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Abstract 

Rhythmic Analysis of Motion Signals for Music Retrieval 

By Qiushi Li 

This thesis presents a framework that queries a music database with rhythmic 
motion signals. Rather than the existing method to extract the motion signal's under
lying rhythm by marking salient frames, this thesis proposes a novel approach, which 
converts the rhythmic motion signal to MIDI-format music and extracts its beat se
quence as the rhythmic information of that motion. We extract "motion events" from 
the motion data based on characteristics such as movement directional change, root-y 
coordinate and angular-velocity. Those events are converted to music notes in order 
to generate an audio representation of the motion. Both this motion-generated music 
and the existing audio library are analyzed by a beat tracking algorithm. The music 
retrieval is completed based on the extracted beat sequences. 

We tried three approaches to retrieve music using motion queries, which are a 
mutual-information-based approach, two sample KS test and a rhythmic comparison 
algorithm. Feasibility of the framework is evaluated with pre-recorded music and 
motion recordings. 

October 29, 2008 
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Chapter 1 

Introduction 

1.1 Background 

Expanding internet bandwidth and storage media together with other advances have 

made large multimedia collections prevalent. Technology and algorithms for audio 

and visual data indexing and retrieval have attracted increasing interest [39]. 

Exploration of such collections is often based on metadata, such as artist, ti

tle or album, if this information is available. Many popular tools, including Media 

Player, RealPlayer, Winamp and iTunes, use conventional folder-based organization 

and textual list interfaces to represent the digital library. Although users have be

come accustomed to searching for music based on textual information, there is clearly 

an opportunity for non-verbal queries, and there has been a growing body of work in 

this domain as well [2] [22]. 

Music Information Retrieval (MIR) is an interdisciplinary research area that emerged 
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to fulfill a wide variety of users' needs. Different from text information retrieval, MIR 

encompasses a number of different approaches aimed at music management, easy ac

cess, and enjoyment. Recently, different content-based MIR technologies have been 

developed [11] [40], intending to data-mine music libraries based on structures or pat

terns in the music. However, content-based retrieval of music, according to overall 

sound similarity, is still an area with many challenges. For example, no music identi

fication algorithms are robust to all situations; one solution might be more sensitive 

for classifying drum rhythms but doesn't work for light music [40]. Furthermore, 

while processing hi-fidelity audio and video can still be resource-intensive, the mu

sic identification system should be scalable to large music databases. This requires 

the optimization of algorithms in order to achieve a computationally efficient in

dexing [26]. A variety of research has been done to organize and query video and 

motion-captured libraries [31]. 

In this thesis, we consider the problem of being given a motion signal (ideally, a 

video, but in practice we work with a motion-captured signal), and then finding a 

piece of music from a given music library that will match the given motion. In other 

words, the motion signal is used as the "query" for searching in a music library. We 

focus on one particular element of this problem: rhythmic similarity. That is, we look 

for rhythmic elements in the motion, and try to find music pieces that have matching 

rhythmic patterns. 

Rhythmic motion can include anything from a bouncing ball to video or animation 

of characters walking, dancing and certain sports games. Such motion typically con-
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tains movement signals with certain repetitive patterns and temporal features, which 

are the bases of motion analysis and reconstruction. Researchers have developed 

techniques to extract various features from visual data for the purposes of motion re

construction/adaptation. Such features include motion boundary [24], motion energy 

(spectral domain) [29] [52], and movement center of mass [46]. In our case, however, 

we aim to analyze the motion signal for its rhythmic characteristics, and therefore 

need to extract a potentially different set of features for that purpose. 

Our primary goal in this thesis is to develop a framework that allows us to use 

motion signals as queries to a music library. We do this by extracting "events" from 

motion signals based on an expandable set of features (defined in Section 3.1). The 

motion signal thus gives rise to a "vector" of events, related to the underlying rhythm 

of the motion. We then use this rhythmic representation as a query to the music 

database, by mining the music library for pieces with a similar rhythmic structure. 

The framework presented here matches a motion animation with a music piece by 

rhythm similarity, which could be used as a video editing tool or music management 

application, such as the background music selection tool in a video game. Another 

possible application could include creating soundtracks for home video collages. 

1.2 Related Work 

In recent years a number of multimedia retrieval systems have been developed. In 

many of them, the same type of media is presented as both queries and results. 

For example, the system retrieves a similar audio file for an audio query [2] [10], or 
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a similar image for an image query. Some researchers present methods that retrieve 

digital files by metadata, such as title or genre. Most of the approaches are based 

on content similarity such as melody, rhythm or tonality [40], In our work, we focus 

on the comparison and retrieval between music and animated motion files based on 

content similarity. 

From a data processing perspective, music data has many features, some of which 

are clearly "user recognizable" (e.g. certain melodic or rhythmic characteristics), and 

others of which are less so (e.g. certain spectral characteristics). These various fea

tures and characteristics of music data can, in fact, be used as the bases for audio 

retrieval techniques. For example, several music retrieval systems have been proposed 

based on vocal percussion [25], or harmony [42]. Doraisamy and Riiger [10] presented 

an N-gram approach to index data and to improve scalability to retrieve melodies. 

Their systems are developed for polyphonic MIDI music with pitch and rhythm in

formation. Similar research could be found in [11] [35]. An alternative approach is 

to represent queries by humming and formulate all music in a collection as sequence 

data, such as symbolic melody sequences and pitch sequences, and then use sequence 

matching techniques to retrieve a precise musical work [2] [22] [48]. There is also a 

music retrieval system built on a geometric model, which is applied to compute the 

similarity between a music query and the pieces in the library [33]. 

Several authors introduced distance metrics for the audio data 's spectral param

eters, or spectral parameters combined with other perceptual information [15] [32]. 

Foote and Uchihashi's proposed the notion of "beat spectrum", a measure of acoustic 
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self-similarity as a function of time lag [16], and various other subsequent research has 

used this approach to sort and retrieve audio data [13] [15]. Cheng Yang presented 

an algorithm [51] to retrieve music pieces by spectral similarity. In his work, audio 

files are represented by spectral vectors calculated from the signal power. After that 

a specially defined distance function is used to sort the results according to linearity 

criteria to select the best matched piece. 

In this thesis, music retrieval includes both types of music features. Music files are 

represented by their beat information, while beat sequences are calculated through 

the audio data 's spectral flux [7]. Instead of audio data, queries of our framework are 

animated motion sequences. 

Although some researchers have addressed the issue of matching audio pieces with 

visual data, very few of them use motion signals as queries. Hua and his colleagues in

troduced the method of automatic video editing by finding video boundaries and then 

aligning incidental music to those segments [24]. In their system, video boundaries 

are detected by segmenting shots and sentences of the sound track, while music files 

are analyzed and beats are extracted by detecting strongest onsets within a time win

dow. Finally, the system constructs music videos by aligning video shot boundaries 

with music beats and sentence boundaries. Another example is the model proposed 

by Yang and Brown which queries a music database with an MPEG video [52]. The 

algorithm treats both music and video as time series data, and compares these two 

sequences based on synesthesia effect, a similarity measure for corresponding features 

in the music and video sequence, which in particular, refer to the tempo of music files 
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and a motion vector extracted directly from the MPEG compressed video stream. 

Similar research work also contributed to reveal the relationship between audio and 

video data [21] [14] [50], such as music features like the pitch, amplitude or tempo, and 

color or shape in the video shots. Recent work has presented various algorithms of 

detecting video boundaries, which could be considered rhythmic elements [1][23][38], 

In computer animation, the problem of automatically matching visual representa

tion with audio has not been heavily explored. Among the existing work, a common 

approach is to generate or modify the animation or music by changing the timing of 

the object media [30]. Background music is used as a supplementary motion feature 

to extract motion structure. For example, Shiratori et al. proposed a motion cap

ture and analysis system which records the speed of hands and center of mass [46]. 

They combine the above features and the background music's rhythm information 

(beat onset times) to segment dance motion-captured signals, and also synthesis the 

motion signal to music. Some researchers have proposed algorithms to extract the 

percussive pattern from motion files. For example, the system presented by Lee et 

al. extracts repeating rhythmic patterns from the dance motion data using both 

spectral (frequency impulse analysis) and acceleration-onset analysis [29]. Kim et 

al. defined the concept of "motion-beat" [27], which are detected by analyzing and 

grouping repetitive movements from the motion signal. Their proposed system could 

match newly composed motion to background music based on motion graphs [28]. 

According to their description, the motion beat is a regular, rhythmic unit of time 

for a motion and the rhythmic pattern is a sequence of motion beats corresponding 
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to a motion unit. Another motion rhythmic analysis system was presented in [29], 

which extracts motion impulse by combining spectral and spatial analysis of motion 

onset. In this thesis, we proposed a different concept of "motion beats" in Section 3. 

In Penasse and Nakamura's study, motion data has been customized so that the 

motion pattern is synchronized with the background music's rhythm [41], while some 

other researchers considered the complementary problem of how to modify the music 

to achieve synchronization with a pre-existing motion [9] [19] [37] [53]. An example is 

the system that Cardie and Brooks presented [3], which has the purpose of synchroniz

ing motion signals to music. The proposed system modifies existing motion according 

to perceptual parameters extracted from music, including MIDI sound track and con

verted analogue audio. Motion curves are then mapped to the multiple parameters 

to generate animation. They also presented a soundtrack generating system [4] based 

on the controllable model extracted from the original animation. This work enables 

a user to select and build the relationship between sound(s) and motions and then 

generate a soundtrack given new motion files. 

1.3 System Overview and Outline of the Thesis 

The objectives of this research include analyzing object movement signals, extracting 

rhythmic parameters from both motion and music sequences, and applying similarity 

measures on them. The goal of our research is to query a music library with motion 

captured data. 

Our framework has three fundamental components: motion analysis, music anal-
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ysis and music retrieval. Rhythmic characteristics are extracted from motion signals 

and music recordings individually. In the music retrieval phase, a motion file is 

provided as a raw query. We sort music pieces of the collection by content-based 

similarity scores, comparing them with query motion file. A conceptual model of the 

system is shown in Figure 1.1. 

1.3.1 Motion Signal Analysis 

Motion-captured recordings of 3 degree-of-freedom (albeit complex and noisy) rhyth

mic motions are provided for analysis in this part (data collection and preprocessing 

is described in Section 2). Different types of events are extracted from the motion 

sequences based on characteristics such as velocity, movement directional change, 

angular velocity and curvature. A motion file is then represented by a series of 

time-stamped events, which is similar to the structure of MIDI audio (MIDI is the 

series of time-stamped note events). In terms of this similarity, we convert such 

event-represented-motion-sequences to MIDI files for further analysis. A detailed 

explanation of motion signal analysis is given in Chapter 3. 

1.3.2 Music Beat Analysis 

We apply an existing music beat tracking algorithm "BeatRoot" [7] on both music 

pieces and motion-generated MIDI files (Section 4). The description of the beat 

tracking algorithm is in Section A. This algorithm takes wav format music as input. 

Hence, to use this algorithm, motion-generated MIDI sequences are converted to 
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Figure 1.1: An overview of the motion signal analysis and music retrieval process 
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audio (wav) files before applying the rhythmic analysis algorithm. The outcome of 

this phase is each music file's corresponding beat sequence. It is represented as a 

time-series of events (music beats). The rhythmic representation of motion video is 

generated in the same manner. 

1.3.3 Music Retrieval 

Rhythmic information of the motion recording is provided as above. The system an

alyzes and compares it with the beat information of the music in the library, retrieves 

a single music piece whose beat is most similar to the rhythm of the motion recording. 

