
A Comparison of Physical Random Number Generators

Winner, Science

Author: Logan Francis

Editor's Note: The limitations of SMU's content management system make it impossible to properly

represent some mathematical symbols and equations used in this paper. To read it as the author

intended, please contact The Writing Centre for a copy of the print edition of Afficio Vol. 2.

Abstract

Good random number generators (RNGs) are required for many applications in science and industry.

Random numbers can be created in two ways: with a computer algorithm known as a pseudo-random

number generator (PRNG), or by measuring physical phenomena which behave randomly, such as

quantum mechanical or chaotic systems. However, PRNGs are deterministic in nature and cannot

produce truly random output, while physical RNGs can. Three physical RNGs were constructed: a Chua

circuit, an electrical circuit which exhibits chaos; an avalanche circuit, which produces a noisy electrical

signal; and a radioactive decay counter. Each RNG produced output in the form of ASCII files containing

0s and 1s. The randomness of the data was assessed using the open source statistical test suite rngtest.

Introduction

Random number generators (RNGs) are ubiquitous in science and mathematics, used in applications

ranging from physics simulations to cryptography to bioinformatics. For most applications, a pseudo-

random number generator (PRNG) is employed. A PRNG uses an algorithm to produce a sequence of

numbers which appear to be random from input seed numbers, which are used to calculate the first

terms in the sequence [1]. While PRNGs are very easy to implement in a piece of software, they have

several major drawbacks. The first problem is if the seed numbers are known, the entire sequence of

random numbers can be replicated by supplying them to the PRNG. This is a problem in cryptography,

where knowing these seed numbers could allow an interloper to decode an encrypted file. Second, only

a finite sequence of random numbers is produced by a PRNG, the length of which is called the period.

[2]. After one period of random numbers has been produced, a PRNG typically continues from the

beginning of the sequence. This could be a problem for a computer simulation using Monte Carlo

methods, which use random numbers to perform tasks such as integration of functions. Many PRNGs

today have longer periods to avoid this problem, such as the Mersenne Twister PRNG, which has an

extremely long period of 219937 -1 [3]. Worst of all, PRNG output does not necessarily behave very

randomly at all. The RANDU PRNG developed in the early 1960s was notoriously terrible: if triplets of

consecutive numbers produced by RANDU are plotted in 3-D, the output forms the pattern of the planes

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Saint Mary's University, Halifax: Institutional Repository

https://core.ac.uk/display/354992038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

seen in Figure 1. Qualitatively, one would expect a plot of the same nature produced by a good RNG to

resemble white noise and feature no obvious patterns.

FIG. 1. A 3-D plot of triplets of sequential numbers in the range [0,1] produced by the flawed RANDU

PRNG. [1]

When a PRNG is inadequate for the above reasons, a hardware or physical RNG is used instead. Physical

RNGs make measurements on a physical process in order to produce truly random numbers. While they

do not have a period or require seed numbers, physical RNGs are generally slower than PRNGs because

they are limited by how fast measurements can be made and processed, whereas a PRNG is limited only

by the speed of the computer running it.

The randomness of a physical RNG is guaranteed by the physics of the system on which it performs

measurements. In most cases, the randomness is ultimately caused by making measurements on a

quantum mechanical system. For example, the position of an electron is described by quantum

mechanics using a wave function that represents the probability of an electron being in a certain

position in space [4, p.14]. The position of the electron is unknown until the measurement is made and

cannot be predicted (i.e., it is random); only the distribution of the result of many measurements can be

known.

Another possible source of randomness is to measure a chaotic system. While a chaotic system behaves

in a deterministic way, sensitivity of initial conditions limits how the behaviour of the system can be

predicted. Only if the initial conditions of the system are known exactly can the evolution of the system

be predicted for all time. Since this is impossible, measurements made on a chaotic system whose

evolution cannot be predicted can be used to produce random numbers.

The randomness of a RNG can be assessed using statistical tests to examine whether or not the output

behaves randomly. For example, a good RNG should produce 0s and 1s with equal probability, and over

a long period of time, output a roughly equal amount of each.

