## Chemical Applications of Electron Localization-Delocalization Matrices (LDMs) with an emphasis on predicting molecular properties

By Ismat Sumar

A Thesis Submitted to Saint Mary's University, Halifax, Nova Scotia for the Degree of Master of Science in Applied Science

September 12, 2016

©Ismat Sumar, 2016

| Approved: | Dr. Chérif Matta<br>Co-Supervisor     |
|-----------|---------------------------------------|
| Approved: | Dr. Paul Ayers<br>Co-Supervisor       |
| Approved: | Dr. Cory Pye<br>Committee Member      |
| Approved: | Dr. Zhongmin Dong<br>Committee Member |
| Approved: | Dr. Erin Johnson<br>Examiner          |
| Date:     | September 12, 2016                    |

## Chemical Applications of Electron Localization-Delocalization Matrices (LDMs) with an emphasis on predicting molecular properties

by Ismat Sumar

#### Abstract

A matrix is constructed where the vertices (atoms) are connected by edges (bonds) resulting in a square matrix that is symmetrical. The localization index (unshared electrons) occupies the long diagonal where the delocalization index (shared electrons between two different atoms divided by 2) represent the off-diagonal elements. Such a matrix is called a localization-delocalization matrix or LDM. These matrices have shown promise as a novel Quantitative Structure Activity Relationship (QSAR) method via the Frobenius Distance, a method to compare matrices of similar sizes that returns a Euclidean distance. Some notable results that will be expanded upon are that for a series of 14 para-substituted benzoic acids for pKa prediction ( $r^2 = 0.986$ ), and a series of 13 polycyclic benzenoid hydrocarbons (PBH) separated by inner and outer rings ( $r^2 = 0.97$ ). A program (AIMLDM) was developed in Python 3.4.1 to construct these matrices and perform the required calculations.

September 12, 2016

#### Acknowledgements

First and foremost I thank my two supervisors and friends Dr. Chérif F. Matta and Dr. Paul W. Ayers for giving me the opportunity to work with them. They provided guidance when I was first trying to come up with the AIMLDM program. Dr. Matta made a script for the first iteration of the program, and Dr. Ayers helped me to understand how to move the whole program to Python instead of going back and forth between Shell Scripts, Python, and Excel. They filled the gaps in my knowledge whether it was taking a class with Dr. Matta or visiting Dr. Ayers at McMaster. They were very patient with me when I was not ready to defend on our initial date, and were very supportive throughout the Masters. Most importantly I thank them for the friendship they extended towards me which made this Masters a very enjoyable experience.

I thank my committee members Dr. Cory Pye and Dr. Zhongmin Dong for their helpful discussions and suggestions during our meetings; it was Dr. Pye who first introduced us to the idea of pruning matrices. I give a special thanks to Dr. Ronald Cook who showed us new ways in which to use the LDMs and for his invaluable insight for helping test and further develop AIMLDM.

I thank Dr. Erin Johnson for her patience and agreeing to be my external examiner. I thank Saint Mary's University for accepting me and allowing me to TA, Mount Saint Vincent University for allowing me to use their facilities, and McMaster University.

### Table of Contents

| Abs  | $tract \ldots \ldots$ | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ack  | nowledgements                                                                                                                                | ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tab  | le of Contents                                                                                                                               | iii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| List | of Figures                                                                                                                                   | vi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| List | of Tables                                                                                                                                    | ix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Intr | roduction to LDMs                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.1  | Introduction                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.2  | Definition of the LDM                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.3  | Application of LDMs                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.4  | Limitations of LDMs                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 1.4.1 Ambiguity of Atomic Labelling                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 1.4.2 Matrices of Different Size                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 1.4.3 Other Limitations of LDMs                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.5  | EDWCM                                                                                                                                        | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.6  | Acknowledgements                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.7  | References                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIN  | MLDM                                                                                                                                         | <b>24</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.1  | The AIMLDM Programme                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.2  | Numerical Illustrative Testing                                                                                                               | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.3  | QSAR Studies with LDMs                                                                                                                       | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 2.3.1 LDM-Eigenvalues as Predictors in QSAR                                                                                                  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.4  | Conclusion                                                                                                                                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | Ack<br>Tab<br>List<br>List<br>1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6<br>1.7<br><b>AIN</b><br>2.1<br>2.2<br>2.3                               | Acknowledgements   Table of Contents   List of Figures   List of Tables   Introduction to LDMs   1.1   Introduction   1.2   Definition of the LDM   1.3   Application of LDMs   1.4   Limitations of LDMs   1.4.1   Ambiguity of Atomic Labelling.   1.4.2   Matrices of Different Size   1.4.3   Other Limitations of LDMs   1.5   EDWCM   1.6   Acknowledgements   1.7   References   2.1   The AIMLDM Programme   2.2   Numerical Illustrative Testing   2.3.1   LDM-Eigenvalues as Predictors in QSAR |

|          | 2.5 | Acknowledgements                                                         | 42 |
|----------|-----|--------------------------------------------------------------------------|----|
|          | 2.6 | References                                                               | 43 |
| 3        | Pre | dicting p $oldsymbol{K}_{\mathbf{a}}$ and $\lambda_{max}$                | 47 |
|          | 3.1 | Modelling of $pK_a$                                                      | 49 |
|          | 3.2 | Modelling of $\lambda_{max}$                                             | 52 |
|          | 3.3 | Conclusion                                                               | 57 |
|          | 3.4 | Computational Methods                                                    | 58 |
|          | 3.5 | Acknowledgements                                                         | 58 |
|          | 3.6 | References                                                               | 59 |
| 4        | Aro | maticity from LDMs                                                       | 62 |
|          | 4.1 | Rings-in-molecules (RIMs)                                                | 63 |
|          | 4.2 | The molecular set                                                        | 66 |
|          | 4.3 | Computational details                                                    | 67 |
|          | 4.4 | Aromaticity measures and Eigenvalues                                     | 68 |
|          |     | 4.4.1 Definitions of the measures of aromaticity considered in this work | 69 |
|          |     | 4.4.2 Correlations of the Frobenius distances from benzene with es-      |    |
|          |     | tablished measures of aromaticity                                        | 71 |
|          |     | 4.4.3 Correlations of aromaticity with the eigenvalues of the RIM-LDM    | 74 |
|          | 4.5 | Conclusion                                                               | 76 |
|          | 4.6 | Acknowledgements                                                         | 77 |
|          | 4.7 | References                                                               | 78 |
| <b>5</b> | Eig | envalues and Important Atoms in a Molecule                               | 87 |
|          | 5.1 | A look at the Eigenvalues                                                | 87 |

| 5.2 Important Atoms                       | . 89 |
|-------------------------------------------|------|
| Appendices                                | 98   |
| A Operating Instructions for AIMLDM       | 99   |
| B Benzoic Acid Structures with their LDMs | 106  |
| C Frobenius Distance on a per-atom basis  | 120  |

### List of Figures

| 1.1 | Connectivity Matrices                                                                 | 3  |
|-----|---------------------------------------------------------------------------------------|----|
| 1.2 | Contours of Electron Density                                                          | 6  |
| 1.3 | Perturbed Group                                                                       | 14 |
|     |                                                                                       |    |
| 2.1 | A flowchart explaining the logic of operation of the AIMLDM programme.                | 26 |
| 2.2 | Isoelectronic Series and corresponding energies                                       | 31 |
| 2.3 | Isoelectronic Series Bond Lengths                                                     | 32 |
| 2.4 | Isoelectronic Series vs Various properties                                            | 33 |
| 2.5 | Comparing Basis Sets vs LDMs                                                          | 34 |
| 2.6 | Shepard plot of the data in Table 2.3                                                 | 40 |
| 2.7 | 2-d projection of 6-d eigenvalues                                                     | 41 |
| 3.1 | Numbering Scheme for matrices                                                         | 48 |
|     |                                                                                       |    |
| 3.2 | Frobenius distances of partial (DMs) vs $pK_a$                                        | 51 |
| 3.3 | $\lambda_{max}$ vs Frobenius distances of COOH subgraph $\ldots \ldots \ldots \ldots$ | 56 |
| 4.1 | Phenanthrene and its atom and ring labelling scheme                                   | 64 |
| 4.2 | Molecular set supplying the "rings-in-molecules (RIMs)" for this study.               | 67 |
| 4.3 | Correlations between Frobenius distance $(d_{Frob})$ RIMs and common                  |    |
|     | aromaticity measures                                                                  | 72 |
| 4.4 | Two-dimensional MDS projection of the dissimilarity matrix in Table                   |    |
|     | 4.3                                                                                   | 76 |
| 4.5 | LDM Eigenvalue distances vs aromaticity measures                                      | 77 |

### List of Tables

| 2.1 | Frobenius Distance for isoelectronic series                                       | 29 |
|-----|-----------------------------------------------------------------------------------|----|
| 2.2 | "Scrambled" LDM for acetic acid and resulting eigenvalues                         | 36 |
| 2.3 | Eigenvalues of LDMs from a series of carboxylic acids                             | 37 |
| 3.1 | Frobenius distances comparing the subgraph(s) to $pK_a$ and $\lambda_{max}$       | 50 |
| 3.2 | Frobenius distances from the DMs vs p $K_{\rm a}$                                 | 52 |
| 3.3 | Frobenius distances from the LDMs vs $\lambda_{max}$                              | 56 |
| 4.1 | RIMs Frobenius distance vs Popular Aromaticity measures                           | 68 |
| 4.2 | Aromatic ranking agreement of various aromaticity indices with the                |    |
|     | Frobenius distance dissimilarity to benzene.                                      | 73 |
| 4.3 | Pairwise vector angles (in degrees (°)) matrix for the ring in molecules          |    |
|     | to three decimals                                                                 | 75 |
| 5.1 | Comparing Eigenvalues of $BACOCH_3$ with its atom electron popula-                |    |
|     | tions $N(\Omega_i)$                                                               | 88 |
| 5.2 | Comparing Eigenvalues of Benzene (carbon atoms only) with its atom                |    |
|     | electron population $N(\Omega_i)$ (values are arranged from smallest to largest)  | 89 |
| 5.3 | Ranking of Frobenius distance of individual atoms with respect to                 |    |
|     | $pK_{a}(LI \text{ only})$                                                         | 91 |
| 5.4 | Ranking of Frobenius distance of individual atoms with respect to                 |    |
|     | $pK_a(DI only)$                                                                   | 92 |
| 5.5 | Ranking of Frobenius distance of individual atoms with respect to $\lambda_{max}$ |    |
|     | (LI only)                                                                         | 93 |

| 5.6 | Ranking of Frobenius distance of individual atoms with respect to $\lambda_{max}$             |     |
|-----|-----------------------------------------------------------------------------------------------|-----|
|     | (DI only)                                                                                     | 94  |
| 5.7 | Ranking of Frobenius distance of individual atoms with respect to                             |     |
|     | HOMA (LI only)                                                                                | 95  |
| 5.8 | Ranking of Frobenius distance of individual atoms with respect to                             |     |
|     | HOMA (LI only, cyclohexane removed)                                                           | 95  |
| 5.9 | Ranking of Frobenius distance of individual atoms with respect to                             |     |
|     | HOMA (DI only, cyclohexane removed)                                                           | 96  |
| C.1 | Frobenius Distance between individual atoms for only the LI to be                             |     |
|     | compared directly with $\mathbf{p}K_{\mathbf{a}},$ the most acidic molecule's atoms are taken |     |
|     | as the reference atoms. (Benzoic Acid Series)                                                 | 120 |
| C.2 | Frobenius Distance between individual atoms for only the DI to be                             |     |
|     | compared directly with $pK_a$ , the most acidic molecule's atoms are taken                    |     |
|     | as the reference atoms. (Benzoic Acid Series)                                                 | 121 |
| C.3 | Frobenius Distance between individual atoms for only the LI to be                             |     |
|     | compared directly with $\lambda_{max}$ , the lowest $\lambda_{max}$ molecule's atoms are      |     |
|     | taken as the reference atoms. (Benzoic Acid Series)                                           | 122 |
| C.4 | Frobenius Distance between individual atoms for only the DI to be                             |     |
|     | compared directly with $\lambda_{max}$ , the lowest $\lambda_{max}$ molecule's atoms are      |     |
|     | taken as the reference atoms. (Benzoic Acid Series)                                           | 122 |
| C.5 | Frobenius Distance between individual atoms for only the LI to be                             |     |
|     | compared directly with the aromaticity measure HOMA, the highest                              |     |
|     | HOMA value molecule's atoms are taken as the reference atoms. (Aro-                           |     |
|     | matic Series)                                                                                 | 123 |
|     |                                                                                               |     |

| C.6 | Frobenius Distance between individual atoms for only the DI to be   |     |
|-----|---------------------------------------------------------------------|-----|
|     | compared directly with the aromaticity measure HOMA, the highest    |     |
|     | HOMA value molecule's atoms are taken as the reference atoms. (Aro- |     |
|     | matic Series)                                                       | 123 |

# Localization-Delocalization and Electron Density-Weighted Connectivity Matrices: A Bridge between the Quantum Theory of Atoms in Molecules and Chemical Graph Theory<sup>1</sup>

"The development of chemistry has both led to, and been made possible by, the evolution of certain primary concepts. These concepts, without which there would be neither correlation nor prediction of the observations of descriptive chemistry, are: (1) the existence of atoms of functional groupings of atoms in molecules as evidenced by characteristic sets of properties; (2) the concept of bonding; and (3) the associated concepts of molecular structure and molecular shape. These concepts logically (but not historically) are consequences of fundamental topological properties of the charge distribution (electronic and nuclear) in a molecular system. In terms of the Born-Oppenheimer approximation the electronic distribution  $\rho(r)$  is the scalar field defined in the real three-dimensional space with Euclidean metric. The universal topological properties of  $\rho(r)$  are characterized by its gradient field  $\rho \nabla(r)$ ."

I.S. Dmitriev (1981)

<sup>&</sup>lt;sup>1</sup>Based on the Chapter: Applications of Topological Methods in Molecular Chemistry Volume 22 of the series Challenges and Advances in Computational Chemistry and Physics pp 53—88

### **1.1 Introduction**

A molecule can be abstracted as a network of points (vertices) connected by lines (edges) and hence constituting a graph. Molecular graphs formed from a set of edges each consisting of what chemists normally call a "chemical bond" can be – but generally are not – *complete*. (A "complete graph" is one in which every vertex is connected by an edge, a trivial example being the graph of a diatomic molecule). A graph based on any pair-wise property such as inter-nuclear distance, nuclear-nuclear repulsion, or a count of electrons delocalized between any two pairs of atoms in the molecule is a complete graph.

Molecular graphs, complete or incomplete, can be conveniently represented by connectivity matrices as can be seen in the examples in Fig. 1.1 and in documents [1-9]. A complete graph where connectedness is indicated by 1 and disjointedness by 0 will have a non-zero entry for every non-diagonal element of the matrix while an incomplete graph has finite entries only for connected vertices and zero elsewhere in the matrix (Fig. 1.1).

A matrix representative of a complete graph with n vertices whereby connectivity is assigned "1" as in Fig. 1.1(a) is thus filled with ones except along the diagonal and hence has  $n\frac{(n-1)}{2}$  edges, the number of non-diagonal elements of its matrix representative. In practice, a complete graph such as the delocalization matrix (DM), described below, may have zero (negligible) entries other than along the diagonal when the delocalization index between a given pair of atoms in a molecule has a magnitude below the precision to which the numerical entries are reported.

Within Richard F. W. Bader's Quantum Theory of Atoms in Molecules (QTAIM) [10-12] a molecular graph is defined as the set of connected bond paths found in the



Figure 1.1: (a) An example of a complete graph with 6 vertices (K6) with  $6 - \frac{5}{2} = 15$  edges along with its matrix representative according to the numbering scheme. (b) An example of an incomplete graph with the same number of vertices and numbering scheme as in (a) along with its matrix representative.

molecular electron density. The molecular graph, so defined, is generally incomplete in the graph-theoretic sense since generally not every atom is sharing a bond path with every other atom in the molecule (except in diatomics and possibly a few other exceptions). The same theory, QTAIM, also defines delocalization indices (DIs), *vide infra*, that define a "complete graph" since there is a non-directed DI between every pair of atoms in the molecule whether sharing a bond path or not. As already mentioned, while in principle a DI graph is complete, in numerical practice it may not be so.

### **1.2** Definition of the LDM

Dmitriev, in his introductory book on Chemical Graph Theory (CGT), discusses the relation between molecular topology, graph theory, and what is known today as QTAIM. The author outlines the topological underpinnings of QTAIM in the differential topology and topography of the electron density  $\rho(r)$  culminating with the Poincaré -Hopf relationship relating the numbers and types of different critical points (CPs) in the electron density scalar field (points where the gradient of the electron density vanishes, that is,  $\nabla \rho_{CP} = 0$ ).

QTAIM locates the various critical points in the density and uses each bond critical point (BCP) as a starting point for the search of the inter-atomic surfaces of zero-flux in the gradient vector field of the electron density separated and shared by pairs of bonded atoms. A BCP is also used in tracing its associated bond path which is a unique line of maximal electron density that links the nuclei of two bonded atoms [13-15] and which characterizes the nature and strength of chemical bonding [16].

The bond path is always found to be accompanied by a shadow graph, the virial path, first discovered by Keith *et al.* [17]. The virial path is a line of maximally-negative potential energy density in three-dimensional space that links the same pair of atoms that share a bond path and an interatomic surface of zero-flux. There is no mathematical proof that *requires* the presence of a virial path as a doppelgänger of every bond path that links two chemically bonded atoms, however, there is no known computational violation of this observation to date to the authors' best knowledge. The presence of the virial path links the concept of chemical bonding directly with the concept of energetic stability as amply discussed in literature on QTAIM.

The partitioning of the space into separate non-overlapping atomic basins, exhausting all three-dimensional space, entails the definition of "atomic properties" that add up to yield the corresponding molecular counterparts. Such atomic properties are obtained by integrating each corresponding property density over the bounded region of real space occupied by the atomic basin. Fig. 1.2 shows the intersection of the atomic basins with the H-C-C(O)-OH plane in ethanoic (acetic) acid. The figure displays isodensity contours of the electron density, a representative set of gradient vector field lines traced by the gradient of the electron density, the intersections of interatomic surfaces (IASs) with the plane of the figure, the set of bond paths that are coplanar with the plane of the figure, and the bond critical points each of which lies simultaneously on the IAS and the associated bond path. For atoms exposed on the molecular surface (and hence that extend to infinity), the atomic basins are usually delimited by the intersections of their IASs with the outer isodensity contour of  $\rho_{vdW} = 0.001$  atomic unit (a.u.), the van der Waals envelope (1 a.u. of electron density = 1 electron per cubic bohr).

As explained above, numerical integration (using readily available robust software such as Keith's AIMAll [18]) yields atomic quantum mechanical averages of properties such as atomic electron populations  $(N(\Omega))$ , number of electrons localized within the basin  $(\Lambda(\Omega))$ , and number of electrons delocalized (shared) between one atomic basin and every other basin in the molecule  $(\delta(\Omega, \Omega'))$ .

The amount of electron delocalization (shared) between atomic basins  $\Omega_i$  and  $\Omega_j$  can be measured by the delocalization index (DI),  $\delta(\Omega_i, \Omega_j)$ . For a closed-shell molecule, the DI at the Hartree-Fock level of theory is defined [19]:

$$\partial(\Omega_i, \Omega_j) = 2|F^{\alpha}(\Omega_i, \Omega_j)| + 2|F^{\beta}(\Omega_i, \Omega_j)|$$
(1.1)

where

$$F^{\sigma}(\Omega_i, \Omega_j) = -\sum_k^{occ} \sum_l^{occ} \int_{\Omega_i} \int_{\Omega_j} \varphi_k^*(r_1) \varphi_l(r_1) \varphi_l^*(r_2) \varphi_k(r_2) dr_1 dr_2$$
(1.2)

$$= -\sum_{k}^{occ} \sum_{l}^{occ} S_{kl}(\Omega_i) S_{lk}(\Omega_j)$$
(1.3)

is the Fermi correlation, and where  $S_{kl}(\Omega_i) = S_{lk}(\Omega_i)$  is the overlap integral of two spin orbitals  $\varphi_k$  and  $\varphi_l$  within  $\Omega_i$ , and where  $\sigma$  refers to spin ( $\alpha$  or  $\beta$ ). For single determinantal methods, the first-order density matrix-printed in standard electronic structure software-is sufficient to determine all properties. For post-Hartree-Fock methods, the Müller approximation is used by AIMAll, the software used to obtain the LIs and DIs, to obtain an approximate second-order density matrix from the first-order density matrix.



Figure 1.2: Contours of the electron density in the molecular plane of ethanoic (acetic) acid. The contours from outside inwards have the values (in atomic units (a.u.)): 0.001 a.u. and then  $2 \times 10^n$ ,  $4 \times 10^n$ , and  $8 \times 10^n$ , n starting at -3 and increasing in steps of unity. Nuclei are linked by bond paths and atomic basins are separated by the intersections of the interatomic surfaces with the molecular plane, every atomic basin being distinguished by an element-specific dominant colour. Each BCP appears at the intersection of the associated bond path and interatomic surface and is depicted as a *small red dot*.

If i = j in Eqs. 1.2-1.3,  $(S_{kl}(\Omega_i)S_{lk}(\Omega_j) \rightarrow [S_{kl}(\Omega_i)]^2)$ , then both integrals are over the same atomic basin giving the total Fermi correlation for the electrons contained within that basin. At the limit of total localization this double integral approaches  $-N^{\sigma}(\Omega_i)$ , the negative of the  $\sigma$ -spin population of  $\Omega_i$ . This limit is reached only when atoms are infinitely separated since in any molecule electrons in a given atomic basin always exchange with electrons in every other atomic basin to some extent and  $|F^{\alpha}(\Omega_i, \Omega_i)| \leq N^{\alpha}(\Omega_i)$ . This localization index (LI) is thus defined [19]:

$$\Lambda(\Omega_i, \Omega_i) = |F^{\alpha}(\Omega_i, \Omega_i)| + |F^{\beta}(\Omega_i, \Omega_i)|$$
(1.4)

In a molecule, the electron population of an atom is always shared to some extent with other basins, *i.e.*, there always exists a degree of electron sharing or delocalization.

Since electrons can either be localized within a basin or shared with other basins in the molecule, then the LI of an atom plus half of the sum of its (n-1) DIs shared with the remaining atoms in the molecule (where n is the number of atoms in the molecule), must necessarily equal its electron population  $N(\Omega_i)$  [19]:

$$N(\Omega_i) = \Lambda(\Omega_i) + \frac{1}{2} \sum_{j \neq i}^n \delta(\Omega_i, \Omega_j) = \int_{\Omega_i} \rho(r) dr$$
(1.5)

The population  $N(\Omega_i)$  obtained via the bookkeeping of electrons' whereabouts embodied in the first equality of Eq. (1.5) or through the integration of the electron density over  $\Omega_i$  (second equality of Eq. (1.5)) determines the atomic charge which, given the atomic number  $Z_{\Omega_i}$  is defined (in a.u.):

$$q(\Omega_i) = Z_{\Omega_i} - N(\Omega_i) \tag{1.6}$$

Since the total molecular electron population N is the sum of the atomic populations then it is expressible as the sum of two (sub-)populations: The molecular average number of localized electrons  $(N_{loc})$  plus the molecular average of delocalized electrons  $(N_{deloc})$  [20]:

$$N = \sum_{i=1}^{n} N(\Omega_i) = \sum_{i=1}^{n} \Lambda(\Omega_i) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j \neq 1}^{n} \delta(\Omega_i, \Omega_j) = N_{loc} + N_{deloc}$$
(1.7)

where

$$N_{loc} \equiv \sum_{i=1}^{n} \Lambda(\Omega_i) \tag{1.8}$$

and

$$N_{deloc} \equiv \frac{1}{2} \sum_{i=1}^{n} \sum_{j \neq 1}^{n} \delta(\Omega_i, \Omega_j) = N - tr(\zeta) = N - N_{loc}$$
(1.9)

Further, the full set of molecular LIs and DIs can be organized in a localizationdelocalization matrix (LDM, or  $\zeta$ -matrix) [20-24]:

$$\zeta \equiv \begin{bmatrix} \Lambda(\Omega_1) & \frac{\delta(\Omega_1,\Omega_2)}{2} & \dots & \frac{\delta(\Omega_1,\Omega_n)}{2} \\ \frac{\delta(\Omega_2,\Omega_1)}{2} & \Lambda(\Omega_2) & \dots & \frac{\delta(\Omega_2,\Omega_n)}{2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\delta(\Omega_n,\Omega_1)}{2} & \frac{\delta(\Omega_n,\Omega_2)}{2} & \dots & \Lambda(\Omega_n) \end{bmatrix}_{n \times n} = N(\Omega_n) \begin{cases} \sum_{i=1}^n N(\Omega_i) = N \quad (1.10) \\ \sum_{i=1}^n N(\Omega_i) = N(\Omega_2) \\ \dots & = N(\Omega_n) \quad tr(\zeta) = N_{loc} \end{cases}$$

In the LDM, the sum of the matrix elements in any row or corresponding column equals the atomic population  $N(\Omega_i)$  (by the first equality of Eq. 1.5) and hence the sum of the column sums or row sums equals the total molecular electron population. The trace of the LDM is the localized electron population ( $N_{loc}$ ) of the molecule (Eq. 1.8), and the delocalized electron population can be obtained by (Eq. 1.9).

The LDM is a representation of a complete molecular graph where all atoms (vertices) are interconnected by non-directional DI links (edges), and where the diagonals are non-zero giving the number of electrons localized in a given atomic basin. This last point distinguishes the LDM graph from a typical "complete graph" of the type shown in Fig. 1.1(a) in that vertices are connected back to themselves through their respective LIs.

## 1.3 The LDM as a Molecular Fingerprinting and Similarity Assessment Tool

The distances between the localization-delocalization matrices (LDMs) of different molecules can be used as a measure of their dissimilarity. The greater or smaller the "distance" between two LDMs the lesser or more similar are the molecules they represent.

The inter-molecular distance between two molecules A and B, each represented by an  $n \times n$  LDM, is defined as the Frobenius norm of the difference matrix, that is:

$$d(A,B) \equiv ||A - B|| \equiv \sqrt{\sum_{i,j} |\alpha_{ij} - \beta_{ij}|^2}$$
 (1.11)

where  $\alpha_{ij}$  and  $\beta_{ij}$  are two corresponding elements in the matrices **A** and **B** that

represent each molecule in the pair.

After the electronic structure calculation yields a wavefunction file, AIMAll/AIM-Studio program [18] is used to calculate the localization and delocalization indices. A Python program (AIMLDM), developed by Sumar *et al.* [25], extracts the localization and delocalization indices from AIMAll's output and manipulates it to extract the matrix invariants as well as the Frobenius distances.

### 1.4 Limitations of LDMs, and possible Solutions

LDMs share well-known limitations with all matrix representatives of molecular graphs when used as a tool for comparing different molecules. These limitations are briefly outlined along with possible solutions.

#### 1.4.1 Ambiguity of Atomic Labelling.

Any matrix representation of the molecular graph, complete or incomplete, is labelling-dependent since there exists n! ways to label the *n*-atoms composing a given molecule. Unless all compared molecules have very similar graphs and can be given consistent atomic labelling, e.g. benzoic acids substituted, say, at the *para*-position by monoatomic substituents such as halogens, one must rely on "matrix invariants".

Labelling-independent invariants extracted from a matrix representation of a molecular graph include, for example, the characteristic polynomial, the eigenvalues, the trace, and the determinant. LDMs, by being real and symmetric, are diagonalizable by a similarity transformation:

$$P^{-1}\zeta P = D \tag{1.12}$$

where  $\mathbf{D}$  is the diagonalized LDM. The eigenvalues can then be organized as a vector sorted in a consistent order of, say, increasing value.

For example, an LDM- $\zeta$  of methane is:

of which the total number of localized electrons is given by its trace,  $tr(\zeta_{CH_4} = 5.815)$ , while its determinant  $det(\zeta_{CH_4}) \approx 0.082$ , and the corresponding **D** written either as a matrix or a column vector is:

$$D_{CH_4} = \begin{pmatrix} 0.251 & 0 & 0 & 0 & 0 \\ 0 & 0.423 & 0 & 0 & 0 \\ 0 & 0 & 0.423 & 0 & 0 \\ 0 & 0 & 0 & 0.423 & 0 \\ 0 & 0 & 0 & 0 & 4.295 \end{pmatrix} = \begin{bmatrix} 0.251 \\ 0.423 \\ 0.423 \\ 0.423 \\ 4.295 \end{bmatrix}_{5\times 1}$$
(1.14)  
$$\sum = 5.815$$

where the sum of the elements of  $\mathbf{D}$  represent the total number of localized electrons since the trace of a matrix is invariant upon diagonalization. The Frobenius distance can be calculated using  $\mathbf{D}$  without regard to the arbitrariness of the labelling scheme.

### 1.4.2 Differently-Sized Molecules are Represented by Unequally-Sized Matrices

Let us suppose we desire now to compare the matrices (1.13) or (1.14) with the corresponding ones for ethane. The Frobenius distance (Eq.1.11) clearly cannot be evaluated being not defined since the matrix representing ethane is  $8 \times 8$  while that representing methane is only  $5 \times 5$ .

Following the lead of White and Wilson [26], a solution to this problem is to enlarge all matrices to equal the size of the *largest* matrix in the set by "padding" the smaller matrices with zeros. The zero padding is, effectively, adding ghost atoms to equalize the sizes of all matrices in the molecular set.

To illustrate how this is achieved, let us write a  $\zeta$ -matrix representative of ethane: and the corresponding **D**-vector:

$$\mathbf{D}_{C_{2}H_{6}} = \begin{bmatrix} 0.284\\ 0.323\\ 0.430\\ 0.430\\ 0.440\\ 0.440\\ 3.638\\ 4.632 \end{bmatrix}_{8\times 1}$$
(1.16)

In order to compute the Frobenius distance between ethane and methane, we enlarge the matrix representative of methane with ghost atoms to:

which, in its **D**-form, can now be compared with the corresponding vector in Eq. 1.16 for ethane (yielding a methane-ethane Frobenius distance (for the diagonalized

LDMs) of *ca.* 3.294).

While the padding with zeroes appears ideal for homologous series such as the aliphatic hydrocarbons, other approaches may be more adequate when there exists a "common skeleton" with a substituent at a particular location that perturbs the active group of interest. These substituents may or may not have the same number of atoms, but are all attached to the same atom of the common skeleton. An example is provided by the substituted benzoic acid series.

Fig. 1.3 represents the series of *para*-substituted benzoic acids, whereby we can consider the carboxylic group as the active center responsible for "activity", here the  $pK_a$ . In this case, the active center is being perturbed through a common skeleton (the aromatic ring) which transmits the perturbation of a substituent S of variable size and nature (in this example, S is at position 15 attached to C8 in Fig. 1.3).



**Figure 1.3:** *p*-Benzoic viewed as an active center -(COOH) perturbed by a distant substituent (S) attached at carbon C8.

In the example of the substituted benzoic acids, all matrices are equalized in size by condensing all the atoms of S into a "super-atom", that is a collection of nuclei and their associated atomic basins that are taken as one self-contained group. The idea of a super-atom implements the concept of pruning the branches introduced by Pye and Poirier [27, 28].

The number of localized electrons within the super-atom S is the sum of the localized electrons in each composing atoms plus the number of electrons delocalized within the group (that is between the constituent atoms). Thus, we define the localization index of the super atom [21]:

$$\Lambda(\Omega_{super}) = \sum_{i=1}^{n_{super}} \Lambda(\Omega_i) + \sum_{\substack{i=1\\i\neq j\\i\in\Omega_{super}}}^{n_{super}} \delta(\Omega_i, \Omega_j)$$
(1.18)

It is non-coincidental that Eq. 1.18 bears a striking resemblance to Eq. 1.7 since at the limit where the super-atom is enlarged to consist of the full molecule is a case by which the number of electrons localized within the bounds of the full super-atom (which includes  $N_{loc}$  and  $N_{deloc}$ ) is none else than N, the total number of electrons in the molecule.

On the other hand, the number of electrons shared between the super-atom S and an atom k outside of S is given by the sum of the delocalization indices of every atom within S to that atom [21]:

$$\delta(\Omega_{super}, \Omega_k) = \sum_{\substack{i=1\\i\in\Omega_{super}}} \delta(\Omega_i, \Omega_k)$$
(1.19)

leading to off-diagonal entries of  $\frac{1}{2}\delta(\Omega_{super},\Omega_k)$  between the super-atom and the  $k^{th}$  atom in the molecule.

As an example, and following the numbering scheme in Fig. 1.3, an LDM of p-nitrobenzoic acid is a  $17 \times 17$  matrix:

|     | H1     | O2   | C3   | C4   | C5   | C6   | C7   | C8   | C9   | C10  | H11  | H12  | H13  | H14  | N15  | O16  | 017    |        |
|-----|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|--------|
| H1  | ( 0.07 | 0.31 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   |        |
| O2  | 0.31   | 8.10 | 0.44 | 0.15 | 0.04 | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   |        |
| C3  | 0.01   | 0.44 | 2.83 | 0.66 | 0.48 | 0.02 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   |        |
| C4  | 0.01   | 0.15 | 0.66 | 8.20 | 0.05 | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00   |        |
| C5  | 0.00   | 0.04 | 0.48 | 0.05 | 3.91 | 0.67 | 0.04 | 0.04 | 0.04 | 0.67 | 0.02 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00   |        |
| C6  | 0.00   | 0.02 | 0.02 | 0.01 | 0.67 | 3.94 | 0.70 | 0.04 | 0.05 | 0.03 | 0.47 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00   |        |
| C7  | 0.00   | 0.00 | 0.00 | 0.00 | 0.04 | 0.70 | 3.93 | 0.67 | 0.03 | 0.05 | 0.02 | 0.46 | 0.00 | 0.00 | 0.03 | 0.02 | 0.01   |        |
| C8  | 0.00   | 0.00 | 0.00 | 0.01 | 0.04 | 0.04 | 0.67 | 3.77 | 0.66 | 0.04 | 0.00 | 0.02 | 0.00 | 0.02 | 0.42 | 0.05 | 0.05   | (1.20) |
| C9  | 0.00   | 0.00 | 0.00 | 0.00 | 0.04 | 0.05 | 0.03 | 0.66 | 3.93 | 0.70 | 0.00 | 0.00 | 0.02 | 0.46 | 0.03 | 0.01 | 0.02   | (1.20) |
| C10 | 0.00   | 0.01 | 0.03 | 0.02 | 0.67 | 0.03 | 0.05 | 0.04 | 0.70 | 3.94 | 0.00 | 0.00 | 0.47 | 0.02 | 0.01 | 0.00 | 0.00   |        |
| H11 | 0.00   | 0.02 | 0.00 | 0.00 | 0.02 | 0.47 | 0.02 | 0.00 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   |        |
| H12 | 0.00   | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.46 | 0.02 | 0.00 | 0.00 | 0.00 | 0.36 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00   |        |
| H13 | 0.00   | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.02 | 0.47 | 0.00 | 0.00 | 0.37 | 0.00 | 0.00 | 0.00 | 0.00   |        |
| H14 | 0.00   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.46 | 0.02 | 0.00 | 0.00 | 0.00 | 0.36 | 0.00 | 0.00 | 0.02   |        |
| N15 | 0.00   | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.42 | 0.03 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 4.44 | 0.83 | 0.83   |        |
| O16 | 0.00   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.01 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.83 | 7.30 | 0.21   |        |
| 017 | 0.00   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.05 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.83 | 0.21 | 7.30 / |        |

in which the matrix elements belonging to the atoms composing the super-atom are in *italicized-bold* font for easy distinction. This matrix reduces to a  $15 \times 15$  matrix upon treating the  $-NO_2$  group as a super-atom, which, with columns and rows sums explicitly shown, is:

|            | H1   | O2   | C3   | C4   | C5   | C6   | C7   | C8   | C9   | C10  | H11  | H12  | H13  | H14  | $NO_{2}15$ | Σ     |        |
|------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------------|-------|--------|
| H1         | 0.07 | 0.31 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00       | 0.41  |        |
| O2         | 0.31 | 8.10 | 0.44 | 0.15 | 0.04 | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00       | 9.09  |        |
| C3         | 0.01 | 0.44 | 2.83 | 0.66 | 0.48 | 0.02 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00       | 4.49  |        |
| C4         | 0.01 | 0.15 | 0.66 | 8.20 | 0.05 | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00       | 9.13  |        |
| C5         | 0.00 | 0.04 | 0.48 | 0.05 | 3.91 | 0.67 | 0.04 | 0.04 | 0.04 | 0.67 | 0.02 | 0.00 | 0.02 | 0.00 | 0.01       | 6.00  |        |
| C6         | 0.00 | 0.02 | 0.02 | 0.01 | 0.67 | 3.94 | 0.70 | 0.04 | 0.05 | 0.03 | 0.47 | 0.02 | 0.00 | 0.00 | 0.01       | 5.99  |        |
| C7         | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.70 | 3.93 | 0.67 | 0.03 | 0.05 | 0.02 | 0.46 | 0.00 | 0.00 | 0.07       | 5.98  | (1 01) |
| C8         | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.04 | 0.67 | 3.77 | 0.66 | 0.04 | 0.00 | 0.02 | 0.00 | 0.02 | 0.52       | 5.80  | (1.21) |
| C9         | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.05 | 0.03 | 0.66 | 3.93 | 0.70 | 0.00 | 0.00 | 0.02 | 0.46 | 0.07       | 5.98  |        |
| C10        | 0.00 | 0.01 | 0.03 | 0.02 | 0.67 | 0.03 | 0.05 | 0.04 | 0.70 | 3.94 | 0.00 | 0.00 | 0.47 | 0.02 | 0.01       | 5.98  |        |
| H11        | 0.00 | 0.02 | 0.00 | 0.00 | 0.02 | 0.47 | 0.02 | 0.00 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00       | 0.93  |        |
| H12        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.46 | 0.02 | 0.00 | 0.00 | 0.00 | 0.36 | 0.00 | 0.00 | 0.02       | 0.91  |        |
| H13        | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.02 | 0.47 | 0.00 | 0.00 | 0.37 | 0.00 | 0.00       | 0.92  |        |
| H14        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.46 | 0.02 | 0.00 | 0.00 | 0.00 | 0.36 | 0.02       | 0.91  |        |
| $NO_{2}15$ | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.07 | 0.52 | 0.07 | 0.01 | 0.00 | 0.02 | 0.00 | 0.02 | 22.76      | 23.50 |        |
| $\sum$     | 0.41 | 9.09 | 4.49 | 9.13 | 6.00 | 5.99 | 5.98 | 5.80 | 5.98 | 5.98 | 0.93 | 0.91 | 0.92 | 0.91 | 23.50      | 86.00 |        |

where  $N(NO_2) = 23.50e^-$  indicating a net electron with drawal of  $0.50e^-$  from the common skeleton. The super-atom is useful when there exists a "common skeleton" for a family of molecules. Another way to look at this family is to instead use a truncated matrix. A truncated matrix may be more suitable since the variance of the super-atom can be high in a family of molecules, thus one might want to omit the super-atom. We will look more into the idea of truncated matrices in Chapter 3.

#### 1.4.3 Other Limitations of LDMs

As discussed in Ref.[20], some matrix invariants within the context of chemical graph theory may occasionally be identical despite being derived from different molecular graphs. A known example is that of the characteristic polynomial of 1,4divinylbenzene and that of 2-phenylbutadiene which are identical  $(x^{10} - 10x^8 + 33x^6 - 44x^4 + 24x^2 - 4)$ . This problem is extremely unlikely when the molecules are coded not by topological connectivity matrices consisting of ones and zeroes but rather by their respective LDMs (or electron density-weighted adjacency matrices, discussed below) since these matrices cannot contain elements that are all of identical magnitudes.

Another common limitation of all known connectivity graphs - complete or incomplete - of their matrix surrogates is their inherent insensitivity to optical isomerism. This limitation is circumvented if the experimental dataset includes the active isomers and rejects the inactive ones from the set.

Finally, and as any other method for use in empirical modeling of experimental data, conformational averaging has to be performed whenever there exists more than one thermally-accessible rotamer that compete significantly for the molecular population as governed by the Boltzmann-distribution at the temperature of interest.

## 1.5 The Electron Density-Weighted Connectivity Matrix (EDWCM)

The LDM requires for its determination a quantum chemical calculation since the calculation of the LIs and DIs requires the electron density and the electron pair density contained in the second-order density matrix which is inaccessible from experiment (or an appropriate approximation of the second-order density matrix given the firstorder density matrix if the latter is not printed by the electronic structure calculation software [29]).

The usage of matrix representatives of molecules is not restricted to LDMs and can be extended to quantities directly derivable from both theory and experiment such as the matrix of Coulombic nuclear-nuclear repulsion, the distance matrix, or the matrices of bond critical point (BCP) properties such as the electron densityweighted adjacency matrix (EDWAM) [22-24,30].

The chemical graph theoretic hydrogen-suppressed connectivity matrix of ethane is:

$$\begin{array}{ccc}
C1 & C2 \\
C1 & 0 & 1 \\
C2 & 1 & 0
\end{array}$$
(1.22)

with a determinant of -1, a vector  $\mathbf{D} = (1, -1)$ , and the characteristic polynomial:

$$\lambda^2 - 1 \tag{1.23}$$

The unique features and properties of this molecule are captured with a higher fi-

delity and specificity if (a) the "ones" in the above matrix are multiplied (weighted) by the value of the electron density (in a.u.) at the bond critical point (BCP) for the corresponding bonds, and (b) if all atoms are kept including hydrogen atoms to yield an EDWAM representative of this molecule. The idea of EDWAM was first communicated to one of us (CM) by Professor Lou Massa in the form of a private communication [30].

An EDWAM representation of ethane is:

|    | C1    | H2    | C3    | H4    | H5    | H6    | m H7  | H8    |        |
|----|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| C1 | 0     | 0.273 | 0.238 | 0.273 | 0.273 | 0     | 0     | 0 )   |        |
| H2 | 0.273 | 0     | 0     | 0     | 0     | 0     | 0     | 0     |        |
| C3 | 0.238 | 0     | 0     | 0     | 0     | 0.273 | 0.273 | 0.273 |        |
| H4 | 0.273 | 0     | 0     | 0     | 0     | 0     | 0     | 0     | (1.24) |
| H5 | 0.273 | 0     | 0     | 0     | 0     | 0     | 0     | 0     | (1.21) |
| H6 | 0     | 0     | 0.273 | 0     | 0     | 0     | 0     | 0     |        |
| H7 | 0     | 0     | 0.273 | 0     | 0     | 0     | 0     | 0     |        |
| H8 | 0     | 0     | 0.273 | 0     | 0     | 0     | 0     | 0 /   |        |

which yields a determinant of zero, and  $\mathbf{D} = (-0.607, -0.369, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,$ 

$$1.000\lambda^8 - 0.504\lambda^6 + 0.050\lambda^4 \tag{1.25}$$

The molecular graph is generally incomplete since not every pair of atoms share a

bond path. The EDWAM has the advantage of being accessible from experiment and relatively inexpensive to calculate theoretically since it does not involve any numerical integration over atomic basins post-electronic structure calculation. Because of these practical advantages, the EDWAM may be well-suited for quantitative structure activity relationship (QSAR) studies that involve large molecular sets typical of the *in silico* phase of drug design for example (this is the last time the EDWAM will be discussed in this thesis).

The same limitations and solutions that are discussed for LDMs in Section 1.4 apply equally to the EDWAM.

### **1.6** Acknowledgements

The authors thank Dr. Todd A. Keith, Professor Lou Massa, Dr. Nenad Trinajstić, Dr. Sonja Nikolić, and Mr. Matthew J. Timm for helpful discussions. Financial support of this work was provided by the *Natural Sciences and Engineering Research Council of Canada* (NSERC), *Canada Foundation for Innovation* (CFI), *Saint Mary's University, McMaster University*, and *Mount Saint Vincent University*.

### 1.7 References

 I.S. Dmitriev; Molecules without Chemical Bonds (English Translation); Mir Publishers: Moscow, 1981.

[2] A.T. Balaban; *Chemical Application of Graph Theory*; Academic Press: New York, 1976.

[3] A.T. Balaban; Applications of graph theory in chemistry. J. Chem. Inf. Comput.

Sci. 1985, 25, 334-343.

[4] L.H. Hall, L.B. Kier; Molecular Connectivity in Chemistry and Drug Research; Academic Press: Boston, 1976.

[5] Bonchev, D. Rouvray, D.H.; Chemical Graph Theory: Introduction and Fundamentals; OPA: Amsterdam, 1991.

[6] K. Balasubramanian; Integration of graph theory and quantum chemistry for structure-activity relationship. SAR & QSAR Eviron Res. **1994**, 2, 59-77.

[7] M.D. Diudea, I. Gutman, J. Lorentz; *Molecular Topology;* Nova Science Publishers, Inc.: Hauppauge NY, 1999.

[8] D. Janezic, A. Milicevic, S. Nikolic, N. Trinajstic; Graph Theoretical Matrices in Chemistry (Mathematical Chemistry Monographs, Vol. 3); University of Kragujevac: Kragujevac, 2007.

[9] R. Todeschini, V. Consonni; Molecular Descriptors for Chemoinformatics (Second Edition; Vols. I and II); Wiley-VCH Weinheim: Weinheim, 2009.

[10] R.F.W. Bader; Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, U.K., 1990.

[11] P.L.A. Popelier; Atoms in Molecules: An Introduction; Prentice Hall: London, 2000.

[12] C.F. Matta, R.J. Boyd (Eds); The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design; Wiley-VCH: Weinheim, 2007.

[13] R.F.W. Bader; A bond path: A universal indicator of bonded interactions. J. Phys. Chem. A 1998, 102, 7314-7323.

[14] R.F.W. Bader; Bond paths are not chemical bonds. J. Phys. Chem. A 2009, 113, 10391-10396.

[15] A. Martin Pendas, E. Francisco, M.A. Blanco, C. Gatti; Bond paths as

privileged exchange channels. Chem. Eur. J, 2007, 13, 9362-9371.

[16] G.R. Runtz, R.F.W. Bader, R.R. Messer; Definition of bond paths and bond directions in terms of the molecular charge distribution. *Can. J. Chem.* 1977, 55, 3040-3045.

[17] T.A. Keith, R.F.W. Bader, Y. Aray; Structural homeomorphism between the electron density and the virial field. Int. J. Quantum Chem. 1996, 57, 183-198.
[18] T.A. Keith; AIMAll/AIMStudio, http://aim.tkgristmill.com/2015.

[19] X. Fradera, M.A. Austen, R.F.W. Bader; The Lewis model and beyond. J. Phys. Chem. A 1999, 103, 304-314.

[20] C.F. Matta; Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization and delocalization matrices, and the electrostatic potential. J. Comput. Chem. 2014, 35, 1165-1198.

[21] I. Sumar, P.W. Ayers, C.F. Matta; Electron localization and delocalization matrices in the prediction of  $pK_a$ 's and UV-wavelengths of maximum absorbance of *p*-benzoic acids and the definition of super-atoms in molecules. *Chem. Phys. Lett.* **2014**, *612*, 190-197.

[22] M.J. Timm, C.F. Matta, L. Massa, L. Huang; The localization-delocalization matrix and the electron density-weighted connectivity matrix of a finite graphene flake reconstructed from kernel fragments. J. Phys. Chem. A 2014, 118, 11304-11316.

[23] C.F. Matta; Localization-delocalization matrices and electron density-weighted adjacency matrices: New electronic fingerprinting tools for medicinal computational chemistry. *Future Med. Chem.* **2014**, *6*, 1475-1479.

[24] B. Dittrich, C.F. Matta; Contributions of charge-density research to medicinal

chemistry. Int. U. Cryst J, (IUCrJ) 2014, 1, 457-469.

[25] I. Sumar, R. Cook, P.W. Ayers, C.F. Matta; AIMLDM: A program to generate and analyze electron localization-delocalization matrices (LDMs). *Comp. Theor. Chem.* 2015, 1070, 55-67.

[26] D. White, R.C. Wilson; Parts-based generative models for graphs. 19th Intl.Conf. on Pattern Recognition (ICPR 2008) 2008, 1-4.

[27] C.C. Pye, R.A. Poirier; Graphical approach for defining natural internal coordinates. J. Comput. Chem. **1998**, 19, 504-511.

[28] C.C. Pye; Applications of Optimization to Quantum Chemistry, PhD Thesis;

Memorial University of Newfoundland: Saint John's (NF), Canada, 1997.

[29] A.M.K. Müller; Explicit approximate relation between reduced two- and one-particle density matrices. *Phys. Lett. A* **1984**, *105*, 446-452.

[30] L. Massa; personal communication 2014.

# AIMLDM: A Program to Generate and Analyze Electron Localization-Delocalization Matrices (LDMs)<sup>1</sup>

We report a programme called AIMLDM [1] written in Python 3.4.1 that extracts the localization and delocalization indices from the output of QTAIM numerical integration analysis software AIMAll/AIMStudio [2] (the .sum file), creates the LDMs, condenses atomic groups into super-atoms (pruning), extracts matrix invariants such as the LDMs' eigenvalues, and calculates the molecule-to-molecule Frobenius distance matrices. In addition, AIMLDM can also print the diagonal suppressed LDM (or DM) and the off diagonal suppressed LDM (or LM) (both of them which are pruned). [The software has recently been updated to now also include characteristic polynomial calculations]

### 2.1 The AIMLDM Programme

AIMLDM [1] extracts the elements (the LIs and DIs) of the LDM matrix from the relevant sections of the AIMAll output of every molecule in the molecular set (the .sum file, which lists the LIs first, separately from the DIs). The LI values are extracted from a given molecule's .sum file and placed along the diagonal of the LDM followed by half of the DI values which are entered as the off-diagonal elements. AIMLDM lists the atoms, their LIs and their DIs using the same numbering scheme as in the .sum file which originates from the numbering sequence of the original wavefunction

<sup>&</sup>lt;sup>1</sup>Based on the Paper: Computational and Theoretical Chemistry 1070 (2015) 55–67

obtained from the electronic structure computational software such as Gaussian or GAMESS.

Following Pye and Poirier's lead [3,4], the program prunes all matrices to match the matrix size of the smallest matrix in the set (discussed in the previous chapter). All atoms in a given substituent to a common skeleton are condensed to a super-atom by implementing Eqs. 1.18,1.19 [5]. Precaution is taken in atom labelling so that corresponding atoms and/or super-atoms in the entire molecular set receive the same numerical labels (refer to AIMLDM: Operating Instructions in **Appendix A**).

Once pruning has been achieved, a similarity distance matrix obtained from the Frobenius distances between LDMs (or the diagonalized LDMs) via Eq. 1.11 is constructed. While distances between matrices are not uniquely defined, the Frobenius distance has the appeal of being effectively an Euclidean distance in the  $\{\lambda_i, \frac{1}{2}\delta_{ij}, i \neq j; i, j = 1...m\}$   $m^2$  -dimensional space, and that it also has been shown to satisfy the triangle inequality [6].

Fig. 2.1 presents a flowchart describing the logical pathways of the programme AIMLDM. The user inputs the location of the .sum files of the molecular set (all in one directory) and also the preferred location for the output. The program then creates a variable for every .sum file and places all the text in a given .sum file in that variable. Keywords are then used to locate the start of the relevant sections listing the LIs and the DIs and to locate the end of each of these two sections. The text between the beginning and end keywords is stored while the remainder of the text of the .sum file is discarded then LIs and DIs are stored as separate arrays.

In order to organize what LI/DI array is assigned to which file, a dictionary is created so that each file is associated with its own LI/DI array. The LI and DI arrays are now combined to form a LI/DI array that corresponds to each file stored in a



Figure 2.1: A flowchart explaining the logic of operation of the AIMLDM programme.

dictionary (the list of molecules in the set). The elements of the array are then cast into a symmetric matrix after dividing every DI by 2 to satisfy Eq. 1.5 so that the row or column sums are the atomic electron population of the atom labelling the column or row. Now the LDMs are ready for matrix operation and extraction of matrix invariants (eigenvalues) as well as the pruning steps as described above.

At this stage, the program searches through every LI array (since the length of the LI array gives the length of each row, and the square of the length of the row is the total number of elements in a given LDM) and recognizes the smallest molecule in the set. Pruning is then applied to every matrix to match the smallest matrix size as already described (Eqs. 1.18,1.19) [5].

Three matrices are produced by the programme in addition to the full LDM Eq. 1.10 after pruning has been complete (even if all the molecules are the same size a pruning directory will still be created, these files will be identical of course to the full non-pruned LDM). These matrices are (a) the full-pruned LDM, (b) the off-diagonal suppressed matrix (pruned), that is, the delocalization matrix (DM) where zeroes are entered along the diagonal instead of the LIs, and (c) the localization matrix (pruned) (LM) that only has entries along the diagonals (LIs) but zeroes elsewhere. The reasons for creating the DMs and LMs is that they have been found to be more useful in QSAR than the full LDM in certain cases [6]. Three corresponding Frobenius distance matrices are then calculated, one for each matrix subtype. In addition to all these matrices, the eigenvalues for each matrix (pruned and not pruned) even for the Frobenius distance matrices are produced.

The program now has completed its calculations and prints the output files. Each .sum file spawns nine files (one lists the LIs/DIs, another casts the LIs and DIs/2 in the LDM format, three for each of the (pruned) LDM, LM, DM, and four for the eigenvalues for each matrix). In addition to these nine files (per .sum file), three Frobenius distance files are created that list the distance matrix between all molecules based on the Frobenius distance and their LDM representations using the pruned LDM, LM, and DM where every molecule is taken as a reference in a cyclical manner to exhaust all molecules in the set. Lastly three Frobenius distance eigenvalue files are created to the pruned LDM, LM, and DM.

The summary of the AIMLDM programme operations can be captured in the following few points:

- 1. Start.
- 2. Manual input of .sum files and desired output destination file directory.
- 3. Extract LIs/DIs of each molecule and store into separate arrays.

AIMLDM

- 4. Combine LIs and DIs of each molecule into a single array (generation of molecular LDMs).
- 5. Organization of the combined LIs/DIs arrays into conventional matrix format.
- 6. Prune all matrices to that of the smallest molecule in the set.
- 7. Create pruned LDM, LM, and DM, as well as their eigenvalue matrices.
- 8. Compute Frobenius distance matrices from pruned matrices, as well as their eigenvalue matrices.
- 9. Write the output files (nine per molecule).
- Write six Frobenius distance files (LDM, LM, DM, and eigenvalues for each one) comparing all molecules in the set.
- 11. Option to perform matrix operations on another set of files.
- 12. Stop.

Sample input and output files of the programme can be found in **Appendix A**. Successive improved and expanded versions will be available from the authors in the future.

