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Abstract

A characterization of certain families of

well-covered circulant graphs

By Rania Moussi

Abstract: A graph G is said to be well-covered if every maximal independent set
is a maximum independent set. The concept of well-coveredness is of interest due
to the fact that determining the independence number of an arbitrary graph is NP-
complete, and yet for a well-covered graph it can be established simply by finding
any one maximal independent set.
A circulant graph C

(
n, S

)
is defined for a positive integer n and a subset S of the

integers 1, 2, . . . , bn
2
c, called the connections. The vertex set is Zn, the integers modulo

n. There is an edge joining two vertices j and i if and only if the difference |j− i| is in
the set S. In this thesis, we investigate various families of circulant graphs. Though
the recognition problem for well-covered circulant graphs is co-NP-complete, we are
able to determine some general properties regarding these families and to obtain a
characterization.

October 5, 2012.
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Chapter 1

Introduction

A graph G is said to be well-covered if every maximal independent set is a maxi-

mum independent set. This notion, introduced by M. D. Plummer in 1970 [29], was

originally defined by him in terms of point cover, thus the name well-covered. How-

ever, the independent set point of view has become predominant among researchers.

Note that a point cover is a set of points (vertices) such that every edge is incident

with some point in the cover [8] and an independent set (stable set) is a set of ver-

tices such that no two members are joined by an edge. A maximum independent set

is the largest independent set for a given graph. An independent set is a maximal

independent set if it is not a proper subset of another independent set. The number

of vertices in a maximum independent set of G is called the independence number of

G and is denoted by β
(
G
)

and the number of vertices in a minimum covering of G

is the covering number of G and is denoted by α
(
G
)
. Furthermore, it is well-known

that the complement of a point cover is an independent set. Thus, one could choose

either point of view to tackle the property of well-coveredness.

The concept of well-coveredness captured Plummer’s attention mainly due to the

fact that determining the independence number of an arbitrary graph is NP-complete,

and yet for a well-covered graph it can be established simply by finding any one

maximal independent set. Note that to determine whether an arbitrary graph is well-

covered, no method is known which is significantly faster than comparing all maximal

independent sets; whereas, determining non-well-coveredness is a simpler process; it

1
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suffices to find two maximal independent sets of differing cardinality.

Since the introduction of this class of graphs, much research has been conducted

and various results have been published. Even though the problem of determining

well-coveredness is co-NP-complete, various subclasses of well-covered graphs have

been characterized. Furthermore, a number of these families are recognizable in

polynomial time. For an in-depth review the reader is referred to the survey papers

by Plummer [30] and Hartnell [8].

A circulant graph C
(
n, S

)
is defined for a positive integer n and a subset S of

the integers 1, 2, . . . , bn
2
c, called the connections. The vertex set is Zn, the integers

modulo n. There is an edge joining two vertices j and i if and only if the difference

|j − i| is in the set S. The problem of determining whether a circulant graph is

well-covered was investigated by R. Hoshino [33] in his 2007 dissertation. Among

other things he showed that the recognition problem for well-covered circulant graphs

is co-NP-complete. Though it seems that there are many complex issues when it

comes to recognizing whether an arbitrary circulant graph is well-covered, several

characterizations of subclasses of these graphs have been attained so far. In addition,

many techniques are used to produce new graphs from existing ones and using graph

products is a well known approach.

1.1 Basic Terminology

A graph G consists of a finite nonempty set V (G) of vertices and a set E(G) of

2-element subsets of V (G) called edges. The vertex set of G is denoted by V (G) and

the edge set is denoted by E(G). For simplicity the edge e = {u, v} is denoted by uv

or vu. If e = uv is an edge of a graph G, then u and v are adjacent vertices, denoted

by u ∼ v. The vertices u and v are referred to as neighbors of each other. In this

case, the vertex u and the edge e (as well as v and e) are said to be incident with
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each other. Distinct edges of G incident with a common vertex are adjacent edges.

Furthermore, the (open) neighborhood of a vertex v in a graph G, denoted N
(
v
)
, is

the set of vertices adjacent to v, and the closed neighborhood N [v] = N
(
v
)
∪ {v}.

The order of a graph G is the cardinality of its vertex set and is denoted by |V (G)|;

while the size of a graph G is the cardinality of its edge set and is denoted by |E(G)|.

The degree of a vertex v in a graph G is the number of edges of G incident with v and

is denoted by deg(v). A vertex of degree 0 in G is referred to as an isolated vertex.

Two graphs G1 and G2 are isomorphic if there exists a one-to-one correspondence

φ from V
(
G1

)
to V

(
G2

)
such that u1v1 ∈ E

(
G1

)
if and only if φ

(
u1
)
φ
(
v1
)
∈ E

(
G2

)
.

In such a case we write G1
∼= G2 and φ is called an isomorphism from G1 to G2. An

automorphism of a graph G is an isomorphism of the graph G onto itself. A graph

G is vertex transitive if, for any two vertices u and v, there is an element g in the

automorphism group of G such that g(u) = g(v).

A graph H is called a subgraph of a graph G, written H ⊆ G, if V (H) ⊆ V (G)

and E(H) ⊆ E(G). If H ⊆ G and either V
(
H
)

is a proper subset of V
(
G
)

or E
(
H
)

is a proper subset of E
(
G
)
, then H is a proper subgraph of G.

Suppose that V
′

is a nonempty subset of V . The subgraph of G whose vertex set

is V
′

and whose edge set is the set of those edges of G that have both ends in V
′

is

called the subgraph of G induced by V
′

and is denoted by G[V
′
]; we say that G[V

′
] is

an induced subgraph of G. For a vertex v of a nontrivial graph G, the subgraph G\v

consists of all vertices of G except v and all edges of G except those incident with v.

For a proper subset U of V
(
G
)
, the subgraph G\U has vertex set V

(
G
)
\U and its

edge set consists of all edges of G joining two vertices in V
(
G
)
\U ; G\U is an induced

subgraph of G.

If the vertices of a graph G of order n can be labeled (or relabeled) v1, v2, . . . , vn so

that its edges are v1v2, v2v3, . . . , vn−1vn, then G is called a path, and is denoted by Pn.
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If the vertices of a graph G of order n ≥ 3 can be labeled (or relabeled) v1, v2, . . . , vn

so that its edges are v1v2, v2v3, . . . , vn−1vn, and v1vn, then G is called a cycle, and is

denoted by Cn. Note that a k-cycle is a cycle of length k. Furthermore, the girth of

G is the length of a shortest cycle in G; if G has no cycles we define the girth of G to

be infinite.

A graph G is complete if every two distinct vertices of G are adjacent. A complete

graph of order n is denoted by Kn. A graph G is connected if every two vertices of

G are connected, that is, if G contains a u − v path for every pair u, v of distinct

vertices of G. A graph G that is not connected is called disconnected. A connected

subgraph of G that is not a proper subgraph of any other connected subgraph of G

is a component of G. A graph G is then connected if and only if it has exactly one

component.

The complement G of a graph G is a graph whose vertex set is V
(
G
)

and such

that for each pair u, v of vertices of G, uv is an edge of G if and only if uv is not an

edge of G. A clique of a graph G is a subset W of V such that G[W ] is complete.

Clearly, W is a clique of G if and only if W is an independent set of G, and so the

two concepts are complementary.

A subset M of E is called a matching in G if no two are incident in G; the two

ends of an edge in M are said to be matched under M . A matching M saturates

a vertex v, and v is said to be M -saturated, if some edge of M is incident with v;

otherwise, v is M -unsaturated. If every vertex of G is M -saturated, the matching M

is perfect.

A bipartite graph is a graph whose vertex set can be partitioned into two subsets

X and Y , so that each edge has one end in X and one end in Y ; such a partition(
X, Y

)
is called a bipartition of the graph. A complete bipartite graph is a bipartite

graph with bipartition
(
X, Y

)
in which each vertex of X is joined to each vertex of
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Y ; if |X| = m and |Y | = n, such a graph is denoted by Km,n.

A graph G is called a planar graph if G can be drawn in the plane so that no two

of its edges cross each other. A graph G is regular of degree r if deg (v) = r for each

vertex v of G. Such graphs are called r-regular. A 3-regular graph is also called a

cubic graph.

The Cartesian product of graphs G and H is the graph G2H with vertex set

V (G) × V (H), in which
(
g, h
)
∼
(
g
′
, h
′)

if either both g = g
′

and h ∼ h
′

or both

h = h
′

and g ∼ g
′
.

A polynomial algorithm for graphs is one whose execution time is bounded by a

polynomial in either the number of edges or the number of vertices. An NP-complete

problem is a problem having a ‘yes’ or ‘no’ answer that can be solved nondetermin-

istically in polynomial time, and all other such problems can be transformed to it

in polynomial time. Such problems are generally accepted as being computationally

difficult.

Note that all of these terms are from Bondy and Murty [18], Gross and Yellen [21]

and Chartrand and Zhang [15]; more terms will be defined later as required.

1.2 Overview of the Thesis

In this thesis, we determine when G is well-covered for G = C
(
n, S

)
in one of the

following classes.

Class 1: S = {1, 2, . . . , d} where 1 ≤ d ≤ n
2
.

Class 2: S = {d+ 1, d+ 2, . . . , bn
2
c} where 1 ≤ d ≤ n−2

2
.

Class 3: S = {1, 2, . . . , d} ∪ {bn
2
c} where 1 ≤ d ≤ n

2
.

Class 4: S = {2, 4, . . . , 2d} where 1 ≤ d ≤ n
4
.
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Class 5: S = {1, 3, 5, . . . , 2d+ 1} where 0 ≤ d ≤ n−2
4

.

Class 6: S = {1} ∪ {2, 4, . . . , 2d} where 1 ≤ d ≤ n
4
.

Class 7: S = {2, 3, . . . , d} where 2 ≤ d ≤ n
2
.

Class 8: S = {1} ∪ {3, 4, . . . , d} where 3 ≤ d ≤ n
2
.

Class 9: S = {1} ∪ {4, 5, . . . , d} where 4 ≤ d ≤ n
2
.

Class 10: S = {3, 4, . . . , d} where 3 ≤ d ≤ n
2
.

Class 11: S =
{

1, 2, . . . ,
⌊
n
2

⌋}
− A where A ⊆ S such that |A| = 1.

Class 12: S =
{

1, 2, . . . ,
⌊
n
2

⌋}
− A where A ⊆ S such that |A| = 2.

Class 13: S =
{

1, 2, . . . ,
⌊
n
2

⌋}
− A where A ⊆ S such that |A| = 3.

In Chapter 2, we provide a brief survey of well-covered graphs and of well-covered

circulant graphs. We also provide an overview of the various findings regarding the

closure of well-covered (circulant) graphs under graph products.

In Chapter 3, we first investigate Classes 1 and 2. Necessary and sufficient

conditions for members of these families to be well-covered were determined by

Hoshino [33, 34] using the independence polynomial. Note that the independence

polynomial I(G, x) is
n∑
k=0

ikx
k, where ik is the number of independent sets of cardi-

nality k in G [33]. We will provide proofs for Hoshino’s two classes using an alternative

approach. This approach allows us to generalize his results by allowing us to deter-

mine exactly which of these graphs is 1-well-covered. Finally, we characterize Class

3 and we also determine which of these graphs is 1-well-covered.

In Chapter 4, we investigate Classes 4, 5, and 6, and in Chapter 5, we investigate

Classes 7, 8, 9, and 10. Necessary and sufficient conditions for members of these

families to be well-covered are determined using various approaches.
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In Chapter 6, we investigate Classes 11, 12, and 13. By examining the maximal

cliques in the complementary graphs we are able to characterize these classes.

In Chapter 7, we provide concluding remarks and several open questions pertaining

to well-covered circulant graphs.



Chapter 2

Preliminary Results

In this chapter, we provide a brief survey of well-covered graphs. In relation to the

notion of well-coveredness, employing a girth approach has been proven to be a very

successful technique, and consequently significant findings regarding this concept are

accredited to its usage. In view of the computational complexity issues regarding

well-covered graphs, work in this area has concentrated on characterizing various

subclasses of well-covered graphs. Well-covered cubic graphs, 1-well-covered graphs,

claw-free graphs and very well-covered graphs are among those subclasses that are

reviewed in this chapter.

We also present an overview of the findings regarding well-covered circulant graphs.

Though considerable research has been conducted on well-covered graphs, very little

has been done on determining whether a circulant graph is well-covered. Hoshino’s [33,

34] findings are primarily the only literature found regarding well-covered circulant

graphs. Necessary and sufficient conditions for certain families of circulant graphs to

be well-covered are outlined in this section.

The Cartesian product, the categorical product, the lexicographic product and the

strong product of graphs are among the products that are surveyed. Many techniques

are used to produce new graphs from existing ones and using graph products is

a well known approach. An infinite family of well-covered (circulant) graphs can

be generated by applying the lexicographic product and those families can also be

extended by applying the Cartesian product.

8
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2.1 Well-Covered Graphs

Given a graph G, one can pose the following question:

Is G well-covered, and if not, can we easily show that it is not well-covered?

The complexity of this recognition problem has been independently investigated

by Chvátal and Slater [43] and by Sankaranarayana and Stewart [35]. They indepen-

dently proved the following result.

Theorem 2.1 The following decision problem is NP-complete: “Is a given graph G

not a well-covered graph?”

In addition, Caro, Sebö and Tarsi [44] proved the following result.

Theorem 2.2 It is co-NP-complete to determine whether a given graph G is well-

covered. This remains true when restricted to graphs with no K1,4 induced subgraph.

Though different restrictions were employed by Caro [45], similar results of co-

NP-completeness were established by him. Note that a graph G is said to be Zm-well-

covered, if the cardinality of every maximal independent set of vertices is congruent

to the same number modulo m [46].

Theorem 2.3 The decision problem “is G well-covered?” remains co-NP-complete

even if it is given that G is both K1,3m+1-free and Zm-well-covered for any fixed positive

integer m ≥ 1.

The following propositions are fundamental results in the study of well-covered

graphs.

Proposition 2.4 A graph G is well-covered if and only if every component of G is

well-covered.
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Proof. Clear.

Proposition 2.5 [39] Let G be a graph. Suppose that I is an independent set of G.

If G is well-covered, then every component of G \N [I] is well-covered.

Proof. We prove the contrapositive of the above statement; that is, if any component

of G \N [I] is not well-covered, then G is not well-covered.

Suppose that H1 is a component of G\N [I] and that H1 is not well-covered. Then

there exists two maximal independent sets, in H1, of differing cardinality, say I1 and

I
′
1. Let the remaining components of G \ N [I] be Hj, if any, where j = 2, . . . , k.

Choose a maximal independent set Ij for Hj for each of j = 2, . . . , k. Then G has two

independent sets I ∪ I1∪ I2∪ . . .∪ Ik and I ∪ I ′1∪ I2∪ . . .∪ Ik of differing cardinalities.

