3.760 0.401 0.205 7.806 0.259 0.0237 0.0207 0.0273 0.6650 1.90 ASE
±0.064 ±0.004 ±0.027 ±0.008 ±0.620 ±0.024 ±0.0026 ±0.0024 ±0.0033 ±0.0189 ±0.05

no αml prior 1.131 3.766 0.426 0.204 7.553 0.265 0.0223 0.0196 0.0260 0.6589 2.04 ASE∗
±0.053 ±0.005 ±0.028 ±0.007 ±0.574 ±0.022 ±0.0027 ±0.0025 ±0.0035 ±0.0146 ±0.09

7680114 αml = 1.8 1.156 3.761 0.309 0.157 6.084 0.286 0.0294 0.0259 0.0355 0.7012 1.80 SSE
±0.025 ±0.003 ±0.010 ±0.003 ±0.544 ±0.009 ±0.0018 ±0.0017 ±0.0025 ±0.0068

Gaussian 1.172 3.766 0.333 0.159 5.780 0.284 0.0289 0.0256 0.0351 0.7004 1.89 SSE
±0.027 ±0.004 ±0.017 ±0.003 ±0.567 ±0.010 ±0.0022 ±0.0020 ±0.0030 ±0.0076 ±0.05

no αml prior 1.186 3.771 0.356 0.160 5.521 0.284 0.0281 0.0251 0.0345 0.6997 1.99 SSE
±0.033 ±0.005 ±0.024 ±0.004 ±0.721 ±0.011 ±0.0025 ±0.0023 ±0.0034 ±0.0101 ±0.08

8006161 αml = 1.8 1.052 3.721 −0.207 −0.022 2.714 0.265 0.0395 0.0377 0.0532 0.6891 1.80 SSE
±0.022 ±0.003 ±0.010 ±0.003 ±0.500 ±0.015 ±0.0015 ±0.0015 ±0.0026 ±0.0026

Gaussian 1.077 3.721 −0.201 −0.019 3.220 0.246 0.0398 0.0378 0.0519 0.6847 1.91 SSE
±0.027 ±0.003 ±0.011 ±0.004 ±0.541 ±0.020 ±0.0010 ±0.0009 ±0.0019 ±0.0037 ±0.07

no αml prior 1.114 3.721 −0.188 −0.013 3.896 0.219 0.0400 0.0377 0.0499 0.6791 2.10 SSE
±0.017 ±0.003 ±0.011 ±0.002 ±0.453 ±0.011 ±0.0003 ±0.0003 ±0.0008 ±0.0024 ±0.06

8228742 αml = 1.8 1.214 3.762 0.518 0.260 6.584 0.240 0.0200 0.0174 0.0224 0.6906 1.80 SSE
±0.021 ±0.002 ±0.002 ±0.003 ±0.200 ±0.014 ±0.0003 ±0.0003 ±0.0005 ±0.0025

Gaussian 1.248 3.771 0.565 0.264 5.868 0.241 0.0199 0.0175 0.0225 0.6996 1.95 SSE
±0.025 ±0.004 ±0.017 ±0.003 ±0.259 ±0.012 ±0.0006 ±0.0006 ±0.0008 ±0.0038 ±0.05

no αml prior 1.274 3.778 0.596 0.266 5.479 0.240 0.0199 0.0175 0.0225 0.7047 2.05 SSE
±0.027 ±0.004 ±0.017 ±0.003 ±0.261 ±0.014 ±0.0006 ±0.0006 ±0.0008 ±0.0039 ±0.06

8379927 αml = 1.8 1.253 3.774 0.184 0.068 1.513 0.226 0.0250 0.0237 0.0310 0.7638 1.80 NSE∗
±0.011 ±0.001 ±0.007 ±0.001 ±0.231 ±0.003 ±0.0003 ±0.0003 ±0.0005 ±0.0039