In this thesis, we compared a few different approaches for estimating similarity be

tween the rhythmic features of the motion-generated signal and those of the available 

music-library data. The approaches we tried included: a mutual-information based 

metric (Section 4.1), a non-parametric K-S measure (Section 4.2), and a rhythmic 

comparison metric that we developed (Section 4.3). 

In this work, our focus was on demonstrating the potential efficacy of this frame

work. While outside the scope of this thesis, it is very likely that a more customized 

rhythmic comparison metric might be even more effective than any of the particular 

approaches we had tried. Nevertheless, all three metrics demonstrated the validity of 

the approach. 

The system is evaluated on pre-recorded motion recordings and music data. Using 

each of the motion recordings as a query, a music piece is retrieved. The results of the 

three different retrieval methods are described in Chapter 5. We also generated some 
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demonstration animations based on the results so that the results could be visually 

and aurally evaluated. 
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Chapter 2 

Data Collection and Preprocessing 

Our system requires two sources of data: music files and motion files. We collected 

data both from free on-line resources and also by recording our own. There are two 

other transitional sources of data: the midi and audio files derived from the provided 

motion data. However, these will be described in more detail in Sec 3.2. 

2.1 Music Data 

In order to apply the existing beat tracking algorithm "BeatRoot" [7] which accepts 

.wav format music files as input, we converted the given music library into a raw 

wave form format (.wav). The files in the library contain some short clips (several 

seconds long), and also two to three minute-long recordings. Various styles of music 

were assembled, including classical, ragtime and popular music. 

Besides these existing pieces, we also recorded music ourselves, to ensure, some

what systematically, a range of different speeds, numbers of tracks and time meters for 
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testing purposes. For example, we created and/or recorded pieces whose underlying 

time signatures are: 2/4, 3/4, 5/4 and 7/4. 

We also combined different tracks and/or different numbers of tracks of melody 

or rhythm of the same musical piece to generate additional variations. For example, 

for the piece "Take Five" (a tune by Dave Brubeck in 5/4) we used a metronome to 

maintain the tempo, and then recorded two different bass lines, a rhythmic accom

paniment, and one melody. We then took various permutations of these elements to 

generate four distinct recorded pieces, e.g. bass-1 only, bass-2 + rhythmic accom

paniment, bass-2 + rhythmic accompaniment + melody, etc. The goal of recording 

variations of the same music piece is to test the beat-analysis algorithms to deter

mine, which rhythmic element or elements of a music piece are more influential in 

beat induction. For example, if the extracted beat sequence of recording bass-1 and 

that of bass-1 + rhythmic accompaniment are similar, we can deduce that the ac

companiment track is less important in music structure analysis than the bass track. 

2.2 Motion Data 

As with the music data, we acquired our motion data from two sources: one was 

a free on-line motion capture library, and the other was by capturing motion data 

ourselves. 

The public library data was obtained from the Graphics Lab Motion Capture 

Database of Carnegie Mellon University. This type of data is captured human-

character motion data, which contains annotated main body joint tracks in 3-D po-
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Figure 2.1: Screen shot of skeleton animation from CMU motion capture database 

sition, and the corresponding skeleton animation (Figure 2.1). 

The rest of our motion data were recorded in our own lab using a Polhemus Isotrak, 

a motion capture device consisting of two trackers, each one measuring 6-DOF (Figure 

2.2). Our recording configurations included sessions with one and both trackers. 

The trackers were used to record hand movements in synchrony with background 

music. The "dancer" is familiarized with the music in advance in order to perform 

the rhythmic movements. Three degrees of freedom from each sensor (the spatial 

positions relative to a predefined origin) are recorded. 

Due to the characteristics of motion capture devices and sources, there could 

be slight difference of the data format and quality, such as different sampling rates 
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Figure 2.2: Polhemus 3D motion capture sensors are attached to the gloves. (Only 
the left hand is shown) 

15 



and different types of noise. In this project, we format the tracked motion data 

as 3-D position (a;, y, z triplets) together with time information at each point for a 

single moving object. The motion captured data from Polhemus device is already 

smoothed. Thus for the noisy data, we smooth it with a moving average filter over 

a time-window w\, of which the size is manually decided according to the noise of 

that data. Generally, the width of wi is different for each motion recording device. 

It is determined by testing and observation, namely, the processed data should be 

smooth enough to take off the noise while keeping the characteristics of raw data. 

This principle is employed whenever a new source of data is applied to our system. 

Figure 2.3 shows an example of raw data we used. It is the plot of the x coordinates 

over time. Figure 2.4 shows the same data from Figure 2.3 but filtered by Wi of size 

0.2s. The noisy property of the raw data set is removed while the peaks and bottoms 

of the curve are kept. 
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Figure 2.3: Original recorded motion data, the plot of x coordinates with time vector 

CO 
C 

X 

Figure 2.4: Recorded motion data from figure 2.3, smoothed with wi = 0.2s, the plot 
of x coordinates with time vector 
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Chapter 3 

Rhythmic Motion Signal Analysis 

Rhythm has the attributes of continuity or flow, articulation, regularity, proportion, 

repetition, pattern, alluring form or shape [20]. Music has an essential connection with 

rhythm. According to Hasty, music is the "rhythmization of sound". Such structured 

temporal patterns are also contained in motions, and are especially obvious in human 

dancing and cyclic motions such as marching, running and walking. All of these could 

be considered simultaneous responses to external rhythmic signals such as background 

music or drum beats [27]. Note that it is not necessarily music that actually caused 

the physical motion, but still there is some connection between them. Based on these 

observations, we assume that the structured repetitive patterns in a motion file could 

reveal the underlying rhythm of that motion signal as rhythm of the associated music. 

Consequently, we could extract the "beats of motion", by analyzing the regular (and 

irregular) temporal patterns in rhythmic motion signals. 

Therefore, we introduce the notion of a "motion event": a, motion event represents 
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the moment of an apparent movement or an evident gesture in a motion, which we 

interpret as a basic unit of rhythmic motion patterns. From each motion file, we can 

compute a series of motion events. Hence, we define the concept of "motion beat"1 to 

be a regular, rhythmical unit of time for a motion event sequence. That is, while the 

events themselves may not be regular, just as a rhythmic musical passage is usually 

not perfectly regular, we assume there is nevertheless an underlying regular pulse 

of motion beats. We propose that those movements that generate motion events 

can be detected by analyzing the motion signal and finding certain characteristics or 

patterns in it. In this thesis, we detect motion events by using the following motion 

characteristic extraction methods. 

3.1 Extracting Motion Events 

Our motion signals are discrete samples that describe sequences of moving object 

positions. Based on the assumption that the object's behavior would be different at 

some beats than ordinary time points for rhythmic performance sequence, we extract 

those important behaviors to detect motion beats. In order to detect the underlying 

rhythm from the motion, we define a set of distinct motion event types, which could 

be represented by: 

EVENT = {evenU,0 <i<M}, (3.1) 

1Note that Kim et all [27] defined motion beat in a similar, but subtly different way. They 
described motion beat to be a regular, rhythmical unit of time of a motion signal; whereas our beat 
is based on the series of events. 
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where events refers to one particular type of event and M indicates the total number 

of event types. We assume that zero or more different types of events would occur 

at the candidate motion beats. Each type of event is defined by certain features of 

the motion data and can be specified by a movement pattern, such as fast directional 

change, free-falling and so on. For example, an events takes place at frame j if the 

angle between one object's movement directions at frame j — 1 and j exceeds a certain 

threshold. More generally, a set of constraints are associated with each event type, 

and an event is said to occur at the frame at which its constraints are satisfied, as 

will be seen below. 

In our system, these constraints are specified based on our observations and heuris

tics, rather than by an automated process. We have not tried to create a compre

hensive feature list, but rather a sufficient list to demonstrate the feasibility of our 

framework. To identify the significant motion events, it is helpful to extract a set of 

basic motion-related features from the captured motion data. We now describe this 

set of basic features. 

3.1.1 Minimum Velocities 

The local minimum velocity value can help us identify visible pauses 

points in the motion, we calculate the instant velocity at time t by: 

To find such 

(3.2) 
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In the equation, ds is separated into the position changes of three spatial directions 

(dx, dy, dz) and each velocity vector is composed of scalar velocity values in 3 spatial 

axes (vx,vy,vz). 

Local minimum velocities could be found by the zero-crossing points of velocity 

values' first-derivative v'(i) while v'(t) is in its increasing phase, which is shown in 

following calculation: 

v'(t) = 0 and v'(U - 1) < v\t) < v'(U + 1) (3.3) 

A visible pause during a motion is the moment when the instant absolute velocity 

of the moving object drops to near zero. Hence, we add the condition: 

\v(t)\ < 1(T3 (3.4) 

to detect the such events, in which \v(t)\ is calculated by: 

\v(t)\ = ^vx{t? + vy{ty + vz{tf 

3.1.2 Movement Directional Change 

Movement directional change is the angular change between an object's movement 

direction at two time points (Figure 3.1). 

Initially, we calculated the object's directional change at frame % using the object's 

direction of motion at frame i and frame i+1. An object's directional change curve was 
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Figure 3.1: Movement directional change 8 

22 



formed by calculating the directional changes at each pair of adjacent frames. The 

time duration between adjacent frames is 1/120 second for CMU motion captured 

data, and 1/15 second for recorded motion data. Because the object's direction 

could be expressed by its instantaneous velocity, we used the directional change angle 

between adjacent frames' velocities to represent directional difference. That is, 

6i = arccos ( —^— l+_ 1 (3.5) 
\\Vi\ • \Vi+i\J 

where vl and w,+i are the moving object's velocities at frame i and frame i + 1. The 

calculation of the velocity vector is the same as in equation 3.2. 

However, in some cases the moving object's velocity was low throughout the whole 

process, which made the curve fiat and smooth. Or in some cases, high frequencies 

or the sensitivity of motion capture device can result in non-continuous motion data. 

The directional change, which is the difference of motion direction curve, calculated 

from those data are fluctuating in a narrow range between zero and the actual angle 

value. For example, Figure 3.2 shows the directional change curve computed between 

adjacent frames of basketball hand motion data set l(from CMU mocap database). 

The value of the object's directional change was fluctuating between very small and 

very large values. The zero values on the directional change curve were not the 

necessary representations of the object's movement, which made the curve noisy and 

inappropriate for further processing. 

To deal with this issue, we set up a small time interval A T , such as 0.1s or 0.15s, 

and calculated the angle between velocities spanning the length of that time window. 
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Figure 3.2: Movement directional change curve computed between adjacent frames 
from basketball human hand motion data set 1, right hand 
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Thus, we use the equation, 

6k(AT) = arccos f ^ ' l O , (3.6) 

to calculate the movement directional change at time frame k, in which 

——— 1 , and AT = timej — timei 

For example, Figures 3.3, 3.4 and 3.5 show the directional change curves calculated 

with time intervals of 0.05s, 0.1s, and 0.2s respectively of the right hand motion of 

basketball playing. From these figures we see that increasing the time interval in 

calculating the directional change curve leads to clearer directional change angles 

(strong peaks in the curve). Moreover, with the interval increasing, the areas without 

much directional change, that is, the places where the movement directional change 

angles have low values, are smoothed. 