Hence, G is not well-covered.

Since circulant graphs are vertex transitive the above result implies:

Corollary 2.6 Let G be a circulant graph on n vertices and v be a vertex in G.

Then G is well-covered if and only if H = G \ N [v] is well-covered. Furthermore,

β
(
G
)

= β
(
H
)

+ 1.

2.2 1-Well-Covered Graphs

A well-covered graph G is 1-well-covered if G − v is well-covered for all v ∈

V
(
G
)

[19]. These graphs were introduced by Staples [19] in her 1975 dissertation.

The graphs in Figure 2.1 are a few examples of 1-well-covered graphs. Note that the

first two graphs, C
(
5, {1}

)
and C

(
7, {1, 3}

)
, are 1-well-covered circulant graphs.

Staples [19, 20] defined Wn-graphs. For a positive integer n, a graph G belongs

to class Wn if any n disjoint independent sets in G can be expanded to n disjoint

maximum independent sets. She showed that 1-well-covered graphs and W2-graphs

are identical.
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C(5, {1}) C(7, {1, 3})

Figure 2.1: 1-well-covered graphs [20].

Later, Pinter [25] examined W2-graphs in his 1991 dissertation. He character-

ized cubic 1-well-covered graphs [26], 3-connected 4-regular planar 1-well-covered

graphs [26], and planar 1-well-covered graphs with girth four [27]. Pinter [28] also

considered 1-well-covered graphs with girth four and he introduced two types of con-

structions which enabled him to produce an infinite family of 1-well-covered graphs

with girth four. Hartnell [9] characterized 1-well-covered graphs with no 4-cycles.

Recently Finbow and Hartnell [5] characterized triangle free 1-well-covered graphs

and they introduced various constructions which enabled them to produce an infinite

family of 1-well-covered graphs.

Caro, Sebö and Tarsi [44] proved the following result.

Theorem 2.7 For any positive integer n, recognizing a member of Wn is co-NP-

complete.

In addition, Caro [45] proved the following result.
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Theorem 2.8 [45] For any positive integer n, recognizing a member of Wn is co-

NP-complete even for K1,4-free graphs.

2.3 Well-Covered Cubic Graphs

Well-covered cubic graphs of connectivity at most 2 were characterized by Camp-

bell [39] in his 1987 dissertation. Campbell and Plummer [40] characterized cubic,

planar, 3-connected, well-covered graphs. They established that there are precisely

four graphs satisfying this property and they are shown in Figure 2.2. Later, Camp-

bell, Ellingham and Royle [41] constructed an infinite family of well-covered cubic

graphs, and they established that there exists six other graphs shown in Figure 2.3.

In view of the findings of Finbow, Hartnell and Nowakowski [2], they showed that the

graph P14, shown in Figure 2.3, is the only cubic graph of girth at least five. They

also considered cubic graphs of girth three and four. Subsequently, they established

a characterization of well-covered cubic graphs.

In addition, Campbell, Ellingham and Royle [41] established the following result.

Theorem 2.9 The problem of recognizing well-covered cubic graphs is solvable in

polynomial time.

2.4 Very Well-Covered Graphs

A graph G is said to be very well-covered if every maximal independent set has

cardinality |V |/2 [37]. These graphs have been independently characterized by Nelson

and Staples in 1973 (see [19]) and by Favaron [31] in 1982.

For simplicity we use Plummer’s [30] definition of property P .

Definition 2.4.1 Suppose a graph G has a perfect matching F . Then the matching

F = {a1b1, . . . , anbn} has property P if
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Figure 2.2: Cubic, planar, 3-connected, well-covered graphs [40].

K4 K3,3 K∗
3,3

C5 ×K2 P14Q∗∗

Figure 2.3: Well-covered cubic graphs [41].
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(i) no point ω ∈ G satisfies ω ∼ ai and ω ∼ bi where aibi ∈ F ; and

(ii) no set of two independent points {u, v} ⊆ V (G) satisfies u ∼ ai and v ∼ bi

where aibi ∈ F .

The characterization of Favaron is as follows.

Theorem 2.10 [31] For a graph G, the following properties are equivalent:

(a) G is very well-covered.

(b) There exists a perfect matching in G which satisfies the property P .

(c) There exists at least one perfect matching in G, and every perfect matching of G

satisfies P .

Note that Staples [19] established parts (a) and (b) of Theorem 2.10.

Well-covered bipartite graphs, in particular well-covered trees, were independently

characterized by Staples [19] and Ravindra [16]. Later, Sankaranarayana and Stew-

art [36, 37] characterized very well-covered graphs.

The following theorem is a fundamental result in the study of very well-covered

graphs.

Theorem 2.11 A graph G is very well-covered if and only if every component of G

is very well-covered.

2.5 Claw-Free Graphs

A graph G is said to be a claw-free graph if G contains no induced subgraph

isomorphic to K1,3 [10]. Whitehead [10] characterized well-covered claw-free graphs

containing no four cycles, and King [14] characterized 3-connected claw-free planar

well-covered graphs.
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In addition, Hartnell and Plummer [6] and King [42] investigated 4-regular, 4-

connected, claw-free, well-covered graphs. The classes G0, G1, G2 and Hr,n are intro-

duced.

Definition 2.5.1 A Harary graph Hr,n is defined for integers r and n with 2 ≤ r <

n such that Hr,n has order n. Let V
(
Hr,n

)
= {v1, v2, . . . , vn}, then Hr,n is constructed

as follows:

(i) r is even.

Let r = 2k. For each integer i where 1 ≤ i ≤ n, the vertex vi is adjacent to

vi+1, vi+2, . . . , vi+k and to vi−1, vi−2, . . . , vi−k. Thus, Hr,n is an r-regular graph

of order n.

(ii) r is odd and n is even.

Let r = 2k + 1 and n = 2l. For each integer i where 1 ≤ i ≤ n, the vertex vi

is joined to the 2k vertices mentioned above as well as to vi+l. Thus, Hr,n is an

r-regular graph of order n.

(iii) r and n are both odd.

Let r = 2k + 1 and n = 2l + 1. In this case Hr,n is obtained from Hr−1,n by

adding the edge vivi+l for each i where l + 2 ≤ i ≤ n + 1. Therefore, when r

and n are both odd, Hr,n contains one vertex of degree r + 1 and n− 1 vertices

of degree r.

If r or n is even, Hr,n is a circulant graph and is of size rn
2

; while if r and n are

odd, then the size of Hr,n is rn+1
2

. In general, the size of Hr,n is d rn
2
e.

• The class G0 consists of the graph K5 and all graphs constructed as follows.

Let K4

(
1
)
, . . . , K4

(
r
)

be any collection of at least two vertex-disjoint K4s. Now
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join these K4s with a perfect matching to obtain a graph on 4r vertices which

is 4-connected, 4-regular and claw-free [6].

• The class G1 consists of the set of 4-regular Harary graphs, H4,k, where k ≥

6 [42].

• The class G2 can be described as the class of 4-regular 4-connected claw-free

graphs in which each vertex lies on two edge-disjoint triangles [6].

Hartnell and Plummer [6] established the following results.

Lemma 2.12 Suppose G ∈ G0 and G 6= K5. Then G is well-covered if and only if

each K4 in G is joined by edges to no more than three other K4s.

Lemma 2.13 Let G ∈ G2. Then G is well-covered if and only if G = L
(
K3,3

)
.

King [42] later established the following result.

Lemma 2.14 The graphs H4,5, H4,6, H4,7, H4,8, and H4,11, (shown in Figure 2.4), are

the only 4-regular, well-covered Harary Graphs.

The following theorem is a summary of Hartnell, Plummer and King’s findings.

Theorem 2.15 [6, 42] There are infinitely many 4-regular, 4-connected, claw-free,

well-covered graphs in the class G0, five in the class G1, and one in the class G2.

In addition, Hartnell and Plummer [6] proved the following result.

Theorem 2.16 There are precisely five 4-connected claw-free planar well-covered

graphs. They are the two graphs shown in Figure 2.5, the graph shown in Figure 2.6,

and the Harary graphs H4,6 and H4,8 shown in Figure 2.4.

Tankus and Tarsi [12, 13] established the following result.

Theorem 2.17 Well-covered claw-free graphs can be recognized in polynomial time.
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H4,5 H4,6 H4,7

H4,8 H4,11

Figure 2.4: The well-covered, 4-regular Harary graphs [42].

Figure 2.5: 4-connected claw-free planar well-covered graphs [6].

Figure 2.6: A 4-connected claw-free planar well-covered graph from [6].
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2.6 Well-Covered Property: A Girth Approach

The study of the well-coveredness property versus girth was initially introduced

by Finbow and Hartnell [1] in the course of their investigation of a 2-person game.

The aim of this inquiry was to determine a winning strategy for any graph regardless

of how the players moved. As a result, a characterization of well-covered graphs with

girth at least eight was established. Finbow, Hartnell and Nowakowski characterized

well-covered graphs of girth at least five [2], and well-covered graphs containing neither

4− nor 5− cycles [3]. Later, Finbow and Hartnell [4] investigated “Parity graphs”;

those that do not contain cycles of order five or less were characterized. Gasquoine,

Hartnell, Nowakowski and Whitehead [38] introduced techniques for constructing

well-covered graphs with no 4-cycles. Hartnell [7] examined the local structure of well-

covered graphs without 4-cycles. Recently Brown, Nowakowski and Zverovich [22]

examined the structure of well-covered graphs with no cycles of length four. Caro and

Hartnell [46] characterized Zm-well-covered graphs of girth at least six and weighted

well-covered graphs of girth at least seven.

2.7 Well-Covered Circulant Graphs

A circulant graph is said to be well-covered if every maximal independent set is

a maximum independent set. The problem of determining whether a circulant graph

is well-covered was originally investigated by R. Hoshino [33] in his 2007 disserta-

tion. The isomorphism problem for circulant graphs has been investigated by various

scholars for over three decades. Li [11] provided an excellent survey regarding the

isomorphism of circulant graphs. A complete solution of the isomorphism problem

for circulants of arbitrary order was recently established by Muzychuk [24].

An example of all circulant graphs on seven nodes is illustrated in Figure 2.7.
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C(7, {1}) C(7, {2}) C(7, {3})

C(7, {1, 3}) C(7, {1, 2}) C(7, {2, 3})

C(7, {1, 2, 3})

Figure 2.7: All Circulant Graphs on seven nodes.

Note that C
(
7, {1}

) ∼= C
(
7, {2}

) ∼= C
(
7, {3}

)
and C

(
7, {1, 2}

) ∼= C
(
7, {1, 3}

) ∼=
C
(
7, {2, 3}

)
. In addition, C

(
7, {1, 2, 3}

)
is the complete graph K7.

Definition 2.7.1 If S ⊆ Zn, we define −S = {y ∈ Zn : y + s ≡ 0 for some s ∈ S}

and set 〈S〉 = S ∪
(
−S
)
. We say that T, S ⊆ Zn are equivalent if 〈T 〉 = 〈S〉. If r is

an integer then rs = {rs ∈ Zn | s ∈ S}.

Hoshino and Brown [34] investigated the class of circulant graphs on n vertices

with the following generating set: S =
{

1, 2, . . . , d
}

and S =
{
d+ 1, d+ 2, . . . ,

⌊
n
2

⌋ }
.

They established necessary and sufficient conditions for members of these families to

be well-covered using the “independence polynomial” (defined on page 6).
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Theorem 2.18 Let n and d be integers with n ≥ 2d and d ≥ 1. Then G = Cn,{1,2,...,d}

is well-covered if and only if n ≤ 3d+ 2 or n = 4d+ 3.

Theorem 2.19 Let n and d be integers with n ≥ 2d + 2 and d ≥ 1. Then G =

Cn,{d+1,d+2,...,bn
2
c} is well-covered if and only if n > 3d or n = 2d+ 2.

In Chapter 3, we will provide proofs for their two theorems using an alterna-

tive approach. This approach allows us to generalize their results by allowing us to

determine exactly which of these graphs is 1-well-covered.

Definition 2.7.2 Let k ≥ 1 and let
(
a1, a2, . . . , ak

)
be a k-tuple of integers with

each ai ≥ 3. Define n0 = 1, and ni = aini−1 − 1, for 1 ≤ i ≤ k. Then for each

1 ≤ j ≤ i ≤ k, set

Sj,i =

 ±Sj,i−1 (mod ni−1) for all 1 ≤ j < i

{1, 2, . . . ,
⌊
ni

2

⌋
} −⋃i−1

j=1 Sj,i for j = i

Then Gj

(
a1, a2, . . . , ak

)
is defined to be C

(
nk,Sj,k

)
, the circulant graph on nk

vertices with generating set Sj,k [33].

Note that Gj,k is just an abbreviation of Gj

(
a1, a2, . . . , ak

)
.

Hoshino characterized the well-covered graphs in this family as follows.

Theorem 2.20 Let
(
a1, a2, . . . , ak

)
be a k-tuple of positive integers, with each ai ≥ 3.

Define Gj,k for each k-tuple. Then Gj,k is well-covered if and only if j = k, or(
j, k
)

=
(
1, 2
)

with a2 ≤ 4.

In view of the findings of Finbow, Hartnell and Nowakowski [2, 3], Hoshino [33]

established the following results.

Theorem 2.21 Let G be a connected well-covered circulant graph of girth g ≥ 5.

Then G is isomorphic to K1, K2, C5, or C7.



21

Theorem 2.22 Let G be a connected well-covered circulant graph containing neither

C4 or C5 as a subgraph. Then G is isomorphic to K1, K2, K3, or C7.

Based on the characterization established by Campbell, Ellingham and Royle [41],

Hoshino and Brown [34] determined all connected well-covered cubic graphs that are

circulants.

Theorem 2.23 Let G be a connected circulant cubic graph. Then G is well-covered if

and only if it is isomorphic to one of the following graphs: C
(
4, {1, 2}

)
, C
(
6, {1, 3}

)
,

C
(
6, {2, 3}

)
, C
(
8, {1, 4}

)
, or C

(
10, {2, 5}

)
.

Theorem 2.24 Let G = C
(
2n, {a, n}

)
, where 1 ≤ a < n. Let t = gcd(2n, a). Then

G is well-covered if and only if 2n
t
∈ {3, 4, 5, 6, 8}.

In addition, Hoshino and Brown [34] proved the following result.

Theorem 2.25 Let G = C
(
n, S

)
be an arbitrary circulant graph. Then it is co-NP-

complete to determine whether G is well-covered.