Gaussian 1.258 3.778 0.201 0.068 1.511 0.227 0.0246 0.0233 0.0305 0.7651 1.86 NSE∗
±0.016 ±0.004 ±0.018 ±0.002 ±0.248 ±0.004 ±0.0014 ±0.0014 ±0.0019 ±0.0044 ±0.06

no αml prior 1.262 3.797 0.279 0.069 1.624 0.231 0.0204 0.0191 0.0249 0.7750 2.18 NSE∗
±0.017 ±0.007 ±0.029 ±0.002 ±0.231 ±0.004 ±0.0014 ±0.0014 ±0.0019 ±0.0060 ±0.13

8760414 αml = 1.8 0.839 3.775 0.084 0.016 11.400 0.245 0.0050 0.0038 0.0046 0.7212 1.80 SSE
±0.013 ±0.002 ±0.014 ±0.002 ±0.873 ±0.002 ±< 0.0001 ±< 0.0001 ±< 0.0001 ±0.0090

Gaussian 0.838 3.775 0.084 0.016 11.426 0.245 0.0050 0.0038 0.0046 0.7209 1.80 SSE
±0.013 ±0.002 ±0.014 ±0.002 ±0.886 ±0.002 ±< 0.0001 ±< 0.0001 ±< 0.0001 ±0.0092 ±0.02
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Table 1 – continued

Star α prior M/M� log Teff log L/L� log R/R� Age Y0 Z0 Zs Zs/Xs RBCZ αml Sys

no αml prior 0.862 3.789 0.147 0.020 10.511 0.245 0.0050 0.0039 0.0048 0.7181 2.25 SSE
±0.015 ±0.008 ±0.037 ±0.003 ±0.706 ±0.001 ±<0.0001 ±<0.0001 ±0.0001 ±0.0049 ±0.26

10516096 αml = 1.8 1.185 3.765 0.338 0.163 6.049 0.258 0.0244 0.0213 0.0280 0.7128 1.80 NSE
±0.017 ±0.002 ±0.009 ±0.002 ±0.461 ±0.016 ±0.0016 ±0.0016 ±0.0024 ±0.0060

Gaussian 1.210 3.772 0.374 0.166 5.854 0.247 0.0229 0.0201 0.0261 0.7160 1.92 NSE
±0.021 ±0.004 ±0.020 ±0.003 ±0.533 ±0.019 ±0.0025 ±0.0023 ±0.0034 ±0.0079 ±0.06

no αml prior 1.240 3.781 0.419 0.170 5.500 0.238 0.0213 0.0189 0.0243 0.7188 2.11 NSE
±0.018 ±0.005 ±0.022 ±0.002 ±0.500 ±0.013 ±0.0022 ±0.0020 ±0.0028 ±0.0072 ±0.09

10963065 αml = 1.8 1.122 3.778 0.259 0.097 5.035 0.252 0.0174 0.0147 0.0189 0.7511 1.80 SSE
±0.037 ±0.005 ±0.025 ±0.005 ±0.945 ±0.018 ±0.0025 ±0.0023 ±0.0032 ±0.0167

Gaussian 1.094 3.777 0.248 0.094 6.139 0.252 0.0176 0.0148 0.0191 0.7254 1.92 SSE
±0.038 ±0.005 ±0.026 ±0.005 ±1.090 ±0.18 ±0.0025 ±0.0022 ±0.0032 ±0.0198 ±0.07

no αml prior 1.089 3.785 0.278 0.093 6.538 0.245 0.0154 0.0129 0.0165 0.7162 2.15 SSE
±0.029 ±0.005 ±0.026 ±0.004 ±0.846 ±0.012 ±0.0013 ±0.0012 ±0.0017 ±0.0135 ±0.09

11244118 αml = 1.8 1.233 3.751 0.392 0.218 7.100 0.265 0.0388 0.0345 0.0470 0.6830 1.80 SSE
±0.053 ±0.007 ±0.038 ±0.006 ±1.232 ±0.014 ±0.0026 ±0.0025 ±0.0036 ±0.0267

Gaussian 1.299 3.752 0.412 0.227 7.633 0.231 0.0400 0.0359 0.0471 0.6557 2.01 NSE∗
±0.004 ±0.002 ±0.008 ±0.000 ±0.222 ±0.005 ±0.0001 ±0.0001 ±0.0004 ±0.0017 ±0.03

no αml prior 1.291 3.759 0.438 0.226 6.962 0.247 0.0400 0.0360 0.0483 0.6603 2.09 NSE∗
±0.004 ±0.003 ±0.011 ±0.000 ±0.292 ±0.007 ±< 0.0001 ±0.0001 ±0.0005 ±0.0021 ±0.04

