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Genetic diversity o f Bradyrhizobium japonicum in the soils of 

soybean growing regions of western Canada and the northern

United States.

By

Faisal Tariq Farooq 

Abstract

Introduction o f early maturing cultivars o f soybean (Glycine max [L.] Merr.) in western 

Canada has dramatically increased soybean production in the region. Soybean grows in 

symbiotic association with rhizobia which carry out biological nitrogen fixation in the 

plant. Previous studies have shown that rhizobium populations evolve quickly in the soil. In 

this study, we have examined the genetic diversity o f 107 Bradyrhizobium japonicum  

isolates from the soybean growing areas in western Canada and the northern United States 

(North Dakota, South Dakota and Minnesota) by rep-PCR genomic fingerprinting 

techniques -  (REP-PCR) and (ERIC-PCR). Results o f our study shows that the B. 

japonicum  isolates are genetically diverse. Our results also point towards the influence o f 

agricultural practices and geographical origin of isolates on genetic diversity o f B. 

japonicum  populations. Our results also suggest that sandy soil texture could have negative 

influence on genetic diversity o f  B. japonicum  populations at site Elm Creek in Manitoba.

[July 24th, 2007]
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Introduction

In recent years, growing international concerns regarding the issues o f environmental 

degradation and loss o f natural resources have renewed the scientific interest towards 

biological nitrogen fixation for the development o f more sustainable and effective 

agricultural system. In biological nitrogen fixation (BNF), nitrogen-fixing soil bacteria 

(rhizobia) induce the formation of root or stem nodules on leguminous plants in which 

atmospheric nitrogen is reduced to ammonia for the benefit o f the plant (Vanrhijn and 

Vanderleyden, 1995). The symbiotic association between rhizobia and legumes plays a 

significant role in world agricultural productivity by an estimated annual conversion of 

approximately 120 million tonnes o f atmospheric nitrogen into ammonia (Freiberg et al., 

1997).

Rhizobium inoculation is a less expensive and usually more effective agronomic practice 

for ensuring adequate nitrogen (N) nutrition o f legumes, compared with the application of 

N fertilizers. In western Canada, soybean production has dramatically increased in the 

last decade with the introduction o f low heat requiring cultivars along with climate 

change in the region (Miller et al., 2002). Soybean is a relatively new crop to the region. 

According to 2002 estimates, total soybean production in Manitoba was 109,000 tonnes 

representing o f only 4.7% of total soybean production in Canada in the year 2002 

(Statistics Canada, 2002). Inoculation o f soybean crop in western Canada is extremely 

important in order to optimize current soybean production in the region.
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In screening and selection for strains that could be potentially developed into 

commercial inoculants, it is important for the inoculant companies to distinguish strains 

o f rhizobia. Currently used genetic fingerprinting techniques, including rep-PCR genomic 

fingerprinting, are useful tools for strain identification (Van Belkum et al., 1994; Louws 

et al., 1996). The most common method o f strain selection for legume involves isolation 

o f rhizobial strains from fields where they have been introduced previously, usually as 

commercial inoculants (Santos et al., 1999). In order to maximize biological nitrogen 

fixation in legume crops, efficient and infective strains should be sampled from the 

agricultural fields. Collected strains of rhizobia should be screened for effectiveness and 

infectiveness under controlled environmental and field conditions before they could be 

potentially used by inoculant companies for developing them into commercial inoculants.

The ability o f inoculant strains to compete with very diverse indigenous rhizobial strains 

is an important requirement for an agronomically useful rhizobium-soybean association. 

Currently, soybean inoculants used in western Canada contain soybean rhizobial strains 

isolated and tested for soybean production in other regions and it is found that the current 

commercial inoculants of Bradyrhizobium japonicum  used in western Canada are not as 

effective and are not ideal for this region ( Vessey, 2007 pers. comm.). Strains within 

these inoculants are either not competitive in the rhizosphere or are not well suited for the 

edaphic conditions o f western Canada. Selection o f rhizobia that are well adapted to the 

environmental conditions o f the agricultural region is important to make best use o f 

efficiency o f inoculants strains.
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The aim of the present study is to provide an assessment on genetic diversity of 

Bradyrhizobium japonicum  natural field populations isolated from the soybean growing 

areas in western Canada and the northern US. 1 hypothesize that that due to genetic 

recombination among commercial inoculant strains and indigenous populations o f soil 

rhizobia including native Bradyrhizobium japonicum  populations and due to the influence 

of selective environmental pressure, the indigenous populations o f Bradyrhizobium 

japonicum  in western Canada are genetically diverse relative to the diversity o f soybean 

rhizobia acknowledged in other parts o f the world (Chen et al., 2000; Sikora & 

Redzepovic, 2003; Prakash &Annapuma, 2006). Influence of important environmental, 

ecological and edaphic conditions of the region were also considered in this study to 

correlate the genetic diversity o f B. japonicum  isolates to the site characteristics. The 

information on previous crop grown in field, year since last soybean grown, and use of 

inoculant was collected from site. Influence of edaphic factors (soil texture, soil salinity 

and drainage) and climate factors such as average annual temperature and mean annual 

precipitation were used as major factors to correlate genetic diversity o f B. japonicum  

isolates to a given site location.

The proposed research relies on the assumption that due to the process o f natural selection, 

the previously used commercial inoculants in these fields have resulted in the evolution of 

better adapted, more competitive and more infective strains among the indigenous 

populations o f Bradyrhizobium japonicum  present in the soil. Previous studies have shown 

that rhizobium evolves quickly in the soil usually by horizontal gene transfer among the 

inoculant strains and indigenous rhizobial populations (Sullivan et al., 1995). Soybean
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cultivars that are well adapted to the edaphic and climatic conditions o f this region were 

used as primary source to isolate rhizobia for this study. The assessment o f  genetic 

diversity of rhizobial populations and screening and selection o f better, highly effective and 

well adapted strains are required for a given geographical region for developing superior 

inoculants and thus, would help to develop better management strategies leading to better 

yield and crop production in western Canada. This information will also help our industrial 

partner, Philom Bios Inc. in selecting best adapted strains infecting soybean in western 

Canada and also in US. Philom Bios Inc. is a leading inoculant producing company across 

North America and produces high quality products for the benefits of farmers in Canada 

and US. It has also been suggested that rep-PCR genomic fingerprinting could be used as 

tool for protection o f intellectual property as fingerprints are unique for each individual 

strains (Rademaker & deBruijn, 1998). Hence, in order to improve the beneficial effect of 

soybean inoculation, it is important to determine the characteristics of rhizobial field 

populations.

In a companion study by Ms. Vanessa Kavanagh, Bradyrhizobium japonicum  isolates were 

tested and screened for infectiveness and effectiveness on soybean plants under laboratory 

and greenhouse conditions to identify better and efficient strains isolated from naturalized 

populations. The ultimate goal o f this research project along with the other companion 

study is to provide an assessment on the genetic diversity o f naturalized population of 

Bradyrhizobium japonicum  populations and to identify and test effectiveness and 

infectiveness of these rhizobial strains on soybean plants that could be potentially 

developed into commercial strains. This study will offer relevant and important information

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and expertise to our industrial partner that is needed to develop commercial soybean 

inoculant best suited for the soils of western Canada.
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Literature Review

For study and research on assessment o f genetic diversity of rhizobial population, it 

is important to review several important topics that includes physiological and 

biochemical process required for nitrogen fixation, taxonomic characteristics and 

ecology of Rhizobiaceae and strategies and tools used in this field by various 

researcher to study and assess the genetic diversity o f rhizobia (MartinezRomero & 

CaballeroMellado, 1996; Oyaizu et al., 1993). Hence, this literature review will 

include the overview o f legume- rhizobia symbiosis, taxonomy of rhizobia, ecology 

and genetic diversity o f rhizobia and, molecular tools and strategies used to identify 

bacteria.

2.1. Symbiosis

2.1 (a). Overview of the legume-rhizobia symbiosis

Symbiotic nitrogen fixation is carried out in specialized organs called nodules, 

whose formation is induced on leguminous host plants by bacteria belonging to the 

family Rhizobiaceae (Hirsch et al., 1992). In symbiotic nitrogen fixation, the host 

plant is directly benefited by the presence o f microsymbiont (bacteria) which fix 

atmospheric nitrogen that can be used by the host plant (Vanrhijn & Vanderleyden, 

1995). In symbiotic nitrogen fixation, formation of nodules depends on the 

availability o f compatible rhizobia (Vanrhijn & Vanderleyden, 1995). Nodule 

development is a multistep, complex process, in which two partners continuously
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interacts among each other to facilitate the exchange of different signals and 

metabolites. Successful establishment o f rhizobia induces several physiological 

changes on the plant organs for the nodule development (Vanrhijn & Vanderleyden, 

1995). Detailed physiology and biochemistry o f nodule development is explained in 

the next section.

2.2. Physiology and molecular biology of nodule development in 

soybean plants

Nodule development and successful establishment of soybean rhizobia into the 

compatible host plant is a complex process that can be divided in to three major 

steps as follows:

2.2 (a). Recognition and attachment of rhizobia

The symbiotic association between compatible rhizobia and host plant requires the 

recognition o f both partners and subsequent attachment o f  bacteria to the roots of 

host plant (Haaker, 1988). Compatible plant-bacteria interaction starts with an 

exchange o f molecular signals which regulates the expression of genes essential for 

infection and subsequent steps for nodule formation (Prell & Poole, 2006). Plants 

releases various compounds like isoflavonoids (Abd-Alla, 2001), flavonoids (Shaw 

et al., 2006), isoflavones (Subramanian et al., 2006) which are the secondary 

metabolities produces by phenylpropanoid metabolic pathway in higher plants (Prell 

& Poole, 2006). These compounds are identified by the compatible rhizobia and nod

8
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genes are expressed inside the bacteria (Gage, 2004). Rhizobia also releases Nod 

factors o f low-molecular weight and thus, both plant and rhizobia identify their 

compatible partner (Abd-Alla, 2001; Giller & Cadisch, 1995). Nod factors are 

lipochitooligosaccharides (LCOs) that consists o f an acylated chitin oligomeric 

backbone with various functional group substitutions at the terminal or non-terminal 

residues (Abd-Alla, 2001; Shaw et al., 2006). The exact chemical structure of the 

Nod factor that is recognised by the plant varies between bacterial species and is the 

basis for host-symbiont specificity. Nod factors are recognized by a specific class of 

receptor kinases that have LysM domains in their extracellular domains (Shaw et a l, 

2006). Once rhizobium recognizes its symbiotic partner, it attaches to the root 

surface o f the host plant. Attachment o f rhizobia to the roots o f host plants 

apparently involves two major steps (Shaw et al., 2006; Vanrhijn & Vanderleyden, 

1995). First, single rhizobia adhere to plant receptor via a protein called rhicadhesin. 

Rhicadhesin is a calcium binding protein and is commonly found among the 

Rhizobiaceae. Subsequently, other rhizobia adhere to the trichoblast-bound bacterial 

cells (Gage, 2004; deBruijn & Downie, 1991). Lectins o f plant origin have been 

frequently implicated to be involved in the recognition and attachment process, 

because they have specific binding sites for certain poly- or oligosaccarides found at 

the surface of bacteria (Gage, 2004). However, some studies have shown that lectins 

originating from the rhizobia may also be involved in the attachment process (Gage, 

2004).

2.2 (b). Root infection

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The recognition and attachment o f rhizobia to the roots o f host plant is eventually 

followed by root infection of host plant due to the expression of nod genes in the 

bacteria that initiates the infection process (Debruijn & Downie, 1991). Rhizobial 

Nod factors influences the host root growth by causing an increase in the amount of 

root hairs and a subsequent root hair deformation and curling (Vanrhijn & 

Vanderleyden, 1995). Root hair curling is facilitated by the changes in the growth 

direction o f the root hair cell at the site o f rhizobial attachment. This process 

eventually led to entrapping o f the bacteria following by subsequent ingestion into 

the root (Vanrhijn & Vanderleyden, 1995; Gage, 2004).

Subsequent to the root hair curling, bacteria penetrate the rhizodermis and the 

development o f root infection thread occurs. Endocytosis is regarded as the initial 

step of infection thread formation (Hirsch et al., 1992). Current evidence suggests 

that lipopolysaccrides may also be involved in the development o f infection threads 

(Gage, 2004). An infection thread continues to develop by further penetrating into 

the cortex o f the root. This penetration is facilitated by the continuous degrading of 

radial cell walls o f the root. Eventually, the infection thread spread further into the 

root cortex (Hirsch, 1992; Hirsch et al., 1992). The structure o f infection threads is 

not identical in all legumes (Hirsch et al., 1992; Gage, 2004). Infection thread 

consists o f newly synthesized cell wall material surrounding the rhizobia (Gage,

2004). The centre o f the tube is a glycoprotein containing some bacterial products 

and some host glycoproteins. The whole structure is surrounded by a membrane 

contiguous with root hair plasmalemma. The type of thread formation appears to be
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influenced by the surface polysaccharides of rhizobia (Debruijn & Downie, 1991; 

Shaw et al., 2006).

2.2 (c). Root nodule formation

Simultaneous to the formation o f infection threads, cortical cells o f the root divides 

and finally lead to the formation o f root nodule. In the nodules, the bacteria which 

have penetrated the root cortex in the infection thread are eventually released into 

the host cell (Oke & Long, 1999). Rhizobia differentiate into ‘bacteroids’ by loosing 

their cell wall and become substantially enlarged and gets enclosed in the 

peribacteroid membrane and thus kept separated from the cytoplasm o f plant cell 

(Oke & Long, 1999). Synthesis o f enzyme nitrogenase starts and leghaemoglobin is 

produced in the host cells and nodule acquires pink colour. Leghaemoglobin 

synthesis may be induced by the production of bacterial transacting factors giving 

rise to symbiotically induced plant genes involved in the production of 

leghaemoglobin (Prell & Poole, 2006). The nitrogen fixed by the bacteria is 

transported directly to the plant. Plant provides bacteria with a carbon supply for 

their survival and energy required for the nitrogen fixation by the bacteria (Hirsch, 

1992; Debruijn & Downie, 1991). Nitrogenase synthesis follows in pea and soybean 

subsequent to the release o f bacteria from the infection thread. Other plants do not 

release the bacteria but still form nitrogenase (Amarger, 2001; Prell & Poole, 2006).