## 2.2 Numerical Illustrative Testing

Several (but not all) of the properties of isoelectronic series are known to change gradually across a given ordered series [7-10]. First we test whether the gradual change in some of these properties are reflected in the Frobenius distance from the

| Molecule      | $ArO_4$ | $ClO_4^-$ | $SO_{4}^{2-}$ | $PO_{4}^{3-}$ | $SiO_4^{4-}$ |
|---------------|---------|-----------|---------------|---------------|--------------|
| $ArO_4$       | 0       | 2.1845    | 3.9641        | 4.6977        | 5.0721       |
| $ClO_4^-$     | 2.1845  | 0         | 1.8028        | 2.5680        | 2.9678       |
| $SO_{4}^{2-}$ | 3.9641  | 1.8028    | 0             | 0.7888        | 1.2095       |
| $PO_{4}^{3-}$ |         |           |               | 0             |              |
| $SiO_4^{4-}$  | 5.0721  | 2.9678    | 1.2095        | 0.4326        | 0            |

 Table 2.1: Frobenius molecule-molecule distance matrix using the full LDM

last (or first) member of a series. For this purpose, we use the  $N = 50e^{-}$  series (SiO<sub>4</sub><sup>4-</sup>, PO<sub>4</sub><sup>3-</sup>, SO<sub>4</sub><sup>2-</sup>, ClO<sub>4</sub><sup>-</sup>, and ArO<sub>4</sub>) that was recently examined [7-10].

The Gaussian 09 [11] software was used to (a) optimize the geometry (followed by a frequency calculation that ensured all real frequencies) and (b) to generate "wavefunctions" at the optimized geometry for every one of the five molecules in the set. These calculations were conducted at a level of theory defined by the second order Møller-Plesset perturbation theory (MP2) in conjunction with a Pople 6-311+G(d,p) basis set. Handy and Schaefer's Z-vector correction procedure [12] was then applied to the SCF density matrix to generate an effective correlated "relaxed" or "gradient" density matrix. These effective correlated wavefunctions were then subjected to numerical integration to calculate the LIs and DIs using AIMAll/AIMStudio [2]. Finally AIMLDM was used to extract the relevant information from the output of AIMAll and generate the LDMs representing the five molecules of the set and calculate the distance matrix shown in Table 2.1.

The distance matrix in Table 2.1 clearly shows that there is a gradual but nonmonotonic change in the dissimilarity distance going down a given column whereby the molecule listed along the diagonal is taken as a reference (zero-distance from itself). For example the difference between the distances listed as two consecutive entries in column 1 (taking  $ArO_4$  as reference) are:  $d(SO_4^{2-}, ClO_4^{-}) - d(ArO_4, ClO_4^{-})$  = 3.9641 - 2.1845 = 1.7796; the differences between subsequent entries (in order going down the same column, or across the first row) are 1.7796, 0.7336, and 0.3744 that is not following a discernable pattern except that the difference between two members of the series gets smaller the higher the atomic number of the central atom.

Table 2.1 also reveals an important property of the space being studied. The triangle inequality is obeyed with a central angle close to  $180^{\circ}$ . For example, from the distance matrix one reads:  $d(SiO_4^{4-}, ArO_4) = 5.0721$ , which is very close to the distance obtained by the distances sums, say,  $d(SiO_4^{4-}, SO_4^{2-}) + d(SO_4^{2-}, ArO_4) = 1.2095 + 3.9641 = 5.1736$ , or  $d(SiO_4^{4-}, PO_4^{3-}) + d(PO_4^{3-}, SO_4^{2-}) + d(SO_4^{2-}, ClO_4^{-}) + d(ClO_4^{-}, ArO_4) = 0.4326 + 0.7888 + 1.8028 + 2.1845 = 5.2087$ , etc. The discrepancy is possibly due to the slight departure from the Euclidean geometry of the mathematical dissimilarity distance space under study.

Plots of the values listed in the first row or column of the molecule-molecule distance matrix based on their LDMs in Table 2.1 and the corresponding row/column of the distance matrix based on the DMs (not shown) against the total energy ( $E_{total} = E_{el} + E_{nn}$ ) and against the nuclear-nuclear repulsions energy ( $E_{nn}$ ) are displayed in Fig. 2.2.

Both energies exhibit a roughly linear correlation with the DM-based distance from  $ArO_4$ . The correlation becomes non-linear when the distances from  $ArO_4$  are obtained from the LDMs (Table 2.1) as can be seen on the plots to the right of Fig. 2.2. This shows that *global molecular energetic properties* in this isoelectronic series are highly correlated with inter-molecule distances from a chosen reference,  $ArO_4$  in this case. It is perhaps remarkable that  $E_{nn}$ , a classical Coulombic energy term that only depends on the charge and position of the nuclei that determine the "external potential", is strongly correlated with a similarity measure based on electron



Figure 2.2: Top: Total energy (electronic + nuclear-nuclear) of the  $N = 50e^-$  isoelectronic series  $SiO_4^{4-}$  (last data point on the far right),  $PO_4^{3-}$ ,  $SO_4^{2-}$ ,  $ClO_4^-$ , and  $ArO_4$  (first data point on the far left taken as reference) against the Frobenius molecule-molecule distance using the diagonal suppressed LDM (or delocalization matrix, DM) (*left*) and from the full LDM (*right*). Bottom: Nuclear-nuclear repulsion energy for the same series of molecules against the Frobenius distance obtained using the DMs (*left*) and the LDMs (*right*).

localization/delocalization.

Fig. 2.3 displays two often reported experimentally-determinable molecular properties as functions of the similarity distance from ArO<sub>4</sub>, that is, the bond length (B.L.) in Å and the isotropic polarizability  $\langle \alpha \rangle = \frac{1}{3}(\alpha_{xx} + \alpha_{yy} + \alpha_{zz})$  in a.u. obtained from the quantum chemical calculations. Both properties exhibit a non-linear dependence on both the DM- and on the LDM-based distances from the reference molecule without any obvious outliers.

Fig. 2.4 shows correlation with three *local properties*: (*Top*) The electron density at the nucleus of the central (non-oxygen) atom  $(p_n)$ ; (*Middle*) The maximum electrostatic potential (V) on the outer molecular Van der Waals isodensity surface (p = 0.001a.u.) associated with the central atom; (*Bottom*) the electron-nuclear at-



Figure 2.3: Top: Bond lengths (equal to bond path lengths to at least 4 decimals) in Å of the  $N = 50e^{-}$  isoelectronic series  $SiO_4^{4-}$  (last data point on the far right),  $PO_4^{3-}$ ,  $SO_4^{2-}$ ,  $ClO_4^-$ , and  $ArO_4$  (first data point on the far left taken as reference) against the Frobenius molecule-molecule distance using the diagonal suppressed LDM (or delocalization matrix, DM) (*left*) and from the full LDM (right). Bottom: Isotropic (average) polarizability  $\frac{(\alpha_{xx} + \alpha_{yy} + \alpha_{zz})}{2}$  for the same series of molecules against the Frobenius distance obtained using the DMs (*left*) and the LDMs (*right*)

traction contribution to the virial field at the central nucleus. All three plotted against the DM- and LDM-based Frobenius inter-molecular distances from  $ArO_4$ . The three local properties appear to be roughly linearly correlated with the distance but when the full LDM is taken as a basis for comparison the correlations are non-linear, but strong nevertheless.

We next investigate the correlation of LDM distances with the total energy of small molecules calculated with different basis sets with the  $E_{total}$  from Hartree-Fock (HF) electronic structure calculation (SCF level). The basis sets used are STO-3-6G, 3-21G, 3-21+G, SVP, 6-31G, 6-31G(d), 6-31+G(d), 6-31+G(d,p), 6-311++G(2d,p), TZVP, UGBS, cc-pVDZ, cc-pVTZ, and cc-pVQZ. The quality of the basis set is reflected in the energy since HF is variational and generally results in a smaller LDM-Frobenius distance from the best value (calculated with the basis set that delivers the lowest energy). As an illustration, these calculations are performed on four small molecules of differing polarity (CH<sub>4</sub>, CH<sub>3</sub>OH, H<sub>2</sub>O, and NH<sub>3</sub>) with a number of commonly used standard basis sets.



Figure 2.4: Top: Electron density at the nucleus of the central (non-oxygen) atom  $(p_n)$  in a.u. of the  $N = 50e^-$  isoelectronic series  $SiO_4^{4-}$  (last data point on the far right),  $PO_4^{3-}$ ,  $SO_4^{2-}$ ,  $ClO_4^-$ , and ArO<sub>4</sub> (first data point on the far left taken as reference) against the Frobenius molecule-molecule distance using the diagonal suppressed LDM (or delocalization matrix, DM) (*left*) and from the full LDM (*right*). *Middle*: Maximum electrostatic potential (V) in a.u. on the 0.001 a.u. isodensity surface against the Frobenius distance obtained using the DMs (*left*) and the LDMs (*right*). *Bottom*: Electron-nuclear attraction contribution to virial field at the central nucleus in a.u. against the Frobenius distance obtained using the DMs (*left*).

For all four molecules, the lowest energy is obtained at the HF/cc-pvqz level of theory, which is used as the reference in the Frobenius distance calculations. Fig. 2.5 plots  $E_{total}$  as a function of the LDM-based Frobenius distance from the HF/cc-pvqz calculation with respect to each molecule. Each data-point on every one of the four plots is also labelled with the basis set that was used. The plots show that, generally,



Figure 2.5: LDM-Frobenius distances from the HF/cc-pvqz versus  $E_{total}$  using different basis sets for four molecules CH<sub>4</sub>, CH<sub>3</sub>OH, H<sub>2</sub>O, and NH<sub>3</sub>. Quality is highest at the lower left side of each plot.

the lower the energy the smaller the distance from the best result.

# 2.3 Examples of Application of LDMs as a Molecular Fingerprinting Tool in Quantitative Structure-Activity Relationship (QSAR) Studies

There are several studies that report the use of LDMs in the empirical modeling to predict the properties of compounds in QSAR-type studies [13,14,5,6,15,16]. In the following chapter there will be two examples of how the concepts can be used in actual predictive modeling via the benzoic acid series.

#### 2.3.1 LDM-Eigenvalues as Predictors in QSAR

Principal Component Analysis (PCA) [17] can be used to reduce the dimensions of LDMs and to extract QSAR descriptors from them. In this approach, an orthogonal transformation converts a matrix of (possibly correlated) variables into a set of linearly uncorrelated variables termed principal components which are less than or equal to the number of original variables. The first principal component has the largest variance and accounts for as much of the variability in the data as possible, and each succeeding component has maximal variance under the constraint that it is orthogonal to the preceding components (uncorrelated with it). Thus, principal components are orthogonal since they are the eigenvectors of the covariance matrix, which is a symmetric matrix. One can think of PCA as fitting an *n*-dimensional ellipsoid to the data, where each orthogonal axis of the ellipsoid represents a principal component. Small axes of the ellipse correspond to small variance along that axis. Omitting small axes (small principal components) from the LDM results in a commensurately small loss of information.

We have consistently observed a strong correlation between LDMs' eigenvalues and the number of electrons in atomic basins. Hydrogen atoms have the smallest electron populations and hence their contributions to the eigenvalues extracted from the LDM by the PCA transformation can be neglected. This is not dissimilar to the hydrogen-suppressed graphs pioneered by Kier and Hall in their "Atom Level Electrotopological State" [18].

As an initial exploration of the validity of extracting QSAR descriptors form LDMs using PCA transformations we investigate a series of carboxylic acids that extend the set in Refs.[5,6]. We first observe that as long as we retain the pair-wise values for the LI (e.g. C1 to C1, O7 to O7, *etc.*) and the DI (C1 to O7, O7 to H4, *etc.*), then the ordering of the LDM does not affect the eigenvalues that are produced from the LDM (Table 2.2).

|                                                                                                                                                           | C1                                                                                                  | C2                                                                                          | H3                                                                                             | H4                                                                                               | H5                                                                                                                                              | O6                                                                                                                          | O7                                                                                          | H8                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| C1                                                                                                                                                        | 4.010                                                                                               | 0.464                                                                                       | 0.475                                                                                          | 0.477                                                                                            | 0.477                                                                                                                                           | 0.060                                                                                                                       | 0.053                                                                                       | 0.004                                                                                |
| C2                                                                                                                                                        | 0.464                                                                                               | 2.793                                                                                       | 0.017                                                                                          | 0.021                                                                                            | 0.021                                                                                                                                           | 0.654                                                                                                                       | 0.417                                                                                       | 0.005                                                                                |
| H3                                                                                                                                                        | 0.475                                                                                               | 0.017                                                                                       | 0.397                                                                                          | 0.017                                                                                            | 0.017                                                                                                                                           | 0.009                                                                                                                       | 0.007                                                                                       | 0.001                                                                                |
| H4                                                                                                                                                        | 0.477                                                                                               | 0.021                                                                                       | 0.017                                                                                          | 0.419                                                                                            | 0.018                                                                                                                                           | 0.010                                                                                                                       | 0.006                                                                                       | 0.001                                                                                |
| H5                                                                                                                                                        | 0.477                                                                                               | 0.021                                                                                       | 0.017                                                                                          | 0.018                                                                                            | 0.419                                                                                                                                           | 0.010                                                                                                                       | 0.006                                                                                       | 0.001                                                                                |
| O6                                                                                                                                                        | 0.060                                                                                               | 0.654                                                                                       | 0.009                                                                                          | 0.010                                                                                            | 0.010                                                                                                                                           | 8.276                                                                                                                       | 0.143                                                                                       | 0.008                                                                                |
| 07                                                                                                                                                        | 0.053                                                                                               | 0.417                                                                                       | 0.007                                                                                          | 0.006                                                                                            | 0.006                                                                                                                                           | 0.143                                                                                                                       | 8.171                                                                                       | 0.321                                                                                |
| H8                                                                                                                                                        | 0.004                                                                                               | 0.005                                                                                       | 0.001                                                                                          | 0.001                                                                                            | 0.001                                                                                                                                           | 0.008                                                                                                                       | 0.321                                                                                       | 0.075                                                                                |
|                                                                                                                                                           | <b>F1</b>                                                                                           | $\mathbf{F2}$                                                                               | F3                                                                                             | $\mathbf{F4}$                                                                                    | $\mathbf{F5}$                                                                                                                                   | F6                                                                                                                          |                                                                                             |                                                                                      |
| $Eigen^{(*)}$                                                                                                                                             | 3.314                                                                                               | 1.816                                                                                       | 0.968                                                                                          | 0.762                                                                                            | 0.559                                                                                                                                           | 0.541                                                                                                                       |                                                                                             |                                                                                      |
| $Var.\%^{(*)}$                                                                                                                                            | 41.4                                                                                                | 22.7                                                                                        | 12.1                                                                                           | 9.5                                                                                              | 7.0                                                                                                                                             | 6.8                                                                                                                         |                                                                                             |                                                                                      |
| $Cum.\%^{(*)}$                                                                                                                                            | 41.4                                                                                                | 64.1                                                                                        | 76.2                                                                                           | 85.8                                                                                             | 92.7                                                                                                                                            | 99.5                                                                                                                        |                                                                                             |                                                                                      |
|                                                                                                                                                           |                                                                                                     |                                                                                             |                                                                                                |                                                                                                  |                                                                                                                                                 |                                                                                                                             |                                                                                             |                                                                                      |
|                                                                                                                                                           |                                                                                                     |                                                                                             |                                                                                                | Table                                                                                            | 2.2.B                                                                                                                                           |                                                                                                                             |                                                                                             |                                                                                      |
|                                                                                                                                                           | H3                                                                                                  | O7                                                                                          | H4                                                                                             | <b>Table</b><br>H5                                                                               | <b>2.2.B</b><br>O6                                                                                                                              | C1                                                                                                                          | H8                                                                                          | C2                                                                                   |
| H3                                                                                                                                                        | H3<br>0.397                                                                                         | O7<br>0.007                                                                                 | H4<br>0.017                                                                                    |                                                                                                  |                                                                                                                                                 | C1<br>0.475                                                                                                                 | H8<br>0.001                                                                                 | C2<br>0.017                                                                          |
| H3<br>07                                                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                | H5                                                                                               | O6                                                                                                                                              |                                                                                                                             |                                                                                             |                                                                                      |
|                                                                                                                                                           | 0.397                                                                                               | 0.007                                                                                       | 0.017                                                                                          | H5<br>0.017                                                                                      | O6<br>0.009                                                                                                                                     | 0.475                                                                                                                       | 0.001                                                                                       | 0.017                                                                                |
| 07                                                                                                                                                        | 0.397<br>0.001                                                                                      | $0.007 \\ 8.171$                                                                            | $0.017 \\ 0.006$                                                                               | H5<br>0.017<br>0.006                                                                             | O6<br>0.009<br>0.143                                                                                                                            | $0.475 \\ 0.053$                                                                                                            | $0.001 \\ 0.321$                                                                            | $0.017 \\ 0.417$                                                                     |
| O7<br>H4                                                                                                                                                  | $\begin{array}{c} 0.397 \\ 0.001 \\ 0.017 \end{array}$                                              | 0.007<br>8.171<br>0.006                                                                     | 0.017<br>0.006<br>0.419                                                                        | H5<br>0.017<br>0.006<br>0.018                                                                    | O6<br>0.009<br>0.143<br>0.010                                                                                                                   | $0.475 \\ 0.053 \\ 0.477$                                                                                                   | $\begin{array}{c} 0.001 \\ 0.321 \\ 0.001 \end{array}$                                      | $\begin{array}{c} 0.017 \\ 0.417 \\ 0.021 \end{array}$                               |
| O7<br>H4<br>H5                                                                                                                                            | $\begin{array}{c} 0.397 \\ 0.001 \\ 0.017 \\ 0.017 \end{array}$                                     | $\begin{array}{c} 0.007 \\ 8.171 \\ 0.006 \\ 0.006 \end{array}$                             | $\begin{array}{c} 0.017 \\ 0.006 \\ 0.419 \\ 0.018 \end{array}$                                | H5<br>0.017<br>0.006<br>0.018<br>0.419                                                           | O6<br>0.009<br>0.143<br>0.010<br>0.010                                                                                                          | $\begin{array}{c} 0.475 \\ 0.053 \\ 0.477 \\ 0.477 \end{array}$                                                             | 0.001<br>0.321<br>0.001<br>0.001                                                            | $\begin{array}{c} 0.017 \\ 0.417 \\ 0.021 \\ 0.021 \end{array}$                      |
| O7<br>H4<br>H5<br>O6                                                                                                                                      | $\begin{array}{c} 0.397 \\ 0.001 \\ 0.017 \\ 0.017 \\ 0.009 \end{array}$                            | $\begin{array}{c} 0.007 \\ 8.171 \\ 0.006 \\ 0.006 \\ 0.143 \end{array}$                    | $\begin{array}{c} 0.017 \\ 0.006 \\ 0.419 \\ 0.018 \\ 0.010 \end{array}$                       | H5<br>0.017<br>0.006<br>0.018<br>0.419<br>0.010                                                  | O6<br>0.009<br>0.143<br>0.010<br>0.010<br>8.276                                                                                                 | $\begin{array}{c} 0.475 \\ 0.053 \\ 0.477 \\ 0.477 \\ 0.060 \end{array}$                                                    | $\begin{array}{c} 0.001 \\ 0.321 \\ 0.001 \\ 0.001 \\ 0.008 \end{array}$                    | $\begin{array}{c} 0.017 \\ 0.417 \\ 0.021 \\ 0.021 \\ 0.654 \end{array}$             |
| O7<br>H4<br>H5<br>O6<br>C1                                                                                                                                | $\begin{array}{c} 0.397 \\ 0.001 \\ 0.017 \\ 0.017 \\ 0.009 \\ 0.475 \end{array}$                   | $\begin{array}{c} 0.007 \\ 8.171 \\ 0.006 \\ 0.006 \\ 0.143 \\ 0.053 \end{array}$           | $\begin{array}{c} 0.017\\ 0.006\\ 0.419\\ 0.018\\ 0.010\\ 0.477\end{array}$                    | H5<br>0.017<br>0.006<br>0.018<br>0.419<br>0.010<br>0.477                                         | O6<br>0.009<br>0.143<br>0.010<br>0.010<br>8.276<br>0.060                                                                                        | $\begin{array}{c} 0.475\\ 0.053\\ 0.477\\ 0.477\\ 0.060\\ 4.010 \end{array}$                                                | $\begin{array}{c} 0.001 \\ 0.321 \\ 0.001 \\ 0.001 \\ 0.008 \\ 0.004 \end{array}$           | $\begin{array}{c} 0.017\\ 0.417\\ 0.021\\ 0.021\\ 0.654\\ 0.464 \end{array}$         |
| O7<br>H4<br>H5<br>O6<br>C1<br>H8<br>C2                                                                                                                    | $\begin{array}{c} 0.397 \\ 0.001 \\ 0.017 \\ 0.017 \\ 0.009 \\ 0.475 \\ 0.001 \end{array}$          | $\begin{array}{c} 0.007 \\ 8.171 \\ 0.006 \\ 0.006 \\ 0.143 \\ 0.053 \\ 0.321 \end{array}$  | $\begin{array}{c} 0.017\\ 0.006\\ 0.419\\ 0.018\\ 0.010\\ 0.477\\ 0.001\\ \end{array}$         | H5<br>0.017<br>0.006<br>0.018<br>0.419<br>0.010<br>0.477<br>0.001                                | O6<br>0.009<br>0.143<br>0.010<br>0.010<br>8.276<br>0.060<br>0.008                                                                               | $\begin{array}{c} 0.475\\ 0.053\\ 0.477\\ 0.477\\ 0.060\\ 4.010\\ 0.004 \end{array}$                                        | $\begin{array}{c} 0.001 \\ 0.321 \\ 0.001 \\ 0.001 \\ 0.008 \\ 0.004 \\ 0.0075 \end{array}$ | $\begin{array}{c} 0.017\\ 0.417\\ 0.021\\ 0.021\\ 0.654\\ 0.464\\ 0.005 \end{array}$ |
| $\begin{array}{c} & {\rm O7} \\ {\rm H4} \\ {\rm H5} \\ {\rm O6} \\ {\rm C1} \\ {\rm H8} \\ {\rm C2} \end{array} \\ \\ \hline \\ Eigen^{(*)} \end{array}$ | $\begin{array}{c} 0.397 \\ 0.001 \\ 0.017 \\ 0.017 \\ 0.009 \\ 0.475 \\ 0.001 \\ 0.017 \end{array}$ | $\begin{array}{c} 0.007\\ 8.171\\ 0.006\\ 0.006\\ 0.143\\ 0.053\\ 0.321\\ 0.417\end{array}$ | $\begin{array}{c} 0.017\\ 0.006\\ 0.419\\ 0.018\\ 0.010\\ 0.477\\ 0.001\\ 0.021\\ \end{array}$ | H5<br>0.017<br>0.006<br>0.018<br>0.419<br>0.010<br>0.477<br>0.001<br>0.021                       | O6<br>0.009<br>0.143<br>0.010<br>0.010<br>8.276<br>0.060<br>0.008<br>0.654                                                                      | $\begin{array}{c} 0.475\\ 0.053\\ 0.477\\ 0.477\\ 0.060\\ 4.010\\ 0.004\\ 0.464\\ \end{array}$                              | $\begin{array}{c} 0.001 \\ 0.321 \\ 0.001 \\ 0.001 \\ 0.008 \\ 0.004 \\ 0.0075 \end{array}$ | $\begin{array}{c} 0.017\\ 0.417\\ 0.021\\ 0.021\\ 0.654\\ 0.464\\ 0.005 \end{array}$ |
| O7<br>H4<br>H5<br>O6<br>C1<br>H8<br>C2                                                                                                                    | 0.397<br>0.001<br>0.017<br>0.017<br>0.009<br>0.475<br>0.001<br>0.017<br><b>F1</b>                   | 0.007<br>8.171<br>0.006<br>0.006<br>0.143<br>0.053<br>0.321<br>0.417<br><b>F2</b>           | 0.017<br>0.006<br>0.419<br>0.018<br>0.010<br>0.477<br>0.001<br>0.021<br><b>F3</b>              | H5<br>0.017<br>0.006<br>0.018<br>0.419<br>0.010<br>0.477<br>0.001<br>0.021<br><b>F4</b>          | O6<br>0.009<br>0.143<br>0.010<br>0.010<br>8.276<br>0.060<br>0.008<br>0.654<br><b>F5</b>                                                         | 0.475<br>0.053<br>0.477<br>0.477<br>0.060<br>4.010<br>0.004<br>0.464<br><b>F6</b>                                           | $\begin{array}{c} 0.001 \\ 0.321 \\ 0.001 \\ 0.001 \\ 0.008 \\ 0.004 \\ 0.0075 \end{array}$ | $\begin{array}{c} 0.017\\ 0.417\\ 0.021\\ 0.021\\ 0.654\\ 0.464\\ 0.005 \end{array}$ |
| $\begin{array}{c} & {\rm O7} \\ {\rm H4} \\ {\rm H5} \\ {\rm O6} \\ {\rm C1} \\ {\rm H8} \\ {\rm C2} \end{array} \\ \\ \hline \\ Eigen^{(*)} \end{array}$ | 0.397<br>0.001<br>0.017<br>0.009<br>0.475<br>0.001<br>0.017<br><b>F1</b><br>3.314                   | 0.007<br>8.171<br>0.006<br>0.143<br>0.053<br>0.321<br>0.417<br><b>F2</b><br>1.816           | 0.017<br>0.006<br>0.419<br>0.018<br>0.010<br>0.477<br>0.001<br>0.021<br><b>F3</b><br>0.968     | H5<br>0.017<br>0.006<br>0.018<br>0.419<br>0.010<br>0.477<br>0.001<br>0.021<br><b>F4</b><br>0.762 | O6           0.009           0.143           0.010           8.276           0.060           0.008           0.654           F5           0.559 | $\begin{array}{c} 0.475\\ 0.053\\ 0.477\\ 0.477\\ 0.060\\ 4.010\\ 0.004\\ 0.464\\ \hline \mathbf{F6}\\ 0.541\\ \end{array}$ | $\begin{array}{c} 0.001 \\ 0.321 \\ 0.001 \\ 0.001 \\ 0.008 \\ 0.004 \\ 0.0075 \end{array}$ | $\begin{array}{c} 0.017\\ 0.417\\ 0.021\\ 0.021\\ 0.654\\ 0.464\\ 0.005 \end{array}$ |

Table 2.2: "Scrambled" LDM for acetic acid and resulting eigenvalues

Table 2.2.A

(\*)Eigen. = eigenvalues, Var.% = percent variability, Cum.% = cumuative percentage.

The largest six eigenvalues extracted using the PCA method generally account for more than 95% of the variance in the LDM as can be seen from Table 2.3. The unaccounted-for variance (especially in the larger molecules) is principally due to the

hydrogen atoms.

**Table 2.3:** Eigenvalues of the LDMs from a series of carboxylic acids from PCA (non-traditional names are used to highlight the functional groups attached to the C-COOH skeleton.)

| Compounds                  | $pK_a$ | F1     | F2     | F3     | F4     | F5     | F6     |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|
| 2,2,2-trimethylacetic acid | 5.03   | 3.5044 | 3.4968 | 2.6103 | 1.6493 | 1.1271 | 0.8440 |
| 2-methylacetic acid        | 4.88   | 3.2949 | 2.6510 | 1.6724 | 0.9231 | 0.7578 | 0.5431 |
| 2,2-dimethylacetic acid    | 4.84   | 3.6629 | 2.8154 | 2.0677 | 1.5495 | 0.9162 | 0.7466 |
| 2-ethylacetic acid         | 4.82   | 3.4123 | 2.6025 | 2.4643 | 1.5942 | 0.9186 | 0.7470 |
| acetic acid                | 4.76   | 3.3139 | 1.8157 | 0.9681 | 0.7624 | 0.5594 | 0.5410 |
| 2,2-deithylacetic acid     | 4.71   | 3.6628 | 2.9875 | 2.5368 | 2.4024 | 1.9023 | 1.4590 |
| 2-phenylacetic acid        | 4.31   | 2.9070 | 2.3874 | 2.2992 | 2.1406 | 1.6469 | 1.4845 |
| 2-hydroxyacetic acid       | 3.83   | 2.7729 | 2.2391 | 1.7063 | 0.9008 | 0.7231 | 0.5576 |
| 2-methoxyacetic acid       | 3.57   | 3.5054 | 2.5375 | 1.6007 | 1.1461 | 0.8160 | 0.6961 |
| 2-mercaptoacetic acid      | 3.55   | 2.7687 | 2.2753 | 1.6337 | 0.8686 | 0.6791 | 0.5247 |
| chloroacetic acid          | 2.87   | 2.8650 | 1.8055 | 1.3091 | 0.8645 | 0.5579 | 0.5375 |
| fluoroacetic acid          | 2.59   | 2.8279 | 1.7929 | 1.3095 | 0.8673 | 0.5903 | 0.5444 |
| 2-cyanoacetic acid         | 2.45   | 2.8160 | 2.2821 | 1.6958 | 0.8868 | 0.7173 | 0.4891 |
| glycine                    | 2.37   | 3.0611 | 2.6926 | 1.7311 | 0.9443 | 0.7691 | 0.5314 |
| N-methylglycine            | 2.35   | 3.4219 | 2.4983 | 2.0691 | 1.5747 | 0.8849 | 0.7399 |
| N,N-dimethylglycine        | 2.04   | 3.5031 | 3.1997 | 2.3859 | 1.5197 | 1.0354 | 0.8589 |
| difluoroacetic acid        | 1.34   | 2.4528 | 1.6669 | 1.3705 | 1.1398 | 0.8523 | 0.3994 |
| dichloroacetic acid        | 1.26   | 2.4669 | 1.6702 | 1.3612 | 1.1442 | 0.8436 | 0.4083 |
| tryfluoroacetic acid       | 0.52   | 2.2115 | 1.4565 | 1.1411 | 1.1403 | 1.1120 | 0.7399 |
| trichloroacetic acid       | 0.51   | 2.2149 | 1.4654 | 1.1462 | 1.1454 | 1.0845 | 0.7442 |

It would be instructive to compare pairs of molecules by mapping each in an *n*-dimensional abstract mathematical eigenvalue space (obtained from a PCA of the LDM) then determine if the respective locations of the molecules in this space coincide with chemical knowledge. It is not possible to readily visualize spatial relationships beyond three dimensions, and hence, even for the 6-dimensional space that corresponds to the PCs listed in Table 2.3 reduction of dimensionality is needed. This is achievable through a number of methods clamped together in what is known as multi-dimensional scaling (MDS) algorithms [19-25]. These algorithms aim at projecting the

complicated "distance matrix" between the compared object from the *n*-dimensional space to 2- or 3- dimensions under the constraint to minimize the changes on interobject distances. To achieve this goal, MDS algorithms minimize a criterion termed the "Kruskal Stress (S)",  $0 \le S \le 1$ , defined as [22]:

$$S = \sqrt{\frac{\sum_{i,j} [f(x_{ij}) - d_{ij}]^2}{\sum_{i,j} d_{ij}^2}}$$
(2.1)

where  $d_{ij}$  is the distance measured between points *i* and *j* and  $f(x_{ij})$  is the transformation of the raw input data  $x_{ij}$  whereby when  $f(x_{ij}) = x_{ij}$  the raw data is compared to the distances on the lower dimensional map directly (metric scaling) otherwise *f* is a (weakly monotonic) transformation used to minimize S. The closer the stress is to zero, the better the 2- or 3-dimensional representation of the *n*-dimensional space.

Rigorous statistical methods that evaluate the quality of a MDS representation are not available at the time of writing. A plot called a "*Shepard diagram*" is often used as a qualitative indicator of the quality of the lower-dimensional representation [23,24].

The Shepard diagram is essentially a scatter plot in which the abscissa represents the inter-objects distances in the full *n*-dimensional space while the ordinate represents the distance between every given pair of objects projected on the lower-dimensional space obtained from the MDS. Larger spread (scatter of data away from the line of best fit) is a diagnostic of an unreliable multidimensional scaling map. On the other hand, when all points lie on the same line, then the quality is perfect, but for any realistic example some scatter is expected, the smaller the scatter the more reliable is the MDS projection.

Fig. 2.6 displays a Shepard diagram using the data listed in Table 2.3 after MDS

treatment using the programme XLSTAT<sup>TM</sup> [26]. The Shepard plot reveals that S is low and that the scatter-plot is linear. Fig. 2.7 displays a 2-dimensional projection of the 6-dimensional eigenvalue descriptors obtained from the LDMs of a series of substituted acetic acids. This mapping groups acids with electron-withdrawing substituents together (upper left quadrant) while those acids with electron donating substituents are grouped together and far from the first group (lower right quadrant), in line with chemical expectation.

For closely related series of carboxylic acids, such as halogenated acetic acids, the positions on the map is expected to be strongly correlated with physical properties. Such a correlation has indeed been reported between the  $pK_a$ 's of fluorinated and chlorinated acetic acids, that is, substituted acetic acids (SAA) where S = F, Cl, and the Frobenius distance of their DMs from that of unsubstituted acetic acid (AA) [6]:

$$pK_{a}(SAA) \approx -0.588 + 5.415e^{[-5.066d_{deloc}(AA,SAA)]}$$
(2.2)  
$$(r^{2} = 0.979, n = 7)$$

Now if we regress the distances (d) of the same set of six chlorine and fluorine substituted acetic acids from the unsubstituted reference molecule generated from the MDS projected map displayed in Fig. 2.7 we get:

$$pK_a(SAA) \approx 8.4075e^{[-0.644d]}$$
 (2.3)  
 $(r^2 = 0.996, n = 7)$ 

The strength of the correlation in Eq. 2.1 indicates that the 2-dimensional projection



Figure 2.6: Shepard plot of the multidimensinoal scaling (MDS) transformed six dimensional data listed in Table 2.3

of the 6-dimensional eigenvalue descriptor set for these molecules retains most of the information contained in their LDM (or DM) representations.

## 2.4 Conclusion

LDMs and related matrices have been shown promising in QSAR-type studies. The size of the data sets in the past has been limited by the necessity of manual construction and manipulation of these matrices. The first release of a programme that automates the essential steps necessary for the LDM-based analysis is presented here and instructions on how to operate are in **Appendix A**. The AIMLDM programme's principal usage is to extract LDMs and related matrices from as many AIMAll output files as desired. In other words, what AIMLDM achieves is essentially extracting and



**Figure 2.7:** Two-dimensional projection of the 6-dimensional eigenvalue descriptors of the LDMs of a series of substituted acetic acids.

constructing the LDMs and DMs of large molecular datasets from the AIMAll output and, subjecting said matrices to basic manipulations. In this way, AIMLDM is a programme that operates at a different level then AIMAll, the latter being concerned with one molecule at a time while the former uses the output of AIMAll for each molecule in a set to create their matrix representatives for further processing. This is the main goal of AIMLDM. It is *not* the scope of AIMLDM to cover every aspect of the manipulation of the matrices it extracts from a set of AIMAll outputs.

The first release of AIMLDM is not claimed to be flawless and will naturally be improved in subsequent releases that will be made available in the future by the authors. Other programmes such as  $XLSTAT^{TM}$  [39] can be used to apply analyses such as those based on multidimensional scaling once the matrices for all the molecules are generated by AIMLDM.

Numerical examples suggest the programme's numerical stability since no unex-

pected outliers can be identified using the  $N = 50e^{-}$  isoelectronic series (SiO<sub>4</sub><sup>4-</sup>, PO<sub>4</sub><sup>3-</sup>, SO<sub>4</sub><sup>2-</sup>, ClO<sub>4</sub><sup>-</sup>, and ArO<sub>4</sub>) as a test set. Hartree-Fock calculations on four small molecules (CH<sub>4</sub>, CH<sub>3</sub>OH, H<sub>2</sub>O, and NH<sub>3</sub>) with a variety of basis sets demonstrate that the LDM Frobenius distance from the most flexible basis set increases with the total energy as the basis set's quality is reduced. This result suggests that among potential uses of the LDM-analysis would be the comparison and assessment of the quality of basis sets and possibly also the testing of new density functional theory (DFT) functionals. However, the main area of anticipated use of the LDM analysis is in the domain of quantitative structure-activity relationship (QSAR) studies largely used in drug and materials design as the examples outlined in this paper and in the literature cited therein suggest.

It is also shown that the analysis of the eigenvalues of the LDMs using the principal component analysis constitute another promising approach to extract condensed or "pruned" descriptors from the LDMs. Compared to the full LDMs or DMs, intermolecular dissimilarity distances calculated using a combination of principal component analysis and multidimensional scaling yield a simple exponential model that accurately predicts  $pK_a$ 's.

### 2.5 Acknowledgements

The authors would like to acknowledge Matthew Timms (PhD Candidate, University of Toronto) for the input geometries of the isoelectronic series, and Dr. Todd Keith (SemiChem, Inc.) and Prof. Lou Massa (Hunter College, City University of New York) for several useful discussions. Financial support of this work was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI), Saint Mary's University, McMaster University, and Mount Saint Vincent University.

## 2.6 References

[1] I. Sumar, Electron Localization-Delocalization Matrices (LDMs): Theory and Chemical Applications, M.Sc. Thesis (Saint Mary's University, Halifax, 2015).

[2] T.A. Keith, AIMAll, Http://Aim.Tkgristmill.Com/ (2011).

[3] C.C. Pye and R.A. Poirier, Graphical approach for defining natural internal coordinates, J. Comput. Chem. 19 (1998) 504-511.

[4] C.C. Pye, Applications of Optimization to Quantum Chemistry, PhD Thesis (Memorial University of Newfoundland, Saint John's (NF), Canada, 1997).

[5] I. Sumar, P.W. Ayers and C.F. Matta, Electron localization and delocalization matrices in the prediction of pKa's and UV-wavelengths of maximum absorbance of p-benzoic acids and the definition of super-atoms in molecules, Chem. Phys. Lett. 612 (2014) 190-197.

[6] C.F. Matta, Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization and delocalization matrices, and the electrostatic potential, J. Comput. Chem. 35 (2014) 11651198.

[7] P. Pyykkö, Ab initio predictions for new chemical species, Phys. Script. 33 (1990) 52-53.

[8] P. Pyykkö, Ab initio study of bonding trends among cyanamidophosphates
([PO<sub>n</sub>(NCN)<sub>4-n</sub>]<sup>3-</sup>) and related systems, Chem. Eur. J. 6 (2000) 2145-2151.
[9] R. Lindh, W.P. Kraemer and M. Kämper, On the Thermodynamic Stability of

ArO4, J. Phys. Chem. A 103 (1999) 8295-8302.

[10] M. Timm and C.F. Matta, Primary retention following nuclear recoil in

 $\beta$  -decay: Proposed Synthesis of a metastable rare gas oxide (^{38}ArO\_4) from (^{38}ClO\_4)

and the evolution of chemical bonding over the nuclear transmutation reaction path, Appl. Rad. Isotopes 94 (2014) 206-215.

[11] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.

Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M.

Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L.

Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.

Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr, J.E.

Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N.

Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C.

Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E.

Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.

Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L.

Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg,

S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and

D.J. Fox, Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford CT, 2010).

[12] Handy N. C. and H.F. Schaefer III, On the evaluation of analytic energy

derivatives for correlated wave-functions, J. Chem. Phys., 81 (1984) 5031-33 81

(1984) 5031-5033.

[13] R. Cook, I. Sumar, P.W. Ayers and C.F. Matta, Electron

Localization-Delocalization Matrices (LDMs): Theory and Applications (Springer International Publishing AG, Cham, Switzerland, 2016).

[14] C.F. Matta, I. Sumar, R. Cook and P.W. Ayers, Localization-delocalization

and electron density-weighted connectivity matrices: A bridge between the quantum theory of atoms in molecules and chemical graph theory, In: Applications of Topological Methods in Molecular Chemistry (Challenges and Advances in Computational Chemistry and Physics Series); Chauvin, R.; Silvi, B.; Alikhani, E.; Lepetit, C. (Eds.) (Springer, 2015). electrostatic potential, J. Comput. Chem. 35 (2014) 1165-1198.

[15] C.F. Matta, Localization-delocalization matrices and electron density-weighted adjacency matrices: New electronic fingerprinting tools for medicinal computational chemistry, Future Med. Chem. 6 (2014) 1475-1479.

[16] B. Dittrich and C.F. Matta, Contributions of charge-density research to medicinal chemistry, Int. U. Cryst. J. (IUCrJ) 1 (2014) 457-469.

[17] P.P. Mager, Multidimensional Pharmacochemistry: Design of Safer Drugs (Academic Press, Inc., London, 1984).

[18] L.B. Kier, L.H. Hall and J.W. Frazer, An index of electrotopological state for atoms in molecules, J. Math. Chem. 7 (1991) 229-241.

[19] I. Borg and P. Groenen, Modern multidimensional scaling: theory and applications (Springer, New York, 1997).

[20] T.F. Cox and M.A.A. Cox, Multidimensional Scaling (Chapman & Hall, . London, 1994).

[21] J.B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika 29 (1964) 1-27.

[22] J.B. Kruskal, Nonmetric multidimensional scaling: a numerical method, Psychometrika 29 (1964) 115-129.

[23] R.N. Shepard, The analysis of proximities: multidimensional scaling with an unknown distance function. II, Psychometrika 27 (1962) 219-246.

[24] R.N. Shepard, The analysis of proximities: multidimensional scaling with an unknown distance function. I., Psychometrika 27 (1962) 125-140.

[25] W.S. Torgerson, Multidimensional scaling: I. Theory and method,

Psychometrika 17 (1952) 401-419.

[26] T. Fahmy and E. Jakobowicz, XLSTAT©-Pro (Version 2015.2.02,

www.xlstat.com/) / Microsoft®Excel 2007 (Addinsoft, Inc., Brooklyn, New York, 2015).

## Electron Localization and Delocalization Matrices in the Prediction of $pK_a$ 's and UV-Wavelengths of Maximum Absorbance of *p*-Benzoic Acids<sup>1</sup>

As has been shown throughout this thesis, the combination of chemical graph theory and the quantum theory of atoms in molecules (QTAIM) is very powerful in QSAR. In this chapter we further emphasize the importance of the localization and delocalization indices (LIs and DIs). This is demonstrated through the modelling of  $pK_a$ 's and  $\lambda_{max's}$ of a series of *para*-substituted benzoic acids.

Distances between the LDM representations of a set of *para*-substituted benzoic acids (BAS) is shown to capture the ordering of their respective  $pK_a$ 's and  $UV-\lambda_{max}$ (BA refers to unsubstituted benzoic acid and S refers to the substituent). The studied molecular set consists of the following 14 members (labeled by S in order of increasing  $pK_a$ ): NO<sub>2</sub>, CN, COCH<sub>3</sub>, CHO, Cl, F, H, NHCOCH<sub>3</sub>, CH<sub>3</sub>, OCH<sub>3</sub>, OH, NH<sub>2</sub>, and N(CH<sub>3</sub>)<sub>2</sub>  $\approx$  NHCH<sub>3</sub>; where the parent unsubstituted benzoic acid is the member with S = H.

We examine the series of 14 *para*-substituted benzoic acids (BAS) referred to above in which the common fragment (the benzene ring and the carboxylic group) are in one-to-one correspondence across the series but where S differs not only in atomic identities but also in the number of composing atoms and in the pattern by which they are bonded together. How can then these molecules be compared on equal footing?

The solution has been presented earlier in **Chapter 1**, we use the idea of the

<sup>&</sup>lt;sup>1</sup>Based on the Paper: Chemical Physics Letters 612 (2014) 190—197

super-atom (Eq. 1.18) so that each substituent (S= F, OH, N(CH<sub>3</sub>)<sub>2</sub>, *etc.* will be treated as a single atom thus keeping all matrices of equal size.

Fig. 3.1 displays the numbering scheme of the *p*-substituted benzoic acids where the substituent S at position 15 can be a hydrogen atom (in the parent compound, benzoic acid), another atom such as F (in *p*-fluorobenzoic acid), or a (pruned) superatom such as an OH group (in *p*-hydroxybenzoic acid).



Figure 3.1: Atomic numbering scheme adopted for all the matrices in this work. Position 15 can be an atom of a super-atom as defined in the text.

We are now in a position to use the pruned LDMs in the modelling of two important properties of the studied set of *para*-substituted benzoic acids: (1) The  $pK_a$  and (2) the UV- $\lambda_{max}$ . The LDMs of all studied molecules are available in **Appendix B** to 3-decimal precision in both their unpruned and pruned forms along with the corresponding atom numbering schemes.

We first note that the Frobenius distance Eq. 1.11 is a scalar distance between the matrix representatives of the studied molecules. Thus, as such, this distance contains no "direction" information, that is to say, two molecules can be equidistant from a third but flanking it on two sides, yet their Frobenius distances from that third would be identical. This is no impediment for accurate modelling of physical properties as long as the triangle inequality holds, as discussed in detail in Ref.[1], and which has been verified in the present study. This insensitivity to the direction of the difference is not specific to LDMs but to all Euclidean distance measures of molecular (dis)similarity. A notable example of such Euclidean distance measures that has been demonstrated to be of wide versatility and predictability with respect to a wide range of properties is the so-called quantum molecular similarity approach (QTMS) of Popelier and coworkers [2-8].

Because of the direction insensitivity of dissimilarity measures the reference molecule (the origin of the distance measurement) must be one that exhibits an extreme value of the studied property, maximum or minimum within the molecular set. In this work, the molecule with the smallest value of the studied property is taken as the reference. Thus, in the case of  $pK_a$ , the reference molecule is the one with the lowest value (the most acidic molecule), namely *p*-nitrobenzoic acid,  $pK_a$  (BANO2)=3.44, while for the  $\lambda_{max}$  unsubstituted benzoic acid itself is the reference since it has the shortest wavelength of maximal absoprtion,  $\lambda_{max}(BA) = 230$ nm.

## 3.1 Modelling of $pK_a$

It has been argued recently that the LDM can be biased by the diagonal elements that have magnitudes that are typically significantly larger than the off diagonal elements. Further, the diagonal elements (the LIs), scale much more rapidly with N, the total number of electrons in the molecule. The full LDM can, hence, sometimes fail to correlate with properties that are primarily electronic and independent of the core electrons such as  $pK_a$ 's, which is confirmed by our findings in the present study. Table 3.1 lists the squared correlation coefficients  $(r^2)$  obtained between inter-matrix Frobenius distances and two experimental molecular properties, namely,  $pK_a$  and  $\lambda_{max}$ . The table gives  $r^2$  values for correlation between these molecular properties and the distances from the respective reference molecules.

It can be seen from Table 3.1 that the  $pK_a$  is always best correlated with the matrix representative of the subgraph of the "active site", that is, [COOH]. This is closely followed by the smaller subgraph [OH]. This observation indicates an almost equal capability of the LM, DM, or LDM to locate the active site "automatically" so to speak since the inclusion of more atoms (e.g. taking the matrix representatives of the full molecules) destroys the correlation. This automatic zooming on the active centre is not dissimilar to what has been achieved previously in the QTMS context [2]. The subgraph of the full carboxylic group performs slightly better in its correlation with  $pK_a$  than the [OH] subgraph which can be expected given that acidity is dependent on the ability of the entire group to accommodate a delocalized negative charge. The  $r^2$  values for the full LM, DM, and LDM with the super-atom row/column omitted is not displayed in Table 3.1, those correlations are all still poor but are a slight improvement compared to the respective full LM, DM, and LDM.

**Table 3.1:** Pearson squared correlation coefficients  $(r^2)$  between calculated Frobenius distances and two molecular properties  $(pK_a, \lambda_{max})$ . The Frobenius distance is obtained from the localization matrices (LMs), delocalization matrices (DMs), and localization-delocalization matrices (LDMs) for the full molecule and for two subgraphs, namely, [COOH] and [OH].<sup>(a)</sup>

| Property                  | LM                                                                                                                                                                                                  |       |       |       | $\mathbf{D}\mathbf{M}$ |       |       | $\mathbf{LDM}$ |       |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|------------------------|-------|-------|----------------|-------|--|
|                           | Full                                                                                                                                                                                                | COOH  | OH    | Full  | COOH                   | OH    | Full  | COOH           | OH    |  |
| $pK_{a}^{(b)}$            |                                                                                                                                                                                                     |       |       |       |                        |       |       |                |       |  |
| $\lambda_{max}(nm)^{(c)}$ | 0.443                                                                                                                                                                                               | 0.967 | 0.858 | 0.757 | 0.970                  | 0.926 | 0.445 | 0.972          | 0.931 |  |
|                           | $\lambda_{max}(nm)^{(c)} \mid 0.443$ <b>0.967</b> 0.858 0.757 <b>0.970 0.926</b> 0.445 <b>0.972 0.931</b><br>(a) Entries in bold typeset highlight particularly strong correlations ( $r \ge 0.9$ ) |       |       |       |                        |       |       |                |       |  |

(b) The reference molecule is *p*-nitrobenzoic acid,  $pK_{a}$ , (BA- $NO_2$ ) = 3.44

(c) The reference molecule is unsubstituted benzoic acid,  $\lambda_{max}({\rm BA})$  = 230 nm

Fig. 3.2 displays the correlations between the Frobenius distances of the DMs of the subgraphs [COOH] and [OH] from that of the reference molecule, *p*-

nitrobenzoic acid, given symbols of the form,  $d_{matrixtype}^{[subgraph]}$  (reference, BA(S)), which are self-explanatory. The best model, using the DM of the [COOH] subgraph, yields the following linear fit:

$$pK_{a} = 3.456 + 72.990 \times d_{DM}^{COOH}(BANO_{2}, BAS)$$

$$[r^{2} = 0.986, St.Err. = 0.0641, n = 14]$$
(3.1)

in which the number of parameters to data points is 1:14. The corresponding leaveone-out cross-validated linear regression coefficient is  $q^2 = 0.982$ , a value of only 0.4% lower than the crude  $r^2$  which shows the absence of over-fitting and also that the model is predictive [9].



Figure 3.2: Plots of experimental  $pK_a$ 's against Frobenius distances between corresponding partial delocaliation matrices (DMs) from the most acidic member of the group, BA- $NO_2$  (*p*-nitrobenzoic acid), which is taken as a reference. The upper plot is obtained from the partial matrices including all the atoms of the carboxylic group [COOH] while the lower plot includes only the acidic hydrogen atom and its bonded oxygen, viz., the [OH] group.

| -S                 | $d_{\rm DM}^{\rm COOH}({\rm BANO}_2,{\rm BAS}){	imes}10^3$ | $pK_{a}(exptl)$ | Ref. | $pK_a(calc)^a$ | $pK_a(calc)^b$ |
|--------------------|------------------------------------------------------------|-----------------|------|----------------|----------------|
| -NO <sub>2</sub>   | 0                                                          | 3.44            | 27   | 3.46           | 3.46           |
| -CN                | 2.03                                                       | 3.55            | 1    | 3.60           | 3.62           |
| $-COCH_3$          | 4.88                                                       | 3.74            | 18   | 3.81           | 3.82           |
| -CHO               | 3.26                                                       | 3.77            | 16   | 3.69           | 3.68           |
| -Cl                | 7.71                                                       | 3.98            | 1    | 4.02           | 4.02           |
| -F                 | 9.02                                                       | 4.14            | 1    | 4.11           | 4.11           |
| -H                 | 9.66                                                       | 4.19            | 1    | 4.16           | 4.16           |
| $-NHCOCH_3$        | 10.8                                                       | 4.30            | 18   | 4.24           | 4.24           |
| $-CH_3$            | 11.6                                                       | 4.37            | 1    | 4.30           | 4.30           |
| $-OCH_3$           | 15.5                                                       | 4.47            | 1    | 4.59           | 4.60           |
| -OH                | 14.0                                                       | 4.57            | 1    | 4.48           | 4.47           |
| $-\mathrm{NH}_2$   | 19.4                                                       | 4.82            | 18   | 4.87           | 4.88           |
| $-N(CH_3)_2$       | 21.7                                                       | 5.03            | 18   | 5.04           | 5.05           |
| -NHCH <sub>3</sub> | 21.4                                                       | 5.04            | 16   | 5.02           | 5.02           |

**Table 3.2:** Frobenius distances calculated from the DM representatives of the *para*-substituted benzoic acid derivatives from the most acidic member of the set (*p*-nitrobenzoic acid) and their corresponding experimental and calculated  $pK_a$  values.

a Calculated values were obtained from Eq. 3.1 b Calculated values from a cross-validated leave-one-out regression model with  $q^2 = 0.982$ 

## **3.2** Modelling of $\lambda_{max}$

The quantum mechanical calculation of electronic transition spectra normally requires a high level of configuration interaction. Empiricism, hence, may have a practical advantage in the prediction of such spectra. Despite that the first Hohenberg-Kohn theorem [10] has been proven for non-degenerate ground states, the ground state density  $\rho(r)$  specifies the Hamiltonian operator  $\hat{H}[\rho(r)]$  uniquely, and through the time independent many-particle Schrödinger equation,  $\rho(r)$  also determines the excited states and their properties.

Thus, excited states and their properties, including their energies, are functionals of the ground-state density, even though a Hohenberg-Kohn theorem relating the excited state properties to the excited state density does not exist [11]. Since the ground state density is mapped to the energies of the ground and excited states, it is equally mapped to the differences between these energies and hence to the UV electronic transition energies and their associated wavelengths. This is why the modelling of  $\lambda_{max}$  given properties derived from the ground state density of wavefunctions are possible, as has recently been emphasized [1]. Buttingsrud, Alsberg, and Åstrend, for example, use optimized ground-state bond lengths and QTAIM bond critical point descriptors to accurately predict  $\lambda_{max}$  and excitation energies  $\Delta E_{hv}$  of 191 substituted azobenzene dyes [12]. Here it is shown that the LDMs can also be used to model  $\lambda_{max}$ of substituted benzoic acids.

Protonated *para*-benzoic acids exhibit two UV-bands, one of high absorptivity termed the primary band centered around 230 nm and a secondary weaker band around 270 nm [13-15]. The first band, the one examined here, is attributed to an intramolecular charge transfer (CT) [15], and the second, to a shifted benzene band. The 230 nm band undergoes a bathochromic shift upon substitution of the aromatic ring with a substituent S, irrespective of the electron donating or withdrawing nature of S [13]. Electron withdrawing groups do not alter the wavelength of the secondary band unless these substituents are themselves chromophores such as -NO<sub>2</sub> and -NHCOCH<sub>3</sub> [14] (due to their significant  $\pi$ -character). Benzoic acids substituted by these two chromophoric substituents were excluded from the statistical correlation due to this interference. By only shifting the primary band to longer wavelengths without affecting the secondary band, non-chromophoric electron withdrawing groups can hence lead to the overlap of the secondary and the primary bands in some cases. On the other hand, electron donating groups, in addition to their bathochromic shift of the primary band also increase the wavelength and the intensity of the secondary band [13]. In this work, the (shifted) first band is the subject of the modelling with both the Hammett  $\sigma$ -constants, as a standard reference, and with the Frobenius inter-matrix distances to elucidate their predictive performance. Table 3.1 shows that the 230 nm

 $\lambda_{max}$  value of unsubstituted BA is best predicted by the LDM of [COOH], followed closely by the [OH] LDM. The inclusion of additional atoms considerably reduces the  $r^2$  value. The best correlation of  $\lambda_{max}$  is obtained with the LDM-distance of the [COOH] ( $r^2 = 0.972$ ) closely followed by its DM-distance ( $r^2 = 0.970$ ). Using the full molecule for the LDM distance calculation yields an  $r^2$  value of 0.445, using instead the full molecule minus the S substituent yields an  $r^2$  value of 0.851. An LDM distance using the benzene ring only also yields an  $r^2$  value of 0.851.