11713510 αml = 1.8 1.025 3.772 0.441 0.200 7.135 0.291 0.0139 0.0115 0.0153 0.6992 1.80 SSE
±0.019 ±0.003 ±0.013 ±0.003 ±0.508 ±0.019 ±0.0022 ±0.0019 ±0.0028 ±0.0121

Gaussian 1.031 3.773 0.447 0.201 7.042 0.294 0.0145 0.0121 0.0162 0.6930 1.85 SSE
±0.022 ±0.003 ±0.013 ±0.003 ±0.424 ±0.017 ±0.0019 ±0.0017 ±0.0025 ±0.0121 ±0.05

no αml prior 1.082 3.775 0.467 0.208 6.705 0.290 0.0182 0.0157 0.0213 0.6829 1.99 SSE∗
±0.071 ±0.003 ±0.025 ±0.010 ±0.522 ±0.016 ±0.0057 ±0.0055 ±0.0077 ±0.0138 ±0.15

12009504 αml = 1.8 1.238 3.773 0.360 0.157 4.558 0.252 0.0239 0.0207 0.0270 0.7451 1.80 SSE
±0.034 ±0.003 ±0.017 ±0.004 ±0.488 ±0.019 ±0.0021 ±0.0019 ±0.0028 ±0.0122

Gaussian 1.245 3.779 0.386 0.158 4.487 0.250 0.0223 0.0195 0.0253 0.7419 1.93 SSE
±0.028 ±0.004 ±0.018 ±0.003 ±0.480 ±0.018 ±0.0025 ±0.0022 ±0.0033 ±0.0112 ±0.05

no αml prior 1.253 3.786 0.416 0.159 4.332 0.249 0.0205 0.0180 0.0234 0.7410 2.07 SSE
±0.026 ±0.005 ±0.021 ±0.003 ±0.367 ±0.016 ±0.0016 ±0.0014 ±0.0021 ±0.0103 ±0.08

12258514 αml = 1.8 1.250 3.769 0.440 0.206 5.564 0.250 0.0256 0.0224 0.0294 0.7291 1.80 SSE
±0.039 ±0.004 ±0.020 ±0.004 ±0.939 ±0.018 ±0.0021 ±0.0019 ±0.0028 ±0.0137

Gaussian 1.227 3.769 0.436 0.204 6.342 0.246 0.0255 0.0225 0.0293 0.7086 1.90 SSE
±0.038 ±0.003 ±0.017 ±0.004 ±0.823 ±0.019 ±0.0024 ±0.0023 ±0.0035 ±0.0138 ±0.04

no αml prior 1.217 3.771 0.445 0.203 6.445 0.245 0.0242 0.0213 0.0278 0.7046 1.96 SSE
±0.041 ±0.004 ±0.020 ±0.005 ±0.701 ±0.018 ±0.0029 ±0.0027 ±0.0039 ±0.0134 ±0.06

16 Cyg A αml = 1.8 1.054 3.762 0.173 0.086 6.441 0.291 0.0250 0.0214 0.0291 0.7027 1.80 SSE
±0.010 ±0.001 ±0.006 ±0.001 ±0.363 ±0.006 ±< 0.0001 ±0.0002 ±0.0004 ±0.0036

Gaussian 1.095 3.765 0.196 0.092 7.055 0.280 0.0281 0.0247 0.0337 0.6730 2.13 SSE
±0.016 ±0.005 ±0.023 ±0.002 ±0.375 ±0.012 ±0.0024 ±0.0021 ±0.0033 ±0.0056 ±0.06

no αml prior 1.114 3.771 0.225 0.095 6.647 0.269 0.0250 0.0220 0.0295 0.6795 2.20 SSE
±0.009 ±0.001 ±0.004 ±0.001 ±0.206 ±0.006 ±0.0003 ±0.0002 ±0.0005 ±0.0015 ±0.01