2.3. Current Rhizobium taxonomy
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Rhizobia are Gram-negative, rod shaped and non- sporulating bacteria 

(Jordan, 1982). Phylogenetically, they belong to the alpha subdivision of 

Proteobacteria (Jordan, 1984). Rhizobia are diverse and their classification has 

undergone great changes during recent years (Young, 1996). This is an outcome o f 

ongoing research on unexplored legumes in various parts of the world (Oyaizu et a l ,  

1993; Prakash & Annapurna, 2006; Ormeno-Orrillo et a l ,  2006; Musiyiwa et a l , 

2005; MartinezRomero & CaballeroMellado, 1996; Seguin et a l ,  2001; Prevost & 

Bromfield, 2003). Recent advances in the molecular techniques led to the significant 

progress in characterization and identification o f bacterial species. So far 

approximately only 23% o f the total number o f legume species has been 

characterized for their microsymbionts (-16500 and 19500). Rhizobial populations 

from tropical areas are poorly documented and previous and ongoing studies around 

the globe suggests that there is significantly high diversity in USA (Tlusty et a l,

2005); Canada (Vessey & Chemining'wa, 2006; Prevost & Bromfield, 2003), China 

(Chen et a l ,  2005); India (Pandey et a l, 2004; Prakash & Annapurna, 2006), Brazil 

(Boddey & Hungria, 1997), Sudan (Nick et a l ,  1999); Morocco and some other 

African countries (Musiyiwa et a l,  2005).

During early 1980’s, all symbiotic nitrogen-fixing bacteria from leguminous plants 

were classified in the single genus Rhizobium, including six species R. 

leguminosarum, R. meliloti, R. trifolii, R. phaseoli, R. lupine and R. japonicum  

based on cross-inoculation groups (Young, 1996). This classification was later 

changed into two genera that included Rhizobium genus and the new genus called
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Bradyrhizobium, created for the slow growing ones (Young, 1996; Young & 

Haukka, 1996). Type species o f this genus are classified as Bradyrhizobium 

japonicum  (Kirchner 1896) Jordan 1982, comb. nov. (Jordon, 1982). Ever since, 

isolation of rhizobia from an increasing number o f plant species around the world 

and use of modem molecular techniques for characterization o f rhizobia has led to 

the description of additional new genera and species (Oyaizu et a l ,  1993).Rhizobial 

species are currently classified in the following genera: Allorhizobium (emended 

genus Rhizobium), Mesorhizobium, Rhizobium, Sinorhizobium, Azorhizobium, 

Bradyrhizobium (Kirchner 1896) and Methylobacterium (Young, 1996; Young et 

al., 2001). In the following section, information about the Bradyrhizobium genus is 

provided in detail.

2.3 (a). Bradyrhizobium branch

As described by Jordan (1982), the Bradyrhizobium genus includes all the so-called 

“slow growing” rhizobia. For a long period o f time, it was only comprised o f one 

type species, Bradyrhizobium japonicum  (Kirchner 1896) Jordan 1982, comb. nov. 

(Jordon, 1982) and included all soybean nodulating strains. Kuykendall et al. (1992) 

created a new species, Bradyrhizobium elkanii which differ from the species B. 

japonicum  by many features. Other very slow growing strains isolated from the 

nodules of Glycine max and Glycine soya in China (generation time between 16 and 

24 hours), were given the proposed name Bradyrhizobium liaoningense (Chen et al., 

2005; Xu et al., 1995). Groups o f Bradyrhizobium sp. have been identified, and 

characterized by various phenotypic and genotypic methods (Lloret & Martinez-
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Romero, 2005; Young, 1996;Young et al., 2001) The modem polyphasic 

taxomomy revealed by analysis of 16S rRNA gene coding sequence that 

Bradyrhizobium genus is phylogenetically closer to non-symbiotic bacteria, like 

Rhodopseudomonas palustris and Blastobacter denitrificans, than to Rhizobium and 

Agrobacterium (Barrera et a l, 1997; Lloret & Martinez-Romero, 2005; Yanagi & 

Yamasato, 1993) . Thus, the taxonomy of the Bradyrhizobium genus remains 

confused and taxonomic conclusions suggests that the taxonomy of the 

Bradyrhizobium genus is still at a beginning stage and increased research could 

result in further changes in taxonomy of rhizobia.

2.4. Rhizobial Ecology

Previous studies have shown that several abiotic and biotic factors could have direct 

influence on legume-rhizobial symbioses and could have an effect on soil rhizobial 

populations (Zahran, 2001). Several abiotic factors like osmotic stress, soil 

temperature, soil pH, soil texture, carbon and nitrogen content o f soil have been 

suggested to influence genetic diversity o f rhizobia (Zahran, 1999). Biotic factors 

like competition among rhizobial populations and competition with other soil 

microorganism, previous crop grown in the fields etc. could also have a direct 

influence on rhizobial population. Details of abiotic and biotic factors that usually 

influence rhizobial populations are explained in the following section:

2.4 (a). Abiotic factors
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Several abiotic factors are known to affect the growth and survival o f rhizobial 

population. Soil pH, soil temperature, osmotic stress, soil texture, soil nitrate 

concentration and, presence or absence o f carbon source are some o f the important 

abiotic factors that are known to influence maintenance and survival o f rhizobia in 

the soil (Brockwell et al., 1995).

2.4 (i). Soil pH

Soil pH significantly influences the rhizobial population in the soil. Both high and 

lower pH affects nodulation by causing reduction in the colonization o f soil and 

legume rhizosphere. Acidic conditions negatively affect soil populations o f rhizobia 

and are also known to affect the soil nutrient distribution (Graham, 1992). Studies 

have shown that there are usually higher concentrations o f aluminum and 

manganese in highly acidic soils which are generally toxic for both the legume and 

rhizobia (Bordeleau & Prevost, 1994). Thus, soil acidity could have negative effect 

on the survival and effectiveness of inoculant strains (Zahran, 1999). The majority 

o f rhizobial strains cannot grow at pH lower than 4.5 (Zahran, 1999). In general, the 

most acidic conditions in which B. japonicum  could survive is pH 4.0 (Wood & 

Cooper, 1988). Rhizobium leguminosarum biovars trifolii and viciae usually cannot 

survive below pH 4.7 and S. meliloti cannot survive below pH 5.0.(Wood & Cooper, 

1988).The fast-growing strains o f rhizobia have generally been considered less 

tolerant to acid pH than have slowly growing strains o f Bradyrhizobium (Graham, 

1992; Graham & Vance, 2000). Higher pH (pH>8.0) leads to increase in soil salinity 

and thus reduces nitrogen fixation (Bordeleau & Prevost, 1994).
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2.4 (ii). Temperature

Temperature is often a limiting factor in successful legume-rhizobium symbiosis. 

Several years o f studies have shown that temperature affects root hair infection, 

bacteroid differentiation, nodule structure, and the functioning of the legume root 

nodule (Zahran, 2001). Rhizobia cannot survive under extremely high soil 

temperatures and high soil temperatures have been suggested to delay nodulation 

(Graham, 1992). Most rhizobia grow best in the range o f 28°C to 31°C. However; 

28°C is indeed the optimum temperature for culturing rhizobia (Graham, 1992). 

Many rhizobia are unable to grow at 37°C. However; S. meliloti grows well at 35°C 

(Zahran, 1999). Rhizobia from sub-artic regions are adapted to their environment 

and could grow and nodulate at comparatively lower temperatures than rhizobia 

from temperate regions (Ekjander & Fahraeus, 1971). Strains o f R. leguminosarum 

bv. viciae isolated from artic legume Lathyrus species were found to be adapted to 

grow at low temperature (5°C) (Drouin et al., 1996). In short season production 

areas, low soil temperature is suggested to be a major limiting factor affecting 

soybean growth in the field (Zhang et al., 2003). Temperature could also affect 

ability of inoculant strains to nodulate and fix nitrogen and the persistence o f the 

inoculant strains survival in the soil (Bordeleau & Prevost, 1994). It has been shown 

that ability o f rhizobial strains to withstand high temperatures appears to be favored 

by dry rather than wet soil conditions (Graham, 1992).

2.4 (iii). Other abiotic factors that affects rhizobial diversity
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Abiotic factors like osmotic stress, soil texture, soil nitrate conditions and, presence 

or absence of carbon sources in the soil affects rhizobial growth and population. 

Growth of rhizobia is inhibited under extreme moisture conditions. Under high 

osmotic stress due to drought or salinity, there is reduction in infection and 

nodulation of legumes (Busse & Bottomley, 1989). Also, the nitrogen-fixing activity 

in nodules is found to be significantly reduced (Streeter, 2003). Studies by Hunt et 

al. (1981) shows that low water content in soil could affect the success o f soybean 

inoculation in soils with high indigenous population of B. japonicum  (previously 

known as R. japonicum).

Previous studies have also shown that rhizobia have better survival in fine textured 

soils than in coarse textured soils because coarse textured soils are usually prone to 

nutrient deficiencies, water deficits, and acidification (Graham, 1992). Heijnen & 

Vanveen (1991) suggested that the chance o f rhizobial survival is greater in soils 

with higher clay content as compared to the soils with lower clay content due to the 

presence o f stable soil aggregates which help in preventing desiccation and nutrient 

loss.

Studies have also shown that the process of nodulation may be encouraged by 

relatively low levels o f available nitrate or ammonia (Lucinski et a l ,  2002;

Supanjani et al., 2006). A higher concentration o f inorganic nitrogen in the soil leads 

to lower nodulation on legumes (Eaglesham, 1989). It has been established for many
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years that soilN03 inhibits root infection, nodule development (Imsande, 1986), 

and nitrogenase activity (Purcell & Sinclair, 1990; Vessey & Waterer, 1992).

Rhizobial biomass is usually higher in more fertile soils and increases in proportion 

to soil organic carbon (Jenkinson & Ladd, 1981). Bradyrhizobia and other rhizobia 

can survive on a wide range o f carbon sources that includes sugars (monosaccharide, 

disaccharides, trisaccharides, hexoses and pentoses); sugar alcohols (glycerol, 

mannitol, dulcitol); and aromatic compounds rising from root exudation and 

decomposition of plant residues (Stowers, 1985). Bradyrhizobium unlike other 

rhizobial species cannot utilize citrate (Stowers, 1985). Within the host root nodule, 

succinate is the most utilized carbon and energy source for the rhizobia which 

supports nitrogen fixation by bacteroids (Finan et al., 1983).

2.4 (b) Biotic factors

Competition o f rhizobial strains with other soil microorganisms and with indigenous 

population o f rhizobia becomes particularly important for the successful 

establishment o f legume-rhizobium symbiosis. Predation by protozoa and 

bacteriocins produced by other bacteria could reduce rhizobial population in the soil 

(Heijnen & Vanveen, 1991).

Competition o f introduced strains or inoculant strains with the indigenous 

population of rhizobia is also an important factor determining the successful 

establishment o f introduced strains in soil and for inoculation o f the host plant. The
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presence o f large populations of indigenous, well adapted and less efficient strains 

have infection advantages over inoculant strains due to their high number in the soil 

(Brockwell & Bottomley, 1995; Chemining'wa & Vessey, 2006).

Numerous evidences are found in the literature which suggests influence o f different 

crops on rhizobial populations (Paffeti 1996; 1998; Triplett et al., 1993). 

Bradyrhizobium japonicum  populations are found to increase in the presence of 

soybean crops (Weaver et al., 1972). Plant cultivar is also suggested to influence 

rhizobial diversity (Zhang et al., 1999). Kucey & Hynes (1989) found that there was 

a 10 fold increase in R. leguminosarum bv. viciae in pea fields than in bean or cereal 

fields.

2.5. Genetic Diversity

During the last few years, the assessment o f diversity within rhizobial natural 

populations in various regions of the world has received increased attention (Ando 

& Yokoyama, 1999; Boddey & Hungria, 1997; Judd et al., 1993; Madrzak et al., 

1995; Prevost & Bromfield, 2003). Studies have shown that rhizobium population 

evolves quickly in the soil and many indigenous competitive strains have been 

identified by the researchers in many parts o f the world (Hungria et al., 1998; Hynes 

& Oconnell, 1990; Ormeno-Orrillo e ta l., 2006; Sikora & Redzepovic, 2003). The 

possible prediction of this quick evolution o f new strains is the lateral transfer o f 

genes among the long-term resident population of rhizobia present in the soil
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(Sullivan et al., 1995). The other source could be the commercial inoculant (s) used 

previously in the fields that could have resulted in the evolution o f more competitive 

strains among the rhizobial population present in the soil (Amarger, 2001; Santos et 

al., 1999). Thus, it becomes important to assess the diversity of indigenous rhizobial 

natural populations as it offers great advantage and opportunities for the selection of 

better, well adapted, and effective strains that could be potentially used for the 

development o f superior commercial inoculant(s).

It has been suggested that the edaphic and climatic factor play an important role in 

influencing the genetic diversity o f rhizobia (Amarger, 2001). Factors like 

temperature (Zahran, 1999; Zhang et al., 2003); moisture (Bordeleau & Prevost, 

1994; Zahran, 1999); soil type (Garbeva etal., 2004a; Garbeva et al., 2004b) and, 

soil pH (Bordeleau and Prevost, 1994; Graham, 1992) have been suggested to play 

an important role in determining and influencing the microbial population in the 

soil. Other factors like plant genotype, plant cultivar and crop rotation has been 

suggested to play a significantly affects the rhizobial populations in the soil (Weaver 

etal., 1972; Zhang e ta l., 1999).