The correlation between  $d_{LDM}^{[COOH]}(BA, BAS)$  and the eight available experimental  $\lambda_{max}$  values (seven substituted benzoic acids, in addition to the parent compound, after excluding -NO<sub>2</sub> and -NHCOCH<sub>3</sub>), is displayed in Fig. 3.3 (a) which is the best model with  $r^2 = 0.972$ . The statistical fitting yields the following regression equation:

$$\lambda_{max}(nm) = 223.50 + 3.4171 \times 10^3 \times d_{LDM}^{[COOH]}(BA, BAS)$$
(3.2)  
$$[r^2 = 0.973, St.Err. = 5.74, n = 8]$$

in which the number of parameters to data points is 1:8. The corresponding leaveone-out cross-validated linear regression coefficient  $q^2 = 0.944$ , again indicating little over-fitting and strong predictivity [9].

Table 3.3 is sorted in order of increasing experimental  $\lambda_{max}$  values from the shortest wavelength of 230 nm (BA to the longest in the set of 315 nm (p-(CH<sub>3</sub>)<sub>2</sub>N-BA) and the corresponding Frobenius distances from BA ( $d_{LDM}^{[COOH]}(BA, BAS)$ ). The experimental  $\lambda_{max}$  values and those calculated from the model expressed in Eq. 3.2 agree to within a mean absolute deivation (MAD) of about 4.0 nm and a root mean square deviation (RMSD) of 4.9 nm. The equivalent cross-validated values are MAD = 8.9 nm and RMSD = 11.1 nm. Table 3.3 also lists the Hammett  $\sigma_{para}$ -constants obtained from the monograph by Hansch and Leo [19] and the corresponding values calculated from the following regression model:

$$\lambda_{max}(nm) = 238.55 - 75.46176 \times \sigma_{para}$$
(3.3)  
$$[r^2 = 0.859, St. Err. = 12.86, n = 8]$$

a correlation which is also displayed graphically in Figure 3.3 (b). The crossvalidated  $q^2$  corresponding to Figure 3.3 (b) is only 0.652, significantly lower, indicating poor predictivity of the model based on the Hammett constants. The correlation of  $\lambda_{max}$  with the Hammett constants features a significant outlier: S=Cl. As mentioned above, the bathochromic shift is independent of the direction of electronic charge flow to or from the substituent, yet Hammett constants by construction account for such directional charge flow and which is reflected into the sign of the  $\sigma$ -constants( $0 < \sigma$ for electron withdrawing groups and  $0 > \sigma$  for electron donating groups). Since Cl is the only member listed in Table 3.3 that is electron withdrawing and which was not excluded from the statistical fittings, it clearly reduces the strength of the statistical correlation based on Hammett constants. If this outlier is removed, however, the following fitted equation results:

$$\lambda_{max}(nm) = 225.99 - 96.8434 \times \sigma_{para}$$
(3.4)  
$$[r^2 = 0.970, St.Err. = 4.18, n = 7]$$

which has a linear correlation coefficient that is significant higher than Eq. 3.3

(and a  $q^2$  of 0.940) yet still outperformed by the model based on the LDM especially given that the latter incorporates the S=Cl atom and also as a result has 8 data points as opposed to 7.

**Table 3.3:** Frobenius distances calculated from the LDM representatives of nine *para*-substituted benzoic acid derivatives from the member with the shortest  $\lambda_{max}$  of the set (unsubstituted benzoic acid) and their corresponding experimental and calculated  $\lambda_{max}$  values.

| -S                 | $d_{LDM}^{[OH]}(BA, BAS) \times 10^3$ | $\sigma^a_{para}$ | $\lambda_{max}(exptl)$ | Ref. | $\lambda_{max}(g.c.)^a$ | $\lambda_{max}(calc)^b$ | $\lambda_{max}(calc)^d$ |
|--------------------|---------------------------------------|-------------------|------------------------|------|-------------------------|-------------------------|-------------------------|
| -H                 | 0                                     | 0.00              | 230                    | 14   | 230                     | 223                     | 239                     |
| $-CH_3$            | 5.37737                               | -0.17             | 240                    | 14   | 240                     | 241                     | 251                     |
| -Cl                | 7.47910                               | 0.23              | 242                    | 14   | 240                     | 248                     | 221                     |
| -OH                | 8.54205                               | -0.37             | 254                    | 14   | 255                     | 252                     | 266                     |
| $-OCH_3$           | 11.91509                              | -0.27             | 256                    | 14   | 255                     | 263                     | 259                     |
| $-NO_2$            | 25.65405                              | 0.78              | $262^{e}$              | 14   | $\mathbf{NA}^{e}$       | е                       | е                       |
| $-NHCOCH_3$        | 3.86811                               | 0.00              | $269^{e}$              | 20   | 275                     | e                       | e                       |
| $-\mathrm{NH}_2$   | 19.45621                              | -0.66             | $288^{b}$              | 13   | 288                     | 289                     | 288                     |
| -NHCH <sub>3</sub> | 23.94033                              | -0.84             | $303^{b}$              | 13   | 303                     | 304                     | 302                     |
| $-N(CH_3)_2$       | 25.12666                              | -0.83             | $315^{b}$              | 13   | 315                     | 308                     | 301                     |
| $-r^{2}$           | 0                                     | 0                 | 0                      | 0    | 0.995                   | 0.973                   | 0.859                   |
| $-q^{2f}$          | 0<br>Iammett a constants are o        | 0                 | 0                      | 0    | 0.992                   | 0.944                   | 0.652                   |

a The empirical Hammett  $\sigma_{para^-}$  constants are obtained from Ref.18 b Calculated from group contributions (g.c.)

c Calculated from Eq. 3.2 d Calculated from Eq. 3.3

e The -NHCOCH<sub>3</sub> and -NO<sub>2</sub> groups are  $\pi - \pi^*$  chromophores that contribute bands with  $\lambda_{max}$  that overlap with that of benzoic acid and hence were excluded from the modelling (see text). f Leave-one-out cross validated squared linear regression coefficient.



Figure 3.3: (a)Plots of experimental  $\lambda_{max}$  values against Frobenius distances between corresponding partial localization-delocalization matrices (LDMs) of the [COOH] subgraph taking unsubstituted benzoic acid taken as the reference  $(\lambda_{max} = 230nm)$ . (b) Plot of experimental  $\lambda_{max}$  values against the Hammett  $\sigma_{para}$  substituent constants.

## 3.3 Conclusion

These are promising results that call for further verification with more compounds and test cases. It is remarkable, yet not uncommon, that the  $pK_a$  which is the negative logarithm of the equilibrium acidity constant (-log  $K_a$ ) that depends on both the acid and its conjugate base in aqueous medium, can be predicted from an examination of the properties of the undissociated acid in the gas-phase.

The entry for the  $pK_a$  in several successive issues of the CRC Handbook of Chemistry and Physics [16,17] for p-dimethylaminobenzoic acid (p-DMABA) is erroneously entered as 6.03, a value which when incorporated into our initial modelling constituted a significant outlier. This value is inconsistent with a similar molecule, namely, *p*-methylaminobenzoic acid (*p*-MABA), which cannot be expected to have a considerably different  $pK_a$  and which has an entry of 5.04 in the CRC Handbook [16]. Further search of literature for this  $pK_a$  confirmed our suspicion and Ref. [18] gives a value of 5.03 for p-DMABA which we included in Table 3.2 rather than the much higher 6.03 of the *CRC Handbook*. Moreover, the authoritative monograph by Hansch and Leo [19] gives a Hammett  $\sigma$ -constant of -0.66 in the case of p-aminobenzoic acid (p-ABA), which translates into a  $pK_a(p-ABA) = pK_a$  (BA)- $\sigma = 4.19 + 0.66 = 4.85$  (consistent with the tabulated value in Table 3.2 obtained from Ref. [18]) and which cannot also be expected to be that different from the  $pK_a$  value of p-DMABA. On the other hand, the tabulated  $\sigma$  value [20] for  $-N(CH_3)_2$  is -0.83 which yields a pK<sub>a</sub> of 5.02 which is close to the reported directly-determined value in the literature [18]. We undertake this opportunity to correct the record especially since the erroneous value of 6.03 has propagated in numerous other references and websites.

The modelling based on the LDM is also shown capable of empirical prediction

of the substituents effects on the UV absorption well, better than the Hammett constants. The failure of the latter has recently been noted by Smith et al. and has been attributed to their roots in the ground state equilibrium constants or bond dissociation energies, while UV transitions reflect energy gaps between the ground and excited states [14].

#### **3.4** Computational Methods

The level of theory used in this work is density functional theory [21,22] (DFT), with the hybrid B3LYP functional[23,24] along with the 6-311++G(d,p) basis set, denoted by B3LYP 6-311++G(d,p). Geometries were optimized and the final wavefunctions/densities obtained at the same level of theory, followed by (harmonic) vibrational frequency analysis to ensure the absence of any imaginary frequencies. All electronic structure calculations and harmonic frequencies were calculated using the Gaussian 09 software[25]. The subsequent QTAIM analysis was performed using the AIMAl-1/AIMStudio package[26].

## 3.5 Acknowledgements

The authors are indebted to Professor Cory C. Pye (Saint Mary's University) for helpful discussion regarding the pruning of peripheral groups. Financial support for this work was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI), Saint Mary's University, McMaster University and Mount Saint Vincent University.

### **3.6** References

[1] C.F. Matta, J. Comput. Chem. 35 (2014) 1165

[2] Popelier, P. L. A. Quantum Molecular Similarity. 1. BCP space. J. Phys. Chem. A 1999, 103, 2883-2890.

[3] O'Brien, S. E.; Popelier, P. L. A. Quantum molecular similarity. Part 2: the relation between properties in BCP space and bond length. Can. J. Chem. 1999, 77, 28-36.

[4] O'Brien, S. E.; Popelier, P. L. A. Quantum molecular similarity. 3. QTMS

descriptors. J. Chem. Inf. Comput. Sci. 2001, 41, 764-775.

[5] O'Brien, S. E.; Popelier, P. L. A. Quantum topological molecular similarity. Part

4. A QSAR study of cell growth inhibitory properties of substituted

(E)-1-phenylbut-1-en-3-ones. J. Chem. Soc., Perkin Trans. 2 2002, 478-483.

[6] Popelier, P. L. A.; Chaudry, U. A.; Smith, P. J. Quantum topological molecular similarity. Part 5. Further development with an application to the toxicity of polychlorinated dibenzo-p-dioxins (PCDDs). J. Chem. Soc., Perkin Trans. 2 2002, 1231-1237.

[7] Harding, A. P.; Wedge, D. C.; Popelier P. L. A. pKa Prediction from "quantum chemical topology" descriptors. J. Chem. Inf. Mod. 2009, 49, 1914-1924.

[8] P.L.A. Popelier, in: C.F. Matta (Ed.), Quantum Biochemistry: Electronic

Structure and Biological Activity, Wiley-VCH, Weinheim, 2010, p. 669.

[9] R.R. Picard, R.D. Cook, J. Am. Stat. Assoc. 79 (1984) 575.

[10] Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 1964, 136, 864-871.

[11] Gaudoin, R.; Burke, K. Lack of Hohenberg-Kohn theorem for excited states.

Phys. Rev. Lett. 2004, 93, 173001(1-4).

[12] Buttingsrud, B.; Alsberg, B. K.; strand, P.-O. Quantitative prediction of the absorption maxima of azobenzene dyes from bond lengths and critical points in the electron density. Phys. Chem. Chem. Phys. 2007, 9, 2226-2233.

[13] Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. R. Introduction to Spectroscopy (4th Edition); Brooks/Cole Cengage Learning: Belmont, CA, USA, 2009.

[14] H.-B. Guo, F. He, B. Gu, L. Liang, J.C. Smith, J. Phys. Chem. A 116 (2012) 11870.

[15] Kamath, B. V.; Mehta, J. D.; Bafna, S. L. Ultraviolet absorption spectra: Some substituted benzoic acids. J. Appl. Chem. Biotechnol. 1975, 25, 743-751.

[16] Lide, D. R. CRC Handbook of Chemistry and Physics 88th Edition; CRC Press: 2007-2008.

[17] Lide, D. R. CRC Handbook of Chemistry and Physics 87th Edition; CRC Press: 2006.

[18] Jover, J.; Bosque, R.; Sales, J. QSPR prediction of pKa for benzoic acids in different solvents. QSAR Combin. Sci. 2008, 27, 563-581.

[19] Hansch, C.; Leo, A. Exploring QSAR: Fundamentals and Applications in

Chemistry and Biology; American Chemical Society: Washington, DC, 1995.

[20] C. Hansch, A. Leo, Exploring QSAR: Fundamentals and Applications in

Chemistry and Biology, American Chemical Society, Washington, DC, 1995.

[20] Lide, D. R.; Milne, G. W. A. Handbook of Data on Organic Compounds (3rd

Edition), Vols. 1-7; CRC Press: Boca Raton, FL, USA, 1994.

[21] Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989. [22] Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory, (Second Edition); Wiley-VCH: New York, 2001.

[23] Becke, A. Density-functional thermochemistry .3. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.

[24] Lee, C.; Yang, W.; Parr, R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 1988, 37, 785-789.

[25] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;

Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;

Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;

Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;

Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven,

T.; Montgomery Jr, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;

Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand,

J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,

M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;

Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.

J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;

Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.;

Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.,

Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford CT, 2010).

[26] Keith, T. A. AIMAll. http://aim.tkgristmill.com/ 2011.

[27] PubChem, The National Center for Biotechnology Information,

NIH, http://pubchem.ncbi.nlm.nih.gov/, 2014.

# Aromaticity of Rings-in-Molecules (RIMs) from Electron Localization-Delocalization Matrices (LDMs)<sup>1</sup>

There has been a resurgence of intense interest in quantifying or even defining the concept of aromaticity especially with the advent of measures of electron delocalization in the 1990s [1-10]. Aromaticity is loosely defined as the tendency of an aromatic ring to react by substitution rather than addition. The various definitions tend to fall into groups that are primarily structural [11-13], reactive [14-17], energetic and thermochemical [17-20], magnetic [1,3,7,21-25], electronic [5-7,9,10,17,26-52], those based on the topological properties of the electron density and/or of the electrostatic potential [6,25,29,52-55], and chemical graph theoretical (CGT) [30,56-61].

Schleyer *et al.* define aromaticity as "*a manifestation of electron delocalization in closed circuits, either in two or three dimensions*" [4]. Several authors have already developed measures of aromaticity that are based on the characteristics of electron delocalization as quantified, for example, by the delocalization indices [45,62,63] of the Quantum Theory of Atoms in Molecules (QTAIM) [64-66]. DIs, whether two-centered [45,62,63] or multi-centered [9, 31, 32], are ideally suited for the study of aromaticity since they can quantify the delocalization of the electronic charge in closed two- or three-dimensional rings manifested in the observed structural, magnetic, and energetic characteristics of aromaticity [26].

LDMs and their closely related delocalization only matrices are used in this study to measure the similarity distance of a ring from benzene and investigate the cor-

<sup>&</sup>lt;sup>1</sup>Based on the Paper: Phys. Scr. 91 (2016) 013001 (13pp)

relation of this distance with well-established structural, electronic, and magnetic aromaticity measures. In other words, we report similarity distances of rings-inmolecules (RIMs) to benzene followed by a statistical comparison to some commonly used/popular aromaticity indices.

No known single criterion can encapsulate or measure aromaticity which is inherently multifaceted and multidimensional. Because of that, aromaticity measures not infrequently disagree in ranking the aromaticities of RIMs [67].

In this work, the similarity of a six-membered carbon ring in a molecule to the carbon ring in benzene, as quantified by LDMs distance (Eq. 1.8), is correlated with independent known measures of aromaticity. Next we investigate the correlation of the eigenvalues, invariants that are independent of comparisons with a reference such as benzene, with aromaticity indices.

## 4.1 Rings-in-molecules (RIMs)

The rings considered in this study are all six-membered carbon rings that occur in polycyclic benzenoid hydrocarbons. As the number of hydrogen atoms attached to a ring in a molecule depends on the immediate neighbourhood, only the carbon skeleton of a given ring-in-molecule (RIM) is considered. Carbon atoms that belong to more than one ring simultaneously are included in each of the rings being considered. For example, phenanthrene (Fig. 4.1), is split into three separate ring-LDMs (labeled A-C).

Following the labelling in Fig. 4.1, the three RIM-LDMs of phenanthrene are written (at the HF/6-31G(d) level, to three decimals):



Figure 4.1: Phenanthrene and its atom and ring labelling scheme.

$$LDM_{A} = \begin{bmatrix} 1 & 2 & 3 & 4 & 12 & 11 \\ 3.957 & 0.746 & 0.036 & 0.048 & 0.031 & 0.637 \\ 0.746 & 3.953 & 0.653 & 0.036 & 0.038 & 0.034 \\ 0.036 & 0.653 & 3.950 & 0.744 & 0.034 & 0.037 \\ 0.048 & 0.036 & 0.744 & 3.951 & 0.640 & 0.031 \\ 12 & 0.031 & 0.038 & 0.034 & 0.640 & 3.900 & 0.654 \\ 11 & 0.637 & 0.034 & 0.037 & 0.031 & 0.654 & 3.891 \\ \end{bmatrix}$$

(4.1)

91011 1213140.033 0.573 3.958 0.822 0.024 0.027 9 10 0.822 3.9580.0270.0240.033 0.5730.0330.5733.8910.6540.026 0.01711  $LDM_B =$ (4.2)120.0240.0270.6543.9000.5590.026 0.024130.0270.0260.5593.9000.6543.891 0.0330.0170.026140.5730.654

$$LDM_{C} = \begin{cases} 5 & 6 & 7 & 8 & 14 & 13 \\ 3.951 & 0.744 & 0.036 & 0.048 & 0.031 & 0.640 \\ 0.744 & 3.950 & 0.653 & 0.036 & 0.037 & 0.034 \\ 0.036 & 0.653 & 3.953 & 0.746 & 0.034 & 0.038 \\ 0.048 & 0.036 & 0.746 & 3.957 & 0.637 & 0.031 \\ 14 & 0.031 & 0.037 & 0.034 & 0.637 & 3.891 & 0.654 \\ 13 & 0.640 & 0.034 & 0.038 & 0.031 & 0.654 & 3.900 \end{pmatrix}$$
(4.3)

In contrast with the full molecular LDM, the sum of the matrix elements of these partial LDMs will generally not yield an integer number of electrons since some electrons will always be shared with the hydrogen atoms, the substituents, or the other fused rings.

The Frobenius distance of the LDM representative of a RIM to the LDM repre-

sentative of the carbon circuit of benzene is invariable to labelling as long as the ring atoms are labelled in the same order as benzene. For example, if we choose to construct the RIM-LDM matrix by listing one of the *ortho*-carbon atoms as the second atom (C2) immediately following any arbitrary choice (and the only arbitrary choice) for the *ipso*-carbon atom (C1), the *meta*-carbon atom attached to C2 as the third (C3), the *para*-as the fourth (C4), the second *meta*- as the fifth (C5), and the second *ortho*- as the sixth (C6), then the Frobenius distance from benzene is insensitive to the arbitrary choice of C1 as long as we follow the same numbering algorithm for both the RIM and for benzene.

### 4.2 The molecular set

The chemical structures of the molecular set used in this study are depicted in Fig. 4.2. The set includes the reference molecule (benzene), three linear cata-condensed polycyclic aromatic benzenoid hydrocarbons (PABH) (naphthalene, anthracene, and naphthacene), two zigzag cata-condensed PABHs (phenanthrene, chrysene), a branched cata-condensed PABH (triphenylene), and cyclohexane in the most stable (chair) conformations as an extreme reference for a non-aromatic ring.

There are in total 8 molecules and 13 symmetry-distinct rings. We introduce the following symbols for the 13 different rings where (I) and (O) symbolizes the inner- or outer-ring respectively. Benzene = Ben, naphthalene = N, anthracene = A, naphthacene = Nc, phenanthrene = P, chrysene = Ch, triphenylene = T, and cyclohexane = Cyc. Thus the symbol P(O) signifies the outer ring in phenanthrene. The complete set of symbols for every ring listed in Table 4.1.



Figure 4.2: Molecular set supplying the "rings-in-molecules (RIMs)" for this study.

## 4.3 Computational details

Quantum chemical calculations were performed at the Hartree-Fock (HF) level using a 6-31G(d) basis set, the same level of theory used in previous studies [42], with which the current results are being compared. Geometries were first optimized then the wavefunctions obtained at this level of theory which is denoted in standard notation as HF/6-31G(d). All electronic structure calculations were performed using the Gaussian software [68]. The resulting wavefunctions were then subjected to QTAIM integrations using AIMAll/AIMStudio program [69] to calculate the LIs and DIs. The program AIMLDM [70] was then applied to the AIMAll sum files to extract the LDM for the entire molecular set followed by the extraction of matrix invariants and Frobenius distances. In total we have 13 symmetry-unique different RIMs being analyzed in this work.

| Molecule             | Ring  | $\operatorname{Code}^{(a)}$ | $d_{FROB}$ | $HOMA^{(b)}$ | $PDI^{(b)}$ | $\mathrm{FLU}^{(b)}$ | $\operatorname{NICS}(0)^{(b)}$ |
|----------------------|-------|-----------------------------|------------|--------------|-------------|----------------------|--------------------------------|
| Benzene              |       | Ben                         | 0.000      | 1.00         | 0.105       | 0.00                 | -11.5                          |
| Triphenylene         | Outer | T(O)                        | 0.163      | 0.930        | 0.086       | 0.003                | -10.6                          |
| Phenenthrene         | Outer | P(O)                        | 0.199      | 0.902        | 0.082       | 0.005                | -11.4                          |
| Chrysene             | Outer | Ch(O)                       | 0.230      | 0.859        | 0.079       | 0.008                | -11.1                          |
| Anthracene           | Inner | A(I)                        | 0.242      | 0.884        | 0.070       | 0.007                | -14.2                          |
| Naphthalene          |       | Ν                           | 0.282      | 0.779        | 0.073       | 0.012                | -10.9                          |
| Naphthacene          | Inner | Nc(I)                       | 0.294      | 0.774        | 0.063       | 0.011                | -13.8                          |
| Chrysene             | Inner | Ch(I)                       | 0.357      | 0.553        | 0.052       | 0.019                | -8.2                           |
| Anthracene           | Outer | A(O)                        | 0.386      | 0.517        | 0.059       | 0.024                | -8.70                          |
| Phenanthrene         | Inner | P(I)                        | 0.403      | 0.402        | 0.053       | 0.025                | -6.80                          |
| Triphenylene         | Inner | T(I)                        | 0.431      | 0.067        | 0.025       | 0.027                | -2.60                          |
| Naphthacene          | Outer | Nc(O)                       | 0.442      | 0.325        | 0.051       | 0.031                | -6.70                          |
| Cyclohexane          | Chair | Cyc                         | 0.741      | -4.34        | 0.007       | 0.091                | -2.10                          |
| $r^{2(c)}$           |       |                             |            | 0.978        | 0.917       | 0.858                | 0.608                          |
| adjusted- $r^{2(c)}$ |       |                             |            | 0.973        | 0.909       | 0.845                | 0.572                          |
| Order of polyn.      |       |                             |            | 2            | 1           | 1                    | 1                              |

**Table 4.1:** Aromatic rings in the molecules displayed in Fig. 4.2 sorted in order of increasing dissimilarity to benzene as measured by the Frobenius distance and four corresponding common indices of aromaticity.

(a) Unique short-hand code notation to identify the 13 symmetry-unique rings subject of this work.

(b)...Data obtained from Ref:65.

(c) The statistical model is a polynomial of the form: Aromaticity index =  $a_0 + a_1 \times d_{Frob} + a_2 \times d_{Frob}^2$ . The model yiels the following fitting constants: HOMA:  $a_0 = 0.6821$ ,  $a_1 = 5.3303$ ,  $a_2 = -16.2087$ ; PDI:  $a_0 = 0.107$ ,  $a_1 = -0.140$ ; FLU:  $a_0 = -0.0193$ ,  $a_1 = 0.1232$ ; NICS(0):  $a_0 = -14.48$ ,  $a_1 = 16.70$ .

# 4.4 Aromaticity measures and Eigenvalues

We first investigate the statistical correlations between the Frobenius distances of the RIMs in the molecular set in Fig. 4.2 and some of the well-established aromaticity criteria, namely, the harmonic oscillator model of aromaticity HOMA (*structural*) [12,13], the nucleus independent chemical shift (NICS) (*magnetic*) [1], the aromatic fluctuation index (FLU) [42,46], and the para delocalization index (PDI) (*electron delocalization*) [40].

# 4.4.1 Definitions of the measures of aromaticity considered in this work

The structural index we consider in this study is the popular Krygowski HOMA index which is defined as [12,13]:

$$HOMA = 1 - \frac{\alpha}{m} \sum_{i=1}^{m} (R_{opt} - R_i)^2$$
(4.4)

where *m* is the number of bonds in the ring (m = 6 for all rings considered in this study),  $\alpha$  is a parameter which equals 257.7 for carbon-carbon bonds that yields 0 (non-aromatic ring)  $\leq$  HOMA  $\leq$  1 (benzene, where all bond lengths are equal in lengths  $R_i = R_{opt} = 1.388$ Å).

The NICS index, extensively studied by Schleyer and coworkers, is the chemical shift at the ring center and has a negative value for aromatic systems and a positive value for anti-aromatic systems. This quantity is called NICS(0) to indicate that it is evaluated in the ring plane [3], and is the sole NICS that is considered in this work, hence we will drop the (0) designation from now on. The more negative the value of NICS indicates a more aromatic system. There are however odd results as some rings (e.g. central ring in anthracene) can give values for NICS that are more negative than benzene itself [42]. Such artefacts prompted the workers in this domain to introduce modifications into the NICS e.g. by measuring above the center of the ring by a given distance perpendicular to the ring plane [7]. However, NICS evaluated at the center of the ring appears to remain the most used and is the one considered in the comparisons described below.

Important electron aromaticity indices, developed and extensively studied by Solá

and coworkers, include the aromatic fluctuation index (FLU) [42,46] and the para delocalization index (PDI) [40]. The first aromaticity index, the FLU, measures the fluctuation of the DI among neighbouring atoms within a ring. Just as the structural HOMA index, a lack of fluctuation indicates a higher aromaticity as long as the value of the DI is close to that of the prototype aromatic molecule, benzene. The FLU index is, thus, an excellent electronic counterpart to the HOMA as it captures the cyclic delocalization of electrons in a given RIM. The index has been defined as [42]:

$$FLU = \frac{1}{m} \sum_{\Omega - \Omega'}^{RIM} \left\{ \left[ \frac{V(\Omega')}{V(\Omega)} \right]^{\alpha} \left[ \frac{\delta(\Omega, \Omega') - \delta(\Omega, \Omega')_{ref}}{\delta(\Omega, \Omega')_{ref}} \right] \right\}^2$$
(4.5)

where the summation runs over all atoms sharing a bond path (bonded/neighbouring atoms) in the ring, m = the number of atoms forming the ring (m = 6 for all the 13 rings considered in the present work),  $\delta(\Omega, \Omega')_{ref} = 1.4$  (the value obtained at the HF/6-31G(d) level for benzene), and  $V(\Omega)$  is defined as:

$$V(\Omega) = \sum_{\Omega' \neq \Omega} \delta(\Omega, \Omega') \tag{4.6}$$

and termed the "global delocalization" (or valency) of  $\Omega$  (which equals to twice of the sum of the row or column of the off-diagonal elements of the LDM labeled  $\Omega$ ), and  $\alpha = \pm 1$  to ensure  $[V(\Omega')/V(\Omega)]^{\alpha} \geq 1$ .

The second electronic aromaticity index we consider here is known as the PDI [40]. This index is the average of the DI between *para*-atoms in a ring and hence is limited to 6-membered rings (6-MRs), which is not a limitation in this study since all the 13 rings we consider are 6-MRs. Thus this index can be written compactly as:

$$PDI(\Omega) = \frac{1}{3} \sum_{i=1}^{3} \delta(\Omega_i, \Omega_{i+3})$$
(4.7)

# 4.4.2 Correlations of the Frobenius distances from benzene with established measures of aromaticity

Three of the four studied aromaticity indices (HOMA, PDI, and FLU) are strongly correlated statistically with the Frobenius distance from benzene ( $r^2 > 0.86$ ). NICS is not as strongly correlated and exhibits more scatter along the trend line in addition to some apparent outliers. The trends of these correlations are essentially linear in the cases of FLU and PDI and non-linear in the case of HOMA and NICS, all of which are displayed in Fig. 4.3 and the values upon which the figure is based on appear in Table 4.1. Despite falling on the general trend lines and its inclusion in the statistical analysis, the results of which appear at the bottom of Table 4.1, cyclohexane has been excluded from Fig. 4.3.

The strongest correlation of the Frobenius distance is with HOMA ( $r^2$ -adjusted = 0.97) and is clearly nonlinear. The PDI, that measures the average QTAIM para-DIs within a 6-MR, is the second most strongly (and linearly) correlated to the Frobenius distance with an  $r^2$ -adjusted of 0.91. The next in strength of correlation is the FLU which measures the fluctuation in the DI within a ring ( $r^2$ -adjusted = 0.85, linear).

The NICS, which has a generally more negative value for the more aromatic ring, is *not* maximally negative for benzene (the inner ring of anthracene has this title) has a generally increasing trend with distance from benzene but the correlation is not as strong as the other indices as can be seen from Fig. 4.3.



**Figure 4.3:** Correlations between the Frobenius distance from benzene of rings in the molecules listed in Table 4.1 and depicted in Fig. 4.2 and four common aromaticity indices: HOMA, PDI, FLU, and NICS(0). The Frobenius distance clearly captures more than one aspect of aromaticity as measured by these widely differing criteria (see text for further discussion)

Table 4.1 has been sorted in order of increasing distance (increasing dissimilarity) from benzene. The lower members in this table are thus the least similar to benzene. Cyclohexane appears at the very bottom of Table 4.1 as expected and is the least aromatic according to all criteria that are listed in the table. In summary, Table 4.1 and Fig. 4.3 show that these different aromaticity measures generally, *but not always*, are well correlated among themselves and with the Frobenius distance from benzene.

The qualitative ranking of aromaticity by various methods can be gleaned from Table 4.2. This table lists the RIMs starting by the most aromatic at the top then lists the various numbers of disagreements with the other studied methods. Unsurprisingly, HOMA, PDI, and FLU all list benzene – also the reference for the Frobenius distance calculation – as the most aromatic ring in the set. Surprisingly, however, and in disagreement with all other methods, NICS predicts that the inner ring of anthracene is more aromatic than benzene, and so is naphthacene's inner ring as well.

All four methods rank the inner ring of anthracene as more aromatic than the outer

| ${ m d_{Frob}}$                          | HOMA            | PDI                                      | $\mathbf{FLU}$                           | $\operatorname{NICS}(0)$                 |
|------------------------------------------|-----------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Benzene                                  | Benzene         | Benzene                                  | Benzene                                  | Anthracene(I)                            |
| Triphenylene(O)                          | Triphenylene(O) | Triphenylene(O)                          | Triphenylene(O)                          | Naphthacene(I)                           |
| Phenanthrene(O)                          | Phenanthrene(O) | Phenanthrene(O)                          | Phenanthrene                             | Benzene                                  |
| Chrysene(O)                              | Anthracene(I)   | Chrysene(O)                              | $\operatorname{Anthracene}(\mathbf{I})$  | Phenanthrene(O)                          |
| $\operatorname{Anthracene}(I)$           | Chrysene(O)     | Naphthalene                              | Chrysene(O)                              | Chrysene(O)                              |
| Naphthalene                              | Naphthalene     | $\operatorname{Anthracene}(I)$           | Naphthacene(I)                           | Naphthalene                              |
| Naphthacene(I)                           | Naphthacene(I)  | Naphthacene(I)                           | Naphthalene                              | Triphenylene(O)                          |
| Chrysene(I)                              | Chrysene(I)     | $\operatorname{Anthracene}(\mathcal{O})$ | $\operatorname{Chrysene}(\mathbf{I})$    | $\operatorname{Anthracene}(\mathcal{O})$ |
| $\operatorname{Anthracene}(\mathcal{O})$ | Anthracene(O)   | Phenanthrene(I)                          | $\operatorname{Anthracene}(\mathcal{O})$ | Chrysene(I)                              |
| Phenanthrene(I)                          | Phenanthrene(I) | $\operatorname{Chrysene}(\mathbf{I})$    | Phenanthrene(I)                          | Phenanthrene(I)                          |
| Triphenylene(I)                          | Naphthacene(O)  | Naphthacene(O)                           | Triphenylene(I)                          | Naphthacene(O)                           |
| Naphthacene(O)                           | Triphenylene(I) | Triphenylene(I)                          | Naphthacene(O)                           | Triphenylene(I)                          |
| Cyclohexane                              | Cyclohexane     | Cyclohexane                              | Cyclohexane                              | Cyclohexane                              |
| No. disag. $d_{Frob}$                    | 4               | 7                                        | 4                                        | 10                                       |
| No. disag. HOMA                          |                 | 6                                        | 3                                        | 7                                        |
| No. disag. PDI                           |                 |                                          | 9                                        | 9                                        |
| No. disag. FLU                           |                 |                                          |                                          | 10                                       |

**Table 4.2:** Aromatic ranking agreement of various aromaticity indices with the Frobenius distance dissimilarity to benzene.

ring, the Frobenius distance criterion appears to place it at a reasonable relative ranking whereby the outer ring is four ranks below the inner ring (5 ranks below according to both HOMA and FLU, 7 ranks below according to NICS, and only 2 ranks below according to PDI). The reverse situation is observed for phenanthrene where all methods rank the outer ring as more aromatic and where the Frobenius rankings appear as a good compromise. The ranking ordering of the  $d_{Frob}$  is closest to the HOMA and furthest from NICS. Only FLU is closer to the ranking of HOMA than the Frobenius distance with three disagreements, but the disagreements between  $d_{Frob}$  are slight and consist of the interchange of two neighbouring-ranking pairs: Anthracene (inner) and chrysene (outer), and naphthacene (outer) and triphenylene (inner).

# 4.4.3 Correlations of aromaticity with the eigenvalues of the RIM-LDM

One of the earliest introductions to empirical "rules of thumb" that we are exposed to in our chemical education is "*like dissolves like*". This and several similar empirical rules of thumb has been made rigorous in the form of Hansen's Solubility Parameters [71]. The "*like dissolves like*" rule is fundamentally based on the concept of chemical similarity. Chemical (or molecular) similarity has its basis in the observation that similar compounds have similar properties. Chemical/molecular similarity is one of the most important concepts in the field of cheminformatics where it plays an important role in predicting the properties of compounds, selecting sets of chemical compounds with predefined sets of properties and screening large structure databases to find "hits", that is, possible new active drugs.

What we would like to examine here is whether similarities of one matrix invariant (the eigenvalues) of the RIMs' LDMs parallel established aromaticity measures. For each of the "ring in molecule" there are six carbon atoms represented by a  $6 \times 6$  LDM. Therefore there will be six eigenvalues for each RIM. The six eigenvalues extracted from the LDMs can be thought of as the rings vector location in six dimensional space.

The similarities of the RIM can be assessed through a pairwise similarity matrix generated by comparing the vector angle of the vectors from the LDMs eigenvalues of each of the ring in molecules. The angle between two vectors is given as usual by:

$$\alpha = \arccos\left(\frac{\vec{v_1} \cdot \vec{v_2}}{v_1 v_2}\right) \tag{4.8}$$

where the vectors represent the position of the RIM in the 6-dimensional eigenvalue space.

Table 4.3 lists the pairwise vector angles for the 13 studied RIMs. One way to appreciate the similarity of these ring in molecules would be to map the molecules in n-dimensional abstract mathematical space and use the distance between the rings as a measure of aromaticity when compared to benzene. It is difficult to visualize relationships beyond three dimensions and, consequently, dimensionality reduction is necessary if we are to visualize similarity distance between sets of rings. This dimensionality reduction is achieved through the so-called multidimensional scaling (MDS) methods (discussed previously) [72-78].

**Table 4.3:** Pairwise vector angles (in degrees ( $^{\circ}$ )) matrix for the ring in molecules to three decimals<sup>\*</sup>.

| RIM          | Ben        | A(O)      | A(I)      | P(O)      | P(I)     | $\mathbf{N}$ | Nc(O)     | Nc(I)       | Ch(O)      | Ch(I)      | T(O)       | T(I)      | Cyc      |
|--------------|------------|-----------|-----------|-----------|----------|--------------|-----------|-------------|------------|------------|------------|-----------|----------|
| Ben          | 0.00       | 0.94      | 0.94      | 0.44      | 1.14     | 0.64         | 1.12      | 1.07        | 0.51       | 0.95       | 0.33       | 1.76      | 3.93     |
| A(O)         | 0.94       | 0.00      | 0.39      | 0.52      | 0.50     | 0.31         | 0.20      | 0.40        | 0.45       | 0.42       | 0.62       | 1.41      | 3.49     |
| A(I)         | 0.94       | 0.39      | 0.00      | 0.52      | 0.29     | 0.39         | 0.50      | 0.15        | 0.47       | 0.21       | 0.61       | 1.11      | 3.20     |
| P(O)         | 0.44       | 0.52      | 0.52      | 0.00      | 0.74     | 0.20         | 0.71      | 0.65        | 0.07       | 0.55       | 0.11       | 1.48      | 3.64     |
| P(I)         | 1.14       | 0.50      | 0.29      | 0.74      | 0.00     | 0.60         | 0.54      | 0.21        | 0.68       | 0.20       | 0.83       | 0.92      | 3.01     |
| $\mathbf{N}$ | 0.64       | 0.31      | 0.39      | 0.20      | 0.60     | 0.00         | 0.51      | 0.49        | 0.14       | 0.43       | 0.32       | 1.42      | 3.56     |
| Nc(O)        | 1.12       | 0.20      | 0.50      | 0.71      | 0.54     | 0.51         | 0.00      | 0.46        | 0.64       | 0.52       | 0.82       | 1.44      | 3.46     |
| Nc(I)        | 1.07       | 0.40      | 0.15      | 0.65      | 0.21     | 0.49         | 0.46      | 0.00        | 0.59       | 0.23       | 0.75       | 1.07      | 3.12     |
| Ch(O)        | 0.51       | 0.45      | 0.47      | 0.07      | 0.68     | 0.14         | 0.64      | 0.59        | 0.00       | 0.50       | 0.18       | 1.45      | 3.61     |
| Ch(I)        | 0.95       | 0.42      | 0.21      | 0.55      | 0.20     | 0.43         | 0.52      | 0.23        | 0.50       | 0.00       | 0.64       | 1.02      | 3.16     |
| T(O)         | 0.33       | 0.62      | 0.61      | 0.11      | 0.83     | 0.32         | 0.82      | 0.75        | 0.18       | 0.64       | 0.00       | 1.53      | 3.70     |
| T(I)         | 1.76       | 1.41      | 1.11      | 1.48      | 0.92     | 1.42         | 1.44      | 1.07        | 1.45       | 1.02       | 1.53       | 0.00      | 2.23     |
| Cyc          | 3.93       | 3.49      | 3.20      | 3.64      | 3.01     | 3.56         | 3.46      | 3.12        | 3.61       | 3.16       | 3.70       | 2.23      | 0.00     |
| * The symb   | ols for th | he RIMs a | re: Benze | ene = Ben | , Naphth | alene =      | N, Anthra | cene = A, I | Naphthacen | e = Nc, Pl | nenanthrei | ne = P, C | Chrysene |

= Ch, Triphenylene = T, and Cyclohexane = Cyc; (I) = Inner ring and (O) = Outer ring

The mapping of the vector angle dissimilarities of the ring in molecules to a 2dimensional space is, displayed in Fig. 4.4. The plot is in line with our chemical intuition: Generally, the outer RIMs are more similar to benzene than the inner ring RIMs and cyclohexane is by far the most dissimilar to benzene, as expected on the basis of aromaticity. In terms of similarity/dissimilarity one may expect a correlation between the x- and y-coordinates of the RIMs in Fig. 4.4 with the various aromaticity



measures. To that end we computed the Euclidean distances of the RIMs in this figure and regressed them against the aromaticity measures.

> Figure 4.4: Two-dimensional MDS projection of the dissimilarity matrix in Table 4.3 (Kruskal stress (S) - 0.014). The symbols for the RIMs are: Benzene = Ben, Naphthalene = N, Anthracene =A, Naphthacene = Nc, Phenanthrene = P, Chrysene = Ch, Triphenylene = T, and Cyclohexane = Cyc; (I) = Inner ring and (O) = Outer ring. (a) The dataset including the extreme value of cyclohexane at the far upper left, (b) excluding cyclohexane to zoom on the 12 aromatic RIMs better showing their spread.

Fig. 4.5 shows the relationship between the Euclidean distance from benzene regressed against the aromaticity measures HOMA and PDI. The other aromaticity measures NICS except FLU showed any significant correlation to the Euclidean distance from benzene. From these results we see that (at least for HOMA and PDI) that the dissimilarities of the LDMs for the RIMs represented by the pairwise vector angles of the eigenvalues of the LDMs have a very strong correlation with the aromaticity parameters.

## 4.5 Conclusion

The aromaticity of a RIM is a property associated with cyclical electron delocalization around closed rings of atoms and which is generally recognized with ease by practising chemists yet, to this date, it remains a working concept lacking a unique or unambiguous definition. Thus it is no surprise that the DM was able to provide a



Figure 4.5: Distances obtained from the eigenvalues vectors versus the four atomaticity measures. Regression results are given only for well-behaved full datasets (a,c) while outliers are indicated otherwise (b, d). The symbols for the RIMs are: Benzene = Ben, Naphthalene = N, Anthracene = A, Naphthacene = Nc, Phenanthrene = P, Chrysene = Ch, Triphenylene = T, and Cyclohexane = Cyc; (I) = Inner ring and (O) = Outer ring.

good correlation since it is fully focused on the DI of the atoms in the RIM. There is no shortage of aromaticity indices, each designed to capture one particular aspect of this phenomenon, be it energetic, electronic, magnetic, structural, or reactive. These different aromaticity indices showed high correlations and the ability to map it onto a two-dimensional space is an effective tool for easy visualization.

# 4.6 Acknowledgements

Financial support of this work was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC). Canada Foundation for Innovation (CFI), Saint Mary's University, McMaster University, and Mount Saint Vincent University

### 4.7 References

 Schleyer P.v-R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E. Nucleus-Independent chemical shifts: A simple and efficient aromaticity probe. J. Am. Chem. Soc. 1996, 118, 6317-6318.

[2]. Krygowski, T. M.; Cyranski, M. K.; Czarnocki, Z.; Hfelinger, G; Katritzky. Aromaticity: a Theoretical Concept of Immense Practical Importance. Tetrahedron 2000 56 1783-1796.

[3]. Gomes, J. A. N. F.; Mallion, R. B. Aromaticity and ring currents. Chem. Rev. 2001, 101, 1349-1383.

[4]. Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 2005, 105, 3842-3888.

[5]. Merino, G.; Vela, A.; Heine, T. Description of electron delocalization via the analysis of molecular fields. Chem. Rev. 2005, 105, 3812-3841.

[6]. Mandado, M.; Gonzalez Moa, M. J.; Mosquera, R. A. Aromaticity: Exploring Basic Chemical Concepts with the Quantum Theory of Atoms in Molecules; Nova Science Publishers, Inc.: New York, 2008.

[7]. Sol, M.; Feixas, F.; Jimnez-Halla, J. O. C.; Matito, E.; Poater, J. A critical assessment of the performance of magnetic and electronic indices of aromaticity. Symmetry 2010, 2, 1156-1179.

[8]. Chattaraj, P. K. Ed. Aromaticity and Metal Clusters; CRC Press: New York, 2011.

[9]. Feixas, F.; Matito, E.; Poater, J.; Sol, M. Quantifying aromaticity with electron delocalisation measures. Chem. Soc. Rev. 2015, 4, 6434-6451.

[10]. Fernández, I.; Frenking, G.; Merino, G. Aromaticity of metallabenzenes and related compounds. Chem. Soc. Rev. 2015, 44, 6452-6463.

[11]. Krygowski, T. M.; Szatylowicz, H.; Stasyuk, O. A.; Dominikowska, J.;Palusiak, M. Aromaticity from the viewpoint of molecular geometry: Application to planar systems. Chem. Rev. 2014, 114, 6383-6422.

[12]. Krygowski, T. M.; Cyranski, M. K. Structural aspect of aromaticity. Chem. Rev. 2001, 101, 1385-1419.

[13]. Kruszewski, J.; Krygowski, T. M. Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett. 1972, 3839-3842.

[14]. Hu, X.; Li, H.; Wang, C. The reactivity of all-metal aromatic complexes: A theoretical investigation on the methane activation reaction. J. Phys. Chem. B 2006, 110, 14046-14049.

[15]. Li , S.; Jiang, Y. Bond lengths, reactivities, and aromaticities of benzenoid hydrocarbons based on the valence bond calculations. J. Am. Chem. Soc. 1995, 117, 8401-8406.

[16]. Sainsbury, M. Aromatic Chemistry; Oxford Science Publications: Oxford, 1994.[17]. Badger, G. M. Aromatic Character and Aromaticity; Cambridge University Press: Cambridge, 1969.

[18]. Cyranski, M. K. Energetic aspects of cyclic -electron delocalization: Evaluation of the methods of estimating aromatic stabilization energies. Chem. Rev. 2005, 105, 3773-3811.

[19]. Sivaramakrishnan, R.; Tranter, R. S.; Brezinsky, K. Ring conserved isodesmic reactions: a new method for estimating the heats of formation of aromatics and PAHs. J. Phys. Chem. A 2005, 109, 1621-1628.

[20]. Slayden, S. W.; Liebman, J. F. The energetics of aromatic hydrocarbons: an

experimental thermochemical perspective. Chem. Rev. 2001, 101, 1541-1566.

[21]. Mitchell, R. H. Measuring aromaticity by NMR. Chem. Rev. 2001, 101, 1301-1315.

[22]. Keith, T. A.; Bader, R. F. W. Use of electron charge and current distributions in the determination of atomic contributions to magnetic properties. Int. J. Quantum Chem. 1996, 60, 373-379.

[23]. Keith, T. A.; Bader, R. F. W. Topological analysis of magnetically induced molecular current distributions. J. Chem. Phys. 1993, 99, 3669-3682.

[24]. Schleyer P.v-R.; Manoharan, M.; Wang, Z.-X.; Kiran, B.; Jiao, H.; Puchta, R.;
Hommes, N. J. R. v. E. Dissected nucleus-independent chemical shift analysis of
-aromaticity and antiaromaticity. Org. Lett. 2001, 3, 2465-2468.

[25]. Foroutan-Nejad, C.; Badri, Z.; Shahbazian, S.; Rashidi-Ranjbar, P. The Laplacian of electron density versus NICSzz scan: Measuring magnetic aromaticity among molecules with different atom types. J. Phys. Chem. A 2011, 115, 12708-12714.

[26]. Mandado, M.; Gonzlez-Moa, M. J.; Mosquera, R. A. QTAIM N-center indices as descriptors of aromaticity in mono and poly heterocycles. J. Comput. Chem. 2007, 28, 127-136.

[27]. Clar, E. The Aromatic Sextet; John Wiley and Sons Ltd.: London, 1972.

[28]. Goldstein, M. J.; Hoffmann, R. Symmetry, topology, and aromaticity. J. Am. Chem. Soc. 1971, 93, 6193-6204.

[29]. Palusiak, M.; Krygowski, T. M. Application of AIM parameters at ring critical points for estimation of -electron delocalization in six-membered aromatic and quasi-aromatic rings. Chem. Eur. J. 2007, 13, 7996-8006.

[30]. Mandado, M.; Gonzlez-Moa, M. J.; Mosquera, R. A. Chemical graph theory

and n-center electron delocalization indices: A study on polycyclic aromatic hydrocarbons. J. Comput. Chem. 2007, 28, 1625-33.

[31] Ponec R and Mayer I 1997 Investigation of some properties of multicenter bond indices J. Phys. Chem. A 101 173841.

[32]. Bultinck, P.; Ponec, R.; Van Damme, S. Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J. Phys. Org. Chem. 2005, 18, 706-718.

[33]. Bultinck, P.; Rafat, M.; Ponec, R.; Van Gheluwe, B.; Carb-Dorca, R.; Popelier,
P. L. A. Electron delocalization and aromaticity in linear polyacenes: atoms in molecules multicenter delocalization index. J. Phys. Chem. A 2006, 110, 7642-7648.
[34]. Bultinck, P.; Fias, S.; Ponec, R. Local aromaticity in polycyclic aromatic hydrocarbons: electron delocalization versus magnetic indices. Chem. Eur. J. 2006, 12, 8813-8818.

[35]. Bultinck, P. Critical analysis of the local aromaticity concept in polyaromatic hydrocarbons. Faraday Disc. 2007, 135, 347-365.

[36]. Bultinck, P.; Ponec, R.; Carb-Dorca, R. Aromaticity in linear polyacenes: Generalized population analysis and molecular quantum similarity approach. J. Comput. Chem. 2007, 28, 152-160.

[37]. Fias, S.; Fowler, P. W.; Delgado, J. L.; Hahn, U. ; Bultinck, P. Correlation of delocalization indices and current - density maps in polycyclic aromatic hydrocarbons. Chem. Eur. J. 2008, 14, 3093-3099.

[38]. Fradera, X.; Poater, J.; Simon, S.; Duran, M.; Sol, M. Electron-pairing analysis from localization and delocalization indices in the framework of the atoms-in-molecules theory. Theor. Chem. Acc. 2002, 108, 214-224.
[39]. Poater, J.; Sol, M.; Duran, M.; Fradera, X. The calculation of electron

localization and delocalization indices at the Hartree-Fock, density functional and post-Hartree-Fock levels of theory. Theor. Chem. Acc. 2002, 107, 362-371.

[40]. Poater, J.; Fradera, X.; Duran, M.; Sol, M. The delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons. Chem. Eur. J. 2003, 9, 400-406.

[41]. Poater, J.; Fradera, X.; Duran, M.; Sol, M. An insight into local aromaticities of polycyclic aromatic hydrocarbons and fullerenes. Chem. Eur. J. 2003, 9, 1113-1122.
[42]. Matito, E.; Duran, M.; Sol, M. The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization. J. Chem. Phys. 2005, 122, 014109.

[43]. Poater, J.; Duran, M.; Sol, M.; Silvi, B. Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem. Rev. 2005, 105, 3911-3947.

[44]. Portella, G.; Poater, J.; Bofill, J. M.; Alemany, P.; Sol, M. Local aromaticity of [n]acenes, [n]phenacenes, and [n]helicenes (n = 1-9). J. Org. Chem. 2005, 70, 2509-2521.

[45]. Matito, E.; Duran, M.; Sol, M. A novel exploration of the Hartree-Fock homolytic bond dissociation problem in the hydrogen molecule by means of electron localization measures. J. Chem. Edu. 2006, 83, 1243-1248.

[46]. Matito E, Poater J and Sol M 2007 In: The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design ed C F Matta and R J Boyd (Weinheim: Wiley) chapter 15

[47]. Matito, E.; Feixas, F.; Sol, M. Electron delocalization and aromaticity measures within the Hückel molecular orbital method. J. Mol. Struct.

(THEOCHEM) 2007, 811, 3-11.

[48]. Feixas, F.; Matito, E.; Poater, J.; Sol, M. On the performance of some aromaticity indices: A critical assessment using a test set. J. Comput. Chem. 2008, 29, 1543-1554.

[49]. Feixas, F.; Matito, E.; Sol, M.; Poater, J. Analysis of Hückels [4n + 2] rule through electronic delocalization measures. J. Phys. Chem. A 2008, 112, 13231-13238.

[50]. Feixas, F.; Matito, E.; Sol´, M.; Poater, J. Patterns of -electron delocalization in aromatic and antiaromatic organic compounds in the light of Hückels 4n + 2 rule.
Phys. Chem. Chem. Phys. (PCCP) 2010, 12, 7126-7137.

[51]. Feixas Gerons, F. Analysis of Chemical Bonding and Aromaticity from Electronic Delocalization Descriptors, PhD Thesis; University of Girona: Girona (Spain), 2010.

[52]. Matta, C. F.; Hernández-Trujillo, J. Bonding in polycyclic aromatic hydrocarbons in terms of the the electron density and of electron delocalization. J. Phys. Chem. A 2003, 107, 7496-7504 (Correction: J. Phys. Chem A, 2005, 109, 10798).

[53]. Howard, S. T.; Krygowski, T. M. Benzenoid hydrocarbon aromaticity in terms of charge density descriptors. Can. J. Chem. 1997, 75, 1174-1181.

[54]. Suresh, C. H.; Gadre, S. R. Clar's aromatic sextet theory revisited via

molecular electrostatic potential topography. J. Org. Chem. 1999, 64, 2505-2512.

[55]. Cyranski, M. K.; Stepien, B. T.; Krygowski, T. M. Global and local

aromaticities of linear and angular polyacenes. Tetrahedron 2000, 56, 9663-9667.

[56]. Balaban, A. T. Applications of graph theory in chemistry. J. Chem. Inf.

Comput. Sci. 1985, 25, 334-343.

[57]. Randić, M. Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 2003, 103, 3449-3606.

[58]. Gutman, I.; Stankovi, S. Testing the Y-rule in Clar theory. Polycyc. Arom. Comp. 2007, 27, 425-436.

[59]. Balaban, A. T.; urevi, J.; Gutman, I.; Jeremi, S.; Radenkovi, S. Correlations between local aromaticity indices of bipartite conjugated hydrocarbons. J. Phys. Chem. A 2010, 114, 5870-5877.

[60]. Aihara, J. Simple topological theory of aromaticity for annulenes and radialenes. Bull. Chem. Soc. Jpn. 1980, 53, 1751-1752.

[61]. Aihara, J. Aromaticity and superaromaticity in cyclopolyacenes. J. Chem. Soc., Perkin Trans. 2 1994, 971-974.

[62]. Fradera, X.; Austen, M. A.; Bader, R. F. W. The Lewis model and beyond. J. Phys. Chem. A 1999, 103, 304-314.