Experiment

A set of three physical RNGs each based on a different physical system were constructed to assess the

quality of their output.

Avalanche Noise RNG

Avalanche breakdown is a phenomenon that creates noise in electrical circuits known as avalanche

noise.Avalanche breakdown occurs in a semiconductor with a large voltage gradient. There is a chance

that an electron in the semiconductor may break free from an atom, and begin moving towards the

positive applied voltage in the circuit, while the positive electron hole left behind will move towards the

negative terminal. If the now free electron has a large enough kinetic energy, it may knock additional

electrons free, creating new pairs of electrons and electron holes. This can cause a chain reaction,

resulting in a current fraught with avalanche noise suddenly flowing through the semiconductor [5].

Since the probability of electrons around an atom in the semiconductor being removed in a collision

with a free electron is quantum mechanical in nature, this avalanche noise could potentially be used as a

source of random numbers.

An avalanche noise RNG was created on a bread board and connected to an Arduino Mega 2560

microcontroller, using the design by Rob Seward in Figure 2 [6]. The Arduino board was in turn

connected to a PC running Windows 7, which was used for recording data and exporting software to the

Arduino board. The circuit worked by producing avalanche noise at the junction between the two

transistors [6], then amplifying the signal using the third transistor before finally sending it to the analog

input pin of the Arduino board. The Arduino board ran a piece of software which wrote a 1 or 0 to a

output console in the Arduino development software on the PC when the voltage was above or below

the median voltage in the circuit respectively, where the median was determined by an automatic 10

second calibration test [6] at the beginning of each run.

A total of eight runs of data were collected from the circuit, each recorded over a period of roughly a

half hour. Data from the console was copied to a text file at the end of each run. The length of a data set

was limited by the stability of the software used to interact with the Arduino board; after about 40

minutes, the serial port monitor used to record data would crash, and any data stored in it would be

lost. However, the data sets were still much larger than the lower limit of 20,000 required by the

program used for analysis.

FIG. 2. Circuit Design for the avalanche RNG. The boxes on the side are the input pins of the Arduino

board.

Chua Circuit RNG

A Chua circuit is a simple electric circuit which exhibits chaotic effects. It models the set of non-linear

differential equations

where (x) is a nonlinear function. Plotting the z state variable versus the x state variable on an

oscilloscope produces the pattern shown in Figure 3, a strange attractor. A strange attractor is a region

of phase space (the space formed by the variables in the system of equations) that the chaotic system

tends to evolve to.

The Chua circuit was constructed on a breadboard using a design by Giorgio Vazzana [7], and calibrated

using a potentiometer in the circuit until the strange attractor shown in Figure 3 appeared on the

Tektronix TDS 1001B oscilloscope connected to the nodes in the circuit representing the z and x state

variables.

Two methods were used to produce random output. An oscilloscope was first used to sample the

waveform of the z state variable with a 200ms sample interval. The output spreadsheet was saved to a

flash drive connected to the oscilloscope once the maximum amount of data (2200 sample points) was

recorded. A limit was placed on the size of the data sets since once the oscilloscope recorded more than

2200 points, it began to write over the old points. A total of 18 data sets of 2200 points each were

recorded this way. The Libre Office Calc spreadsheet program was used to copy the voltage column of

the spreadsheet to a text file.

This system was later upgraded to perform the sampling by connecting the same points in the circuit to

a FLUKE-8845a multimeter, in turn connected to a Windows 7 PC running a labview program which

recorded the signal.

To transform the output to a binary sequence, the Libre Office Calc spreadsheet program was used to

copy the voltage column to a text file. This data was then analyzed with a simple FORTRAN program

which wrote a 1, 0, or nothing to disc for positive, negative, and zero voltages respectively.

FIG. 3. An oscilloscope plot of the z state variable versus the x state variable of the Chua circuit used for

the Chua circuit RNG. Strange attractors are located in the centre of the disc-shaped regions.