In a study on rhizobial symboints isolated from different legume species, Laguerre 

et al. (1997) found that genetic diversity o f rhizobial isolates was independent o f 

geographic origin and host plant affinity. Zhang et al. (1999) found a strong 

influence of plant cultivar on the genetic diversity o f the bradyrhizobial strains 

isolated from the root nodules o f  two peanut cultivars from four different sites o f in 

Sichuan, China. They also showed that there was a possibility o f grouping of
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Bradyrhizobium isolates according to their geographical origin. Urtz & Elkan (1996) 

examined the symbiotic gene diversity in 33 Bradyrhizobium japonicum  isolates 

using RFLP analysis of n if  genes and nod genes. Most isolates were found to very 

stable for these markers and showed low genetic variability. In a study on 

Sinorhizobium meliloti population genetic diversity isolated from root nodules of 

several Medicago sativa varieties, Paffetti et a l (1996; 1998) found that significant 

genetic difference among strains were revealed by RAPD profiles suggesting that 

plant genotype is an important and influential factor in determining the genetic 

diversity of S. meliloti population in the field. Chiarini et al. (1998) did not find any 

significant influence o f different maize cultivars on microbial population on 

bacterial community structures.

Genetic structure of Rhizobium leguminosarum bv. phaseoli populations associated 

with wild and cultivated beans were studied by Souza et al. (1992) over several 

spatial scales ranging from individual host plants to throughout the western 

hemisphere. They suggested that limited migration between Rhizobium 

leguminosarum bv. phaseoli populations contribute to substantial genetic variability.

2.6. Inoculation

Inoculation of legume plants with rhizobium inoculants has been practiced for 

centuries (Brockwell & Bottomley, 1 995; Peoples et a l, 1995). Inoculants are 

commercially available in powder, liquid and granular formulations. Peat-based
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inoculants are the most common form of inoculants and are applied to the seed 

surface prior to planting (Brockwell & Bottomley, 1995; Thrall et al., 2005).

Inoculants are generally applied directly to the seed surface to ensure greater 

chances o f symbiotic association of commercial rhizobial strain to the crop plant 

(Brockwell & Bottomley, 1995). Studies have shown that commercial inoculants 

work best in the fields where they were being applied for the first time or where the 

field has no cropping history o f compatible host crop.

Fields having no history o f legume cultivation could still contain significant populations 

o f compatible rhizobia due to invasion of rhizobia from different location or sites 

(Beringer & Bale, 1988). Dispersal via seeds, airborne dust arising from harvesting and 

human activities are some possible causes and source for the introduction of rhizobia into 

area where there is no history o f cultivations o f legumes (Beringer & Bale, 1988).

2.6 (a). Strategies for identifying competitive strains o f rhizobia

In order to achieve maximum benefit from inoculation o f legume crop, highly infective 

and effective strains o f rhizobia must be sampled from the soils for developing them into 

commercial inoculants. It is also important for the inoculant companies to distinguish 

strains o f rhizobia. Currently, genetic fingerprinting techniques, including rep-PCR 

genomic fingerprinting are effective tools for strain identification. The most common 

method o f strain selection for legume involves re-isolation of rhizobial strains from fields 

where they have been introduced previously, usually as commercial inoculants (Santos et 

al., 1999). Screening o f collected strains o f rhizobia for effectiveness and infectiveness
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under controlled environmental and field conditions is also important before they could 

be potentially developed into commercial inoculants by inoculant companies.

2.6. (b). An ideal inoculant:

From a commercial prospective, in order to acquire maximum benefits from inoculation, 

an ideal inoculant must have maximum efficiency in the field. The inoculant strains 

should stay stable and should remain persistent and effective under the edaphic 

conditions in a given agricultural settings (Catroux et al., 2001, Smith, 1992). 

Compatibility o f commercial inoculant strains with agricultural practices and with use of 

pesticides and other chemicals used by the farmers is also important (Brockwell & 

Bottomley, 1995, Smith, 1992). The inoculant must reach the standard o f an appropriate 

inoculation rate and therefore it must contain the standard number o f viable rhizobial 

cells o f the appropriate species or strain per unit weight o f inoculant. rhizobia (Sm ith, 

1992). Longer shelf-life o f inoculants is one of the most essential requirements for the 

inoculant companies for the success o f their products (Catroux et al., 2001). Most of the 

inoculants produced by the inoculant companies have an average shelf-life o f 1-1.5 year. 

Inoculants must be free o f contamination as it could have detrimental effects on the shelf- 

life of rhizobia (Date & Rougghley, 1997). Oleson et al. (1996) have shown in their study 

that in a large percentage of inoculants made with non-sterile carrier had more than twice 

as many contaminants as rhizobia and could also carry harmful microorganisms including 

human, animal, plant or rhizobial pathogens. Most o f the inoculant companies in Europe, 

USA and Canada produce contamination free products with shelf-life longer than one 

year (Catroux et a l, 2001). In Canada, rhizobial inoculants are regulated and evaluated in
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a formal testing program by Agriculture Canada and Canadian Food inspection Agency 

before being approved for commercial use by the industry (Olsen et al., 1994). However, 

it has been suggested that in order to optimize agronomic benefits from inoculation, high 

quality standards for the manufacture of inoculants should be maintained (Olsen et al., 

1994). An important future requirement for companies to increase their market is to 

increase shelf-life o f their product, provide highest number o f viable strains per seed and 

most importantly by raising high quality standards for the formulation o f inoculant 

products that would beneficial for farmers and overall agricultural productivity o f 

legumes (Catroux et al., 2001).

2.7. Genomic Fingerprinting

Discovery of Polymerase Chain Reaction (PCR) technology in the year 1980 has 

revolutionized the whole concept o f research in molecular biology. Various modification 

o f PCR techniques have been designed in recent years according to research needs 

(Grundmann et al., 1995). Rate o f microbial evolution in the soil is very high and thus, 

identification of bacterial species is a great challenge. PCR-based genomic fingerprinting 

techniques namely PCR-RFLP, RAPD, and rep-PCR genomic fingerprinting techniques 

have made identification and classification o f bacteria much easier (deBruijn, 1992; Judd 

et al., 1993; Schneider & deBruijn, 1996). The utility o f any genomic fingerprinting 

method depends on high differentiating power, low cost and reproducibility (Barry et al., 

1991, Bingen et al., 1993; Grundmann et al., 1995). The technique employed must be 

able to clearly differentiate unrelated strains, should be affordable, easy to perform and
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be reproducible (Grundmann et a l,  1995). Most o f the currently used molecular 

techniques for typing rely on electrophoretic separation of DNA fragments o f different 

molecular lengths. The electrophoretic result is represented by a pattern o f bands on a gel. 

Since these patterns may be extremely complex, the ease with which the patterns are 

interpreted and related is an important factor in evaluating the utility o f a particular 

typing method (Appuhamy et a l ,  1997; Grundmann et a l,  1995).

Rep-PCR genomic fingerprinting is very efficient and robust technique and is very 

useful for determining phylogenetic relationships among microbial isolates and for 

assigning strains into specific groups and to identify the prokaryotic organism at species, 

sub-species and strain level (Laguerre et a l,  1994; Opgenorth et a l, 1996; deBruijn, 

1992). Information about these genomic fingerprinting techniques is provided in the 

following section.

2.7 (a). Restriction Fragment Length Polymorphisms (RFLPs)

Restriction Fragment Length Polymorphism is widely used by molecular biologist for 

bacterial identification purposes. (Appuhamy et al., 1997; Cockerill et al., 1995). PCR- 

based RFLPs (PCR-RFLP) is an important research tool used for identification o f 

rhizobial isolates (Haukka et a l ,  1996; Laguerre et al., 1994). 16S rRNA sequences are 

highly conserved among proteobacteria. However, the intergenic spacer (IGS) sequences 

betweenl6S rRNA and 23 S rRNA are highly variable and can be used for identification 

purposes and has been applied successfully in several studies to discriminate strains 

within various rhizobial species including R. leguminosarum bv. viciae (Vessey & 

Chemining’wa, 2006), B. japonicum  (Vinuesa et a l , 1998, Wolde-Meskel et al., 2005),
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and S. meliloti (Zribi et al., 2004). This method is commonly used to differentiate 

between species o f root nodule bacteria (Gault et al., 1994; Hung et al., 2005; Laguerre et 

al., 1994). The RFLP analysis o f amplified symbiotic genes (nod and n if  genes) regions 

has been demonstrated to effectively differentiate Rhizobium isolates at species and sub­

species level (Laguerre et al., 1994; 1996; Louvrier et al., 1996)

2.7 (b). RAPD

The random amplified polymorphic DNA (RAPD) assay are based on the use of short 

random sequence primers, 9 to 10 bases in length, which hybridize with sufficient affinity 

to chromosomal DNA sequences at low annealing temperatures such that they can be 

used to initiate amplification of regions of the genome of the organism (Caetano-Anolles 

et al., 1991). In comparison to other typing techniques, studies have shown that the 

RAPD assay is more discriminating than RFLP analysis. The major problem associated 

with RAPD assays is lack o f reproducibility and standardization (Caetano-Anolles et al., 

1991; Lehmann et al., 1992). Since the primers are not directed against any particular 

genetic locus, many o f the priming events are the result o f imperfect hybridization 

between the primer and the target site. Thus, the amplification process is extremely 

sensitive to slight changes in the annealing temperature which can lead to variability in 

the banding patterns (Caetano-Anolles et al., 1991; Lehmann et al., 1992).

The RAPD technique has been successfully employed for differentiating and 

characterization o f strains of B. japonicum  (Vanrossum et al., 1995; Sikora et al.,
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1997), R.fredii (Young, 1998), R. leguminosarum bv. viciae (Ballard et a l , 2004), 

S. meliloti (Bradic et a l,  2003) and other rhizobia (Pinto et al., 2004).

2.7 (c). Rep-PCR

Rep-PCR genomic fingerprinting makes use o f DNA primers complementary to 

naturally occurring, highly conserved, repetitive DNA sequences, including the 35- 

40 bp repetitive extragenic palindromic (REP) sequence and the 124-127 bp 

entrobacterial repetitive intergenic consensus (ERIC) sequence present in multiple 

copies in the genomes o f most Gram-negative and several Gram-positive bacteria 

(deBruijn, 1992; Lupski & Weinstock, 1992). These sequences appear to be located 

in distinct, intergenic positions around the genome. Pairs of specifically designed 

primers from these sequences and PCR can be used for selective amplification of 

distinct genomic regions located between REP or ERIC elements. The amplified 

fragments can be resolved on a gel matrix, yielding a profile referred to as a rep- 

PCR genomic fingerprint (deBruijn, 1992; Laguerre et al., 1994).

Rep-PCR genomic fingerprinting is a very efficient and robust technique. This 

technique is very useful in determining phylogenetic relationships between 

microbial isolates and for assigning strains into specific groups. Rep-PCR genomic 

fingerprinting techniques can identify the prokaryotic organism at species, sub­

species and strain level (deBruijn, 1992; Laguerre et al., 1996; Vinuesa, 1998). The 

utility o f  rep-PCR fingerprinting in characterization o f rhizobial population has been 

well recognized (Santamaria et al., 1997; Vanrossum et al., 1995). Recently,
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genomic fingerprinting o f soil bacteria in mainland o f Brazil suggested greater 

diversity among the B. japonicum  isolates (Boddey, 1997; Santos et al., 1999). In 

agriculture, rep-PCR techniques are used to identify and characterize bacterial 

population in soil because o f their use in biological nitrogen fixation. Various strains 

o f symbiotic bacteria like Rhizobium sp. and Bradyrhizobium sp. are used as 

commercial inoculants for various crop plants by the farmers to optimize the overall 

crop yield. Plant biologists all over the world are trying to identify more efficient 

and competitive strains o f  symbiotic bacteria to decrease the cost and use of 

chemical fertilizers and to improve the overall crop production in the world 

(Brockwell & Bottomley, 1995; Zhang et al., 2003; Vinuesa et al., 2003). Rep-PCR 

genomic fingerprinting protocols have been successfully applied in medical, 

agricultural, industrial and environmental studies o f microbial diversity (Judd et al., 

1993; Schneider & deBruijn, 1996; Versalovic et al. 1991; Vinuesa et al., 2003). In 

addition to studying diversity, rep-PCR genomic fingerprinting has become a 

valuable tool for the identification and classification o f bacteria. Rep-PCR genomic 

fingerprinting techniques are also used in molecular epidemiological studies of 

human and plant pathogens. These techniques have also been used for the 

characterization and identification o f rhizobial species (Bradic et al., 2003; Judd et 

al., 1993; Schneider & deBruijn, 1996; Sikora & Redzepovic, 2003; Zhang et al., 

2003).

2.8. Summary
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Legume-rhizobium symbiosis is important for the maintenance o f sustainable 

agriculture systems. Studies have shown that rhizobial populations evolve quickly in 

the soil and that can limit the success o f the inoculant strains in the field. Many 

indigenous competitive strains have been identified by the researchers in many parts 

o f world (Hungria et al., 1998; Hynes & O ’connell, 1990; Ormeno-Orrillo et al., 

2006; Sikora & Redzepovic, 2003). It has been acknowledged that ability of 

inoculant strains to compete with very diverse indigenous rhizobial strains is an 

important requirement for agronomically useful rhizobium-soybean associations 

(Ballard et al., 2004; Brockwell & Bottomley, 1995; Moawad et al., 2004; Vessey & 

Chemining'wa, 2006). A review of the topic o f genetic diversity suggests that a 

better understanding of legume-rhizobia symbiosis and development and use of 

advanced techniques and molecular tools are required for characterizing rhizobial 

field population. The high rate o f evolution of rhizobia in the soil and competition of 

indigenous strains with the inoculants is a major problem for the success 

establishment of inoculant strain in the soil and rhizosphere (Thies et al., 1991; 

Triplett & Sadowsky, 1992). Assessment o f the genetic diversity o f the local 

indigenous populations o f rhizobia and selective screening of competitive and 

efficient strains on crop plants is an effective process for the selection o f better, well 

adapted and competitive strains that could be potentially used for production of 

superior inoculant(s). Therefore, in order to improve the beneficial effect o f soybean 

inoculation, it is important to determine the characteristics o f rhizobial field 

population that would help in improving legume-rhizobia symbiosis and thus, would 

help in overall improvement o f legume crop production and yield on global scale.
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Materials and Methods

3.1. Strategies for sample collection

For this study, samples were collected from 29 sites in southern Manitoba and from 

North Dakota, South Dakota, and Minnesota in the US during the 2004 and 2005 growing 

seasons (Figure 1). Samples were randomly collected from all sites. Samples were 

collected from sites by using following strategies:

a) From soybean plants within soybean fields which had not been inoculated in the current 

year;

b) By the establishment o f “trap plots” (1 m2 microplots of uninoculated soybean) in the 

fields where inoculated soybean crop had previously been grown, but was not growing in 

the current year; and

c) From ‘volunteer’ soybean plants growing in the fields o f other crops (e.g. com.). A 

‘volunteer’ is a plant that grows from mature seed shed by the crop in the previous year(s).