[63]. Matta, C. F.; Hernndez-Trujillo, J.; Bader, R. F. W. Proton spin-spin coupling and electron delocalisation. J. Phys. Chem. A 2002, 106, 7369-7375.

[64]. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, U.K., 1990.

[65] Popelier P L A 2000 Atoms in Molecules: An Introduction (London: Prentice-Hall)

[66] Matta C F and Boyd R J (ed) 2007 The Quantum Theory of Atoms in

Molecules: From Solid State to DNA and Drug Design (Weinheim: Wiley)

[67]. Krygowski, T. M.; Ciesielski, A.; Bird, C. W.; Kotschy, A. Aromatic character

of the benzene ring present in various topological environments in benzenoid

hydrocarbons. Nonequivalence of indices of aromaticity. J. Chem. Inf. Comput. Sci.

1995, 35, 203-210

- [68]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
- Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
- Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
- Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
- Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven,
- T.; Montgomery Jr, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;
- Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand,
- J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,
- M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
- Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
- J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
- Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.;
- Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.,
- Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford CT, 2010).
- [69]. Keith, T. A. AIMAll. http://aim.tkgristmill.com/ 2011.
- [70]. Sumar, I.; Cook, R.; Ayers, P. W.; Matta, C. F. AIMLDM: A Program to
- Generate and Analyze Electron Localization-Delocalization Matrices (LDMs).
- Comput. Theor. Chem. 2015, In press.
- [71]. Hansen, C. M. Hansen solubility parameters: A user's handbook; CRC Press and Taylor & Francis Group: Boca Raton, Florida, 2007.
- [72]. Borg, I.; Groenen, P. Modern multidimensional scaling: theory and applications; Springer: New York, 1997.
- [73]. Cox, T. F.; Cox, M. A. A. Multidimensional Scaling; Chapman & Hall: . London, 1994.
- [74]. Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a

nonmetric hypothesis. Psychometrika 1964, 29, 1-27.

[75]. Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method.

Psychometrika 1964, 29, 115-129.

- [76]. Shepard, R. N. The analysis of proximities: multidimensional scaling with an unknown distance function. II. Psychometrika 1962, 27, 219-246.
- [77]. Shepard, R. N. The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika 1962, 27, 125-140.
- [78]. Torgerson, W. S. Multidimensional scaling: I. Theory and method.

Psychometrika 1952, 17, 401-419.

### **Eigenvalues and Important Atoms in a Molecule**

### 5.1 A look at the Eigenvalues

In Chapter 1 it was shown that for every  $n \times n$  LDM there exists n! ways to label this matrix. A way to circumvent this labelling problem was to diagonalize the LDMs, where the eigenvalues were arranged from smallest to largest along the long diagonal. One can then proceed as normal and take the Frobenius distance between the diagonalized LDMs.

In **Chapter 4** the eigenvalues were used in a different way. The eigenvalues were sorted in a vector from smallest to largest for each molecule and the vector angle could then be taken between each molecule as a measure of similarity. These similarity measures were correlated very strongly with the aromaticity measure PDI.

We have not currently done any serious studies into the physical significance of the eigenvalues, but the aim of this section is to discuss the trends we have observed for the benzoic acid series, and the aromatic series in the context of the eigenvalues.

In the benzoic acid series a very strong correlation between the eigenvalues and the total electron population of the atom  $N(\Omega_i)$  was observed. And the size of  $N(\Omega_i)$  seemed to dictate the size of the eigenvalues. Table 5.1 displays the molecule BACOCH<sub>3</sub> (BA = Benzoic Acid, COCH<sub>3</sub> = substituent in the para-position) with its  $N(\Omega_i)$  and its eigenvalues as well as BACOCH<sub>3</sub>\_P(where \_P stands for pruned and where COCH<sub>3</sub> = super-atom) with its  $N(\Omega_i)$  and its eigenvalues (both  $N(\Omega_i)$  and the eigenvalues were arranged from smallest to largest).

Notice that in Table 5.1 that the size of  $N(\Omega_i)$  has an effect on the size of the eigenvalues (most notable for the super-atom COCH<sub>3</sub>). The number of hydrogen

**Table 5.1:** Comparing eigenvalues of both BACOCH<sub>3</sub> and BACOCH<sub>3</sub>\_P (P indicates pruning and COCH<sub>3</sub> is the super-atom) largest eigenvalue and largest atom electron population  $N(\Omega_i)$  are in bold. The  $r^2$  value between the eigenvalues and  $N(\Omega_i)$  is > 0.98 (both  $N(\Omega_i)$  and the eigenvalues were arranged from smallest to largest)

| Atom | $BACOCH_3(N(\Omega_i))$ | Eigenvalues | Atom       | BACOCH <sub>3</sub> _ $P(N(\Omega_i))$ | Eigenvalues |
|------|-------------------------|-------------|------------|----------------------------------------|-------------|
| H1   | 0.412                   | 0.061       | H1         | 0.412                                  | 0.061       |
| H14  | 0.925                   | 0.269       | H14        | 0.925                                  | 0.308       |
| H13  | 0.929                   | 0.308       | H13        | 0.929                                  | 0.323       |
| H11  | 0.938                   | 0.323       | H11        | 0.938                                  | 0.328       |
| H20  | 0.955                   | 0.328       | H12        | 0.971                                  | 0.351       |
| H12  | 0.971                   | 0.351       | C3         | 4.500                                  | 2.449       |
| H18  | 0.978                   | 0.396       | C10        | 5.996                                  | 2.787       |
| H19  | 0.978                   | 0.403       | C9         | 5.998                                  | 3.325       |
| C3   | 4.500                   | 2.435       | C6         | 5.999                                  | 3.395       |
| C15  | 5.027                   | 2.630       | C5         | 6.008                                  | 4.557       |
| C10  | 5.996                   | 2.963       | C7         | 6.016                                  | 4.626       |
| C9   | 5.998                   | 3.325       | C8         | 6.033                                  | 5.461       |
| C6   | 5.999                   | 3.483       | O2         | 9.091                                  | 7.999       |
| C5   | 6.008                   | 4.311       | O4         | 9.138                                  | 8.429       |
| C17  | 6.016                   | 4.626       | $COCH_315$ | 23.045                                 | 22.272      |
| C7   | 6.016                   | 4.644       |            |                                        | 1           |
| C8   | 6.033                   | 5.485       |            |                                        |             |
| O2   | 9.091                   | 7.999       |            |                                        |             |
| O16  | 9.092                   | 8.245       |            |                                        |             |
| O4   | 9.138                   | 8.429       |            |                                        |             |

atoms in BACOCH<sub>3</sub> and BACOCH<sub>3</sub>-P is different (they are actually the same but some of the hydrogen atoms are contained within the super-atom COCH<sub>3</sub>), this is reflected in the number of eigenvalues that are < 1. In fact a general trend for each molecule was observed, depending on the size and number of the eigenvalues one could determine the number of hydrogen, carbon, or oxygen atoms in the molecule. Eigenvalues are not being assigned to an atom, just stating a trend that was consistent.

Based on the results of Table 5.1 it was presumed that the eigenvalues were correlated with the atom's electron population  $N(\Omega_i)$ .

When looking at the eigenvalues for the aromatic series this trend was not observed. For the molecule Benzene all the carbon atoms are equivalent, thus if the eigenvalues were correlated with  $N(\Omega_i)$  then all the eigenvalues should be the same but they are not. Table 5.2 displays Benzene with its  $N(\Omega_i)$  and its eigenvalues both arranged from smallest to largest.

**Table 5.2:** Comparing Eigenvalues of Benzene (carbon atoms only) with its atom electron population  $N(\Omega_i)$  (values are arranged from smallest to largest)

| Atom | $\operatorname{Benzene}(N(\Omega_i))$ | Eigenvalues |
|------|---------------------------------------|-------------|
| C1   | 5.479                                 | 2.579       |
| C2   | 5.479                                 | 3.271       |
| C3   | 5.479                                 | 3.271       |
| C4   | 5.479                                 | 4.569       |
| C5   | 5.479                                 | 4.569       |
| C6   | 5.479                                 | 5.479       |

There is clearly no correlation between  $N(\Omega_i)$  and the eigenvalues based on Table 5.2.

What we can say definitively is that the sum of the eigenvalues is equivalent to the trace of the matrix which is the total localization index of the molecule. What we can deduce from these examples is that the largest eigenvalue reflects the size of the largest atom in the molecule, as is indicated by the BACOCH<sub>3</sub> example and by the Benzene example (and has been observed consistently for both the benzoic acid and aromatic series).

#### 5.2 Important Atoms in a Molecule

When comparing  $pK_a$  against the Frobenius distance for the benzoic acid series in **Chapter 3**, we were able to identify the group of atoms primarily responsible for  $pK_a$  i.e. the COOH group. This was no surprise since it was obvious that this group of atoms is primarily responsible for  $pK_a$ . What if someone with very limited chemical

knowledge was to perform the exact same study, it would be hard for them to find the group of atoms responsible for  $pK_a$ .

We come to an important question, is it possible to automatically locate the group of atoms responsible for the property of interest? That is the question this section aims to discuss.

We will look at both the benzoic acid and aromatic series and the properties  $pK_a$ ,  $\lambda_{max}$ , and the aromaticity measure HOMA.

For the benzoic acid series strong correlations were osberved for both  $pK_a$  and  $\lambda_{max}$ . This was done by truncating the LDMs such that the COOH group was zoomed in on (the OH group was also looked at but here the focus is only on the COOH group). One way to automate this would be to look at every possible truncated matrix one can create from an LDM, take the Frobenius distance between all corresponding truncated matrices, correlate them with the measure  $pK_a$  and determine which group of truncated matrices had the best correlation with the property. But this can be rather costly for big LDMs, and for a big set of molecules.

A different approach would be to look at the atoms individually, and see how they correlate with the property of interest. The idea is that the atoms that make up the "active site" should contribute to the studied property more so than atoms that do not make up the active site.

This is the approach we took:

- 1. Take the LM/DM only (this is the matrix with only the LI/DI values)
- 2. Take the Frobenius distance between the reference atom and the atom from the other molecule (i.e. Frobenius distance between H1 on BANO<sub>2</sub> and H1 on BA)
- 3. Do step 2 for all atoms except for the super-atom

- 4. Correlate the Frobenius distance with the  $pK_a$  for H1, O2, O3, C4, etc.
- 5. Rank the  $r^2$  values for each atom
- 6. Check if the active site is recovered by the highest ranking  $r^2$  values

Frobenius distance tables for the atoms and the studied properties can be found in **Appendix C**. Table 5.3 shows the ranking of the Frobenius distance of individual atoms based on their  $r^2$  values for the LI only with respect to  $pK_a$ . From this table it is clear that the "active site" is recovered (refer to **Appendix B** for benzoic acid molecules and their atomic labelling scheme). The first four atoms are the COOH group, however the atom O2 has a much smaller  $r^2$  value than the other 3 members of the COOH group.

**Table 5.3:** Ranking of Frobenius distance of individual atoms with respect to  $pK_a$  the first four atoms are indeed the active site (COOH) (LI only)

| atom          | $r^2$ |
|---------------|-------|
| 04            | 0.979 |
| $\mathbf{C3}$ | 0.965 |
| H1            | 0.964 |
| <b>O2</b>     | 0.857 |
| H11           | 0.803 |
| C5            | 0.798 |
| C9            | 0.774 |
| C7            | 0.708 |
| C8            | 0.649 |
| H13           | 0.580 |
| H12           | 0.563 |
| H14           | 0.434 |
| C10           | 0.204 |
| C6            | 0.134 |

Table 5.4 shows the ranking of Frobenius distance of individual atoms based on their  $r^2$  values for the DI only with respect to  $pK_a$ . In this table the first 3 atoms belong to the COOH group. This time however O4 has a low ranking of 0.708. The COOH group was not recovered in this instance. The rankings of C5 and C8 have risen from Table 5.3 (C5 had a previous ranking of 0.8, and C8 had a previous ranking of 0.649). One possible reason for this is because C5 and C8 are bridges between the COOH and super-atom respectively, so their DI is expected to be significant.

**Table 5.4:** Ranking of Frobenius distance of individual atoms with respect to  $pK_a$  the first three atoms make up the active site (COOH) (DI only)

| molecule      | $r^2$ |
|---------------|-------|
| O2            | 0.979 |
| $\mathbf{C3}$ | 0.965 |
| $\mathbf{H1}$ | 0.964 |
| C5            | 0.857 |
| C8            | 0.803 |
| H11           | 0.798 |
| C7            | 0.774 |
| 04            | 0.708 |
| C6            | 0.649 |
| H12           | 0.580 |
| C9            | 0.563 |
| C10           | 0.434 |
| H14           | 0.204 |
| H13           | 0.134 |
|               |       |

Atom O4 consistently has a higher LI value than O2 and has a higher total electron population, conversely O2 consistently has a higher DI value than O4. This can help explain the reason as to why O4 is ranked higher than O2 in Table 5.3 and why O2 is ranked higher than O4 in Table 5.4.

Both Tables 5.3 and 5.4 show very high correlations for a majority of the members of the COOH group, they also highlight the importance of the atoms C5 and C8 based on the climb in ranking observed from Table 5.3 to Table 5.4.

This ranking seems to highlight the "important atoms" in a molecule. The COOH

group had very high rankings (except for O4 in Table 5.4) and atoms C5 and C8 climbed the rankings in Table 5.4. Atom H11 is ranked high in both but it is close to the COOH group and its ranking is relatively unchanged.

The environment of atoms C5 and C8 is very different than the environments of the other carbon atoms in the Benzene ring, similarly the environment of H1 is very different than all of the other hydrogen atoms on the Benzene ring. The oxygen atoms are both in different environments; one in a double bond and the other in a single bond. Based on the  $pK_a$  and the LI/DI, the atoms that are in different environments seem to be the ones that receive a high  $r^2$  value.

We now look at the benzoic acid series and the property  $\lambda_{max}$ . Using the same methodology as described above, the results are in Table 5.5 for the ranking of Frobenius distance of individual atoms for LI only with respect to  $\lambda_{max}$ , and in Table 5.6 for the DI only.

| molecule | $r^2$ |
|----------|-------|
| O2       | 0.876 |
| H1       | 0.808 |
| C3       | 0.802 |
| C8       | 0.798 |
| C6       | 0.724 |
| O4       | 0.723 |
| C10      | 0.692 |
| H13      | 0.561 |
| H14      | 0.422 |
| C7       | 0.254 |
| H12      | 0.217 |
| C5       | 0.178 |
| C9       | 0.147 |
| H11      | 0.123 |

**Table 5.5:** Ranking of Frobenius distance of individual atoms with respect to  $\lambda_{max}$  (LI only)

Table 5.5 shows very low  $r^2$  values when only looking at the LI. The highest  $r^2$ 

value is 0.876 for O2, H1 and C3 have  $r^2$  values of 0.808 and 0.802 respectively, but these are fairly low.

| molecule | $\mathbf{r^2}$ |
|----------|----------------|
| C5       | 0.942          |
| C8       | 0.918          |
| C3       | 0.881          |
| O2       | 0.874          |
| C7       | 0.815          |
| H1       | 0.811          |
| O4       | 0.753          |
| C9       | 0.637          |
| C10      | 0.619          |
| H14      | 0.606          |
| H13      | 0.606          |
| C6       | 0.509          |
| H11      | 0.508          |
| H12      | 0.169          |

**Table 5.6:** Ranking of Frobenius distance of individual atoms with respect to  $\lambda_{max}$  (DI only)

Looking at Table 5.6 however C5, C8, C3, and O2 have fairly high  $r^2$  values of 0.942, 0.918, 0.881, and 0.874 respectively. Perhaps a reason as to why C5 and C8 are ranked so high is because Benzene itself has a primary absorption band at 184 nm [1]. The atoms C5 and C8 are bridges to the COOH and substituents respectively, and are thus important since addition of a substituent to the Benzene ring shifts the primary band. Upon attaching a COOH group to C5 the primary band shifts to 230 nm [1], a significant change from Benzene's primary band. The substituents attached to C8 also have an impact on the primary band (see Table 3.3 for details). C7 is ranked high as well possibly because it is bonded to C8 and the way the substituents are oriented they are close in proximity to C7.

Tables 5.5 and 5.6 highlight the atoms C5, C8, C3, and O2. This gives us a clue as to where we should look for atoms that contribute to the property  $\lambda_{max}$ . The atoms C5 and C8 are important because they are the bridges to the Benzene ring. Atoms C3 and O2 are important because they are part of the COOH group.

It is perhaps not surprising that Table 5.5 shows weaker correlations since it focuses only on the LI which is not significant compared to the DI for  $\lambda_{max}$ .

Now moving on to the aromatic series and proceeding just like before we will compare the Frobenius distance of the individual atoms to the aromaticity index HOMA. We should expect that the DI not the LI correlates well with HOMA. Table 5.7 shows the ranking of Frobenius distance of the individual atoms compared with the HOMA index (LI only).

Table 5.7: Ranking of Frobenius distance of individual atoms with respect to HOMA (LI only)

| molecule | $\mathbf{R}^2$ |
|----------|----------------|
| C3       | 0.980          |
| C6       | 0.977          |
| C4       | 0.935          |
| C5       | 0.932          |
| C1       | 0.886          |
| C2       | 0.878          |
|          |                |

Table 5.7 has the outlier cyclohexane, if that is removed the  $r^2$  values differ significantly.

**Table 5.8:** Ranking of Frobenius distance of individual atoms with respect to HOMA (LI only, cyclohexane removed)

| molecule | $\mathbf{R}^2$ |
|----------|----------------|
| C3       | 0.696          |
| C1       | 0.538          |
| C6       | 0.421          |
| C4       | 0.393          |
| C2       | 0.126          |
| C5       | 0.107          |

Table 5.8 shows a poor correlation between the HOMA index and the Frobenius

distance of the individual atoms for only the LI, as expected.

**Table 5.9:** Ranking of Frobenius distance of individual atoms with respect to HOMA (DI only, cyclohexane removed)

| molecule | $\mathbf{R}^2$ |
|----------|----------------|
| C2       | 0.885          |
| C4       | 0.871          |
| C3       | 0.869          |
| C1       | 0.860          |
| C5       | 0.854          |
| C6       | 0.838          |
|          |                |

Table 5.9 shows that all 6 carbon atoms have an  $r^2$  value > 0.8. This is what is expected since each carbon atom should contribute to the aromaticity of the ring. It is not expected that each carbon atom should have the same correlation since the rings are all different (some atoms are part of more than one ring which can affect its DI and is quite possibly the reason why some of the correlations are not as strong i.e. C6).

What is important about these findings is that their might be potential to locate the important atoms in a family of molecules based on two things:

- 1. The property being measured (in these few cases  $pK_a$ ,  $\lambda_{max}$ , and aromaticity index HOMA).
- 2. The studied index (either LI, DI, and/or LDI).

It is important to determine which index might be more suitable for the studied measure as was clearly seen in the last example.

While currently this method is not automated (it will be at some point in the future) it can tell the user based off of LI, DI, and/or LI/DI in conjunction with the property being measured what atoms are important to both the index and the studied

property. This could potentially be of great value, especially for big molecules with thousands of atoms, as this method can act as a quick scan to highlight region(s) of interest.

 Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. R. Introduction to Spectroscopy (4th Edition); Brooks/Cole Cengage Learning: Belmont, CA, USA, 2009. Appendices

### **Operating Instructions for AIMLDM**

Download the provided AIMLDM zipped file. Once downloaded, unzip the provided archive file. The executable programme file is called AIMLDM.exe while the other accompanying files in the folder are required for **AIMLDM.exe** to run. Run the file **AIMLDM.exe** (there is no installation required), the screen should be similar to the following:



Place the AIMAll output "**.sum**" files of all the molecules in the molecular set being studied in a chosen directory/folder and give the full path of that directory to AIMLDM, then press return.



You will be prompted to enter the desired location of the output files (give the full path where you want the output to be produced). If you give an address to a directory that does not exist then AIMLDM will create it.

If everything is successful AIMLDM will tell you where your files are located and how long the calculation took, along with the option to run the program again.



In the folder LDM there exists two directories one with the ".file" format which can be opened by a simple text editor (we recommend *notepad++* which can be downloaded for free from www.ninite.com under "*Developer Tools*"). The other with the ".csv" format for *Excel* type programs.

The following images show the layout of the folder LDM:

| File Home Sha   | ire View      |                    |             |      |
|-----------------|---------------|--------------------|-------------|------|
| 9 🕣 🔹 🕇 📕 🖡     | BA's ► LDM ►  |                    |             |      |
| 🚖 Favorites     | Name          | Date modified      | Туре        | Size |
| E Desktop       | CSV Format    | 2015-06-30 3:59 PM | File folder |      |
| Downloads       | 🍶 File Format | 2015-06-30 3:59 PM | File folder |      |
| 📃 Recent places |               |                    |             |      |

| 1 <mark>1</mark> 1) = 1 |                                  |                    |                    | File Form |
|-------------------------|----------------------------------|--------------------|--------------------|-----------|
| File Home Share         | View                             |                    |                    |           |
| 🖻 🏵 🔹 🕇 📕 🛛 B4          | s's ▶ LDM ▶ File Format ▶        |                    |                    |           |
| 🔆 Favorites             | Name                             | Date modified      | Туре               | Size      |
| E Desktop               | Di-Pruned-Matrices               | 2015-06-30 3:59 PM | Filefolder         |           |
| 🚺 Downloads             | Di-Pruned-Matrices-Eigenvalues   | 2015-06-30 3:59 PM | File folder        |           |
| 📃 Recent places         | 腸 Frobenius Distance             | 2015-06-30 3:59 PM | Filefolder         |           |
|                         | Frobenius-Distance-Eigenvalues   | 2015-06-30 3:59 PM | File folder        |           |
| 💺 This PC               | Full-Pruned-Matrices             | 2015-06-30 3:59 PM | File folder        |           |
| 膧 Desktop               | Full-Pruned-Matrices-Eigenvalues | 2015-06-30 3:59 PM | Filefolder         |           |
| Documents               | 👪 LIDI                           | 2015-06-30 3:59 PM | File folder        |           |
| 🚺 Downloads             | 🕌 LIDI-Matrices                  | 2015-06-30 3:59 PM | Filefolder         |           |
| Music                   | LIDI-Matrices-Eigenvalues        | 2015-06-30 3:59 PM | File folder        |           |
| E Pictures              | 👪 Li-Pruned-Matrices             | 2015-06-30 3:59 PM | File folder        |           |
| 📓 Videos                | Li-Pruned-Matrices-Eigenvalues   | 2015-06-30 3:59 PM | <b>File folder</b> |           |
| LENOVO (D:)             |                                  |                    |                    |           |

Inside each folder are the following folders.

Here is an example of a ".file" for benzoic acid (BA) and for p-methylbenzoic acid (BACH<sub>3</sub>) using *notepad++*. Note that even though it says BA is pruned it is not because in this set BA was the smallest matrix. It is just in the folder *Full-Pruned-Matrices*, and thus has the associated word "*pruned*".

| De        |     | View Encoding | Language ! | Settings Macr | ro <u>R</u> un <u>P</u> lug | ins <u>Window</u> | 2           |               |            |           |             |           |           |             |           |         |
|-----------|-----|---------------|------------|---------------|-----------------------------|-------------------|-------------|---------------|------------|-----------|-------------|-----------|-----------|-------------|-----------|---------|
|           | -   | 🗟 🕞 😂 🕹 🕷     | h h 2 c    | 1 m ba (      | R 🔫 🖂 🛱                     | 3 = 1             | E 🐷 🔊 🔊     | •             | 🖌 📑 👪 🕻    | 0         |             |           |           |             |           |         |
|           |     |               |            |               | BA.sum F                    | RUNED MATR        |             |               |            |           |             |           |           |             |           | 4       |
| 1         |     |               |            |               |                             | BA.su             | m LIDI valı | ues in a Ma   | trix       |           |             |           |           |             |           |         |
| 2         |     |               |            |               |                             | Note the          | DI values   | are divide    | d by 2     |           |             |           |           |             |           |         |
| 3         |     |               |            |               |                             |                   |             |               |            |           |             |           |           |             |           |         |
| 4         |     | H1            | 02         | C3            | 04                          | C5                | C6          | C7            | C8         | C9        | C10         | H11       | H12       | H13         | H14       | H15     |
| 5         |     |               |            |               |                             |                   |             |               |            |           |             |           |           |             |           |         |
| 6         | H1  | 0.0743087     | 0.3179415  | 0.0060006     | 0.0101162                   | 0.0044065         | 0.0006136   | 0.0000404     | 0.0000628  | 0.0001619 | 0.0006527   | 0.0004374 | 0.0000090 | 0.0000420   | 0.0000528 | 0.00000 |
| 7         | 02  | 0.3179415     | 8.0966135  | 0.4354779     | 0.1487853                   | 0.0427766         | 0.0189898   | 0.0017091     | 0.0024805  | 0.0016532 | 0.0074471   | 0.0155243 | 0.0000726 | 0.0008484   | 0.0003063 | 0.00018 |
| 8         | C3  | 0.0060006     | 0.4354779  | 2.8525975     | 0.6519313                   | 0.4852089         | 0.0260445   | 0.0045634     | 0.0054771  | 0.0047660 | 0.0281626   | 0.0025596 | 0.0007201 | 0.0031834   | 0.0007189 | 0.00026 |
| 9         | 04  | 0.0101162     | 0.1487853  | 0.6519313     | 8.2114501                   | 0.0533585         | 0.0153630   | 0.0026417     | 0.0069294  | 0.0020595 | 0.0238550   | 0.0010183 | 0.0004241 | 0.0155993   | 0.0000757 | 0.00042 |
| 10        | C5  | 0.0044065     | 0.0427766  | 0.4852089     | 0.0533585                   | 3.9126359         | 0.6701446   | 0.0356872     | 0.0470488  | 0.0358067 | 0.6672723   | 0.0213639 | 0.0049233 | 0.0211531   | 0.0049567 | 0.00245 |
| 11        | C6  | 0.0006136     | 0.0189898  | 0.0260445     | 0.0153630                   | 0.6701446         | 3.9490550   | 0.6985277     | 0.0370649  | 0.0486776 | 0.0334410   | 0.4698397 | 0.0244865 | 0.0045055   | 0.0025321 | 0.00488 |
| 12        | C7  | 0.0000404     | 0.0017091  | 0.0045634     | 0.0026417                   | 0.0356872         | 0.6985277   | 3.9547412     | 0.6919981  | 0.0358505 | 0.0490284   | 0.0223751 | 0.4805857 | 0.0023278   | 0.0048771 | 0.02404 |
| 13        | CB  | 0.0000628     | 0.0024805  | 0.0054771     | 0.0069294                   | 0.0470488         | 0.0370649   | 0.6919981     | 3.9560175  | 0.6898329 | 0.0372669   | 0.0045197 | 0.0241733 | 0.0045217   | 0.0240670 | 0.48040 |
| 14        | C9  | 0.0001619     | 0.0016532  | 0.0047660     | 0.0020595                   | 0.0358067         | 0.0486776   | 0.0358505     | 0.6898329  | 3.9544999 | 0.7011149   | 0.0023687 | 0.0048974 | 0.0221580   | 0.4804511 | 0.02392 |
| 15        | C10 | 0.0006527     | 0.0074471  | 0.0281626     | 0.0238550                   | 0.6672723         | 0.0334410   | 0.0490284     | 0.0372669  | 0.7011149 | 3.9478288   | 0.0045599 | 0.0025766 | 0.4686546   | 0.0245031 | 0.00487 |
| 16        | H11 | 0.0004374     | 0.0155243  | 0.0025596     | 0.0010183                   | 0.0213639         | 0.4698397   | 0.0223751     | 0.0045197  | 0.0023687 | 0.0045599   | 0.3925855 | 0.0029582 | 0.0009397   | 0.0001582 | 0.00081 |
| 17        | H12 | 0.0000090     | 0.0000726  | 0.0007201     | 0.0004241                   | 0.0049233         | 0.0244865   | 0.4805857     | 0.0241733  | 0.0048974 | 0.0025766   | 0.0029582 | 0.4239047 | 0.0001573   | 0.0009073 | 0.00297 |
| 18        | H13 | 0.0000420     | 0.0008484  | 0.0031834     | 0.0155993                   | 0.0211531         | 0.0045055   | 0.0023278     | 0.0045217  | 0.0221580 | 0.4686546   | 0.0009397 | 0.0001573 | 0.3872300   | 0.0029009 | 0.00082 |
| 19        | H14 | 0.0000528     | 0.0003063  | 0.0007189     | 0.0000757                   | 0.0049567         | 0.0025321   | 0.0048771     | 0.0240670  | 0.4804511 | 0.0245031   | 0.0001582 | 0.0009073 | 0.0029009   | 0.4230364 | 0.00295 |
| 20        | H15 | 0.0000056     | 0.0001810  | 0.0002613     | 0.0004281                   | 0.0024531         | 0.0048825   | 0.0240403     | 0.4804069  | 0.0239214 | 0.0048704   | 0.0008126 | 0.0029736 | 0.0008252   | 0.0029547 | 0.42385 |
|           |     |               |            |               |                             |                   |             |               |            |           |             |           |           |             |           |         |
| <         |     |               |            |               |                             |                   |             |               |            |           |             |           |           |             |           |         |
| text file |     | -             |            |               |                             |                   |             | length : 2777 | lines : 21 | Ln :      | 1 Col:1 Sel | :010      |           | Dos\Windows | UTF-8 w/c | BOM INS |

Following is the pruned matrix for  $BACH_3$ . Note how the super atom is labelled as CHHH which is in fact the  $CH_3$  group in place of the regular H.

| 2      |                                                |               | C:\l          | Jsers\Mike S | lackenerny\[                | Desktop\BA'        | s\LDM\File F | ormat\Full-P  | runed-Matr | ices\BACH3 | .sum_PRUNE  | D_MATRIX - | Notepad++ | ÷.          |           | - 0       |
|--------|------------------------------------------------|---------------|---------------|--------------|-----------------------------|--------------------|--------------|---------------|------------|------------|-------------|------------|-----------|-------------|-----------|-----------|
| Eile E | dit <u>S</u> earch                             | View Encoding | Language      | Settings Mac | ro <u>R</u> un <u>P</u> lug | ins <u>W</u> indow | 2            |               |            |            |             |            |           |             |           |           |
| De     |                                                |               | h fi D c      | 1 m bg       | 2 2 0 5                     | 3 🗔 ୩ 🔳            | E 💷 🔝 🔊      | • • •         | 🖌 📑 🖓      | 6          |             |            |           |             |           |           |
|        | _                                              |               |               |              | -                           |                    |              |               |            | _          |             |            |           |             |           |           |
|        | _                                              |               | BACH3.sum_PRU | JNED_MATRIX  |                             |                    |              |               |            |            |             |            |           |             |           |           |
| 1      |                                                |               |               |              |                             |                    |              | values in a   |            |            |             |            |           |             |           |           |
| 2      |                                                |               |               |              |                             |                    |              |               |            |            |             |            |           |             |           |           |
| 4      | H1 02 C3 04 C5 C6 C7 C8 C9 C10 H11 H12 H13 H14 |               |               |              |                             |                    |              |               |            |            |             |            |           |             |           | CHHH15    |
| 5      | H1 02 C3 04 C5 C6 C7 C8 C9 C10 H11 H12 H13 H14 |               |               |              |                             |                    |              |               |            |            |             |            |           |             |           |           |
| 6      | H1                                             | 0.0746464     | 0.3185401     | 0.0060389    | 0.0102760                   | 0.0043897          | 0.0006104    | 0.0000396     | 0.0000602  | 0.0001613  | 0.0006551   | 0.0004332  | 0.000084  | 0.0000415   | 0.0000519 | 0.0000142 |
| 7      | 02                                             | 0.3185401     | 8.0972663     | 0.4350389    | 0.1481794                   | 0.0430096          | 0.0188621    | 0.0016602     | 0.0024107  | 0.0017624  | 0.0073935   | 0.0152818  | 0.0000660 | 0.0008368   | 0.0003001 | 0.0004850 |
| 8      | C3                                             | 0.0060389     | 0.4350389     | 2.8560166    | 0.6508641                   | 0.4883591          | 0.0264695    | 0.0047864     | 0.0054706  | 0.0049589  | 0.0280453   | 0.0025710  | 0.0007117 | 0.0031402   | 0.0007147 | 0.0010367 |
| 9      | 04                                             | 0.0102760     | 0.1481794     | 0.6508641    | 8.2149881                   | 0.0535899          | 0.0156915    | 0.0028492     | 0.0067727  | 0.0020154  | 0.0233642   | 0.0010359  | 0.0004078 | 0.0153614   | 0.0000720 | 0.0012336 |
| 10     | C5                                             | 0.0043897     | 0.0430096     | 0.4883591    | 0.0535899                   | 3.9129268          | 0.6714137    | 0.0354133     | 0.0443860  | 0.0354594  | 0.6617055   | 0.0213721  | 0.0048772 | 0.0209510   | 0.0049487 | 0.0067911 |
| 11     | C6                                             | 0.0006104     | 0.0188621     | 0.0264695    | 0.0156915                   | 0.6714137          | 3.9481200    | 0.6980409     | 0.0358078  | 0.0477029  | 0.0336100   | 0.4700531  | 0.0244604 | 0.0045014   | 0.0025252 | 0.0071299 |
| 12     | C7                                             | 0.0000396     | 0.0016602     | 0.0047864    | 0.0028492                   | 0.0354133          | 0.6980409    | 3.9574222     | 0.6790971  | 0.0354401  | 0.0468170   | 0.0225097  | 0.4775911 | 0.0022442   | 0.0047626 | 0.0462718 |
| 13     | CB                                             | 0.0000602     | 0.0024107     | 0.0054706    | 0.0067727                   | 0.0443860          | 0.0358078    | 0.6790971     | 3.8886286  | 0.6693425  | 0.0360415   | 0.0044620  | 0.0233323 | 0.0045066   | 0.0230398 | 0.5729535 |
| 14     | C9                                             | 0.0001613     | 0.0017624     | 0.0049589    | 0.0020154                   | 0.0354594          | 0.0477029    | 0.0354401     | 0.6693425  | 3.9595710  | 0.7089672   | 0.0023495  | 0.0047850 | 0.0225706   | 0.4782536 | 0.0435445 |
| 15     | C10                                            | 0.0006551     | 0.0073935     | 0.0280453    | 0.0233642                   | 0.6617055          | 0.0336100    | 0.0468170     | 0.0360415  | 0.7089672  | 3.9464743   | 0.0045999  | 0.0025490 | 0.4689292   | 0.0248632 | 0.0074285 |
| 16     | H11                                            | 0.0004332     | 0.0152818     | 0.0025710    | 0.0010359                   | 0.0213721          | 0.4700531    | 0.0225097     | 0.0044620  | 0.0023495  | 0.0045999   | 0.3940439  | 0.0030519 | 0.0009649   | 0.0001561 | 0.0009502 |
| 17     | H12                                            | 0.0000084     | 0.0000660     | 0.0007117    | 0.0004078                   | 0.0048772          | 0.0244604    | 0.4775911     | 0.0233323  | 0.0047850  | 0.0025490   | 0.0030519  | 0.4271421 | 0.0001558   | 0.0010321 | 0.0123670 |
| 18     | H13                                            | 0.0000415     | 0.0008368     | 0.0031402    | 0.0153614                   | 0.0209510          | 0.0045014    | 0.0022442     | 0.0045066  | 0.0225706  | 0.4689292   | 0.0009649  | 0.0001558 | 0.3889340   | 0.0030305 | 0.0009699 |
| 19     | H14                                            | 0.0000519     | 0.0003001     | 0.0007147    | 0.0000720                   | 0.0049487          | 0.0025252    | 0.0047626     | 0.0230398  | 0.4782536  | 0.0248632   | 0.0001561  | 0.0010321 | 0.0030305   | 0.4278028 | 0.0094598 |
| 20     | CHHH15                                         | 0.0000142     | 0.0004850     | 0.0010367    | 0.0012336                   | 0.0067911          | 0.0071299    | 0.0462718     | 0.5729535  | 0.0435445  | 0.0074285   | 0.0009502  | 0.0123670 | 0.0009699   | 0.0094598 | 8.2320562 |
| <      |                                                |               |               |              |                             |                    |              |               |            |            |             |            |           |             |           |           |
| Normal | text file                                      |               |               |              |                             |                    |              | length : 2781 | lines : 21 | Ln :       | 1 Col:1 Sel | :0 0       |           | Dos\Windows | UTF-8 w/o | BOM IN    |

The next few images explain the steps to follow if you are using the ".csv" file formats and *Excel* does not ask for data delimeter, since the files are not "true" *Excel* files it will probably look distorted.

In *Excel* first choose  $data \rightarrow import external data \rightarrow import data$ Then choose the file you wish to import: Next select "*Delimited*":

Select "Space" as your delimeter:

| Eile Edit View Insert Format                                                | Tools Dat | a <u>W</u> indow <u>H</u> | lelp                                                                    | TVI                                                                                                                         | crosoft Exc                                                                                                                                     |                                                                                                                                               |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|-----------------------------------------------------------------------------|-----------|---------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------|
|                                                                             |           |                           |                                                                         |                                                                                                                             | 100%                                                                                                                                            | • 0                                                                                                                                           | Arial                                                                                                                                                      |                                                                                                      | - 10                                                               |                     |
| D8 • fx                                                                     | -         | Eilter                    |                                                                         | ۲                                                                                                                           |                                                                                                                                                 |                                                                                                                                               | 6                                                                                                                                                          |                                                                                                      | (mail                                                              |                     |
| A B C D                                                                     |           | Su <u>b</u> totals        |                                                                         |                                                                                                                             | ļ                                                                                                                                               | J                                                                                                                                             | К                                                                                                                                                          | L                                                                                                    |                                                                    |                     |
|                                                                             |           | Va <u>l</u> idation       |                                                                         |                                                                                                                             |                                                                                                                                                 |                                                                                                                                               |                                                                                                                                                            |                                                                                                      | _                                                                  |                     |
|                                                                             |           | Text to Column            | ns                                                                      |                                                                                                                             |                                                                                                                                                 |                                                                                                                                               |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|                                                                             | 12        | PivotTable and            | PivotChart Re                                                           | port                                                                                                                        |                                                                                                                                                 |                                                                                                                                               |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|                                                                             |           | Import External           | l <u>D</u> ata                                                          | ۲                                                                                                                           | import                                                                                                                                          | Data                                                                                                                                          |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|                                                                             | _         | List                      |                                                                         | •                                                                                                                           | New W                                                                                                                                           | eb Query                                                                                                                                      | _                                                                                                                                                          |                                                                                                      |                                                                    |                     |
|                                                                             |           | XML                       |                                                                         | •                                                                                                                           | 🔄 New Da                                                                                                                                        | itabase Quer                                                                                                                                  | y                                                                                                                                                          |                                                                                                      |                                                                    |                     |
|                                                                             | Ā         | Refresh Data              | -                                                                       |                                                                                                                             |                                                                                                                                                 | *                                                                                                                                             |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|                                                                             |           |                           | *                                                                       | -                                                                                                                           |                                                                                                                                                 |                                                                                                                                               |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|                                                                             |           |                           |                                                                         |                                                                                                                             |                                                                                                                                                 |                                                                                                                                               |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|                                                                             |           |                           |                                                                         |                                                                                                                             |                                                                                                                                                 |                                                                                                                                               |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
| ] File Edit View Insert Format                                              |           |                           |                                                                         |                                                                                                                             | crosoft Exc                                                                                                                                     | el - BACH                                                                                                                                     |                                                                                                                                                            | NED_MAT                                                                                              |                                                                    | B / U∣≣ ≣           |
| A B C D                                                                     | E         | F                         | G                                                                       | Н                                                                                                                           | T                                                                                                                                               | J                                                                                                                                             | К                                                                                                                                                          | L                                                                                                    | М                                                                  | N C                 |
|                                                                             |           |                           |                                                                         |                                                                                                                             |                                                                                                                                                 |                                                                                                                                               |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|                                                                             |           |                           |                                                                         | -                                                                                                                           |                                                                                                                                                 | Select Da                                                                                                                                     | ta Source                                                                                                                                                  |                                                                                                      |                                                                    | ? ×                 |
|                                                                             | _         |                           | Look in:                                                                | 退 Ful-Pru                                                                                                                   | ned-Matrices                                                                                                                                    |                                                                                                                                               | v 🕲 🗤                                                                                                                                                      |                                                                                                      | 🍯 📰 🔹 Tools                                                        |                     |
|                                                                             | _         |                           |                                                                         | Name                                                                                                                        | Date mod                                                                                                                                        | dified T                                                                                                                                      | pe                                                                                                                                                         | Size                                                                                                 |                                                                    |                     |
|                                                                             |           |                           | My Recent                                                               |                                                                                                                             | PRUNED_MA                                                                                                                                       |                                                                                                                                               | 3                                                                                                                                                          | BAOH.sum_P                                                                                           | RUNED_MATRIX                                                       | ( –                 |
|                                                                             | _         |                           | Documents                                                               | BACH3                                                                                                                       | sum_PRUNED<br>m_PRUNED_N                                                                                                                        | MATRIX                                                                                                                                        | Type:                                                                                                                                                      | Microsoft Of                                                                                         | fice Excel Comn                                                    | na Separated Values |
|                                                                             | _         |                           |                                                                         | BACI.SC                                                                                                                     | um_PRUNED_                                                                                                                                      | MATRIX                                                                                                                                        | Size: 2                                                                                                                                                    | .71 KB                                                                                               | 5-06-30 3:59 PM                                                    |                     |
|                                                                             | _         |                           | Desktop                                                                 | BACOC                                                                                                                       | H3.sum PRUM                                                                                                                                     | ED MATRIX                                                                                                                                     | Dates                                                                                                                                                      | noumed, zon                                                                                          | 3-00-30 3.33 PW                                                    |                     |
|                                                                             |           |                           |                                                                         | BACOH                                                                                                                       | sum_PRUNED                                                                                                                                      | D_MATRIX                                                                                                                                      |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|                                                                             |           |                           | EL.                                                                     | BANCH                                                                                                                       | n_PRUNED_M<br>3CH3.sum_PF                                                                                                                       | UNED_MAT                                                                                                                                      | RIX                                                                                                                                                        |                                                                                                      |                                                                    |                     |
|                                                                             |           |                           | My Documents                                                            | BANH2                                                                                                                       | sum_PRUNED<br>H3.sum_PRUI                                                                                                                       | MATRIX                                                                                                                                        |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|                                                                             |           | _                         | -                                                                       | BANHO                                                                                                                       | OCH3.sum P                                                                                                                                      | RUNED MAT                                                                                                                                     | RIX                                                                                                                                                        |                                                                                                      |                                                                    |                     |
|                                                                             |           |                           |                                                                         | BANO2                                                                                                                       | sum_PRUNED<br>3.sum_PRUNE                                                                                                                       | _MATRIX                                                                                                                                       |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|                                                                             |           |                           | My Computer                                                             | BAUCH                                                                                                                       | S.Sum_PRONE                                                                                                                                     | DIMATRIA                                                                                                                                      |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|                                                                             |           |                           |                                                                         | File name:                                                                                                                  |                                                                                                                                                 |                                                                                                                                               |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|                                                                             |           |                           | My Network                                                              |                                                                                                                             |                                                                                                                                                 |                                                                                                                                               |                                                                                                                                                            | ✓ New So                                                                                             | ource                                                              | Open                |
|                                                                             |           |                           | Places                                                                  | Plies of type                                                                                                               | All Data Sou                                                                                                                                    | rces                                                                                                                                          |                                                                                                                                                            | <b>*</b>                                                                                             |                                                                    | Cancel              |
|                                                                             |           |                           |                                                                         |                                                                                                                             |                                                                                                                                                 |                                                                                                                                               |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
|                                                                             |           |                           | -                                                                       |                                                                                                                             |                                                                                                                                                 |                                                                                                                                               |                                                                                                                                                            |                                                                                                      |                                                                    |                     |
| i 🧉 🖬 🕒 🥥 i 🛥 🕰 i 🖉 🛍 i                                                     |           |                           |                                                                         |                                                                                                                             | crosoft Exc                                                                                                                                     |                                                                                                                                               | 3.sum_PRU                                                                                                                                                  | INED_MAT                                                                                             |                                                                    | B Z 1               |
| ) 🗃 🖬 🕒 🥥 I 🗃 🕰 I 🖉 🛍 I                                                     |           |                           |                                                                         |                                                                                                                             |                                                                                                                                                 |                                                                                                                                               |                                                                                                                                                            | INED_MAT                                                                                             |                                                                    | BZ I                |
| D8 → A                                                                      | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | -  <b>9</b> ,Σ.                                                         | 21 X1   W                                                                                                                   |                                                                                                                                                 | • 0 =                                                                                                                                         | Arial                                                                                                                                                      | INED_MAT                                                                                             | <u>•</u> 10 •                                                      |                     |
| D8 → A                                                                      | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | -  <b>9</b> ,Σ.                                                         | 21 X1   W                                                                                                                   | 100%                                                                                                                                            | <b>- 0</b> 5                                                                                                                                  | Arial                                                                                                                                                      | L                                                                                                    | • 10 •                                                             | N                   |
| D8 → A                                                                      | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | -  <b>9</b> ,Σ.                                                         | 21 X1   W                                                                                                                   | 100%                                                                                                                                            | <b>- 0</b> 5                                                                                                                                  | Arial                                                                                                                                                      | L                                                                                                    | <u>•</u> 10 •                                                      | N                   |
| D8 → A                                                                      | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | - 🧐 Σ -<br>G                                                            | 2↓ X↓   Ш                                                                                                                   | 100%                                                                                                                                            | J<br>nport Wiz                                                                                                                                | Arial<br>K<br>ard - Step                                                                                                                                   | L                                                                                                    | • 10 •                                                             | N                   |
|                                                                             | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | G<br>G<br>The Te:                                                       | 2↓ X↓ ↓                                                                                                                     | I 100%                                                                                                                                          | J<br>J<br>mport Wiz                                                                                                                           | Arial<br>K<br>ard - Step                                                                                                                                   | L<br>1 of 3                                                                                          | • 10 •                                                             | N                   |
|                                                                             | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | - 🤶 Σ -                                                                 | 2↓ X↓ ↓                                                                                                                     | I 100%                                                                                                                                          | J<br>J<br>nport Wiz<br>sose the data                                                                                                          | Arial<br>K<br>ard - Step<br>Fixed Width.<br>type that best                                                                                                 | L<br>1 of 3                                                                                          | • 10 •                                                             | N                   |
|                                                                             | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | - S Σ •                                                                 | 2↓ 2↓ ↓ ↓                                                                                                                   | I 100%                                                                                                                                          | J<br>J<br>mport Wiz<br>your data is<br>ose the data<br>tibes your dat                                                                         | Arial<br>K<br>ard - Step<br>Fixed Width.<br>type that best<br>a:<br>is or tabs sepa                                                                        | L<br>1 of 3<br>describes you                                                                         | • 10 •  <br>M<br>?<br>m data.                                      | N                   |
|                                                                             | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | - S Σ •                                                                 | 2↓ X↓ ↓                                                                                                                     | I 100%                                                                                                                                          | J<br>J<br>mport Wiz<br>your data is<br>ose the data<br>tibes your dat                                                                         | Arial<br>K<br>ard - Step<br>Fixed Width.<br>type that best<br>a:<br>is or tabs sepa                                                                        | L<br>1 of 3<br>describes you                                                                         | • 10 •  <br>M<br>?<br>m data.                                      | N                   |
|                                                                             | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | - S Σ •                                                                 | 2↓ 2↓ ↓ ↓                                                                                                                   | I 100%                                                                                                                                          | J<br>J<br>mport Wiz<br>your data is<br>ose the data<br>tibes your dat                                                                         | Arial<br>K<br>Arial - Step<br>Fixed Width.<br>type that best<br>a:<br>as or tabs sepa<br>ns with spaces                                                    | L<br>1 of 3<br>describes you                                                                         | • 10 •  <br>M<br>?<br>m data.                                      | N                   |
|                                                                             | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | - 😥 Σ •                                                                 | H<br>H<br>t Wizard has a<br>c correct, doo<br>al data type<br>e the file type<br>geimited<br>Fixed width<br>Start import al | I Text In the termined that best desci<br>- Characters s<br>- Fields are all<br>gow: 1                                                          | J<br>J<br>nport Wiz<br>your data is<br>sose the data<br>sibes your dat<br>with as commi<br>gned in colum                                      | Arial K ard - Step Fixed Width. Type that best a: ss or tabs separes with spaces le grigin:                                                                | L<br>1 of 3<br>describes you<br>rate each field<br>between each<br>S-DOS (PC-8)                      | • 10 •  <br>M<br>?<br>• data.                                      | N                   |
| Ele Edit View Insert Format<br>D8 ▼ A<br>A B C D                            | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | - 😥 Σ •                                                                 | H<br>H<br>t Wizard has a<br>c correct, doo<br>al data type<br>e the file type<br>geimited<br>Fixed width<br>Start import al | I 100%                                                                                                                                          | J<br>J<br>nport Wiz<br>your data is<br>sose the data<br>sibes your dat<br>with as commi<br>gned in colum                                      | Arial K ard - Step Fixed Width. Type that best a: ss or tabs separes with spaces le grigin:                                                                | L<br>1 of 3<br>describes you<br>rate each field<br>between each<br>S-DOS (PC-8)                      | • 10 •  <br>M<br>?<br>• data.                                      | N                   |
|                                                                             | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | - ⊗ Σ +<br>G<br>The Ter<br>If this is<br>Origin<br>Choos<br>●<br>Previe | H<br>H<br>t Wizard has a<br>c correct, doo<br>al data type<br>e the file type<br>geimited<br>Fixed width<br>Start import al | I Text In the termined that best desci<br>- Characters s<br>- Fields are all<br>gow: 1                                                          | J<br>J<br>nport Wiz<br>your data is<br>sose the data<br>sibes your dat<br>with as commi<br>gned in colum                                      | Arial K ard - Step Fixed Width. Type that best a: ss or tabs separes with spaces le grigin:                                                                | L<br>1 of 3<br>describes you<br>rate each field<br>between each<br>S-DOS (PC-8)                      | ■ 10 ■<br>M<br>M<br>r data. i. field. ATRIX.csv. BA.sum Li         | N<br>V              |
| Ele Edit View Insert Figmat<br>Di I 2 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | - ⊗ Σ +<br>G<br>The Ter<br>If this is<br>Origin<br>Choos<br>●<br>Previe | H<br>H<br>t Wizard has a<br>c correct, doo<br>al data type<br>e the file type<br>geimited<br>Fixed width<br>Start import al | I Text In the termined that best desci<br>- Characters s<br>- Fields are all<br>gow: 1                                                          | J<br>J<br>nport Wiz<br>your data is<br>sose the data<br>sibes your dat<br>with as commi<br>gned in colum                                      | Arial K ard - Step Fixed Width. Type that best a: ss or tabs separes with spaces le grigin:                                                                | L<br>1 of 3<br>describes you<br>rate each field<br>between each<br>S-DOS (PC-8)                      | r data.                                                            | N<br>V              |
|                                                                             | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | - ⊗ Σ +<br>G<br>The Ter<br>If this is<br>Origin<br>Choos<br>●<br>Previe | H<br>H<br>t Wizard has a<br>c correct, doo<br>al data type<br>e the file type<br>geimited<br>Fixed width<br>Start import al | I Text In the termined that best desci<br>- Characters s<br>- Fields are all<br>gow: 1                                                          | J<br>J<br>nport Wiz<br>your data is<br>sose the data<br>sibes your dat<br>with as commi<br>gned in colum                                      | Arial K ard - Step Fixed Width. Type that best a: ss or tabs separes with spaces le grigin:                                                                | L<br>1 of 3<br>describes you<br>rate each field<br>between each<br>S-DOS (PC-8)                      | ■ 10 ■<br>M<br>M<br>r data. i. field. ATRIX.csv. BA.sum Li         | ×                   |
|                                                                             | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | - ⊗ Σ •                                                                 | H<br>H<br>t Wizard has a<br>c correct, doo<br>al data type<br>e the file type<br>geimited<br>Fixed width<br>Start import al | I Text In<br>Text In<br>tetermined that<br>te Next, or cho<br>that best desc<br>- Characters s<br>- Fields are all<br>gow: 1<br>ars/Wike Slacke | J<br>nport Wiz<br>sour data is<br>socie the data<br>ibes your data<br>uch as commi<br>gried in colum<br>gried in colum<br>Fil<br>nerny Deskto | Arial     K     Arial     K     Grid - Step     Fixed Width.     type that best     a:     is so ratios separate     se grigin:     M     p     BA'\BA.sua | L<br>1 of 3<br>describes you<br>rate each field<br>between each<br>S-DOS (PC-8)<br>m_PRUNED_M        | x 10 x<br>M<br>7<br>r data.<br>i.<br>field.                        | N<br>V              |
|                                                                             | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | - ⊗ Σ +<br>G<br>The Ter<br>If this is<br>Origin<br>Choos<br>●<br>Previe | H<br>H<br>t Wizard has a<br>c correct, doo<br>al data type<br>e the file type<br>geimited<br>Fixed width<br>Start import al | I Text In<br>Text In<br>tetermined that<br>te Next, or cho<br>that best desc<br>- Characters s<br>- Fields are all<br>gow: 1<br>ars/Wike Slacke | J<br>J<br>mport Wiz<br>your data is<br>ose the data<br>tibes your data<br>uch as commi<br>gned in colum<br>fei<br>Finerny 'Deskto             | Arial K K Arial K K K K K K K K K K K K K K K K K K K                                                                                                      | L<br>1 of 3<br>describes you<br>irate each field<br>between each<br>s-DOS (PC-8)<br>m_PRUNED_M<br>04 | v 10 • M<br>M<br>r data.<br>4.<br>field.<br>Note the DI<br>C5<br>> | N<br>×              |
|                                                                             | X 🗈 🕰 ·   | ଏ । ଏ • (ବ                | - ⊗ Σ •                                                                 | H<br>H<br>t Wizard has a<br>c correct, doo<br>al data type<br>e the file type<br>geimited<br>Fixed width<br>Start import al | I Text In<br>Text In<br>tetermined that<br>te Next, or cho<br>that best desc<br>- Characters s<br>- Fields are all<br>gow: 1<br>ars/Wike Slacke | J<br>nport Wiz<br>sour data is<br>socie the data<br>ibes your data<br>uch as commi<br>gried in colum<br>gried in colum<br>Fil<br>nerny Deskto | Arial K K Arial K K K K K K K K K K K K K K K K K K K                                                                                                      | L<br>1 of 3<br>describes you<br>irate each field<br>between each<br>s-DOS (PC-8)<br>m_PRUNED_M<br>04 | v 10 • M<br>M<br>r data.<br>4.<br>field.<br>Note the DI<br>C5<br>> | N<br>×              |

Select "Finish": Finally select "OK": These steps will produce the same matrices in *Excel* format: Including the pruned matrix as well:

Elementary single group pruning is decided in the following steps (not much flex-



ibility in this version of the programme): Below is a ball-and-stick labelled diagram of benzoic acid (BA) (15 atoms) which is the smallest molecule in the substituted

|                                                                                                                                                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         | Micros                                                                                                                                                                      | oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Book1                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eile                                                                                                                                                                                                                        | <u>E</u> dit <u>V</u> iev                                                                                            | v Insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F <u>o</u> rmat <u>T</u> o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ols <u>D</u> ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Window H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| ) 💕                                                                                                                                                                                                                         | 🖬 🖪 🔒                                                                                                                | 1 🖪 🖪 🕻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 📖   🐰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | la 🛍 • 🥩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 - 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   🧶 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - ŽI ŽI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                      | 0% - (                                                                                                                                                                      | 🕜 🥃 🕻 Aria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 10 -                                                                                                                                                                                                                                                                                                                                                | BI                                                                                                                                               | <u>u</u>   ≣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ≣ ≣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · \$ %                                                                                                                                                                |
| A1                                                                                                                                                                                                                          | -                                                                                                                    | f.x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| A                                                                                                                                                                                                                           | В                                                                                                                    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                         | 1                                                                                                                                                                           | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K                                                                                                                                                                                                                                                                                                                  | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M                                                                                                                                                                                                                                                                                                                                                     | N                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P                                                                                                                                                                     |
|                                                                                                                                                                                                                             |                                                                                                                      | LIDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| 2                                                                                                                                                                                                                           | Note                                                                                                                 | the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | divided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                         | 2                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |
| 8                                                                                                                                                                                                                           | H1                                                                                                                   | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C8                                                                                                                                                                      | C9                                                                                                                                                                          | C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H1                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H12                                                                                                                                                                                                                                                                                                                                                   | H13                                                                                                                                              | H14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H15                                                                                                                                                                   |
| 5                                                                                                                                                                                                                           | п                                                                                                                    | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Co                                                                                                                                                                      | C9                                                                                                                                                                          | CIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       | піз                                                                                                                                              | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |
| H1                                                                                                                                                                                                                          | 0.07/3087                                                                                                            | 0 3179416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.006000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.010116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.004406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 0.000613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36 0 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04 0.000                                                                                                                                                                | 0628 0.00                                                                                                                                                                   | 01619 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 006527 0                                                                                                                                                                                                                                                                                                           | 0004374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00000                                                                                                                                                                                                                                                                                                                                               | 9 0.00                                                                                                                                           | 0042 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000056                                                                                                                                                             |
| 02                                                                                                                                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.148785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| C3                                                                                                                                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.651931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             | 04766 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| 04                                                                                                                                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.211450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         | 9294 0.00                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0004281                                                                                                                                                             |
| 0 C5                                                                                                                                                                                                                        | 0.0044065                                                                                                            | 0.0427766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.485208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.053358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.912635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 0.670144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 0.0356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72 0.047                                                                                                                                                                | 0488 0.03                                                                                                                                                                   | 58067 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 672723 0.                                                                                                                                                                                                                                                                                                          | 0213639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.004923                                                                                                                                                                                                                                                                                                                                              | 3 0.021                                                                                                                                          | 11531 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 049567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0024531                                                                                                                                                             |
| 1 C6                                                                                                                                                                                                                        |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.026044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.670144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         | 0649 0.04                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 033441 0.                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  | 45055 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 025321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0048825                                                                                                                                                             |
| 2 C7                                                                                                                                                                                                                        |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 048771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0240403                                                                                                                                                             |
| 3 C8                                                                                                                                                                                                                        |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0069294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4804069                                                                                                                                                             |
| L C9                                                                                                                                                                                                                        |                                                                                                                      | 0.0016532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 0.002059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0239214                                                                                                                                                             |
|                                                                                                                                                                                                                             | 0.0006527                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.667272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             | 11149 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
|                                                                                                                                                                                                                             | 0.0004374                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| H12                                                                                                                                                                                                                         |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0029736                                                                                                                                                             |
| H13                                                                                                                                                                                                                         |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.015599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0008252                                                                                                                                                             |
| H14                                                                                                                                                                                                                         | 0.0000528                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             | 04511 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
|                                                                                                                                                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
|                                                                                                                                                                                                                             | 0.0000056                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25 0.02404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03 0.480                                                                                                                                                                |                                                                                                                                                                             | oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                    | 0008126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.002973                                                                                                                                                                                                                                                                                                                                              | 6 0.000                                                                                                                                          | 08252 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1029547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4238566                                                                                                                                                             |
| 1<br>Eile                                                                                                                                                                                                                   | <u>E</u> dit ⊻iev                                                                                                    | v insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F <u>o</u> rmat <u>T</u> o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ols <u>D</u> ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>M</u> indow <u>H</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lelp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         | Micros                                                                                                                                                                      | oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Book1                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| Eile                                                                                                                                                                                                                        | Edit View                                                                                                            | v insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F <u>o</u> rmat <u>T</u> o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>M</u> indow <u>H</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lelp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         | Micros                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Book1                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4238566<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]                                                                   |
| 1<br>File                                                                                                                                                                                                                   | Edit Viev                                                                                                            | v insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Format Io<br>9 🕰 🐰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ols Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>M</u> indow <u>H</u><br>∣⊔2) → C¤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lelp<br>•   🧶 Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 2↓ 2↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LLL 🖓 10                                                                                                                                                                | Micros                                                                                                                                                                      | oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Book1                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       | BI                                                                                                                                               | <u>u</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 室   <b>\$</b> %                                                                                                                                                       |
| Eile                                                                                                                                                                                                                        | Edit Viev                                                                                                            | v [nsert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Format Io<br>9 🏭 🔏                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ols <u>D</u> ata<br>a 🏝 🕶 🖋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mindow ∐<br> ⊻) - (≃<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | elp<br>+   👷 Σ<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + Ž↓ Ž↓↓<br>G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                         | Micros                                                                                                                                                                      | oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Book1                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>a</u> \$ %                                                                                                                                                         |
| È Eile<br>) 😅                                                                                                                                                                                                               | Edit Viev                                                                                                            | ý insert<br>Sa a a<br>fr<br>B.sum LIDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Format Io<br>9 🖏 X<br>C<br>value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ols Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mindow ∐<br> ≤?) → ભ<br>E  <br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | elp<br>- I 👷 Σ<br>F<br>Mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • Ž↓ Ž↓ I<br>G<br>trix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>い</u> 砂 10<br>H                                                                                                                                                      | Microso<br>0% • (                                                                                                                                                           | oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Book1                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       | BI                                                                                                                                               | <u>u</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 室   <b>\$</b> %                                                                                                                                                       |
| i File                                                                                                                                                                                                                      | Edit Viev                                                                                                            | v [nsert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Format Io<br>9 🏭 🔏                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ols <u>D</u> ata<br>a 🏝 🕶 🖋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mindow ∐<br> ≤?) → ભ<br>E  <br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | elp<br>+   👷 Σ<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • Ž↓ Ž↓ I<br>G<br>trix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>い</u> 砂 10<br>H                                                                                                                                                      | Micros                                                                                                                                                                      | oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Book1                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       | BI                                                                                                                                               | <u>u</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 室   <b>\$</b> %                                                                                                                                                       |
| Eile                                                                                                                                                                                                                        | Edit Viev                                                                                                            | free to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Format Io<br>Format Io<br>C<br>Value<br>DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ols Data<br>D Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mindow ∐<br>  ⊮? → (*<br>E<br>a<br>s are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lelp<br>- S<br>F<br>Mat<br>divie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • Ž↓ Ž↓  <br>G<br>trix<br>ded by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>山</u> 砂 10<br>H                                                                                                                                                      | Microso<br>0% • (<br>1<br>2                                                                                                                                                 | oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Book1                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • 10 •                                                                                                                                                                                                                                                                                                                                                | <b>B</b> <i>I</i><br>M                                                                                                                           | <u>₩</u>   <b>≣</b><br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ₩ ₩<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 函   \$ %                                                                                                                                                              |
| ) <u>File</u><br>) 22<br>A1                                                                                                                                                                                                 | Edit Viev                                                                                                            | ý insert<br>Sa a a<br>fr<br>B.sum LIDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Format Io<br>9 🖏 X<br>C<br>value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ols Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mindow ∐<br> ≤?) → ભ<br>E  <br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | elp<br>- I 👷 Σ<br>F<br>Mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • Ž↓ Ž↓ I<br>G<br>trix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>山</u> 砂 10<br>H                                                                                                                                                      | Microso<br>0% • (                                                                                                                                                           | oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Book1                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       | <b>B</b> <i>I</i><br>M                                                                                                                           | <u>u</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 室 <b>\$</b> %                                                                                                                                                         |
| Eile                                                                                                                                                                                                                        | Edit View                                                                                                            | y insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Format Io<br>9 😩   🔏<br>Value<br>DI<br>C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dis Data<br>D value<br>O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mindow H<br>  9 - 04<br>E<br>  a<br>es are<br>C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | elp<br>F<br>Mat<br>divis<br>C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | → Â↓ Ã↓           G         G         trix         ded by         C:         C:         C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>)</u> 砂 10<br>日                                                                                                                                                      | Microso<br>0% • 0<br>1<br>2<br>C8                                                                                                                                           | oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Book1<br>K<br>C10                                                                                                                                                                                                                                                                                                  | - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • 10 •<br>H12                                                                                                                                                                                                                                                                                                                                         | <b>в</b> <i>I</i><br>М                                                                                                                           | <u>ॻ</u> ) <b>≡</b><br>N<br>H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₩ 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S %                                                                                                                                                                   |
| <ul> <li>File</li> <li>A1</li> <li>A1</li> <li>H1</li> </ul>                                                                                                                                                                | Edit View<br>BacH3<br>Note<br>H1                                                                                     | v [nsert<br>3.sum LIDI<br>the<br>O2<br>46464 0.3*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Format Io<br>9 🕰 🕺<br>C<br>Value<br>DI<br>C3<br>85401 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Des Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>Window</u><br><b>E</b><br>a<br>s<br>are<br>C5<br>010276 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | elp<br>F<br>Mat<br>divia<br>C6<br>043897 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H<br>H<br>0000396                                                                                                                                                       | Micross<br>0% 2 0<br>1<br>2<br>C8<br>0.0000602                                                                                                                              | oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Book1<br>K<br>C10<br>3 0.00065                                                                                                                                                                                                                                                                                     | H11<br>551 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • 10 •<br>H12                                                                                                                                                                                                                                                                                                                                         | <b>B</b> <i>I</i><br>M                                                                                                                           | <u><u>u</u>   ≡<br/>N<br/>H13<br/>0.00004'</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ₩ 15 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E \$ %                                                                                                                                                                |
| <ul> <li>File</li> <li>A1</li> <li>A1</li> <li>H1</li> <li>O2</li> </ul>                                                                                                                                                    | Edit View<br>BacH3<br>Note<br>H1<br>0.07                                                                             | v Insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Format Io<br>F (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dis Data<br>Dis in<br>value<br>04<br>060389 0.14<br>050389 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>Mindow</u> <u>H</u><br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | elp<br>- 🧶 Σ<br>- Μar<br>divic<br>043897<br>0.0096<br>0.0096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>→ Â↓ Ã↓  </li> <li>G</li> <li>trix</li> <li>ded by</li> <li>C:</li> <li>0006104 0</li> <li>0188621 0</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>H<br>0000396<br>0016602                                                                                                                                            | Micross<br>0%<br>1<br>2<br>C8<br>0.0000602<br>0.0024107                                                                                                                     | Oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Book1                                                                                                                                                                                                                                                                                                              | H11<br>1551 0.000<br>135 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • 10 •<br>H12<br>H332 0.0<br>;2818 0.                                                                                                                                                                                                                                                                                                                 | B Z<br>M<br>000084<br>000066                                                                                                                     | <u><u>u</u> )≡<br/>N<br/>H13<br/>0.00004<br/>0.000831</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H14<br>5 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E \$ %                                                                                                                                                                |
| Eile<br>A1<br>A1<br>H1<br>O2<br>C3                                                                                                                                                                                          | Edit View<br>BACH3<br>BACH3<br>Note<br>H1<br>0.07/<br>0.311<br>0.00/                                                 | v Insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Format Io<br>F 12, 8<br>C<br>C<br>C3<br>85401 0.01<br>772663 0.4<br>50389 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dis Data<br>Dis Cine -<br>Dis in<br>value<br>O4<br>00389 0.1<br>550389 0.1<br>550389 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mindow H<br>E<br>a<br>cs<br>are<br>C5<br>110276 0.0<br>81794 0.0<br>81794 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | elp<br>F Μat<br>C6<br>043897 0.0<br>883591 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H<br>0000396<br>0016602<br>0047864                                                                                                                                      | Microso<br>0% • 0<br>1<br>2<br>C8<br>0.0000602<br>0.0024107<br>0.0054706                                                                                                    | Oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Book1                                                                                                                                                                                                                                                                                                              | H11<br>551 0.000<br>355 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • 10 •<br>H12<br>H332 0.0<br>j2818 0.<br>j2571 0.0                                                                                                                                                                                                                                                                                                    | B Z<br>M<br>000084<br>000066<br>007117                                                                                                           | <u> <u> u</u> <u> </u> <u> </u> <u> N</u><br/>H13<br/>0.00004<sup>4</sup><br/>0.00833<br/>0.003141</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H14<br>H14<br>5 0.000<br>8 0.000<br>2 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHHI<br>00519 0.00<br>3001 0.00<br>7147 0.00                                                                                                                          |
| Eile<br>A1<br>A1<br>H1<br>O2<br>C3<br>O4                                                                                                                                                                                    | Edit View<br>BACH3<br>Note<br>H1<br>0.07.<br>0.31<br>0.00<br>0.00                                                    | v Insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Format Io<br>9 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dis Data<br>Dis in<br>value<br>04<br>060389 0.14<br>050389 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mindow H<br>a<br>a<br>s<br>are<br>C5<br>010276 0.0<br>181794 0.0<br>00641 0.4<br>49881 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μelp           F         Μα           divid         0.0           430096         0.0           883591         0.0           55589         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H 10<br>0000396<br>0016602<br>0047864<br>0028492                                                                                                                        | Microse<br>0%  2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                      | oft Excel -<br>J<br>J<br>C9<br>0.0001611<br>0.001762<br>0.004958<br>0.004958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Book1<br>K<br>C10<br>3 0.00065<br>4 0.00739<br>9 0.02804<br>4 0.02336                                                                                                                                                                                                                                              | H11<br>551 0.000<br>553 0.015<br>53 0.00<br>42 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | + 10 +<br>H12<br>H332 0.0<br>i2818 0.<br>i2571 0.0<br>0359 0.0                                                                                                                                                                                                                                                                                        | B /<br>M<br>000084<br>000066<br>007117<br>004078                                                                                                 | <u> u </u> <u> u </u> <u> N </u> H13 0.00004 <sup>4</sup> 0.00834 0.003144 0.01536 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H14<br>H14<br>5 0.000<br>2 0.000<br>4 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E \$ %                                                                                                                                                                |
| Eile<br>File<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1                                                                                                                                                    | Edit View<br>BACH3<br>Note<br>H1<br>0.07<br>0.31<br>0.00<br>0.00                                                     | v Insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Format Io<br>F (1)<br>F (1) | Dis <u>D</u> ata<br>→ → → → → → → → → → → → → → → → → → →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Window         H           Image: Solution of the second | elp<br>F Mat<br>divis<br>C6<br>043897 0.0<br>430096 0.0<br>883591 0.0<br>535899 0.0<br>535899 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H<br>0000396<br>0016602<br>0047864<br>0028492<br>0354133                                                                                                                | Microse<br>0% • (<br>1<br>2<br>C8<br>0.0000602<br>0.0024107<br>0.0054706<br>0.006727<br>0.006727                                                                            | Oft Excel -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Book1<br>K<br>C10<br>3 0.00065<br>4 0.00733<br>9 0.02804<br>4 0.02336<br>4 0.66170                                                                                                                                                                                                                                 | H11<br>151 0.000<br>153 0.015<br>153 0.002<br>155 0.021<br>155 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H12<br>H12<br>H332 0.0<br>2818 0.<br>2571 0.0<br>0359 0.0<br>3721 0.0                                                                                                                                                                                                                                                                                 | B /<br>M<br>000084<br>000066<br>007117<br>004078<br>048772                                                                                       | <u> <u> u </u> <u> u </u> <u> N </u> H13 0.00004<sup>2</sup> 0.0003141 0.01536<sup>2</sup> 0.02099</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H14<br>H14<br>5 0.000<br>2 0.000<br>2 0.000<br>1 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHHI<br>00519 0.00<br>33001 0.0<br>7147 0.00<br>0072 0.00<br>9487 0.00                                                                                                |
| Eile<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1                                                                                                                                                            | Edit View<br>BACH3<br>Note<br>H1<br>0.07<br>0.31<br>0.00<br>0.00<br>0.00                                             | v Insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Format Io<br>P (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dis Data<br>→ → → → → → → → → → → → → → → → → → →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mindow H<br>a<br>a<br>s are<br>C5<br>10276 0.0<br>181794 0.0<br>108641 0.4<br>135899 3.9<br>1568915 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F         Μα           Μα         divi           C6         0.0           430096         0.0           535899         0.129268           129268         0.6           714137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H<br>0000396<br>0016602<br>0047864<br>0028492<br>00364133<br>6980409                                                                                                    | Microse<br>0%<br>1<br>2<br>C8<br>0.0000602<br>0.0024107<br>0.0054706<br>0.0054706<br>0.0054706<br>0.0054706                                                                 | oft Excel -<br>J<br>C9<br>0.000161:<br>0.001762:<br>0.00458:<br>0.035459:<br>0.047702:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Book1<br>K<br>C10<br>C10<br>3 0.0065<br>4 0.00739<br>9 0.02804<br>4 0.66170<br>9 0.0336                                                                                                                                                                                                                            | H11<br>H11<br>H11<br>H11<br>H11<br>H11<br>H11<br>H11<br>H11<br>H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 10 -<br>H12<br>H332 0.0<br>2818 0.<br>2571 0.0<br>0359 0.0<br>3721 0.0<br>00531 0.0                                                                                                                                                                                                                                                                 | B Z<br>M<br>000084<br>000066<br>007117<br>004078<br>048772<br>244604                                                                             | <u> <u> u </u> <u> </u> <u> N </u> H13<br/>0.00044<br/>0.0083<br/>0.003144<br/>0.0209<br/>0.020450<br/>0.020450<br/>0.020450<br/>0.020450<br/>0.020450<br/>0.020450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.00450<br/>0.004</u> | H14<br>H14<br>H14<br>H14<br>H14<br>H14<br>H14<br>H14<br>H14<br>H14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHHI<br>00519 0.00<br>13001 0.0<br>71147 0.00072 0.00                                                                                                                 |
| Eile<br>Eile<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1                                                                                                                                                    | Edit View<br>BACH3<br>BACH3<br>Note<br>H1<br>0.07<br>0.00<br>0.00<br>0.000<br>0.000<br>0.000                         | v insert<br>v inse | Format Io<br>Format Io<br>C<br>Value<br>DI<br>C3<br>85401 0.01<br>72663 0.4<br>50389 2.8<br>81794 0.6<br>30096 0.44<br>88621 0.0;<br>16602 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D D D<br>D D<br>D D<br>D 04<br>04<br>060389 0.1<br>550389 0.1<br>550 | Mindow H<br>a<br>a<br>s<br>are<br>C5<br>110276 0.0.0<br>181794 0.0<br>008641 0.4<br>198819 0.0<br>135899 3.9<br>156915 0.6<br>128492 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F         Μα           Μα         divi           C6         0.0           430096         0.0           535899         0.129268           129268         0.6           714137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 2↓ 2↓<br>G<br>trix<br>ded by<br>C<br>0006104 0<br>0188621 0<br>0166915 0<br>0156915 0<br>07714137 0<br>394812 0<br>394812 0<br>3980409 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H<br>0000396<br>0016602<br>0047864<br>0028492<br>0354133<br>6980409<br>9574222                                                                                          | Microse<br>0% 2 0<br>1<br>2<br>C8<br>0.0004100<br>0.0054706<br>0.0067727<br>0.044386<br>0.0356078<br>0.0356078                                                              | oft Excel -<br>J<br>C9<br>0.000161:<br>0.001762:<br>0.001762:<br>0.004762:<br>0.002015<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.035459:<br>0.0                                     | Book1<br>K<br>C10<br>C10<br>C10<br>0.02044<br>0.00055<br>4 0.00055<br>4 0.00055<br>4 0.06170<br>9 0.0236<br>1 0.0468                                                                                                                                                                                               | H11<br>51 0.000<br>155 0.016<br>153 0.021<br>155 0.021<br>155 0.021<br>156 0.221<br>157 0.022<br>157 0.0 | H12<br>H12<br>H332 0.0<br>(2818 0.)<br>(2818 0.)<br>(2571 0.0<br>(0359 0.0<br>(3721 0.0<br>(0531 0.0<br>(5597 0.4                                                                                                                                                                                                                                     | B /<br>M<br>000084<br>000066<br>007117<br>004078<br>048772<br>244604<br>775911                                                                   | <u>         U         U<br/>N<br/>H13<br/>0.00004<sup>4</sup><br/>0.00838<br/>0.003141<br/>0.01536<sup>6</sup><br/>0.02099<br/>0.00450<sup>1</sup><br/>0.02044<sup>4</sup><br/>0.00424<sup>4</sup><br/>0.00424<sup>4</sup><br/>0.00224<sup>4</sup><br/></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H14<br>H14<br>5 0.000<br>8 0.000<br>2 0.000<br>4 0.000<br>14 0.002<br>14 0.002<br>12 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHHI<br>00519 0.00<br>3001 0.0<br>7147 0.00<br>0072 0.00<br>9487 0.00<br>5252 0.00                                                                                    |
| Elle<br>Elle<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1                                                                                                                                                    | Edit View<br>BACH3<br>Note<br>H1<br>0.07<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                      | v insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C value<br>DI<br>C Value<br>DI<br>C3<br>85401 0.01<br>772663 0.41<br>50389 2.81<br>81794 0.64<br>88621 0.01<br>16602 0.01<br>16602 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D D D D D D D D D D D D D D D D D D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Alindow H<br>E a<br>ars are<br>C5<br>110276 0.0.<br>181794 0.0.<br>006641 0.4.<br>149881 0.0.<br>156915 0.6.<br>128492 0.0.<br>055995 0.6.<br>128492 0.0.<br>057727 0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F         Mat           Μai         divi           C6         0.0           430096         0.0           535899         0.0           129268         0.6           714137         0.4           0434360         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H<br>0000396<br>0016602<br>0047864<br>0028492<br>0354133<br>6980409<br>9574222                                                                                          | Micross<br>0%<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                              | Oft Excel -<br>J<br>C9<br>0.000161<br>0.001762<br>0.004958<br>0.035459<br>0.447702<br>0.035440<br>0.669342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Book1<br>K<br>C10<br>C10<br>C10<br>0.02044<br>0.00055<br>4 0.00055<br>4 0.00055<br>4 0.06170<br>9 0.0236<br>1 0.0468                                                                                                                                                                                               | H11<br>51 0.000<br>53 0.016<br>53 0.02<br>55 0.021<br>55 0.021<br>61 0.470<br>17 0.022<br>15 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 - H12<br>H12<br>H332 0.0<br>2818 0.<br>22571 0.0<br>0359 0.0<br>0359 0.0<br>0359 0.0<br>3721 0.0<br>00531 0.0<br>55097 0.4<br>H4462 0.0                                                                                                                                                                                                            | B Z<br>M<br>000084<br>000066<br>007117<br>004078<br>048772<br>244604<br>775911<br>233323                                                         | <u> <u> </u> <u> </u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H14<br>H14<br>H14<br>H15<br>0.000<br>H<br>10.004<br>H<br>0.002<br>H<br>0.002<br>H<br>0.002<br>H<br>0.002<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHHI<br>00519 0.00<br>13001 0.0<br>17147 0.00<br>19487 0.00<br>15252 0.00                                                                                             |
| File<br>File<br>A11<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1                                                                                                                                 | Edit View<br>BACH3<br>Note<br>H1<br>0.07<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                      | v [nsert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Format Io<br>9 11, 4<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dis Data<br>Dis Dis Control (Control (Contro) (Contro) (Contro) (Contro) (Contro) (Con                                                                                                                                                                                                                                                                                                                                                         | Mindow H<br>E<br>a<br>'s are<br>C5<br>10276 0.0<br>181794 0.0<br>00641 0.4<br>149861 0.0<br>356999 3.9<br>56915 0.6<br>128492 0.0<br>167727 0.<br>220154 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | elp         Σ           F         Mat           divis         C6           0.43897         0.430096           0.83591         0.535899           129268         0.6           714137         354133           354544         0.034589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H 10000396<br>000602<br>0047864<br>0028492<br>00364133<br>6980409<br>9574222<br>6790971<br>0354403                                                                      | Micross 0% 2 0% 2 0% 2 0% 2 0% 0.000402 0.0024107 0.0054706 0.0067727 0.044366 0.00667727 0.044366 0.0035076 3.8866266 0.0659342 0.6693425 0.6693425                        | Oft Excel -<br>J<br>C9<br>0.000161<br>0.001762<br>0.004958<br>0.035459<br>0.447702<br>0.035440<br>0.669342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Book1<br>K<br>C10<br>3 0.00065<br>4 0.00733<br>9 0.02804<br>4 0.66170<br>9 0.033<br>1 0.0468<br>5 0.03604<br>1 0.7089                                                                                                                                                                                              | H11<br>51 0.000<br>53 0.016<br>53 0.001<br>55 0.027<br>161 0.470<br>117 0.022<br>15 0.007<br>172 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + 10 +<br>H12<br>H332 0.0<br>2818 0.<br>2571 0.0<br>0359 0.0<br>3721 0.0<br>10531 0.0<br>5597 0.4<br>H462 0.0<br>3495 0.0                                                                                                                                                                                                                             | B Z<br>M<br>000084<br>000066<br>007117<br>004078<br>048772<br>244604<br>775911<br>233223<br>004785                                               | <u><u><u></u></u></u> <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H14<br>15 0.000<br>18 0.000<br>12 0.000<br>14 0.002<br>12 0.004<br>14 0.002<br>12 0.004<br>16 0.023<br>10 0.0478<br>10 0.04788<br>10 0.04788<br>10 0.04788<br>10 0.04788<br>10 0.04788<br>10 0.04788<br>10 0.047                                       | CHHI<br>0519 0.00<br>13001 0.0<br>17147 0.00<br>09487 0.00<br>5252 0.00<br>17626 0.04<br>0398 0.57                                                                    |
| File<br>File<br>A1<br>A1<br>A1<br>A1<br>A1<br>A2<br>A1<br>A1<br>A2<br>A1<br>A1<br>A2<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1                                                          | Edit View<br>BACH3<br>Note<br>H1<br>0.07<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                      | v Insert<br>* Inse | Format Io<br>7 22 X Value<br>DI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ols <b>Data</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mindow         H           Image: Constraint of the state of the | elp<br>F Marin<br>division<br>C66<br>043897 0.0<br>430096 0.0<br>129268 0.6<br>129268 0.6<br>129268 0.6<br>043369 0.0<br>129268 0.6<br>043369 0.0<br>129268 0.6<br>043369 0.0<br>129268 0.6<br>043369 0.0<br>043369 0.0<br>043369 0.0<br>043450 0.0<br>04350 0.0<br>04570 0.0<br>045700 0.0<br>045700 0.0<br>045700 0.0<br>045700 0.0<br>045700 0.0<br>0457000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000396<br>0016602<br>0047864<br>0028492<br>0354133<br>6980409<br>9574222<br>6790971<br>0354401<br>0354401                                                              | Micross<br>0% • 0<br>1<br>2<br>C8<br>0.0000602<br>0.0054706<br>0.0054706<br>0.006727<br>0.044386<br>0.006727<br>0.044386<br>0.0679071<br>3.886286<br>0.6693425<br>0.0360415 | Off Excel -<br>J<br>J<br>C9<br>0.000161:<br>0.002015:<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0055459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.0355459<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.035559<br>0.0000<br>0.05559<br>0.0000<br>0.05559<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                    | K           C10           3           0.00065           4           0.02804           4           0.02804           1           0.033           1           0.03604           2           2           2           2           3           0.0408                                                                   | H11<br>51 0.000<br>53 0.00<br>53 0.02<br>161 0.472<br>17 0.022<br>15 0.00<br>72 0.002<br>43 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 10 -<br>H12<br>H332 0.0<br>2818 0.<br>22571 0.0<br>0359 0.0<br>0531 0.0<br>0531 0.0<br>23495 0.<br>23495 0.                                                                                                                                                                                                                                         | B Z<br>M<br>000084<br>00066<br>007117<br>00478<br>048772<br>244604<br>775911<br>233323<br>004785<br>002549                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H14<br>5 0,000<br>63 0,000<br>2 0,000<br>4 0,002<br>1 0,004<br>4 0,002<br>2 0,004<br>6 0,475<br>6 0,475<br>2 0,024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHHI<br>00519 0.00<br>3001 0.0<br>9487 0.00<br>9487 0.00<br>95252 0.00<br>7526 0.04<br>0.038 0.57<br>526 0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04 |
| 1 File<br>File<br>A11<br>02<br>C3<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C5<br>C7<br>C6<br>C7<br>C7<br>C6<br>C7<br>C7<br>C6<br>C7<br>C7<br>C6<br>C7<br>C7<br>C7<br>C7<br>C7<br>C7<br>C7<br>C7<br>C7<br>C7 | Edit View<br>BACH<br>BACH<br>H1<br>0.07<br>0.00<br>0.00<br>0.00<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | v insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Format Io<br>Format Io<br>Formation<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bis Data<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Window         H           E         a           is         are           C5         010276           0.06641         0.4           438619         0.0           35699         3.9           956915         0.6           067727         0.           120154         0.6           130542         0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ε         χ           F         Mat           diviv         C6           043897         0.0           833591         0.0           535899         0.0           714137         364133           364134         0.6           0438591         0.6           714137         364133           324594         0.6           21721         0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 2↓ ↓ ↓<br>G<br>G<br>C<br>D006104 0<br>D0264695 0<br>D156915 0<br>3.94812 0<br>3.94812 0<br>3.94812 0<br>3.938078 0<br>3.94812 0<br>0.03361<br>T700531 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>0000396<br>0016602<br>0047864<br>0028492<br>0354133<br>6980409<br>9574222<br>0354401<br>0354401<br>0354401<br>0046817<br>0025097                                   | Micross 0%                                                                                                                                                                  | oft Excel -<br>J J C9 0.0001611 0.001762 0.004762 0.002015 0.0036459 0.047702 0.035440 0.669342 395957 0.708967 0.00226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Book1<br>K<br>C10<br>C10<br>C10<br>C10<br>C10<br>C10<br>0.02306<br>4 0.00735<br>0.02804<br>4 0.60170<br>9 0.0331<br>0.04685<br>5 0.03654<br>2 3.94647<br>5 0.00455                                                                                                                                                 | H111<br>51 0.000<br>53 0.012<br>53 0.021<br>55 0.021<br>161 0.477<br>161 0.477<br>161 0.022<br>135 0.002<br>143 0.004<br>199 0.334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 10 -<br>H12<br>H332 0.0<br>2818 0.<br>22571 0.0<br>0359 0.0<br>0531 0.0<br>0531 0.0<br>23495 0.<br>23495 0.                                                                                                                                                                                                                                         | B Z<br>M<br>000084<br>00066<br>007117<br>004078<br>048772<br>248604<br>775911<br>23323<br>004785<br>002549<br>030519                             | 里         N           H13         0.00043           0.01536         0.02093           0.00450         0.02093           0.00450         0.02257           0.468922         0.004682           0.000450         0.002567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H14<br>5 0.000<br>15 0.000<br>10 0.004<br>10 | CHHI<br>00519 0.00<br>3001 0.00<br>3001 0.00<br>37147 0.00<br>0072 0.00<br>9487 0.00<br>5252 0.00<br>7526 0.04<br>005525 0.00<br>7526 0.04<br>8632 0.00<br>1561 0.00  |
| File<br>File<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1                                                                                                                                  | Edit View<br>BACH:<br>BACH:<br>H1<br>0.07<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                     | v Insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C value<br>C C<br>C C3<br>85401 0.01<br>72663 0.41<br>50389 2.88<br>81794 0.63<br>30096 0.41<br>88621 0.02<br>16602 0.0<br>24107 0.01<br>773935 0.02<br>52818 0.1<br>00066 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dis         Data           D         in           is         in           Value         04           060389         0.1           560369         0.4           050389         0.1           560469         0.0           044959         0.0           044589         0.0           0454695         0.0           0454695         0.0           045459         0.0           045450         0.0           045459         0.0           0405271         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Window         H           a         a           a         a           a         a           b         a           c5         0.0           0.06641         0.4           198         0.0           036649         3.9           56915         0.6           20492         0.0           067727         0.0           033642         0.6           10359         0.0           04078         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ε         χ           F         Mat           diviv         C6           043897         0.0           833591         0.0           535899         0.0           714137         364133           364134         0.6           0438591         0.6           714137         364133           324594         0.6           21721         0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H<br>0000396<br>0016602<br>0047864<br>0028492<br>0354133<br>6980409<br>9574222<br>6790971<br>0354401<br>0.046817<br>0225097                                             | Microse                                                                                                                                                                     | C9<br>0.000161<br>0.001762<br>0.000161<br>0.001762<br>0.004958<br>0.02015<br>0.035440<br>0.035440<br>0.035440<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.035459<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.002155<br>0.00255<br>0.00 | K           3         0.00065           4         0.00733           9         0.0236           4         0.66170           9         0.0331           1         0.0468           5         0.03604           1         0.70856           2         3.94647           5         0.00459           5         0.00459 | H11<br>51 0 000<br>35 0.016<br>53 0.02<br>161 0.47<br>17 0.022<br>15 0.00<br>172 0.002<br>43 0.044<br>99 0.394<br>49 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>10</li> <li>H12</li> <li>H332</li> <li>0.0</li> <li>2818</li> <li>0.22571</li> <li>0.0</li> <li>0359</li> <li>0.3721</li> <li>0.0</li> <li>0530</li> <li>0.0</li> <li>5097</li> <li>0.4</li> <li>14462</li> <li>0.0</li> <li>13495</li> <li>0.0</li> <li>1599</li> <li>0.0</li> <li>0.439</li> <li>0.0</li> <li>0519</li> <li>0.4</li> </ul> | M<br>0000084<br>000060<br>007117<br>004078<br>004078<br>004785<br>002549<br>271421                                                               | <u>u</u> ■<br>N<br>H13<br>0 000041<br>0.00314<br>0.001536<br>0.02099<br>0.004500<br>0.02244<br>0.004500<br>0.02257<br>0.02527<br>0.004500<br>0.02257<br>0.00250<br>0.00251<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.0005<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056<br>0.00056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H14<br>H14<br>H14<br>H14<br>H15<br>H14<br>H14<br>H14<br>H14<br>H14<br>H14<br>H14<br>H14<br>H14<br>H14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHHI<br>00519 0.00<br>3001 0.00<br>3001 0.00<br>37147 0.00<br>0072 0.00<br>9487 0.00<br>5252 0.00<br>7526 0.04<br>005525 0.00<br>7526 0.04<br>8632 0.00<br>1561 0.00  |
| 1 File<br>A1<br>A1<br>H1<br>O2<br>C3                                                                                                                                                                                        | Edit View<br>BACH3<br>BACH3<br>Note<br>H1<br>0.07<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0             | <ul> <li>Insert</li> <li>Insert</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Format Io<br>F 12, X<br>C<br>Value<br>DI<br>C3<br>85401 0.01<br>72663 0.4<br>86721 0.0<br>16602 0.01<br>16602 0.01<br>16602 0.01<br>16602 0.01<br>17624 0.01<br>176335 0.05<br>52818 0.1<br>00066 0.01<br>00356 0.00<br>00358 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dis         Data           Image: Second S                                                                                                                                                                                                                                                                                                                                                                                                                     | Mindow         H           a         a           a         a           is         are           C5         0.0           0.181794         0.0           0.06641         0.4           136899         3.9           556915         0.6           0.224492         0.0           0.20154         0.0           120154         0.0           33642         0.6           10359         0.0           0.04076         0.0           53614         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elp         Σ           F         Mat           divi         divi           430096         0.0           536399         0.1           129268         0.6           714137         354133           354534         0.6           617055         213721           0.404370         2.0           020951         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 2↓ 2↓<br>G<br>trix<br>ded by<br>C<br>0006104 0<br>0188621 0<br>0156915 0<br>0156915 0<br>0156915 0<br>03.94812 0<br>0380409 3<br>0380409 3<br>0380409 3<br>03394078 0<br>033941<br>03394078 0<br>033941<br>0339404 0<br>02244604 0<br>02244604 0<br>0244604 0<br>00361 0<br>00360 0<br>00361 0<br>00360 0<br>0000 0<br>00000 0<br>0000 0<br>00000000 | H<br>0000396<br>0016602<br>0047864<br>0028492<br>0354133<br>6980409<br>9574222<br>6790971<br>0354401<br>0354401<br>0354401<br>0.046817<br>0225097<br>4775911<br>0022442 | Microse                                                                                                                                                                     | oft Excel<br>J<br>C9<br>0.000161:<br>0.001762<br>0.0045459<br>0.02015<br>0.035440<br>0.035440<br>0.669342<br>3.95957<br>0.708967<br>0.708967<br>0.00249<br>0.00249<br>0.00278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Book1<br>K<br>C10<br>3 0.00065<br>4 0.00739<br>9 0.02804<br>4 0.60170<br>9 0.02804<br>1 0.04585<br>5 0.03604<br>1 0.04585<br>5 0.0025<br>6 0.46829                                                                                                                                                                 | H111<br>551 0.000<br>553 0.016<br>553 0.021<br>553 0.022<br>155 0.022<br>155 0.022<br>156 0.022<br>156 0.022<br>157 0.002<br>143 0.004<br>143 0.004<br>143 0.004<br>149 0.003<br>149 0.003<br>140 0 | - 10 -<br>H12<br>H4332 0.0<br>22818 0.0<br>22571 0.0<br>0359 0.0<br>33495 0.<br>33495 0.<br>33495 0.<br>0439 0.0<br>0439 0.0                                                                                                                                                                                                                          | 000084<br>000066<br>007117<br>244604<br>775911<br>23323<br>244604<br>775911<br>23323<br>244604<br>271421<br>004785<br>002549<br>930519<br>271421 | <u>         U</u>   ■<br>N<br>H13<br>0.00004<br>0.00334<br>0.00334<br>0.00299<br>0.00257<br>0.002257<br>0.00225<br>0.00252<br>0.0096<br>0.02257<br>0.00257<br>0.00257<br>0.00257<br>0.00257<br>0.00257<br>0.00257<br>0.00096<br>0.00257<br>0.00096<br>0.00058<br>0.00058<br>0.3889<br>0.3889<br>0.3889<br>0.3889<br>0.3889<br>0.00158<br>0.3889<br>0.3889<br>0.3889<br>0.3889<br>0.3889<br>0.00158<br>0.3889<br>0.3889<br>0.3889<br>0.3889<br>0.00158<br>0.3889<br>0.3889<br>0.00158<br>0.3889<br>0.3889<br>0.00158<br>0.3889<br>0.3889<br>0.3889<br>0.00158<br>0.3889<br>0.3889<br>0.00158<br>0.3889<br>0.00158<br>0.3889<br>0.00158<br>0.3889<br>0.00158<br>0.3889<br>0.00158<br>0.3889<br>0.00158<br>0.3889<br>0.00158<br>0.00158<br>0.3889<br>0.00158<br>0.00158<br>0.00158<br>0.00158<br>0.00158<br>0.00158<br>0.00158<br>0.00158<br>0.00158<br>0.00158<br>0.00158<br>0.00158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHHI<br>00519 0.00<br>33001 0.00<br>33001 0.00<br>5252 0.00<br>75252 0.00<br>75253 0.04<br>8632 0.00<br>11561 0.00<br>0321 0.00                                       |

benzoic acid set. Every atom beyond atom #15 will thus be pruned into one single super-atom.



The following is a ball-and-stick labelled diagram of BACH<sub>3</sub>. Then by defaults atoms 15-18 will be pruned into a super-atom as can be seen from the LDM presented above (the group CHHH15 represents the atoms 15-18 in this image below): Subsequent versions of AIMLDM may be posted for download from the site:

## http://www.cmatta.ca/software



#### References

[1] I. Sumar, R. Cook, P.W. Ayers and C.F. Matta, AIMLDM: A Program to Generate and Analyze Electron Localization-Delocalization Matrices (LDMs), Comput. Theor. Chem. 1070 (2015) 55-67.

[2] R. Cook, I. Sumar, P.W. Ayers and C.F. Matta, Electron

Localization-Delocalization Matrices (LDMs): Theory and Applications (Springer International Publishing AG, Cham, Switzerland, 2016).

[3] C.F. Matta , I. Sumar, R. Cook and P.W. Ayers, Localization-delocalization and electron density- weighted connectivity matrices: A bridge between the quantum theory of atoms in molecules and chemical graph theory, In: Applications of Topological Methods in Molecular Chemistry (Challenges and Advances in Computational Chemistry and Physics Series); Chauvin, R.; Silvi, B.; Alikhani, E.; Lepetit, C. (Eds.) (Springer, 2015).

[4] I. Sumar, P.W. Ayers and C.F. Matta, Electron localization and delocalization matrices in the prediction of pKa's and UV-wavelengths of maximum absorbance of p-benzoic acids and the definition of super-atoms in molecules, Chem. Phys. Lett. 612 (2014) 190-197.

[5] M.J. Timm, C.F. Matta, L. Massa and L. Huang, The localization-delocalization matrix and the electron density-weighted connectivity matrix of a finite graphene flake reconstructed from kernel fragments, J. Phys. Chem. A 118 (2014) 11304-11316.

[6] C.F. Matta, Localization-delocalization matrices and electron density-weighted adjacency matrices: New electronic fingerprinting tools for medicinal computational chemistry, Future Med. Chem. 6 (2014) 1475-1479.

[7] B. Dittrich and C.F. Matta, Contributions of charge-density research to medicinal chemistry, Int. U. Cryst. J. (IUCrJ) 1 (2014) 457-469.

[8] C.F. Matta, Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization and delocalization matrices, and the electrostatic potential, J. Comput. Chem. 35 (2014) 1165-1198.

## Benzoic Acid Structures with their LDMs

Unpruned and Pruned LDM for the set of benzoic acids to 3 decimal places, as well as corresponding structure. Unpruned matrix is listed first followed by the pruned matrix.



| $\mathbf{C}_{7}\mathbf{H}_{6}\mathbf{O}_{2}$ | <i>H</i> 1 | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | H15   | SUM    |
|----------------------------------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1                                           | 0.074      | 0.318 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.415  |
| O2                                           | 0.318      | 8.097 | 0.435 | 0.149 | 0.043 | 0.019 | 0.002 | 0.002 | 0.002 | 0.007 | 0.016 | 0.000 | 0.001 | 0.000 | 0.000 | 9.091  |
| C3                                           | 0.006      | 0.435 | 2.853 | 0.652 | 0.485 | 0.026 | 0.005 | 0.005 | 0.005 | 0.028 | 0.003 | 0.001 | 0.003 | 0.001 | 0.000 | 4.508  |
| O4                                           | 0.010      | 0.149 | 0.652 | 8.211 | 0.053 | 0.015 | 0.003 | 0.007 | 0.002 | 0.024 | 0.001 | 0.000 | 0.016 | 0.000 | 0.000 | 9.144  |
| C5                                           | 0.004      | 0.043 | 0.485 | 0.053 | 3.913 | 0.670 | 0.036 | 0.047 | 0.036 | 0.667 | 0.021 | 0.005 | 0.021 | 0.005 | 0.002 | 6.009  |
| C6                                           | 0.001      | 0.019 | 0.026 | 0.015 | 0.670 | 3.949 | 0.699 | 0.037 | 0.049 | 0.033 | 0.470 | 0.024 | 0.005 | 0.003 | 0.005 | 6.004  |
| C7                                           | 0.000      | 0.002 | 0.005 | 0.003 | 0.036 | 0.699 | 3.955 | 0.692 | 0.036 | 0.049 | 0.022 | 0.481 | 0.002 | 0.005 | 0.024 | 6.009  |
| C8                                           | 0.000      | 0.002 | 0.005 | 0.007 | 0.047 | 0.037 | 0.692 | 3.956 | 0.690 | 0.037 | 0.005 | 0.024 | 0.005 | 0.024 | 0.480 | 6.012  |
| C9                                           | 0.000      | 0.002 | 0.005 | 0.002 | 0.036 | 0.049 | 0.036 | 0.690 | 3.954 | 0.701 | 0.002 | 0.005 | 0.022 | 0.480 | 0.024 | 6.008  |
| C10                                          | 0.001      | 0.007 | 0.028 | 0.024 | 0.667 | 0.033 | 0.049 | 0.037 | 0.701 | 3.948 | 0.005 | 0.003 | 0.469 | 0.025 | 0.005 | 6.001  |
| H11                                          | 0.000      | 0.016 | 0.003 | 0.001 | 0.021 | 0.470 | 0.022 | 0.005 | 0.002 | 0.005 | 0.393 | 0.003 | 0.001 | 0.000 | 0.001 | 0.942  |
| H12                                          | 0.000      | 0.000 | 0.001 | 0.000 | 0.005 | 0.024 | 0.481 | 0.024 | 0.005 | 0.003 | 0.003 | 0.424 | 0.000 | 0.001 | 0.003 | 0.974  |
| H13                                          | 0.000      | 0.001 | 0.003 | 0.016 | 0.021 | 0.005 | 0.002 | 0.005 | 0.022 | 0.469 | 0.001 | 0.000 | 0.387 | 0.003 | 0.001 | 0.935  |
| H14                                          | 0.000      | 0.000 | 0.001 | 0.000 | 0.005 | 0.003 | 0.005 | 0.024 | 0.480 | 0.025 | 0.000 | 0.001 | 0.003 | 0.423 | 0.003 | 0.972  |
| H15                                          | 0.000      | 0.000 | 0.000 | 0.000 | 0.002 | 0.005 | 0.024 | 0.480 | 0.024 | 0.005 | 0.001 | 0.003 | 0.001 | 0.003 | 0.424 | 0.973  |
| SUM                                          | 0.415      | 9.091 | 4.508 | 9.144 | 6.009 | 6.004 | 6.009 | 6.012 | 6.008 | 6.001 | 0.942 | 0.974 | 0.935 | 0.972 | 0.973 | 63.997 |



| $\mathbf{C}_{8}\mathbf{H}_{8}\mathbf{O}_{2}$ | $H^{1}$ | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | C15   | H16   | H17   | H18   | SUM    |
|----------------------------------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1                                           | 0.075   | 0.319 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.416  |
| O2                                           | 0.319   | 8.097 | 0.435 | 0.148 | 0.043 | 0.019 | 0.002 | 0.002 | 0.002 | 0.007 | 0.015 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 9.091  |
| C3                                           | 0.006   | 0.435 | 2.856 | 0.651 | 0.488 | 0.026 | 0.005 | 0.005 | 0.005 | 0.028 | 0.003 | 0.001 | 0.003 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 4.514  |
| O4                                           | 0.010   | 0.148 | 0.651 | 8.215 | 0.054 | 0.016 | 0.003 | 0.007 | 0.002 | 0.023 | 0.001 | 0.000 | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 9.147  |
| C5                                           | 0.004   | 0.043 | 0.488 | 0.054 | 3.913 | 0.671 | 0.035 | 0.044 | 0.035 | 0.662 | 0.021 | 0.005 | 0.021 | 0.005 | 0.003 | 0.000 | 0.002 | 0.002 | 6.01   |
| C6                                           | 0.001   | 0.019 | 0.026 | 0.016 | 0.671 | 3.948 | 0.698 | 0.036 | 0.048 | 0.034 | 0.470 | 0.024 | 0.005 | 0.003 | 0.005 | 0.001 | 0.001 | 0.001 | 6.005  |
| C7                                           | 0.000   | 0.002 | 0.005 | 0.003 | 0.035 | 0.698 | 3.957 | 0.679 | 0.035 | 0.047 | 0.023 | 0.478 | 0.002 | 0.005 | 0.027 | 0.007 | 0.006 | 0.006 | 6.015  |
| C8                                           | 0.000   | 0.002 | 0.005 | 0.007 | 0.044 | 0.036 | 0.679 | 3.889 | 0.669 | 0.036 | 0.004 | 0.023 | 0.005 | 0.023 | 0.508 | 0.020 | 0.022 | 0.022 | 5.996  |
| C9                                           | 0.000   | 0.002 | 0.005 | 0.002 | 0.035 | 0.048 | 0.035 | 0.669 | 3.960 | 0.709 | 0.002 | 0.005 | 0.023 | 0.478 | 0.027 | 0.005 | 0.006 | 0.006 | 6.017  |
| C10                                          | 0.001   | 0.007 | 0.028 | 0.023 | 0.662 | 0.034 | 0.047 | 0.036 | 0.709 | 3.946 | 0.005 | 0.003 | 0.469 | 0.025 | 0.005 | 0.001 | 0.001 | 0.001 | 6.001  |
| H11                                          | 0.000   | 0.015 | 0.003 | 0.001 | 0.021 | 0.470 | 0.023 | 0.004 | 0.002 | 0.005 | 0.394 | 0.003 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.944  |
| H12                                          | 0.000   | 0.000 | 0.001 | 0.000 | 0.005 | 0.024 | 0.478 | 0.023 | 0.005 | 0.003 | 0.003 | 0.427 | 0.000 | 0.001 | 0.006 | 0.005 | 0.000 | 0.000 | 0.983  |
| H13                                          | 0.000   | 0.001 | 0.003 | 0.015 | 0.021 | 0.005 | 0.002 | 0.005 | 0.023 | 0.469 | 0.001 | 0.000 | 0.389 | 0.003 | 0.001 | 0.000 | 0.000 | 0.000 | 0.937  |
| H14                                          | 0.000   | 0.000 | 0.001 | 0.000 | 0.005 | 0.003 | 0.005 | 0.023 | 0.478 | 0.025 | 0.000 | 0.001 | 0.003 | 0.428 | 0.006 | 0.001 | 0.002 | 0.001 | 0.981  |
| C15                                          | 0.000   | 0.000 | 0.000 | 0.000 | 0.003 | 0.005 | 0.027 | 0.508 | 0.027 | 0.005 | 0.001 | 0.006 | 0.001 | 0.006 | 3.958 | 0.478 | 0.476 | 0.476 | 5.977  |
| H16                                          | 0.000   | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.007 | 0.020 | 0.005 | 0.001 | 0.000 | 0.005 | 0.000 | 0.001 | 0.478 | 0.438 | 0.019 | 0.019 | 0.995  |
| H17                                          | 0.000   | 0.000 | 0.000 | 0.000 | 0.002 | 0.001 | 0.006 | 0.022 | 0.006 | 0.001 | 0.000 | 0.000 | 0.000 | 0.002 | 0.476 | 0.019 | 0.431 | 0.019 | 0.985  |
| H18                                          | 0.000   | 0.000 | 0.000 | 0.000 | 0.002 | 0.001 | 0.006 | 0.022 | 0.006 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.476 | 0.019 | 0.019 | 0.431 | 0.985  |
| SUM                                          | 0.416   | 9.091 | 4.514 | 9.147 | 6.010 | 6.005 | 6.015 | 5.996 | 6.017 | 6.001 | 0.944 | 0.983 | 0.937 | 0.981 | 5.977 | 0.995 | 0.985 | 0.985 | 71.999 |

| $C_8H_8O_2$ | _ <i>H</i> 1 | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | CH315 | SUM    |
|-------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1          | 0.075        | 0.319 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.416  |
| O2          | 0.319        | 8.097 | 0.435 | 0.148 | 0.043 | 0.019 | 0.002 | 0.002 | 0.002 | 0.007 | 0.015 | 0.000 | 0.001 | 0.000 | 0.000 | 9.091  |
| C3          | 0.006        | 0.435 | 2.856 | 0.651 | 0.488 | 0.026 | 0.005 | 0.005 | 0.005 | 0.028 | 0.003 | 0.001 | 0.003 | 0.001 | 0.001 | 4.514  |
| O4          | 0.010        | 0.148 | 0.651 | 8.215 | 0.054 | 0.016 | 0.003 | 0.007 | 0.002 | 0.023 | 0.001 | 0.000 | 0.015 | 0.000 | 0.001 | 9.147  |
| C5          | 0.004        | 0.043 | 0.488 | 0.054 | 3.913 | 0.671 | 0.035 | 0.044 | 0.035 | 0.662 | 0.021 | 0.005 | 0.021 | 0.005 | 0.007 | 6.010  |
| C6          | 0.001        | 0.019 | 0.026 | 0.016 | 0.671 | 3.948 | 0.698 | 0.036 | 0.048 | 0.034 | 0.470 | 0.024 | 0.005 | 0.003 | 0.007 | 6.005  |
| C7          | 0.000        | 0.002 | 0.005 | 0.003 | 0.035 | 0.698 | 3.957 | 0.679 | 0.035 | 0.047 | 0.023 | 0.478 | 0.002 | 0.005 | 0.046 | 6.015  |
| C8          | 0.000        | 0.002 | 0.005 | 0.007 | 0.044 | 0.036 | 0.679 | 3.889 | 0.669 | 0.036 | 0.004 | 0.023 | 0.005 | 0.023 | 0.573 | 5.996  |
| C9          | 0.000        | 0.002 | 0.005 | 0.002 | 0.035 | 0.048 | 0.035 | 0.669 | 3.960 | 0.709 | 0.002 | 0.005 | 0.023 | 0.478 | 0.044 | 6.017  |
| C10         | 0.001        | 0.007 | 0.028 | 0.023 | 0.662 | 0.034 | 0.047 | 0.036 | 0.709 | 3.946 | 0.005 | 0.003 | 0.469 | 0.025 | 0.007 | 6.001  |
| H11         | 0.000        | 0.015 | 0.003 | 0.001 | 0.021 | 0.470 | 0.023 | 0.004 | 0.002 | 0.005 | 0.394 | 0.003 | 0.001 | 0.000 | 0.001 | 0.944  |
| H12         | 0.000        | 0.000 | 0.001 | 0.000 | 0.005 | 0.024 | 0.478 | 0.023 | 0.005 | 0.003 | 0.003 | 0.427 | 0.000 | 0.001 | 0.012 | 0.983  |
| H13         | 0.000        | 0.001 | 0.003 | 0.015 | 0.021 | 0.005 | 0.002 | 0.005 | 0.023 | 0.469 | 0.001 | 0.000 | 0.389 | 0.003 | 0.001 | 0.937  |
| H14         | 0.000        | 0.000 | 0.001 | 0.000 | 0.005 | 0.003 | 0.005 | 0.023 | 0.478 | 0.025 | 0.000 | 0.001 | 0.003 | 0.428 | 0.009 | 0.981  |
| CH315       | 0.000        | 0.000 | 0.001 | 0.001 | 0.007 | 0.007 | 0.046 | 0.573 | 0.044 | 0.007 | 0.001 | 0.012 | 0.001 | 0.009 | 8.232 | 8.943  |
| SUM         | 0.416        | 9.091 | 4.514 | 9.147 | 6.010 | 6.005 | 6.015 | 5.996 | 6.017 | 6.001 | 0.944 | 0.983 | 0.937 | 0.981 | 8.943 | 71.999 |