16 Cyg B αml = 1.8 1.007 3.758 0.070 0.043 6.464 0.294 0.0247 0.0214 0.0294 0.6986 1.80 SSE
±0.006 ±0.002 ±0.007 ±0.001 ±0.250 ±0.004 ±0.0012 ±0.0010 ±0.0015 ±0.0035

Gaussian 1.023 3.762 0.091 0.045 6.532 0.289 0.0250 0.0217 0.0296 0.6942 1.92 SSE
±0.013 ±0.002 ±0.010 ±0.002 ±0.281 ±0.007 ±0.0001 ±0.0001 ±0.0003 ±0.0034 ±0.04

no αml prior 1.076 3.764 0.116 0.054 9.279 0.234 0.0250 0.0214 0.0274 0.6621 2.40 SSE
±0.012 ±0.002 ±0.009 ±0.002 ±0.473 ±0.005 ±0.0001 ±0.0001 ±0.0003 ±0.0035 ±0.00

Kepler-36 αml = 1.8 1.113 3.771 0.475 0.220 6.923 0.256 0.0150 0.0124 0.0159 0.7059 1.80 NSE
±0.035 ±0.003 ±0.015 ±0.005 ±0.372 ±0.018 ±0.0004 ±0.0004 ±0.0006 ±0.0121

Gaussian 1.118 3.771 0.480 0.221 6.870 0.255 0.0150 0.0125 0.0159 0.7058 1.82 NSE
±0.035 ±0.003 ±0.017 ±0.005 ±0.386 ±0.018 ±0.0004 ±0.0004 ±0.0006 ±0.0122 ±0.04

no αml prior 1.123 3.773 0.486 0.222 6.792 0.254 0.0150 0.0125 0.0160 0.7058 1.85 NSE
±0.036 ±0.004 ±0.021 ±0.005 ±0.409 ±0.018 ±0.0004 ±0.0004 ±0.0006 ±0.0122 ±0.06
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Figure 4. The effect of the Gaussian αml prior on the posterior value of various model parameters. Results are plotted for the most probable systematic error
model as given in e.g. Table 1. The black line indicates a ratio of unity.

the Gaussian prior and the αml = 1.8 prior results are smaller than
those obtained in a comparison without any priors on αml. Overall,
our comparison reveals that stronger constraints on αml do not per-
turb the parameters outside the uncertainties and produce slightly
lower stellar masses and higher Y0.

In terms of the systematic errors, in particular the surface effect,
the results also follow our conclusions from the previous section.
Fig. 6 shows the differences in the systematic errors that arise by
using the two αml priors for every mode of every star in our sample.
Using the Gaussian αml prior leads to an increase in the magnitude
of the surface effects (= more negative systematic differences be-
tween observed and calculated frequencies) in general. There are
only a few stars in the sample for which the effect is very pro-
nounced. It is interesting that for many modes the Gaussian αml

prior does not produce large differences for the surface effects. This
is due to the fact that we find a number of stars for which the
surface effects are not significant unless we restrict the analysis to
the αml = 1.8 models. Consequently, switching to the αml = 1.8
prior results in even bigger surface effects and to significant sur-
face effects for more stars in the sample. This is also reflected
in the strong preference for the SSE model, as shown in the re-
sult tables. In both panels there are also a few outliers for which
the priors lead to decreased surface effects (= more positive sys-
tematic differences between observed and calculated frequencies),
but these modes belong to the stars for which the ASE model is

either preferred or very similar in probability to the surface effect
model.

As indicated in our result tables, using no αml prior often leads to
the highest evidence. Larger evidence values require that the mod-
els are formally more consistent with all our available constraints
while also minimizing the systematic errors, i.e. the surface ef-
fects. Therefore, the analysis which yields the highest evidence and
thus the corresponding stellar parameters are usually interpreted as
being most appropriate. As explained in Section 3, however, we
stress that at this point it is necessary to present the results from
all approaches, and not to put too much confidence into the formal
preference over to αml priors. This follows simply because we do
not possess enough low-order modes or additional information to
anchor the surface effect relation. The only clear exception to this
are KIC 8379927 and KIC 10516096, for which we do not detect
significant systematic errors irrespective of the αml priors but still
find higher αml to be most probable. Concerning the impact of αml