Radioactive Decay RNG

The process of radioactive decay is described by quantum mechanics. Taking alpha decay as an example,

the alpha particle is held within the nucleus by a region of lower nuclear binding potential energy [4,

p.334]. For the alpha particle to be ejected from the nucleus, it must tunnel through a region of higher

potential energy, where it will then be repelled from the nucleus by the Coulomb force, since both an

alpha particle and nucleus are positively charged. The alpha particle has a probability of tunneling

through the barrier, which can only be used to tell how likely the particle is to escape in a given time

interval, but not at what time it actually will escape.

The experimental setup for the radioactive decay RNG consisted of a Geiger Counter connected to a

Data Acquisition Unit (DAQ), which was in turn connected to the same PC used for the avalanche RNG,

running a labview program to collect the data. Both background radiation and a Caesium-137 source

were used with the Geiger counter to provide radioactive decay. The labview program received input

from the DAQ in the form of a count of the number of radioactive decays. A timer was constructed in

the labview program which recorded the time of each decay and wrote it to a text file as it occurred. Six

sets of data were collected, 3 of which used background radiation, and 3 of which used a radioactive

source.

A program was written in FORTRAN to convert the decay times into binary data using the algorithm for

the Hotbits [8] radioactive decay RNG as a basis:

1. From the first 4 detected decays, generate two time intervals T1 and T2 by subtracting the time

of the second decay from the first, and the time of the fourth decay from the third.

2. Compare the lengths of T1 and T2 as shown in figure 4

3. If T2 > T1, write a 1 to disc. If T2 < T1, output a 0 to disc. If T2 = T1, output nothing and proceed to

the next step.

4. Reverse the direction of the comparison between T1 and T2. This step prevents output from

being biased towards the production of zeros or ones.

5. Select the next 4 decays and repeat from step 1 until end of file.

The output of this FORTRAN program was saved as ASCII text files.

FIG. 4. Time intervals between decays used to produce random output for the radioactive decay RNG

[8].

Bias Removal

Many physical RNGs exhibit a bias towards producing more 1s or 0s in their output stream. This is

caused by the difficulty of balancing the physical phenomenon measured such that the probability of

emitting a 0 or 1 is equal. For example, the Chua circuit may be biased because of the signal spending

more time around one strange attractor than another.

Fortunately, if the physical RNG otherwise behaves randomly, this bias can be easily corrected. Von

Neumann bias removal removes all bias from a random sequence using the following algorithm [9]:

1. Choose the next pair of successive, non-overlapping

2. If the bits in the pair are equal, discard them, and go to step 1.

3. If the bits are not equal, output the first bit in the

4. Go to step 1.

The downside to the Von Neumann algorithm is that it reduces the size of the data set; after applying it,

the resulting data set is at most 25% of the size of the original set.

The bias removal was implemented as described using a simple FORTRAN program. While it was used to

remove bias from the Chua and avalanche RNGs, it was not needed for the radioactive decay RNG

because its algorithm incorporates bias removal by virtue of the comparison reversal in its fourth step.

Random Output Analysis

All of the aforementioned physical RNGs produce output in the form of ASCII files containing sequences

of 0s and 1s. The software rngtest used to perform further analysis of this data required input in a

binary format, the conversion of which was done by the c program asci_to_bin [7] written by Giorgio

Vazzana. rngtest implements five statistical tests required by the American National Institute of

Standards and Technology (NIST) for cryptographic security standards. It performs these five tests on

blocks of 20,000 [10] bits at a time and gives a pass or fail rating to each block for each test [11].

The continuous runs test is a basic test that is run on every set of blocks passed to rngtest. It is failed if

any block in the sequence is identical to another, and is intended to catch a total failure of the RNG.

The long runs test is passed if there are no runs of 1s or 0s of length 34 or greater, which are extremely

unlikely (p = 1/234) and probably indicate a malfunction of the RNG.