Selection o f sites and collection o f nodules were done by the members o f Philom Bios Inc. 

and information about the previous crop grown, year since last soybean grown, inoculant(s) 

used and genotype o f the soybean crop were recorded where the information was 

accessible. The edaphic factors like soil texture, drainage, and salinity and climatic factors 

like mean monthly and annual precipitation and average monthly and annual temperature 

for both US and Canadian sites were also considered for the analysis o f genetic diversity. 

Table 1 contains information on the sites used for sampling in this study and, total number 

o f sample collected from each site across Canada and the US.
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Figure 2. Site locations from where isolates were collected. GPS locations of each site 

were used to create map using ArcGIS software.
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Table 1. GPS locations and name of each site in Canada and US.

Site name GPS Geographical
location Country

Site 2 N49°30' 39.4" / 
W97°51' 54.7" Manitoba Canada

Site 3 N50°2'5"/ 
W97°24' 18.1" Manitoba Canada

Site 4 N5004'46.6'7 
W97°24' 49.7" Manitoba Canada

Site 5 N50°10'48.8"/ 
W96°38' 4.8" Manitoba Canada

Site 6 N50°4'8.8"/ 
W96°32' 38.2" Manitoba Canada

Site 9 N49°5' 48.7"/ 
W97°17' 20.3" Manitoba Canada

Plum Coulee, #1 N49°19' 32.4"/ 
W97°47' 52.8" Manitoba Canada

Plum Coulee, #2 N49°15' 58.6"/ 
W97°45' 47.1" Manitoba Canada

Elm Creek N 45° 09.774/ W 
093° 24.682 Manitoba Canada

Winnipeg N49° 57.036' / 
W097° 00.068' Manitoba Canada

Sanford N49° 32.998'/ 
W097° 33.000' Manitoba Canada

Agra seeds N49°44'14"/ 
W97°8' 11.8" Manitoba Canada

Breckenridge N46°15.257/ 
W96°34.421 Minnesota US

Great Bend N46°09.219/
W96°49.794 North Dakota US

Richland Countyl N46°16.364/ 
W96°38.183 North Dakota US

Ramsey N48°17.781/ 
W99°03.849 North Dakota US
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Site name GPS Geographical
location | Country

Lacota
N48°02/ W98°22 North Dakota US

Site-1'
N46° 58.638' / 
W097° 01.826'

Fargo, North 
Dakota US

Site-2'
N47° 01.0931'/ 
W097° 02.952'

Fargo, North 
Dakota us

Site-4'

N46° 57.848'/ 
W097° 01.189' Fargo, North 

Dakota us

Site-5'
N46° 57.8217 
W096° 54.419' Fargo, North 

Dakota us

Site-6'
N44° 39.261'/ 
W096° 48.283' Brandt, South 

Dakota us

Site-7'
N44° 19.407'/ 
W096° 46.051' SDSU, South 

Dakota us

Site-8'
N44° 19.293'/ 
W096° 45.625' Brookings, Soutt 

Dakota us

Site-9'
N44° 43.169'/ 
W096° 11.251' Yellow Medicine, 

Minnesota
us

Site-11'
N44° 43.132'/ 
W096° 27.210' Gary, South 

Dakota
us

Site-12'
N45° 21.095'/ 
W096° 08.461' Corona, South 

Dakota us

Site-13'
N45° 20.174'/ 
W096° 09.288'

Corona, South 
Dakota us

Site-14'
N45° 06.846' / 
W097° 06.211' Pioneer field trial 

South Dakota |
us
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3.2. Nodule collection and rhizobial isolation

For nodule collection and rhizobial isolation, the soybean plant was used as a selection tool 

for the initial isolation o f infective strains from the naturalized population of rhizobia in the 

field soil (Chemining’wa, 2002; Beattie et al., 1998). Three cultivars of soybean 

(Gentlemen, Prudence and Apollo) were used for nodule collection. The nodules were 

collected from the soybean plants during early flowering stage (nodules are well developed 

by this stage of plant development). Healthy, robust nodules were removed from the plant 

roots in the field and stored in tubes in 20% glycerol and sent to lab for further analysis 

(Beattie et al., 1998). In the lab, rhizobial lines were isolated from the nodules following 

the procedures o f Chemining’wa (2002) as modified from Rice and Olsen (1993) by Ms. 

Vanessa Kavanagh. Bacterial extracts from crushed nodules were grown on yeast extract 

mannitol agar (YEMA) with the addition of Congo red dye and incubated at 28°C (Hahn,

1966).

In the companion study by Ms. Vanessa Kavanagh, Bradyrhizobium japonicum  isolates 

were tested and screened for infectiveness and effectiveness on soybean plants under 

laboratory and greenhouse conditions to identify better and efficient strains isolated from 

naturalized populations.

3.3. rep-PCR Genomic fingerprinting
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Rep-PCR genomic fingerprinting of B. japonicum  isolates requires several important steps 

that includes culturing o f B. japonicum, DNA extraction, genomic fingerprinting using 

REP and ERIC primers, and analysis of band pattern and cluster analysis using 

fingerprinting analysis software, Gelcompar-II ® (Applied Maths, Austin, US).

3.3 (a) Culturing of Bradyrhizobium japonicum  isolates

Bradyrhizobium japonicum  isolates were grown in liquid Yeast Mannitol Broth (YMB) 

medium at 28°C on orbital shaker according to the protocol of Schneider & de Bruijn 

(1996).The Bradyrhizobium japonicum  is slow growing bacteria and took approximately 

10-12 days to reach an O.D value of 0.6. The cells were harvested from the cultures when 

the optical density was in the range for 0.6-0.9 O.D. value for successful DNA extraction 

during the later steps.

3.3 (b). DNA Isolation

Total genomic DNA was isolated from these strains for genomic fingerprinting 

according to the modified version o f rep-PCR protocol o f Schneider & de Bruijn (1996). 

Cultures o f B. japonicum  produce a lot o f polysaccharides that can interfere with 

extraction process. Washing the cell pellet with an alkaline solution like NaCl helps in 

removing polysaccharides and improves the quality o f PCR. The stepwise modified 

protocol used for DNA extraction was follows:

i) Cells were collected from liquid culture by centrifugation at 14,000 rpm for 15 min.

ii) Cell pellet was washed with 1 M NaCl at 14,000 rpm for lOmin. This step was 

repeated thrice.
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iii) Cells were resuspended in 100 pi o f TE buffer by vortexing.

iv). 3 pi of lysozyme (10 g/ml TE) (final concentration o f 200 pg/ml) was added to the 

solution and incubated for 60 minutes at 37°C until solution becomes clear (may add 

more lysozyme if needed).

v). 500 pi of GES was added to the solution and agitated gently. Solution was incubated 

at room temperature for 20 min. Solution was than incubated on ice for 5 min.

vi). 300 pi o f 7.5 M ammonium acetate (pre-cooled) was added and solution was agitated 

gently. Solution was than incubated on ice for 30 min.

vii). 900 pi o f Phenol/ Chloroform/ Iso-amyl-alcohol (25:24:1) was added and solution 

was vortexed and, centrifuged for 10 min at 14000 rpm at 4°C.

viii). Supernatant was transferred into new 2-ml microcentrifuge tube. Equal volume of 

chloroform/iso-amyl-alcohol (24:1) was added and solution was vortexed, and 

centrifuged for 10 min at 14000 rpm at 4°C.

ix). Supernatant was transferred into a new 1.5-ml micro-centrifuge tube, equal volume 

o f isopropanol (pre-cooled at -20°C) was added. Tube was inverted several times until 

DNA pellet became visible. Samples were kept at -80°C for 30 min, melted at RT, and 

centrifuged for 20 min at 14000 rpm at 4°C.

x). Cell pellet was washed with 150 pi 70 % ethanol than centrifuged briefly. Ethanol 

was removed by using a micropipette. This step was repeated once.

xi). DNA pellet was air dried and re-dissolved in 100 pi TE, pH 8.

xii). 25 pi of RNase H (250 pg/ml) was added to the tube and mixed gently and incubated 

for 1 hour at 37°C and stored the DNA at -20°C.
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xiii). Take 10 pi DNA solution, dilute into 500 pi. Determine the DNA concentration 

using a spectrophotometer at 260 nm/280 nm (1 OD260 = 50 g/ml) and adjust it to 50 

ng/pl.

3.3 (c). PC R  amplification

Oligonucleotide primers designed for REP and ERIC sequences were used for genomic 

fingerprinting. Primers were synthesized at National Research Centre-Plant Biotechnology 

Institute, Saskatoon, Canada. Sequences o f these primers are as follows:

P rim er Sequence Reference

ERIC 1R 5 '-AT GT AAGCTCCT GGGGATTC AC-31 Yersalovic et al. 
1991

ERIC 2 5 AAGTAAGT G ACTGGGGT GAGCG-3' Versalovic et al. 
1991

REP 1R 5'-IIIICGICGICATCIGGC-3' Versalovic et al. 
1991

REP 21 5-ICGICTTATCIGGCCTAC-3' Versalovic et al. 
1991

REP and ERIC fingerprinting was performed with primers REP 1R and REP 21, and 

ERIC 1R and ERIC 2, respectively using the rep-PCR protocol o f Schneider & de Bruijn 

(1996). The cycling programs for REP-PCR and ERIC-PCR fingerprinting differed only 

in the annealing temperature and time. PCR reactions were carried out in a 25 pi PCR 

tube containing 5pl o f 5X Gitschier Buffer, 0.2 pi o f BSA (20 mg/ml), 2.5 pi DMSO 

(100% ),, 1 pi o f each primer (0.3 pg/pl), 1.25 pi dNTPs mix (25 mM of each nucleotide 

mixed in the proportion of 1:1:1:1), 0.4 pi o f 5U Taq DNA Polymerase (GoTaq® Flexi
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DNA Polymerase, Promega, Madison,WI) and 12.65 pi double distilled water (Schneider 

& de Bruijn, 1996). DNA amplification was performed in a thermal cyler (My Cycler ™ 

BioRad, BioRad Laboratories, Richmond, CA.). The reaction mixtures were incubated 

for 7 min at 95°C for initial denaturation, and then amplified for 35 cycles consisting o f 1 

min at 94°C, 1 min at 40°C, 8 min at 65°C for REP-PCR, and 1 min at 94°C, 1 min at 

52°C and 8 min at 65°C for ERIC-PCR. PCR reaction was ended with an extension at 

65°C for 8 min., and stored at 4°C.

3.3 (d). Gel electrophoresis

The amplification products from the PCR were separated by gel electrophoresis on 1.5 % 

agarose, 20 cm long gels. The run-time for all gels was 9.5 hours at 70 V, 25-30 mA at 

4°C. Constant voltage was kept through out the run-time to avoid distortion in the gel 

lanes. Gels were usually run at 4°C to avoid distortion o f gel lanes due to heat generated 

during electrophoresis. A lkb molecular weight marker ladders were used in the first and 

last lane to estimate size o f bands. Commercial inoculant strains 532C and USD A 110, 

commonly used in Canada and US were used as reference strains to compare isolate 

profile. 532C and USDA 110 Gel was stained in ethidium bromide solution 60 ng/ml in 

0.5 x TAE (60 pi o f a 10 mg/ml stock solution in 1 liter 0.5 x TAE), and destain for 30 

min. in 0.5 x TAE. Gel was visualized under UV light using Chemi Genius Bioimaging 

System (Syngene, Frederick, US) and the gel image was saved as TIFF image.

3.3 (e) Data analysis: Analysis o f band pattern and cluster analysis o f rep-PCR 

fingerprints was performed using Gelcompar-II ® (Applied Maths, Austin, US). 

Gelcompar-II ® is specialized software for the analysis o f genetic fingerprinting data.
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Individual gel images were loaded into the program and normalized with resolution and 

background subtraction depending on the background intensity o f  individual gels, as 

determined by the software. It is useful to use the same number o f lanes and gelstrip 

thickness for analysis o f different gels. A reference system can be set in the program 

using molecular marker. In this study we have used the 1 kb DNA ladder as molecular 

marker and bands ranging within the 13,000bp to 250 bp regions were analyzed for size 

and presence and absence of bands. All gels were normalized for the bands position in 

each gel relative to the specific bands in 1 kb reference ladder before scoring gel for 

presence and absence o f bands to correct for any distortion in the gel lanes and for precise 

size estimation (Scheidner & deBrujin, 1996). Bands were coded in the binary form 

(Scheidner & deBrujin, 1996; Rademaker & deBruijn, 1998) and Jaccard’s coefficient 

was calculated to construct a similarity matrix and the unweighted pair group method 

with an arithmetic mean algorithm (UPGMA) was used to perform hierarchical cluster 

analysis and to construct a dendrogram for REP fingerprints and ERIC fingerprints 

respectively (Scheidner & deBrujin, 1996). Multidimensional scaling (MDS) was also 

performed for analysis. Multidimensional scaling is also referred to as "perceptual 

mapping," is a procedure that "represents a set o f individuals or genotypes («) in a few 

dimensions (m) using a similarity/distance matrix between them such that the inter­

individual proximities in the map nearly match the original similarities/distances” 

(Johnson & Wichem, 1992). Multi dimensional scaling represents the relationships 

among a set o f genotypes, can be presented as a 2- or 3-dimensional representation that 

can be more easily interpreted. The pattern obtained from MDS can also be used to 

estimate the actual number of groups that may be obtained by cluster analysis.
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3.4. Shannon's diversity index

Shannon's diversity index was calculated for each site location using the formula

H = - ^ p ylnpy
j = l

Where H= Shannon diversity index

p  i = The relative abundance o f each strain, calculated as the proportion of 
individuals o f a given strain to the total number of strains.

s  = The number o f strains. Also called species richness.