| $\mathbf{C}_{7}\mathbf{H}_{5}\mathbf{ClO}_{2}$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | Cl15   | SUM    |
|------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| H1                                             | 0.074 | 0.317 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.413  |
| O2                                             | 0.317 | 8.098 | 0.436 | 0.148 | 0.043 | 0.019 | 0.002 | 0.002 | 0.002 | 0.007 | 0.015 | 0.000 | 0.001 | 0.000 | 0.001  | 9.091  |
| C3                                             | 0.006 | 0.436 | 2.846 | 0.653 | 0.485 | 0.026 | 0.005 | 0.005 | 0.005 | 0.028 | 0.003 | 0.001 | 0.003 | 0.001 | 0.002  | 4.503  |
| O4                                             | 0.010 | 0.148 | 0.653 | 8.208 | 0.054 | 0.015 | 0.003 | 0.006 | 0.002 | 0.024 | 0.001 | 0.000 | 0.015 | 0.000 | 0.002  | 9.142  |
| C5                                             | 0.004 | 0.043 | 0.485 | 0.054 | 3.908 | 0.669 | 0.035 | 0.044 | 0.035 | 0.666 | 0.021 | 0.005 | 0.021 | 0.005 | 0.009  | 6.004  |
| C6                                             | 0.001 | 0.019 | 0.026 | 0.015 | 0.669 | 3.940 | 0.698 | 0.038 | 0.047 | 0.033 | 0.468 | 0.022 | 0.004 | 0.002 | 0.010  | 5.993  |
| C7                                             | 0.000 | 0.002 | 0.005 | 0.003 | 0.035 | 0.698 | 3.929 | 0.674 | 0.031 | 0.047 | 0.022 | 0.473 | 0.002 | 0.004 | 0.053  | 5.978  |
| C8                                             | 0.000 | 0.002 | 0.005 | 0.006 | 0.044 | 0.038 | 0.674 | 3.866 | 0.672 | 0.039 | 0.005 | 0.023 | 0.005 | 0.023 | 0.554  | 5.956  |
| C9                                             | 0.000 | 0.002 | 0.005 | 0.002 | 0.035 | 0.047 | 0.031 | 0.672 | 3.929 | 0.701 | 0.002 | 0.004 | 0.022 | 0.473 | 0.053  | 5.977  |
| C10                                            | 0.001 | 0.007 | 0.028 | 0.024 | 0.666 | 0.033 | 0.047 | 0.039 | 0.701 | 3.939 | 0.004 | 0.002 | 0.467 | 0.022 | 0.010  | 5.990  |
| H11                                            | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.468 | 0.022 | 0.005 | 0.002 | 0.004 | 0.386 | 0.003 | 0.001 | 0.000 | 0.001  | 0.933  |
| H12                                            | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.022 | 0.473 | 0.023 | 0.004 | 0.002 | 0.003 | 0.401 | 0.000 | 0.001 | 0.012  | 0.948  |
| H13                                            | 0.000 | 0.001 | 0.003 | 0.015 | 0.021 | 0.004 | 0.002 | 0.005 | 0.022 | 0.467 | 0.001 | 0.000 | 0.381 | 0.003 | 0.001  | 0.926  |
| H14                                            | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.023 | 0.473 | 0.022 | 0.000 | 0.001 | 0.003 | 0.400 | 0.012  | 0.947  |
| Cl15                                           | 0.000 | 0.001 | 0.002 | 0.002 | 0.009 | 0.01  | 0.053 | 0.554 | 0.053 | 0.01  | 0.001 | 0.012 | 0.001 | 0.012 | 16.479 | 17.198 |
| SUM                                            | 0.413 | 9.091 | 4.503 | 9.142 | 6.004 | 5.993 | 5.978 | 5.956 | 5.977 | 5.99  | 0.933 | 0.948 | 0.926 | 0.947 | 17.198 | 79.999 |



| $\mathbf{C}_{8}\mathbf{H}_{5}\mathbf{NO}_{2}$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | C15   | N16   | SUM    |
|-----------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1                                            | 0.073 | 0.315 | 0.006 | 0.009 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.410  |
| O2                                            | 0.315 | 8.097 | 0.438 | 0.149 | 0.043 | 0.019 | 0.002 | 0.002 | 0.001 | 0.007 | 0.015 | 0.000 | 0.001 | 0.000 | 0.000 | 0.001 | 9.091  |
| C3                                            | 0.006 | 0.438 | 2.838 | 0.656 | 0.480 | 0.025 | 0.004 | 0.004 | 0.004 | 0.027 | 0.003 | 0.001 | 0.003 | 0.001 | 0.000 | 0.001 | 4.491  |
| O4                                            | 0.009 | 0.149 | 0.656 | 8.199 | 0.054 | 0.015 | 0.002 | 0.006 | 0.002 | 0.024 | 0.001 | 0.000 | 0.016 | 0.000 | 0.001 | 0.002 | 9.135  |
| C5                                            | 0.004 | 0.043 | 0.480 | 0.054 | 3.907 | 0.669 | 0.036 | 0.043 | 0.036 | 0.666 | 0.021 | 0.005 | 0.021 | 0.005 | 0.004 | 0.011 | 6.004  |
| C6                                            | 0.001 | 0.019 | 0.025 | 0.015 | 0.669 | 3.940 | 0.702 | 0.036 | 0.047 | 0.033 | 0.468 | 0.023 | 0.004 | 0.002 | 0.005 | 0.003 | 5.992  |
| C7                                            | 0.000 | 0.002 | 0.004 | 0.002 | 0.036 | 0.702 | 3.935 | 0.661 | 0.031 | 0.047 | 0.022 | 0.475 | 0.002 | 0.004 | 0.034 | 0.026 | 5.984  |
| C8                                            | 0.000 | 0.002 | 0.004 | 0.006 | 0.043 | 0.036 | 0.661 | 3.845 | 0.659 | 0.036 | 0.004 | 0.023 | 0.004 | 0.022 | 0.542 | 0.048 | 5.935  |
| C9                                            | 0.000 | 0.001 | 0.004 | 0.002 | 0.036 | 0.047 | 0.031 | 0.659 | 3.935 | 0.704 | 0.002 | 0.004 | 0.022 | 0.475 | 0.034 | 0.026 | 5.984  |
| C10                                           | 0.001 | 0.007 | 0.027 | 0.024 | 0.666 | 0.033 | 0.047 | 0.036 | 0.704 | 3.939 | 0.004 | 0.002 | 0.466 | 0.023 | 0.005 | 0.003 | 5.988  |
| H11                                           | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.468 | 0.022 | 0.004 | 0.002 | 0.004 | 0.382 | 0.003 | 0.001 | 0.000 | 0.001 | 0.000 | 0.928  |
| H12                                           | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.023 | 0.475 | 0.023 | 0.004 | 0.002 | 0.003 | 0.400 | 0.000 | 0.001 | 0.005 | 0.003 | 0.944  |
| $H_{13}$                                      | 0.000 | 0.001 | 0.003 | 0.016 | 0.021 | 0.004 | 0.002 | 0.004 | 0.022 | 0.466 | 0.001 | 0.000 | 0.377 | 0.003 | 0.001 | 0.000 | 0.921  |
| H14                                           | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.022 | 0.475 | 0.023 | 0.000 | 0.001 | 0.003 | 0.399 | 0.005 | 0.003 | 0.943  |
| C15                                           | 0.000 | 0.000 | 0.000 | 0.001 | 0.004 | 0.005 | 0.034 | 0.542 | 0.034 | 0.005 | 0.001 | 0.005 | 0.001 | 0.005 | 3.321 | 1.195 | 5.153  |
| N16                                           | 0.000 | 0.001 | 0.001 | 0.002 | 0.011 | 0.003 | 0.026 | 0.048 | 0.026 | 0.003 | 0.000 | 0.003 | 0.000 | 0.003 | 1.195 | 6.776 | 8.097  |
| SUM                                           | 0.410 | 9.091 | 4.491 | 9.135 | 6.004 | 5.992 | 5.984 | 5.935 | 5.984 | 5.988 | 0.928 | 0.944 | 0.921 | 0.943 | 5.153 | 8.097 | 76.000 |

| $C_8H_5NO_2$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | CN15   | SUM    |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| H1           | 0.073 | 0.315 | 0.006 | 0.009 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.410  |
| O2           | 0.315 | 8.097 | 0.438 | 0.149 | 0.043 | 0.019 | 0.002 | 0.002 | 0.001 | 0.007 | 0.015 | 0.000 | 0.001 | 0.000 | 0.001  | 9.091  |
| C3           | 0.006 | 0.438 | 2.838 | 0.656 | 0.480 | 0.025 | 0.004 | 0.004 | 0.004 | 0.027 | 0.003 | 0.001 | 0.003 | 0.001 | 0.002  | 4.491  |
| O4           | 0.009 | 0.149 | 0.656 | 8.199 | 0.054 | 0.015 | 0.002 | 0.006 | 0.002 | 0.024 | 0.001 | 0.000 | 0.016 | 0.000 | 0.002  | 9.135  |
| C5           | 0.004 | 0.043 | 0.480 | 0.054 | 3.907 | 0.669 | 0.036 | 0.043 | 0.036 | 0.666 | 0.021 | 0.005 | 0.021 | 0.005 | 0.014  | 6.004  |
| C6           | 0.001 | 0.019 | 0.025 | 0.015 | 0.669 | 3.940 | 0.702 | 0.036 | 0.047 | 0.033 | 0.468 | 0.023 | 0.004 | 0.002 | 0.008  | 5.992  |
| C7           | 0.000 | 0.002 | 0.004 | 0.002 | 0.036 | 0.702 | 3.935 | 0.661 | 0.031 | 0.047 | 0.022 | 0.475 | 0.002 | 0.004 | 0.060  | 5.984  |
| C8           | 0.000 | 0.002 | 0.004 | 0.006 | 0.043 | 0.036 | 0.661 | 3.845 | 0.659 | 0.036 | 0.004 | 0.023 | 0.004 | 0.022 | 0.590  | 5.935  |
| C9           | 0.000 | 0.001 | 0.004 | 0.002 | 0.036 | 0.047 | 0.031 | 0.659 | 3.935 | 0.704 | 0.002 | 0.004 | 0.022 | 0.475 | 0.060  | 5.984  |
| C10          | 0.001 | 0.007 | 0.027 | 0.024 | 0.666 | 0.033 | 0.047 | 0.036 | 0.704 | 3.939 | 0.004 | 0.002 | 0.466 | 0.023 | 0.008  | 5.988  |
| H11          | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.468 | 0.022 | 0.004 | 0.002 | 0.004 | 0.382 | 0.003 | 0.001 | 0.000 | 0.001  | 0.928  |
| H12          | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.023 | 0.475 | 0.023 | 0.004 | 0.002 | 0.003 | 0.400 | 0.000 | 0.001 | 0.008  | 0.944  |
| H13          | 0.000 | 0.001 | 0.003 | 0.016 | 0.021 | 0.004 | 0.002 | 0.004 | 0.022 | 0.466 | 0.001 | 0.000 | 0.377 | 0.003 | 0.001  | 0.921  |
| H14          | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.022 | 0.475 | 0.023 | 0.000 | 0.001 | 0.003 | 0.399 | 0.008  | 0.943  |
| CN15         | 0.000 | 0.001 | 0.002 | 0.002 | 0.014 | 0.008 | 0.060 | 0.590 | 0.060 | 0.008 | 0.001 | 0.008 | 0.001 | 0.008 | 12.486 | 13.250 |
| SUM          | 0.410 | 9.091 | 4.491 | 9.135 | 6.004 | 5.992 | 5.984 | 5.935 | 5.984 | 5.988 | 0.928 | 0.944 | 0.921 | 0.943 | 13.250 | 76.000 |



| $C_9H_8O_3$ | <i>H</i> 1 | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | C15   | O16   | C17   | H18   | H19   | H20   | SUM    |
|-------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1          | 0.074      | 0.317 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.412  |
| O2          | 0.317      | 8.096 | 0.437 | 0.149 | 0.043 | 0.019 | 0.002 | 0.002 | 0.001 | 0.007 | 0.015 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 9.091  |
| C3          | 0.006      | 0.437 | 2.846 | 0.655 | 0.482 | 0.026 | 0.004 | 0.005 | 0.004 | 0.027 | 0.003 | 0.001 | 0.003 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 4.500  |
| <i>O</i> 4  | 0.010      | 0.149 | 0.655 | 8.202 | 0.053 | 0.015 | 0.002 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.015 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 9.138  |
| C5          | 0.004      | 0.043 | 0.482 | 0.053 | 3.911 | 0.672 | 0.036 | 0.044 | 0.036 | 0.663 | 0.021 | 0.005 | 0.021 | 0.004 | 0.005 | 0.008 | 0.001 | 0.000 | 0.000 | 0.000 | 6.008  |
| C6          | 0.001      | 0.019 | 0.026 | 0.015 | 0.672 | 3.945 | 0.699 | 0.035 | 0.048 | 0.033 | 0.469 | 0.024 | 0.004 | 0.002 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 5.999  |
| C7          | 0.000      | 0.002 | 0.004 | 0.002 | 0.036 | 0.699 | 3.956 | 0.673 | 0.034 | 0.047 | 0.022 | 0.472 | 0.002 | 0.004 | 0.027 | 0.018 | 0.009 | 0.004 | 0.004 | 0.001 | 6.016  |
| C8          | 0.000      | 0.002 | 0.005 | 0.006 | 0.044 | 0.035 | 0.673 | 3.932 | 0.663 | 0.036 | 0.004 | 0.022 | 0.005 | 0.021 | 0.487 | 0.063 | 0.026 | 0.002 | 0.002 | 0.004 | 6.033  |
| C9          | 0.000      | 0.001 | 0.004 | 0.002 | 0.036 | 0.048 | 0.034 | 0.663 | 3.947 | 0.708 | 0.002 | 0.005 | 0.022 | 0.465 | 0.026 | 0.028 | 0.004 | 0.000 | 0.000 | 0.001 | 5.998  |
| C10         | 0.001      | 0.007 | 0.027 | 0.023 | 0.663 | 0.033 | 0.047 | 0.036 | 0.708 | 3.945 | 0.005 | 0.002 | 0.468 | 0.022 | 0.005 | 0.003 | 0.001 | 0.000 | 0.000 | 0.000 | 5.996  |
| H11         | 0.000      | 0.015 | 0.003 | 0.001 | 0.021 | 0.469 | 0.022 | 0.004 | 0.002 | 0.005 | 0.390 | 0.003 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.938  |
| H12         | 0.000      | 0.000 | 0.001 | 0.000 | 0.005 | 0.024 | 0.472 | 0.022 | 0.005 | 0.002 | 0.003 | 0.412 | 0.000 | 0.001 | 0.003 | 0.001 | 0.010 | 0.005 | 0.005 | 0.001 | 0.971  |
| H13         | 0.000      | 0.001 | 0.003 | 0.015 | 0.021 | 0.004 | 0.002 | 0.005 | 0.022 | 0.468 | 0.001 | 0.000 | 0.383 | 0.003 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.929  |
| H14         | 0.000      | 0.000 | 0.001 | 0.000 | 0.004 | 0.002 | 0.004 | 0.021 | 0.465 | 0.022 | 0.000 | 0.001 | 0.003 | 0.378 | 0.003 | 0.019 | 0.001 | 0.000 | 0.000 | 0.000 | 0.925  |
| C15         | 0.000      | 0.000 | 0.000 | 0.001 | 0.005 | 0.004 | 0.027 | 0.487 | 0.026 | 0.005 | 0.001 | 0.003 | 0.001 | 0.003 | 3.211 | 0.712 | 0.478 | 0.023 | 0.023 | 0.018 | 5.027  |
| O16         | 0.000      | 0.000 | 0.001 | 0.001 | 0.008 | 0.002 | 0.018 | 0.063 | 0.028 | 0.003 | 0.000 | 0.001 | 0.000 | 0.019 | 0.712 | 8.135 | 0.064 | 0.012 | 0.012 | 0.012 | 9.092  |
| C17         | 0.000      | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.009 | 0.026 | 0.004 | 0.001 | 0.000 | 0.010 | 0.000 | 0.001 | 0.478 | 0.064 | 4.000 | 0.473 | 0.473 | 0.474 | 6.016  |
| H18         | 0.000      | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.002 | 0.000 | 0.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.023 | 0.012 | 0.473 | 0.421 | 0.019 | 0.017 | 0.978  |
| H19         | 0.000      | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.002 | 0.000 | 0.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.023 | 0.012 | 0.473 | 0.019 | 0.421 | 0.017 | 0.978  |
| H20         | 0.000      | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.004 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.018 | 0.012 | 0.474 | 0.017 | 0.017 | 0.408 | 0.955  |
| SUM         | 0.412      | 9.091 | 4.500 | 9.138 | 6.008 | 5.999 | 6.016 | 6.033 | 5.998 | 5.996 | 0.938 | 0.971 | 0.929 | 0.925 | 5.027 | 9.092 | 6.016 | 0.978 | 0.978 | 0.955 | 86.001 |

| $C_9H_8O_3$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | COCH315 | SUM    |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|--------|
| H1          | 0.074 | 0.317 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000   | 0.412  |
| O2          | 0.317 | 8.096 | 0.437 | 0.149 | 0.043 | 0.019 | 0.002 | 0.002 | 0.001 | 0.007 | 0.015 | 0.000 | 0.001 | 0.000 | 0.001   | 9.091  |
| C3          | 0.006 | 0.437 | 2.846 | 0.655 | 0.482 | 0.026 | 0.004 | 0.005 | 0.004 | 0.027 | 0.003 | 0.001 | 0.003 | 0.001 | 0.001   | 4.500  |
| O4          | 0.010 | 0.149 | 0.655 | 8.202 | 0.053 | 0.015 | 0.002 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.015 | 0.000 | 0.002   | 9.138  |
| C5          | 0.004 | 0.043 | 0.482 | 0.053 | 3.911 | 0.672 | 0.036 | 0.044 | 0.036 | 0.663 | 0.021 | 0.005 | 0.021 | 0.004 | 0.014   | 6.008  |
| C6          | 0.001 | 0.019 | 0.026 | 0.015 | 0.672 | 3.945 | 0.699 | 0.035 | 0.048 | 0.033 | 0.469 | 0.024 | 0.004 | 0.002 | 0.009   | 5.999  |
| C7          | 0.000 | 0.002 | 0.004 | 0.002 | 0.036 | 0.699 | 3.956 | 0.673 | 0.034 | 0.047 | 0.022 | 0.472 | 0.002 | 0.004 | 0.063   | 6.016  |
| C8          | 0.000 | 0.002 | 0.005 | 0.006 | 0.044 | 0.035 | 0.673 | 3.932 | 0.663 | 0.036 | 0.004 | 0.022 | 0.005 | 0.021 | 0.586   | 6.033  |
| C9          | 0.000 | 0.001 | 0.004 | 0.002 | 0.036 | 0.048 | 0.034 | 0.663 | 3.947 | 0.708 | 0.002 | 0.005 | 0.022 | 0.465 | 0.059   | 5.998  |
| C10         | 0.001 | 0.007 | 0.027 | 0.023 | 0.663 | 0.033 | 0.047 | 0.036 | 0.708 | 3.945 | 0.005 | 0.002 | 0.468 | 0.022 | 0.009   | 5.996  |
| H11         | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.469 | 0.022 | 0.004 | 0.002 | 0.005 | 0.390 | 0.003 | 0.001 | 0.000 | 0.001   | 0.938  |
| H12         | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.024 | 0.472 | 0.022 | 0.005 | 0.002 | 0.003 | 0.412 | 0.000 | 0.001 | 0.024   | 0.971  |
| H13         | 0.000 | 0.001 | 0.003 | 0.015 | 0.021 | 0.004 | 0.002 | 0.005 | 0.022 | 0.468 | 0.001 | 0.000 | 0.383 | 0.003 | 0.001   | 0.929  |
| H14         | 0.000 | 0.000 | 0.001 | 0.000 | 0.004 | 0.002 | 0.004 | 0.021 | 0.465 | 0.022 | 0.000 | 0.001 | 0.003 | 0.378 | 0.023   | 0.925  |
| COCH315     | 0.000 | 0.001 | 0.001 | 0.002 | 0.014 | 0.009 | 0.063 | 0.586 | 0.059 | 0.009 | 0.001 | 0.024 | 0.001 | 0.023 | 22.252  | 23.045 |
| SUM         | 0.412 | 9.091 | 4.5   | 9.138 | 6.008 | 5.999 | 6.016 | 6.033 | 5.998 | 5.996 | 0.938 | 0.971 | 0.929 | 0.925 | 23.045  | 86.001 |



| $C_8H_6O_3$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | C15   | O16   | H17   | SUM    |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1          | 0.073 | 0.316 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.411  |
| O2          | 0.316 | 8.096 | 0.438 | 0.150 | 0.043 | 0.019 | 0.002 | 0.002 | 0.001 | 0.007 | 0.015 | 0.000 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 9.091  |
| C3          | 0.006 | 0.438 | 2.843 | 0.655 | 0.481 | 0.025 | 0.004 | 0.004 | 0.004 | 0.027 | 0.003 | 0.001 | 0.003 | 0.001 | 0.000 | 0.001 | 0.000 | 4.496  |
| O4          | 0.010 | 0.150 | 0.655 | 8.200 | 0.053 | 0.015 | 0.002 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.016 | 0.000 | 0.001 | 0.002 | 0.000 | 9.136  |
| C5          | 0.004 | 0.043 | 0.481 | 0.053 | 3.910 | 0.673 | 0.036 | 0.043 | 0.036 | 0.661 | 0.021 | 0.005 | 0.021 | 0.005 | 0.006 | 0.010 | 0.000 | 6.007  |
| C6          | 0.001 | 0.019 | 0.025 | 0.015 | 0.673 | 3.944 | 0.698 | 0.035 | 0.048 | 0.033 | 0.469 | 0.024 | 0.004 | 0.002 | 0.005 | 0.002 | 0.001 | 5.996  |
| C7          | 0.000 | 0.002 | 0.004 | 0.002 | 0.036 | 0.698 | 3.956 | 0.671 | 0.034 | 0.046 | 0.022 | 0.475 | 0.002 | 0.005 | 0.033 | 0.021 | 0.006 | 6.014  |
| C8          | 0.000 | 0.002 | 0.004 | 0.006 | 0.043 | 0.035 | 0.671 | 3.927 | 0.659 | 0.037 | 0.004 | 0.023 | 0.005 | 0.021 | 0.503 | 0.063 | 0.027 | 6.029  |
| C9          | 0.000 | 0.001 | 0.004 | 0.002 | 0.036 | 0.048 | 0.034 | 0.659 | 3.948 | 0.710 | 0.002 | 0.005 | 0.022 | 0.468 | 0.027 | 0.026 | 0.004 | 5.997  |
| C10         | 0.001 | 0.007 | 0.027 | 0.023 | 0.661 | 0.033 | 0.046 | 0.037 | 0.71  | 3.944 | 0.004 | 0.002 | 0.467 | 0.023 | 0.005 | 0.002 | 0.001 | 5.993  |
| H11         | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.469 | 0.022 | 0.004 | 0.002 | 0.004 | 0.387 | 0.003 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.934  |
| H12         | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.024 | 0.475 | 0.023 | 0.005 | 0.002 | 0.003 | 0.414 | 0.000 | 0.001 | 0.006 | 0.002 | 0.007 | 0.967  |
| H13         | 0.000 | 0.001 | 0.003 | 0.016 | 0.021 | 0.004 | 0.002 | 0.005 | 0.022 | 0.467 | 0.001 | 0.000 | 0.381 | 0.003 | 0.001 | 0.000 | 0.000 | 0.926  |
| H14         | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.005 | 0.021 | 0.468 | 0.023 | 0.000 | 0.001 | 0.003 | 0.384 | 0.003 | 0.014 | 0.001 | 0.930  |
| C15         | 0.000 | 0.000 | 0.000 | 0.001 | 0.006 | 0.005 | 0.033 | 0.503 | 0.027 | 0.005 | 0.001 | 0.006 | 0.001 | 0.003 | 3.245 | 0.737 | 0.440 | 5.012  |
| O16         | 0.000 | 0.001 | 0.001 | 0.002 | 0.010 | 0.002 | 0.021 | 0.063 | 0.026 | 0.002 | 0.000 | 0.002 | 0.000 | 0.014 | 0.737 | 8.133 | 0.060 | 9.073  |
| H17         | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.006 | 0.027 | 0.004 | 0.001 | 0.000 | 0.007 | 0.000 | 0.001 | 0.440 | 0.060 | 0.440 | 0.986  |
| SUM         | 0.411 | 9.091 | 4.496 | 9.136 | 6.007 | 5.996 | 6.014 | 6.029 | 5.997 | 5.993 | 0.934 | 0.967 | 0.926 | 0.930 | 5.012 | 9.073 | 0.986 | 77.999 |

| $\mathbf{C}_8\mathbf{H}_6\mathbf{O}_3$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | COH15  | SUM    |
|----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| H1                                     | 0.073 | 0.316 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.411  |
| O2                                     | 0.316 | 8.096 | 0.438 | 0.150 | 0.043 | 0.019 | 0.002 | 0.002 | 0.001 | 0.007 | 0.015 | 0.000 | 0.001 | 0.000 | 0.001  | 9.091  |
| C3                                     | 0.006 | 0.438 | 2.843 | 0.655 | 0.481 | 0.025 | 0.004 | 0.004 | 0.004 | 0.027 | 0.003 | 0.001 | 0.003 | 0.001 | 0.002  | 4.496  |
| O4                                     | 0.010 | 0.150 | 0.655 | 8.200 | 0.053 | 0.015 | 0.002 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.016 | 0.000 | 0.003  | 9.136  |
| C5                                     | 0.004 | 0.043 | 0.481 | 0.053 | 3.910 | 0.673 | 0.036 | 0.043 | 0.036 | 0.661 | 0.021 | 0.005 | 0.021 | 0.005 | 0.016  | 6.007  |
| C6                                     | 0.001 | 0.019 | 0.025 | 0.015 | 0.673 | 3.944 | 0.698 | 0.035 | 0.048 | 0.033 | 0.469 | 0.024 | 0.004 | 0.002 | 0.008  | 5.996  |
| C7                                     | 0.000 | 0.002 | 0.004 | 0.002 | 0.036 | 0.698 | 3.956 | 0.671 | 0.034 | 0.046 | 0.022 | 0.475 | 0.002 | 0.005 | 0.061  | 6.014  |
| C8                                     | 0.000 | 0.002 | 0.004 | 0.006 | 0.043 | 0.035 | 0.671 | 3.927 | 0.659 | 0.037 | 0.004 | 0.023 | 0.005 | 0.021 | 0.593  | 6.029  |
| C9                                     | 0.000 | 0.001 | 0.004 | 0.002 | 0.036 | 0.048 | 0.034 | 0.659 | 3.948 | 0.710 | 0.002 | 0.005 | 0.022 | 0.468 | 0.057  | 5.997  |
| C10                                    | 0.001 | 0.007 | 0.027 | 0.023 | 0.661 | 0.033 | 0.046 | 0.037 | 0.710 | 3.944 | 0.004 | 0.002 | 0.467 | 0.023 | 0.008  | 5.993  |
| H11                                    | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.469 | 0.022 | 0.004 | 0.002 | 0.004 | 0.387 | 0.003 | 0.001 | 0.000 | 0.001  | 0.934  |
| H12                                    | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.024 | 0.475 | 0.023 | 0.005 | 0.002 | 0.003 | 0.414 | 0.000 | 0.001 | 0.015  | 0.967  |
| H13                                    | 0.000 | 0.001 | 0.003 | 0.016 | 0.021 | 0.004 | 0.002 | 0.005 | 0.022 | 0.467 | 0.001 | 0.000 | 0.381 | 0.003 | 0.001  | 0.926  |
| H14                                    | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.005 | 0.021 | 0.468 | 0.023 | 0.000 | 0.001 | 0.003 | 0.384 | 0.018  | 0.93   |
| COH15                                  | 0.000 | 0.001 | 0.002 | 0.003 | 0.016 | 0.008 | 0.061 | 0.593 | 0.057 | 0.008 | 0.001 | 0.015 | 0.001 | 0.018 | 14.290 | 15.072 |
| SUM                                    | 0.411 | 9.091 | 4.496 | 9.136 | 6.007 | 5.996 | 6.014 | 6.029 | 5.997 | 5.993 | 0.934 | 0.967 | 0.926 | 0.930 | 15.072 | 77.999 |

111



| $C_7H_5FO_2$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | F15   | SUM    |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1           | 0.074 | 0.317 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.413  |
| O2           | 0.317 | 8.098 | 0.436 | 0.148 | 0.043 | 0.019 | 0.002 | 0.002 | 0.002 | 0.008 | 0.015 | 0.000 | 0.001 | 0.000 | 0.001 | 9.092  |
| C3           | 0.006 | 0.436 | 2.847 | 0.652 | 0.487 | 0.026 | 0.005 | 0.005 | 0.005 | 0.028 | 0.003 | 0.001 | 0.003 | 0.001 | 0.001 | 4.505  |
| O4           | 0.010 | 0.148 | 0.652 | 8.211 | 0.054 | 0.015 | 0.003 | 0.006 | 0.002 | 0.024 | 0.001 | 0.000 | 0.015 | 0.000 | 0.002 | 9.144  |
| C5           | 0.004 | 0.043 | 0.487 | 0.054 | 3.909 | 0.669 | 0.035 | 0.042 | 0.035 | 0.666 | 0.021 | 0.005 | 0.021 | 0.005 | 0.008 | 6.004  |
| C6           | 0.001 | 0.019 | 0.026 | 0.015 | 0.669 | 3.937 | 0.699 | 0.039 | 0.047 | 0.034 | 0.468 | 0.022 | 0.004 | 0.002 | 0.008 | 5.991  |
| C7           | 0.000 | 0.002 | 0.005 | 0.003 | 0.035 | 0.699 | 3.942 | 0.664 | 0.031 | 0.047 | 0.022 | 0.475 | 0.002 | 0.004 | 0.053 | 5.984  |
| C8           | 0.000 | 0.002 | 0.005 | 0.006 | 0.042 | 0.039 | 0.664 | 3.600 | 0.662 | 0.040 | 0.005 | 0.024 | 0.005 | 0.024 | 0.415 | 5.533  |
| C9           | 0.000 | 0.002 | 0.005 | 0.002 | 0.035 | 0.047 | 0.031 | 0.662 | 3.942 | 0.702 | 0.002 | 0.004 | 0.022 | 0.475 | 0.053 | 5.984  |
| C10          | 0.001 | 0.008 | 0.028 | 0.024 | 0.666 | 0.034 | 0.047 | 0.040 | 0.702 | 3.936 | 0.005 | 0.002 | 0.467 | 0.022 | 0.008 | 5.988  |
| H11          | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.468 | 0.022 | 0.005 | 0.002 | 0.005 | 0.386 | 0.003 | 0.001 | 0.000 | 0.001 | 0.933  |
| H12          | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.022 | 0.475 | 0.024 | 0.004 | 0.002 | 0.003 | 0.399 | 0.000 | 0.001 | 0.007 | 0.943  |
| H13          | 0.000 | 0.001 | 0.003 | 0.015 | 0.021 | 0.004 | 0.002 | 0.005 | 0.022 | 0.467 | 0.001 | 0.000 | 0.380 | 0.003 | 0.001 | 0.925  |
| H14          | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.024 | 0.475 | 0.022 | 0.000 | 0.001 | 0.003 | 0.398 | 0.007 | 0.941  |
| F15          | 0.000 | 0.001 | 0.001 | 0.002 | 0.008 | 0.008 | 0.053 | 0.415 | 0.053 | 0.008 | 0.001 | 0.007 | 0.001 | 0.007 | 9.055 | 9.620  |
| SUM          | 0.413 | 9.092 | 4.505 | 9.144 | 6.004 | 5.991 | 5.984 | 5.533 | 5.984 | 5.988 | 0.933 | 0.943 | 0.925 | 0.941 | 9.620 | 72.000 |



| $C_9H_11NO_2$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | N15   | C16   | C17   | H18   | H19   | H20   | H21   | H22   | $H_{23}$ | SUM    |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|--------|
| H1            | 0.076 | 0.321 | 0.006 | 0.011 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000    | 0.420  |
| 02            | 0.321 | 8.101 | 0.432 | 0.146 | 0.044 | 0.018 | 0.002 | 0.002 | 0.002 | 0.008 | 0.015 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000    | 9.093  |
| C3            | 0.006 | 0.432 | 2.867 | 0.645 | 0.501 | 0.026 | 0.006 | 0.005 | 0.006 | 0.028 | 0.002 | 0.001 | 0.001 | 0.003 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000    | 4.535  |
| 04            | 0.011 | 0.146 | 0.645 | 8.227 | 0.055 | 0.015 | 0.004 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.000 | 0.015 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000    | 9.156  |
| C5            | 0.004 | 0.044 | 0.501 | 0.055 | 3.916 | 0.658 | 0.036 | 0.034 | 0.036 | 0.655 | 0.021 | 0.005 | 0.005 | 0.021 | 0.015 | 0.001 | 0.001 | 0.001 | 0.000 | 0.001 | 0.001 | 0.000 | 0.001    | 6.011  |
| C6            | 0.001 | 0.018 | 0.026 | 0.015 | 0.658 | 3.936 | 0.718 | 0.035 | 0.041 | 0.033 | 0.470 | 0.024 | 0.002 | 0.005 | 0.009 | 0.001 | 0.001 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.001    | 5.997  |
| C7            | 0.000 | 0.002 | 0.006 | 0.004 | 0.036 | 0.718 | 3.975 | 0.628 | 0.031 | 0.041 | 0.024 | 0.474 | 0.004 | 0.002 | 0.051 | 0.012 | 0.005 | 0.006 | 0.001 | 0.007 | 0.001 | 0.001 | 0.001    | 6.030  |
| C8            | 0.000 | 0.002 | 0.005 | 0.006 | 0.034 | 0.035 | 0.628 | 3.575 | 0.626 | 0.035 | 0.005 | 0.022 | 0.022 | 0.005 | 0.542 | 0.015 | 0.015 | 0.004 | 0.004 | 0.003 | 0.003 | 0.004 | 0.004    | 5.589  |
| C9            | 0.000 | 0.002 | 0.006 | 0.002 | 0.036 | 0.041 | 0.031 | 0.626 | 3.974 | 0.721 | 0.002 | 0.004 | 0.474 | 0.024 | 0.051 | 0.005 | 0.011 | 0.001 | 0.001 | 0.001 | 0.007 | 0.001 | 0.006    | 6.029  |
| C10           | 0.001 | 0.008 | 0.028 | 0.023 | 0.655 | 0.033 | 0.041 | 0.035 | 0.721 | 3.935 | 0.005 | 0.002 | 0.024 | 0.469 | 0.01  | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001    | 5.994  |
| H11           | 0.000 | 0.015 | 0.002 | 0.001 | 0.021 | 0.470 | 0.024 | 0.005 | 0.002 | 0.005 | 0.397 | 0.003 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000    | 0.948  |
| H12           | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.024 | 0.474 | 0.022 | 0.004 | 0.002 | 0.003 | 0.418 | 0.001 | 0.000 | 0.005 | 0.012 | 0.000 | 0.005 | 0.001 | 0.008 | 0.000 | 0.000 | 0.000    | 0.986  |
| $H_{13}$      | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.022 | 0.474 | 0.024 | 0.000 | 0.001 | 0.417 | 0.003 | 0.005 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 | 0.008 | 0.001 | 0.005    | 0.985  |
| H14           | 0.000 | 0.001 | 0.003 | 0.015 | 0.021 | 0.005 | 0.002 | 0.005 | 0.024 | 0.469 | 0.001 | 0.000 | 0.003 | 0.392 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000    | 0.941  |
| N15           | 0.000 | 0.001 | 0.004 | 0.004 | 0.015 | 0.009 | 0.051 | 0.542 | 0.051 | 0.010 | 0.001 | 0.005 | 0.005 | 0.001 | 6.262 | 0.476 | 0.476 | 0.032 | 0.027 | 0.030 | 0.030 | 0.027 | 0.032    | 8.093  |
| C16           | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.012 | 0.015 | 0.005 | 0.001 | 0.000 | 0.012 | 0.000 | 0.000 | 0.476 | 3.697 | 0.017 | 0.464 | 0.466 | 0.462 | 0.003 | 0.008 | 0.002    | 5.640  |
| C17           | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.005 | 0.015 | 0.011 | 0.001 | 0.000 | 0.000 | 0.012 | 0.000 | 0.476 | 0.017 | 3.697 | 0.002 | 0.008 | 0.003 | 0.462 | 0.466 | 0.464    | 5.640  |
| $H_{18}$      | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.006 | 0.004 | 0.001 | 0.001 | 0.000 | 0.005 | 0.000 | 0.000 | 0.032 | 0.464 | 0.002 | 0.436 | 0.018 | 0.019 | 0.001 | 0.000 | 0.000    | 0.991  |
| $H_{19}$      | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.004 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.027 | 0.466 | 0.008 | 0.018 | 0.428 | 0.017 | 0.001 | 0.010 | 0.000    | 0.983  |
| $H_{20}$      | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.007 | 0.003 | 0.001 | 0.000 | 0.000 | 0.008 | 0.000 | 0.000 | 0.030 | 0.462 | 0.003 | 0.019 | 0.017 | 0.429 | 0.000 | 0.001 | 0.001    | 0.984  |
| $H_{21}$      | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.003 | 0.007 | 0.001 | 0.000 | 0.000 | 0.008 | 0.000 | 0.030 | 0.003 | 0.462 | 0.001 | 0.001 | 0.000 | 0.428 | 0.017 | 0.019    | 0.983  |
| H22           | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.027 | 0.008 | 0.466 | 0.000 | 0.010 | 0.001 | 0.017 | 0.428 | 0.018    | 0.983  |
| $H_{23}$      | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.004 | 0.006 | 0.001 | 0.000 | 0.000 | 0.005 | 0.000 | 0.032 | 0.002 | 0.464 | 0.000 | 0.000 | 0.001 | 0.019 | 0.018 | 0.436    | 0.990  |
| SUM           | 0.420 | 9.093 | 4.535 | 9.156 | 6.011 | 5.997 | 6.030 | 5.589 | 6.029 | 5.994 | 0.948 | 0.986 | 0.985 | 0.941 | 8.093 | 5.640 | 5.640 | 0.991 | 0.983 | 0.984 | 0.983 | 0.983 | 0.990    | 88.000 |

| $C_9H_11NO_2$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | NCH3CH315 | SUM    |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|--------|
| H1            | 0.076 | 0.321 | 0.006 | 0.011 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000     | 0.420  |
| O2            | 0.321 | 8.101 | 0.432 | 0.146 | 0.044 | 0.018 | 0.002 | 0.002 | 0.002 | 0.008 | 0.015 | 0.000 | 0.000 | 0.001 | 0.002     | 9.093  |
| C3            | 0.006 | 0.432 | 2.867 | 0.645 | 0.501 | 0.026 | 0.006 | 0.005 | 0.006 | 0.028 | 0.002 | 0.001 | 0.001 | 0.003 | 0.005     | 4.535  |
| O4            | 0.011 | 0.146 | 0.645 | 8.227 | 0.055 | 0.015 | 0.004 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.000 | 0.015 | 0.005     | 9.156  |
| C5            | 0.004 | 0.044 | 0.501 | 0.055 | 3.916 | 0.658 | 0.036 | 0.034 | 0.036 | 0.655 | 0.021 | 0.005 | 0.005 | 0.021 | 0.021     | 6.011  |
| C6            | 0.001 | 0.018 | 0.026 | 0.015 | 0.658 | 3.936 | 0.718 | 0.035 | 0.041 | 0.033 | 0.470 | 0.024 | 0.002 | 0.005 | 0.014     | 5.997  |
| C7            | 0.000 | 0.002 | 0.006 | 0.004 | 0.036 | 0.718 | 3.975 | 0.628 | 0.031 | 0.041 | 0.024 | 0.474 | 0.004 | 0.002 | 0.085     | 6.03   |
| C8            | 0.000 | 0.002 | 0.005 | 0.006 | 0.034 | 0.035 | 0.628 | 3.575 | 0.626 | 0.035 | 0.005 | 0.022 | 0.022 | 0.005 | 0.593     | 5.589  |
| C9            | 0.000 | 0.002 | 0.006 | 0.002 | 0.036 | 0.041 | 0.031 | 0.626 | 3.974 | 0.721 | 0.002 | 0.004 | 0.474 | 0.024 | 0.085     | 6.029  |
| C10           | 0.001 | 0.008 | 0.028 | 0.023 | 0.655 | 0.033 | 0.041 | 0.035 | 0.721 | 3.935 | 0.005 | 0.002 | 0.024 | 0.469 | 0.014     | 5.994  |
| H11           | 0.000 | 0.015 | 0.002 | 0.001 | 0.021 | 0.470 | 0.024 | 0.005 | 0.002 | 0.005 | 0.397 | 0.003 | 0.000 | 0.001 | 0.001     | 0.948  |
| H12           | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.024 | 0.474 | 0.022 | 0.004 | 0.002 | 0.003 | 0.418 | 0.001 | 0.000 | 0.031     | 0.986  |
| H13           | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.022 | 0.474 | 0.024 | 0.000 | 0.001 | 0.417 | 0.003 | 0.031     | 0.985  |
| H14           | 0.000 | 0.001 | 0.003 | 0.015 | 0.021 | 0.005 | 0.002 | 0.005 | 0.024 | 0.469 | 0.001 | 0.000 | 0.003 | 0.392 | 0.001     | 0.941  |
| NCH3CH315     | 0.000 | 0.002 | 0.005 | 0.005 | 0.021 | 0.014 | 0.085 | 0.593 | 0.085 | 0.014 | 0.001 | 0.031 | 0.031 | 0.001 | 24.398    | 25.287 |
| SUM           | 0.420 | 9.093 | 4.535 | 9.156 | 6.011 | 5.997 | 6.030 | 5.589 | 6.029 | 5.994 | 0.948 | 0.986 | 0.985 | 0.941 | 25.287    | 88.000 |



| $\mathbf{C}_{7}\mathbf{H}_{7}\mathbf{NO}_{2}$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | N15   | H16   | H17   | SUM    |
|-----------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1                                            | 0.075 | 0.320 | 0.006 | 0.011 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.418  |
| O2                                            | 0.320 | 8.100 | 0.433 | 0.146 | 0.044 | 0.018 | 0.002 | 0.002 | 0.002 | 0.008 | 0.015 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 9.092  |
| C3                                            | 0.006 | 0.433 | 2.863 | 0.646 | 0.498 | 0.026 | 0.006 | 0.005 | 0.006 | 0.028 | 0.003 | 0.001 | 0.003 | 0.001 | 0.004 | 0.000 | 0.000 | 4.529  |
| O4                                            | 0.011 | 0.146 | 0.646 | 8.224 | 0.055 | 0.015 | 0.004 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.015 | 0.000 | 0.004 | 0.000 | 0.000 | 9.154  |
| C5                                            | 0.004 | 0.044 | 0.498 | 0.055 | 3.914 | 0.660 | 0.036 | 0.038 | 0.036 | 0.656 | 0.021 | 0.005 | 0.020 | 0.005 | 0.015 | 0.001 | 0.001 | 6.009  |
| C6                                            | 0.001 | 0.018 | 0.026 | 0.015 | 0.660 | 3.937 | 0.715 | 0.036 | 0.042 | 0.033 | 0.470 | 0.025 | 0.004 | 0.002 | 0.010 | 0.000 | 0.001 | 5.996  |
| C7                                            | 0.000 | 0.002 | 0.006 | 0.004 | 0.036 | 0.715 | 3.966 | 0.640 | 0.031 | 0.043 | 0.023 | 0.480 | 0.002 | 0.004 | 0.056 | 0.004 | 0.005 | 6.016  |
| C8                                            | 0.000 | 0.002 | 0.005 | 0.006 | 0.038 | 0.036 | 0.640 | 3.579 | 0.638 | 0.036 | 0.005 | 0.023 | 0.005 | 0.023 | 0.536 | 0.011 | 0.011 | 5.594  |
| C9                                            | 0.000 | 0.002 | 0.006 | 0.002 | 0.036 | 0.042 | 0.031 | 0.638 | 3.966 | 0.718 | 0.002 | 0.004 | 0.023 | 0.479 | 0.056 | 0.005 | 0.004 | 6.016  |
| C10                                           | 0.001 | 0.008 | 0.028 | 0.023 | 0.656 | 0.033 | 0.043 | 0.036 | 0.718 | 3.936 | 0.005 | 0.002 | 0.469 | 0.025 | 0.010 | 0.001 | 0.000 | 5.993  |
| H11                                           | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.470 | 0.023 | 0.005 | 0.002 | 0.005 | 0.394 | 0.003 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.944  |
| H12                                           | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.025 | 0.480 | 0.023 | 0.004 | 0.002 | 0.003 | 0.432 | 0.000 | 0.001 | 0.007 | 0.003 | 0.000 | 0.987  |
| $H_{13}$                                      | 0.000 | 0.001 | 0.003 | 0.015 | 0.020 | 0.004 | 0.002 | 0.005 | 0.023 | 0.469 | 0.001 | 0.000 | 0.389 | 0.003 | 0.001 | 0.000 | 0.000 | 0.937  |
| H14                                           | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.023 | 0.479 | 0.025 | 0.000 | 0.001 | 0.003 | 0.431 | 0.007 | 0.000 | 0.003 | 0.986  |
| N15                                           | 0.000 | 0.001 | 0.004 | 0.004 | 0.015 | 0.010 | 0.056 | 0.536 | 0.056 | 0.010 | 0.001 | 0.007 | 0.001 | 0.007 | 6.533 | 0.420 | 0.420 | 8.080  |
| H16                                           | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.004 | 0.011 | 0.005 | 0.001 | 0.000 | 0.003 | 0.000 | 0.000 | 0.420 | 0.170 | 0.009 | 0.625  |
| H17                                           | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.005 | 0.011 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | 0.420 | 0.009 | 0.170 | 0.624  |
| SUM                                           | 0.418 | 9.092 | 4.529 | 9.154 | 6.009 | 5.996 | 6.016 | 5.594 | 6.016 | 5.993 | 0.944 | 0.987 | 0.937 | 0.986 | 8.08  | 0.625 | 0.624 | 72.000 |

| $\mathbf{C}_{7}\mathbf{H}_{7}\mathbf{NO}_{2}$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | NH215 | SUM    |
|-----------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1                                            | 0.075 | 0.320 | 0.006 | 0.011 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.418  |
| O2                                            | 0.320 | 8.100 | 0.433 | 0.146 | 0.044 | 0.018 | 0.002 | 0.002 | 0.002 | 0.008 | 0.015 | 0.000 | 0.001 | 0.000 | 0.001 | 9.092  |
| C3                                            | 0.006 | 0.433 | 2.863 | 0.646 | 0.498 | 0.026 | 0.006 | 0.005 | 0.006 | 0.028 | 0.003 | 0.001 | 0.003 | 0.001 | 0.004 | 4.529  |
| O4                                            | 0.011 | 0.146 | 0.646 | 8.224 | 0.055 | 0.015 | 0.004 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.015 | 0.000 | 0.004 | 9.154  |
| C5                                            | 0.004 | 0.044 | 0.498 | 0.055 | 3.914 | 0.660 | 0.036 | 0.038 | 0.036 | 0.656 | 0.021 | 0.005 | 0.020 | 0.005 | 0.016 | 6.009  |
| C6                                            | 0.001 | 0.018 | 0.026 | 0.015 | 0.660 | 3.937 | 0.715 | 0.036 | 0.042 | 0.033 | 0.470 | 0.025 | 0.004 | 0.002 | 0.011 | 5.996  |
| C7                                            | 0.000 | 0.002 | 0.006 | 0.004 | 0.036 | 0.715 | 3.966 | 0.640 | 0.031 | 0.043 | 0.023 | 0.480 | 0.002 | 0.004 | 0.065 | 6.016  |
| C8                                            | 0.000 | 0.002 | 0.005 | 0.006 | 0.038 | 0.036 | 0.640 | 3.579 | 0.638 | 0.036 | 0.005 | 0.023 | 0.005 | 0.023 | 0.557 | 5.594  |
| C9                                            | 0.000 | 0.002 | 0.006 | 0.002 | 0.036 | 0.042 | 0.031 | 0.638 | 3.966 | 0.718 | 0.002 | 0.004 | 0.023 | 0.479 | 0.065 | 6.016  |
| C10                                           | 0.001 | 0.008 | 0.028 | 0.023 | 0.656 | 0.033 | 0.043 | 0.036 | 0.718 | 3.936 | 0.005 | 0.002 | 0.469 | 0.025 | 0.011 | 5.993  |
| H11                                           | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.470 | 0.023 | 0.005 | 0.002 | 0.005 | 0.394 | 0.003 | 0.001 | 0.000 | 0.001 | 0.944  |
| H12                                           | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.025 | 0.480 | 0.023 | 0.004 | 0.002 | 0.003 | 0.432 | 0.000 | 0.001 | 0.010 | 0.987  |
| H13                                           | 0.000 | 0.001 | 0.003 | 0.015 | 0.020 | 0.004 | 0.002 | 0.005 | 0.023 | 0.469 | 0.001 | 0.000 | 0.389 | 0.003 | 0.001 | 0.937  |
| H14                                           | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.023 | 0.479 | 0.025 | 0.000 | 0.001 | 0.003 | 0.431 | 0.010 | 0.986  |
| NH215                                         | 0.000 | 0.001 | 0.004 | 0.004 | 0.016 | 0.011 | 0.065 | 0.557 | 0.065 | 0.011 | 0.001 | 0.010 | 0.001 | 0.010 | 8.571 | 9.329  |
| SUM                                           | 0.418 | 9.092 | 4.529 | 9.154 | 6.009 | 5.996 | 6.016 | 5.594 | 6.016 | 5.993 | 0.944 | 0.987 | 0.937 | 0.986 | 9.329 | 72.000 |



| $C_8H_9NO_2$ | $H_1$ | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | N15   | C16   | H17   | H18   | H19   | H20   | SUM    |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1           | 0.076 | 0.320 | 0.006 | 0.011 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.419  |
| O2           | 0.320 | 8.101 | 0.432 | 0.146 | 0.044 | 0.019 | 0.002 | 0.002 | 0.002 | 0.007 | 0.015 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 9.093  |
| C3           | 0.006 | 0.432 | 2.866 | 0.645 | 0.501 | 0.027 | 0.006 | 0.005 | 0.006 | 0.028 | 0.003 | 0.001 | 0.001 | 0.003 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 4.534  |
| 04           | 0.011 | 0.146 | 0.645 | 8.226 | 0.055 | 0.016 | 0.004 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.000 | 0.015 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 9.156  |
| C5           | 0.004 | 0.044 | 0.501 | 0.055 | 3.915 | 0.664 | 0.036 | 0.035 | 0.036 | 0.648 | 0.021 | 0.005 | 0.005 | 0.020 | 0.015 | 0.001 | 0.001 | 0.000 | 0.001 | 0.001 | 6.010  |
| C6           | 0.001 | 0.019 | 0.027 | 0.016 | 0.664 | 3.935 | 0.710 | 0.036 | 0.043 | 0.033 | 0.470 | 0.024 | 0.002 | 0.004 | 0.009 | 0.001 | 0.001 | 0.000 | 0.001 | 0.001 | 5.996  |
| C7           | 0.000 | 0.002 | 0.006 | 0.004 | 0.036 | 0.710 | 3.975 | 0.637 | 0.031 | 0.040 | 0.023 | 0.476 | 0.004 | 0.002 | 0.054 | 0.009 | 0.005 | 0.001 | 0.005 | 0.005 | 6.027  |
| C8           | 0.000 | 0.002 | 0.005 | 0.006 | 0.035 | 0.036 | 0.637 | 3.568 | 0.626 | 0.035 | 0.004 | 0.022 | 0.023 | 0.005 | 0.539 | 0.015 | 0.002 | 0.004 | 0.003 | 0.011 | 5.578  |
| C9           | 0.000 | 0.002 | 0.006 | 0.002 | 0.036 | 0.043 | 0.031 | 0.626 | 3.969 | 0.728 | 0.002 | 0.004 | 0.479 | 0.024 | 0.055 | 0.005 | 0.001 | 0.001 | 0.001 | 0.005 | 6.020  |
| C10          | 0.001 | 0.007 | 0.028 | 0.023 | 0.648 | 0.033 | 0.040 | 0.035 | 0.728 | 3.936 | 0.005 | 0.002 | 0.025 | 0.469 | 0.011 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 5.994  |
| $H_{11}$     | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.470 | 0.023 | 0.004 | 0.002 | 0.005 | 0.396 | 0.003 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.946  |
| H12          | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.024 | 0.476 | 0.022 | 0.004 | 0.002 | 0.003 | 0.420 | 0.001 | 0.000 | 0.005 | 0.009 | 0.006 | 0.001 | 0.004 | 0.000 | 0.985  |
| $H_{13}$     | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.023 | 0.479 | 0.025 | 0.000 | 0.001 | 0.434 | 0.003 | 0.008 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.991  |
| H14          | 0.000 | 0.001 | 0.003 | 0.015 | 0.020 | 0.004 | 0.002 | 0.005 | 0.024 | 0.469 | 0.001 | 0.000 | 0.003 | 0.390 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.939  |
| N15          | 0.000 | 0.001 | 0.004 | 0.004 | 0.015 | 0.009 | 0.054 | 0.539 | 0.055 | 0.011 | 0.001 | 0.005 | 0.008 | 0.001 | 6.405 | 0.482 | 0.032 | 0.031 | 0.034 | 0.414 | 8.106  |
| C16          | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.009 | 0.015 | 0.005 | 0.001 | 0.000 | 0.009 | 0.000 | 0.000 | 0.482 | 3.694 | 0.464 | 0.471 | 0.464 | 0.011 | 5.629  |
| H17          | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.005 | 0.002 | 0.001 | 0.000 | 0.000 | 0.006 | 0.000 | 0.000 | 0.032 | 0.464 | 0.431 | 0.018 | 0.019 | 0.003 | 0.983  |
| $H_{18}$     | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.004 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.031 | 0.471 | 0.018 | 0.431 | 0.018 | 0.002 | 0.978  |
| $H_{19}$     | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.005 | 0.003 | 0.001 | 0.001 | 0.000 | 0.004 | 0.000 | 0.000 | 0.034 | 0.464 | 0.019 | 0.018 | 0.437 | 0.001 | 0.990  |
| $H_{20}$     | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.005 | 0.011 | 0.005 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.414 | 0.011 | 0.003 | 0.002 | 0.001 | 0.170 | 0.627  |
| SUM          | 0.419 | 9.093 | 4.534 | 9.156 | 6.010 | 5.996 | 6.027 | 5.578 | 6.020 | 5.994 | 0.946 | 0.985 | 0.991 | 0.939 | 8.106 | 5.629 | 0.983 | 0.978 | 0.990 | 0.627 | 80.000 |