The monobit test checks for bias in the output of the RNG by comparing the total number of 1s and 0s in

the sequence. A RNG should have equal probability of producing a 1 or 0, otherwise the RNG is biased

towards a given output. The monobit test is considered passed if the number of is 1s in the range 9654

to 10346.

The poker test simulates the drawing of idealized poker hands from a deck of cards. This is done by

dividing the block of 20,000 points into 5000 4 bit hands, and counting the number of each of the 16

possible hands that occur. A chi-squared test is then performed on the observed distribution of hands,

which compares the observed distribution of hands to the predicted one and checks if the probability of

this distribution occurring is reasonable [12, p. 39]. The test takes the form

where f(i) contains the number of each combination of hands. The test is considered passed if 1.03 < <

57.4.

The runs test counts the number of sequences of consecutive 1s and 0s and checks if the count of runs

of a given length is normally distributed. For example, the sequence 10001110000 contains two runs of

length 3, and a single run of length 4. For the block of 20,000 bits used by rngtest, the counts of runs of

both 1s and 0s must fall within the range specified in Table I to pass this test.

Results and Discussion

Every RNG tested passed the continuous runs and long runs test, indicating that no generator was failing

by producing only a stream of 1s or 0s. The results of the monobit, poker, and runs tests are summarized

in Table II. Much more data was collected from the avalanche RNG than the Chua and radioactive decay

RNGs because of its relatively high output rate; in a typical half hour run, the avalanche RNG would

produce 500,000 bits of output, the Chua RNG, 5000, and the radioactive decay RNG, 10,000.

The avalanche RNG with bias removal implemented passes every test of randomness. The results of the

tests on 25 blocks of data from the avalanche RNG without bias removal are shown in Table III. Here, the

avalanche RNG fails at least one of the monobit, poker, or runs tests in 13 of the 25 blocks. Bias removal

is necessary for the avalanche RNG because the output of a 1 or 0 depends on comparison of the

present voltage with the median voltage calculated during a calibration step before taking data. The

median voltage could drift while taking data, resulting in biased output from the generator. A better

procedure for reducing bias could be to update the median voltage used for comparison in another

calibration step after a certain interval of time or amount of output.

TABLE 1. Criteria for passing the runs test in rngtest [11].

Length of Run Passing Range of Number of Runs

1 2,267 -2,733

2 1,079 – 1,421

3 502 – 748

4 223 – 402

5 90 – 223

6 90 – 223

The two blocks of data analysed for the Chua circuit without bias removal failed the monobit, poker, and

runs tests. With bias removal, data sets from the Chua circuit no longer failed the monobit test, but

continued to fail the poker and runs tests, indicating that the output was not truly random rather than

merely biased. Relatively little data was available for testing from the Chua circuit because of the

sampling interval of 200ms used. This interval translates to an output rate of 18,000 bits per hour before

bias removal, which reduces the maximum output rate to only 4,500 bits per hour. To determine what

went wrong with the Chua circuit, it would be useful to examine the frequency spectrum of the z state

variable. A randomly fluctuating signal would be expected to contain an even mix of all frequencies. Any

periodic variation in the signal would show result in a spike at a corresponding point in the frequency

spectrum. It would also be helpful to see if changing the sampling interval has any effect on the

randomness of the output. Decreasing the sampling interval would be useful for increasing the output

rate of the Chua circuit once it is known to produce truly random output.

The data set for the radioactive decay RNG using a Cs-137 source was produced by merging three

separate runs to meet rngtest's minimum requirement of 20,000 bits per block. All 5 blocks in the set

passed all tests of randomness. Not enough data was collected from runs with only background

radiation to meet rngtest's minimum requirement because of the very low rate of detection. The output

rate of the RNG could be improved by using a more radioactive (but potentially more dangerous) source

or a more sensitive Geiger counter.