Shannon diversity has been used in previous studies for determining relative abundance 

and species richness o f soil bacteria at strain level (Seguin et al., 2001). The diversity 

index was calculated for each site considered in this study using the similarities identified 

among isolates at each site by REP and ERIC fingerprinting. Table 2 in chapter 4 

includes the Shannon diversity index calculated for each site as identified by REP and 

ERIC fingerprinting.

3.5. Correlation o f genetic diversity with edaphic and climatic factors

Factors like average monthly and annual temperature, mean monthly and annual 

precipitation, geographical location, soil type, inoculant use, last crop grown on the 

sampling site from the year o f isolation and year since last soybean grown were 

considered in this study to correlate genetic diversity to site characteristics and to
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understand the influence of environmental and edaphic factors on genetic diversity o f B. 

japonicum  isolates (Table 2). Analysis o f variance and regression analysis was performed 

using SYSTAT software Inc. (San Jose, California, USA). Geographical information 

systems (GIS) were used for obtaining soil information in USA and Canada. Information 

for Manitoba’s soil data was obtained through Manitoba agriculture, food and rural 

initiatives website (http://geoapp2.gov.mb.ca/website/MAFRI/index3 .html) and USA soil 

data was obtained through National Resources Conservation Service, United States 

Department o f Agriculture website ( http://websoilsurvey.nrcs.usda.gov/app/ ). Detailed 

soil surveys available on USDA website and Manitoba rural initiatives websites were 

used to collect soil data. Influence o f soil texture, drainage, salinity was tested in relation 

to the diversity index o f isolates from each site using non-parametric statistics (Kruskal- 

Wallis test). Table 2 contains information about year o f nodule collection, crop history 

for the last two years (if available), and year since last soybean was grown, soil texture, 

soil drainage and if inoculant(s) was used in the field. In some cases information on crop 

history, soil data and use of inoculants at each site from where samples were collected for 

this study. In case where information was not available on crop history, soil data and, 

inoculant use is indicated ‘unknown’ in Table 2.

Climate data for Canada was obtained from Environment Canada website. 

(http://climate.weatheroffice.ec.gc.ca/climate normals/stnselect e .htm l) and from 

National Climate Data Centre site ('http://lwf.ncdc.noaa.gov/oa/ncdc.html) for the US. 

Climate data on mean monthly and annual precipitation and monthly and annual 

temperature for both the US and Canadian sites was used for the analysis. Kruskal -
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Wallis one way analysis o f variance was performed to test correlation between diversity 

index at each site location with mean annual and monthly precipitation and average 

monthly and annual temperature.
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Table 2. Site characteristics. Includes information year o f nodule collection, crop history 

for the last two years (if available) and year since last soybean was grown, soil texture, soil 

drainage and i f  inoculant(s) was used in the field.

Site name Year of 
isolation

Crop History 
(current crop/last

yr)

Year
since
last

soybean
grown

Soil texture Drainage Inoculant
used

Site-1' 2005 Corn/Soybean Two Silty Clay 
loam poor Yes

Site-2' 2005 Corn/Soybean Two Silty Clay 
loam very poor Yes

Site-4' 2005 Corn/Soybean Two Silty Clay 
loam well Yes

Site-5' 2005 Corn/Soybean Two Sioux loam excessive No

Site-6' 2005 Corn/Soybean Two Clay loam well No

Site-7' 2005 Corn/Sod (30 yrs) Never Silt Loam well No

Site-8' 2005 Corn/Soybean Two Silt Loam well No

Site-9' 2005 Corn/Soybean Two Loam well No

Site-11' 2005 Corn/Soybean Two Silty Clay 
loam very poor No

Site-12' 2005 Corn/Soybean Two Unclassified Unclassified No

Site-13' 2005 Corn/Soybean Two Unclassified Unclassified No

Site-14' 2005 Corn/Soybean Two Clay loam well No

Breckenridge 2004 unknown Never Silty Clay poor No

Great Bend, 2004 Soybean/Wheat Current Silt Loam poor No
Richland
County 2004 Unknown/ Never Silty Clay poor No

Ramsey 2004 Corn/Soybean One Loamy well Unknown

Lacota 2004 Corn/ unknown One Silty Clay 
loam very poor Unknown

Site 2 2004 Oats/Soybean One Loamy imperfect Yes
Site 3 2004 Canola/ unknown One Unclassified Unclassified Unknown

Site 4 2004 Barley/Soybean One Unclassified Unclassified Yes

Site 5 2004 Oat/Soybean One Marsh Imperfect Yes

Site 6 2004 Corn/Soybean One Unclassified Unclassified Yes

Site 9 2004 Corn/Soybean One Unclassified Unclassified Unknown
Plum

Couleel 2004 Wheat/Soybean One Coarse
Loamy imperfect Unknown
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Site name Year of 
isolation

Crop History 
(current crop/last 

yr)

Year
since
last

soybean
grown

Soil texture Drainage Inoculant
used

Plum
Coulee2 2004 Wheat/Soybean One Eroded

slope imperfect Unknown

Elm Creek 2005 Unknown/Soybean One Sandy loam Unclassified Unknown

Winnipeg 2005 No soybean Never Clay Imperfect Unknown

Sanford 2005 unknown Never Unclassified Unclassified No

Agra seeds 2004 Clover/Soybean One Unclassified Unclassified Unknown
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Results

In this study, we have used hierarchical and nonhierarchical clustering methods for the 

analysis o f the fingerprints obtained by REP and ERIC fingerprinting. Reproducible and 

specific banding patterns were obtained with both REP-PCR and ERIC-PCR 

fingerprinting (See examples, Figure 2a and Figure 2b; all gels generated are provided in 

Appendix A). One-hundred and nine isolates including control strains 532C and 

USDA110 were successfully analysed by ERIC fingerprinting. One-hundred and three 

isolates including control strains were successfully analysed by REP fingerprinting. The 

profiles for 8 isolates (13, 15, 22, 35, 37, 39, 50 and U73) were not obtained by REP 

fingerprinting despite o f several repeated trials. Profile for two isolates, W 6A and U43 

were not obtained by ERIC fingerprinting. The DNA concentration and other factors that 

could affect the successful PCR amplification were taken into consideration to overcome 

this problem but no success was achieved.

4.1. Rep-PCR genomic fingerprints

Amplification reactions with both primers generated a sufficient number o f distinct 

polymorphic bands for reliable strain discrimination. In this study, we found that ERIC 

primers produce more discriminatory bands as compared to REP primers.
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Figure 2a. An example o f an ERIC-PCR gel. ERIC-PCR fingerprints o f 17 isolates 

collected from different sites in North Dakota, South Dakota and, Minnesota in US and 

from southern Manitoba in Canada. Lanes 1 and 22 consist of lkb DNA ladder. Lanes 2 

and 3 are the control strains, 532C and USDA110 respectively. Lanes 4-21 consists of 

rest o f the field isolates o f Bradyrhizobium japonicum. A weaker profile was generated 

for isolate in lane 19 and was excluded in cluster analysis.

Figure 2b. An example o f a REP-PCR gel. REP-PCR fingerprints of 17 isolates 

collected from different sites in North Dakota, South Dakota and Minnesota in US and 

from southern Manitoba in Canada. Lanes 1 and 22 consist o f lkb  DNA ladder. Lanes 2 

and 3 are the control strains, 532C and USDA110 respectively. Lanes 4-21 consists of 

field isolates o f Bradyrhizobium japonicum. Weaker profile was generated for isolate in 

lanes 4 and 5 but numbers o f bands were clear and sufficient for cluster analysis. It 

should be noted that for isolates in lane 4 and 5 very few and weak band were detected in 

REP fingerprinting however sharp and clear band were generated by ERIC fingerprinting 

for the same isolates in Figure la.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 2a. ERIC fingerprints for Bradyrhizobium japonicum  isolates

1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 21 22

Figure 2b. REP fingerprints for Bradyrhizobium japonicum  isolates
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4.2. Proximity analysis

Isolates collected from different site locations as shown in Table 2 were assigned to six 

different groups according to their relative closeness to each other (site closer to each 

other within a given radius were grouped together) (Table 3). Proximity analysis was 

performed to detect differences in the diversity index among the sites. No significance 

differences among the six groups were detected in the Kruskal-Wallis test.

Isolates were grouped based on their geographical origin (US and Canada) (Table 4). 

Grouping o f isolates on the basis of their geographical origin (Canada or US) yield 

significant results (p<0.05). Significant differences were found between the diversity 

index o f sites located in Canada and US. Results o f analysis o f variance are shown in 

section 4.2 (a).
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Table 3. Grouping of sites for US and Canadian isolates based on their relative closeness 

to each other. Information on geographical location and Country is also included.

Group Site name Geographical location Country

Site 3 Manitoba Canada

Site 4 Manitoba Canada

Group 1 Site 5 Manitoba Canada

Site 6 Manitoba Canada

Site 2 Manitoba Canada

Site 9 Manitoba Canada

Plum Coulee, #1 Manitoba Canada I

Group 2

Plum Coulee, #2 Manitoba Canada

Elm Creek Manitoba Canada

Winnipeg Manitoba Canada

Sanford Manitoba Canada

Agra seeds Manitoba Canada

firnnn 3
Breckenridge Minnesota US

Great Bend North Dakota US

Richland County North Dakota US

Group 4 Ramsey North Dakota US

Lacota North Dakota US
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Group Site name Geographical location Country

Site-1' Fargo, North Dakota US

Site-2' Fargo, North Dakota us

Group 5 Site-4' Fargo, North Dakota us

Site-5' Fargo, North Dakota
us

Site-6’ Brandt, South Dakota us

Site-7' SDSU, South Dakota us

Site-8' Brookings, South Dakota us

Group 6 Site-9' Yellow Medicine, 
Minnesota

us

Site-11’ Gary, South Dakota us

Site-12' Corona, South Dakota us

Site-13' Corona, South Dakota us

Site-14' Pioneer field trial, South 
Dakota

us
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Table 4. Grouping of sites on the basis of their geographical location (Canada or US). 

Diversity index calculated by ERIC analysis and REP analysis for each site is also 

included.

Group Site name

REP data 
analysis

ERIC data 
analysis

Shannon 
diversity index

Shannon
diversity

index

Country

Group 1

Site 3 0 0 Canada

Site 4 0.693 0.693 Canada

Site 5 1.386 1.386 Canada

Site 6 0 0.693 Canada

Site 2 1.386 1.386 Canada

Site 9 1.609 1.332 Canada

Plum Coulee, #1 1.098 0.693 Canada

Plum Coulee, #2 1.039 1.039 Canada

Elm Creek 0 0 Canada

Winnipeg 0.693 0 Canada

Sanford 1.098 1.098 Canada

Agra seeds 0.693 0.693 Canada

Group 2

Breckenridge 1.098 1.098 US

Great Bend 1.609 1.039 US

Richland County 2.271 1.549 US

Ramsey 2.271 1.468 US

Lacota 1.386 1.092 US

Site-1' 0.693 0.693 US

Site-2' 1.039 0 US
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Site name

I REP data 
analysis

ERIC data 
analysis

Country
Shannon 

diversity index
Shannon 

diversity index

Site-4' 0 0 US

Site-5' 1.386 1.332 us

Site-6’ 0 0 us

Group 2 Site-7’ 1.332 0.5 us

Site-8’ 0 0 us

Site-9’ 1.098 1.098 us

Site-11’ 0.693 0 us

Site-12’ 1.043 1.285 us

Site-13’ 1.098 1.039 us

Site-14’ 0 0 us
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4.2(a). Kruskal -W allis one way analysis of variance (ERIC fingerprints)

Shannon diversity index for each site obtained from cluster analysis o f ERIC fingerprints 

as shown in Table 3 was used in Kruskal -W allis test. Isolates were tested for the 

difference in level of diversity for the two groups, US and Canada (Table 3).

Kruskal-Wallis One-Way Analysis of Variance for 29 sites.

Dependent variable is Shannon Diversity Index 
Grouping variable is GROUP

Group Sample size Rank sum
Group1 17 304.500

Group2 12 130.500

Mann-Whitney U test statistic = 151.500 
Probability is 0.026
Chi-square approximation =4.970 with 1 df

4.2(b). Kruskal -W allis Analysis of variance (REP fingerprints)

Shannon diversity index for each site obtained from cluster analysis o f REP fingerprints 

as shown in Table 3 was used in Kruskal -W allis test. Isolates were tested for the 

difference in level of diversity for the two groups, US and Canada (Table 3). Diversity 

index calculated from REP fingerprinting as shown in Table 4 was used in Kruskal — 

Wallis test.

Kruskal-Wallis One-Way Analysis of Variance for 29 sites 

Dependent variable is Shannon Diversity Index 

Grouping variable is GROUP
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Group Sample size R ank  sum
Group 1 17 297.500

Group2 12 137.500

Mann-Whitney U test statistic = 59.500 
Probability is 0.057
Chi-square approxim ation = 3.635 with 1 df

Significant differences were found in the analysis o f variance using non-parametric test 

(Kruskal -W allis test) between the diversity index o f sites located in Canada and US for 

both REP and ERIC fingerprinting. The results show that there is difference in the levels 

of diversity among isolates from two countries, US and Canada.