From the above examples we can see that, a larger duration results in more obvious 

peaks, higher angle values, and could also remove the "noisy" appearance of some 

curves. The length of the time interval AT is set up by comparing the different 

directional change curves resulting from using different time interval lengths. For 

calculation purposes, we would like to keep the directional change curve smooth but 

with proper number of directional change peaks. Hence, we pick the values which 

could generate the suitable curves. The length of AT ranges from 0.08s to 1.5s in 

our system. For motion recordings that full of fast movement directional changes, the 
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Figure 3.3: Movement directional change curve computed with a time interval of 0.05s 
from basketball human hand motion data set 1, right hand 
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Figure 3.4: Movement directional change curve computed with a time interval of 0.1s 
from basketball human hand motion data set 1, right hand 

t (seconds) 

Figure 3.5: Movement directional change curve computed with a time interval of 0.2s 
from basketball human hand motion data set 1, right hand 
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time duration should be short to detect fast motion direction changes; for motion data 

with very flat or noisy movement directional change curve, such as the situation shown 

in Figure 3.3, we may slightly increase the time interval between target velocities to 

get more clear peaks on the curve. 

Having computed the directional changes throughout the entire motion signal, we 

can now use the resulting curve to locate the most salient change-of-direction events. 

That is, the peaks on the directional change curve mark the moments that the moving 

object has the biggest directional changes. To identify these movements as motion 

events, a threshold has been set up on the directional change curve. Moreover, we 

use different levels of thresholds to separate the motion events into different levels 

by the degree of their directional change angles. These positions should have the 

property that the corresponding places in the directional change curve are peaks and 

their values exceed a threshold. Such places can be detected by the zero-crossings of 

the first derivative of the directional change angles. We use the expression, 

@'i-iO'i < 0> a n d thresholdj < 6t < thresholdj+i (3.7) 

to denote that eventj occurs at time i. In this expression, threshold^ and threshold^ 

are the thresholds for eventj and event j + i respectively. If the directional change 

curve is noisy, the resulting derivative will have redundant zero-crossing points which 

may add inaccurate events to the motion events vector and increase the computa

tional cost. To avoid that situation, some noisy directional change curves need to be 

smoothed with a moving average filter before we do further analysis. The width of 
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filter is decided under the same consideration as that in the phase of data preparation. 

The smoothing function is simply, 

2_ 

fc—-2-

where N denotes the filter size. 

The thresholds for computing these types of events are set up by the user given 

different datasets. It depends on the values on the directional change curve and the 

number of events that user would like to extract from the motion sequence. If the 

movement directional change angles have low values while we want to extract more 

events, we can set a lower threshold so that there could be more angle peaks exceeding 

that threshold. For example, we set the threshold to be TT/2 for the simulated ball-

bouncing motion recording, and 7r/4 for the basketball human hand motion. 

3.1.3 Maximum Acceleration 

Human dancers may have significant movements at the musical accents. Hence, there 

are possibly local maximum forces exerted at the same time as the background mu

sic's various metrical events. Computing maximum force can be done by computing 

maximum accelerations. 

According to Newton's well-known second law of motion 

F = ma 
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Figure 3.6: Acceleration values from one hand motion of motion capture data 

the acceleration of an object is proportional to the resultant force acting on it and 

is in the same direction. Because a moving object's mass is constant, the force on 

the object can be presented by its acceleration, which is described by the following 

expression, 

dv 
a = — 

dt 
(3.9) 

The calculation of v is the same as in equation 3.2. An example acceleration curve is 

shown in Figure 3.6. 

Thus, we calculate local maximum accelerations (peaks in the acceleration curve 

of Figure 3.6) to detect the moments of maximal force. Local maximum values of 

acceleration can be calculated by the zero-crossing positions of the acceleration's 

first-derivative (also known as jerk) in the decreasing phase. 
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Figure 3.7: Acceleration and movement directional change angle comparison 

During the calculation process, we found that the acceleration curve has a high 

similarity with the directional change angle curve (Section 3.1.2). An example of 

the comparison between acceleration and directional change is shown in Figure 3.7, 

in which both curves were calculated from motion data #233234 2. The A T used 

to calculate directional change is 0.15s. This picture indicates that the curves of 

acceleration and directional change have similar local maximum positions. Thus, the 

events generated from these two methods are close in occurrence time. 

2Tliis number refers to the motion ID of recorded motion data. See Table 5.2 for detailed 
description. 
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3.1.4 Curvature 

The curvature of a smooth curve at a given point is the measure of how quickly the 

curve changes direction at that point. Great direction changes corresponds to a local 

maxima curvature values of the motion track. We compare the curvature at each 

point and mark the places with the local maximum curvature values as an event. 

The curvature of a point at time t is given by 

*« = W ' (3'10) 

in which 

v'(t) 
T'{t) 

In these equations the definition of v{t) is the same as in equation 3.2. 

We calculate the local maximum values of the curvature by calculating the zero-

crossing positions of its first-derivative in the decreasing phase. However, because 

of the fact that the plotted motion tracks from the captured data are not perfectly 

smooth curves, the resulting curvature values could be noisy in a narrow range like 

the directional change curve. To avoid the misleading result of detecting all the 

maximum values from the noisy curve such as in Figure 3.8, we apply a threshold on 

the calculation of local maximum values, 

max(fc(£)) > thresholdcurvature (3-11) 
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Figure 3.8: Curvature values from one hand motion of motion capture data. The 
dashed line represents the chosen threshold for generating events by maximum cur
vature value. The peaks above the threshold are events. 

in order to extract the major maximum curvature values such as those shown in 

Figure 3.8, the curve peaks above the chosen threshold. Similar to the directional 

change curve, the value of curvature threshold is manually tuned according to each 

curvature curve to obtain proper number of peaks. 

Like the acceleration curve, the curvature also has a similar shape to that of the 

directional change curve. Figure 3.9 shows the curvature and directional change curve 

(calculated with A T = 0.07s) of motion #233234, from which we can see that the 

curvature is similar to the directional change. But the curvature tends to be noisier 

than the directional change. They actually detect very similar sets of events if the 

curvature is smoothed. 
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Figure 3.9: Curvature and movement directional change angle comparison 

3.1.5 Root-y Coordinate 

An important visual characteristic of rhythmic object movement is bouncing, a rhyth

mic vertical motion. In this project, we identify "bounces" by the moments when the 

bouncing object reaches its bottom and define these moments as events. 

Since the rhythmic vertical movement is a feature of the entire moving object, 

we calculate the "root position", i.e. position of the root-node, of each object and 

analyze its motion. For simple rigid objects, the root position is the position of the 

object itself, for human charactei\s such as in the motion captured data from CMU, 

the root position represents the body center (shown in Figure 3.10). 

We analyze the '//-coordinate of the root node, which represents the up and down 

movement of the object. An example is shown in Figure 3.11, which is the plot 
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Figure 3.10: Root position (marked with an O) of human-character 

of the root-y coordinate of a human walking motion recording. Bottom points of 

the y coordinates, which are the local minimum values of the curve, are marked as 

events since they reflect a rhythm of the motion (marked by red circle in Figure 3.11). 

The rhythmic motion features are more clearly reflected in cyclic motion such as a 

bouncing ball or human-character walking or running motion. 

3.1.6 Constant Angular Velocities 

Another special pattern we extract from the movement is when the object is moving in 

approximately circular motion. We can test for this pattern by looking at the angular 

velocities of the object. To calculate the angular velocity of the moving object, we use 

the movement directional change angle 6(AT) with a time interval A T introduced 
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Figure 3.11: Root-Y coordinates, events could be extracted by root-y coordinate 
bottoms (circled positions). 
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in Section 3.1.2, for the reason that equal movement directional change angles in a 

consecutive time denotes constant angular velocities within that time duration. We 

calculate the difference of directional change for the time duration of k continuous 

frames. Ideally, the difference between directional change angles is zero for detecting 

this pattern. But due to the various noises, the difference cannot reach zero under 

most circumstances. We set up a threshold for the above situation, and use the 

following equation to calculate the change of moving object's angular velocities at 

frame i and i + 1, 

\9(AT)i - 0 ( A T ) i + i | < threshold, i e k (3.12) 

3.2 Motion Music Generation 

We will use the term motion music to refer to the music generated from the motion 

recordings. This could be seen as an acoustic representation of the motion, or rather, 

of certain features of the motion. This concept is proposed based on our hypothesis 

that there is an underlying rhythmic pattern in a rhythmic motion signal. We define 

motion events as basic rhythmic elements of the motion, as music notes are to music. 

Just as an underlying beat can be inferred from a sequence of musical notes, we 

propose that an underlying beat can also be inferred from the sequence of rhythmic 

motion events. Therefore, the problem of extracting the underlying beats from a 

motion recording is converted to one of music beat tracking. Given the similarity 

in "rhythmic function" between motion events and music notes, we convert all the 
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motion events (in a motion event vector) into music notes, to generate motion music 

for that motion file. That is, we create an audio representation of the rhythmic 

properties of a motion signal. The purpose of this is that, we can use the existing 

beat tracking algorithm to analyze motion music, and then find similar music pieces 

in the collection by applying rhythmic similarity comparison methods between audio 

data. The detailed method of generating this is introduced in the following sections. 

3.2.1 Testing with Motion Music 

The features listed from Section 3.1.1 to 3.1.6 allow us to identify a large set of pos

sible motion events, which might be caused by the background music or the rhythm 

in the movement itself. Events generated from different motion characteristic ex

traction methods might be very close in occurrence time to each other, which will 

make the resulting motion events vector overly dense. However, we would like to keep 

the generated motion music uncluttered to represent the underlying motion rhythm 

as accurately as possible, which requires the motion event vector to be as sparse as 

possible while maintaining salient rhythmic features. To test the above approaches 

and choose the ones that more accurately present the motion rhythm, we applied 

them to our captured motion data individually and in different combinations. Corre

sponding motion event vectors are generated each time, and then converted to music 

files as described below. Hence, we could listen to the motion music and watch the 

motion recording synchronously to subjectively distinguish between the qualities of 

the various combinations of motion characteristic extraction methods. 
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Motion characteristics 
Motion event 

Motion event occurrence time 
Motion event level 

Joint (for human-character motion data) 

Music characteristics 
Music note 
Music note onset 
Music note amplitude, duration 
and pitch 
Timbre and pitch 

Table 3.1: Mapping relationship from motion characteristics to music characteristics 

In our implementation, we mapped motion characteristics and patterns into the 

basic characteristics of MIDI-formatted music, such as amplitude (volume), pitch and 

timbre (by choice of instrument). The mapping scheme is shown in Table 3.1. 

By listening to the motion music synchronized with corresponding motion video 

animation, we found that the best approach to representing the original motion was 

by combining several motion feature extraction methods. The features we extracted 

included: minimal velocities, movement directional change angle, root-y coordinate 

(for human-character movement) and constant angular velocities. The generated 

music notes could basically match the moments when the moving object is making 

significant movements. 

3.2.2 Converting A Motion Event Vector to Motion Music 

Given the definition of a motion event and the chosen event extraction methods, we 

can analyze the motion data and mark most of the moments when special movements 

take place. Moreover, sometimes certain gestures are more evident than others. Hence 

we would like to distinguish the events generated at those moments from the others 

since they are more important. For example, suppose that at time tx the moving 
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object changed direction by 180 degrees, while at time t<t the object changed direc

tion by only 20 degrees. Then we hypothesize that the "event" that occurred at t\ 

might make a stronger visual impact than the event at t2- To differentiate motion 

events by their significance, we set up several levels of conditions corresponding to 

the significance of events, and computed an event's level based on the criteria that 

the motion satisfies. For example, we define the condition of events of level-4 to be 

that "the movement directional change angle is greater than n/2, or the movement 

directional change angle is greater than 7r/5 and the velocity is at its local minimal 

value". 