Conclusions

Of the three methods of producing random numbers tested, the avalanche noise circuit with bias

removal reliably produces random numbers at the highest output rate. The output from the Chua circuit

without bias removal failed to pass the monobit, poker, and runs tests. The addition of bias removal

caused the same data sets to pass the monobit, but still fail the poker and runs tests. Since it is unknown

exactly why the Chua circuit failed to produce random output and little data was available for analysis,

the Chua circuit cannot be said to be unsuitable for producing random numbers in general without

further testing. The data from the radioactive decay RNG passed all tests of randomness, but produced

output approximately 50 times slower than the avalanche RNG. However, the need for a radioactive

source and Geiger counter makes it less practical to implement than the avalanche and Chua circuits,

which require only simple electrical components.

TABLE II. Results of the monobit, poker, and runs tests performed by rngtest.

Data Set Set Length (bits) Blocks Number of Test Failures Successful Blocks Failed Blocks

 Monobit Poker Runs

Avalanche RNG run 1 221152 11 0 0 0 11 0

Avalanche RNG run 2 127800 6 0 0 0 6 0

Avalanche RNG run 3 157528 7 0 0 0 7 0

Avalanche RNG run 4 206976 10 0 0 0 10 0

Avalanche RNG run 5 120032 6 0 0 0 6 0

Avalanche RNG run 6 95752 4 0 0 0 4 0

Avalanche RNG run 7 159032 7 0 0 0 7 0

Avalanche RNG run 8 155552 7 0 0 0 7 0

Avalanche RNG run 9 184544 9 0 0 0 9 0

Avalanche RNG run 10 246296 12 0 0 0 12 0

Chua RNG run 1 41824 0 0 2 2 0 2

Rad. Decay RNG run 1 105024 5 0 0 0 5 0

TABLE III. Avalanche RNG rngtest results with no Von Neumann bias removal.

Data Set

Set Length

(bits) Blocks

Number of Test

Failures

Successful

Blocks

Failed

Blocks

 Monobit Poker Runs

Avalanche RNG

run 2 510856 25 13 10 9 12 13

References

[1] Evans, "Simulating random numbers with a computer," http://hep.physics.indiana.edu/-hgevans/

p410-p609/materia1/04_rand/prng_types.html/ (2010).

[2] Haar, "Introduction to randomness and random numbers," http://www.random.org/randomness/.

[3] N. Makoto Matsumoto, "What is mersenne twister (mt)?" http://wwri.math.sci.hiroshima-u.ac.jp/m-

mat/MT/ewhat-is-mt.html/ (2013).

[4] J. Griffiths, Introduction to Quantum Mechanics Second Edition (Pearson, 2005).

[5] Poole, "Avalanche noise - the basics of avalanche noise - how it is created, how it can be used or

removed," http://www.radio-electronics.com/info/rf-technology-design/noise/avalanche-noise-

basics.php.

[6] Seward, "Make your own true random number generator 2," http://robseward.com/misc/RNG2/.

[7] Vazzana, "Random sequence generator based on chua

circuit," http://holdenc.altervista.org/chua/ (2012).

[8] Walker, "How hotbits works," http://wmi.fourmilab.ch/hotbits/how3.html.

[9] V. Neumann, National Bureau of Standards Applied Math Series 12, 36 (1951).

http://hep.physics.indiana.edu/-hgevans/%20p410-p609/materia1/04_rand/prng_types.html/
http://hep.physics.indiana.edu/-hgevans/%20p410-p609/materia1/04_rand/prng_types.html/
http://www.random.org/randomness/
http://wwri.math.sci.hiroshima-u.ac.jp/m-mat/MT/ewhat-is-mt.html/
http://wwri.math.sci.hiroshima-u.ac.jp/m-mat/MT/ewhat-is-mt.html/
http://www.radio-electronics.com/info/rf-technology-design/noise/avalanche-noise-basics.php
http://www.radio-electronics.com/info/rf-technology-design/noise/avalanche-noise-basics.php
http://robseward.com/misc/RNG2/
http://holdenc.altervista.org/chua/
http://wmi.fourmilab.ch/hotbits/how3.html

[10] de Moraes Holschuh, "rngtest man page," http:

//www.linuxcommand.org/man_pages/rngtest1.html (2004).