4.3. Cluster Analysis

Individual dendrograms for REP and ERIC fingerprints were constructed from the 

profiles of each primer set by UPGMA method using the similarity matrix calculated by 

Jaccard’s coefficient. Isolates with similarity value of 80% or higher were considered as 

similar isolates. Previous studies have also considered isolates with 75 % (Leach et al., 

1992); 85 % (Van Berkum et al., 1993) and; 95 % (Jarabo-Lorenzo et al., 2003) 

similarity as same strain. Low correlation (r = 0.19, p= 1.0) was found between the two 

dendrogram using the Mantel’s test (Mantel, 1967). However, inspite o f low correlation 

between REP and ERIC dendrograms, many significant clusters and pattern were
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common between both methods. In this study, we have found that ERIC fingerprints are 

more discriminatory than REP fingerprints and detected larger genetic variability among 

the isolates considered in this study. In addition to these, multidimensional scaling 

(MDS) was also performed on both matrix separately to create a three dimensional plot. 

The pattern obtained from MDS is found to be similar to cluster analysis pattern obtained 

by each individual dendrogram.

4.4 Hierarchical cluster analysis of ERIC fingerprints by UPGMA method

In cluster analysis of dendrogram derived from ERIC fingerprints, 107 isolates and two 

reference strains (532C and USDA 110) grouped together into three major groups 

(arbitrarily defined) that could be further divided into nine clusters and fifteen loosely 

associated strains (Figure 3).

Group A contains total 17 isolates and control inoculant strain 532C. This group consists 

o f two clusters (Cluster 1 and Cluster 2).

Cluster 1: Consists of five isolates (three from Canada and one from Ramsey in North 

Dakota ) clustered together with the control strain (532C) at 41 % similarity value.

Within this group, two isolates from site Winnipeg clustered tightly with high similarity 

value o f 79% and were 62 % similar to the control strain, 532C. Isolate U 11 was loosely 

associated with this cluster.
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Cluster 2: Contains 10 isolates which joined at 32.5 % similarity. Isolate EC 2B, EC 3 A, 

EC 3B, EC 3C, EC 4C, EC 5 A, EC 5B and, EC 5C from site Elm Creek, MB shared 

similar profile (83 % similar). Isolate EC 1C is found to less similar to rest o f the isolates 

from Elm Creek and shared 42 % similarity with control inoculant strain, USDA110.

Group B is the largest group consisting o f total 80 isolates and consist o f  six clusters and 

some loosely associated strains that are explained in section 3.2. (Cluster 3, cluster 4, 

cluster 5, cluster 6, cluster 7, cluster 8 and, cluster 9).

Cluster 3: This cluster consists of total twelve isolates. This cluster diverged into three 

sub-clusters (cluster3a, 3b, 3c) which were joined at 32 % similarity.

Cluster 3 a: Isolates from different sites from North Dakota (Ramsey), South Dakota (site 

8' in Brookings and site T  in SDSIJ) and Minnesota (site 9' in Yellow medicine) were 

grouped together in this cluster at 42 % similarity along with two isolates from Elm 

Creek, MB. Isolate U91 and U93 from site 9 ' in Yellow Medicine, MN were closely 

related to each other with 92 % similarity. Isolate U73 and U85 from site 7 ' and site 8' 

respectively shared 70 % similarity.

Sub-cluster 3b: This sub-cluster consists of only three isolates (Isolate EC 2A and EC 2C 

from Elm Creek and U22 from Site 1' in Fargo) joined at 50% similarity.
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Sub-cluster 3c: Consists o f only two isolates, isolate 65 and 68 from Richland County 

and Lacota in North Dakota respectively joined at 59 % similarity.

Cluster 4: In this cluster, two divergent sub clusters were identified which were joined at 

42% similarity (sub cluster 4a and 4b).

Sub-cluster 4a: Within this cluster comprising o f total fourteen isolates from various sites 

in US and site Plum Coulee #1 and Plum Coulee # 2 in Canada, cluster together at 44 % 

similarity. Isolate 32 from site Plum Coulee # 2 is similar to isolate 52 from Richland 

County in North Dakota (88 % similarity). Isolate 33 from site Plum Coulee # 2 was 

found similar to isolate 49 from site Breckenridge in Minnesota (89 % similarity).

Sub-cluster 4B: Contains total thirteen isolates joined at 50 % similarity. Twelve isolates 

in this cluster are from Canadian sites. Only one isolate (38) was from Great Bend, ND in 

this cluster. Isolates are from different site locations within Manitoba shows high level o f 

diversity within this cluster. Isolate 17 and 19 from site 6 were similar (89.5 % 

similarity). Isolate 2 from site Agra-seeds, MB and isolate 24 and 31 from site 2 shared 

similarity value of 89.5 %. Isolate U51 from site 5' in Fargo, ND was loosely joined to 

cluster 4 at 36 % similarity.

Cluster 5: Cluster 5 consists of eight isolates and two divergent groups (sub clusters) 

joined at 38 % similarity.
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Figure 3. ERIC dendrogram of 107 isolates and two control strains 532C and USDA 
110.
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Sub-cluster 5a: Consists of only two isolates (U142 from site 14' in South Dakota and

isolate 15 from site 6 in Manitoba) joined at 43 similarity.

Sub-cluster 5b: This cluster has isolates from various site locations in South Dakota. One 

isolate (U135) from Site 13' in Corona, SD joined to isolate U123 and U62 at 58 % 

similarity. None of the isolates from South Dakota within this group shared similar 

profile and high genetic variability was found among isolates within this sub-cluster.

Group C: Contains total forty isolates and consists o f four clusters (cluster 6, cluster 7, 

cluster 8 and, cluster 9).

Cluster 6: Consists of two sub clusters (Cluster 6a and Cluster 6b) containing six isolates 

and one loosely associated isolate (U141) joined at 36 % similarity value.

Sub-cluster 6a: Consist o f  three isolates (U74 from site 7' in SDSU, South Dakota and 

U23 from site2'and U44 from site 4' in Fargo, north Dakota.) joined at 50% similarity 

value.

Sub-cluster 6b: Contains three isolates, isolate U63 from South Dakota and EC IB from 

Elm Creek in Manitoba and U14 from site l 'in  Fargo, ND joined at 58 % similarity.

Cluster 7: This cluster mainly consists o f two divergent groups joined together at 49 % 

similarity. Isolate 70 was found loosely associated with this cluster at 44 % similarity.
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Sub-cluster 7a: Consists of isolate 22 and isolate 35 from site 2 in Agra-seeds, MB and

Great Bend, ND joined at 56.5% similarity.

Sub-cluster 7B: This cluster consists o f total 12 isolates joined at 58 % similarity. Most 

isolates in this cluster shared very close or similar profiles. U83 and U84 from site 8' in 

Brookings, SD shared 93 % similarity. Isolate U 111 from Site 11' in Gary, South Dakota 

shared similar profile (83 % similar). Isolate U141 from site 14' (Pioneer field trial) in 

South Dakota with 72 % similarity with these isolates. Isolate 41 and 61 from Great Bend 

and Richland County respectively were found similar (90 % similarity).

Cluster 8 : This cluster has total four isolates from US, isolate U121 and U131 from site 

12' and site 13' in Corona, SD and U52 and 70 from site 5' in Fargo and Richland County 

respectively. All isolated share 66 % similarity in this sub-cluster.

Cluster 9: Six isolates from site Richland County, ND clustered together at 46 % 

similarity. Only two isolates, 56 and 57 from Richland County, ND were similar to each 

other within this cluster (87.5 % similar).

4.4 (a). Loosely associated strains

Branching points consisting of only one isolate and two isolates branching at 36.2% 

similarity or less were considered as loosely associated strains in the cluster analysis o f 

ERIC dendrogram. Isolate U 11 was found loosely attached to cluster 1. Isolate EC 1A

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and W 5C were also loosely associated with cluster 2 at 32.5 % similarity. Isolate U55 

and U65 were found loosely attached to cluster 2 at 32 % similarity. Isolate U 51 was 

joined at 36 % similarity to cluster 4. Isolate 39 and 42 were joined to cluster 4 at 29 % 

similarity. Isolate U121 was loosely associated with cluster 7 at 42 % similarity. Isolate 

10 from site 3 in Canada ; isolate U24 from site 2 ' in Fargo; isolate 64 from Richland 

County ND and; isolate 8 and 37 from Great Bend, ND were found loosely associated to 

the other isolates at 22 % similarity value. Isolate U22 and U 112 grouped separately from 

rest o f the isolates and were loosely joined at 30% in the analysis o f ERIC fingerprints.

The overall pattern within ERIC fingerprint dendrogram shows high genetic variability 

amongst the isolates at individual sites and among different site locations within US and 

Canada. At the Elm Creek site in Manitoba, most isolates were found to be similar (8 out 

of 13 isolates are similar sharing similarity value o f 84 %). Isolates from other site 

locations in Canada (Site 2, Agra-seeds, Plum Coulee #1 and, Plum Coulee # 2) revealed 

considerable diversity. Within some o f the individual sub-clusters, Cluster 2 consists of 

isolates from Canadian sites only and mainly isolates are from site Elm Creek. This site 

revealed the least diverse population as compared to other sites. Cluster 5 consists o f all 

isolates from South Dakota except one isolate (isolate 15) from site 6 in Canada. In sub­

cluster 7b, all isolates were from Richland County, ND in the US. Some isolated pattern 

was observed within some sub-clusters where US and Canadian isolates clustered 

separately. Overall, isolates from site Great Bend, ND and Richland County, ND were 

found to be most diverse and isolates at site Elm Creek, MB has the least diversity 

compared to the other sites.
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4.5. Hierarchical cluster analysis of REP fingerprints by UPGMA method

In cluster analysis of dendrogram derived from REP fingerprints, 103 isolates and 

reference strains (532C and USDA110) grouped together into three groups (arbitrarily 

defined) that could be further divided into seven clusters and three loosely associated 

strains as shown in Figure 4.

Group A consists of a one cluster (Cluster 1) o f total 8 isolates and two control inoculant 

strains (532 C and USDA110) joined together at 66 % similarity.

C lusterl: In this cluster, USDA110 was found similar to EC 1C at a 94.5% similarity 

value. Also isolates W6A and W6C from Winnipeg found to be similar at 100% 

similarity value. The isolates from this site share 84 % similarity with inoculant control 

strain 532C which is commonly used commercial inoculant strain in Canada and is used 

as one o f the controls in our study. Isolate U 11 from Fargo in North Dakota also share 82 

% similarity with the control strain 532C.

Group B consists of total sixty three isolates and three loosely associated strains. This 

group contains 4 main clusters (cluster 2, cluster 3, cluster 4 and, cluster 5).

Cluster 2: Contains total seven isolates joined together at 74.8% similarity value. All 

isolates within this group are from different sites in North Dakota and South Dakota from
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US. The overall diversity within this group is low as five isolates shared similar profile 

(83 %). Two isolates, U65 and U55 shared similarity with these five isolates at 78 % and 

75 % respectively.

Cluster 3: Consists of two divergent sub-clusters (Sub-cluster3A and Sub-cluster 3b) in 

which isolates from each clusters joined together at 79 % similarity. Most o f the isolates 

in this cluster are from different site in US and Canada and have very similar profiles.

Sub-cluster 3a: All isolates within this sub-cluster clustered together with a high 

similarity values. The isolates within this sub-cluster are from different sites within US 

and Canada.

Sub-cluster 3b: Similar to sub-cluster 3a, isolates in this sub-cluster have very similar 

profile and share very high similarity. Nine isolates from different site locations within 

North Dakota and South Dakota clustered together along with one isolate from Canada 

(isolate 26 from Plum Coulee # 1 ) within this sub-cluster at 82 % similarity.

Cluster 4: Isolates within sub-cluster also share highly similar profiles and grouped 

together at 78 % similarity. This sub-cluster have isolate U61 from site 6 ', isolate U143 

from site 14' in South Dakota, eight isolates from various site locations (Fargo, Lacota, 

Richland, Great Bend) in North Dakota and one isolate (isolate 10) from Site 3 in 

Manitoba are found in this sub-cluster.
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Figure 4. REP dendrogram of 101 isolates including control 532C and USDA110.
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Cluster 5: Consists of only two isolates (isolate U51 from site 5' in Fargo, ND and isolate 

8 from site 4 in Manitoba) sharing similar profile (84 %). These isolates were joined to 

other clusters in group B at 69 % similarity.

Group C: Contains twenty five isolates. Two main clusters were found in this group 

(cluster 6 and cluster7).

Cluster 6: Consists of total ten isolates joined together at 54 % similarity. Isolate 41 and 

61 from site Great Bend and Richland County in North Dakota shared 82 % similarity. 

Isolate 4 and 28 from site 4, MB and Plum Coulee # 1, MB respectively shared 82 % 

similarity. Profiles o f the most isolates within this cluster are considerably diverse.

Cluster 7: Consists of two divergent clusters joined together at 59 % similarity.

Sub-cluster 7a: Within this sub-cluster consisting o f total nine isolates from Elm Creek in 

Manitoba clustered together at 73 % similarity value. Six isolates shared high similarity 

and have similar profiles (87 % similarity value). Isolate EC 1C, EC 2C, EC 5B were not 

exactly similar to the other isolates from site Elm Creek, MB within this group but share 

high similarity values with rest o f the isolates and joined this sub-cluster at 77 %, 79 % 

and 73 % similarity respectively. Overall, the isolates from site Elm Creek were found to 

be least diverse compared to other sites considered in this study.
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Sub-cluster 7b: consists o f total 7 isolates joined together at 73 % similarity value. Two 

isolates from Site 9' in Yellow Medicine, MN and two isolates from Site 8'from 

Brookings, SD were highly similar (85.5%). Isolate EC 2A and EC 5C from Elm Creek, 

MB and U22 from Fargo, North Dakota also found to share high similarity with rest o f 

the isolates (EC 2A joined at and EC 5C and U22 sharing 73 % similarity with rest o f the 

isolates).

4.5 (a). Loosely associated strains

Branching points consisting of only one isolate at 60% similarity or less were considered 

as loosely associated strains in the cluster analysis o f REP dendrogram. EC I B and U21 

were found loosely associated to clusters in group A and group B. Isolate U21 from site 

2' in Fargo, ND was loosely associated to the clusters in group A and group B at 49.5 % 

similarity and isolate EC IB was loosely associated to the main cluster at 63 % similarity.