Therefore, the motion events are divided into several levels according to the sig

nificance of the corresponding movements' visual impact. For each motion file, there 

will be relatively stronger movements and also weaker ones. Hence, each motion 

recording has different levels of motion events, which later we transferred into dif

ferent music notes. Motion events with strong visual impact are converted to music 

notes with strong aural impact. Currently, conditions of all the levels are described 

in Table 3.2. Note that for the purposes of developing our proposed framework, we 

defined the various levels heuristically, based on our own observations and trial-and-

error. It would be an interesting future research project, outside our current scope, to 

find more systematic ways of determining the visual significance and impact of such 

motion properties. 

When calculating if an event satisfies a level-6 condition, we apply a moving 

window with a width of 10 frames, and calculate the difference of each pair of adjacent 
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Motion event level 

Level-1 

Level-2 

Level-3 

Level-4 

Level-5 

Level-6 

Condition 
(Movement directional change > 7r/5) 

OR 
(Local minimal value of root-y coordinate) 

Movement directional change > 7r/4 
(Movement directional change > 7r/3) 

OR 
(Joint is foot) AND 

(Movement directional change > 7r/5) AND 
(Local minimal velocity) 

(Movement directional change > 7r/2) 
OR 

(Movement directional change > 7r/5) AND 
(Local minimal velocity) 

(Movement directional change > 2ir/2>) 
OR 

(Movement directional change > 7r/5) AND 
(Local minimal velocity) AND 

(velocity = 0) 
OR 

(Movement directional change > 7r/4) AND 
(Local minimal velocity) 

(diSerenceanguiarveiocity(window) < 10~3) AND 
(length(window) = lOframes) 

Event value 

1 

2 

3 

4 

5 

10 

Table 3.2: Motion event level definition 
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frames' angular velocities. The Level-6 condition requires all differences of adjacent 

angular velocities within the moving window to be less than 10~3. Although some of 

the conditions are set up for certain types of data (certain joints for human-character 

movement), they can be applied to all motion capture data. 

Consequently, for a single motion signal, we combine all the events values and 

their timestamps together to build an event vector. An example is shown in Figure 

3.12. Therefore, a motion signal is transformed into an event vector, which reflects 

the visually salient moments in this motion. 

Finally, the motion event vectors are converted to music pieces, represented in 

MIDI format, using the mapping relationships in the above section. A MIDI file is 

generated note by note with different note attributes using the following conversion: 

Event(time, value, joint) =£• MID Inote(onset, duration, pitch, amplitude, timbre) 

For each music note, its onset is the same time as that of the motion event it 

corresponds to. The duration, pitch, amplitude and timbre mapping relationships 

are shown in Table 3.2.2. 

We also tried other variations of mapping relationships between motion events 

and MIDI notes. Those variations of motion music give different acoustic effects, but 

in our experience, they did not make much difference when the audio beat tracking 

algorithm was applied. 
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Figure 3.12: Motion event vector computed with a time interval of 0.15s from CMU 
motion captured data #0513, both hands, both feet and root, x axis refers to the time 
axis and y axis is the value of events. A black circle refers to an event generated by 
the root; a green pentagram is an event generated by the left foot; a blue hexagram 
reflects an event generated by the right foot; a red dot is an event generated by the 
left hand; a magenta square refers to an event generated by the right hand. 
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M I D I note 

Pitch value 

Channel 

Volume 

Duration 

36 (C2) 
47 (B2) 
48 (C3) 

49 (C3#) 
50 (D3) 
52 (E3) 

54 (F3#) 
57 (A3) 

58 (A3#) 
59 (B3) 
60 (C4) 
62 (D4) 
64 (E4) 

Pitch — 1 
± tuf^f ^previous x 

10 (drum sound) 
1 (piano sound) 

40 
60 
70 
90 
110 

frame r a t e -

0.5s 
0.6s 
0.7s 
1.0s 
1.5s 
2.0s 

M o t i o n event 
Eventroot value = 1 
Eventf00t value = 1 
Eventf00t value = 2 
Eventfoot value = 3 
Eventf00t value = 4 
Eventf00t value = 5 

Eventf00t value = 10 
Eventhand value = 1 
Eventhand value = 2 
Eventhand value = 3 
Eventhand value = 4 
Eventhand value = 5 

Eventhand value = 10 if Eventhand 
^previous 

Eventhand value = 10 if Eventhand,Previous = 10 
Eventroot value = 1 

Eventhand Or Eventfoot 
Event value = 1 

Event value = 2 Or 10 
Event value = 3 

Event value = 4 Or Eventr00t value = 1 
Event value = 5 

Eventhand value = 10 
Event value = 1 
Event value = 2 
Event value = 3 
Event value = 4 

Event value = 5 Or Eventf00t value =10 
Eventr0ot value = 1 

Table 3.3: Motion music note attributes converting relationship with motion events 

44 



Chapter 4 

Music Query with Motion 

Recordings 

The second part of our system matches a motion signal with corresponding music. 

Once motion data has been analyzed and converted to a motion music file, the problem 

becomes one of matching the resulting motion music with a similar music piece from 

the library. The approach is to treat motion data as music and match music pieces 

according to rhythmic similarity metrics. 

Currently, most of the music rhythmic similarity analysis methods are based on 

music structure analysis, that is, music beat sequence or regular temporal patterns. 

In this thesis, we use an existing algorithm to extract the beat sequences from music 

pieces and then apply similarity comparison algorithms on the extracted beat se

quences. A number of music beat tracking algorithms have been developed [18] [47], 

some based on the acoustic information of the sound signal [17] [45], and others focused 
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on music score analysis, such as that available in MIDI representation [6] [54]. 

After comparing some beat tracking algorithms on their efficiency and input / 

output data format, we finally settled on the beat tracking algorithm developed by 

Simon Dixon in 2001 [7], Those algorithms also include Meudic's casual beat tracking 

algorithm [36] and Eck's autocorrelation phase matrix [12], which we implemented 

for testing. The beat tracking algorithm we applied is an interactive system called 

"BeatRoot" provided by Dixon. Incidentally, this algorithm also performed the best 

on the Audio Beat Tracking task presented by ISMIR 2006 [8]. In order to use this, 

we convert the music input from our MIDI representation into a .wav format. The 

structure of the beat tracking algorithm is described in Appendix A. 

BeatRoot can detect the beats of the input music file and output the beat times 

in text-MIDI format, which is a text file containing the list of beat onset times and 

note information. An example of beats detected by BeatRoot is shown in Figure 4.1. 

We then read in the text-MIDI files and change them into vectors containing the 

timestamps of beat information. Therefore, the music rhythmic similarity analysis 

problem is converted to a vector comparison and matching problem. 

In this thesis, we applied three different approaches for matching beat vectors. 

They are mutual information combined with a window-based matching parameter, 

two-sample Kolmogorov-Smirnov test, and a rhythmic comparison algorithm that we 

developed. 
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Figure 4.1: Beat sequence detected by BeatRoot and the corresponding analogue 
audio file "cancan(track #8)". Red vertical lines represent the beats. 
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4.1 Mutual Information Incorporated with Window-

based Matching 

The first approach we shall describe evolved over several stages. It began as a mutual-

information-based metric, which is described in Section 4.1.1. We then added a gradi

ent term to incorporate temporal constrains with mutual information (Section 4.1.2). 

Finally we explain a more intuitive interpretation of this approach (Section 4.1.3), 

which effectively corresponds to a window-based matching together with mutual in

formation. 

4.1.1 Mutual Information Based Matching 

In information theory, mutual information is a quantity that measures the interde

pendence of two random variables. It is defined using Shannon entropy, a measure of 

the uncertainty associated with a random variable. Shannon entropy, or information 

entropy, quantifies the information contained in a signal, usually in bits (logarithms 

to the base 2). The information entropy of a discrete random variable X, that can 

take on possible values x%, ...,xn is 

n 

H(X) = E(I(X)) = - 2>(*01og2p(:E4) (4.1) 

where I(X) is the information content or self-information of X, which is itself a 

random variable; and p(xi) is the probability of a given value Xi. 

From the definition of Shannon entropy, the mathematical description of mutual 
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information between two random variables is given by 

I{X; Y) = I{Y; X) = H(X) + H(Y) - H(X, Y) (4.2) 

In this equation, H(X) and H{Y) are the Shannon entropy of sample X and sample 

Y, respectively. H(X, Y) is the joint entropy between sample X and Y, which is 

defined with the following equation, 

H(X,Y) = -X>(z,2/)log2(p(x,j/)) (4.3) 
x,y 

The required entropies H(X), H(Y), H(X,Y), can be computed by estimating 

the probability distribution of the samples. Since H(X,Y) < H(X) + H(Y), this 

characteristic indicates the non-negativity property of mutual information. Hence, 

I(X;Y) > 0 . 

One of mutual information's important properties is H(X) — I(X; X), that is, mu

tual information between a variable and itself is the Shannon entropy of the variable. 

Thus I(X;X) > I(X;Y). The information amount carried between two different 

variables cannot be greater than the amount between one variable and itself. Ac

cording to this property, the more similar vector Y is to X, the greater their mutual 

information is. 

In this project, we convert the beat vectors to be sequences of Os and Is (1 rep

resents the beat time and 0 otherwise) in the resolution of milliseconds. We use the 

desired motion music beat vector and a beat vector of a music piece from our collec-
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tion as variables X and Y respectively, and calculate the mutual information between 

them. In our case, the more similar a music beat vector is to the motion music beat 

vector, the greater their mutual information value will be. Hence, we select music 

pieces by the mutual information between their beat vectors and the desired motion 

music beat vector. On account of the above properties of mutual information, one 

can formulate the beat vector matching criterion as selecting the music beat vector Y 

that maximizes the mutual information I(X; Y) between itself and motion-generated 

music beat vector X: 

i0 = argmax/(X; Y) (4.4) 
l<i<N 

in which X and Yi represent the beat vectors of the motion music to be compared 

and that of music piece Jfi in the library. N refers to total number of music pieces. 

4.1.2 Mutual Information Incorporated with Gradient Infor

mation 

Standard mutual information only considers the distributions' statistical information, 

which is the number of Os and Is in our case. However, the variables' temporal 

relationship is ignored, which is inappropriate for our situation. For example, if beat 

vectors A and B have the same number of Os and Is, the mutual information of them 

with another vector I(C; A) and I(C; B) are the same. 

To solve this problem, we incorporate temporal constraints by additionally con

sidering gradient information. This idea was inspired by the work of Pluim et al. and 
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others, who applied this to medical images [43] [34]. 

In order to solve the information limit of standard mutual information when work

ing with medical images, they incorporated gradient information to provide spatial 

constraints. Their gradient term G(X, Y) between two images X and Y not only seeks 

to align locations of high gradient magnitude, but also orientation of the gradients at 

these locations. 

In the calculation of gradient, a medical image is considered to be a matrix, while 

the beat information is given by a vector. As was mentioned previously, the beat 

vector in our project is a sequence of Os and Is (1 represents the beat time and 0 

otherwise) in the resolution of milliseconds. For example, if the beats occur at 0, 4, 

and 6 milliseconds of a 10 milliseconds' music piece, its beat vector will be 

[1 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ,0 ,0 ,0] 

The gradient direction of the beat vector is reduced from within a plane (an image) 

to the possible directions within one dimension. Hence, considering the similarity of 

beat vector and image in the process of gradient information calculation, the above 

method is applied in this project with minor adaptations. In our case, the beat vector 

is one-dimensional rather than a two-dimensional image, and the gradient (derivative) 

provides us with temporal rather than spatial constraints. Hence, we calculate the 

beat vector's first-derivative to measure how beat changes over time. 