2.8 Graph Products

In addition to the Cartesian product (defined on page 5), the following three

products will be useful for our discussion. In the categorical product graph G × H,

the vertices
(
g, h
)

and
(
g
′
, h
′)

are adjacent if g ∼ g
′

and h ∼ h
′
. In the lexicographic

product graph G[H], the vertices
(
g, h
)

and
(
g
′
, h
′)

are adjacent if either g ∼ g
′

or

both g = g
′

and h ∼ h
′
. In the strong product graph G ⊗H, the vertices

(
g, h
)

and(
g
′
, h
′)

are adjacent either if both g ∼ g
′

and h = h′, if both g = g
′

and h ∼ h
′

or if

both g ∼ g
′

and h ∼ h
′

[33].

The closure of circulant graphs under graph products has been independently

investigated by Broere and Hattingh [17] and by Hoshino [33]. According to Hoshino
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the closure of circulant graphs is not preserved under the categorical product or the

strong product.

With respect to the Cartesian product of cycles, Broere and Hattingh [17] estab-

lished the following result.

Theorem 2.26 Cp2Cq is a circulant graph if and only if p and q are relatively prime.

More generally Hoshino [33] attained the following result.

Theorem 2.27 Let G = C
(
n, S1

)
and H = C

(
m,S2

)
be circulant graphs. Define

S to be the set of integers k in
{

1, 2, . . . ,
⌊
nm
2

⌋ }
that satisfy one of the following

conditions:

(i) k = im, for some i ∈ S1.

(ii) k = jn, for some j ∈ S2.

Then G2H is isomorphic to the circulant C
(
nm, S

)
.

With respect to the lexicographic product, Broere and Hattingh [17] established

the following result.

Theorem 2.28 Let G and H be circulants of order p and q respectively. Then G[H]

is a circulant of order pq.

Similar results were also attained by Hoshino [33].

Theorem 2.29 Let G = C
(
n, S1

)
and H = C

(
m,S2

)
be circulant graphs. Define

S =

bm−1
2 c⋃
t=0

tn+ S1

⋃
bm2 c⋃

t=1

tn− S1

⋃nS2

where tn± S1 = {tn± r : r ∈ S1} and nS2 = {nq : q ∈ S2}.

Then G[H] is isomorphic to the circulant C
(
nm, S

)
.
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As a corollary to Theorem 2.29, Hoshino proved the following result.

Corollary 2.30 For each n and m, the graph Cn[Km] is a circulant.

The preservation of the well-coveredness property under graph products is of in-

terest amongst researchers. This notion has been investigated by Topp and Volk-

mann [23] and by Fradkin [32]. The categorical product, also known as the con-

junction of graphs, is one of the graph products that was examined by Topp and

Volkmann. Though necessary conditions for the categorical product of two graphs

to be (very) well-covered were established in [23], the results won’t be stated here in

view of the fact that circulant graphs are not closed under this product.

Next, despite the fact that various special cases were examined by Topp and

Volkmann [23], a complete characterization of when the Cartesian product of two

graphs is well-covered was not attained. They established the following results.

Theorem 2.31 If G1, G2 are connected bipartite graphs and each of them is different

from K1, then G12G2 is well-covered if and only if G1 = G2 = K2.

Theorem 2.32 If G1, G2 are connected very well-covered graphs, then G12G2 is

very well-covered if and only if G1 = G2 = K2.

Theorem 2.33 For all positive integers n and m, Kn2Km is well-covered.

Theorem 2.34 The Cartesian product Cn2Cm of cycles Cn and Cm is well-covered

if and only if n = 3 or m = 3.

Furthermore, the question of when the Cartesian product of two graphs is well-

covered was recently investigated by Fradkin [32]. Primarily, she explored the neces-

sary conditions under which that property is not preserved and proved the following

results.
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Theorem 2.35 If G is a non-well-covered graph, then G2G is not well-covered.

Theorem 2.36 Let G be any graph of girth ≥ 5. Then G2G is not well-covered.

With respect to the lexicographic product the following result proven by Topp

and Volkmann [23] is significant primarily due to the fact that circulant graphs are

closed under this product.

Theorem 2.37 Let G be a graph and H = {Hv : v ∈ V
(
G
)
} a family of nonempty

graphs indexed by the vertices of G. Then the lexicographic product G[H] is a well-

covered graph if and only if G and H satisfy the following two conditions:

(1) each graph Hv of the family H is well-covered,

(2)
∑

v∈SG
α
(
Hv

)
=
∑

u∈S′G
α
(
Hu

)
for every two maximal independent sets SG and

S
′
G of G.

As a corollary to Theorem 2.37, Topp and Volkmann deduced the following result.

Corollary 2.38 The lexicographic product G[H] of two nonempty graphs G and H is

a well-covered graph if and only if G and H are well-covered graphs; if graphs G and

H are nonempty and one of them is without isolated vertices, then the lexicographic

product G[H] is very well-covered if and only if exactly one of G and H is very well-

covered and the second is totally disconnected, i.e., without edges.

Regarding the notion of well-covered circulants and graph products one can pose

the following question.

Given that two graphs, G and H, are well-covered circulants, is it possible to find

a product under which the resulting new graph is also a well-covered circulant graph?
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From Theorem 2.29 and Corollary 2.38, we can deduce that the lexicographic

product of two well-covered circulants is also a well-covered circulant graph. Fur-

thermore, from Theorem 2.26 and Theorem 2.34 we can deduce that the Cartesian

product of cycles Cn and Cm is a well-covered circulant whenever n and m are rela-

tively prime with n = 3 or m = 3. Consequently, an infinite family can be generated

by applying these products and this result is significant to extending our own families

of well-covered circulants.



Chapter 3

Characterization of Well-Covered Graphs in Classes 1, 2,

and 3

In this chapter, we investigate the class of circulant graphs on n vertices with a

generating set S, where S is one of {1, 2, . . . , d}, {d+1, d+2, . . . , bn
2
c}, or {1, 2, 4, . . . ,

2d}. These classes were originally investigated by Hoshino and Brown [34]. They

established necessary and sufficient conditions for members of these families to be

well-covered using the independence polynomial. We will provide proofs for their two

classes using an alternative approach. This approach allows us to generalize their

results by allowing us to determine exactly which of these graphs is 1-well-covered.

Finally, we characterize the class of circulant graphs on n vertices with a generating

set S = {1, 2, . . . , d, bn
2
c}; we also determine which of these graphs is 1-well-covered.

Ravindra, in 1977, examined well-covered graphs and his results are as follows.

Theorem 3.1 [16] Let G be a connected bipartite graph. Then G is well-covered

if and only if G contains a perfect matching F such that for every edge uv in F ,

N
(
u
)
∪N

(
v
)

is a complete bipartite graph.

Corollary 3.2 Let G be a bipartite graph that contains a perfect matching F such

that for every edge uv in F , N
(
u
)
∪ N

(
v
)

is a complete bipartite graph. Then G is

well-covered.

Proof. By Theorem 3.1, each component of G is well-covered. Hence, by Theo-

rem 2.11, G is well-covered.

26
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A characterization of the well-covered graphs in Class 1 can now be stated.

Theorem 3.3 Let n and d be integers with 1 ≤ d ≤ n
2
. Then G = C

(
n, {1, 2, . . . , d}

)
is well-covered if and only if one of the following conditions holds:

(i) n ≤ 3d+ 2, or

(ii) n = 4d+ 3,

and G is 1-well-covered if and only if n = 2d, n = 2d+ 1 or 2d+ 3 ≤ n ≤ 3d+ 2.

Furthermore, if n = 2d or n = 2d+ 1 then β
(
G
)

= 1; if 2d+ 2 ≤ n ≤ 3d+ 2 then

β
(
G
)

= 2; and if n = 4d+ 3 then β
(
G
)

= 3.

Proof. Let V (G) =
{
vi : i = 0, 1, . . . , n − 1

}
. First, we prove the ‘if’ direction. Let

I be a maximal independent set of G. Without loss of generality, assume that v0 ∈ I

and let H be the graph induced by G \N [v0].

(i) n ≤ 3d+ 2.

If n = 2d or n = 2d + 1 then H = ∅, G is well-covered and β
(
G
)

= 1. Clearly

G is also 1-well-covered.

We now consider the case where 2d + 2 ≤ n ≤ 3d + 2. We claim that H is

a complete graph. Since NG(v0) =
{
v1, v2, . . . , vd

}
∪
{
v−1, v−2, . . . , v−d

}
, vi ∈

V (H) implies that d + 1 ≤ i ≤ 2d + 1. To begin, if |V (H)| = 1 then H is a

complete graph and |I∩V (H)| = 1. Hence, |I| = 2 and G is well-covered. Next,

we consider the case where 2 ≤ |V (H)| ≤ d+ 1. Let vi, vj ∈ V (H) with vi 6= vj.

Without loss of generality, assume that i < j. Then,

d+ 1 ≤ i < j ≤ 2d+ 1

0 ≤ j − i ≤ (2d+ 1)− (d+ 1)

0 ≤ j − i ≤ d
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Since j − i ∈ S, H is a complete graph and |I ∩ V (H)| = 1. Hence, |I| = 2, G

is well-covered and β
(
G
)

= 2 by Corollary 2.6. Furthermore, since |V (H)| > 1,

G is 1-well-covered.

(ii) n = 4d+ 3.

Let H1 = G
[{
vi : i = d + 1, . . . , 2d, 2d + 1

}]
and H2 = G

[{
vi : i = −(2d +

1),−2d, . . . ,−(d+1)
}]

. Note that V (H1) together with V (H2) forms a partition

of V (H).

We claim that Hi is a complete graph for i = 1 and 2. Let vi, vj ∈ V (H1) with

vi 6= vj. Without loss of generality, assume that i < j. Then

d+ 1 ≤ i < j ≤ 2d+ 1

0 ≤ j − i ≤ (2d+ 1)− (d+ 1)

0 ≤ j − i ≤ d

Hence, vi and vj are adjacent, and thus H1 is a complete graph. Similarly, H2

is a complete graph.

Note that V (H) 6= ∅, hence |I ∩ V (H)| 6= ∅. Without loss of generality, let

vk ∈ I ∩ V (H1). Next, consider v−(d+1), a vertex in V (H2). We claim that

|k − (−(d+ 1))| > d. We have,

d+ 1 ≤ k ≤ 2d+1

(d+ 1) + (d+ 1) ≤ k − (−(d+ 1)) ≤ (2d+ 1) + (d+ 1)

2d+ 2 ≤ k − (−(d+ 1)) ≤ 3d+ 2

Since n − (2d + 2) = 2d + 1 =
⌊
n
2

⌋
and n − (3d + 2) = d + 1, we can deduce
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that v−(d+1) 6∼ vk. Hence, |I ∩ V (H2)| 6= ∅ and |I| ≥ 3. Since Hi is complete, it

follows that |I∩V (Hi)| = 1 for i = 1 and 2. Therefore, |I| = 3, G is well-covered

and β
(
G
)

= 3.

We finally note that H\{v−(d+1)} ⊆ N [v2d+2]. Hence, G is not 1-well-covered.

We now proceed to prove the ‘only if’ direction.

Case 3.3.1 3d+ 2 < n < 4d+ 3.

Let I1 =
{
v0, vbn2 c

}
. Consider any vertex vi ∈ V (H) such that d < i <

⌊
n
2

⌋
. We

claim that vbn2 c is adjacent to vi. We have

−
⌊n

2

⌋
< −i < −d

0 <
⌊n

2

⌋
− i <

⌊n
2

⌋
− d

Also, given our assumption that 3d+ 2 < n < 4d+ 3, we have the following:

⌊
3d+ 2

2

⌋
≤
⌊n

2

⌋
≤
⌊

4d+ 3

2

⌋
⌊

3d+ 2

2

⌋
− d ≤

⌊n
2

⌋
− d ≤

⌊
4d+ 3

2

⌋
− d⌊

d

2

⌋
+ 1 ≤

⌊n
2

⌋
− d ≤ d+ 1

Hence,
⌊
n
2

⌋
−i ∈ S. Similarly, if we consider any vertex vi ∈ V (H) such that

⌊
n
2

⌋
+1 <

i < n− (d+ 1), we can show that vbn2 c ∼ vi. If n is even, then
⌊
n
2

⌋
≡ −

⌊
n
2

⌋
; and if n

is odd, then
⌊
n
2

⌋
+ 1 ≡ −

⌊
n
2

⌋
. We also note that vbn2 c 6∼ v0 since

∣∣ ⌊n
2

⌋
− 0
∣∣ > d+ 1.

Therefore, I1 is a maximal independent set in G.

Next, let I2 =
{
v0, vd+1, v−(d+1)

}
. Since |(d+1)−0| = d+1 6∈ 〈S〉 and |0− (−(d+

1))| = d + 1 6∈ 〈S〉, we conclude that v0 is adjacent to neither vd+1 nor v−(d+1). We

now show that vd+1 6∼ v−(d+1). Note that |(d+ 1)− (−(d+ 1))| = 2d+ 2. We have
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3d+ 2 < n < 4d+ 3

(3d+ 2)− (2d+ 2) < n− (2d+ 2) < (4d+ 3)− (2d+ 2)

d < n− (2d+ 2) < 2d+ 1

Hence, I2 is an independent set in G with cardinality greater than that of I1, and

thus G is not well-covered.

Case 3.3.2 n > 4d+ 3.

Let I
′

=
{
v2d+1, v−(d+2)

}
. We verify that v2d+1 6∼ v−(d+2). Note that |(2d +

1) − (−(d + 2))| = 3d + 3. Given our assumption that n > 4d + 3, it follows that

n− (3d+ 3) > d. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

vi : i = −1, 0, . . . , d
}

. Let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in

H1. Next, let K2 =
{
v−1, vd

}
. Notice that vd 6∼ v−1 since |d − (−1)| = d + 1 6∈ 〈S〉.

Therefore, K2 is an independent set in H1 with cardinality greater than that of K1.

So H1 is not well-covered, and hence by Proposition 2.5, G is not well-covered.

A characterization of the well-covered graphs in Class 2 can now be stated.

Theorem 3.4 Let n and d be integers with 1 ≤ d ≤ n−2
2

. Then G = C
(
n, {d+ 1, d+

2, . . . , bn
2
c}
)

is well-covered if and only if n > 3d or n = 2d+2, and G is 1-well-covered

if and only if n > 3 where d = 1 or n = 2d+ 2. Furthermore, β
(
G
)

= d+ 1.

Proof. Let V (G) =
{
vi : i = 0, 1, . . . , n − 1

}
. First, we prove the ‘if’ direction. Let

I be a maximal independent set of G.
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Case 3.4.1 n = 2d+ 2.

It follows that G = C
(
2d+ 2, {d+ 1}

)
. Let vi, vj ∈ V (G) with vi 6= vj. Without

loss of generality, assume that i < j. Since vi and vj are connected in G if and only if

|j−i| = d+1, G is therefore a collection of edge-disjoint K2s. Hence, G is well-covered

and β
(
G
)

= d+ 1. Clearly G is also 1-well-covered.