The overall clustering pattern identified in the hierarchal cluster analysis o f REP 

fingerprints of isolates revealed considerable diversity among different site locations 

across US and Canada. However, cluster analysis o f REP fingerprints revealed low 

genetic variability among the isolates as compared to cluster analysis o f ERIC 

fingerprints. Much higher genetic variability was detected among the different site 

locations in US and Canada by ERIC fingerprinting. Nonetheless, some similar pattern 

was observed in both dendrograms. It has been found in a previous study that ERIC 

fingerprints are more discriminatory as compared to the REP fingerprints (Cartelle et al., 

2004). In Cluster 1, isolates from Winnipeg were found 84 % similar to the control strain.
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This pattern was also found in the ERIC dendrogram where Isolate W6C shares 62 % 

similarity with the control 532C strain. This suggests that the isolates at this site 

(Winnipeg) could have originated from inoculant strain 532C. USDA110 shared 80 % 

similarity to the isolate EC 1A from site Elm Creek. This pattern was not observed in the 

ERIC dendrogram. USDA110 was 42 % similar to isolate EC 1A in ERIC dendrogram. 

In group B of REP dendrogram, most of the isolates from different sites within US and 

Canada shared very similar profile. Isolate 2 and 31 from sites Agra-seeds and Plum 

Coulee 2 in Manitoba, respectively, were found similar in REP dendrogram (100 % 

similarity) as compared to ERIC (89.5 % similarity). Isolates in cluster 4 were found to 

be highly diverse. In sub-cluster 7b consisting o f nine isolates from site Elm Creek, six 

isolates were found similar and other three sharing very similar profile (87 % similar). 

This pattern was also evident in the cluster analysis of ERIC fingerprints where eight 

isolates had similar profile (84 % similar) in Cluster 2 of ERIC dendrogram. Overall in 

this cluster analysis, isolates from site Great Bend and Richland County from North 

Dakota state are highly diverse. Site Elm Creek from Manitoba revealed least diverse 

population in REP dendrogram among all the sites considered in study. Cluster analysis 

o f ERIC fingerprints also revealed high diversity among the isolates at site Great Bend 

and Richland County in North Dakota and least diverse population of B. japonicum  

isolates at site Elm Creek in Manitoba.

4.6. Non-hierarchical cluster analysis of fingerprints using three dimensional 

MDS plots
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Multidimensional Scaling was performed on the REP matrix and ERIC matrix as shown 

in Figure 5a and Figure 5b respectively. In this non-hierarchical presentation of the 

relationships among the strains, similar pattern was observed as in the hierarchical cluster 

analysis explained above. Multidimensional scaling (MDS) is a set of data analysis 

techniques that display the structure o f distance-like data (similarity matrix) as a 

geometrical picture. There are two important things to realize about an MDS map. The 

first is that the axes are, in themselves, meaningless and the second is that the orientation 

o f the picture is arbitrary. The orientation and scale of these configurations is completely 

arbitrary, so no axis labels have been shown in Figure 5a and Figure 5b.

In the MDS plots for both matrixes (Figure 5a and 5b), Site Elm Creek, MB isolates 

were found to be more similar and grouped together as tight clusters. Isolated patterns 

were also observed for most o f the isolates from North Dakota state in U.S. Isolates from 

site Great Bend, ND and Richland County, ND revealed highest diversity among the all 

isolates.
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Figure 5a. Three dimensional MDS plot created by using similarity matrix o f ERIC 

fingerprints. Same groups were obtained as in the hierarchical cluster analysis o f REP 

fingerprints in Figure 3. Site Elm Creek, MB isolates were found to be more similar and 

most isolates from this site grouped together as tight clusters. Isolates from site Great 

Bend, ND and Richland County, ND were found to be spreaded in three dimensional 

spaces without any specific pattern. Specific colors were assigned for the isolates from 

each state in US (blue for North Dakota, pink for South Dakota and dark green for 

Minnesota). Isolates from all sites in southern Manitoba except site Elm Creek are 

represented by light green colour. Isolates from site Elm Creek are shown in Yellow 

colour.
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Figure 5b. Three dimensional MDS plot created by using similarity matrix o f REP 

fingerprints. Same groups were obtained as in the hierarchical cluster analysis of REP 

fingerprints in Figure 4. Nine isolates from Site Elm Creek, MB clustered together in 

tight group and found to spatially separated in three dimensional space from rest of the 

isolates. Isolated patterns were also observed for most o f the isolates from North Dakota 

state in U.S.
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Discussion

The aim o f the present study was to provide an assessment of the genetic diversity of 

field populations o f Bradyrhizobium japonicum, isolated from the soybean growing areas 

in western Canada and the northern US. In this study we have used PCR-based genomic 

fingerprinting techniques -  namely, REP-PCR and ERIC-PCR (Versalovic et al., 1991). 

DNA amplification with consensus sequences, such as REP and ERIC has proven to be 

valuable for the detection of genetic diversity at strain levels (deBruijn, 1992). The 

results o f this study shows that the B. japonicum  strains isolated from different field sites 

in southern Manitoba and from three states in the northern US (North Dakota, South 

Dakota, and Minnesota) are genetically diverse.

Cluster analysis of REP and ERIC fingerprints o f B. japonicum  isolates has revealed that 

high level o f genetic diversity exists within individual site locations and across different 

sites in the US and Canada and these findings are in agreement with the results obtained 

in previous studies on genetic diversity o f natural rhizobial populations in different parts 

o f the world (Chen et al., 200Q; Lima et al. 2005; Loureiro et al., 2006; Prakash & 

Annapurna, 2006). A previous study on soybean rhizobial population revealed high levels 

o f genetic diversity among B. japonicum  strains in Eastern Croatia (Sikora & 

Redzepovic, 2003). Hungria et al. (2006) genetically characterized 30 fast growing 

rhizobial strains using rep-PCR that were isolated from the nodules o f different soybean 

genotypes in Brazil. In their study, eighteen reference strains and 22 isolates were used 

for cluster analysis. Eight strains produced either only two bands or no bands and were
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excluded from the cluster analysis. Seven strains clustered together at a similarity o f 38% 

in one cluster. Another cluster included six strains clustered at 46% similarity. The 

remaining eight strains showed low relatedness to the reference strains. Overall, a high 

level o f genetic diversity was revealed among the strains in their study. In an another 

study by the same group, the genetic diversity o f 240 soybean rhizobia isolated from 

Brazilian Cerrados was examined using rep-PCR fingerprinting with BOX primers. A 

high level o f genetic diversity was observed among the strains isolated from 12 different 

sites (Loureiro et al. 2006). Doignon-Bourcier et al. (2000) examined the genotypic 

diversity of 64 Bradyrhizobium strains isolated from nodules o f 27 native leguminous 

plant species in Senegal (West Africa). Fifty-three reference strains o f the different 

Bradyrhizobium species and described groups were included for comparison. Substantial 

diversity was discovered among the strains. In Paraguay, high levels o f diversity were 

detected among the 78 isolates from nodules of field-grown soybean from 16 sites 

located in the two main producing states with most isolates representing unique strains 

(Chen et al., 2000). Musiyiwa et al. (2005) studied the physiological diversity o f 

indigenous rhizobia nodulating promiscuous varieties of soybean in Zimbabwean soil. 

There results indicate high genetic variability among the indigenous soybean rhizobia. 

Prakash & Annapurna (2006) studied the genetic diversity of 69 isolates from the nodules 

of four soybean varieties that were adapted to Indian soil. There results showed that high 

level o f genetic diversity exists among the indigenous B. japonicum  populations in 

Indian soils. Lima et al. (2005) studied the phenotypic diversity and symbiotic efficiency 

o f Bradyrhizobium sp. strains from Amazonian soils. There findings shows that native 

populations comprise o f highly diverse strains o f Bradyrhizobium with variable symbiotic

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



efficiency. Gao et al. (2001) studied genetic diversity o f rhizobia isolated from Astrgalus 

adsurgens from eight northern provinces in China. They found high genetic diversity 

exists among the isolated rhizobia. High phenotypic diversity was found among the 56 

rhizobia strains isolated from root of two chickpea cultivars growing in soils from 

different areas in Morocco (Maatallah et a l, 2002). Genetic diversity o f forty five 

bradyrhizobial isolates that nodulate several Lupinus and Ornithopus species in different 

geographical locations was investigated by Jarabo-Lorenzo et al. (2003). There analysis 

showed an enormous diversity among the isolates. Madzak et al. (1995) investigated the 

diversity among the field populations of B. japonicum  isolated in Poland. They found that 

that genetically diverse B. japonicum  population could be isolated from some polish soils 

but at most o f the sites where there was no previous cultivation o f soybean, no soybean 

nodulating bacteria was found. Taurian et al. (2005) found that heterogeneity exists 

among the members o f rhizobia nodulating Arachis hypogaea L. in central Argentina 

soils.

The results of our study are in agreement with previous studies on genetic diversity of 

rhizobia that shows that the rhizobial population evolves quickly in the soil. In western 

Canada, soybean is an introduced crop and its rhizobia have been introduced as 

inoculants (Beversdorf et al., 1995). Substantial diversity amongst the nodule population 

has been generated quite rapidly within few decades. Diversification o f rhizobia could 

results from mutation, conjugation and transduction events (Martinez et al., 1990). The 

adaptation can be acquired by horizontal gene transfer among the populations o f B. 

japonicum  (Ochman & Moran, 2001). The most convincing example of lateral transfer o f
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genetic information in the field is reported by Sullivan et al. (1995). In their study, 

horizontal gene transfer was reported for four non-symbiotic Rhizobium loti strains which 

had acquired a ‘chromosomal island’ from an inoculant strain confirming that horizontal 

gene transfer occurred from inoculant strain to the indigenous population of R. loti.

5.1. Influence of inoculants on genetic diversity of Bradyrhizobium 

japonicum populations in western Canada and the northern US.

Significant difference in the levels of diversity from two geographical regions (US and 

Canada) was revealed by proximity analysis (Kruskal-Wallis test, p<0.05). Also, some 

isolated patterns were observed in cluster analysis o f ERIC and REP dendrogram where 

some US and Canadian isolates were grouped into separate clusters. Some previous 

studies were able to group isolates obtained from different sites on the basis o f their 

geographical origin (Dalmastri et al., 1999; Zhang et al., 1999). The results o f our study 

indicate that some of the existing population of B. japonicum  could have developed from 

the inoculant strains used commonly in the region. Strain 532C is commonly used 

commercial inoculant strain in Canada. Strain 532C was originally isolated from soils in 

Ontario, Canada (Hume & Shelp, 1990). The profiles o f some of the isolates from site 

Winnipeg in Manitoba were found to have relatively high similarity to 532C (REP profile 

o f isolate W6C from site Winnipeg, MB is 82 % similar to 532C strain and ERIC profile 

is 62 % similar to 532C strain) indicating that the substantial diversity amongst the B. 

japonicum  populations at this site might have originated from 532C or other inoculant 

strains commonly used in western Canada. However, the REP fingerprint of one isolate
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from site Elm Creek, MB in Canada was found to be more close to strain USD A 110 (82 

% similar). USD A 110 is an inoculant strain that originated in US and is commonly used 

in American inoculants (Coutinho et a l,  1999). Nonetheless, the control strains 532C and 

USDA 110 did not show higher similarity to other isolates. Use of different inoculants in 

the soybean growing region of the northern US and western Canada might be an 

important factor that could possibly influence genetic diversity o f B. japonicum  

populations in our study. These finding also suggests that currently used commercial 

strains (532C and USDA110) change quite rapidly after being introduced into the soil 

and indigenous populations of B. japonicum  have significantly diverged from the 

inoculant strains. Sikora & Redzepovic, (2003) also found that soybean rhizobial isolates 

from eastern Croatia have significantly diverged from the inoculant strains that were 

previously used to inoculate the soybean crops. Batista et al. (2007) studied the 

variability in conserved and symbiotic genes o f B. japonicum  and B. elkalani inoculant 

strains seven years after they were introduced into a Brazilian Cerrados soil along with 

soybean host plants. They isolated 263 isolates from the nodules. Only 6.4% of the 

isolates showed high similarity to the inoculant strain CP AC 15 and none of the isolates 

were similar to CP AC 7 which were used as control strains in their study and are 

commonly used commercial inoculant strains in Brazilian Cerrados. They concluded that 

the high genetic variability is certainly related to the plasticity o f the Bradyrhizobium 

genome and was accelerated by interaction with the host plant, adaptation to the 

environment and agricultural practices. Variability in their study appears to have resulted 

from a variety o f events including strain dispersion, genomic recombination, and 

horizontal gene transfer.
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5.2. Influence of agriculture practices on genetic diversity of Bradyrhizobium 

japonicum populations in western Canada and the northern US.

In our study, we have found significant difference in the levels o f diversity from two 

geographical regions (US and Canada) as revealed by the proximity analysis. This was 

verified by Kruskal-Wallis test where significant difference was found between the 

diversity index of isolates from the US and Canada (p<0.05). In a previous study on genetic 

diversity of Maize-root associated Burkholderia cepacia, Dalmastri et al. (1999) were able 

to group strains obtained from distinct soils on the basis o f their origin. Zhang et al. (1999) 

were able to group bradyrhizobial isolates from different sites in China according to their 

geographical origin. However, some previous studies on genetic diversity o f rhizobia were 

unable to correlate genetic diversity to geographical locations (Laguerre et al., 1997).