The gradient for each beat vector is computed by the difference of adjacent values, 

or set to zero if it is the very last point in the vector. Because the beat vector is one-
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dimensional, the gradient direction for each point is considered as —n/2, 0, or 7r/2 if 

the gradient value is —1, 0 or 1 correspondingly. Then, the angle a{cr) between the 

gradients of the corresponding points on two beat vectors is defined by 

a(a) = Vi(ff) - Vj/(ff), a{a) e [0, w] (4.5) 

where Vaj(c) and Vj/(o") refer to the gradient directions in the motion music beat 

vector and the music beat vector respectively. Because we only need to use angle 

a(a)'s cosine value, we shift it into the range of 0 to n if it is not by adding or 

subtracting 2n. In practice, a(a) will be 0 if both vectors have the same gradient; IT 

if they have the opposite gradient; or n/2 otherwise. 

A weight function is also set up for each point using the angle, 

. . cos(2a) + 1 . . 
Ueightia) = K-J- (4.6) 

Only gradients that appear in both vectors are counted. This refers to the situation 

that the two beat vectors both have a beat at the same time (a(a) is 0) or each has 

a beat at two adjacent time points (a(a) is n). For each point, the angle function is 

multiplied by the minimum of the gradient magnitudes. The final gradient term is 

calculated by summing the resulting product for all points, 

G(X,Y)= J2 fWeight(ax,y(o))min{\Vx(a)\,\Vy{a)\) (4.7) 
(x,y)e(XnY) 
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When there is non-zero gradient values in both X and Y vectors, the gradient term 

will count that in. Hence, in our case, the gradient term can be considered as the 

score of counting the non-zero gradient magnitudes that appear in both X and Y 

vectors at nearly the same time. 

The final comparison score is composed of two parts that complement each other: 

mutual information term (/), which compares the two beat vectors' statistical infor

mation, and the gradient term (G), which considers how the beat vectors change. 

Finally, we combine the two terms together by multiplying the gradient term to the 

normalized mutual information (NI), which are defined by the following equations, 

Inew(X, Y) = G(X, Y)NI(X, Y) (4.8) 

and 

mXlY) = !l&±™. (4„ 

4.1.3 An Alternative Interpretation: Matching Beats within 

Small Windows 

The gradient term is typically used in image processing with a range of possible 

grayscale values, whereas in our application, we have only two binary values: 0 (no 

beat detected) and 1 (beat detected). Thus, the "gradient" is in fact being used in a 

limited situation, and has a simpler interpretation in this case. In particular, consider 

as a simple example, the beat vector [0, 0, 0, 0 ,1 , 0, 0, 0, 0]. The gradient for this vector 
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is [0, 0,0,1, —1, 0,0,0]. Hence, computing the gradient term effectively just expanded 

the region of non-zero elements in the vector, allowing a slightly larger time window 

for matching beats. Thus, we can reinterpret the above gradient-based approach 

as a window-based comparison method. This approach obtains the beats' temporal 

information by counting how many beats of the motion music are matched by the 

candidate music's beats. This temporal information is represented by a parameter T. 

It is accomplished by simply setting up an analysis window (3 frames' width) around 

each beat of the motion beat vector, and determine if there is a music beat located 

in that window. The window-based beat matching approach can be described by a 

weight function on each beat of the motion beat vector X, as the following, 

fw(teatx(k),Y) = { 
0, if no music beat in beatx(kys analysis window 

(4.10) 

1, otherwise. 

beatx(k) refers to the motion beat vector's kth. beat, and beatx(k)'s window is the 

3-frame width's analysis window centered at beatx(k). Y is the beat vector of a 

candidate music piece. 

Hence, the temporal parameter T for motion beat vector X (with a total of N 

beats) and music beat vector Y can be defined as 

N 

T{X,Y) = ̂ 2fw(beatx(k),Y) (4.11) 
fc=i 

Finally, we implement this mutual information combined with a window-based 
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temporal parameter matching algorithm by multiplying the temporal term (T) to 

the normalized mutual information (NI). The comparison process between a motion 

music beat vector X and a candidate music's beat vector Y is defined by the following 

equations, 

Inew(X, Y) = T(X, Y)NI(X, Y) (4.12) 

and 

NI(X,Y) = I{X
I
)
{+^P (4-13) 

Because the music pieces vary in length, the number of points in their correspond

ing beat vectors also vary. To fully make use of the length of the beat vectors, we 

truncate the music beat vector if it is longer than the motion music beat vector, or 

duplicate it until its length is not less than that of the motion beat vector and then 

truncate the extra part to match with the motion beat vector otherwise. 

A music piece may not start exactly on what is referred to as the "downbeat" 

(the first beat of a bar), and furthermore, the recorded motion may begin with some 

amount of "waiting". These, and other factors, may lead to different offsets between 

the starting points of music and motion data. Considering that , we set up a window 

Wi and move the music piece within that window when comparing it to a motion beat 

vector until we find the best possible match between the given pair of musical pieces. 

The Figure 4.2 indicates the position of W2 and how the music piece is moved within 

it. 

Therefore, the new mutual information combined with window-based temporal 
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m 

Moving direction 
Music beat vector 
< 010 ... 10 ... 010. 01001001 

Music beat vector 
<— 010 ... 10 ... 010... 01001001 

Motion music beat vector 
*— 0010 ... 0100 ... 01001 ... 010 >-

Figure 4.2: Moving window of w2 and the motion and music beat vectors' comparison 
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parameter matching result should be revised to be the maximum value of music beat 

vector within the window u>2, which is shown by 

MIT(X, Y(W2)) = max(/„^) = max(T(X, Y(wa))NI(X, Y(wa))) (4.14) 

Hence, the revised music and motion music beat vector matching criterion is to 

find out the music piece Yi0, by the following equation: 

»o = argmax MIT(X; Yt) (4.15) 
l<i<JV 

in which X and YJ represent the beat vectors of the motion music to be compared 

and that of music piece $i in the library. N refers to total number of music pieces. 

4.2 KS Test 

The Kolmogorov-Smirnov test (K-S test) is a goodness of fit test used to determine 

whether two underlying one-dimensional probability distributions differ significantly. 

Because our data to be tested are beat vectors, which are random samples whose nu

merical interpretation are unclear, we apply the KS test on our beat sequences. The 

advantage of the KS-test is that the distribution of its test is non-parametric and 

distribution free, which means the test statistic itself does not depend on the under

lying cumulative distribution function being tested. Another attractive feature is that 

it is a statistical technique that performs well under a wide range of distributional 
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assumptions (robust). 

The two-sample KS test is one of the most practical and commonly used methods 

to determine the statistical difference between samples. 

KS test uses the maximum vertical distance between the cumulative distribution 

function curves of the two samples, X\ and X2 with length n\ and n2 respectively. 

The test statistic can be written as 

Dnuna = max( |F n i (x ) - Fn2(x)\) (4.16) 

where Fn(x) is the empirical cumulative distribution function (ECDF) of the distri

bution n being tested. Given dataset X with n ordered data points Xi,X2 . • -X^, 

the ECDF is defined as 

F»(x) = 7;ibIx*<* (4-17) 
1=1 

Ixi<x is the indicator function. It uses 1 and 0 to determine the membership of an 

element in a set Xi < x (1 for yes and 0 otherwise). That is, for each x value, 

S I L i Ixi<x counts the number of points in dataset X tha t are less than x. 

In practice we use an existing function in Matlab to perform a two-sample Kol-

mogorov Smirnov test to compare the distributions of values in the two vectors X\ 

and X2 of length n\ and n2. In our case, X\ is the beat vector derived from the 

motion-generated music, and X2 is the beat vector derived from the candidate piece 

of music currently being tested as a possible soundtrack. Note that unlike the beat 

vectors of O's and l 's that we have used in previous sections, we now represent the 
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beat vectors as a series of beat onset times. As a simple example, if the time between 

samples were 1 millisecond, then the vector 

[1 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ,0 ,0 ,0] 

would now be represented as 

[0,4,6] 

since the beat onset times occur at 0, 4 and 6 milliseconds. 

The null hypothesis for this test is that X\ and X2 are drawn from the same 

continuous distribution. The result H is 1 if the null hypothesis can be rejected or 0 

otherwise. The Matlab function also returns the asymptotic p-value to report if the 

numbers differ significantly. A smaller p-value means we can reject the null hypothesis 

with greater certainty. In our case, we reject the null hypothesis for p values less than 

5%. The asymptotic p-value is believed to be reasonably accurate for sample sizes n\ 

and n2 such that - ™ - > 4. 

Because the beat sequences of our music files are large (a beat vector usually 

contains some dozens of points, i.e. a beat vector could contain from 20 to hundreds 

of points), the sample size condition for accurate p-value is always satisfied. In our 

comparison process, we first sort all music pieces by whether the null hypothesis (i.e. 

tha t the two beat distributions are the same) can be rejected. Having found those 

music pieces for which the null hypothesis cannot be rejected, we then sort them by 

p-values and retrieve the one which is closest to the motion music beat vector as the 
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result. 

4.3 Rhythmic Comparison 

Rhythm is considered one of the fundamental elements of music [20]. It contains 

the duration and accentuation information of music (beat sequence and meter). For 

example, meter information is very important in rhythm, which is the description of 

how the beats are stressed and grouped. Based on our assumption, the matched music 

piece to a motion signal should not only have similar beats, but also similar rhythm. 

However, the above two approaches that we developed only compare the two beat 

sequences of music and motion-generated music. Consequently, if different music files 

have similar beats but vary in their meter, the retrieved music piece for a motion signal 

might be a mismatched result. To achieve a more accurate matching, we would like 

to incorporate the music rhythm information into the comparison process. Hence, we 

designed a rhythmic comparison algorithm to search for rhythmically similar results. 

Not only are the beat vectors of the motion music and music pieces used, original 

music wave forms and motion event vectors are also employed. 

Comparing the rhythms of two pieces of music is a potentially very complex (and 

subjective) question. Nevertheless, in matching a motion-based music signal, Mmotion, 

with a candidate piece of music, MmuSiC, we wished to explore more than just compar

ing their respective beat vectors. In this section, we develop a heuristic approach to 

comparing the "rhythmic activity" in Mmotion that coincides with the beats of Mmusic. 

We do this in two steps: 
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Step 1: We compute a score S indicating the total rhythmic activity in Mmou0n 

occurring near the beats of MmusiC. 

Step 2: We re-assess S, this time accounting for the meter of the piece, i.e. 5/4, 3/4, 

etc, by giving different weight to the different beats. 

4.3.1 Step 1: Scoring the Rhythmic Activity 

One of the basic aspects of rhythm is tempo, which corresponds to the duration 

between beats. That is, a fast tempo means a short duration between beats. Accord

ingly, we assume that when a motion signal Mmotion matches a music piece 
"'•music 

rhythmically, there should be strong rhythmic elements of the motion music occur

ring around many of the beats of the music piece1. For our motion-generated music, 

the events generate music notes (described in Section 3.2), which constitute the basic 

rhythmic elements of the piece. We have denned our events such that higher event 

levels can roughly correspond to louder note volumes, and multiple events happening 

at the same time can also increase the overall volume. To compute the score of how 

well the Mmotion is matched with Mmusic on the beats of the candidate music piece, 

we perform the following: 

1. First, we set a small time window w3 around every beat in M. This gives us a 

series of N windows, where N is the number of beats in the piece. 

2. Within each window, find the note in Mmouon with the strongest volume. This 
xNote that this assumption need not always be true, but it is simply a heuristic starting point 

for demonstrating the potential application of the framework we are developing in this thesis. 
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gives us a set L, consisting of N "loudest notes". 

3. Find the average volume of L. 

If the music piece matches the motion signal on the beat times, the average volume 

value is higher than the pieces that do not match. 