Case 3.4.2 n > 3d.

Without loss of generality, assume that v0 is in I and let H be the graph induced by

G \N [v0]. Let H1 = G
[{
vi : i = 1, 2, . . . , d

}]
and H2 = G

[{
vi : i = −d, . . . ,−2,−1

}]
.

Note that V (H1) together with V (H2) forms a partition of V (H).

Let vi, vj ∈ V (H1) with vi 6= vj. Without loss of generality, assume that i < j.

Then 1 ≤ i < j ≤ d and 0 ≤ j− i ≤ d− 1. Since j− i 6∈ 〈S〉, we conclude that V (H1)

is an independent set. Similarly, V (H2) is an independent set. By symmetry, we can

also deduce that |V (H1)| = |V (H2)|, and thus H is a bipartite graph.

Claim 3.4.1 We claim that H contains a perfect matching F such that for every edge

e = uv in F , N
(
u
)
∪ N

(
v
)

is a complete bipartite graph. Let F = {v1+jv−d+j|0 ≤

j ≤ d− 1}. Observe that v1+j ∼ v−d+j since |(1 + j)− (−d+ j)| = d+ 1 ∈ S.

For each edge j, 0 ≤ j ≤ d− 1, we note that

NH(v1+j) =
{
v−d+k|0 ≤ k < 1 + j

}
; and

NH(v−d+j) =
{
vs|j < s ≤ d

}
.

To complete the proof of the claim we show that if 0 ≤ k < 1 + j and j < s ≤ d, then

|s− (−d+ k)| ∈ 〈S〉.

Observe that we have j + d < s+ d ≤ 2d and j + d− k < s+ d− k ≤ 2d− k. But

k ≤ j, thus j + d − k ≥ d and d + 1 ≤ s + d − k ≤ 2d − k, completing the proof of

Claim 3.4.1.
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Therefore, by Corollary 3.2, H is well-covered and β
(
H
)

= d, and thence by

Corollary 2.6, G is well-covered and β
(
G
)

= d+ 1.

Observe that when d = 1, H is isomorphic to K2 and hence G is 1-well-covered.

We then may assume that d > 1.

Note that H\{v−1} is a bipartite graph containing an odd number of vertices

(greater than one) and thence by Theorem 3.1, G is not 1-well-covered. This estab-

lishes the ‘if’ direction.

We now proceed to prove the ‘only if’ direction.

For d = 1 and 2, 2d+2 ≥ 3d, hence we may assume that d ≥ 3. Let I
′
= {vd, v−d}.

We verify that vd 6∼ v−d. Note that |d − (−d)| = 2d. Given our assumption that

2d + 2 < n ≤ 3d, it follows that 2 < n − 2d ≤ d. Hence, I
′

is an independent set in

G.

Now let H1 be the component of G \N [I
′
] containing v0. Observe that

V (H1) = v0
⋃{

vi : d+ 1 ≤ i ≤
⌊n

2

⌋}⋃{
vi : −

⌊n
2

⌋
≤ i ≤ −(d+ 1)

}
.

Let K1 = {v0}. Clearly K1 is a maximal independent set in H1.

Next, let K2 =
{
v−(d+1), vd+1

}
. We verify that vd+1 6∼ v−(d+1). Note that |(d +

1)− (−(d+ 1))| = 2d+ 2. We have

2d+ 2 < n ≤ 3d

(2d+ 2)− (2d+ 2) < n− (2d+ 2) ≤ (3d)− (2d+ 2)

0 < n− (2d+ 2) ≤ d− 2

Hence, K2 is an independent set in G with cardinality greater than that of K1, and

thus G is not well-covered.
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Note that Theorems 3.3 and the following theorem provide us with a characteri-

zation of the well-covered, circulant, Harary graphs (see Definition 2.5.1).

Theorem 3.5 Let n and d be integers with 1 ≤ d ≤ n
2
. Then G = C

(
n, {1, 2, . . . , d}∪

{bn
2
c}
)

is well-covered if and only if one of the following conditions holds:

(i) n ≤ 3d+ 2, or

(ii) d ≥ 2 and 4d+ 1 ≤ n ≤ 4d+ 5, or

(iii) G is one of the following: C
(
6, {1, 3}

)
, C
(
7, {1, 3}

)
, C
(
8, {1, 4}

)
or C

(
11, {1, 5}

)
.

Furthermore, if 2d ≤ n ≤ 2d + 3 then β
(
G
)

= 1; if 2d + 4 ≤ n ≤ 3d + 2 or

G = C
(
7, {1, 3}

)
then β

(
G
)

= 2; and if 4d + 1 ≤ n ≤ 4d + 5 and d ≥ 2, or if G is

one of C
(
6, {1, 3}

)
, C
(
8, {1, 4}

)
or C

(
11, {1, 5}

)
then β

(
G
)

= 3.

Proof. Let V (G) =
{
vi : i = 0, 1, . . . , n− 1

}
. First, we prove the ‘if’ direction. Let I

be a maximal independent set ofG. Without loss of generality, assume that v0 ∈ I and

letH be the graph induced byG\N [v0]. LetH1 = G
[{
vi : i = d+1, d+2, . . . ,

⌊
n
2

⌋
−1
}]

and H2 = G
[{
vi : i = −(

⌊
n
2

⌋
−1), . . . ,−(d+2),−(d+1)

}]
. Note that V (H1) together

with V (H2) forms a partition of V (H).

(i) n ≤ 3d+ 2.

If 2d ≤ n ≤ 2d + 3 then H = ∅, G is well-covered and β
(
G
)

= 1. Clearly G is

also 1-well-covered.

We now consider the case where 2d+4 ≤ n ≤ 3d+2. We claim that H is a com-

plete graph. Since NG(v0) =
{
v1, v2, . . . , vd, vbn2 c} ∪

{
v−1, v−2, . . . , v−d, v−bn2 c

}
,

vi ∈ V (H) implies that i ≥ d + 1. Observe that 2 ≤ |V (H)| ≤ d + 1. Let vi,
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vj ∈ V (H) with vi 6= vj. Without loss of generality, assume that i < j. Since

n ≤ 3d+ 2, we can deduce that j ≤ (3d+ 2)− (d+ 1) = 2d+ 1. Then,

d+ 1 ≤ i < j ≤ 2d+ 1

0 ≤ j − i ≤ (2d+ 1)− (d+ 1)

0 ≤ j − i ≤ d

Since j − i ∈ S, H is a complete graph and |I ∩ V (H)| = 1. Hence, |I| = 2, G

is well-covered and β
(
G
)

= 2 by Corollary 2.6. Furthermore, since |V (H)| > 1,

G is 1-well-covered.

(ii) d ≥ 2 and 4d+ 1 ≤ n ≤ 4d+ 5.

We claim that Hi is a complete graph for i = 1 and 2. Let vi, vj ∈ V (H1) with

vi 6= vj. Without loss of generality, assume that i < j. Then

d+ 1 ≤i < j ≤
⌊n

2

⌋
− 1

0 ≤ j−i ≤
⌊n

2

⌋
− d− 2

Since 4d + 1 ≤ n ≤ 4d + 5, it follows that d − 1 ≤
⌊
n
2

⌋
− d − 2 ≤ d. Hence,

vi and vj are adjacent, therefore H1 is a complete graph. Similarly, H2 is a

complete graph. Note that V (H) 6= ∅, hence |I ∩ V (H)| 6= ∅. Now we consider

the following three cases.

Case 3.5.1 n = 4d+ 1 or n = 4d+ 2.

Without loss of generality, let vk ∈ I ∩ V (H1). Next, consider v−(d+1), a vertex
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in V (H2). We claim that v−(d+1) 6∼ vk. We have

d+ 1 ≤ k ≤
⌊n

2

⌋
− 1

(d+ 1) + (d+ 1) ≤ k − (−(d+ 1)) ≤
⌊n

2

⌋
− 1 + (d+ 1)

2d+ 2 ≤ k − (−(d+ 1)) ≤
⌊n

2

⌋
+ d

If n = 4d + 1 then n − (
⌊
n
2

⌋
+ d) = d + 1, and thence v−(d+1) 6∼ vk. And if

n = 4d+ 2 then n− (
⌊
n
2

⌋
+ d) = d+ 1, and thence v−(d+1) 6∼ vk.

Therefore, |I ∩ V (H2)| 6= ∅ and |I| ≥ 3. Since Hi is complete, it follows that

|I ∩ V (Hi)| = 1 for i = 1 and 2. Therefore, |I| = 3, G is well-covered and

β
(
G
)

= 3.

We finally note that H\{v−(d+1)} ⊆ N [v1−bn2 c]. Hence, G is not 1-well-covered.

Case 3.5.2 n = 4d+ 3 or n = 4d+ 4.

Without loss of generality, let vk ∈ I ∩ V (H1). Next, consider v−(d+2) a vertex

in V (H2). We claim that v−(d+2) 6∼ vk. We have

d+ 1 ≤ k ≤
⌊n

2

⌋
−1

(d+ 1) + (d+ 2) ≤ k − (−(d+ 2)) ≤
⌊n

2

⌋
− 1 + (d+ 2)

2d+ 3 ≤ k − (−(d+ 2)) ≤
⌊n

2

⌋
+ d+ 1

If n = 4d + 3 then n − (
⌊
n
2

⌋
+ d + 1) = d + 1, and thence v−(d+2) 6∼ vk. And if

n = 4d+ 4 then n− (
⌊
n
2

⌋
+ d+ 1) = d+ 1, and thence v−(d+2) 6∼ vk.

Therefore, |I ∩ V (H2)| 6= ∅ and |I| ≥ 3. Since Hi is complete, it follows that

|I ∩ V (Hi)| = 1 for i = 1 and 2. Therefore, |I| = 3, G is well-covered and

β
(
G
)

= 3.
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We finally note that H\{v−(d+2)} ⊆ N [v1−bn2 c]. Hence, G is not 1-well-covered.

Case 3.5.3 n = 4d+ 5.

Without loss of generality, let vk ∈ I ∩ V (H1). Next, consider v−(d+3) a vertex

in V (H2). We claim that v−(d+3) 6∼ vk. We have,

d+ 1 ≤ k ≤
⌊n

2

⌋
−1

(d+ 1) + (d+ 3) ≤ k − (−(d+ 3)) ≤
⌊n

2

⌋
− 1 + (d+ 3)

2d+ 4 ≤ k − (−(d+ 3)) ≤
⌊n

2

⌋
+ d+ 2

Since n = 4d + 5, we can deduce that
⌊
n
2

⌋
+ d + 2 = 3d + 4. Observe that

n − (3d + 4) = d + 1, and thence v−(d+3) 6∼ vk. Hence, |I ∩ V (H2)| 6= ∅ and

|I| ≥ 3. Since Hi is complete, it follows that |I ∩ V (Hi)| = 1 for i = 1 and 2.

Therefore, |I| = 3, G is well-covered and β
(
G
)

= 3.

We finally note that H\{v−(d+3)} ⊆ N [v1−bn2 c]. Hence, G is not 1-well-covered.

(iii) G is one of the following C
(
6, {1, 3}

)
, C
(
7, {1, 3}

)
, C
(
8, {1, 4}

)
or C

(
11, {1, 5}

)
.

Note that C
(
7, {1, 3}

)
is well-covered and β

(
G
)

= 2; and C
(
6, {1, 3}

)
, C
(
8, {1,

4}
)

and C
(
11, {1, 5}

)
are well-covered and β

(
G
)

= 3.

To establish the ‘only if’ direction, first observe that C
(
10, {1, 5}

)
is not well-

covered. Next, we consider the remaining cases.

Case 3.5.4 d ≥ 3 and 3d+ 2 < n < 4d+ 1.

Let I1 =
{
v0, vbn2 c−1

}
. Consider any vertex vi ∈ V (H) such that d + 1 ≤ i <
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n
2

⌋
− 1. We claim that vbn2 c−1 is adjacent to vi. We have

1−
⌊n

2

⌋
< −i ≤ −(d+ 1)

0 <
⌊n

2

⌋
− 1− i ≤

⌊n
2

⌋
− d− 2

Also, given our assumption that 3d+ 2 < n < 4d+ 1, we have the following:

⌊
3d+ 2

2

⌋
≤
⌊n

2

⌋
≤
⌊

4d+ 1

2

⌋
⌊

3d+ 2

2

⌋
− d− 2 ≤

⌊n
2

⌋
− d− 2 ≤

⌊
4d+ 1

2

⌋
− d− 2⌊

d

2

⌋
− 1 ≤

⌊n
2

⌋
− d− 2 ≤ d− 1

Hence, vbn2 c−1 ∼ vi. Similarly, if we consider any vertex vi ∈ V (H) such that
⌊
n
2

⌋
<

i ≤
⌊
n
2

⌋
− 1 + d, we can show that vbn2 c−1 ∼ vi. We also note that vbn2 c−1 6∼ v0 since∣∣(⌊n

2

⌋
− 1)− 0

∣∣ > d. Therefore, I1 is a maximal independent set in G.

Next, let I2 =
{
v−d, v1, vbn2 c−1

}
. Observe that v1 is adjacent to neither v−d nor

vbn2 c−1 since |1−(−d)| = d+1 6∈ 〈S〉 and |(
⌊
n
2

⌋
−1)−1| =

⌊
n
2

⌋
−2 6∈ 〈S〉. Furthermore,

v−d is not adjacent to vbn2 c−1 since |(
⌊
n
2

⌋
− 1) − (−d)| =

⌊
n
2

⌋
+ d − 1 6∈ 〈S〉. Hence,

I2 is an independent set in G with cardinality greater than that of I1, and thus G is

not well-covered.

Case 3.5.5 d ≥ 2 and 4d+ 6 ≤ n ≤ 5d+ 4.

Let I
′

=
{
v−(2d+1), vd+2

}
. First, we show that v−(2d+1) 6∼ vd+2. Note that |(d +

2)− (−(2d+ 1))| = 3d+ 3. Given our assumption that 4d+ 6 ≤ n ≤ 5d+ 4, it follows

that d+ 3 ≤ n− (3d+ 3) ≤ 2d+ 1. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−d, v−(d−1), . . . , v0, v1
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent
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set in H1. Next, let K2 =
{
v−d, v1

}
. Observe that v−d 6∼ v1 since |1− (−d)| = d+1 6∈

〈S〉. Therefore, K2 is an independent set in H1 with cardinality greater than that of

K1. So H1 is not well-covered, and hence by Proposition 2.5, G is not well-covered.

Case 3.5.6 d ≥ 2 and 5d+ 5 ≤ n ≤ 6d+ 3.