Wong et al. (1994) analysed diversity among isolates of B. japonicum  and rhizobia, 

respectively and found that the strains isolated from distant places showed similar levels o f 

diversity compared to rhizobia isolated from close places. Jarabo-Lorenzo et al. (2003) 

studied the genetic diversity o f 45 bradyrhizobial isolates of Lupinus and Ornithopus 

species collected from diverse geographical origin and did not find correlation among 

genomic background and geographical location. In a study on genetic diversity o f fast 

growing soybean rhizobia isolated from three different geographical regions ( Papua New 

Guinea, China and Vietnam), levels of diversity o f rhizobia was found unrelated to the 

geographical sites of isolation (Saldana et al., 2003)
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Difference in the level o f  diversity o f isolates from the US and Canada in our study point 

toward the influence of agricultural practices on genetic diversity o f B. japonicum  

populations isolated from two geographical regions. Factors like crop rotation (Lupwayi et 

al, 1998), application o f nitrogen fertilizers (Hardarson et a l, 1984) and plant cultivar 

(Weaver et a l, 1972, Zhang et a l,  1999) have been shown to affect rhizobial diversity in 

the soil.

In the northern US, soybeans are most commonly grown in a crop rotation with com and 

also with winter wheat (Padgitt et a l ,  2000). At most o f the sites considered in this study in 

western Canada, soybean is grown in crop rotation with different crops mostly with cereals 

including wheat, barley, oat (Erin Burton, Philom Bios Inc., pers. comm.). Lupwayi et al. 

(1998) investigated the effects o f tillage and crop rotation on the diversity and community 

structure of soil bacteria in the northern Alberta. Results o f their study indicate that 

conservation tillage and legume-based crop rotations support diversity o f soil microbial 

communities. The difference in crop rotation at the sites considered in this study in western 

Canada and the northern US could be a possible factor causing differences in diversity 

among the B. japonicum  populations. Triplett et al. (1993) studied the effects of crop 

rotation on B. japonicum  and R. melolti populations in Wisconsin soil. Their findings 

showed that populations o f  B. japonicum  did not differ significantly unless the field had 

been planted continuously to com and populations o f B. japonicum  are far more persistent 

during crop rotation than are R. meliloti.
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Nitrogen fertilizers are used at much higher rates in US than in Canada because of the 

subsidies provided on fertilizers to farmers (Figure 6). Application o f nitrogen fertilizers 

affects nodulation (Scharf & Wiebold, 2003) and nitrogen fixation by rhizobia (Hardarson 

et al., 1984). However, small doses o f nitrogen have been found beneficial especially if  the 

initiation o f nodules is retarded (Mahon and Child, 1979). Gorissen et al. (1993) found 

negative correlation between the NFL}+ concentration in the soil and root microbial 

numbers. They also observed that rhizosphere microbial population density of juvenile 

Douglas-fir significantly decreased upon application of ammonium sulphate to the soil. 

Hoflich et al. (2000) found that the leghemoglobin content o f pea nodules, an indicator of 

nitrogen fixation activity was reduced by high nitrogen application in crop rotation. 

Different rates o f application o f nitrogen fertilizers witihin the field combined with other 

ecological factors might be an important factor in influencing the genetic diversity in the 

northern US and western Canada.

Plant cultivar is also suggested to influence rhizobial diversity. B. japonicum  populations 

are found to increase in the presence o f soybean crop (Weaver et al., 1972). Kucey & 

Hynes (1989) found that there was 10 folds increase in the R. leguminosarum bv. viciae in 

pea fields than in bean or cereals. Zhang et al. (1999) found strong influence of plant 

cultivar on the genetic diversity o f bradyrhizobial strains isolated from the root nodules of 

two peanut (Arachis hypoglea) cultivars from four different sites in China. Chiarini et al. 

(1998) studied the influence o f four maize cultivars on microbial population and did not 

found significant differences in bacterial community structures. Paffeti et al. (1996; 1998) 

suggested that plant genotype is an important and influential factor in determining the
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genetic diversity of S. meliloti populations in the field. The influence o f cultivar on 

genetic diversity of soybean rhizobial populations has previously shown in other studies 

(Weaver et ah, 1972; Zhang et al., 1999). Introduction o f early maturing cultivars of 

soybean in western Canada within the last decade and their better adaptability to the 

environment in western Canada might be a possible cause leading to diverse populations of 

B. japonicum  in the region.

5.3. Influence of environmental and edaphic factors on genetic diversity of 

Bradyrhizobium japonicum field populations.

In this study, there was no significant correlation found between the effects o f climatic 

factors such as average annual and monthly temperature and mean annual and monthly 

precipitation on genetic diversity o f B. japonicum. No significant correlation was found 

between the genetic diversity o f B. japonicum  isolates and ecological factors like 

previous crop grown in the field, year since last soybean grown and, use o f inoculants. 

However, an interesting clustering pattern was revealed by the dendrogram and 

multidimensional scaling analyses showing that the diversity o f B. japonicum  at site Elm 

Creek in southern Manitoba is quite different from rest o f the isolates considered in this 

study. This site revealed the least diverse population and low genetic variability was 

detected among most o f the isolates by both ERIC and REP fingerprinting. In the cluster 

analysis o f ERIC dendrogram, eight out o f thirteen isolates had similar profiles (80% 

similarity or more).Cluster analysis o f REP fingerprints also revealed similar results with 

six isolates from this site having similar profiles. The low genetic variability among the
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isolates at this site suggests that the indigenous strains of B. japonicum  are well adapted to 

the existing environmental conditions. This may be due to the unidirectional and 

predominating influence o f variety of environmental forces which may have selected for a 

relatively narrow genetic spectrum among the existing population o f B. japonicum. Elm 

Creek was the only site in our study that has sandy loam soil. The other environmental and 

ecological factors were mostly common to the other sites in western Canada. The low 

genetic variability and stability among the isolates might be due the influence of soil 

texture. Previous studies have shown that soil texture plays an important role in influencing 

the rhizosphere density (Hagen et al., 1997). Chiarini et al. (1998) suggested that the 

percentage o f sand in soil has a negative effect on the rhizosphere population density. 

Dalmastri et al. (1999) compared the effects of soil type, maize cultivar and root location 

on the microdiversity o f root -associated B. cepacia populations using 180 bacterial 

isolates. In their study, they showed that the soil type has a major effect on the degree o f 

genetic diversity o f the maize-root associated B. cepacia populations. They confirmed the 

effect of soil type on genetic diversity o f B. cepacia strains on the basis o f clustering o f the 

strains according to their origin. Their study also shows that the percentage o f variation 

among populations was significantly higher among the maize cultivars planted in different 

soils. Latour et al. (1996) have shown that the phenotypic diversity o f populations of 

flouroscent pseudomonads was largely influenced by soil texture and composition.

Yohalem & Lorbeer (1994) studied the intraspecific metabolic diversity among 218 strains 

o f B. cepacia and found the strong influence o f soil type on metabolic diversity o f B. 

cepacia. It has been suggested by Dalmastri et al. (1999) that “ factors like soil type and 

metabolites produced by root system depending on the plant species might select not only
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some species among all those present in the entire rhizosphere, but, also within one species, 

some strains characterized by distinct haplotypes”. High sand content in the soil such as 

that found at the Elm Creek site is more susceptible to desiccation stress and lower nutrient 

content (Bentham et al., 1992; Uhlirova et al., 2005). This may have led to the selection for 

a relatively narrow genetic spectrum among the existing population of B. japonicum. 

Further studies are necessary to determine the mechanisms by which soil texture may 

influence rhizosphere community and affects genetic diversity B. japonicum.
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Conclusions

Based on the cluster analysis and multidimensional scaling o f REP and ERIC fingerprints, 

we conclude that there are high levels o f genetic diversity among B. japonicum  strains 

isolated from important soybean growing areas in western Canada and the northern US 

(North Dakota, South Dakota, and Minnesota). Most o f the strains isolated from the US 

soils clustered together and a separate pattern was observed for most o f the Canadian 

isolates. This spatial separation o f diversity o f two geographic regions suggests that the 

regulation of diversity is influenced by ecological and environmental factors. In our study, 

we have found that the soil texture could have an influence on the stability o f isolates at site 

Elm Creek, MB in Canada. Desiccation stress and lower nutrient content conditions posed 

by the sandy loam soil texture might be an influencing factor at this site. This finding is in 

agreement with a previous study on maize- root associated B. cepacia (Dalmastri et al.,

1999). A less diverse site like Elm Creek in Manitoba may show better yield responses to a 

highly competitive inoculant because the introduced inoculant strain(s) would face less 

competition with indigenous populations. Continuous inoculation o f  the site for few years 

would assist in the successful establishment o f effective commercial inoculant strains in the 

field. Future studies should compare influence o f different soil texture on genetic diversity 

o f  soybean rhizobia field populations along with plant cultivars. This will help us in better 

understanding ecology of soybean rhizobia.

This study has provided the very first assessment on the genetic diversity o f B. japonicum  

populations from the soils o f southern Manitoba in Canada. The findings o f this research
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would help in implementing and developing effective strategies that could lead to increase 

soybean production in western Canada and which could also significantly influence the 

crop production in other soybean growing regions o f the world. This knowledge is also 

required for the development o f effective strategies for delivery and maintenance of 

exogenous microorganisms in association with root systems. This study also demonstrated 

the successful application o f rep-PCR fingerprinting as a tool for strain identification. 

Studies has shown the utility o f rep-PCR genomic fingerprinting in identification and 

classification of bacteria, and for molecular epidemiological studies o f human and plant 

pathogens (van Belkum et al., 1994; Louws et al., 1996, Schneider & deBrujn, 1996).

Thus, rep-PCR genomic fingerprinting in combination with other molecular techniques 

could be successfully used by inoculant companies as a tool for the protection of 

intellectual properties. In future studies, genetic diversity o f soybean rhizobia should be 

covered on broader scale. Sampling rhizobia across various soybean growing regions o f the 

world and using more like Argentina, Brazil, India, China, and U.S etc could help 

researchers in identifying the impact o f various ecological and edaphic factors that could 

possibly influence the genetic diversity o f soybean rhizobia in general. Future studies 

should use more reference strains (commercial inoculant strains) in their study to examine 

the effects of inoculant use on rhizobial diversity. The finding of this study, along with the 

companion study by another colleague on testing the infectiveness and effectiveness of 

these isolates on soybean plants under field house conditions, have provided Philom Bios 

Inc. with four competitive strains that could be successfully developed into commercial 

inoculants strains. The assessment provided on genetic diversity o f B. japonicum
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populations in western Canada in this study would help the farmers, agronomists and 

inoculant companies to design better strategy for inoculant application within the region.
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APPENDIX

Appendix A: Gel images

All gel images are included in this section. The lanes where there was no amplified 

product was found and where the bands were not clear or very weak were not analyzed 

for this study.

Figure I a and I b.

Gel sequence:

Lane Isolate
1 lkb DNA ladder
2 532C
3 USDA110
4 2
5 6
6 7
7 9
8 13
9 16
10 17
11 19
12 20
13 23
14 24
15 26
16 27
17 29
18 31
19 32
20 33
21 35
22 lkb DNA ladder
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1 2  3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure I a. ERIC fingerprints for Bradyrhizobium japonicum  isolates

1 2  3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure I b. ERIC fingerprints for Bradyrhizobium japonicum  isolates
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Figure Ila  and II b.

Gel sequence:
Lane Isolate
1 lkb DNA ladder
2 532C
3 USDA110
4 36
5 37
6 38
7 39
8 40
9 42
10 43
11 44
12 46
13 47
14 48
15 49
16 52
17 53
18 54
19 55
20 56
21 57
22 lkb DNA ladder
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure la . ERIC fingerprints for Bradyrhizobium japonicum  isolates

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure I I  b. ERIC fingerprints for Bradyrhizobium japonicum  isolates
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Figure III a and III b.

Gel sequence:
Lane Isolate
1 lkb DNA ladder
2 532C
3 USD A 110
4 58
5 59
6 60
7 62
8 63
9 64
10 65
11 66
12 68
13 71
14 72
15 73
16 SF 3A
17 EC 1A
18 W 5A
19 W 6A
20 W 6C
21 U23
22 lkb DNA ladder
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Figure I lia . ERIC fingerprints for Bradyrhizobium japonicum  isolates

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22

Figure I llb . ERIC fingerprints for Bradyrhizobium japonicum  isolates
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Figure IV a and IV b.

Gel sequence:
Lane Isolate
1 lkb DNA ladder
2 532C
3 USDA110
4 U24
5 U43
6 U51
7 U55
8 U61
9 U62
10 U64
11 U65
12 U71
13 U92
14 U123
15 U124
16 U125
17 U135
18 U142
19 8
20 10
21 15
22 lkb DNA ladder
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Figure IVa. ERIC fingerprints for Bradyrhizobium japonicum isolates

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure IVb. ERIC fingerprints for Bradyrhizobium japonicum  isolates
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Figure Va and Vb.

Gel sequence:

Lane Isolate
1 lkb DNA ladder
2 532C
3 USD A 110
4 EC 1C
5 EC 2A
6 EC 2B
7 EC 2C
8 EC 3A
9 EC 3B
10 EC 3C
11 EC 4C
12 EC 5A
13 EC 5B
14 EC 5C
15 U22
16 U61
17 U73
18 U82
19 U85
20 U91
21 U93
22 lkb DNA ladder
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1 2  3  4  5 6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22

Figure Va. ERIC fingerprints for Bradyrhizobium japonicum  isolates 

1 2  3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure Vb. ERIC fingerprints for Bradyrhizobium japonicum  isolates
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Figure Via and VI b.

Gel sequence:
Lane Isolate
1 lkb DNA ladder
2 532C
3 USDA110
4 5
5 8
6 10
7 12
8 15
9 16
10 18
11 33
12 38
13 40
14 47
15 49
16 50
17 53
18 57
19 62
20 67
21 69
22 lkb DNA ladder
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Figure Via. ERIC fingerprints for Bradyrhizobium japonicum isolates

1 2  3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22

Figure VIb. ERIC fingerprints for Bradyrhizobium japonicum  isolates
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Figure V ila and VII b.

Gel sequence:

Lane Isolate
1 lkb DNA ladder
2 532C
3 USDA110
4 1
5 3
6 4
7 9
8 11
9 14
10 21
11 22
12 26
13 28
14 30
15 34
16 35
17 39
18 41
19 51
20 61
21 70
22 lkb DNA ladder
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