on the other stellar parameters, however, only the stellar mass and
Y0 seem to be somewhat systematically affected by the choice of
priors. Even for those parameters the deviations are usually within
the quoted uncertainties. Thus, for our comparison with the values
published in the literature, which also allow different values of αml,
we constrain ourselves to the results obtained using the ‘interme-
diate approach’, the Gaussian αml prior and refer to our tabulated
results for the differences arising from the different priors.
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Figure 5. Same as Fig. 4 but for the αml = 1.8 prior and the Gaussian αml prior. Comparison of αml is not shown.

4.2 Surface effects and other systematic frequency differences

As previously alluded to, Fig. 6 suggests that many stars do not
show strong evidence for surface effects when our non-adiabatic
models are used in tandem with the Gaussian prior. The situation
changes, however, when the αml = 1.8 prior is used. This implies
that, depending on the prior, the convective contributions to the
surface effects are either more or less significant. Since a proper
normalization of the surface effect amplitudes is not trivial and the
shape of the surface effects can vary from star to star, we instead
quantify the significance of the surface effect in terms of probabil-
ities. As discussed in Section 2.3, our calculations consider three
different systematic error models: SSE, ASE and NSE. Therefore,
in order to quantify the surface effect significance for every star, we
simply calculate the odds ratio

ODDS = ev(SSE)

ev(ASE) + ev(NSE)
, (5)

where ev(SSE), ev(ASE) and ev(NSE) are the evidence values ob-
tained for the analysis using each specific systematic error model.7

This is the probability ratio between the hypotheses ‘SSE’ and ‘ei-
ther ASEs or no systematic errors’. Therefore, if surface effects
are needed to explain the observations, we expect that ODDS 
 1.
According to the convention established by Jeffreys (1961), the

7 This assumes that a priori all three surface effect models are equally
probable.

evidence for or against one of the two hypotheses is considered
‘substantial’ for a factor of 3–10, ‘strong’ for a factor of 10–30,
‘very strong’ for a factor of 30–100 and ‘decisive’ for factors above
100. Hence, when the surface effects become more significant with
respect to the other hypotheses, ODDS will increase as well.

Our calculations show that for some stars the significance of the
individual systematic error models depend on the specific prior for
αml, in accordance with what was discussed in Section 3. However,
there are four stars for which ODDS < 1 irrespective of mixing
length parameter: KIC 6933899, KIC 8379927, KIC 10516096 and
Kepler-36. The latter three objects do not require any systematic
errors at all. Furthermore, for KIC 6106415, KIC 6603624 and
KIC 11244118 the surface effect model is only significant for the
αml = 1.8 prior.

Fig. 7 shows the actual systematic error measurements obtained
when using the Gaussian αml prior that have been rescaled and
plotted as a function of their mean αml. For many stars the indi-
vidual deviations do not seem to correspond to the clear power-law
behaviour that can be identified for the Sun. Furthermore, there ap-
pears to be a very weak dependence on αml, where higher values
are related to smaller normalized surface effects, as expected from
the discussion in Section 3. Whether this dependence is physically
meaningful depends on whether these stars actually have higher
values of αml, or if it is simply the case that our αml prior is too
weak. In any case, αml and surface effects are related.

Similar to Mathur20, we do not find any simple correlations of
the normalized surface effect with any of the other parameters in
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Figure 6. Differences in the measured systematic errors that arise from
using the Gaussian αml prior (top panel) or the αml = 1.8 prior (bottom
panel). All modes of all stars are shown: l = 0 modes (open circles), l = 1
modes (black circles), l = 2 modes (shaded squares) and l = 3 modes (open
triangles). Positive (negative) values denote bigger (smaller) systematic er-
rors in terms of surface effects when the αml priors are used. The average
uncertainty of the differences is indicated by the diamond in the upper left.
For each star, the plotted differences were obtained using the most probable
systematic difference model for the respective αml prior.