Let I
′

=
{
v−(2d+1), v2d+1

}
. First, we show that v−(2d+1) 6∼ v2d+1. Note that

|(2d + 1)− (−(2d + 1))| = 4d + 2. Given our assumption that 5d + 5 ≤ n ≤ 6d + 3,

it follows that d+ 3 ≤ n− (4d+ 2) ≤ 2d+ 1. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−d, v−(d−1), . . . , v0, v1, . . . , vd−1, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal

independent set in H1. Next, let K2 =
{
v−d, vd

}
. Observe that v−d 6∼ vd since

|d − (−d)| = 2d 6∈ 〈S〉. Therefore, K2 is an independent set in H1 with cardinality

greater than that of K1. So H1 is not well-covered, and hence by Proposition 2.5, G

is not well-covered.

Case 3.5.7 d ≥ 2 and 6d+ 4 ≤ n ≤ 6d+ 7.

We first note that C
(
10, {1, 5}

)
, C
(
12, {1, 6}

)
, and C

(
13, {1, 5}

)
are not well-

covered. Furthermore, one can verify that the eight graphs that arise when d = 2 and

3 are not well-covered.

We now consider the case where d ≥ 4. Let I
′

=
{
v−(2d+1), v2d, v3d+1

}
. Observe

that v3d+1 6∼ v2d since |(3d + 1) − 2d| = d + 1 6∈ 〈S〉. Next, we show that v−(2d+1)

is adjacent to neither v2d nor v3d+1. Note that |(2d) − (−(2d + 1))| = 4d + 1 and

|(3d+ 1)− (−(2d+ 1))| = 5d+ 2. Given our assumption that 6d+ 4 ≤ n ≤ 6d+ 7, it

follows that 2d+ 3 ≤ n− (4d+ 1) ≤ 2d+ 6 and d+ 2 ≤ n− (5d+ 2) ≤ d+ 5. Hence,

I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−d, v−(d−1), . . . , v0, v1, . . . , vd−1
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal
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independent set in H1. Next, let K2 =
{
v−d, vd−1

}
. Observe that v−d 6∼ vd−1 since

|(d − 1) − (−d)| = 2d − 1 6∈ 〈S〉. Therefore, K2 is an independent set in H1 with

cardinality greater than that of K1. So H1 is not well-covered, and hence by Propo-

sition 2.5, G is not well-covered.

Case 3.5.8 n is even and n ≥ 6d+ 8.

Let J =
{
v−(d+1), vd+1, vbn2 c−d−2, vbn2 c, vbn2 c+d+2

}
. Observe that vbn2 c is adjacent

to neither v−(d+1), vd+1, vbn2 c−d−2 nor vbn2 c+d+2 since |
⌊
n
2

⌋
−(−(d+1))| =

⌊
n
2

⌋
+d+1 6∈

〈S〉, |
⌊
n
2

⌋
− (d + 1)| =

⌊
n
2

⌋
− d − 1 6∈ 〈S〉, |

⌊
n
2

⌋
− (
⌊
n
2

⌋
− d − 2)| = d + 2 6∈ 〈S〉 and

|(
⌊
n
2

⌋
+ d + 2) −

⌊
n
2

⌋
| = d + 2 6∈ 〈S〉. Next, we note that vbn2 c−d−2 is adjacent to

neither v−(d+1), vd+1 nor vbn2 c+d+2 since |(
⌊
n
2

⌋
− d− 2)− (−(d+ 1))| =

⌊
n
2

⌋
− 1 6∈ 〈S〉,

|(
⌊
n
2

⌋
−d−2)−(d+1)| =

⌊
n
2

⌋
−2d−3 6∈ 〈S〉 and |(

⌊
n
2

⌋
+d+2)−(

⌊
n
2

⌋
−d−2)| = 2d+4 6∈

〈S〉. We also note that vbn2 c+d+2 is adjacent to neither v−(d+1) nor vd+1 since |(
⌊
n
2

⌋
+

d+2)− (−(d+1))| =
⌊
n
2

⌋
+2d+3 6∈ 〈S〉 and |(

⌊
n
2

⌋
+d+2)− (d+1)| =

⌊
n
2

⌋
+1 6∈ 〈S〉.

Furthermore, v−(d+1) is not adjacent to vd+1 since |(d+1)−(−(d+1))| = 2d+2 6∈ 〈S〉.

Hence, J is an independent set in G. We extend J to a maximal independent set I1

in G.

For d = 1, we let I2 = {I1 \ vbn2 c}
⋃{

v0, vbn2 c−1, vbn2 c+1

}
. Observe that v0 is

adjacent to neither v−(d+1), vd+1, vbn2 c−d−2, vbn2 c−1, vbn2 c+1 nor vbn2 c+d+2. Next, we

note that vbn2 c−d−2 is adjacent to neither vbn2 c−1 nor vbn2 c+1 since |(
⌊
n
2

⌋
−1)− (

⌊
n
2

⌋
−

d−2)| = d+ 1 6∈ 〈S〉 and |(
⌊
n
2

⌋
+ 1)− (

⌊
n
2

⌋
−d−2)| = d+ 3 6∈ 〈S〉. We also note that

vbn2 c+d+2 is adjacent to neither vbn2 c−1 nor vbn2 c+1 since |(
⌊
n
2

⌋
+ d+ 2)− (

⌊
n
2

⌋
− 1)| =

d+3 6∈ 〈S〉 and |(
⌊
n
2

⌋
+d+2)−(

⌊
n
2

⌋
+1)| = d+1 6∈ 〈S〉. Furthermore, vbn2 c−1 is adjacent

to neither vd+1, v−(d+1) nor vbn2 c+1 since |(
⌊
n
2

⌋
− 1) − (d + 1)| =

⌊
n
2

⌋
− d − 2 6∈ 〈S〉,

|(
⌊
n
2

⌋
− 1) − (−(d + 1))| =

⌊
n
2

⌋
+ d 6∈ 〈S〉 and |(

⌊
n
2

⌋
+ 1) − (

⌊
n
2

⌋
− 1)| = 2 6∈ S; and

vbn2 c+1 is adjacent to neither vd+1 nor v−(d+1) since |(
⌊
n
2

⌋
+1)−(d+1)| =

⌊
n
2

⌋
−d 6∈ 〈S〉

and |(
⌊
n
2

⌋
+ 1)− (−(d+ 1))| =

⌊
n
2

⌋
+ d+ 2 6∈ 〈S〉. Hence, I2 is an independent set in
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G with cardinality greater than that of I1, and thus G is not well-covered.

On the other hand for d ≥ 2, we let I3 = {I1 \ vbn2 c}
⋃{

v0, vbn2 c−1
}

. Hence, I3 is

an independent set in G with cardinality greater than that of I1, and thus G is not

well-covered.

Case 3.5.9 n is odd and n ≥ 6d+ 9.

Case 3.5.9.1 d = 1.

Let J =
{
v−(d+1), vd+1, vbn2 c−d−3, vbn2 c−1, vbn2 c+1, vbn2 c+d+3

}
. Note that vbn2 c−d−3

is adjacent to neither v−(d+1), vd+1, vbn2 c−1, vbn2 c+1 nor vbn2 c+d+3 since |(
⌊
n
2

⌋
− d −

3) − (−(d + 1))| =
⌊
n
2

⌋
− 2 6∈ 〈S〉, |(

⌊
n
2

⌋
− d − 3) − (d + 1)| =

⌊
n
2

⌋
− 2d − 4 6∈ 〈S〉,

|(
⌊
n
2

⌋
−1)− (

⌊
n
2

⌋
−d−3)| = d+2 6∈ 〈S〉, |(

⌊
n
2

⌋
+1)− (

⌊
n
2

⌋
−d−3)| = d+4 6∈ 〈S〉 and

|(
⌊
n
2

⌋
+d+3)−(

⌊
n
2

⌋
−d−3)| = 2d+6 6∈ 〈S〉. We also note that vbn2 c+d+3 is adjacent to

neither v−(d+1), vd+1, vbn2 c−1 nor vbn2 c+1 since |(
⌊
n
2

⌋
+d+3)−(−(d+1))| =

⌊
n
2

⌋
+2d+

4 6∈ 〈S〉, |(
⌊
n
2

⌋
+d+3)−(d+1)| =

⌊
n
2

⌋
+2 6∈ 〈S〉, |(

⌊
n
2

⌋
+d+3)−(

⌊
n
2

⌋
−1)| = d+4 6∈ 〈S〉

and |(
⌊
n
2

⌋
+ d+ 3)− (

⌊
n
2

⌋
+ 1)| = d+ 2 6∈ 〈S〉. Hence, J is an independent set in G.

We extend J to a maximal independent set I1 in G.

Let I2 = {I1 \ vbn2 c+1}
⋃{

v0, vbn2 c+2

}
. Observe that v0 is adjacent to neither

v−(d+1), vd+1, vbn2 c−d−3, vbn2 c−1, vbn2 c+2 nor vbn2 c+d+3. Next, we note that vbn2 c+2 is

adjacent to neither v−(d+1), vd+1, vbn2 c−d−3, vbn2 c−1 nor vbn2 c+d+3 since |(
⌊
n
2

⌋
+ 2) −

(−(d + 1))| =
⌊
n
2

⌋
+ d + 3 6∈ 〈S〉, |(

⌊
n
2

⌋
+ 2) − (d + 1)| =

⌊
n
2

⌋
− d + 1 6∈ 〈S〉,

|(
⌊
n
2

⌋
+ 2) − (

⌊
n
2

⌋
− d − 3)| = d + 5 6∈ 〈S〉, |(

⌊
n
2

⌋
+ 2) − (

⌊
n
2

⌋
− 1)| = 3 6∈ S and

|(
⌊
n
2

⌋
+ d+ 3)− (

⌊
n
2

⌋
+ 2)| = d+ 1 6∈ 〈S〉. Hence, I2 is an independent set in G with

cardinality greater than that of I1, and thus G is not well-covered.

Case 3.5.9.2 d = 2.

Let J =
{
v−(d+1), vd+1, vbn2 c−d−3, vbn2 c, vbn2 c+d+3

}
. Observe that vbn2 c is adjacent

to neither v−(d+1), vd+1, vbn2 c−d−3 nor vbn2 c+d+3 since |
⌊
n
2

⌋
−(−(d+1))| =

⌊
n
2

⌋
+d+1 6∈
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〈S〉, |
⌊
n
2

⌋
− (d + 1)| =

⌊
n
2

⌋
− d − 1 6∈ 〈S〉, |

⌊
n
2

⌋
− (
⌊
n
2

⌋
− d − 3)| = d + 3 6∈ 〈S〉 and

|(
⌊
n
2

⌋
+ d + 3) −

⌊
n
2

⌋
| = d + 3 6∈ 〈S〉. Next, we note that vbn2 c−d−3 is adjacent to

neither v−(d+1), vd+1 nor vbn2 c+d+3 since |(
⌊
n
2

⌋
− d− 3)− (−(d+ 1))| =

⌊
n
2

⌋
− 2 6∈ 〈S〉,

|(
⌊
n
2

⌋
− d− 3)− (d+ 1)| =

⌊
n
2

⌋
− 2d− 4 6∈ 〈S〉 and |(

⌊
n
2

⌋
+ d+ 3)− (

⌊
n
2

⌋
− d− 3)| =

2d+ 6 6∈ 〈S〉. We also note that vbn2 c+d+3 is adjacent to neither v−(d+1) nor vd+1 since

|(
⌊
n
2

⌋
+ d + 3) − (−(d + 1))| =

⌊
n
2

⌋
+ 2d + 4 6∈ 〈S〉 and |(

⌊
n
2

⌋
+ d + 3) − (d + 1)| =⌊

n
2

⌋
+ 2 6∈ 〈S〉. Hence, J is an independent set in G. We extend J to a maximal

independent set I1 in G.

Let I2 = {I1 \ vbn2 c}
⋃{

v0, vbn2 c−1, vbn2 c+2

}
. Hence, I2 is an independent set in G

with cardinality greater than that of I1, and thus G is not well-covered.

Case 3.5.9.3 d > 2.

Let J =
{
v−(d+1), vd+1, vbn2 c−d−3, vbn2 c, vbn2 c+d+3

}
. Hence, J is an independent set

in G. We extend J to a maximal independent set I1 in G.

Let I2 = {I1 \ vbn2 c}
⋃{

v0, vbn2 c−1
}

. Hence, I2 is an independent set in G with

cardinality greater than that of I1, and thus G is not well-covered.

Hartnell and Plummer [6] and King [42] examined 4-regular, 4-connected, claw-

free graphs. Observe that the five Harary graphs stated in Theorem 2.15 are circulant

graphs. The following corollary is a summary of Hartnell, Plummer and King’s find-

ings.

Corollary 3.6 [6, 42] The graphs C
(
5, {1, 2}

)
, C
(
6, {1, 2}

)
, C
(
7, {1, 2}

)
, C
(
8, {1,

2}
)
, and C

(
11, {1, 2}

)
(shown in Figure 3.1) are the only 4-regular, 4-connected,

claw-free well-covered circulant graphs .
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C(5, {1, 2}) C(6, {1, 2}) C(7, {1, 2})

C(8, {1, 2}) C(11, {1, 2})

Figure 3.1: The well-covered, 4-regular Harary graphs [42].



Chapter 4

Characterization of Well-Covered Graphs in Classes 4, 5,

and 6

In this chapter, we investigate the class of circulant graphs on n vertices with a

generating set S, where S is one of {2, 4, . . . , 2d}, {1, 3, . . . , 2d+1}, or {1, 2, 4, . . . , 2d}.

Necessary and sufficient conditions for members of these families to be well-covered

are determined using various approaches.

Lemma 4.1 Let G = C
(
n, S

)
be a circulant graph where n = rk and where the

generating set S = rP . Then G is well-covered (very well-covered) if and only if

H = C
(
k, P

)
is well-covered (very well-covered). Furthermore, β

(
G
)

= rβ
(
H
)
.

Proof. Let V (G) =
{
vi : i = 0, 1, . . . , rk − 1

}
, V (H) =

{
wi : i = 1, . . . , k

}
and the

generating set of G be S = rP where P =
{
a1, a2, . . . , aq

}
and q ≤

⌊
n
2

⌋
. We claim

that G can be partitioned into r components Gt for 0 ≤ t ≤ r−1, where Gt is induced

in G by

V (Gt) =
[{
vi ∈ G : i ≡ t (mod r)

}]
.

Suppose that i 6= j. Let va ∈ Gi and vb ∈ Gj. Since a 6≡ b (mod r), va 6∼ vb and

hence for 0 ≤ t < s ≤ r − 1, there are no edges between Gt and Gs.

Next, we show that each Gi is isomorphic to H. Define ϕ : H → Gt by setting

ϕ(wi) = vri+t for all wi ∈ H. If ϕ(wa) = ϕ(wb), then va′ = vb′ , where a
′
= ra+ t and

b
′

= rb + t. So ra + t ≡ rb + t (mod n) and hence a ≡ b (mod n). Therefore, ϕ is

one-to-one.