| $C_8H_9NO_2$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | NHCH315 | SUM    |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|--------|
| H1           | 0.076 | 0.320 | 0.006 | 0.011 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000   | 0.419  |
| O2           | 0.320 | 8.101 | 0.432 | 0.146 | 0.044 | 0.019 | 0.002 | 0.002 | 0.002 | 0.007 | 0.015 | 0.000 | 0.000 | 0.001 | 0.002   | 9.093  |
| C3           | 0.006 | 0.432 | 2.866 | 0.645 | 0.501 | 0.027 | 0.006 | 0.005 | 0.006 | 0.028 | 0.003 | 0.001 | 0.001 | 0.003 | 0.005   | 4.534  |
| O4           | 0.011 | 0.146 | 0.645 | 8.226 | 0.055 | 0.016 | 0.004 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.000 | 0.015 | 0.005   | 9.156  |
| C5           | 0.004 | 0.044 | 0.501 | 0.055 | 3.915 | 0.664 | 0.036 | 0.035 | 0.036 | 0.648 | 0.021 | 0.005 | 0.005 | 0.020 | 0.019   | 6.010  |
| C6           | 0.001 | 0.019 | 0.027 | 0.016 | 0.664 | 3.935 | 0.710 | 0.036 | 0.043 | 0.033 | 0.470 | 0.024 | 0.002 | 0.004 | 0.012   | 5.996  |
| C7           | 0.000 | 0.002 | 0.006 | 0.004 | 0.036 | 0.710 | 3.975 | 0.637 | 0.031 | 0.040 | 0.023 | 0.476 | 0.004 | 0.002 | 0.080   | 6.027  |
| C8           | 0.000 | 0.002 | 0.005 | 0.006 | 0.035 | 0.036 | 0.637 | 3.568 | 0.626 | 0.035 | 0.004 | 0.022 | 0.023 | 0.005 | 0.575   | 5.578  |
| C9           | 0.000 | 0.002 | 0.006 | 0.002 | 0.036 | 0.043 | 0.031 | 0.626 | 3.969 | 0.728 | 0.002 | 0.004 | 0.479 | 0.024 | 0.068   | 6.020  |
| C10          | 0.001 | 0.007 | 0.028 | 0.023 | 0.648 | 0.033 | 0.040 | 0.035 | 0.728 | 3.936 | 0.005 | 0.002 | 0.025 | 0.469 | 0.014   | 5.994  |
| H11          | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.470 | 0.023 | 0.004 | 0.002 | 0.005 | 0.396 | 0.003 | 0.000 | 0.001 | 0.001   | 0.946  |
| H12          | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.024 | 0.476 | 0.022 | 0.004 | 0.002 | 0.003 | 0.420 | 0.001 | 0.000 | 0.026   | 0.985  |
| $H_{13}$     | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.023 | 0.479 | 0.025 | 0.000 | 0.001 | 0.434 | 0.003 | 0.012   | 0.991  |
| H14          | 0.000 | 0.001 | 0.003 | 0.015 | 0.020 | 0.004 | 0.002 | 0.005 | 0.024 | 0.469 | 0.001 | 0.000 | 0.003 | 0.390 | 0.001   | 0.939  |
| NHCH315      | 0.000 | 0.002 | 0.005 | 0.005 | 0.019 | 0.012 | 0.080 | 0.575 | 0.068 | 0.014 | 0.001 | 0.026 | 0.012 | 0.001 | 16.495  | 17.313 |
| SUM          | 0.419 | 9.093 | 4.534 | 9.156 | 6.010 | 5.996 | 6.027 | 5.578 | 6.020 | 5.994 | 0.946 | 0.985 | 0.991 | 0.939 | 17.313  | 80.000 |



| $\mathbf{C}_{9}\mathbf{H}_{9}\mathbf{NO}_{3}$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | N15   | C16   | H17   | O18   | C19   | H20   | H21   | H22    | SUM    |
|-----------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| H1                                            | 0.074 | 0.317 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.414  |
| 02                                            | 0.317 | 8.099 | 0.435 | 0.148 | 0.043 | 0.019 | 0.002 | 0.002 | 0.002 | 0.007 | 0.015 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 9.092  |
| C3                                            | 0.006 | 0.435 | 2.850 | 0.651 | 0.489 | 0.026 | 0.005 | 0.005 | 0.005 | 0.028 | 0.003 | 0.001 | 0.001 | 0.003 | 0.002 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000  | 4.510  |
| O4                                            | 0.010 | 0.148 | 0.651 | 8.212 | 0.054 | 0.016 | 0.003 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.000 | 0.015 | 0.002 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000  | 9.145  |
| C5                                            | 0.004 | 0.043 | 0.489 | 0.054 | 3.910 | 0.668 | 0.035 | 0.040 | 0.035 | 0.660 | 0.021 | 0.005 | 0.005 | 0.020 | 0.009 | 0.002 | 0.001 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000  | 6.006  |
| C6                                            | 0.001 | 0.019 | 0.026 | 0.016 | 0.668 | 3.938 | 0.703 | 0.036 | 0.045 | 0.033 | 0.469 | 0.023 | 0.002 | 0.004 | 0.007 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000  | 5.994  |
| C7                                            | 0.000 | 0.002 | 0.005 | 0.003 | 0.035 | 0.703 | 3.947 | 0.652 | 0.031 | 0.044 | 0.023 | 0.470 | 0.004 | 0.002 | 0.045 | 0.005 | 0.004 | 0.005 | 0.010 | 0.010 | 0.001 | 0.003  | 6.005  |
| C8                                            | 0.000 | 0.002 | 0.005 | 0.006 | 0.040 | 0.036 | 0.652 | 3.616 | 0.646 | 0.036 | 0.004 | 0.022 | 0.023 | 0.004 | 0.502 | 0.011 | 0.009 | 0.011 | 0.004 | 0.005 | 0.000 | 0.000  | 5.636  |
| C9                                            | 0.000 | 0.002 | 0.005 | 0.002 | 0.035 | 0.045 | 0.031 | 0.646 | 3.955 | 0.712 | 0.002 | 0.004 | 0.477 | 0.023 | 0.050 | 0.006 | 0.004 | 0.005 | 0.001 | 0.000 | 0.000 | 0.000  | 6.007  |
| C10                                           | 0.001 | 0.007 | 0.028 | 0.023 | 0.660 | 0.033 | 0.044 | 0.036 | 0.712 | 3.937 | 0.005 | 0.002 | 0.024 | 0.468 | 0.008 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000  | 5.991  |
| H11                                           | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.469 | 0.023 | 0.004 | 0.002 | 0.005 | 0.389 | 0.003 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.938  |
| H12                                           | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.023 | 0.470 | 0.022 | 0.004 | 0.002 | 0.003 | 0.408 | 0.001 | 0.000 | 0.005 | 0.001 | 0.000 | 0.001 | 0.010 | 0.004 | 0.001 | 0.006  | 0.968  |
| H13                                           | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.023 | 0.477 | 0.024 | 0.000 | 0.001 | 0.419 | 0.003 | 0.009 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.972  |
| H14                                           | 0.000 | 0.001 | 0.003 | 0.015 | 0.020 | 0.004 | 0.002 | 0.004 | 0.023 | 0.468 | 0.001 | 0.000 | 0.003 | 0.383 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.929  |
| N15                                           | 0.000 | 0.001 | 0.002 | 0.002 | 0.009 | 0.007 | 0.045 | 0.502 | 0.050 | 0.008 | 0.001 | 0.005 | 0.009 | 0.001 | 6.413 | 0.491 | 0.397 | 0.134 | 0.037 | 0.005 | 0.005 | 0.005  | 8.127  |
| C16                                           | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.005 | 0.011 | 0.006 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.491 | 2.918 | 0.009 | 0.659 | 0.471 | 0.019 | 0.019 | 0.023  | 4.636  |
| H17                                           | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.004 | 0.009 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 | 0.397 | 0.009 | 0.156 | 0.011 | 0.004 | 0.000 | 0.001 | 0.000  | 0.600  |
| O18                                           | 0.000 | 0.000 | 0.001 | 0.001 | 0.003 | 0.001 | 0.005 | 0.011 | 0.005 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.134 | 0.659 | 0.011 | 8.212 | 0.059 | 0.010 | 0.012 | 0.010  | 9.136  |
| C19                                           | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.010 | 0.000 | 0.000 | 0.037 | 0.471 | 0.004 | 0.059 | 3.986 | 0.471 | 0.472 | 0.471  | 5.998  |
| H20                                           | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.010 | 0.005 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.005 | 0.019 | 0.000 | 0.010 | 0.471 | 0.415 | 0.016 | 0.018  | 0.975  |
| $H_{21}$                                      | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.005 | 0.019 | 0.001 | 0.012 | 0.472 | 0.016 | 0.402 | 0.017  | 0.948  |
| H22                                           | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.006 | 0.000 | 0.000 | 0.005 | 0.023 | 0.000 | 0.010 | 0.471 | 0.018 | 0.017 | 0.416  | 0.971  |
| SUM                                           | 0.414 | 9.092 | 4.510 | 9.145 | 6.006 | 5.994 | 6.005 | 5.636 | 6.007 | 5.991 | 0.938 | 0.968 | 0.972 | 0.929 | 8.127 | 4.636 | 0.600 | 9.136 | 5.998 | 0.975 | 0.948 | 0.971  | 93.998 |
|                                               |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |
|                                               |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |
|                                               |       |       |       |       |       |       | -     |       |       |       |       | -     |       |       |       |       |       |       |       |       |       |        |        |
| $C_9H_9NO$                                    | 3     | _ H1  | 0     | 2     | C3    | O4    | C5    | C     | 76    | C7    | C8    | C     | 9 C   | 210   | H11   | H12   | H1    | 3 F   | I14   | NHC   | OCHE  | 315 \$ | SUM    |

| $C_9H_9NO_3$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | NHCOCH315 | SUM    |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|--------|
| H1           | 0.074 | 0.317 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000     | 0.414  |
| O2           | 0.317 | 8.099 | 0.435 | 0.148 | 0.043 | 0.019 | 0.002 | 0.002 | 0.002 | 0.007 | 0.015 | 0.000 | 0.000 | 0.001 | 0.001     | 9.092  |
| C3           | 0.006 | 0.435 | 2.850 | 0.651 | 0.489 | 0.026 | 0.005 | 0.005 | 0.005 | 0.028 | 0.003 | 0.001 | 0.001 | 0.003 | 0.003     | 4.51   |
| <i>O</i> 4   | 0.010 | 0.148 | 0.651 | 8.212 | 0.054 | 0.016 | 0.003 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.000 | 0.015 | 0.003     | 9.145  |
| C5           | 0.004 | 0.043 | 0.489 | 0.054 | 3.910 | 0.668 | 0.035 | 0.040 | 0.035 | 0.660 | 0.021 | 0.005 | 0.005 | 0.020 | 0.016     | 6.006  |
| C6           | 0.001 | 0.019 | 0.026 | 0.016 | 0.668 | 3.938 | 0.703 | 0.036 | 0.045 | 0.033 | 0.469 | 0.023 | 0.002 | 0.004 | 0.012     | 5.994  |
| C7           | 0.000 | 0.002 | 0.005 | 0.003 | 0.035 | 0.703 | 3.947 | 0.652 | 0.031 | 0.044 | 0.023 | 0.470 | 0.004 | 0.002 | 0.083     | 6.005  |
| C8           | 0.000 | 0.002 | 0.005 | 0.006 | 0.040 | 0.036 | 0.652 | 3.616 | 0.646 | 0.036 | 0.004 | 0.022 | 0.023 | 0.004 | 0.543     | 5.636  |
| C9           | 0.000 | 0.002 | 0.005 | 0.002 | 0.035 | 0.045 | 0.031 | 0.646 | 3.955 | 0.712 | 0.002 | 0.004 | 0.477 | 0.023 | 0.067     | 6.007  |
| C10          | 0.001 | 0.007 | 0.028 | 0.023 | 0.660 | 0.033 | 0.044 | 0.036 | 0.712 | 3.937 | 0.005 | 0.002 | 0.024 | 0.468 | 0.011     | 5.991  |
| H11          | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.469 | 0.023 | 0.004 | 0.002 | 0.005 | 0.389 | 0.003 | 0.000 | 0.001 | 0.001     | 0.938  |
| H12          | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.023 | 0.470 | 0.022 | 0.004 | 0.002 | 0.003 | 0.408 | 0.001 | 0.000 | 0.028     | 0.968  |
| H13          | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.023 | 0.477 | 0.024 | 0.000 | 0.001 | 0.419 | 0.003 | 0.012     | 0.972  |
| H14          | 0.000 | 0.001 | 0.003 | 0.015 | 0.020 | 0.004 | 0.002 | 0.004 | 0.023 | 0.468 | 0.001 | 0.000 | 0.003 | 0.383 | 0.001     | 0.929  |
| NHCOCH315    | 0.000 | 0.001 | 0.003 | 0.003 | 0.016 | 0.012 | 0.083 | 0.543 | 0.067 | 0.011 | 0.001 | 0.028 | 0.012 | 0.001 | 30.610    | 31.392 |
| SUM          | 0.414 | 9.092 | 4.51  | 9.145 | 6.006 | 5.994 | 6.005 | 5.636 | 6.007 | 5.991 | 0.938 | 0.968 | 0.972 | 0.929 | 31.392    | 93.998 |



| $C_7H_5NO_4$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | N15   | O16   | O17   | SUM    |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1           | 0.072 | 0.315 | 0.006 | 0.009 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.409  |
| O2           | 0.315 | 8.096 | 0.439 | 0.150 | 0.043 | 0.019 | 0.002 | 0.002 | 0.001 | 0.007 | 0.015 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 9.091  |
| C3           | 0.006 | 0.439 | 2.835 | 0.657 | 0.478 | 0.025 | 0.004 | 0.004 | 0.004 | 0.027 | 0.002 | 0.001 | 0.003 | 0.001 | 0.000 | 0.000 | 0.000 | 4.487  |
| O4           | 0.009 | 0.150 | 0.657 | 8.196 | 0.054 | 0.015 | 0.002 | 0.006 | 0.002 | 0.024 | 0.001 | 0.000 | 0.016 | 0.000 | 0.001 | 0.001 | 0.001 | 9.133  |
| C5           | 0.004 | 0.043 | 0.478 | 0.054 | 3.906 | 0.670 | 0.036 | 0.043 | 0.036 | 0.668 | 0.021 | 0.004 | 0.021 | 0.004 | 0.004 | 0.005 | 0.005 | 6.003  |
| C6           | 0.001 | 0.019 | 0.025 | 0.015 | 0.670 | 3.938 | 0.698 | 0.038 | 0.047 | 0.033 | 0.467 | 0.020 | 0.004 | 0.002 | 0.005 | 0.002 | 0.003 | 5.987  |
| C7           | 0.000 | 0.002 | 0.004 | 0.002 | 0.036 | 0.698 | 3.931 | 0.666 | 0.031 | 0.048 | 0.022 | 0.463 | 0.002 | 0.004 | 0.030 | 0.025 | 0.013 | 5.977  |
| C8           | 0.000 | 0.002 | 0.004 | 0.006 | 0.043 | 0.038 | 0.666 | 3.766 | 0.664 | 0.038 | 0.004 | 0.021 | 0.004 | 0.021 | 0.424 | 0.047 | 0.047 | 5.796  |
| C9           | 0.000 | 0.001 | 0.004 | 0.002 | 0.036 | 0.047 | 0.031 | 0.664 | 3.931 | 0.700 | 0.002 | 0.004 | 0.022 | 0.463 | 0.030 | 0.013 | 0.025 | 5.976  |
| C10          | 0.001 | 0.007 | 0.027 | 0.024 | 0.668 | 0.033 | 0.048 | 0.038 | 0.700 | 3.936 | 0.004 | 0.002 | 0.466 | 0.021 | 0.005 | 0.003 | 0.002 | 5.984  |
| H11          | 0.000 | 0.015 | 0.002 | 0.001 | 0.021 | 0.467 | 0.022 | 0.004 | 0.002 | 0.004 | 0.380 | 0.003 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.926  |
| H12          | 0.000 | 0.000 | 0.001 | 0.000 | 0.004 | 0.020 | 0.463 | 0.021 | 0.004 | 0.002 | 0.003 | 0.364 | 0.000 | 0.001 | 0.003 | 0.018 | 0.001 | 0.907  |
| $H_{13}$     | 0.000 | 0.001 | 0.003 | 0.016 | 0.021 | 0.004 | 0.002 | 0.004 | 0.022 | 0.466 | 0.001 | 0.000 | 0.375 | 0.003 | 0.001 | 0.000 | 0.000 | 0.918  |
| H14          | 0.000 | 0.000 | 0.001 | 0.000 | 0.004 | 0.002 | 0.004 | 0.021 | 0.463 | 0.021 | 0.000 | 0.001 | 0.003 | 0.364 | 0.003 | 0.001 | 0.018 | 0.906  |
| N15          | 0.000 | 0.000 | 0.000 | 0.001 | 0.004 | 0.005 | 0.030 | 0.424 | 0.030 | 0.005 | 0.001 | 0.003 | 0.001 | 0.003 | 4.438 | 0.826 | 0.827 | 6.599  |
| O16          | 0.000 | 0.000 | 0.000 | 0.001 | 0.005 | 0.002 | 0.025 | 0.047 | 0.013 | 0.003 | 0.000 | 0.018 | 0.000 | 0.001 | 0.826 | 7.298 | 0.211 | 8.452  |
| O17          | 0.000 | 0.000 | 0.000 | 0.001 | 0.005 | 0.003 | 0.013 | 0.047 | 0.025 | 0.002 | 0.000 | 0.001 | 0.000 | 0.018 | 0.827 | 0.211 | 7.297 | 8.451  |
| SUM          | 0.409 | 9.091 | 4.487 | 9.133 | 6.003 | 5.987 | 5.977 | 5.796 | 5.976 | 5.984 | 0.926 | 0.907 | 0.918 | 0.906 | 6.599 | 8.452 | 8.451 | 86.000 |

| $\mathbf{C}_{7}\mathbf{H}_{5}\mathbf{NO}_{4}$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | NO215  | SUM    |
|-----------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| H1                                            | 0.072 | 0.315 | 0.006 | 0.009 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.409  |
| O2                                            | 0.315 | 8.096 | 0.439 | 0.150 | 0.043 | 0.019 | 0.002 | 0.002 | 0.001 | 0.007 | 0.015 | 0.000 | 0.001 | 0.000 | 0.001  | 9.091  |
| C3                                            | 0.006 | 0.439 | 2.835 | 0.657 | 0.478 | 0.025 | 0.004 | 0.004 | 0.004 | 0.027 | 0.002 | 0.001 | 0.003 | 0.001 | 0.001  | 4.487  |
| O4                                            | 0.009 | 0.150 | 0.657 | 8.196 | 0.054 | 0.015 | 0.002 | 0.006 | 0.002 | 0.024 | 0.001 | 0.000 | 0.016 | 0.000 | 0.002  | 9.133  |
| C5                                            | 0.004 | 0.043 | 0.478 | 0.054 | 3.906 | 0.670 | 0.036 | 0.043 | 0.036 | 0.668 | 0.021 | 0.004 | 0.021 | 0.004 | 0.014  | 6.003  |
| C6                                            | 0.001 | 0.019 | 0.025 | 0.015 | 0.670 | 3.938 | 0.698 | 0.038 | 0.047 | 0.033 | 0.467 | 0.020 | 0.004 | 0.002 | 0.010  | 5.987  |
| C7                                            | 0.000 | 0.002 | 0.004 | 0.002 | 0.036 | 0.698 | 3.931 | 0.666 | 0.031 | 0.048 | 0.022 | 0.463 | 0.002 | 0.004 | 0.068  | 5.977  |
| C8                                            | 0.000 | 0.002 | 0.004 | 0.006 | 0.043 | 0.038 | 0.666 | 3.766 | 0.664 | 0.038 | 0.004 | 0.021 | 0.004 | 0.021 | 0.517  | 5.796  |
| C9                                            | 0.000 | 0.001 | 0.004 | 0.002 | 0.036 | 0.047 | 0.031 | 0.664 | 3.931 | 0.700 | 0.002 | 0.004 | 0.022 | 0.463 | 0.068  | 5.976  |
| C10                                           | 0.001 | 0.007 | 0.027 | 0.024 | 0.668 | 0.033 | 0.048 | 0.038 | 0.700 | 3.936 | 0.004 | 0.002 | 0.466 | 0.021 | 0.010  | 5.984  |
| H11                                           | 0.000 | 0.015 | 0.002 | 0.001 | 0.021 | 0.467 | 0.022 | 0.004 | 0.002 | 0.004 | 0.380 | 0.003 | 0.001 | 0.000 | 0.001  | 0.926  |
| H12                                           | 0.000 | 0.000 | 0.001 | 0.000 | 0.004 | 0.020 | 0.463 | 0.021 | 0.004 | 0.002 | 0.003 | 0.364 | 0.000 | 0.001 | 0.023  | 0.907  |
| H13                                           | 0.000 | 0.001 | 0.003 | 0.016 | 0.021 | 0.004 | 0.002 | 0.004 | 0.022 | 0.466 | 0.001 | 0.000 | 0.375 | 0.003 | 0.001  | 0.918  |
| H14                                           | 0.000 | 0.000 | 0.001 | 0.000 | 0.004 | 0.002 | 0.004 | 0.021 | 0.463 | 0.021 | 0.000 | 0.001 | 0.003 | 0.364 | 0.023  | 0.906  |
| NO215                                         | 0.000 | 0.001 | 0.001 | 0.002 | 0.014 | 0.010 | 0.068 | 0.517 | 0.068 | 0.010 | 0.001 | 0.023 | 0.001 | 0.023 | 22.761 | 23.501 |
| SUM                                           | 0.409 | 9.091 | 4.487 | 9.133 | 6.003 | 5.987 | 5.977 | 5.796 | 5.976 | 5.984 | 0.926 | 0.907 | 0.918 | 0.906 | 23.501 | 86.000 |



| $C_8H_8O_3$ | $H_1$ | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | O15   | C16   | H17   | H18   | H19   | SUM    |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1          | 0.075 | 0.319 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.417  |
| O2          | 0.319 | 8.098 | 0.434 | 0.147 | 0.043 | 0.018 | 0.002 | 0.002 | 0.002 | 0.008 | 0.015 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 9.091  |
| C3          | 0.006 | 0.434 | 2.858 | 0.648 | 0.493 | 0.025 | 0.005 | 0.005 | 0.006 | 0.029 | 0.002 | 0.001 | 0.003 | 0.001 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 4.519  |
| 04          | 0.010 | 0.147 | 0.648 | 8.220 | 0.054 | 0.015 | 0.003 | 0.006 | 0.002 | 0.024 | 0.001 | 0.000 | 0.015 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 9.151  |
| C5          | 0.004 | 0.043 | 0.493 | 0.054 | 3.913 | 0.655 | 0.035 | 0.039 | 0.036 | 0.670 | 0.021 | 0.005 | 0.021 | 0.005 | 0.012 | 0.001 | 0.000 | 0.001 | 0.001 | 6.008  |
| C6          | 0.001 | 0.018 | 0.025 | 0.015 | 0.655 | 3.939 | 0.719 | 0.037 | 0.043 | 0.033 | 0.469 | 0.023 | 0.005 | 0.002 | 0.009 | 0.001 | 0.000 | 0.000 | 0.000 | 5.996  |
| C7          | 0.000 | 0.002 | 0.005 | 0.003 | 0.035 | 0.719 | 3.952 | 0.636 | 0.031 | 0.046 | 0.023 | 0.475 | 0.002 | 0.004 | 0.057 | 0.005 | 0.001 | 0.001 | 0.001 | 5.998  |
| C8          | 0.000 | 0.002 | 0.005 | 0.006 | 0.039 | 0.037 | 0.636 | 3.539 | 0.651 | 0.037 | 0.005 | 0.022 | 0.004 | 0.023 | 0.466 | 0.014 | 0.004 | 0.003 | 0.003 | 5.496  |
| C9          | 0.000 | 0.002 | 0.006 | 0.002 | 0.036 | 0.043 | 0.031 | 0.651 | 3.970 | 0.700 | 0.002 | 0.004 | 0.023 | 0.473 | 0.055 | 0.011 | 0.001 | 0.006 | 0.006 | 6.023  |
| C10         | 0.001 | 0.008 | 0.029 | 0.024 | 0.670 | 0.033 | 0.046 | 0.037 | 0.700 | 3.935 | 0.005 | 0.002 | 0.468 | 0.023 | 0.008 | 0.001 | 0.000 | 0.001 | 0.001 | 5.991  |
| H11         | 0.000 | 0.015 | 0.002 | 0.001 | 0.021 | 0.469 | 0.023 | 0.005 | 0.002 | 0.005 | 0.392 | 0.003 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.941  |
| H12         | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.023 | 0.475 | 0.022 | 0.004 | 0.002 | 0.003 | 0.406 | 0.000 | 0.001 | 0.009 | 0.000 | 0.000 | 0.000 | 0.000 | 0.954  |
| $H_{13}$    | 0.000 | 0.001 | 0.003 | 0.015 | 0.021 | 0.005 | 0.002 | 0.004 | 0.023 | 0.468 | 0.001 | 0.000 | 0.387 | 0.003 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.935  |
| H14         | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.023 | 0.473 | 0.023 | 0.000 | 0.001 | 0.003 | 0.412 | 0.005 | 0.011 | 0.001 | 0.005 | 0.005 | 0.975  |
| O15         | 0.000 | 0.001 | 0.002 | 0.003 | 0.012 | 0.009 | 0.057 | 0.466 | 0.055 | 0.008 | 0.001 | 0.009 | 0.001 | 0.005 | 7.900 | 0.435 | 0.031 | 0.034 | 0.034 | 9.065  |
| C16         | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.005 | 0.014 | 0.011 | 0.001 | 0.000 | 0.000 | 0.000 | 0.011 | 0.435 | 3.655 | 0.466 | 0.463 | 0.463 | 5.527  |
| H17         | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.031 | 0.466 | 0.417 | 0.017 | 0.017 | 0.956  |
| $H_{18}$    | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.003 | 0.006 | 0.001 | 0.000 | 0.000 | 0.000 | 0.005 | 0.034 | 0.463 | 0.017 | 0.429 | 0.019 | 0.979  |
| $H_{19}$    | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.003 | 0.006 | 0.001 | 0.000 | 0.000 | 0.000 | 0.005 | 0.034 | 0.463 | 0.017 | 0.019 | 0.429 | 0.979  |
| SUM         | 0.417 | 9.091 | 4.519 | 9.151 | 6.008 | 5.996 | 5.998 | 5.496 | 6.023 | 5.991 | 0.941 | 0.954 | 0.935 | 0.975 | 9.065 | 5.527 | 0.956 | 0.979 | 0.979 | 79.999 |

| $\mathbf{C}_8\mathbf{H}_8\mathbf{O}_3$ | <i>H</i> 1 | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | OCH315 | SUM    |
|----------------------------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| H1                                     | 0.075      | 0.319 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.417  |
| O2                                     | 0.319      | 8.098 | 0.434 | 0.147 | 0.043 | 0.018 | 0.002 | 0.002 | 0.002 | 0.008 | 0.015 | 0.000 | 0.001 | 0.000 | 0.001  | 9.091  |
| C3                                     | 0.006      | 0.434 | 2.858 | 0.648 | 0.493 | 0.025 | 0.005 | 0.005 | 0.006 | 0.029 | 0.002 | 0.001 | 0.003 | 0.001 | 0.003  | 4.519  |
| O4                                     | 0.010      | 0.147 | 0.648 | 8.220 | 0.054 | 0.015 | 0.003 | 0.006 | 0.002 | 0.024 | 0.001 | 0.000 | 0.015 | 0.000 | 0.003  | 9.151  |
| C5                                     | 0.004      | 0.043 | 0.493 | 0.054 | 3.913 | 0.655 | 0.035 | 0.039 | 0.036 | 0.670 | 0.021 | 0.005 | 0.021 | 0.005 | 0.014  | 6.008  |
| C6                                     | 0.001      | 0.018 | 0.025 | 0.015 | 0.655 | 3.939 | 0.719 | 0.037 | 0.043 | 0.033 | 0.469 | 0.023 | 0.005 | 0.002 | 0.011  | 5.996  |
| C7                                     | 0.000      | 0.002 | 0.005 | 0.003 | 0.035 | 0.719 | 3.952 | 0.636 | 0.031 | 0.046 | 0.023 | 0.475 | 0.002 | 0.004 | 0.064  | 5.998  |
| C8                                     | 0.000      | 0.002 | 0.005 | 0.006 | 0.039 | 0.037 | 0.636 | 3.539 | 0.651 | 0.037 | 0.005 | 0.022 | 0.004 | 0.023 | 0.490  | 5.496  |
| C9                                     | 0.000      | 0.002 | 0.006 | 0.002 | 0.036 | 0.043 | 0.031 | 0.651 | 3.970 | 0.700 | 0.002 | 0.004 | 0.023 | 0.473 | 0.080  | 6.023  |
| C10                                    | 0.001      | 0.008 | 0.029 | 0.024 | 0.670 | 0.033 | 0.046 | 0.037 | 0.700 | 3.935 | 0.005 | 0.002 | 0.468 | 0.023 | 0.011  | 5.991  |
| H11                                    | 0.000      | 0.015 | 0.002 | 0.001 | 0.021 | 0.469 | 0.023 | 0.005 | 0.002 | 0.005 | 0.392 | 0.003 | 0.001 | 0.000 | 0.001  | 0.941  |
| H12                                    | 0.000      | 0.000 | 0.001 | 0.000 | 0.005 | 0.023 | 0.475 | 0.022 | 0.004 | 0.002 | 0.003 | 0.406 | 0.000 | 0.001 | 0.010  | 0.954  |
| H13                                    | 0.000      | 0.001 | 0.003 | 0.015 | 0.021 | 0.005 | 0.002 | 0.004 | 0.023 | 0.468 | 0.001 | 0.000 | 0.387 | 0.003 | 0.001  | 0.935  |
| H14                                    | 0.000      | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.023 | 0.473 | 0.023 | 0.000 | 0.001 | 0.003 | 0.412 | 0.028  | 0.975  |
| OCH315                                 | 0.000      | 0.001 | 0.003 | 0.003 | 0.014 | 0.011 | 0.064 | 0.490 | 0.080 | 0.011 | 0.001 | 0.010 | 0.001 | 0.028 | 16.788 | 17.505 |
| SUM                                    | 0.417      | 9.091 | 4.519 | 9.151 | 6.008 | 5.996 | 5.998 | 5.496 | 6.023 | 5.991 | 0.941 | 0.954 | 0.935 | 0.975 | 17.505 | 79.999 |

118



| $\mathbf{C}_7\mathbf{H}_6\mathbf{O}_3$ | H1    | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | O15   | H16   | SUM    |
|----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1                                     | 0.075 | 0.319 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.416  |
| O2                                     | 0.319 | 8.100 | 0.434 | 0.147 | 0.044 | 0.019 | 0.002 | 0.002 | 0.002 | 0.007 | 0.015 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 9.092  |
| C3                                     | 0.006 | 0.434 | 2.856 | 0.650 | 0.493 | 0.026 | 0.005 | 0.005 | 0.005 | 0.028 | 0.003 | 0.001 | 0.003 | 0.001 | 0.002 | 0.000 | 4.517  |
| O4                                     | 0.010 | 0.147 | 0.650 | 8.217 | 0.054 | 0.016 | 0.003 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.015 | 0.000 | 0.002 | 0.000 | 9.148  |
| C5                                     | 0.004 | 0.044 | 0.493 | 0.054 | 3.911 | 0.668 | 0.036 | 0.040 | 0.035 | 0.658 | 0.021 | 0.005 | 0.020 | 0.005 | 0.012 | 0.000 | 6.006  |
| C6                                     | 0.001 | 0.019 | 0.026 | 0.016 | 0.668 | 3.936 | 0.704 | 0.036 | 0.045 | 0.033 | 0.469 | 0.024 | 0.004 | 0.002 | 0.009 | 0.000 | 5.993  |
| C7                                     | 0.000 | 0.002 | 0.005 | 0.003 | 0.360 | 0.704 | 3.967 | 0.653 | 0.031 | 0.044 | 0.023 | 0.479 | 0.002 | 0.004 | 0.060 | 0.004 | 6.018  |
| C8                                     | 0.000 | 0.002 | 0.005 | 0.006 | 0.040 | 0.036 | 0.653 | 3.545 | 0.643 | 0.038 | 0.004 | 0.024 | 0.005 | 0.023 | 0.470 | 0.007 | 5.502  |
| C9                                     | 0.000 | 0.002 | 0.005 | 0.002 | 0.035 | 0.045 | 0.031 | 0.643 | 3.952 | 0.714 | 0.002 | 0.004 | 0.023 | 0.475 | 0.057 | 0.004 | 5.995  |
| C10                                    | 0.001 | 0.007 | 0.028 | 0.023 | 0.658 | 0.033 | 0.044 | 0.038 | 0.714 | 3.937 | 0.005 | 0.003 | 0.468 | 0.023 | 0.009 | 0.001 | 5.992  |
| H11                                    | 0.000 | 0.015 | 0.003 | 0.001 | 0.021 | 0.469 | 0.023 | 0.004 | 0.002 | 0.005 | 0.390 | 0.003 | 0.001 | 0.000 | 0.001 | 0.000 | 0.939  |
| H12                                    | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.024 | 0.479 | 0.024 | 0.004 | 0.003 | 0.003 | 0.430 | 0.000 | 0.001 | 0.008 | 0.003 | 0.985  |
| $H_{13}$                               | 0.000 | 0.001 | 0.003 | 0.015 | 0.020 | 0.004 | 0.002 | 0.005 | 0.023 | 0.468 | 0.001 | 0.000 | 0.385 | 0.003 | 0.001 | 0.000 | 0.931  |
| H14                                    | 0.000 | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.023 | 0.475 | 0.023 | 0.000 | 0.001 | 0.003 | 0.404 | 0.008 | 0.000 | 0.950  |
| O15                                    | 0.000 | 0.001 | 0.002 | 0.002 | 0.012 | 0.009 | 0.060 | 0.470 | 0.057 | 0.009 | 0.001 | 0.008 | 0.001 | 0.008 | 8.109 | 0.331 | 9.083  |
| H16                                    | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.007 | 0.004 | 0.001 | 0.000 | 0.003 | 0.000 | 0.000 | 0.331 | 0.081 | 0.432  |
| SUM                                    | 0.416 | 9.092 | 4.517 | 9.148 | 6.006 | 5.993 | 6.018 | 5.502 | 5.995 | 5.992 | 0.939 | 0.985 | 0.931 | 0.950 | 9.083 | 0.432 | 72.000 |

| $c_7 H_6 o_3$ | <i>H</i> 1 | O2    | C3    | O4    | C5    | C6    | C7    | C8    | C9    | C10   | H11   | H12   | H13   | H14   | OH15  | SUM    |
|---------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| H1            | 0.075      | 0.319 | 0.006 | 0.010 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.416  |
| O2            | 0.319      | 8.100 | 0.434 | 0.147 | 0.044 | 0.019 | 0.002 | 0.002 | 0.002 | 0.007 | 0.015 | 0.000 | 0.001 | 0.000 | 0.001 | 9.092  |
| C3            | 0.006      | 0.434 | 2.856 | 0.650 | 0.493 | 0.026 | 0.005 | 0.005 | 0.005 | 0.028 | 0.003 | 0.001 | 0.003 | 0.001 | 0.002 | 4.517  |
| O4            | 0.010      | 0.147 | 0.650 | 8.217 | 0.054 | 0.016 | 0.003 | 0.006 | 0.002 | 0.023 | 0.001 | 0.000 | 0.015 | 0.000 | 0.003 | 9.148  |
| C5            | 0.004      | 0.044 | 0.493 | 0.054 | 3.911 | 0.668 | 0.036 | 0.040 | 0.035 | 0.658 | 0.021 | 0.005 | 0.020 | 0.005 | 0.012 | 6.006  |
| C6            | 0.001      | 0.019 | 0.026 | 0.016 | 0.668 | 3.936 | 0.704 | 0.036 | 0.045 | 0.033 | 0.469 | 0.024 | 0.004 | 0.002 | 0.010 | 5.993  |
| C7            | 0.000      | 0.002 | 0.005 | 0.003 | 0.036 | 0.704 | 3.967 | 0.653 | 0.031 | 0.044 | 0.023 | 0.479 | 0.002 | 0.004 | 0.064 | 6.018  |
| C8            | 0.000      | 0.002 | 0.005 | 0.006 | 0.040 | 0.036 | 0.653 | 3.545 | 0.643 | 0.038 | 0.004 | 0.024 | 0.005 | 0.023 | 0.477 | 5.502  |
| C9            | 0.000      | 0.002 | 0.005 | 0.002 | 0.035 | 0.045 | 0.031 | 0.643 | 3.952 | 0.714 | 0.002 | 0.004 | 0.023 | 0.475 | 0.061 | 5.995  |
| C10           | 0.001      | 0.007 | 0.028 | 0.023 | 0.658 | 0.033 | 0.044 | 0.038 | 0.714 | 3.937 | 0.005 | 0.003 | 0.468 | 0.023 | 0.010 | 5.992  |
| H11           | 0.000      | 0.015 | 0.003 | 0.001 | 0.021 | 0.469 | 0.023 | 0.004 | 0.002 | 0.005 | 0.390 | 0.003 | 0.001 | 0.000 | 0.001 | 0.939  |
| H12           | 0.000      | 0.000 | 0.001 | 0.000 | 0.005 | 0.024 | 0.479 | 0.024 | 0.004 | 0.003 | 0.003 | 0.430 | 0.000 | 0.001 | 0.011 | 0.985  |
| H13           | 0.000      | 0.001 | 0.003 | 0.015 | 0.020 | 0.004 | 0.002 | 0.005 | 0.023 | 0.468 | 0.001 | 0.000 | 0.385 | 0.003 | 0.001 | 0.931  |
| H14           | 0.000      | 0.000 | 0.001 | 0.000 | 0.005 | 0.002 | 0.004 | 0.023 | 0.475 | 0.023 | 0.000 | 0.001 | 0.003 | 0.404 | 0.009 | 0.950  |
| OH15          | 0.000      | 0.001 | 0.002 | 0.003 | 0.012 | 0.010 | 0.064 | 0.477 | 0.061 | 0.010 | 0.001 | 0.011 | 0.001 | 0.009 | 8.853 | 9.515  |
| SUM           | 0.416      | 9.092 | 4.517 | 9.148 | 6.006 | 5.993 | 6.018 | 5.502 | 5.995 | 5.992 | 0.939 | 0.985 | 0.931 | 0.950 | 9.515 | 72.000 |

# Frobenius Distance on a per-atom basis compared with $pK_a$ , $\lambda_{max}$ , and HOMA Aromaticity measure

| molecule      | $\mathrm{p}K_\mathrm{a}$ | H1                    | O2                    | $\mathbf{C3}$         | 04                    | $\mathbf{C5}$         | C6                    | $\mathbf{C7}$         |
|---------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| BANO2         | 3.44                     | 0.000                 | 0.000                 | 0.000                 | 0.000                 | 0.000                 | 0.000                 | 0.000                 |
| BACN          | 3.55                     | $2.83 	imes 10^{-4}$  | $6.27 	imes 10^{-4}$  | $3.09 	imes 10^{-3}$  | $3.05 	imes 10^{-3}$  | $5.44 	imes 10^{-4}$  | $2.88 	imes 10^{-3}$  | $3.86	imes10^{-3}$    |
| BACOCH3       | 3.74                     | $1.19 	imes 10^{-3}$  | $2.91 \times 10^{-4}$ | $1.11 \times 10^{-2}$ | $6.74 \times 10^{-3}$ | $4.31 \times 10^{-3}$ | $7.45 	imes 10^{-3}$  | $2.45\times10^{-2}$   |
| BACOH         | 3.77                     | $8.02 \times 10^{-4}$ | $2.49 \times 10^{-5}$ | $7.90 	imes 10^{-3}$  | $3.96 \times 10^{-3}$ | $3.40 \times 10^{-3}$ | $5.96 	imes 10^{-3}$  | $2.54\times 10^{-2}$  |
| BACl          | 3.98                     | $1.29 \times 10^{-3}$ | $1.51 \times 10^{-3}$ | $1.13 	imes 10^{-2}$  | $1.28 \times 10^{-2}$ | $1.66 	imes 10^{-3}$  | $2.06 	imes 10^{-3}$  | $2.47 \times 10^{-3}$ |
| BAF           | 4.14                     | $1.42 \times 10^{-3}$ | $2.04 \times 10^{-3}$ | $1.25 \times 10^{-2}$ | $1.51 \times 10^{-2}$ | $2.29 \times 10^{-3}$ | $2.78 \times 10^{-4}$ | $1.14 \times 10^{-2}$ |
| $\mathbf{BA}$ | 4.19                     | $1.95 	imes 10^{-3}$  | $4.24 \times 10^{-4}$ | $1.76 	imes 10^{-2}$  | $1.58 \times 10^{-2}$ | $6.16 	imes 10^{-3}$  | $1.15 \times 10^{-2}$ | $2.37 \times 10^{-2}$ |
| BACH3         | 4.37                     | $2.29 \times 10^{-3}$ | $1.08 \times 10^{-3}$ | $2.10 	imes 10^{-2}$  | $1.94 \times 10^{-2}$ | $6.45 	imes 10^{-3}$  | $1.05 	imes 10^{-2}$  | $2.64\times 10^{-2}$  |
| BAOCH3        | 4.47                     | $2.50 \times 10^{-3}$ | $2.20 \times 10^{-3}$ | $2.27 \times 10^{-2}$ | $2.45 \times 10^{-2}$ | $6.04 \times 10^{-3}$ | $1.91 \times 10^{-3}$ | $2.12 \times 10^{-2}$ |
| BAOH          | 4.57                     | $2.25 \times 10^{-3}$ | $3.51 \times 10^{-3}$ | $2.07 	imes 10^{-2}$  | $2.14\times 10^{-2}$  | $4.76 \times 10^{-3}$ | $1.82 \times 10^{-3}$ | $3.61 \times 10^{-2}$ |
| BANH2         | 4.82                     | $3.00 \times 10^{-3}$ | $3.73 \times 10^{-3}$ | $2.80 \times 10^{-2}$ | $2.84 \times 10^{-2}$ | $7.66 	imes 10^{-3}$  | $8.47 \times 10^{-4}$ | $3.52 \times 10^{-2}$ |
| BANHCOCH3     | 4.3                      | $1.64 \times 10^{-3}$ | $2.64 \times 10^{-3}$ | $1.54 \times 10^{-2}$ | $1.65 \times 10^{-2}$ | $3.38 \times 10^{-3}$ | $5.75 \times 10^{-4}$ | $1.63 \times 10^{-2}$ |
| BANHCH3       | 5.04                     | $3.31 \times 10^{-3}$ | $4.40 \times 10^{-3}$ | $3.13 \times 10^{-2}$ | $3.08 \times 10^{-2}$ | $8.81 \times 10^{-3}$ | $2.22 \times 10^{-3}$ | $4.42 \times 10^{-2}$ |
| BANCH3CH3     | 5.03                     | $3.44 \times 10^{-3}$ | $4.33 \times 10^{-3}$ | $3.24 \times 10^{-2}$ | $3.14 \times 10^{-2}$ | $9.32 \times 10^{-3}$ | $1.65 \times 10^{-3}$ | $4.37 \times 10^{-2}$ |
| molecule      | $\mathrm{p}K_\mathrm{a}$ | C8                    | $\mathbf{C9}$         | C10                   | H11                   | H12                   | H13                   | H14                   |
| BANO2         | 3.44                     | 0.000                 | 0.000                 | 0.000                 | 0.000                 | 0.000                 | 0.000                 | 0.000                 |
| BACN          | 3.55                     | $7.84 \times 10^{-2}$ | $3.94 \times 10^{-3}$ | $2.96 \times 10^{-3}$ | $2.20 \times 10^{-3}$ | $3.53 	imes 10^{-2}$  | $2.16 	imes 10^{-3}$  | $3.50 \times 10^{-2}$ |
| BACOCH3       | 3.74                     | $1.65 \times 10^{-1}$ | $1.63 \times 10^{-2}$ | $8.47 \times 10^{-3}$ | $9.25 	imes 10^{-3}$  | $4.79 \times 10^{-2}$ | $8.33 \times 10^{-3}$ | $1.44 \times 10^{-2}$ |
| BACOH         | 3.77                     | $1.61 \times 10^{-1}$ | $1.64 \times 10^{-2}$ | $7.17 \times 10^{-3}$ | $6.37 	imes 10^{-3}$  | $4.97 	imes 10^{-2}$  | $5.97 	imes 10^{-3}$  | $2.03 \times 10^{-2}$ |
| BACl          | 3.98                     | $9.98 \times 10^{-2}$ | $2.49 \times 10^{-3}$ | $2.31 \times 10^{-3}$ | $5.77 \times 10^{-3}$ | $3.62 \times 10^{-2}$ | $5.86 	imes 10^{-3}$  | $3.59 \times 10^{-2}$ |
| BAF           | 4.14                     | $1.66 \times 10^{-1}$ | $1.13 \times 10^{-2}$ | $4.90 \times 10^{-5}$ | $5.36 \times 10^{-3}$ | $3.42 \times 10^{-2}$ | $5.47 \times 10^{-3}$ | $3.39 \times 10^{-2}$ |
| BA            | 4.19                     | $1.90 \times 10^{-1}$ | $2.33 \times 10^{-2}$ | $1.14\times10^{-2}$   | $1.23 \times 10^{-2}$ | $5.95 	imes 10^{-2}$  | $1.26 	imes 10^{-2}$  | $5.92 \times 10^{-2}$ |
| BACH3         | 4.37                     | $1.22 \times 10^{-1}$ | $2.84 \times 10^{-2}$ | $1.01 \times 10^{-2}$ | $1.38 \times 10^{-2}$ | $6.27 \times 10^{-2}$ | $1.43 \times 10^{-2}$ | $6.39 \times 10^{-2}$ |
| BAOCH3        | 4.47                     | $2.28 \times 10^{-1}$ | $3.89 \times 10^{-2}$ | $1.81 \times 10^{-3}$ | $1.16 	imes 10^{-2}$  | $4.18 \times 10^{-2}$ | $1.24 \times 10^{-2}$ | $4.77 \times 10^{-2}$ |
| BAOH          | 4.57                     | $2.21 \times 10^{-1}$ | $2.04 \times 10^{-2}$ | $9.40 \times 10^{-4}$ | $9.90 \times 10^{-3}$ | $6.53 	imes 10^{-2}$  | $1.01 \times 10^{-2}$ | $4.04 \times 10^{-2}$ |
| BANH2         | 4.82                     | $1.87 \times 10^{-1}$ | $3.49 \times 10^{-2}$ | $3.57 	imes 10^{-4}$  | $1.40 \times 10^{-2}$ | $6.76 	imes 10^{-2}$  | $1.42 \times 10^{-2}$ | $6.73 \times 10^{-2}$ |
| BANHCOCH3     | 4.3                      | $1.50 \times 10^{-1}$ | $2.34 	imes 10^{-2}$  | $1.08 \times 10^{-3}$ | $9.09 	imes 10^{-3}$  | $4.36\times10^{-2}$   | $4.47 	imes 10^{-2}$  | $1.92 \times 10^{-2}$ |
| BANHCH3       | 5.04                     | $1.98 \times 10^{-1}$ | $3.77 \times 10^{-2}$ | $5.92 	imes 10^{-4}$  | $1.57 \times 10^{-2}$ | $5.57 	imes 10^{-2}$  | $5.96 	imes 10^{-2}$  | $2.64 \times 10^{-2}$ |
| BANCH3CH3     | 5.03                     | $1.91 \times 10^{-1}$ | $4.32\times 10^{-2}$  | $1.14 \times 10^{-3}$ | $1.71 \times 10^{-2}$ | $5.36	imes10^{-2}$    | $4.26\times 10^{-2}$  | $2.82\times 10^{-2}$  |