The loudness of motion music note is proportional with the level of the motion 

event from which the note is converted. Hence, we use motion event values in this 

step to represent loudness of motion music. Motion event vectors are applied in the 

calculation instead of motion music. Thus the problem of comparing average motion 

music volume becomes the comparison of average event values. Consequently, the 

tempo comparison process of music number j regarding motion recording % can be 

defined as, 

1 N 

scorei(j) = — y ^ ma,x(eventi(beatj(k) — —,beatj(k) + —)) (4-18) 
N fe=i 2 2 

where N is the number of beats for music piece number j , and beatj(k) means the 

A;th beat of music j . The example of setting window w3 is shown in Figure 4.3. The 

different shapes and colored dots, the same as that in Figure 3.12, denote the motion 

events of different joints respectively. The black vertical lines refer to the detected 

beats and the dashed lines denote the range of analysis window u?3 around the beats. 
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Figure 4.3: Moving analysis window W3 
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4.3.2 Step 2: Weighting According to the Meter 

Music meter measures how the musical lines are divided into bars of stressed and 

unstressed beats. We would like to detect the rhythmically stressed beats on the 

beat sequences extracted by BeatRoot. Normally, such beats can be reflected by 

the loudness of analogue audio format. Music notes with accentuation have higher 

amplitude than ordinary notes. Hence, in the rhythmic comparison algorithm, music 

wave files are loaded for meter comparison, as opposed to the processed beat vectors. 

Figure 4.4 shows comparison between a simple two-hand movement motion event 

vector and a music piece (in analogue audio format). In this figure the black vertical 

lines denote the music's beats detected by BeatRoot. The motion events are presented 

by green and blue dots, and the red wave along t axis is the analogue audio. 

For music files that are stereo (have two sound channels), we first force them to be 

mono by calculating the average loudness of analogue audio of the two channels. Usu

ally, the waveforms are recorded at sampling rate of 44100Hz or 22050Hz. However, 

in the rhythmic comparison process only the music samples that were taken at the 

same time with the beats are involved. Accordingly, we down-sample the waveform 

with its beats to largely reduce its data size. Thus, only the loudness values at the 

beats are retained. 

For most music works, the numbers of beats in a measure range from 2 to 7 

and the most common note values are half, quarter and eighth notes, corresponding 

to different degrees of subdivision of each measure. To find out the meter for each 

music piece, the algorithm compares the average loudness of the first beat in each 
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Figure 4.4: Wave form of music piece "waltz (track #42)" with motion events of 
#233234 

measure under assumptions of 2 to 7 beats per measure respectively. The number 

that generates the highest average loudness value is considered to be a likely rhythm. 

The meter Mj for music piece number j can be calculated by, 

Mj = argmax(—— y , loudness(beatj(mi + 1))) 
2<m<7 Nm *—£ 

(4.19) 

in which, m denotes the possible meter value which ranges from 2 to 7, and Nm is 

the total number of measures in the music piece according to m value. 

Having a music piece's meter information and beat sequence, we could differen

tiate the beats of that music into two types, rhythmic beats and ordinary beats. A 
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rhythmic beat refers to the first beat in each bar, typically with some accentuation2. 

Considering the importance of rhythmic beats, we combine the meter parameter with 

the tempo comparison algorithm of the previous step to form a rhythm comparison 

algorithm. It is achieved by adding rhythmic parameter to the motion music notes 

that are located in the windows of rhythmic beats. This can be done by weighting the 

analysis windows according to the type of music beat corresponding to each window. 

Consequently, we use the following weight function wt, 

Wtbeat(k) ~ { 

2, if beat(k) is rhythmic beat, 
(4.20) 

1, otherwise. 

Then, by simply multiplying the values of events with the weights of the corre

sponding beats, and then dividing by the weighted sum of the number of beats, we 

have the rhythmic comparison score. Finally, the new rhythmic comparison criteria 

for motion signal i and music piece j can be presented as, 

_ J2k=1 wtbeat.{k) maxjeventiibeatjfi) - ^f,beatj{k) + -f)) 

2^k=lWtbeatj(k) 

where JV is the total number of beats for music piece j . 

2Again, there are numerous exceptions to this, but developing more sophisticated musical models 
is outside the scope of this current project. 
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Chapter 5 

Results and Discussion 

5.1 Implementation Overview 

The model described above is implemented under Matlab7.0 with programming lan

guage C on an Intel Pentium PC (P4 3.2GHz processor and 1GB memory). See 

figures 5.1, 5.2, and 5.3 for further details. 

5.2 Testing Data 

To test our system, we created a dataset consisting of both recorded music and 

recorded motion. Each motion was recorded in synchrony with one of the music 

pieces, as described below. 
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Part 1 

Music 
Database 

(.wav file) 

BeatRoof audio beat / . , . ~ : 7 . .. . ... / Music beat / JrasfeQs^gfflthn^ v e c t o r s j 
\ (text-MIDI format) \ 

Java program 

Figure 5.1: System implementation part 1, music data analysis 

Part 2 

Motion Databasel 
(text files) 

Motion event , lyiotion music^ 
extraction / Motion / generationL t | o n /BeatRoot audio beat'Music beat / 
algorithm^/ event / a lgor i thm/^.^ / tracking algorithn^^ veCtors f 

Matlab script / VGCtOr / Matlab script / ( M I D I filea/ Java program [ (text-MIDI l 
/ ' (text files)./ / 7 \ format) \ 

Figure 5.2: System implementation part 2, motion data analysis 

Part 3 

Query: Motion /Motion music/ 
recording J \ beat vector v 

/ Music beat ; 
{ vectors \—J 

\(:ext-MIDI format)1, 

\ L_ \ 

Vector comparison 

4H 
algorithms /• \ 

M Music video 
Matlab script & 

C programs 

Figure 5.3: System implementation part 3, music retrieval using motion queries 



Music D a t a 

Each music piece was recorded as a set of individual tracks, such as a bass line, a 

rhythmic harmonic accompaniment or melody. Furthermore, alternate takes were 

recorded. So, for example, the piece called "Minor Swing" may have had 2 different 

bass lines, 2 counter-melodies, etc. We recorded a total of 11 basic musical pieces 

(music database in Figure 5.1), and the tracks of each piece were then recombined 

to create a set of variations (e.g. bassl and melody2, bass2 with rhythmic accom

paniment with melodyl, etc). Some of the recorded music pieces' tempos are full of 

rubato and accelerando, which mean the slightly slowing down or speeding up of the 

tempo. Such example can be found in Abstractl , Abstract2, Beethoven or Titina. 

Some pieces are unclear in meter. For example, the meter of music piece Abstract2 

could be 3/4, or slow 4/4, or 2/4; that of Titina can be 4/4 or 2/4; the meter of 

Montuno can be seen as 4/4 but not in any clear way. It comes from the style of 

Latin music which use a different rhythmic pattern than the " 1 , 2, 3, 4" of western 

music. Table 5.1 shows all the music tracks and their description. For those pieces 

that have unclear meters, only the most likely meter value or main meter is shown 

on the table. 
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# 
1 
2 
3 
4 
5 
6 
7 

8 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Music I D 
Abstract 1 
Abstract2 
Beethoven 

CanCan 

March 

Minor Swing(Straight) 

Minor Swing(Swing) 

Montuno 

Meter 
4/4 
3/4 
2/4 
2/4 
2/4 
2/4 
2/4 

2/4 

4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 
4/4 

Descript ion 
Full track 
Full track 
Full track 
Base track 
Bass + Accompaniment 
Bass + Accompaniment + Grace notes 
Bass + Accompaniment + Melody + 
Grace notes4 
Bass + Accompaniment + Melody + 
Grace notes5 
Bass + Harmony 
Melody 
Counter-Melody 
Base trackl 
Bassl + Accompaniment2 
Bassl + Accompaniment5 
Accompaniment2 + Bass4 
Bass4 + Accompaniment5 
Bassl + Accompaniment2 +Solo 
Accompaniment2 + Solo +Bass4 
Full track 
Bass trackl 
Bassl + Accompaniment2 
Bassl + Accompaniments 
Accompaniment2 + Bass4 
Bass4 + Accompaniment5 
Bassl + Accompaniment 2 +Solo 
Accompaniment2 + Solo +Bass4 
Full track 
Trackl + Montuno 
Trackl + Montuno + Bass 
Trackl + Montuno + Bass + Melody 

Continued on Next Page... 
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# 
31 
32 
33 
34 

35 
36 
37 
38 
39 
40 
41 
42 
43 

Music ID 

Seven 

Take Five 

Titina 

Waltz 

Meter 
7/4 
7/4 
7/4 
7/4 

5/4 
5/4 
5/4 
5/4 
2/4 
3/4 
3/4 
3/4 
3/4 

Descript ion 
Bass2 
Accompaniment 1 + Bass2 
Bass2 + Accompaniment3 
Accompaniment 1 + Bass2+ Accompani
ments + Melody4 + Melody5 
Bass trackl 
Bass track3 
Bass3 + Accompaniment 
Melody + Bass3 + Accompaniment 
Pull track 
Bass track 
Bass + Accompaniment 
Bass + Accompaniment + Melody 
Melody + Bass accompaniment 

Table 5.1: The list of music tracks used to test the model, which contains 11 different 
pieces and a total of 43 distinct music tracks. 

Motion Data 

Our recorded motion files (motion database in Figure 5.2) are the two-hand move

ments of a dancer, who created the motions intuitively according to the background 

music. We recorded the 3D positions of the two Polhemus sensors, which were at

tached to the two hands of the dancer. The position of a sensor is measured relative 

to the position of a fixed origin. Each motion file is recorded in synchrony with a 

music piece. Table 5.2 shows the motion files and the corresponding music tracks 

to which they were recorded. In this table, the "Music Track # " under "Retrieved 

Music" column is taken from the corresponding # from Table 5.1. 
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Motion 
ID 

232432 
23267 
232234 
231821 
23345 

205138 
20524 
231243 
231351 
231456 
23175 
233147 
23288 
232941 
233522 
23742 
23943 
231121 
23371 
233826 
233958 
23538 
232027 
233234 
23336 

Background Music 
Music ID 

Abstract 1 

Abstract2 
Beethoven 

CanCan 

March 

Minor Swing (Straight Version) 

Minor Swing (Swing Version) 

Montuno 

Seven 

Take Five 

Titina 

Waltz 

Music Track # 

1 

2 
3 

8 

9 

10 

11 
18 

26 

30 
31 
33 
34 
35 

36 

38 
39 

42 

Table 5.2: The list of two-hand movements motion files and the corresponding music 
tracks that they used as background music. 
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5.3 Testing Results 

In this section, we first describe the results of motion music generation, and then 

that of music retrieval using motion queries. With these predefined motion-music 

relationships, we could compare the results of our system with the properly matched 

results and then evaluate the effectiveness of our system. However, the dance motions 

were created based on human perception of the background music. Variations of the 

same music piece or even different music may generate motion recordings with similar 

underlying rhythm. Therefore, there is no absolute answer of right or wrong. A 

motion recording might have been recorded with one music track, but might indeed 

have a better match with another variation of that same music piece at the same 

tempo. Hence, a reasonable goal of the result testing is that the system could retrieve 

at least one of the variations of the music with which the motion file was recorded, or a 

music piece with similar rhythm, rather than the correct music and correct variation 

track. Generally, we can identify music pieces with similar rhythm by listening. 

Technically, those music pieces should have similar tempo or beat sequences to the 

correct track. These results should be interpreted with some caution, as described in 

Section 5.4. 