Figure 7. Normalized systematic frequency differences as a function of
normalized frequency for l = 0 modes for the results obtained with the
Gaussian αml prior. The colour represents the mean posterior αml. For each
star, the plotted differences were obtained using the most probable system-
atic difference model.

Table 1. However, studying the significance of the surface effect in
terms of probabilities reveals some interesting results. Fig. 8 shows
the logarithm of the odds ratio for all stars in our sample as a function
of their position in the HR diagram. The most significant detections
appear to be situated at close-to-solar values of Teff and the picture
is similar whether the Gaussian αml prior, the αml = 1.8 prior or
no αml prior is used. Furthermore, the coolest star in the sample,
KIC 8006161, also displays highly significant surface effects but
lies far off from the main bulk of the sample. We have also added
symbols representing the Sun (Gruberbauer & Guenther 2013),

Figure 8. HR diagram of all stars in our sample (filled circles) with pa-
rameter taken from Table 1, using the results from the Gaussian (top panel)
and αml = 1.8 (bottom panel) prior. The colour indicates the significance of
the detected surface effect using log10(ODDS). Four other well-known stars
with surface effects are also shown as triangles. For each star, the plotted
parameters were obtained using the most probable systematic difference
model for the respective αml prior.

β Hydri (Brandão et al. 2011) and α Cen A & B (Eggenberger et al.
2004), all of which were used by Kjeldsen et al. (2008) to define the
surface effect correction. Except for β Hydri,8 the stars fit well into
the pattern given by the Kepler stars. 16 Cyg A, 16 Cyg B, α Cen A
and of course the Sun, appear to lie on the ‘surface effect locus’
in the HR diagram of our sample. α Cen B, on the other hand, is
situated very close to KIC 800616.

The stars for which no significant surface effects were detected
do mix with stars that show less significant detections, which is
why there does not seem to be a strong correlation of the surface
effect with any particular parameter. On average, however, lower
luminosities and higher effective temperatures correspond to more
significant surface effects. Plotting log Teff against log g (not shown)
necessarily yields a very similar picture which again clusters the

8 Note that the surface effects detected in β Hydri have only been measured
using adiabatic frequencies which do not contain the correction for radiative
gains and losses.
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Figure 9. Same as Fig. 4 but comparing the results from our Bayesian approach using the αml prior with the published results obtained via the AMP pipeline
(Mathur20; Metcalfe et al. 2012). Note that Kepler-36 is not included in these plots.

most significant detections at the solar values. A correlation of the
surface effect amplitude with log g was already noted by Mathur20.
Our comparison of the significance of the surface effect would
be more in line with their investigation of the normalized surface
effect for which they could not find a strong correlation. It will be
intriguing to see whether a bigger sample and additional lower order
modes could lead to a clearer detection of a ‘surface effect locus’
in the HR diagram.

In any case, the non-detection of surface effects in some stars as
well as the concentration of very significant surface effects for stars
with close to solar values should be a warning for unreflected usage
of the standard surface correction for all solar-like stars.

4.3 Comparison with non-Bayesian results

4.3.1 Mathur20

In this section we investigate the presence of potential systematic
differences between our results and those obtained using the AMP
pipeline. Fig. 9 shows that there are no strong systematic trends in
either of the plotted parameters. As in the comparison between our
three different Bayesian analyses (Figs 4 and 5), the determined
log g values are very similar, but the Bayesian uncertainties are
usually smaller. The results for αml show large scatter which is
mostly compensated by the large uncertainties. It should be noted

that our grid only extends from αml = 1.8 to 2.4, and therefore we
do not cover the lower values that AMP returns for some of the
stars.

The masses that were determined are quite similar for most stars,
but the AMP delivers smaller uncertainties on average. For several
stars, only the larger uncertainties reported by the Bayesian method
can help to reconcile the results. There exists also a clear outlier
with KIC 11244118 where the masses differ by about 0.3 M�, more
than 15 times our statistical uncertainty.9 The initial helium mass
fraction again displays large but seemingly unsystematic scatter, in
particular when compared to some of the uncertainties reported by
AMP. Many of the stars appear to prefer very low values of Y0, as
was also found to be the case by Mathur20. However, for these stars
our various approaches (different αml priors, different systematic
error models) can often provide a solution with higher values albeit
lower evidence. Also, in many cases the Bayesian uncertainties
are usually large enough to reconcile the values with those required
from studies of big bang nucleosynthesis. The only clear outlier here
is KIC 8379927 for which we find quite large disagreements with
the AMP results. Contrary to the somewhat larger discrepancies for
Y0, the results for Z/X are more similar, but our values appear to

9 This star is also problematic since it fits best to models near the border of
our grid both in terms of mass and metallicity.