**Table C.1:** Frobenius Distance between individual atoms for only the LI to be compared directly with  $pK_a$ , the most acidic molecule's atoms are taken as the reference atoms. (Benzoic Acid Series)

| molecule                                                                                                          | $\mathrm{p}K_\mathrm{a}$                                                                                 | H1                                                                                                                                                                                                                                                               | O2                                                                                                                                                                                                                                                               | C3                                                                                                                                                                                                                                                               | 04                                                                                                                                                                                                                                                                         | C5                                                                                                                                                                                                                                                                 | C6                                                                                                                                                                                                                                                                          | $\mathbf{C7}$                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BANO2                                                                                                             | 3.44                                                                                                     | 0.000                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                       |
| BACN                                                                                                              | 3.55                                                                                                     | $5.31 \times 10^{-4}$                                                                                                                                                                                                                                            | $9.42 \times 10^{-4}$                                                                                                                                                                                                                                            | $2.26 	imes 10^{-3}$                                                                                                                                                                                                                                             | $1.20 	imes 10^{-3}$                                                                                                                                                                                                                                                       | $2.56 	imes 10^{-3}$                                                                                                                                                                                                                                               | $5.08 	imes 10^{-3}$                                                                                                                                                                                                                                                        | $1.39 	imes 10^{-2}$                                                                                                                                                                                                                                                        |
| BACOCH3                                                                                                           | 3.74                                                                                                     | $2.13 \times 10^{-3}$                                                                                                                                                                                                                                            | $2.93 	imes 10^{-3}$                                                                                                                                                                                                                                             | $4.78 	imes 10^{-3}$                                                                                                                                                                                                                                             | $2.05 	imes 10^{-3}$                                                                                                                                                                                                                                                       | $6.28 	imes 10^{-3}$                                                                                                                                                                                                                                               | $5.31 	imes 10^{-3}$                                                                                                                                                                                                                                                        | $1.24 \times 10^{-2}$                                                                                                                                                                                                                                                       |
| BACOH                                                                                                             | 3.77                                                                                                     | $1.42 \times 10^{-3}$                                                                                                                                                                                                                                            | $1.94 	imes 10^{-3}$                                                                                                                                                                                                                                             | $3.20 \times 10^{-3}$                                                                                                                                                                                                                                            | $1.50 	imes 10^{-3}$                                                                                                                                                                                                                                                       | $7.66 	imes 10^{-3}$                                                                                                                                                                                                                                               | $5.51 	imes 10^{-3}$                                                                                                                                                                                                                                                        | $1.37 	imes 10^{-2}$                                                                                                                                                                                                                                                        |
| BACl                                                                                                              | 3.98                                                                                                     | $2.33 \times 10^{-3}$                                                                                                                                                                                                                                            | $3.73 \times 10^{-3}$                                                                                                                                                                                                                                            | $8.80 \times 10^{-3}$                                                                                                                                                                                                                                            | $4.36 	imes 10^{-3}$                                                                                                                                                                                                                                                       | $7.86 	imes 10^{-3}$                                                                                                                                                                                                                                               | $2.93 \times 10^{-3}$                                                                                                                                                                                                                                                       | $1.36 	imes 10^{-2}$                                                                                                                                                                                                                                                        |
| BAF                                                                                                               | 4.14                                                                                                     | $2.56 \times 10^{-3}$                                                                                                                                                                                                                                            | $4.33 \times 10^{-3}$                                                                                                                                                                                                                                            | $1.05 	imes 10^{-2}$                                                                                                                                                                                                                                             | $5.18 	imes 10^{-3}$                                                                                                                                                                                                                                                       | $9.14 	imes 10^{-3}$                                                                                                                                                                                                                                               | $3.43 \times 10^{-3}$                                                                                                                                                                                                                                                       | $1.23 	imes 10^{-2}$                                                                                                                                                                                                                                                        |
| $\mathbf{BA}$                                                                                                     | 4.19                                                                                                     | $3.48 \times 10^{-3}$                                                                                                                                                                                                                                            | $4.91 \times 10^{-3}$                                                                                                                                                                                                                                            | $9.46 	imes 10^{-3}$                                                                                                                                                                                                                                             | $5.11 	imes 10^{-3}$                                                                                                                                                                                                                                                       | $8.34 	imes 10^{-3}$                                                                                                                                                                                                                                               | $5.40 	imes 10^{-3}$                                                                                                                                                                                                                                                        | $3.22 \times 10^{-2}$                                                                                                                                                                                                                                                       |
| BACH3                                                                                                             | 4.37                                                                                                     | $4.10 \times 10^{-3}$                                                                                                                                                                                                                                            | $5.76 	imes 10^{-3}$                                                                                                                                                                                                                                             | $1.26 \times 10^{-2}$                                                                                                                                                                                                                                            | $6.29 	imes 10^{-3}$                                                                                                                                                                                                                                                       | $1.20 \times 10^{-2}$                                                                                                                                                                                                                                              | $5.94 	imes 10^{-3}$                                                                                                                                                                                                                                                        | $2.06 \times 10^{-2}$                                                                                                                                                                                                                                                       |
| BAOCH3                                                                                                            | 4.47                                                                                                     | $4.53 \times 10^{-3}$                                                                                                                                                                                                                                            | $7.17 	imes 10^{-3}$                                                                                                                                                                                                                                             | $1.82 \times 10^{-2}$                                                                                                                                                                                                                                            | $8.91 	imes 10^{-3}$                                                                                                                                                                                                                                                       | $2.18 	imes 10^{-2}$                                                                                                                                                                                                                                               | $2.64 	imes 10^{-2}$                                                                                                                                                                                                                                                        | $3.87 	imes 10^{-2}$                                                                                                                                                                                                                                                        |
| BAOH                                                                                                              | 4.57                                                                                                     | $4.10 \times 10^{-3}$                                                                                                                                                                                                                                            | $6.90 \times 10^{-3}$                                                                                                                                                                                                                                            | $1.71 \times 10^{-2}$                                                                                                                                                                                                                                            | $7.93 	imes 10^{-3}$                                                                                                                                                                                                                                                       | $1.79 \times 10^{-2}$                                                                                                                                                                                                                                              | $8.27 \times 10^{-3}$                                                                                                                                                                                                                                                       | $2.14\times10^{-2}$                                                                                                                                                                                                                                                         |
| BANH2                                                                                                             | 4.82                                                                                                     | $5.45 \times 10^{-3}$                                                                                                                                                                                                                                            | $9.05 \times 10^{-3}$                                                                                                                                                                                                                                            | $2.37 \times 10^{-2}$                                                                                                                                                                                                                                            | $1.13 	imes 10^{-2}$                                                                                                                                                                                                                                                       | $2.59 \times 10^{-2}$                                                                                                                                                                                                                                              | $2.12 \times 10^{-2}$                                                                                                                                                                                                                                                       | $3.53 \times 10^{-2}$                                                                                                                                                                                                                                                       |
| BANHCOCH3                                                                                                         | 4.3                                                                                                      | $3.01 \times 10^{-3}$                                                                                                                                                                                                                                            | $5.23 \times 10^{-3}$                                                                                                                                                                                                                                            | $1.35 \times 10^{-2}$                                                                                                                                                                                                                                            | $2.25 \times 10^{-2}$                                                                                                                                                                                                                                                      | $2.65 \times 10^{-2}$                                                                                                                                                                                                                                              | $7.72 \times 10^{-3}$                                                                                                                                                                                                                                                       | $1.73 \times 10^{-2}$                                                                                                                                                                                                                                                       |
| BANHCH3                                                                                                           | 5.04                                                                                                     | $6.05 \times 10^{-3}$                                                                                                                                                                                                                                            | $9.99 \times 10^{-3}$                                                                                                                                                                                                                                            | $2.67 \times 10^{-2}$                                                                                                                                                                                                                                            | $2.50 	imes 10^{-2}$                                                                                                                                                                                                                                                       | $3.83 \times 10^{-2}$                                                                                                                                                                                                                                              | $1.59 \times 10^{-2}$                                                                                                                                                                                                                                                       | $3.53 \times 10^{-2}$                                                                                                                                                                                                                                                       |
| BANCH3CH3                                                                                                         | 5.03                                                                                                     | $6.29 \times 10^{-3}$                                                                                                                                                                                                                                            | $1.02 \times 10^{-2}$                                                                                                                                                                                                                                            | $2.69 \times 10^{-2}$                                                                                                                                                                                                                                            | $2.50 	imes 10^{-2}$                                                                                                                                                                                                                                                       | $3.78 \times 10^{-2}$                                                                                                                                                                                                                                              | $2.55 \times 10^{-2}$                                                                                                                                                                                                                                                       | $4.53 \times 10^{-2}$                                                                                                                                                                                                                                                       |
|                                                                                                                   |                                                                                                          |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |
| molecule                                                                                                          | $\mathrm{p}K_\mathrm{a}$                                                                                 | C8                                                                                                                                                                                                                                                               | $\mathbf{C9}$                                                                                                                                                                                                                                                    | C10                                                                                                                                                                                                                                                              | H11                                                                                                                                                                                                                                                                        | H12                                                                                                                                                                                                                                                                | H13                                                                                                                                                                                                                                                                         | H14                                                                                                                                                                                                                                                                         |
| molecule<br>BANO2                                                                                                 | <b>p</b> <i>K</i> <sub><b>a</b></sub><br>3.44                                                            | C8<br>0.000                                                                                                                                                                                                                                                      | <b>C9</b><br>0.000                                                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                            | H11<br>0.000                                                                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                              | H13 0.000                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                       |
|                                                                                                                   |                                                                                                          |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                  | 0.000<br>$5.27 \times 10^{-3}$                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                             | 0.000<br>$1.26 \times 10^{-2}$                                                                                                                                                                                                                                              |
| BANO2                                                                                                             | 3.44                                                                                                     | 0.000                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                       |
| BANO2<br>BACN                                                                                                     | $3.44 \\ 3.55$                                                                                           | 0.000<br>$8.15 \times 10^{-3}$                                                                                                                                                                                                                                   | $\begin{array}{c} 0.000\\ 1.39\times 10^{-2}\\ 9.08\times 10^{-3}\\ 1.30\times 10^{-2} \end{array}$                                                                                                                                                              | 0.000<br>$5.27 \times 10^{-3}$                                                                                                                                                                                                                                   | 0.000<br>$4.28 \times 10^{-4}$                                                                                                                                                                                                                                             | $ \begin{array}{r} 0.000 \\ 1.26 \times 10^{-2} \end{array} $                                                                                                                                                                                                      | 0.000<br>$4.38 \times 10^{-4}$                                                                                                                                                                                                                                              | $\begin{array}{c} 0.000\\ 1.26\times10^{-2}\\ 3.37\times10^{-3}\\ 6.18\times10^{-3} \end{array}$                                                                                                                                                                            |
| BANO2<br>BACN<br>BACOCH3                                                                                          | 3.44<br>3.55<br>3.74                                                                                     | $\begin{array}{c} 0.000\\ 8.15\times10^{-3}\\ 8.54\times10^{-3}\\ 8.18\times10^{-3}\\ 1.19\times10^{-2} \end{array}$                                                                                                                                             | $\begin{array}{c} 0.000\\ 1.39\times 10^{-2}\\ 9.08\times 10^{-3}\\ 1.30\times 10^{-2}\\ 1.35\times 10^{-2} \end{array}$                                                                                                                                         | $\begin{array}{c} 0.000\\ 5.27\times10^{-3}\\ 9.78\times10^{-3}\\ 1.27\times10^{-2}\\ 3.17\times10^{-3} \end{array}$                                                                                                                                             | $\begin{array}{r} 0.000\\ 4.28\times10^{-4}\\ 2.11\times10^{-3}\\ 1.53\times10^{-3}\\ 1.02\times10^{-3} \end{array}$                                                                                                                                                       | $\begin{array}{r} 0.000\\ 1.26\times 10^{-2}\\ 9.86\times 10^{-3}\\ 1.27\times 10^{-2}\\ 1.12\times 10^{-2} \end{array}$                                                                                                                                           | $\begin{array}{c} 0.000\\ 4.38\times 10^{-4}\\ 1.95\times 10^{-3}\\ 1.38\times 10^{-3}\\ 1.14\times 10^{-3} \end{array}$                                                                                                                                                    | $\begin{array}{c} 0.000\\ 1.26\times 10^{-2}\\ 3.37\times 10^{-3}\\ 6.18\times 10^{-3}\\ 1.11\times 10^{-2} \end{array}$                                                                                                                                                    |
| BANO2<br>BACN<br>BACOCH3<br>BACOH<br>BAC1<br>BAF                                                                  | 3.44<br>3.55<br>3.74<br>3.77                                                                             | $\begin{array}{c} 0.000\\ 8.15\times10^{-3}\\ 8.54\times10^{-3}\\ 8.18\times10^{-3}\\ 1.19\times10^{-2}\\ 4.92\times10^{-3} \end{array}$                                                                                                                         | $\begin{array}{c} 0.000\\ 1.39\times 10^{-2}\\ 9.08\times 10^{-3}\\ 1.30\times 10^{-2}\\ 1.35\times 10^{-2}\\ 1.23\times 10^{-2} \end{array}$                                                                                                                    | $\begin{array}{c} 0.000\\ 5.27\times10^{-3}\\ 9.78\times10^{-3}\\ 1.27\times10^{-2}\\ 3.17\times10^{-3}\\ 3.76\times10^{-3} \end{array}$                                                                                                                         | $\begin{array}{c} 0.000\\ 4.28\times 10^{-4}\\ 2.11\times 10^{-3}\\ 1.53\times 10^{-3}\\ 1.02\times 10^{-3}\\ 1.16\times 10^{-3} \end{array}$                                                                                                                              | $\begin{array}{c} 0.000\\ 1.26\times 10^{-2}\\ 9.86\times 10^{-3}\\ 1.27\times 10^{-2}\\ 1.12\times 10^{-2}\\ 1.24\times 10^{-2} \end{array}$                                                                                                                      | $\begin{array}{c} 0.000\\ 4.38\times 10^{-4}\\ 1.95\times 10^{-3}\\ 1.38\times 10^{-3}\\ 1.14\times 10^{-3}\\ 1.30\times 10^{-3} \end{array}$                                                                                                                               | $\begin{array}{c} 0.000\\ 1.26\times10^{-2}\\ 3.37\times10^{-3}\\ 6.18\times10^{-3}\\ 1.11\times10^{-2}\\ 1.23\times10^{-2} \end{array}$                                                                                                                                    |
| BANO2<br>BACN<br>BACOCH3<br>BACOH<br>BACI                                                                         | 3.44<br>3.55<br>3.74<br>3.77<br>3.98                                                                     | $\begin{array}{c} 0.000\\ 8.15\times10^{-3}\\ 8.54\times10^{-3}\\ 8.18\times10^{-3}\\ 1.19\times10^{-2} \end{array}$                                                                                                                                             | $\begin{array}{c} 0.000\\ 1.39\times 10^{-2}\\ 9.08\times 10^{-3}\\ 1.30\times 10^{-2}\\ 1.35\times 10^{-2} \end{array}$                                                                                                                                         | $\begin{array}{c} 0.000\\ 5.27\times10^{-3}\\ 9.78\times10^{-3}\\ 1.27\times10^{-2}\\ 3.17\times10^{-3} \end{array}$                                                                                                                                             | $\begin{array}{c} 0.000\\ 4.28\times 10^{-4}\\ 2.11\times 10^{-3}\\ 1.53\times 10^{-3}\\ 1.02\times 10^{-3}\\ 1.16\times 10^{-3}\\ 2.77\times 10^{-3} \end{array}$                                                                                                         | $\begin{array}{r} 0.000\\ 1.26\times 10^{-2}\\ 9.86\times 10^{-3}\\ 1.27\times 10^{-2}\\ 1.12\times 10^{-2} \end{array}$                                                                                                                                           | $\begin{array}{c} 0.000\\ 4.38\times 10^{-4}\\ 1.95\times 10^{-3}\\ 1.38\times 10^{-3}\\ 1.14\times 10^{-3} \end{array}$                                                                                                                                                    | $\begin{array}{c} 0.000\\ 1.26\times 10^{-2}\\ 3.37\times 10^{-3}\\ 6.18\times 10^{-3}\\ 1.11\times 10^{-2}\\ 1.23\times 10^{-2}\\ 1.86\times 10^{-2} \end{array}$                                                                                                          |
| BANO2<br>BACN<br>BACOCH3<br>BACOH<br>BAC1<br>BAF                                                                  | $\begin{array}{r} 3.44 \\ 3.55 \\ 3.74 \\ 3.77 \\ 3.98 \\ 4.14 \end{array}$                              | $\begin{array}{c} 0.000\\ 8.15\times10^{-3}\\ 8.54\times10^{-3}\\ 8.18\times10^{-3}\\ 1.19\times10^{-2}\\ 4.92\times10^{-3}\\ 3.75\times10^{-2}\\ 1.52\times10^{-2} \end{array}$                                                                                 | $\begin{array}{c} 0.000\\ 1.39\times10^{-2}\\ 9.08\times10^{-3}\\ 1.30\times10^{-2}\\ 1.35\times10^{-2}\\ 1.23\times10^{-2}\\ 3.20\times10^{-2}\\ 1.94\times10^{-2} \end{array}$                                                                                 | $\begin{array}{c} 0.000\\ 5.27\times10^{-3}\\ 9.78\times10^{-3}\\ 1.27\times10^{-2}\\ 3.17\times10^{-3}\\ 3.76\times10^{-3}\\ 5.51\times10^{-3}\\ 1.22\times10^{-2} \end{array}$                                                                                 | $\begin{array}{c} 0.000\\ 4.28\times10^{-4}\\ 2.11\times10^{-3}\\ 1.53\times10^{-3}\\ 1.02\times10^{-3}\\ 1.16\times10^{-3}\\ 2.77\times10^{-3}\\ 2.99\times10^{-3} \end{array}$                                                                                           | $\begin{array}{c} 0.000\\ 1.26\times10^{-2}\\ 9.86\times10^{-3}\\ 1.27\times10^{-2}\\ 1.12\times10^{-2}\\ 1.24\times10^{-2}\\ 1.86\times10^{-2}\\ 1.56\times10^{-2} \end{array}$                                                                                   | $\begin{array}{c} 0.000\\ 4.38\times 10^{-4}\\ 1.95\times 10^{-3}\\ 1.38\times 10^{-3}\\ 1.14\times 10^{-3}\\ 1.30\times 10^{-3}\\ 2.98\times 10^{-3}\\ 3.30\times 10^{-3} \end{array}$                                                                                     | $\begin{array}{c} 0.000\\ 1.26\times 10^{-2}\\ 3.37\times 10^{-3}\\ 6.18\times 10^{-3}\\ 1.11\times 10^{-2}\\ 1.23\times 10^{-2}\\ 1.86\times 10^{-2}\\ 1.64\times 10^{-2} \end{array}$                                                                                     |
| BANO2<br>BACN<br>BACOCH3<br>BACOH<br>BACI<br>BAF<br>BA<br>BACH3<br>BAOCH3                                         | $\begin{array}{r} 3.44\\ 3.55\\ 3.74\\ 3.77\\ 3.98\\ 4.14\\ 4.19\\ 4.37\\ 4.47\end{array}$               | $\begin{array}{c} 0.000\\ 8.15\times10^{-3}\\ 8.54\times10^{-3}\\ 8.18\times10^{-3}\\ 1.19\times10^{-2}\\ 4.92\times10^{-3}\\ 3.75\times10^{-2}\\ 1.52\times10^{-2}\\ 3.28\times10^{-2} \end{array}$                                                             | $\begin{array}{c} 0.000\\ 1.39\times10^{-2}\\ 9.08\times10^{-3}\\ 1.30\times10^{-2}\\ 1.35\times10^{-2}\\ 1.23\times10^{-2}\\ 3.20\times10^{-2}\\ 1.94\times10^{-2}\\ 1.70\times10^{-2} \end{array}$                                                             | $\begin{array}{c} 0.000\\ 5.27\times10^{-3}\\ 9.78\times10^{-3}\\ 1.27\times10^{-2}\\ 3.17\times10^{-3}\\ 3.76\times10^{-3}\\ 5.51\times10^{-3}\\ 1.22\times10^{-2}\\ 5.27\times10^{-3} \end{array}$                                                             | $\begin{array}{c} 0.000\\ 4.28\times 10^{-4}\\ 2.11\times 10^{-3}\\ 1.53\times 10^{-3}\\ 1.02\times 10^{-3}\\ 1.16\times 10^{-3}\\ 2.77\times 10^{-3}\\ 2.99\times 10^{-3}\\ 2.62\times 10^{-3} \end{array}$                                                               | $\begin{array}{c} 0.000\\ 1.26\times10^{-2}\\ 9.86\times10^{-3}\\ 1.27\times10^{-2}\\ 1.12\times10^{-2}\\ 1.24\times10^{-2}\\ 1.86\times10^{-2}\\ 1.56\times10^{-2}\\ 1.29\times10^{-2}\\ \end{array}$                                                             | $\begin{array}{c} 0.000\\ 4.38\times 10^{-4}\\ 1.95\times 10^{-3}\\ 1.38\times 10^{-3}\\ 1.14\times 10^{-3}\\ 1.30\times 10^{-3}\\ 2.98\times 10^{-3}\\ 3.30\times 10^{-3}\\ 2.49\times 10^{-3} \end{array}$                                                                | $\begin{array}{c} 0.000\\ 1.26\times 10^{-2}\\ 3.37\times 10^{-3}\\ 6.18\times 10^{-3}\\ 1.11\times 10^{-2}\\ 1.23\times 10^{-2}\\ 1.86\times 10^{-2}\\ 1.64\times 10^{-2}\\ 1.09\times 10^{-2} \end{array}$                                                                |
| BANO2<br>BACN<br>BACOCH3<br>BACOH<br>BACI<br>BAF<br>BA<br>BACH3<br>BAOCH3<br>BAOH                                 | $\begin{array}{r} 3.44\\ 3.55\\ 3.74\\ 3.77\\ 3.98\\ 4.14\\ 4.19\\ 4.37\\ 4.47\\ 4.57\end{array}$        | $\begin{array}{c} 0.000\\ 8.15\times10^{-3}\\ 8.54\times10^{-3}\\ 8.18\times10^{-3}\\ 1.19\times10^{-2}\\ 4.92\times10^{-3}\\ 3.75\times10^{-2}\\ 1.52\times10^{-2}\\ 3.28\times10^{-2}\\ 2.46\times10^{-2} \end{array}$                                         | $\begin{array}{c} 0.000\\ 1.39\times10^{-2}\\ 9.08\times10^{-3}\\ 1.30\times10^{-2}\\ 1.35\times10^{-2}\\ 1.23\times10^{-2}\\ 3.20\times10^{-2}\\ 1.94\times10^{-2}\\ 1.70\times10^{-2}\\ 2.80\times10^{-2} \end{array}$                                         | $\begin{array}{c} 0.000\\ 5.27\times10^{-3}\\ 9.78\times10^{-3}\\ 1.27\times10^{-2}\\ 3.17\times10^{-3}\\ 3.76\times10^{-3}\\ 5.51\times10^{-3}\\ 1.22\times10^{-2}\\ 5.27\times10^{-3}\\ 1.73\times10^{-2} \end{array}$                                         | $\begin{array}{c} 0.000\\ 4.28\times 10^{-4}\\ 2.11\times 10^{-3}\\ 1.53\times 10^{-3}\\ 1.02\times 10^{-3}\\ 1.16\times 10^{-3}\\ 2.77\times 10^{-3}\\ 2.99\times 10^{-3}\\ 2.62\times 10^{-3}\\ 2.04\times 10^{-3} \end{array}$                                          | $\begin{array}{c} 0.000\\ 1.26\times10^{-2}\\ 9.86\times10^{-3}\\ 1.27\times10^{-2}\\ 1.12\times10^{-2}\\ 1.24\times10^{-2}\\ 1.86\times10^{-2}\\ 1.56\times10^{-2}\\ 1.29\times10^{-2}\\ 1.66\times10^{-2}\\ \end{array}$                                         | $\begin{array}{c} 0.000\\ 4.38\times 10^{-4}\\ 1.95\times 10^{-3}\\ 1.38\times 10^{-3}\\ 1.14\times 10^{-3}\\ 1.30\times 10^{-3}\\ 2.98\times 10^{-3}\\ 3.30\times 10^{-3}\\ 2.49\times 10^{-3}\\ 2.36\times 10^{-3} \end{array}$                                           | $\begin{array}{c} 0.000\\ 1.26\times 10^{-2}\\ 3.37\times 10^{-3}\\ 6.18\times 10^{-3}\\ 1.11\times 10^{-2}\\ 1.23\times 10^{-2}\\ 1.86\times 10^{-2}\\ 1.64\times 10^{-2}\\ 1.09\times 10^{-2}\\ 1.32\times 10^{-2} \end{array}$                                           |
| BANO2<br>BACN<br>BACOCH3<br>BACOH<br>BACI<br>BAF<br>BA<br>BACH3<br>BAOCH3<br>BAOCH3<br>BAOH<br>BANH2              | $\begin{array}{r} 3.44\\ 3.55\\ 3.74\\ 3.77\\ 3.98\\ 4.14\\ 4.19\\ 4.37\\ 4.47\\ 4.57\\ 4.82\end{array}$ | $\begin{array}{c} 0.000\\ 8.15\times10^{-3}\\ 8.54\times10^{-3}\\ 8.18\times10^{-3}\\ 1.19\times10^{-2}\\ 4.92\times10^{-3}\\ 3.75\times10^{-2}\\ 1.52\times10^{-2}\\ 3.28\times10^{-2}\\ 2.46\times10^{-2}\\ 3.66\times10^{-2} \end{array}$                     | $\begin{array}{c} 0.000\\ 1.39\times10^{-2}\\ 9.08\times10^{-3}\\ 1.30\times10^{-2}\\ 1.35\times10^{-2}\\ 1.23\times10^{-2}\\ 3.20\times10^{-2}\\ 1.94\times10^{-2}\\ 1.70\times10^{-2}\\ 2.80\times10^{-2}\\ 3.56\times10^{-2} \end{array}$                     | $\begin{array}{c} 0.000\\ 5.27\times10^{-3}\\ 9.78\times10^{-3}\\ 1.27\times10^{-2}\\ 3.17\times10^{-3}\\ 3.76\times10^{-3}\\ 5.51\times10^{-3}\\ 1.22\times10^{-2}\\ 5.27\times10^{-3}\\ 1.73\times10^{-2}\\ 2.22\times10^{-2} \end{array}$                     | $\begin{array}{c} 0.000\\ 4.28\times 10^{-4}\\ 2.11\times 10^{-3}\\ 1.53\times 10^{-3}\\ 1.02\times 10^{-3}\\ 1.16\times 10^{-3}\\ 2.77\times 10^{-3}\\ 2.99\times 10^{-3}\\ 2.62\times 10^{-3}\\ 2.04\times 10^{-3}\\ 2.89\times 10^{-3} \end{array}$                     | $\begin{array}{c} 0.000\\ 1.26\times10^{-2}\\ 9.86\times10^{-3}\\ 1.27\times10^{-2}\\ 1.12\times10^{-2}\\ 1.24\times10^{-2}\\ 1.86\times10^{-2}\\ 1.56\times10^{-2}\\ 1.29\times10^{-2}\\ 1.66\times10^{-2}\\ 1.75\times10^{-2} \end{array}$                       | $\begin{array}{c} 0.000\\ 4.38\times 10^{-4}\\ 1.95\times 10^{-3}\\ 1.38\times 10^{-3}\\ 1.14\times 10^{-3}\\ 1.30\times 10^{-3}\\ 2.98\times 10^{-3}\\ 3.30\times 10^{-3}\\ 2.49\times 10^{-3}\\ 2.36\times 10^{-3}\\ 3.17\times 10^{-3} \end{array}$                      | $\begin{array}{c} 0.000\\ 1.26\times 10^{-2}\\ 3.37\times 10^{-3}\\ 6.18\times 10^{-3}\\ 1.11\times 10^{-2}\\ 1.23\times 10^{-2}\\ 1.86\times 10^{-2}\\ 1.64\times 10^{-2}\\ 1.09\times 10^{-2}\\ 1.32\times 10^{-2}\\ 1.74\times 10^{-2}\\ \end{array}$                    |
| BANO2<br>BACN<br>BACOCH3<br>BACOH<br>BAC1<br>BAF<br>BA<br>BACH3<br>BAOCH3<br>BAOCH3<br>BAOH<br>BANH2<br>BANHCOCH3 | $\begin{array}{r} 3.44\\ 3.55\\ 3.74\\ 3.77\\ 3.98\\ 4.14\\ 4.19\\ 4.37\\ 4.57\\ 4.82\\ 4.3\end{array}$  | $\begin{array}{c} 0.000\\ 8.15\times10^{-3}\\ 8.54\times10^{-3}\\ 8.18\times10^{-3}\\ 1.19\times10^{-2}\\ 4.92\times10^{-3}\\ 3.75\times10^{-2}\\ 1.52\times10^{-2}\\ 3.28\times10^{-2}\\ 2.46\times10^{-2}\\ 3.66\times10^{-2}\\ 3.38\times10^{-2} \end{array}$ | $\begin{array}{c} 0.000\\ 1.39\times10^{-2}\\ 9.08\times10^{-3}\\ 1.30\times10^{-2}\\ 1.35\times10^{-2}\\ 1.23\times10^{-2}\\ 3.20\times10^{-2}\\ 1.94\times10^{-2}\\ 1.70\times10^{-2}\\ 2.80\times10^{-2}\\ 3.56\times10^{-2}\\ 6.33\times10^{-1} \end{array}$ | $\begin{array}{c} 0.000\\ 5.27\times10^{-3}\\ 9.78\times10^{-3}\\ 1.27\times10^{-2}\\ 3.17\times10^{-3}\\ 3.76\times10^{-3}\\ 5.51\times10^{-3}\\ 1.22\times10^{-2}\\ 5.27\times10^{-3}\\ 1.73\times10^{-2}\\ 2.22\times10^{-2}\\ 6.29\times10^{-1} \end{array}$ | $\begin{array}{c} 0.000\\ 4.28\times 10^{-4}\\ 2.11\times 10^{-3}\\ 1.53\times 10^{-3}\\ 1.02\times 10^{-3}\\ 1.16\times 10^{-3}\\ 2.77\times 10^{-3}\\ 2.99\times 10^{-3}\\ 2.62\times 10^{-3}\\ 2.04\times 10^{-3}\\ 2.89\times 10^{-3}\\ 2.17\times 10^{-3}\end{array}$ | $\begin{array}{c} 0.000\\ 1.26\times10^{-2}\\ 9.86\times10^{-3}\\ 1.27\times10^{-2}\\ 1.12\times10^{-2}\\ 1.24\times10^{-2}\\ 1.86\times10^{-2}\\ 1.56\times10^{-2}\\ 1.29\times10^{-2}\\ 1.66\times10^{-2}\\ 1.75\times10^{-2}\\ 8.31\times10^{-3}\\ \end{array}$ | $\begin{array}{c} 0.000\\ 4.38\times 10^{-4}\\ 1.95\times 10^{-3}\\ 1.38\times 10^{-3}\\ 1.14\times 10^{-3}\\ 1.30\times 10^{-3}\\ 2.98\times 10^{-3}\\ 3.30\times 10^{-3}\\ 2.49\times 10^{-3}\\ 2.36\times 10^{-3}\\ 3.17\times 10^{-3}\\ 6.35\times 10^{-1} \end{array}$ | $\begin{array}{c} 0.000\\ 1.26\times 10^{-2}\\ 3.37\times 10^{-3}\\ 6.18\times 10^{-3}\\ 1.11\times 10^{-2}\\ 1.23\times 10^{-2}\\ 1.86\times 10^{-2}\\ 1.64\times 10^{-2}\\ 1.09\times 10^{-2}\\ 1.32\times 10^{-2}\\ 1.74\times 10^{-2}\\ 6.28\times 10^{-1} \end{array}$ |
| BANO2<br>BACN<br>BACOCH3<br>BACOH<br>BACI<br>BAF<br>BA<br>BACH3<br>BAOCH3<br>BAOCH3<br>BAOH<br>BANH2              | $\begin{array}{r} 3.44\\ 3.55\\ 3.74\\ 3.77\\ 3.98\\ 4.14\\ 4.19\\ 4.37\\ 4.47\\ 4.57\\ 4.82\end{array}$ | $\begin{array}{c} 0.000\\ 8.15\times10^{-3}\\ 8.54\times10^{-3}\\ 8.18\times10^{-3}\\ 1.19\times10^{-2}\\ 4.92\times10^{-3}\\ 3.75\times10^{-2}\\ 1.52\times10^{-2}\\ 3.28\times10^{-2}\\ 2.46\times10^{-2}\\ 3.66\times10^{-2} \end{array}$                     | $\begin{array}{c} 0.000\\ 1.39\times10^{-2}\\ 9.08\times10^{-3}\\ 1.30\times10^{-2}\\ 1.35\times10^{-2}\\ 1.23\times10^{-2}\\ 3.20\times10^{-2}\\ 1.94\times10^{-2}\\ 1.70\times10^{-2}\\ 2.80\times10^{-2}\\ 3.56\times10^{-2} \end{array}$                     | $\begin{array}{c} 0.000\\ 5.27\times10^{-3}\\ 9.78\times10^{-3}\\ 1.27\times10^{-2}\\ 3.17\times10^{-3}\\ 3.76\times10^{-3}\\ 5.51\times10^{-3}\\ 1.22\times10^{-2}\\ 5.27\times10^{-3}\\ 1.73\times10^{-2}\\ 2.22\times10^{-2} \end{array}$                     | $\begin{array}{c} 0.000\\ 4.28\times 10^{-4}\\ 2.11\times 10^{-3}\\ 1.53\times 10^{-3}\\ 1.02\times 10^{-3}\\ 1.16\times 10^{-3}\\ 2.77\times 10^{-3}\\ 2.99\times 10^{-3}\\ 2.62\times 10^{-3}\\ 2.04\times 10^{-3}\\ 2.89\times 10^{-3} \end{array}$                     | $\begin{array}{c} 0.000\\ 1.26\times10^{-2}\\ 9.86\times10^{-3}\\ 1.27\times10^{-2}\\ 1.12\times10^{-2}\\ 1.24\times10^{-2}\\ 1.86\times10^{-2}\\ 1.56\times10^{-2}\\ 1.29\times10^{-2}\\ 1.66\times10^{-2}\\ 1.75\times10^{-2} \end{array}$                       | $\begin{array}{c} 0.000\\ 4.38\times 10^{-4}\\ 1.95\times 10^{-3}\\ 1.38\times 10^{-3}\\ 1.14\times 10^{-3}\\ 1.30\times 10^{-3}\\ 2.98\times 10^{-3}\\ 3.30\times 10^{-3}\\ 2.49\times 10^{-3}\\ 2.36\times 10^{-3}\\ 3.17\times 10^{-3} \end{array}$                      | $\begin{array}{c} 0.000\\ 1.26\times 10^{-2}\\ 3.37\times 10^{-3}\\ 6.18\times 10^{-3}\\ 1.11\times 10^{-2}\\ 1.23\times 10^{-2}\\ 1.86\times 10^{-2}\\ 1.64\times 10^{-2}\\ 1.09\times 10^{-2}\\ 1.32\times 10^{-2}\\ 1.74\times 10^{-2}\\ \end{array}$                    |

**Table C.2:** Frobenius Distance between individual atoms for only the DI to be compared directly with  $pK_a$ , the most acidic molecule's atoms are taken as the reference atoms. (Benzoic Acid Series)

**Table C.3:** Frobenius Distance between individual atoms for only the LI to be compared directly with  $\lambda_{max}$ , the lowest  $\lambda_{max}$  molecule's atoms are taken as the reference atoms. (Benzoic Acid Series)

| molecule                                       | $\lambda_{\max}$                         | H1                                                                                                                                                  | O2                                                                                                                                        | C3                                                                                                                                        | 04                                                                                                                                                  | C5                                                                                                                                                  | C6                                                                                                                                        | $\mathbf{C7}$                                                                                                                                       |
|------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| BA                                             | 230                                      | 0                                                                                                                                                   | 0                                                                                                                                         | 0                                                                                                                                         | 0                                                                                                                                                   | 0                                                                                                                                                   | 0                                                                                                                                         | 0                                                                                                                                                   |
| BAOH                                           | 255                                      | $2.94 \times 10^{-4}$                                                                                                                               | $3.09 \times 10^{-3}$                                                                                                                     | $3.09 \times 10^{-3}$                                                                                                                     | $5.61 	imes 10^{-3}$                                                                                                                                | $1.40 \times 10^{-3}$                                                                                                                               | $1.33 \times 10^{-2}$                                                                                                                     | $1.24 \times 10^{-2}$                                                                                                                               |
| BANH2                                          | 288                                      | $1.04 \times 10^{-3}$                                                                                                                               | $3.31 \times 10^{-3}$                                                                                                                     | $1.04 	imes 10^{-2}$                                                                                                                      | $1.26 \times 10^{-2}$                                                                                                                               | $1.50 \times 10^{-3}$                                                                                                                               | $1.23 \times 10^{-2}$                                                                                                                     | $1.15 \times 10^{-2}$                                                                                                                               |
| BACl                                           | 240                                      | $6.68 	imes 10^{-4}$                                                                                                                                | $1.09 \times 10^{-3}$                                                                                                                     | $6.30 \times 10^{-3}$                                                                                                                     | $3.06 \times 10^{-3}$                                                                                                                               | $4.51 \times 10^{-3}$                                                                                                                               | $9.41 \times 10^{-3}$                                                                                                                     | $2.62 \times 10^{-2}$                                                                                                                               |
| BACH3                                          | 240                                      | $3.38 \times 10^{-4}$                                                                                                                               | $6.53 \times 10^{-4}$                                                                                                                     | $3.42 \times 10^{-3}$                                                                                                                     | $3.54 \times 10^{-3}$                                                                                                                               | $2.91 \times 10^{-4}$                                                                                                                               | $9.35 	imes 10^{-4}$                                                                                                                      | $2.68 \times 10^{-3}$                                                                                                                               |
| BAOCH3                                         | 255                                      | $5.46 	imes 10^{-4}$                                                                                                                                | $1.78 \times 10^{-3}$                                                                                                                     | $5.05 	imes 10^{-3}$                                                                                                                      | $8.70 \times 10^{-3}$                                                                                                                               | $1.21 \times 10^{-4}$                                                                                                                               | $9.56 	imes 10^{-3}$                                                                                                                      | $2.49 	imes 10^{-3}$                                                                                                                                |
| BANHCH3                                        | 303                                      | $1.36 	imes 10^{-3}$                                                                                                                                | $3.97 \times 10^{-3}$                                                                                                                     | $1.37 	imes 10^{-2}$                                                                                                                      | $1.50 	imes 10^{-2}$                                                                                                                                | $2.65 \times 10^{-3}$                                                                                                                               | $1.37 	imes 10^{-2}$                                                                                                                      | $2.05 	imes 10^{-2}$                                                                                                                                |
| BANCH3CH3                                      | 315                                      | $1.48 \times 10^{-3}$                                                                                                                               | $3.90 \times 10^{-3}$                                                                                                                     | $1.48 \times 10^{-2}$                                                                                                                     | $1.56 	imes 10^{-2}$                                                                                                                                | $3.16 \times 10^{-3}$                                                                                                                               | $1.31 \times 10^{-2}$                                                                                                                     | $2.00 \times 10^{-2}$                                                                                                                               |
| BANHCOCH3                                      | 275                                      | $3.12 \times 10^{-4}$                                                                                                                               | $2.21 \times 10^{-3}$                                                                                                                     | $2.23 \times 10^{-3}$                                                                                                                     | $6.78 	imes 10^{-4}$                                                                                                                                | $2.78 \times 10^{-3}$                                                                                                                               | $1.09 	imes 10^{-2}$                                                                                                                      | $7.37 	imes 10^{-3}$                                                                                                                                |
|                                                |                                          |                                                                                                                                                     |                                                                                                                                           |                                                                                                                                           |                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                           |                                                                                                                                                     |
| molecule                                       | $\lambda_{max}$                          | C8                                                                                                                                                  | C9                                                                                                                                        | C10                                                                                                                                       | H11                                                                                                                                                 | H12                                                                                                                                                 | H13                                                                                                                                       | H14                                                                                                                                                 |
| molecule<br>BA                                 | $\frac{\lambda_{\text{max}}}{230}$       | <b>C8</b>                                                                                                                                           | <b>C9</b><br>0                                                                                                                            | <b>C10</b><br>0                                                                                                                           | <b>H11</b><br>0                                                                                                                                     | H12<br>0                                                                                                                                            | <b>H13</b><br>0                                                                                                                           | H14<br>0                                                                                                                                            |
|                                                |                                          |                                                                                                                                                     |                                                                                                                                           |                                                                                                                                           |                                                                                                                                                     |                                                                                                                                                     | -                                                                                                                                         |                                                                                                                                                     |
| BA                                             | 230                                      | 0                                                                                                                                                   | 0                                                                                                                                         | 0                                                                                                                                         | 0                                                                                                                                                   | 0                                                                                                                                                   | 0                                                                                                                                         | 0                                                                                                                                                   |
| BA<br>BAOH                                     | $230 \\ 255$                             | $0 \\ 4.11 \times 10^{-1}$                                                                                                                          | $0 \\ 2.98 \times 10^{-3}$                                                                                                                | $0 \\ 1.05 \times 10^{-2}$                                                                                                                | $0 \\ 2.43 \times 10^{-3}$                                                                                                                          | $0 \\ 5.84 \times 10^{-3}$                                                                                                                          | $0 \\ 2.44 \times 10^{-3}$                                                                                                                | $0 \\ 1.88 \times 10^{-2}$                                                                                                                          |
| BA<br>BAOH<br>BANH2                            | 230<br>255<br>288                        | $\begin{array}{c} 0 \\ 4.11 \times 10^{-1} \\ 3.77 \times 10^{-1} \end{array}$                                                                      | $0 \\ 2.98 \times 10^{-3} \\ 1.16 \times 10^{-2}$                                                                                         | $\begin{array}{c} 0 \\ 1.05 \times 10^{-2} \\ 1.18 \times 10^{-2} \end{array}$                                                            | $\begin{array}{c} 0 \\ 2.43 \times 10^{-3} \\ 1.65 \times 10^{-3} \end{array}$                                                                      | $\begin{array}{c} 0 \\ 5.84 \times 10^{-3} \\ 8.14 \times 10^{-3} \end{array}$                                                                      | $\begin{array}{c} 0 \\ 2.44 \times 10^{-3} \\ 1.64 \times 10^{-3} \end{array}$                                                            | $\begin{array}{c} 0 \\ 1.88 \times 10^{-2} \\ 8.13 \times 10^{-3} \end{array}$                                                                      |
| BA<br>BAOH<br>BANH2<br>BACl                    | 230<br>255<br>288<br>240                 | $\begin{array}{c} 0 \\ 4.11 \times 10^{-1} \\ 3.77 \times 10^{-1} \\ 9.00 \times 10^{-2} \end{array}$                                               | $\begin{array}{c} 0 \\ 2.98 \times 10^{-3} \\ 1.16 \times 10^{-2} \\ 2.58 \times 10^{-2} \end{array}$                                     | $\begin{array}{c} 0 \\ 1.05 \times 10^{-2} \\ 1.18 \times 10^{-2} \\ 9.13 \times 10^{-3} \end{array}$                                     | $\begin{array}{c} 0 \\ 2.43 \times 10^{-3} \\ 1.65 \times 10^{-3} \\ 6.56 \times 10^{-3} \end{array}$                                               | $\begin{array}{c} 0 \\ 5.84 \times 10^{-3} \\ 8.14 \times 10^{-3} \\ 2.33 \times 10^{-2} \end{array}$                                               | $\begin{array}{c} 0 \\ 2.44 \times 10^{-3} \\ 1.64 \times 10^{-3} \\ 6.71 \times 10^{-3} \end{array}$                                     | $\begin{array}{c} 0 \\ 1.88 \times 10^{-2} \\ 8.13 \times 10^{-3} \\ 2.33 \times 10^{-2} \end{array}$                                               |
| BA<br>BAOH<br>BANH2<br>BACl<br>BACH3           | 230<br>255<br>288<br>240<br>240          | $\begin{array}{c} 0 \\ 4.11 \times 10^{-1} \\ 3.77 \times 10^{-1} \\ 9.00 \times 10^{-2} \\ 6.74 \times 10^{-2} \end{array}$                        | $\begin{array}{c} 0 \\ 2.98 \times 10^{-3} \\ 1.16 \times 10^{-2} \\ 2.58 \times 10^{-2} \\ 5.07 \times 10^{-3} \end{array}$              | $\begin{array}{c} 0\\ 1.05\times 10^{-2}\\ 1.18\times 10^{-2}\\ 9.13\times 10^{-3}\\ 1.35\times 10^{-3} \end{array}$                      | $\begin{array}{c} 0 \\ 2.43 \times 10^{-3} \\ 1.65 \times 10^{-3} \\ 6.56 \times 10^{-3} \\ 1.46 \times 10^{-3} \end{array}$                        | $\begin{array}{c} 0 \\ 5.84 \times 10^{-3} \\ 8.14 \times 10^{-3} \\ 2.33 \times 10^{-2} \\ 3.24 \times 10^{-3} \end{array}$                        | $\begin{array}{c} 0 \\ 2.44 \times 10^{-3} \\ 1.64 \times 10^{-3} \\ 6.71 \times 10^{-3} \\ 1.70 \times 10^{-3} \end{array}$              | $\begin{array}{c} 0 \\ 1.88 \times 10^{-2} \\ 8.13 \times 10^{-3} \\ 2.33 \times 10^{-2} \\ 4.77 \times 10^{-3} \end{array}$                        |
| BA<br>BAOH<br>BANH2<br>BACl<br>BACH3<br>BAOCH3 | $230 \\ 255 \\ 288 \\ 240 \\ 240 \\ 255$ | $\begin{array}{c} 0 \\ 4.11 \times 10^{-1} \\ 3.77 \times 10^{-1} \\ 9.00 \times 10^{-2} \\ 6.74 \times 10^{-2} \\ 4.17 \times 10^{-1} \end{array}$ | $\begin{array}{c} 0\\ 2.98\times 10^{-3}\\ 1.16\times 10^{-2}\\ 2.58\times 10^{-2}\\ 5.07\times 10^{-3}\\ 1.56\times 10^{-2} \end{array}$ | $\begin{array}{c} 0\\ 1.05\times 10^{-2}\\ 1.18\times 10^{-2}\\ 9.13\times 10^{-3}\\ 1.35\times 10^{-3}\\ 1.33\times 10^{-2} \end{array}$ | $\begin{array}{c} 0 \\ 2.43 \times 10^{-3} \\ 1.65 \times 10^{-3} \\ 6.56 \times 10^{-3} \\ 1.46 \times 10^{-3} \\ 7.38 \times 10^{-4} \end{array}$ | $\begin{array}{c} 0 \\ 5.84 \times 10^{-3} \\ 8.14 \times 10^{-3} \\ 2.33 \times 10^{-2} \\ 3.24 \times 10^{-3} \\ 1.77 \times 10^{-2} \end{array}$ | $\begin{array}{c} 0\\ 2.44\times 10^{-3}\\ 1.64\times 10^{-3}\\ 6.71\times 10^{-3}\\ 1.70\times 10^{-3}\\ 1.62\times 10^{-4} \end{array}$ | $\begin{array}{c} 0 \\ 1.88 \times 10^{-2} \\ 8.13 \times 10^{-3} \\ 2.33 \times 10^{-2} \\ 4.77 \times 10^{-3} \\ 1.15 \times 10^{-2} \end{array}$ |

**Table C.4:** Frobenius Distance between individual atoms for only the DI to be compared directly with  $\lambda_{max}$ , the lowest  $\lambda_{max}$  molecule's atoms are taken as the reference atoms. (Benzoic Acid Series)

| molecule               | $\lambda_{\max}$            | H1                    | O2                           | C3                    | 04                    | C5                    | C6                    | $\mathbf{C7}$         |
|------------------------|-----------------------------|-----------------------|------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $\mathbf{B}\mathbf{A}$ | 230                         | 0                     | 0                            | 0                     | 0                     | 0                     | 0                     | 0                     |
| BAOH                   | 255                         | $6.21 	imes 10^{-4}$  | $2.52 \times 10^{-3}$        | $8.00 \times 10^{-3}$ | $3.44 \times 10^{-3}$ | $1.42 \times 10^{-2}$ | $6.87 \times 10^{-3}$ | $3.96 	imes 10^{-2}$  |
| BANH2                  | 288                         | $1.97 	imes 10^{-3}$  | $4.55 \times 10^{-3}$        | $1.46 	imes 10^{-2}$  | $6.59 	imes 10^{-3}$  | $2.20 \times 10^{-2}$ | $2.01 \times 10^{-2}$ | $5.47 	imes 10^{-2}$  |
| BACl                   | 240                         | $1.16 \times 10^{-3}$ | $1.53 \times 10^{-3}$        | $1.39 \times 10^{-3}$ | $1.18 \times 10^{-3}$ | $3.58 \times 10^{-3}$ | $3.75 \times 10^{-3}$ | $2.02 \times 10^{-2}$ |
| BACH3                  | 240                         | $6.21 	imes 10^{-4}$  | $1.03 \times 10^{-3}$        | $3.40 	imes 10^{-3}$  | $1.44 \times 10^{-3}$ | $7.07 	imes 10^{-3}$  | $2.18 \times 10^{-3}$ | $1.35 	imes 10^{-2}$  |
| BAOCH3                 | 255                         | $1.04 \times 10^{-3}$ | $2.73 \times 10^{-3}$        | $9.12 \times 10^{-3}$ | $4.27 \times 10^{-3}$ | $1.89 	imes 10^{-2}$  | $2.57 	imes 10^{-2}$  | $6.02 \times 10^{-2}$ |
| BANHCH3                | 303                         | $2.57 	imes 10^{-3}$  | $5.48 \times 10^{-3}$        | $1.77 	imes 10^{-2}$  | $2.31\times 10^{-2}$  | $3.55 	imes 10^{-2}$  | $1.47 	imes 10^{-2}$  | $5.78 	imes 10^{-2}$  |
| BANCH3CH3              | 315                         | $2.81 \times 10^{-3}$ | $5.69 \times 10^{-3}$        | $1.80 	imes 10^{-2}$  | $2.30\times10^{-2}$   | $3.51 \times 10^{-2}$ | $2.45 	imes 10^{-2}$  | $6.84 \times 10^{-2}$ |
| BANHCOCH3              | 275                         | $4.74\times10^{-4}$   | $1.69 \times 10^{-3}$        | $5.48 	imes 10^{-3}$  | $2.18\times 10^{-2}$  | $2.50\times 10^{-2}$  | $6.86 	imes 10^{-3}$  | $4.22 \times 10^{-2}$ |
| molecule               | $\lambda_{\max} \mathbf{C}$ | 28 C9                 | C10                          | H11                   | H12                   | H13                   | H14                   |                       |
| BA                     | 230                         | 0                     | 0                            | 0                     | 0                     | 0                     | 0                     | 0                     |
| BAOH                   | 255                         | $6.10 \times 10^{-2}$ | $2 4.90 \times 10^{-2}$      | $1.65 \times 10^{-2}$ | $1.20 \times 10^{-3}$ | $2.23	imes10^{-3}$    | $1.28 	imes 10^{-3}$  | $5.50 	imes 10^{-3}$  |
| BANH2                  | 288                         | $7.35 \times 10^{-2}$ | $2 5.47 \times 10^{-2}$      | $2.09 \times 10^{-2}$ | $1.32 \times 10^{-3}$ | $1.55 \times 10^{-3}$ | $1.34 \times 10^{-3}$ | $1.57 \times 10^{-3}$ |
| BACl                   | 240                         | $2.58 \times 10^{-2}$ | $2 2.01 \times 10^{-2}$      | $3.88 \times 10^{-3}$ | $1.86 \times 10^{-3}$ | $7.50 	imes 10^{-3}$  | $1.94 \times 10^{-3}$ | $7.52 \times 10^{-3}$ |
| BACH3                  | 240                         | $2.45 \times 10^{-2}$ | $2 2.21 \times 10^{-2}$      | $9.98 \times 10^{-3}$ | $3.71 	imes 10^{-4}$  | $3.12 	imes 10^{-3}$  | $6.08 	imes 10^{-4}$  | $2.46 	imes 10^{-3}$  |
| BAOCH3                 | 255                         | $6.86 \times 10^{-2}$ | $^2$ 3.99 × 10 <sup>-2</sup> | $4.32 \times 10^{-3}$ | $1.41 \times 10^{-3}$ | $5.91 \times 10^{-3}$ | $8.17 \times 10^{-4}$ | $7.68 \times 10^{-3}$ |
| BANHCH3                | 303                         | $8.97 \times 10^{-2}$ | $6.50 \times 10^{-1}$        | $6.29 \times 10^{-1}$ | $1.65 \times 10^{-3}$ | $5.32 \times 10^{-3}$ | $6.38 \times 10^{-1}$ | $6.38 \times 10^{-1}$ |
| BANCH3CH3              | 315                         | $9.55 \times 10^{-2}$ | $6.46 \times 10^{-1}$        |                       |                       |                       | $6.34	imes10^{-1}$    | $6.38 	imes 10^{-1}$  |
| BANHCOCH3              | 275                         | $6.55 \times 10^{-2}$ | $6.47 \times 10^{-1}$        | $6.28 \times 10^{-1}$ | $1.72 \times 10^{-3}$ | $1.06\times 10^{-2}$  | $6.37 \times 10^{-1}$ | $6.38 	imes 10^{-1}$  |

**Table C.5:** Frobenius Distance between individual atoms for only the LI to be compared directly with the aromaticity measure HOMA, the highest HOMA value molecule's atoms are taken as the reference atoms. (Aromatic Series)

| molecule        | HOMA  | C1                    | C2                    | C3                    | C4                    | C5                    | C6                    |
|-----------------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Benzene         | 1.001 | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     |
| Anthracene(I)   | 0.884 | $6.56 \times 10^{-2}$ | $6.56 	imes 10^{-2}$  | $3.06 \times 10^{-3}$ | $6.56 	imes 10^{-2}$  | $6.56 \times 10^{-2}$ | $3.06 \times 10^{-3}$ |
| Anthracene(O)   | 0.517 | $6.56 \times 10^{-2}$ | $6.56 	imes 10^{-2}$  | $2.47 \times 10^{-3}$ | $9.01 \times 10^{-4}$ | $9.01 \times 10^{-4}$ | $2.47 \times 10^{-3}$ |
| Phenanthrene(I) | 0.402 | $6.49 \times 10^{-2}$ | $5.58	imes10^{-2}$    | $5.58	imes10^{-2}$    | $6.49 	imes 10^{-2}$  | $2.08 \times 10^{-3}$ | $2.07 	imes 10^{-3}$  |
| Phenanthrene(O) | 0.902 | $5.58 \times 10^{-2}$ | $6.49 	imes 10^{-2}$  | $3.88 	imes 10^{-4}$  | $3.67 	imes 10^{-3}$  | $5.78 	imes 10^{-3}$  | $5.28 	imes 10^{-3}$  |
| Naphthalene     | 0.779 | $6.37 \times 10^{-2}$ | $6.37	imes10^{-2}$    | $3.07 	imes 10^{-3}$  | $1.44 	imes 10^{-3}$  | $1.44 	imes 10^{-3}$  | $3.07 	imes 10^{-3}$  |
| Naphthacene(I)  | 0.774 | $7.06 \times 10^{-2}$ | $7.06\times10^{-2}$   | $2.06 \times 10^{-3}$ | $6.31 \times 10^{-2}$ | $6.31 \times 10^{-2}$ | $2.06 \times 10^{-3}$ |
| Naphthacene(O)  | 0.325 | $2.67 \times 10^{-3}$ | $2.04 \times 10^{-3}$ | $6.31 \times 10^{-2}$ | $6.31 \times 10^{-2}$ | $2.04 \times 10^{-3}$ | $2.67 \times 10^{-3}$ |
| Chrysene(I)     | 0.553 | $5.84 \times 10^{-2}$ | $5.84 	imes 10^{-2}$  | $5.64	imes10^{-2}$    | $6.77 	imes 10^{-2}$  | $2.56 	imes 10^{-3}$  | $5.42 	imes 10^{-3}$  |
| Chrysene(O)     | 0.859 | $6.77 \times 10^{-2}$ | $5.64 	imes 10^{-2}$  | $4.00 	imes 10^{-3}$  | $5.59	imes10^{-3}$    | $3.28 \times 10^{-3}$ | $8.76 	imes 10^{-4}$  |
| Triphenylene(I) | 0.067 | $5.64 \times 10^{-2}$ | $5.64 	imes 10^{-2}$  | $5.64	imes10^{-2}$    | $5.64 	imes 10^{-2}$  | $5.64 	imes 10^{-2}$  | $5.64	imes10^{-2}$    |
| Triphenylene(O) | 0.93  | $5.64 \times 10^{-2}$ | $5.64 	imes 10^{-2}$  | $8.27 \times 10^{-3}$ | $7.07 \times 10^{-3}$ | $7.06 \times 10^{-3}$ | $8.25\times 10^{-3}$  |
| Cyclohexane     | -4.34 | $1.03 \times 10^{-1}$ | $1.03\times10^{-1}$   | $1.03 \times 10^{-1}$ | $1.03 \times 10^{-1}$ | $1.03 \times 10^{-1}$ | $1.03 \times 10^{-1}$ |

**Table C.6:** Frobenius Distance between individual atoms for only the DI to be compared directly with the aromaticity measure HOMA, the highest HOMA value molecule's atoms are taken as the reference atoms. (Aromatic Series)

| molecule        | HOMA  | C1                    | C2                    | C3                    | C4                    | C5                    | C6                    |
|-----------------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Benzene         | 1.001 | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     |
| Anthracene(I)   | 0.884 | $9.87 \times 10^{-2}$ | $9.87 \times 10^{-2}$ | $3.43 \times 10^{-2}$ | $9.87 \times 10^{-2}$ | $9.87 \times 10^{-2}$ | $3.43 \times 10^{-2}$ |
| Anthracene(O)   | 0.517 | $1.51 \times 10^{-1}$ | $1.51 	imes 10^{-1}$  | $1.57 	imes 10^{-1}$  | $1.51 \times 10^{-1}$ | $1.51 \times 10^{-1}$ | $1.57 	imes 10^{-1}$  |
| Phenanthrene(I) | 0.402 | $1.39 	imes 10^{-1}$  | $1.51 	imes 10^{-1}$  | $1.51 	imes 10^{-1}$  | $1.39 	imes 10^{-1}$  | $1.78 	imes 10^{-1}$  | $1.78 	imes 10^{-1}$  |
| Phenanthrene(O) | 0.902 | $7.59	imes10^{-2}$    | $7.84 	imes 10^{-2}$  | $7.77	imes10^{-2}$    | $6.65 	imes 10^{-2}$  | $6.57 	imes 10^{-2}$  | $7.44 	imes 10^{-2}$  |
| Naphthalene     | 0.779 | $1.08 \times 10^{-1}$ | $1.08 \times 10^{-1}$ | $1.14 \times 10^{-1}$ | $1.05 \times 10^{-1}$ | $1.05 \times 10^{-1}$ | $1.14 \times 10^{-1}$ |
| Naphthacene(I)  | 0.774 | $1.23 \times 10^{-1}$ | $1.23 \times 10^{-1}$ | $6.85\times10^{-2}$   | $1.21 \times 10^{-1}$ | $1.21 \times 10^{-1}$ | $6.85\times10^{-2}$   |
| Naphthacene(O)  | 0.325 | $1.74 \times 10^{-1}$ | $1.79 	imes 10^{-1}$  | $1.77 \times 10^{-1}$ | $1.77 \times 10^{-1}$ | $1.79 \times 10^{-1}$ | $1.74 \times 10^{-1}$ |
| Chrysene(I)     | 0.553 | $1.15 	imes 10^{-1}$  | $1.30 	imes 10^{-1}$  | $1.39 	imes 10^{-1}$  | $1.27 	imes 10^{-1}$  | $1.55 	imes 10^{-1}$  | $1.54 	imes 10^{-1}$  |
| Chrysene(O)     | 0.859 | $8.89 	imes 10^{-2}$  | $8.74 	imes 10^{-2}$  | $8.97 	imes 10^{-2}$  | $8.06 	imes 10^{-2}$  | $8.13 	imes 10^{-2}$  | $9.19 	imes 10^{-2}$  |
| Triphenylene(I) | 0.067 | $1.67 	imes 10^{-1}$  |
| Triphenylene(O) | 0.93  | $6.20 \times 10^{-2}$ | $6.20 \times 10^{-2}$ | $6.08 \times 10^{-2}$ | $5.01 \times 10^{-2}$ | $5.01 \times 10^{-2}$ | $6.08\times10^{-2}$   |
| Cyclohexane     | -4.34 | $3.02 \times 10^{-1}$ |