5.3.1 Motion Music Generation Results 

During the motion event extraction process, we specified the following parameters: 

time interval AT (see Section 3.1.2), number of consecutive frames k (Section 3.1.6), 

and several thresholds (Section 3.1) to extract events from the motion signal. Cur-
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rently, the setting of window size or threshold value is based on empirical trials to 

optimize the performance. However, tuning the threshold setting and window size 

may result in variation of generated motion event number and occurrence time. 

Figure 5.4 and 5.5 show two motion event vectors generated from the same mo

tion recording but with different settings of the parameter AT when calculating the 

movement directional change angle, and different values of k when detecting segments 

during which angular velocity remains constant. This example shows that the system 

generates different motion event vectors under different settings; consequently, the 

resulting motion music will have different notes. 

These different music notes mean that the detected motion music beat sequences 

will be different as well. The difference could be slight in some cases but more 

significant in some other situations. 

Figure 5.6 shows an example of different motion music beat sequences of the same 

motion file (CMU motion capture data #0201). One beat sequence is displayed by red 

dots and the other one by blue "X"s. The two motion music files used to track these 

beat sequences are generated based on motion event vectors of different parameters 

settings shown in Figure 5.4 and 5.5 respectively. 

Figure 5.7 shows another motion file's (CMU motion capture data #0912) two 

beat sequences extracted from its two different motion-generated music pieces. The 

parameters settings which are used to calculate its motion event vectors are the same 

as the previous example respectively. As we can see from the example of motion data 

#0201 (Figure 5.6), the dot sequence basically matches the "X" sequence, which 
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Figure 5.4: Motion event vector of CMU motion capture data 0201, with the AT set 
to 0.15s, k set to 10 frames. Event levels are denned according to Table 3.2 
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Figure 5.5: Motion event vector of CMU motion capture data 0201, with the AT set 
to 0.1s, k set to 12 frames. Event levels are defined according to Table 3.2 
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means the beat sequence of one motion music is basically the same with the other 

one. However, in the second example(Pigure 5.7), the two beat sequences barely 

match each other, and the "X" sequence has a higher density. Hence the two versions 

of motion data #0912's motion music have different beats. Moreover, one version of 

the motion music has faster beats than the other one. 

The above examples display the situation that with different parameter settings, 

the extracted underlying rhythm would be different for the same motion file, and 

the significance of difference varies according to different motion data. Based on our 

experiment, motion signals with obvious repetitive movement patterns will have more 

robust beat sequences than free style motion recordings. That is to say, motion files 

with cyclic signals are more likely to generate beat sequences with slight difference 

under different parameter settings. On the other hand, motion files with unclear 

movement patterns are more likely to have beat sequences with significant differences 

detected using different parameters. Although there is the fact that the music beat 

tracking algorithm won't be able to detect the exact beat sequence for each music 

piece, these examples reveal the uncertain factor of the system. Further discussion is 

in Section 5.4. In practical experiments, motion events are extracted under the same 

parameters settings. 

The system is capable of handling a wide range of motions; our analysis included 

human-character motions, human-character two-hand movement motions and single 

object motions. Figure 5.8, 5.9, 5.10 and 5.11 show the motion tracks in 3D space with 

detected motion music beats of the motion-generated music plotted at the correspond-
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Figure 5.7: Detected motion music beats of CMU motion capture data #0912. Blue 
crosses denote the beats of motion music generated from motion event vector with 
A T = 0.15s and k = lOframes, and red dots refer that generated with A T = 0.10s 
and k = 12 frames 
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ing places. Blue stars in those figures refer to the motion music beats. Figures 5.8 

and 5.9 draw the root tracks of the human-character with beats, Figure 5.10 and 5.11 

plot one of the hand tracks with beats. 

Examining those figures, the moving object's motion track may not reflect the 

motion beats in an obvious way, i.e. the beats do not necessarily occur at either 

peaks or bottoms of the motion curves. There are two reasons for this, 

1. In a picture, only a certain joint's motion track is plotted, which may not fully 

represent the motion features of other joints. While the beats of the motion 

data are extracted from the movement of all joints, they do not necessarily 

appear at peaks or bottoms of every joint's track. 

2. In our system, motion events, that is, the corresponding music notes are de

tected using several motion characteristic extraction methods (described in Sec

tion 3.1). There are other factors determining the occurrence of motion events— 

and hence motion beats— than the position of one joint. For example, direc

tional change, minimal velocity and acceleration all may contribute to motion 

events. The shapes of acceleration or moving directional change curve are not 

the same as the joint's position curve. Therefore, the motion curve of a sin

gle joint cannot fully highlight all of the motion data 's features, as well as the 

occurrence of motion beats. 
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Figure 5.8: Motion track of CMU motion capture data #0201's root node with de
tected motion music beats 
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Figure 5.9: Motion track of CMU motion capture data #0912's root node with de
tected motion music beats 
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Figure 5.10: Human-character two-hand movement motion data #20524's left hand 
motion track with detected motion music beats 

Figure 5.11: Human-character two-hand movement motion data #20524's right hand 
motion track with detected motion music beats 
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5.3.2 Music Retrieval Results 

After applying the BeatRoot beat tracking algorithm, all the motion music and can

didate music pieces are represented by corresponding beat sequences. We tested our 

model with the three music retrieval methods (described in Section 4) and the results 

are shown below. Table 5.3 displays the result of using mutual information combined 

with a window-based temporal parameter, Table 5.4 shows the music retrieval results 

of applying the K-S test, and the results of the rhythmic comparison algorithm are 

listed in Table 5.9. In these tables, the Motion # is the same with that in Table 5.2, 

and the retrieved "Music Track #" is the corresponding music piece's # in Table 5.1. 

Comparing the retrieval results of Table 5.3 with the motion recordings' back

ground music in Table 5.1, we note there are seven correct matches out of 25 motion 

data. By correct match we mean that the retrieved music file is any one of the vari

ations of the music piece, to which the motion was recorded. The detailed result 

statistic is listed in Table 5.5. On the list of the query motion's possible matches, 

although the correct music pieces are ranked high in most of the time, this method 

is not likely to find out the exact matches. By exact match we mean the method not 

only retrieves the correct music, but also the correct variation track of that music 

piece. 

The same analysis has been done on the music retrieval results using K-S test. The 

statistics are listed in Table 5.6. Compared with the results of mutual information 

with a window-based temporal parameter, the K-S test not only provides a higher 

correct match number, but also the exact match rate is improved. This is because 
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Query 
Motion ID 

232432 
23267 
232234 

231821 

23345 
205138 
20524 
231243 
231351 
231456 

23175 

233147 
23288 

232941 

233522 
23742 
23943 
231121 

23371 

233826 
233958 
23538 

232027 

233234 
23336 

Retrieved Music 
Music ID 
Montuno 

Minor Swing (Straight Version) 
Minor Swing (Straight Version) 

Beethoven 
Minor Swing (Straight Version) 

March 
CanCan 
CanCan 
March 

Minor Swing (Swing Version) 
Take Five 

Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Take Five 
CanCan 

Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Waltz 
Seven 
Seven 

Montuno 

Seven 

Titina 
Minor Swing (Straight Version) 

March 
Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

March 
Minor Swing (Swing Version) 

Music Track # 
30 
18 
18 
3 
18 
11 
8 
8 
11 
26 
38 
18 
26 
38 
8 
18 
26 
42 
34 
34 
30 
33 
34 
39 
18 
11 
18 
26 
11 
26 

Table 5.3: Test results using mutual information incorporated with a window-based 
temporal parameter 
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Query 
Motion ID 

232432 

23267 
232234 
231821 
23345 
205138 
20524 

231243 

231351 

231456 

23175 

233147 

23288 

232941 

233522 
23742 

23943 

231121 

23371 

233826 
233958 
23538 
232027 
233234 
23336 

Retrieved Music 
Music ID 

Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Take Five 
Titina 

Beethoven 
Waltz 
Waltz 
Waltz 

March 

March 

March 

March 
Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Montuno 
Take Five 

Seven 

Seven 

Take Five 

Take Five 
Take Five 
Take Five 

Titina 
Waltz 
Waltz 

Music Track # 
18 
26 
36 
39 
3 
42 
42 
42 
9 
10 
11 
10 
9 
11 
10 
18 
26 
18 
26 
18 
26 
30 
38 
31 
34 
31 
33 
35 
36 
38 
38 
38 
36 
39 
42 
42 

Table 5.4: Test results using K-S test 
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Incorrect Match 
Correct Match 
Exact Match 

Total Number of Motion File 

Number of Matches 
18 
7 
4 
25 

Table 5.5: Music retrieval results of using mutual information incorporated with a 
window-based temporal parameter 

Incorrect Match 
Correct Match 
Exact Match 

Total Number of Motion File 

Number of Matches 
7 
18 
11 
25 

Table 5.6: Music retrieval results of using K-S test 

a large portion of the retrieved results contain multiple music tracks. In K-S test 

music retrieval process, several music tracks can be selected if they all have the same 

(highest) probability that the hypothesis is true. 

To improve the result of music retrieval, we considered combining mutual infor

mation with a window-based temporal parameter and K-S test together, so that the 

two methods could complement each other. Therefore, we use K-S test in the first 

stage on all the candidate music tracks to select the ones that have the probability 

to match the motion, and then apply the mutual information with a window-based 

temporal parameter method. Hence we could further compare the probabilities of the 

selected music tracks matching the motion signal rhythmically and narrow down the 

final retrieval range (having single music piece as retrieval result). This method has 

been implemented and the results are shown in Table 5.7. The corresponding result 

analysis is displayed in Table 5.8. 
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Query 
Motion ID 

232432 

23267 
232234 
231821 
23345 

205138 
20524 

231243 
231351 
231456 
23175 
233147 

23288 

232941 

233522 
23742 
23943 
231121 
23371 
233826 
233958 
23538 

232027 

233234 
23336 

Retrieved Music 
Music ID 

Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Minor Swing (Straight Version) 
Minor Swing (Straight Version) 

Beethoven 
Waltz 

CanCan 
CanCan 
March 
March 
March 
March 

Minor Swing (Straight Version) 
Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Montuno 
Seven 
Seven 
Seven 
Seven 

Take Five 
Take Five 
Take Five 

Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Waltz 
Waltz 

Music Track # 
18 
26 
18 
18 
3 
42 
8 
8 
11 
10 
10 
9 
18 
18 
26 
18 
26 
30 
34 
34 
33 
34 
35 
35 
35 
18 
26 
42 
42 

Table 5.7: Test results using mutual information with a window-based temporal pa
rameter combined with K-S test 
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Incorrect Match 
Correct Match 
Exact Match 

Total Number of Motion File 

Number of Matches 
6 
19 
11 
25 

Table 5.8: Music retrieval results of mutual information with a window-based tem
poral parameter combined with K-S test 

From the numbers in Table 5.8 we can see that, applying the music retrieval ap

proach of combining mutual information with a window-based temporal parameter 

with K-S test on our testing data, although the number of exact matches doesn't 

increase, the number of correct matches increases and the situation of multiple re

trieved music tracks in Table 5.4 has been reduced. As explained in Section 5.3, the 

method of combining mutual information and a window-based temporal parameter 

with KS test performs better than each of them individually. 

Similarly to the previously displayed three music retrieval methods, we analyze the 

results of rhythmic comparison algorithm and list the analysis results in Table 5.10. 

These data show that the number of correct matches of rhythmic comparison results 

is lower than that of the K-S test and K-S test combined with mutual information 

and a window-based temporal parameter, but most of the correctly matched results 

are also exact matches. 