43
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Now, let vw ∈ Gt and choose s = w−t
r

. Then ws is in H. Note that ϕ(ws) =

vrs+t = v
r
(

w−r
t

)
+t

= vw. So, ϕ is onto Gt.

We also need to verify that each edge wawb ∈ E
(
H
)

corresponds to an edge

ϕ(wa)ϕ(wb) ∈ E
(
Gt

)
. Note that ϕ(wa) = va′ and ϕ(wb) = vb′ , where a

′
= ra + t

and b
′

= rb + t so a
′ − b′ = r(a − b) ∈ r〈p〉 = 〈S〉. Therefore, ϕ is an isomorphism.

Hence, by Theorem 2.11, G is well-covered (very well-covered) if and only if C
(
k, P

)
is well-covered (very well-covered).

A characterization of the well-covered graphs in Class 4 can now be stated.

Theorem 4.2 Let n and d be integers with 1 ≤ d ≤ n
4
. Then G = C

(
n, {2, 4, . . . , 2d}

)
is well-covered if and only if one of the following conditions holds:

(i) n is even and 4d ≤ n ≤ 6d+ 4, or

(ii) n = 8d+ 6, or

(iii) n = 4d+ 3, or

(iv) G = C
(
5, {2}

)
.

Furthermore, if (i) holds β
(
G
)

= 4; if (ii) holds β
(
G
)

= 6; if (iii) holds β
(
G
)

= 3;

and if (iv) holds β
(
G
)

= 2.

Proof. If n is even then by Lemma 4.1, G is well-covered if and only if C
(
n
2
, {1, 2, . . . ,

d}
)

is well-covered. Hence, in this case the theorem follows from Theorem 3.3.

We now proceed to prove the ‘if’ direction when n is odd.

First, we note that C
(
5, {2}

)
is well-covered and β

(
G
)

= 2.

Next, suppose that (iii) is true. Let V (G) =
{
vi : i = 0, 1, . . . , n− 1

}
and let I be

a maximal independent set of G. Without loss of generality, assume that v0 ∈ I and

let H be the graph induced by G \N [v0]. Let H1 = G
[{
vi : i = 1, 3, . . . , 2d+ 1

}]
and
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H2 = G
[{
vi : i = −(2d + 1), . . . ,−3,−1

}]
. Note that V (H1) together with V (H2)

forms a partition of V (H).

We claim that Hi is a complete graph for i = 1 and 2. Let vi, vj ∈ V (H1) with

vi 6= vj. Without loss of generality, assume that i < j. Then

1 ≤ i < j ≤ 2d+ 1

0 ≤ j − i ≤ (2d+ 1)− 1

0 ≤ j−i ≤ 2d

Observe that j − i ≤ 2d <
⌊
n
2

⌋
= 2d + 1. Since i and j are both odd, it follows that

their difference is even. Hence, j − i ∈ S and H1 is a complete graph. Similarly, H2

is a complete graph. Therefore, β
(
H
)
≤ 2.

Note that V (H) 6= ∅, hence |I ∩ V (H)| 6= ∅. Without loss of generality, let vk ∈

I ∩ V (H1). Next, consider v−(2d+1), a vertex in V (H2). We claim that v−(2d+1) 6∼ vk

for any vk ∈ V (H1). Since −(2d+ 1) ≡ (2d+ 2) (mod 4d+ 3), it suffices to show that

v2d+2 6∼ vk. We have

−(2d+ 1) ≤ −k ≤ −1

(2d+ 2)− (2d+ 1) ≤ (2d+ 2)− k ≤ (2d+ 2)− 1

1 ≤ (2d+ 2)− k ≤ 2d+ 1

Since k is odd and 2d + 2 is even, we can deduce that their difference is odd and

thence v2d+2 6∼ vk. Hence, |I ∩ V (H2)| 6= ∅ and |I| ≥ 3. Since Hi is complete, it

follows that |I ∩ V (Hi)| = 1 for i = 1 and 2. Therefore, |I| = 3 and G is well-covered

and β
(
G
)

= 3. This establishes the ‘if’ direction for n is odd.
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To establish the ‘only if’ direction when n is odd, we consider the following two

cases.

Case 4.2.1 d > 1 and n = 4d+ 1.

Let I1 =
{
v0, v1

}
. Note that v1 6∼ v0 since |1− 0| = 1 6∈ S and |N [v0] ∪N [v1]| =

4d+ 1. Hence, I1 is a maximal independent set in G.

Next, let I2 =
{
v0, v2d−1, v−(2d−1)

}
. First, we note that v2d−1 6∼ v0 since |(2d−1)−

0| = 2d−1 6∈ 〈S〉. Next, observe that v2d−1 6∼ v−(2d−1) since |(2d−1)− (−(2d−1))| =

4d−2 ≡ −3 (mod 4d+1) 6∈ 〈S〉. By symmetry, we can also deduce that v0 6∼ v−(2d−1).

Hence, I2 is an independent set in G with cardinality greater than that of I1, and

thus G is not well-covered.

Case 4.2.2 d ≥ 1 and n ≥ 4d+ 5.

Let I
′

=
{
v0, v1

}
. Note that v0 6∼ v1 since |1 − 0| = 1 6∈ S, hence I

′
is an

independent set in G and |N [v0] ∪N [v1]| = 4d+ 2.

Let H1 = G \ NG[I
′
]. Given our assumption that n ≥ 4d + 5, it follows that

n − (4d + 2) ≥ 3, hence |V (H1)| ≥ 3. Since n is odd and (4d + 2) is even, it follows

that their difference is odd, thus |V (H1)| is odd. Let |V (H1)| = 2k + 1 where k ≥ 1.

Since S =
{

2, 4, . . . , 2d
}

, we let K1 = G
[{
vi : i = 2d + 2, 2d + 4, . . . , n − (2d + 1)

}]
and K2 = G

[{
vi : i = 2d + 3, 2d + 5, . . . , n − (2d + 2)

}]
. Note that V (K1) together

with V (K2) forms a partition of V (H1). Then |V (K1)| = k + 1 and |V (K2)| = k.

Also note that

va ∼ vb ⇒ a− b = 2c for some c

⇒ a ≡ b (mod 2).

Therefore, K1 and K2 are the two connected components of H1. If one of these

components is not well-covered, then G is not well-covered. Hence, we assume that
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both K1 and K2 are well-covered.

For i = 1, 2 letGi = C
(
2d+k+i, {1, 2, . . . , d}

)
where V (Gi) =

{
vi0, v

i
1, . . . , v

i
2d+k+i

}
.

Note that Ki
∼= Gi −NGi

[vi0] for each i. Thus, Ki is well-covered if and only if Gi is

well-covered. By Theorem 3.3, G1 is well-covered if and only if 2d + k + 1 ≤ 3d + 2

or 2d + k + 1 = 4d + 3; that is, if and only if k ≤ d + 1 or k = 2d + 2. Similarly, G2

is well-covered if and only if 2d + k + 2 ≤ 3d + 2 or 2d + k + 2 = 4d + 3; that is, if

and only if k ≤ d or k = 2d+ 1. Observe that if k = 2d+ 2, hence neither k ≤ d nor

k = 2d + 1 holds and therefore k ≤ d + 1. But then k = 2d + 1 does not hold, and

so for Gi to be well-covered we must have k ≤ d. Therefore, β
(
G1

)
= β

(
G2

)
= 2,

and hence β
(
K1

)
= β

(
K2

)
= 1. Choose vertices ui ∈ Ki for i = 1, 2. Note that

I
′
=
{
v0, v1, u1, u2

}
is a maximal independent set of size four in G. Hence,

if G is well-covered then β
(
G
)

= 4 (∗)

Next, let I
′′

=
{
v0, v2d+1, v−(2d+1)

}
. Observe that v2d+1 6∼ v0 since |(2d+ 1)− 0| =

2d+ 1 6∈ S. By symmetry, we can also deduce that v0 6∼ v−(2d+1). Next, we show that

v2d+1 6∼ v−(2d+1). Note that |(2d+ 1)− (−(2d+ 1))| = 4d+ 2. Given our assumption

that n ≥ 4d+ 5, it follows that n− (4d+ 2) ≥ 3. Since n is odd and (4d+ 2) is even,

it follows that their difference is odd, and hence, v2d+1 6∼ v−(2d+1). Furthermore, v2d+1

is adjacent to all vi’s such that 1 ≤ i ≤ 2d − 1 and 2d + 3 ≤ i ≤ 4d + 1, where i

is odd; and v−(2d+1) is adjacent to all vi’s such that −(4d + 1) ≤ i ≤ −(2d + 3) and

−(2d − 1) ≤ i ≤ −1, where i is even. Therefore, I
′′

is an independent set in G and

|N [v0] ∪N [v2d+1] ∪N [v−(2d+1)]| ≥ 4d+ 5.

Let H2 = G \ NG[I
′′
]. Given our assumption that n ≥ 4d + 5, it follows that

n − (4d + 5) ≥ 0, hence |V (H2)| ≥ 0. Since n and (4d + 5) are both odd, we can

deduce that their difference is even, hence |V (H2)| is even. Let |V (H2)| = 2p where
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p ≥ 0. Observe that for p = 0, I
′′

is a maximal independent set in G of size three

which contradicts (∗) if G is well-covered. Therefore we may assume that p ≥ 1.

Now let I
′′′

=
{
v0, v2d+1, v2d+2, v−(2d+1), v−(2d+2)

}
. Observe that since p ≥ 1, we

can deduce that n ≥ 6d+ 5. Note that v2d+2 is adjacent to neither v0 nor v2d+1 since

|(2d+2)−0| = 2d+2 6∈ 〈S〉 and |(2d+2)−(2d+1)| = 1 6∈ S. Next, we consider v−(2d+2).

Note that |(2d+1)−(−(2d+2))| = 4d+3 and |(2d+2)−(−(2d+2))| = 4d+4. Given

that n ≥ 6d+5, it follows that n− (4d+3) ≥ 2d+2 and n− (4d+4) ≥ 2d+1. Hence,

v−(2d+2) is adjacent to neither v2d+1 nor v2d+2. By symmetry, we can also deduce that

v−(2d+2) is adjacent to neither v0 nor v−(2d+1) and v2d+2 6∼ v−(2d+1). Furthermore, v0

is adjacent to neither v2d+1 nor v−(2d+1) and v2d+1 6∼ v−(2d+1). Therefore, I
′′′

is an

independent set in G of size five. Hence, in view of (∗), G is not well-covered.

A characterization of the well-covered graphs in Class 5 can now be stated.

Theorem 4.3 Let n and d be integers with 0 ≤ d ≤ n−2
4

. Then G = C
(
n, {1, 3, . . . ,

2d+ 1}
)

is well-covered if and only if one of the following conditions holds:

(i) n is odd and 4d+ 3 ≤ n ≤ 6d+ 7, or

(ii) n is even and either n = 4d+ 2 or n = 4d+ 4.

Furthermore, if (i) holds β
(
G
)

= n−2d−1
2

; if (ii) holds β
(
G
)

= n
2

and therefore G

is very well-covered (see page 12).

Proof. Let V (G) =
{
vi : i = 0, 1, . . . , n− 1

}
. First, we prove the ‘if’ direction. Let I

be a maximal independent set of G. Without loss of generality, assume that v0 is in

I and let H be the graph induced by G \N [v0].
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(i) n is odd and 4d+ 3 ≤ n ≤ 6d+ 7.

Set n = 1 + 2(w + 2d) for 1 ≤ w ≤ d + 3. Let H1 = G
[{
vi : i = 2, 4, . . . , 2(d +

w − 1)
}]

and H2 = G
[{
vi : i = −2(d+ w − 1), . . . ,−4,−2

}]
. Note that V (H1)

together with V (H2) forms a partition of V (H).

We claim that V (H1) forms an independent set. Let vi, vj ∈ V (H1) with vi 6= vj.

Without loss of generality, assume that i < j. Then,

2 ≤ i < j ≤ 2(d+ w − 1)

0 ≤ j − i ≤ 2(d+ w − 1)− 2

0 ≤ j − i ≤ 2d+ 2w − 4

Observe that j − i ≤ 2d + 2w − 4 < n = 1 + 2(w + 2d). Note that for w ≤ 4,

j− i ≤ 2d+ 2w− 4 ≤
⌊
n
2

⌋
= 2d+w. On the other hand when w ≥ 5, given our

assumption that n = 1 + 2(w+ 2d), it follows that n− (2d+ 2w− 4) = 2d+ 5 ≤⌊
n
2

⌋
= 2d + w. Since i and j are both even, it follows that their difference is

even, hence j − i 6∈ 〈S〉. Therefore, V (H1) forms an independent set. Similarly,

V (H2) is an independent set. Due to symmetry |V (H1)| = |V (H2)|. The above

argument shows that H is a bipartite graph.

Claim 4.3.1 We claim that H contains a perfect matching F such that for

every edge e = uv in F , N
(
u
)
∪ N

(
v
)

is a complete bipartite graph. Let

F =
{
v2αv−2(d+w−α)|1 ≤ α ≤ (d+ w − 1)

}
.

For 1 ≤ α ≤ (d+w−1), we have
∣∣2α− [−2(d+w−α)]

∣∣ =
∣∣2(d+w)

∣∣. However,

since n− 2(d+ w) = 1 + 2d, we can deduce that v2α ∼ v−2(d+w−α).



50

For each α, 1 ≤ α ≤ (d+ w − 1), we note that

NH(v2α) =
{
v−2(d+w−γ)|1 ≤ γ ≤ α

}
; and

NH(v−2(d+w−α)) =
{
v2ρ|α ≤ ρ ≤ (d+ w − 1)

}
.

To complete the proof of the claim we show that |2ρ − [−2(d + w − γ)]| ∈

〈S〉. Since −2(d + w − γ) ≡ (1 + 2d + 2γ) (mod n), it suffices to show that

|(1 + 2d+ 2γ)− 2ρ| ∈ S. We have

γ ≤ ρ ≤ (d+ w − 1)

2γ ≤ 2ρ ≤ 2(d+ w − 1)

0 ≤ 2ρ− 2γ ≤ 2(d+ w − 1)− 2γ

2γ − 2(d+ w − 1) ≤ 2γ − 2ρ ≤ 0

2γ + 3− 2w ≤ (1 + 2d+ 2γ)− 2ρ ≤ 1 + 2d

Since (1 + 2d + 2γ) is odd and 2ρ is even, we can deduce that their difference

is odd. Therefore, v1+2d+2γ ∼ v2ρ and v−2(d+w−γ)v2ρ is an edge in H completing

the proof of Claim 4.3.1.

Therefore, by Corollary 3.2, H is well-covered, and thence by Corollary 2.6, G

is well-covered and β
(
G
)

= n−2d−1
2

.