Downloaded from https://academic.oup.com/mnras/article-abstract/435/1/242/1107347
by Saint Mary's University user
on 02 March 2018



Bayesian asteroseismology of Kepler targets 253

be slightly larger in a systematic way. In general, we have to stress
that concerning the chemical composition, our grid is quite coarse
compared to the capabilities of AMP’s genetic algorithm.

Lastly, significant differences appear in the comparison of the
determined ages. Irrespective of potential differences in the defi-
nition of zero-age models, the two methods yield different results
with significant scatter. Moreover, the Bayesian age uncertainties
appear to be bigger on average by a factor of 6, which is substantial,
necessary, but insufficient to reconcile the results in many cases.

We re-emphasize that the Bayesian uncertainties are properly
propagated through the whole grid and also include the effects of
the systematic frequency differences (via marginalization) and any
non-asteroseismic constraints (via the prior probabilities). AMP,
on the other hand, can only consider statistical contributions to
the uncertainties. While dependent on the particular grid that was
analysed, the Bayesian uncertainties are therefore superior from a
methodological point of view. This different approach, as well as
differences in the stellar models themselves, is sufficient to explain
the reported discrepancies.

4.3.2 16 Cyg A&B

The modelling performed by Metcalfe et al. (2012) revealed that
16 Cyg A&B are of slightly different masses but have a similar age,
as expected for a binary system. Several different grids and methods
were used, including AMP, to arrive at an average ensemble solu-
tion. Our results compare favourably with this ensemble average,
when it comes to the ages, the masses, Z0 and αml. Except for the
mass of 16 Cyg B, for which we obtain 1.023 ± 0.013 M� com-
pared to their result of 1.07 ± 0.02 M�, these parameters overlap
within their respective 1σ uncertainties. It should be noted that we
obtain a lower mass for 16 Cyg A as well, which might suggest
a systematic difference between the methods and models used. As
discussed in the previous section, however, we do not find that such
a trend is true for our larger sample. The ages are fully consistent
with a common origin, even though this constraint was not used in
the analysis.10

We find a slight discrepancy for the initial helium mass fraction.
For 16 Cyg A we obtain Y0 = 0.282 ± 0.01 and for 16 Cyg B we
find Y0 = 0.285 ± 0.01, while Metcalfe et al. report 0.25 ± 0.01.
Overall, we observe that the differences between our results and the
ensemble average in the literature are minor.

Comparing our results exclusively to the AMP values, we see a
significant difference in the age and the value of αml for 16 Cyg B.
It is interesting that this star is among the set of the most significant
surface-effect detections in our sample. As the AMP results in a
value of αml = 2.05 ± 0.03, which is bigger than the ensemble
average, it is perhaps the combination of the solar-calibrated surface
effect correction and the use of a higher than solar αml which results
in the discrepancy. For the age, we obtained 6.532 ± 0.281 Gyr
compared to 5.8 ± 0.1. Consistent with our findings in Section 4.3.1,
we observe that our age uncertainties are significantly bigger.

In a recent paper, White et al. (2013) have combined interfer-
ometric diameters from Center for High Angular Resolution As-
tronomy (CHARA) observations with Hipparcos parallaxes, spec-
trophotometric bolometric fluxes and the asteroseismic large fre-
quency separation, to obtain largely model-independent constraints
for 16 Cyg A&B. In comparison to their results, for 16 Cyg A, our

10 The equal age is in even better agreement with our results for the αml = 1.8
prior, but for this approach we also obtain substantially smaller masses.