Finally, the results of music retrieval by using the motion signal as queries are 

represented by creating motion animations with retrieved music tracks playing as 

background music. When integrating the motion recording with a music track, we 

either concatenate duplicates of the music piece, or truncate the music, depending on 
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Query 
Motion ID 

232432 

23267 
232234 
231821 
23345 
205138 
20524 

231243 

231351 

231456 

23175 

233147 

23288 

232941 

233522 
23742 

23943 

231121 

23371 

233826 
233958 
23538 
232027 
233234 
23336 

Retrieved Music 
Music ID 

Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Take Five 
Titina 

Beethoven 
Waltz 
Waltz 
Waltz 

March 

March 

March 

March 
Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Minor Swing (Straight Version) 
Minor Swing (Swing Version) 

Montuno 
Take Five 

Seven 

Seven 

Take Five 

Take Five 
Take Five 
Take Five 

Titina 
Waltz 
Waltz 

Music Track # 
18 
26 
36 
39 
3 
42 
42 
42 
9 
10 
11 
10 
9 
11 
10 
18 
26 
18 
26 
18 
26 
30 
38 
31 
34 
31 
33 
35 
36 
38 
38 
38 
36 
39 
42 
42 

Table 5.9: Test results using rhythmic comparison algorithm 
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Incorrect Match 
Correct Match 
Exact Match 

Total Number of Motion File 

N u m b e r of Matches 
17 
8 
7 

25 

Table 5.10: Music retrieval results of rhythmic comparison algorithm 

whether the music is shorter or longer than the target motion. 

5.4 Discussions 

Extracting the structural information from rhythmic signals such as human motion 

or regulated swinging object movement is a difficult problem, because these signals 

contain various patterns and representations which make the candidate beats ambigu

ous. Besides these difficulties of trying to extract the structural information, there 

might not always be a unique interpretation of the positions of rhythmical events. 

To recognize these patterns and learn the potential rules, we need to test different 

processing schemes to different data types, and discover a generally effective method. 

The procedure of extracting these patterns requires manual control over some pa

rameters, such as in data pre-processing and threshold setting, which would become 

significant conditions that affect the detection results. 

From the experimental data, we found several important parameter and threshold 

settings that can make a difference to the preliminary results and moreover, influ

ence subsequent computations. These parameters are all independent and applied 

in different stages of the framework individually. Tuning the values of the following 
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parameters will result in different motion event vectors and therefore different music 

retrieval results: 

• The filter size u>i. We use this to smooth the original data during the data pre

processing phase, as described in Section 2.2. It contributes to the rhythmic 

motion signal analysis and motion event extraction. In practice, we need to 

tune the filter size so that it is large enough to smooth out the noise, while 

small enough to keep the possible events detectable. The size of wi will directly 

influence the amount of extracted motion events, and further, may influence the 

motion rhythmic information detection process. 

• The time window, AT". This is used when calculating the angle between velocity 

vectors and generating the directional change curve. Variation of its length 

would result in different numbers and values of peaks in the directional change 

curve, and consequently different number of events which can be extracted from 

the curve. Its length could also influence the calculation of constant angular 

velocities motion events, which is also based on the motion directional change 

over A T . As described in Section 3.1.2, by enlarging the length of A T , we 

could obtain more obvious peaks and higher peak values. 

• The number of continuous frames k for extracting constant angular velocities 

motion events (Section 3.1.6). We calculate the differences of movement direc

tional changes for k consecutive frames, and if all of the values are less than a 

threshold, we mark all k of those frames as having constant angular velocities 
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(one type of our motion events). The larger k is, the fewer the number of such 

regions of constant angular velocities motion events. However, h should be kept 

large enough so that the motion event over the time duration of k frames is 

significant. 

• Moving analysis window u>2 as introduced in Section 4.1. This is used to shift 

the music beat vector when comparing and aligning it with the motion music 

beat vector during the music retrieval process (when using mutual information 

with a window-based temporal parameter method). Currently, w2 is set to be 

the average beat length of the current candidate motion music beat vector. 

Variation of W2 could result in different music retrieval results (when using 

mutual inforni2ition with a window-based temporal parameter). 

• Analysis window W3, for calculating the rhythmic comparison music query score 

in Section 4.3. If W3 is too small, we may neglect the contribution of good 

rhythmic matches that are "close but not close enough". If w3 is too large, then 

too many rhythmic events may all be considered "good matches", and we won't 

discriminate sufficiently between them. 

Currently, the values of all the parameters discussed above, which are listed in 

Table 5.11, are determined by experimentation. Other parameter settings in our 

system are influential on the final results as well, for example the thresholds used to 

extract different levels of motion events, which is an important factor of motion music 

generation. 
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Variable Name 
W\ 

AT 

k 

w2 

w3 

Place Applied 
Data Pre-processing 
(Section 2) 

Movement directional 
change angle calcula
tion (Section 3.1.2) 
constant angular 
velocity calculation 
(Section 3.1.6) 
Music retrieval by mu
tual information with 
a window-based tem
poral parameter (Sec
tion 4.1) 
Music retrieval by 
rhythmic comparison 
(Section 4.3) 

Value 
20 frames for human-
character two-hand 
movement motions; 
150 frames for CMU 
motion capture data 
0.15s 

10 frames 

length of the average 
motion beats 

0.15s 

Table 5.11: Analysis windows and thresholds setting 
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Other than those crucial parameters, the beat tracking algorithm BeatRoot may 

also require manual tuning under some situations. As Dixon described [8], some

times the BeatRoot system loses synchronization with the beat. For example, some 

Jazz music is full of variations and the rhythm changes from time to time, or the 

music changes in tempo. The beat tracking algorithm cannot always adjust its beat 

detection to these irregular patterns, hence, the manual control is necessary to help 

detecting beats more accurately. An example is shown in Figure 5.12, in which the red 

dots and blue crosses are two sequences of beats detected by BeatRoot for the same 

music piece "Abstract". Blue crosses refer to the beats detected by the algorithm 

originally and Red dots are the beat sequence detected with manual tuning. 

As was mentioned in Section 5.3, a reasonable goal of the result testing is that the 

system could retrieve one of the variations of the music with which the motion file was 

recorded, or a music piece with similar rhythm. However, it is still difficult to measure 

the system's performance. Because the motion data and music are both perceptual, 

currently we evaluate whether a match is good or not by watching the animation. 

Good matches can be distinguished comparing to the "bad matches" (randomly se

lected music piece). In spite of that , some good matches might be rejected because 

of the observer's opinion. Hence, merely rely on those predefined "motion-to-music" 

relationships to categorize matches is not nearly enough. Those music pieces that 

could be good matches to a particular query motion but not its background music 

will be considered "incorrect matches" in the results summarization. To evaluate the 

system's performance more accurately, we could analyze the candidate music's rhyth-
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mic relationships in advance to find music that is rhythmically similar. Hence each 

retrieved music could be categorized to see whether it belongs to the "good-match 

category" or not. 
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Figure 5.12: Comparison between originally detected beats (blue crosses) by "Beat-
Root" and beats detected with manually tuning (red dots) 
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Chapter 6 

Conclusion and Future Work 

We have proposed a novel approach for querying music databases by using recorded 

motion input. This idea is demonstrated based on the assumption that the given 

motion signal can be related to an underlying rhythmic pattern similar to the rhythm 

of music. 

Our scheme extracts the motion signal's rhythmic information as well as the music 

beats, and then with several similarity comparison methods, the music piece with 

highest rhythmic similarity score is retrieved as the match for the motion query. 

Given the captured motion signal, our scheme captures the significant movements 

and special patterns to detect "events" in the motion and then create a motion 

event vector. We build up a mapping relationship between motion event vector and 

MIDI music to compose motion music files. Together with the original music in the 

database, motion rhythm information can be extracted from those motion music files. 

In this thesis, we defined the notion of motion events (3.1), displayed five dif-
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ferent methods to explore motion characteristics and adopted four of them in the 

implementation to extract rhythmic motion events. We heuristically differentiate the 

motion events into six levels by their degree of significance. The thresholds which 

are used to distinguish different levels of events are hand tuned based on our expe

rience. This scheme can successfully detect apparent movements for simple motions 

like human-character walking, or single ball bouncing. However, compared with the 

unlimited patterns and characteristics in human-character movements, our extracted 

motion features are not sufficient. We are planning to extend our system to include 

more parameters to capture more motion features and more patterns of movements. 

For human-character motion data, different feature extraction schemes regarding dif

ferent parts of the body and relationship analysis between different joints could be 

added. Currently, our system only takes the human-character's hands, feet and root 

node into consideration. Analysis could also be extended to include more joints of 

the body, for example knee, elbow and head. Moreover, there could be more detailed 

definitions on different levels of motion events. We would like to add more parameters 

and conditions rather than separate motion events with a threshold value. 

Another aspect to be explored is the corresponding features between the motion 

and music. Research has been done indicating the relationship between human motion 

and background music [52]. Currently, our scheme converts motion event vector 

to motion music directly with the "event-music note" mapping relationship (Table 

3.1). More subtle and sophisticated music could be generated through learning the 

perceptual features contained in the motion signal. 
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Our work could be used to automatically match the query motion recording with 

a music piece. This idea could be extended to the inverse direction of querying a 

motion database with music files. Our system focuses on the comparison between 

overall motion/music rhythms but ignores the various tempo or meter changes in 

the middle of the music or motion. One possible future direction is to break the 

rhythmic analysis down into small sections of the music recording and of the motion. 

The retrieval of music/motion will be based on the global rhythmic similarity but 

the retrieved piece's play back rate can be adjusted to match with the query's partial 

tempo changes. Ultimately, our framework could be applied to synchronize music 

with video data (once similar features can be extracted from a video stream). 

Content-based audio/video retrieval is a complicated and relatively new area that 

continues to be explored. The idea of detecting the rhythmic information from motion 

data is still new. Among the numerous possible solutions for this question, this work 

is only intended to demonstrate the feasibility of our proposed framework and ideas. 

There are various potential future directions, for which more extensive experiments 

and research will need to be conducted. 
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Appendix A 

Beat tracking algorithm 

This section briefly introduces the audio beat tracking method called "BeatRoot", 

based on the published paper by Dixon [7]. BeatRoot is an interactive beat tracking 

system written in Java. It has two interacting processes to detect the perceptual 

occurrence of beats: tempo induction, and beat tracking. The architecture of the 

system is shown in Figure A.l . 

The system takes digital audio as input, and first processes the data to detect 

salient rhythmic events, which can be represented by musical notes. In the newest 

version of BeatRoot, an onset detector is applied to find peaks in the spectral flux. 

Then, a clustering algorithm is applied to calculate the clusters of inter-onset intervals 

(IOIs). Similar IOIs, simple integer multiples or fractions of each other representing 

various musical units, are also grouped for further analysis. With the information 

of groups and number of IOIs, clusters are ranked and a list of tempo hypotheses is 

generated. 
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Audio Input 

1 
Onset Detection 

IOI Clustering 

Cluster Grouping 

Temp© Induction Subsystem 

Beat Tracking Agents 

Agent Selection 

Beat Tracking Subsystem 

T 
Beat Track 

Figure A.l: System architecture of BeatRoot [7] 

The beat tracking algorithm uses a multiple-agent architecture to rank various 

possible beat sequences to the music simultaneously. Each agent representing a tempo 

hypotheses, and is initialized with a tempo (rate) and an onset time, which defines 

the phase of beat sequence. Music is processed sequentially with the agents predicting 

the next beat times and matching them to the music. The scores of those matching 

are kept by each agent and evaluated based on how well the predicted beats match 

the musical events. At the end, the beat hypotheses with highest ranked score are 

selected as the solution. 
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