(ii) n is even and either n = 4d+ 2 or n = 4d+ 4.

Note that V (H) =
{
vi : i = −2(d+ k),−2d, . . . ,−4,−2

}
∪
{
vi : i = 2, 4, . . . , 2d,

2(d+ k)
}

for k = 0 or 1. Let vi and vj ∈ V (H) with vi 6= vj. Since i and j are

both even, it follows that their difference is even, hence j − i 6∈ 〈S〉. Therefore,

V (H) forms an independent set. Hence, G is well-covered and β(G) = n
2
.
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Furthermore, G is very well-covered.

We now proceed to prove the ‘only if’ direction.

Case 4.3.1 n is odd and n ≥ 6d+ 9.

Let I
′

=
{
v2d+3, v−(2d+3)

}
. First, we show that v2d+3 6∼ v−(2d+3). Note that

|(2d + 3)− (−(2d + 3))| = 4d + 6. Given our assumption that n ≥ 6d + 9, it follows

that n− (4d+ 6) ≥ 2d+ 3. Hence, I
′

is an independent set in G.

Now, let H1 be the component of G\N [I
′
] containing v0. It follows that V (H1) ={

vi : i = −(2d + 1), . . . ,−5,−3,−1
}
∪
{
v0
}
∪
{
vi : i = 1, 3, 5, . . . , 2d + 1

}
. First,

let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in H1. Next, let K2 ={
v2d+1, v−(2d+1)

}
. Note that v2d+1 6∼ v−(2d+1) since |(2d+ 1)− (−(2d+ 1))| = 4d+ 2.

Given our assumption that n ≥ 6d+9, it follows that n−(4d+2) ≥ 2d+7. Therefore,

K2 is an independent set in H1 with cardinality greater than that of K1. So H1 is

not well-covered, and hence by Proposition 2.5, G is not well-covered.

Case 4.3.2 n is even and n ≥ 4d+ 6.

Let H1 = G
[{
vi : i = 2, 4, . . . , n−2

}]
and H2 = G

[{
vi : i = 2d+ 3, 2d+ 5, . . . , n−

(2d+ 3)
}]

. Note that V (H1) together with V (H2) forms a partition of V (H).

Let vi, vj ∈ V (H1) with vi 6= vj. Since i and j are both even, it follows that their

difference is even, hence j − i 6∈ 〈S〉. Therefore, V (H1) forms an independent set.

Similarly, V (H2) is an independent set. Hence, H is a bipartite graph.

Observe that |V (H1)| > |V (H2)|, and thus H does not contain a perfect matching.

Hence, by Proposition 2.5, G is not well-covered.

A characterization of the well-covered graphs in Class 6 can now be stated.

Theorem 4.4 Let n and d be integers with 1 ≤ d ≤ n
4
. Then G = C

(
n, {1} ∪

{2, 4, . . . , 2d}
)

is well-covered if and only if one of the following conditions holds:
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(i) d ≥ 2 and either n = 4d or n = 4d+ 2, or

(ii) d ≥ 2 and n is odd such that 4d+ 1 ≤ n ≤ 4d+ 5, or

(iii) d ≥ 2 and n is even such that 4d+ 8 ≤ n ≤ 6d+ 4, or

(iv) d = 1 and either 4 ≤ n ≤ 8 or n = 11.

Furthermore, if (i) holds β
(
G
)

= 2; if (ii) holds β
(
G
)

= 3; if (iii) holds β
(
G
)

= 4;

and if (iv) holds β
(
G
)

= bn
5
c.

Proof. For d = 1, the theorem follows from Theorem 3.3, hence we assume that

d > 1. Let V (G) =
{
vi : i = 0, 1, . . . , n− 1

}
. First, we prove the ‘if’ direction. Let I

be a maximal independent set of G. Without loss of generality, assume that v0 ∈ I

and let H be the graph induced by G \N [v0].

(i) d ≥ 2 and either n = 4d or n = 4d+ 2.

For d = 2, C
(
8, {1, 2, 4}

)
and C

(
10, {1, 2, 4}

)
are well-covered and β

(
G
)

= 2,

hence we may assume that d ≥ 3.

Set n = 2(2d+k) for k = 0 or 1. Then V (H) =
{
vi : i = 3, 5, . . . , [2(2d+k)−3]

}
.

Let vi and vj ∈ V (H) with vi 6= vj. Without loss of generality, assume that

i < j. Then

3 ≤ i < j ≤ 2(2d+ k)− 3

0 ≤ j − i ≤ 2(2d+ k)− 3− 3

0 ≤ j − i ≤ 2(2d+ k)− 6

Observe that j − i ≤ 2(2d+ k)− 6 < n = 2(2d+ k). Also note that n− [2(2d+

k) − 6] = 6 ≤
⌊
n
2

⌋
= 2d + k. Since i and j are both odd, it follows that their
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difference is even, and thus vi and vj are adjacent. Therefore, H is a complete

graph and |I ∩ V (H)| = 1. Hence, |I| = 2, G is well-covered and β
(
G
)

= 2.

(ii) d ≥ 2 and n is odd such that 4d+ 1 ≤ n ≤ 4d+ 5.

Let n = 1 + 2(2d + k) for k = 0, 1 or 2. Let H1 = G
[{
vi : i = 3, 5, . . . , [2(d +

k)− 1]
}]

and H2 = G
[{
vi : i = −[2(d+ k)− 1], . . . ,−5,−3

}]
. Note that V (H1)

together with V (H2) forms a partition of V (H).

We claim that Hi is a complete graph for i = 1 and 2. Let vi and vj ∈ V (H1)

with vi 6= vj. Without loss of generality, assume that i < j. Then

3 ≤ i < j ≤ 2(d+ k)− 1

0 ≤ j − i ≤ 2(d+ k)− 1− 3

0 ≤ j − i ≤ 2(d+ k)− 4

Observe that j − i ≤ 2(d+ k)− 4 <
⌊
n
2

⌋
= 2d+ k. Since i and j are both odd,

it follows that their difference is even. Hence, vi and vj are adjacent, therefore

H1 is a complete graph. Similarly, H2 is a complete graph.

Note that V (H) 6= ∅, hence |I ∩ V (H)| 6= ∅. Next, consider v2d−1 ∈ V (H1) and

v−(2d−1) ∈ V (H2). We claim that v2d−1 6∼ v−(2d−1). Note that |(2d−1)−(−(2d−

1))| = 4d − 2. Given our assumption that n = 1 + 2(2d + k), it follows that

n− (4d− 2) = 2k + 3. Since n is odd and (4d− 2) is even, it follows that their

difference is odd, and thence v2d−1 6∼ v−(2d−1). Since Hi is complete, it follows

that |I ∩ V (Hi)| = 1 for i = 1 and 2, and hence |I| = 3, G is well-covered and

β
(
G
)

= 3.

(iii) d ≥ 2 and n is even such that 4d+ 8 ≤ n ≤ 6d+ 4.

Let G1 = G
[{
vi : i = 0, 2, . . . , n − 2

}]
and G2 = G

[{
vi : i = 1, 3, . . . , n − 1

}]
.
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Note that V (G1) together with V (G2) forms a partition of V (G).

Consider any vertex vi ∈ V (G1). Since i is even, we can deduce that i + 1 and

i− 1 are both odd, and thence vi is adjacent to exactly two vertices in V (G2).

Next, we let H1 = G
[{
vi : i = (2d + 2), (2d + 4), . . . , n − (2d + 2)

}]
and H2 =

G
[{
vi : i = 3, 5, . . . , n − 3

}]
. Note that V (H1) together with V (H2) forms a

partition of V (H). Let vi, vj ∈ V (H1) with vi 6= vj. Without loss of generality,

assume that i < j. Then

2d+ 2 ≤ i < j ≤ n− (2d+ 2)

0 ≤ j − i ≤ n− (2d+ 2)− (2d+ 2)

0 ≤ j − i ≤ n− (4d+ 4)

Observe that n− (4d+ 4) ≤ 2d, and since i and j are both even, it follows that

their difference is even, hence j − i ∈ S. Therefore, H1 is a complete graph and

|I ∩ V (H1)| = 1. Hence, β
(
G1

)
= 2 and β

(
G
)

is at least two.

Without loss of generality, let vk ∈ I∩V (H1), and let W be the graph induced by

H\NH [vk]. Next, we consider v2d−1 and v4d+5 ∈ V (W ). Note that v2d−1 6∼ v4d+5

since |(4d + 5) − (2d − 1)| = 2d + 6 6∈ 〈S〉. Therefore, |I ∩ V (W )| = 2 and

β
(
W
)

= 2. Hence, G is well-covered and β
(
G
)

= 4.

We now proceed to prove the ‘only if’ direction.

Case 4.4.1 n is odd and n ≥ 4d+ 7.

Case 4.4.1.1 n = 4d+ 7.

Let I1 =
{
v0, v2d+3, v−(2d+1)

}
. Note that v0 is adjacent to neither v−(2d+1) nor v2d+3

since |0− (−(2d+ 1))| = 2d+ 1 6∈ 〈S〉 and |(2d+ 3)−0| = 2d+ 3 6∈ 〈S〉. Furthermore,
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v2d+3 6∼ v−(2d+1) since |(2d + 3) − (−(2d + 1))| = 4d + 4 ≡ −3 (mod 4d + 7) 6∈ 〈S〉.

Hence, I1 is an independent set in G. Next, since v2d+3 is adjacent to v(2d+3)−j and

v(2d+3)+j for each j in the set S, it follows that v2d+3 is adjacent to v2d+2, v2d+4, v2d+5

and all vi’s such that 3 ≤ i ≤ 2d + 1, where i is odd. Similarly, v−(2d+1) is adjacent

to all vi’s such that −(2d − 1) ≤ i ≤ −1, where i is odd. Hence, I1 is a maximal

independent set in G.

Now, let I2 =
{
v0, v3, v−(2d−1), v−(2d+2)

}
. First, we note that v3 6∼ v−(2d−1) since

|3 − (−(2d − 1))| = 2d + 2 6∈ 〈S〉, and v−(2d−1) 6∼ v−(2d+2) since | − (2d − 1) −

(−(2d + 2))| = 3 6∈ S. Next, observe that v0 is adjacent to neither v−(2d+2), v−(2d−1)

nor v3 since |0− (−(2d + 2))| = 2d + 2 6∈ 〈S〉, |0− (−(2d− 1))| = 2d− 1 6∈ 〈S〉 and

|3−0| = 3 6∈ S. Furthermore, v3 6∼ v−(2d+2) since |3−(−(2d+2))| = 2d+5 ≡ −(2d+2)

(mod 4d + 7) 6∈ 〈S〉. Hence, I2 is an independent set in G with cardinality greater

than that of I1, and thus G is not well-covered.

Case 4.4.1.2 n ≥ 4d+ 9.

Let I
′

=
{
v2d+3, v−(2d+3)

}
. First, we show that v2d+3 6∼ v−(2d+3). Note that

|(2d + 3)− (−(2d + 3))| = 4d + 6. Given our assumption that n ≥ 4d + 9, it follows

that n− (4d+ 6) ≥ 3. Given that n is odd, it follows that n− (4d+ 6) is odd. Hence,

I
′

is an independent set in G.

Now, let H1 be the component of G\N [I
′
] containing v0. It follows that V (H1) ={

vi : i = −2d, . . . ,−4,−2,−1
}
∪
{
v0
}
∪
{
vi : i = 1, 2, 4, . . . , 2d

}
. First, let K1 =

{
v0
}

.

Clearly K1 is a maximal independent set in H1. Next, let K2 =
{
v2d, v−2d

}
. We

claim that v2d 6∼ v−2d. Note that |2d − (−2d)| = 4d. Given our assumption that

n ≥ 4d+ 9, it follows that n− 4d ≥ 9. Given that n is odd, it follows that n− 4d is

odd. Therefore, K2 is an independent set in H1 with cardinality greater than that of

K1. So H1 is not well-covered, and hence by Proposition 2.5, G is not well-covered.
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Case 4.4.2 n is even and n = 4d+ 4, n = 4d+ 6, or n ≥ 6d+ 6.

Case 4.4.2.1 n = 4d+ 4.

Let I1 =
{
v0, v2d+1

}
. We first note that v0 6∼ v2d+1 since |(2d+ 1)− 0| = 2d+ 1 6∈

〈S〉. Hence, I1 is an independent set in G. Since v2d+1 is adjacent to v(2d+1)−j and

v(2d+1)+j for each j in the set S, it follows that v2d+1 is adjacent to v2d, v2d+2 and all

vi’s such that 1 ≤ i ≤ 2d− 1 and 2d+ 3 ≤ i ≤ 4d+ 1, where i is odd. Hence, I1 is a

maximal independent set in G.

Next, let I2 =
{
v0, v3, v2d+2, v−(2d−1)

}
. First, we note that v2d+2 is adjacent to

neither v0 nor v3 since |(2d+ 2)− 0| = 2d+ 2 6∈ 〈S〉 and |(2d+ 2)− 3| = 2d− 1 6∈ 〈S〉.

Next, observe that v2d+2 6∼ v−(2d−1) since |(2d + 2) − (−(2d − 1))| = 4d + 1 ≡ −3

(mod 4d+ 4) 6∈ 〈S〉. Furthermore, from Case 4.4.1.1, we know that v0 is adjacent to

neither v−(2d−1) nor v3 and v3 6∼ v−(2d−1). Hence, I2 is an independent set in G with

cardinality greater than that of I1, and thus G is not well-covered.

Case 4.4.2.2 n = 4d+ 6.

Let I1 =
{
v0, v2d+3

}
. We first note that v0 6∼ v2d+3 since |(2d+ 3)− 0| = 2d+ 3 6∈

〈S〉. Hence, I1 is an independent set in G. Since v2d+3 is adjacent to v(2d+3)−j and

v(2d+3)+j for each j in the set S, it follows that v2d+3 is adjacent to v2d+2, v2d+4 and

all vi’s such that 3 ≤ i ≤ 2d + 1 and 2d + 5 ≤ i ≤ 4d + 3, where i is odd. Hence, I1

is a maximal independent set in G.

Next, let I2 =
{
v0, v2d+1, v−3, v−(2d+2)

}
. First, we note that v−3 is adjacent to

neither v−(2d+2) nor v2d+1 since |(−3)− (−(2d + 2))| = 2d− 1 6∈ 〈S〉 and |(2d + 1)−

(−3)| = 2d + 4 6∈ 〈S〉. Next, observe that v0 is adjacent to neither v−(2d+2), v−3 nor

v2d+1 since |0− (−(2d+ 2))| = 2d+ 2 6∈ 〈S〉, |0− (−3)| = 3 6∈ S and |(2d+ 1)− 0| =

2d+1 6∈ 〈S〉. Furthermore, v2d+1 6∼ v−(2d+2) since |(2d+1)−(−(2d+2))| = 4d+3 ≡ −3

(mod 4d + 6) 6∈ 〈S〉. Hence, I2 is an independent set in G with cardinality greater

than that of I1, and thus G is not well-covered.
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Case 4.4.2.3 n = 6d+ 6.