αml = 1.8 prior produces a very close match in terms of mass and
radius, but the model Teff values are slightly too low and match bet-
ter for the Gaussian αml prior. For 16 Cyg B, on the other hand, the
higher αml values are more consistent with their results, predicting
higher masses and larger radii but again Teff values that are not quite
high enough to match the mean observed values. These slight dif-
ferences however are insignificant and, irrespective of the particular
priors used, we find that our results match the masses, temperatures
and radii from White et al. (2013) reasonably well and in all cases
to within the combined 1.5σ uncertainties. Therefore, the interfer-
ometric uncertainties are too large to give strong evidence for or
against our particular solutions (i.e. in particular the different αml

values). This can also be interpreted as additional justification for
the various αml priors, since the range of results allows us to de-
fine a parameter space that is more in line with model-independent
observations.

4.3.3 Kepler-36

With respect to Kepler-36, we find that we can match all parame-
ters published in Carter et al. (2012) within the uncertainties. It is
interesting, however, that we do not detect any surface effects for
this star. Carter et al. report that the surface-effect correction was
applied to the frequencies. Judging from our results, any surface ef-
fects necessary to be corrected for this star would have to originate
from the radiative losses that are already taken into account in our
non-adiabatic models.

5 C O N C L U S I O N S

In this paper we have reported on our asteroseismic analysis of
23 previously published stars that were observed with the Kepler
satellite. We compared the results obtained with our Bayesian grid-
based method to the results from the literature, most importantly
those obtained with the AMP. Except for a weak trend towards larger
values of Z/X with our method, no obvious systematic differences
in the basic stellar parameters can be found. In part, this is certainly
due to spectroscopic constraints (Teff, log g, [Fe/H], L/L�) that
were used by all authors.

However, we observe that the uncertainties derived from the two
methods differ substantially for some stellar parameters. Uncertain-
ties in the stellar ages in particular are either significantly underes-
timated by AMP or significantly overestimated by the Bayesian
method. We conclude that the flexible treatment of the surface
effects in the Bayesian approach is probably responsible for this
discrepancy. Different values of αml and the usage of non-adiabatic
models require a more flexible treatment of the surface effect. There-
fore, in our view the uncertainties derived with our method more
adequately represent our actual state of knowledge about the surface
effects and are therefore more realistic. On the other hand, the in-
terplay between the surface effect and αml introduces another layer
of complexity in the analysis which has to be taken into account in
the determination of the stellar parameters. We propose that future
studies with more stars should aim to re-examine this interdepen-
dence, especially as long as non-seismic constraints on αml are not
available.

Concerning the surface effects themselves, we find that with a
Gaussian prior on αml, only a few stars in our sample actually re-
quire larger corrections. Six stars in our sample do not show strong
evidence for any surface effect at all. Compared to the results in
Mathur20, this suggests that for many stars taking into account the
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radiative losses is already good enough. On the other hand, using
only models with αml = 1.8 leads to more significant detections.
Irrespective of the prior on αml, we also discovered that the stars
for which we do find a highly significant surface effect appear to
be located very close to the Sun in the HR diagram (see Fig. 8). A
comparison with the stars that were used to derive the traditional
surface-effect correction (Kjeldsen et al. 2008) shows that most of
these calibrators – including the Sun – also fit the picture. As radia-
tive losses are already taken into account in our models, the mod-
elling of convection and its dependencies on element abundances,
opacities and the equation of state remains a leading candidate to
explain the cause of the surface effects.

To conclude, although systematic differences between stellar evo-
lutionary codes are still affecting the individual stellar parameters,
the systematic analysis of surface effects can already be pursued
using more advanced methods than the standard surface correction,
such as our Bayesian approach. No matter which surface correction
is used, however, the constraints on αml will potentially affect the
results in the absence of lower order modes. The data sets on which
this analysis is based have since been superseded by many more
quarters of Kepler data. Also, many more stars have been observed
for which public frequencies are also available (Appourchaux et al.
2012). Strong spectroscopic constraints and access to lower order
modes will be necessary to improve our analysis, and to see whether
the ‘surface effect locus’ can be reproduced with a larger sample
of stars and better data. Given the large number of subgiants and
red giants observed with Kepler and CoRoT, a similar study for
non-main-sequence stars could be very illuminating as well.
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