Let I
′
=
{
v2d+3, v−(2d+1), v−(2d+4)

}
. First, we note that v2d+3 is adjacent to neither

v−(2d+1) nor v−(2d+4) since |(2d+3)−(−(2d+1))| = 4d+4 ≡ −(2d+2) (mod 6d+6) 6∈

〈S〉 and |(2d+3)−(−(2d+4))| = 4d+7 ≡ −(2d−1) (mod 6d+6) 6∈ 〈S〉. Furthermore,

v−(2d+1) 6∼ v−(2d+4) since |−(2d+1)−(−(2d+4))| = 3 6∈ S. Hence, I1 is an independent

set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−2
}
∪
{
vi : i = 0, 1, 2, . . . , 2d

}
. First, let K1 =

{
v0
}

. Clearly K1 is a maximal

independent set in H1. Next, let K2 =
{
v2d, v−2

}
. Note that v2d 6∼ v−2 since |2d −

(−2)| = 2d + 2 6∈ 〈S〉. Therefore, K2 is an independent set in H1 with cardinality

greater than that of K1. So H1 is not well-covered, and hence by Proposition 2.5, G

is not well-covered.

Case 4.4.2.4 n ≥ 6d+ 8.

Let I
′

=
{
v2d+3, v−(2d+3)

}
. First, we show that v2d+3 6∼ v−(2d+3). Note that

|(2d + 3)− (−(2d + 3))| = 4d + 6. Given our assumption that n ≥ 6d + 8, it follows

that n− (4d+ 6) ≥ 2d+ 2. Hence, I
′

is an independent set in G.

Now, let H1 be the component of G\N [I
′
] containing v0. It follows that V (H1) ={

vi : i = −2d, . . . ,−4,−2,−1
}
∪
{
v0
}
∪
{
vi : i = 1, 2, 4, . . . , 2d

}
. First, let K1 =

{
v0
}

.

Clearly K1 is a maximal independent set in H1. Next, let K2 =
{
v2d, v−2d

}
. We

claim that v2d 6∼ v−2d. Note that |2d − (−2d)| = 4d. Given our assumption that

n ≥ 6d + 8, it follows that n − 4d ≥ 2d + 8. Therefore, K2 is an independent set in

H1 with cardinality greater than that of K1. So H1 is not well-covered, and hence by

Proposition 2.5, G is not well-covered.



Chapter 5

Characterization of Well-Covered Graphs in Classes 7, 8, 9,

and 10

In this chapter, we investigate the class of circulant graphs on n vertices with a gen-

erating set S−A, where A is one of {1}, {2}, {1, 2}, or {2, 3} and S =
{

1, 2, . . . ,
⌊
n
2

⌋}
.

To determine if these classes are well-covered we apply the following lemma.

Lemma 5.1 Let w0 be a vertex of a graph G and N [w0] = {w0, w1, w2, w3, . . . , wk}. If

G\N [wi] is well-covered for each i and if β(G\N [wi]) = β(G\N [wj])∀i, j ∈ {0, 1, . . . , k}

then G is well-covered with β(G) = β(G\N [w0]) + 1.

Proof. By Corollary 2.6, G is well-covered with β(G) = β(G\N [w0]) + 1.

A characterization of the well-covered graphs in Class 7 can now be stated.

Theorem 5.2 Let n and d be integers with 2 ≤ d ≤ n
2
. Then G = C

(
n, {2, 3, . . . , d}

)
is well-covered if and only if one of the following conditions holds:

(i) 2d ≤ n ≤ 2d+ 2, or

(ii) n = 2d+ 3, or

(iii) 2d+ 4 ≤ n ≤ 3d+ 2, or

(iv) n = 3d+ 4, or

(v) n = 4d+ 6.

58



59

Furthermore, if (i) holds β
(
G
)

= 2; if (ii) holds β
(
G
)

= 3; if (iii) or (iv) holds

β
(
G
)

= 4; and if (v) holds β
(
G
)

= 6.

Proof. Let V (G) =
{
vi : i = 0, 1, . . . , n − 1

}
. First, we prove the ‘if’ direction. In

each case let I be a maximal independent set of G. Without loss of generality, assume

that v0 ∈ I and let H be the graph induced by G\N [v0]. Then V (H) =
{
vi : −

⌊
n
2

⌋
≤

i ≤ −(d+ 1)
}
∪
{
v−1
}
∪
{
v1
}
∪
{
vi : d+ 1 ≤ i ≤

⌊
n
2

⌋}
. By Corollary 2.6, it suffices to

show that in Case (i) H is well-covered with β
(
H
)

= 1; in Case (ii) H is well-covered

with β
(
H
)

= 2; in Case (iii) or (iv) H is well-covered with β
(
H
)

= 3; and in

Case (v) H is well-covered with β
(
H
)

= 5.

(i) 2d ≤ n ≤ 2d+ 2.

Observe that for n = 2d or 2d + 1, the theorem follows as a consequence of

Theorem 3.4. Furthermore, β
(
G
)

= 2.

Next, we consider n = 2d+2. In this case V (H) =
{
v−1, v1, vd+1

}
. Note that v1

is adjacent to both v−1 and vd+1 since |1−(−1)| = 2 ∈ S and |(d+1)−1| = d ∈ S.

Furthermore, v−1 ∼ vd+1 since |(d+1)−(−1)| = d+2 ≡ −d (mod 2d+2) ∈ 〈S〉.

Therefore, H is a complete graph and |I ∩ V (H)| = 1. Hence, G is well-covered

and β
(
G
)

= 2.

(ii) n = 2d+ 3.

In this case V (H) =
{
v−(d+1), v−1, v1, vd+1

}
. Observe that vd+1 is adjacent to

neither v−(d+1) nor v−1 since |(d+1)−(−(d+1))| = 2d+2 ≡ −1 (mod 2d+3) 6∈

〈S〉 and |(d+ 1)− (−1)| = d+ 2 ≡ −(d+ 1) (mod 2d+ 3) 6∈ 〈S〉. From Case (i),

we know that v1 is adjacent to both v−1 and vd+1. By symmetry, we can also

deduce that v−(d+1) 6∼ v1 and v−(d+1) ∼ v−1. Hence, H is isomorphic to P4 and

|I ∩ V (H)| = 2. Therefore, G is well-covered and β
(
G
)

= 3.
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(iii) 2d+ 4 ≤ n ≤ 3d+ 2.

We consider the following five cases:

Case 5.2.1 d ≥ 2 and n = 2d+ 4.

Let H
′

= G
[{
v−(d+1), v−1, v1, vd+1

}]
and H

′′
= G

[{
vd+2

}]
. Note that V (H

′
)

together with V (H
′′
) forms a partition of V (H).

We claim that no vertex in H
′

is adjacent to a vertex in H
′′
. Note that vd+2

is adjacent to neither v1 nor vd+1 since |(d + 2) − 1| = d + 1 6∈ 〈S〉 and |(d +

2) − (d + 1)| = 1 6∈ S. Furthermore, vd+2 is adjacent to neither v−(d+1) nor

v−1 since |(d + 2) − (−(d + 1))| = 2d + 3 ≡ −1 (mod 2d + 4) 6∈ 〈S〉 and

|(d+ 2)− (−1)| = d+ 3 ≡ −(d+ 1) (mod 2d+ 4) 6∈ 〈S〉. Hence, β(H
′′
) = 1.

We now show that H
′

is isomorphic to C4. First, we note that vd+1 ∼ v−(d+1)

since |(d + 1)− (−(d + 1))| = 2d + 2 ≡ −2 (mod 2d + 4) ∈ 〈S〉. Next, observe

that v−(d+1) 6∼ v1 since |1− (−(d+ 1))| = d+ 2 6∈ 〈S〉. From Case (i), we know

that v1 is adjacent to both v−1 and vd+1. By symmetry, we can also deduce

that v−(d+1) ∼ v−1 and vd+1 6∼ v−1. Hence, H
′

is isomorphic to C4, and thus

is well-covered with β(H
′
) = 2. Therefore, G is well-covered and β

(
G
)

= 4

concluding the proof of Case 5.2.1.

Case 5.2.2 d ≥ 3 and n = 2d+ 5.

In this case V (H) =
{
v−(d+2), v−(d+1), v−1, v1, vd+1, vd+2

}
. To show that H is

well-covered we are going to apply Lemma 5.1 with w0 = v1. Since v1 is adjacent

to v1+j and v1−j for each j in the set S, it follows that NH [v1] =
{
v−1, v1, vd+1

}
.

We will show for each w ∈ NH [v1] that Hw = H\NH [w] is well-covered with

β(Hw) = 2.
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Case 5.2.2.1 w = v−1 or w = v1.

By symmetry, we need only examine w = v1. Let H
′
w = H

[{
v−(d+2)

}]
and

H
′′
w = H

[{
v−(d+1), vd+2

}]
. Note that V (H

′
w) together with V (H

′′
w) forms a

partition of V (Hw).

We claim that no vertex in H
′
w is adjacent to a vertex in H

′′
w. Observe that

v−(d+2) 6∼ vd+2 since |(d + 2)− (−(d + 2))| = 2d + 4 ≡ −1 (mod 2d + 5) 6∈ 〈S〉.

Furthermore, v−(d+1) 6∼ v−(d+2) since | − (d+ 1)− (−(d+ 2))| = 1 6∈ S.

We now note that v−(d+1) ∼ vd+2 since |(d + 2) − (−(d + 1))| = 2d + 3 ≡ −2

(mod 2d+ 5) ∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Case 5.2.2.2 w = vd+1.

In this case V
(
Hw) = {v−1, vd+2}. Note that vd+2 6∼ v−1 since |(d+ 2)− (−1)| =

d+ 3 6∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Hence, G is well-covered with β
(
G
)

= 4, concluding the proof of Case 5.2.2.

Case 5.2.3 d ≥ 4 and n = 2d+ 6.

In this case V (H) =
{
v−(d+2), v−(d+1), v−1, v1, vd+1, vd+2, vd+3

}
. To show that

H is well-covered we are going to apply Lemma 5.1 with w0 = v1. Since v1

is adjacent to v1+j and v1−j for each j in the set S, it follows that NH [v1] ={
v−1, v1, vd+1

}
. We will show for each w ∈ NH [v1] that Hw = H\NH [w] is

well-covered with β(Hw) = 2.

Case 5.2.3.1 w = v−1 or w = v1.

By symmetry, we need only examine w = v1. We first note that V
(
Hw

)
={

v−(d+2), v−(d+1), vd+2, vd+3

}
.
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We claim that Hw is isomorphic to P4. First, we note that vd+2 is adjacent to

both v−(d+2) and v−(d+1) since |(d+ 2)− (−(d+ 2))| = 2d+ 4 ≡ −2 (mod 2d+

6) ∈ 〈S〉 and |(d + 2) − (−(d + 1))| = 2d + 3 ≡ −3 (mod 2d + 6) ∈ 〈S〉.

Next, observe that vd+3 6∼ v−(d+2) since |(d + 3) − (−(d + 2))| = 2d + 5 ≡ −1

(mod 2d+ 6) 6∈ 〈S〉. Furthermore, vd+2 6∼ vd+3 since |(d+ 3)− (d+ 2)| = 1 6∈ S,

v−(d+2) 6∼ v−(d+1) since | − (d + 1) − (−(d + 2))| = 1 6∈ S and vd+3 ∼ v−(d+1)

since |(d + 3) − (−(d + 1))| = 2d + 4 ≡ −2 (mod 2d + 6) ∈ 〈S〉. Hence, Hw is

isomorphic to P4, and thus is well-covered with β(Hw) = 2.

Case 5.2.3.2 w = vd+1.

In this case V
(
Hw) = {v−1, vd+2}. Note that vd+2 6∼ v−1 since |(d+ 2)− (−1)| =

d+ 3 6∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Hence, G is well-covered with β
(
G
)

= 4, concluding the proof of Case 5.2.3.

Case 5.2.4 d ≥ 5 and n = 2d+ 7.

In this case V (H) =
{
v−(d+3), v−(d+2), v−(d+1), v−1, v1, vd+1, vd+2, vd+3

}
. To show

that H is well-covered we are going to apply Lemma 5.1 with w0 = v1. Since

v1 is adjacent to v1+j and v1−j for each j in the set S, it follows that NH [v1] ={
v−1, v1, vd+1

}
. We will show for each w ∈ NH [v1] that Hw = H\NH [w] is

well-covered with β(Hw) = 2.

Case 5.2.4.1 w = v−1 or w = v1.

By symmetry, we need only examine w = v1. We first note that V
(
Hw

)
={

v−(d+3), v−(d+2), v−(d+1), vd+2, vd+3

}
. To show that Hw is well-covered we are

going to apply Lemma 5.1 with u0 = v−(d+3). Since v−(d+3) is adjacent to

v−(d+3)+j and v−(d+3)−j for each j in the set S, it follows that NHw [v−(d+3)] =
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v−(d+3), v−(d+1), vd+2

}
. We will show for each u ∈ NHw [v−(d+3)] that Hu =

Hw\NHw [u] is well-covered with β(Hu) = 1.

Case 5.2.4.1.1 u = v−(d+3).

In this case V (Hu) =
{
v−(d+2), vd+3

}
. Note that vd+3 ∼ v−(d+2) since |(d+ 3)−

(−(d+ 2))| = 2d+ 5 ≡ −2 (mod 2d+ 7) ∈ 〈S〉. Hence, Hu is well-covered with

β(Hu) = 1.

Case 5.2.4.1.2 u = vd+2.

In this case V
(
Hu) = {vd+3}. Hence, Hu is well-covered with β(Hu) = 1.

Case 5.2.4.1.3 u = v−(d+1).

In this case V
(
Hu) = {v−(d+2)}. Hence, Hu is well-covered with β(Hu) = 1.

This concludes Case 5.2.4.1.

Case 5.2.4.2 w = vd+1.

In this case V
(
Hw) = {v−1, vd+2}. Note that vd+2 6∼ v−1 since |(d+ 2)− (−1)| =

d+ 3 6∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Hence, G is well-covered with β
(
G
)

= 4, concluding the proof of Case 5.2.4.

Case 5.2.5 d ≥ 6 and 2d+ 8 ≤ n ≤ 3d+ 2.

To show that H is well-covered we are going to apply Lemma 5.1 with w0 =

v1. Since v1 is adjacent to v1+j and v1−j for each j in the set S, it follows

that NH [v1] =
{
v−1, v1, vd+1

}
. We will show for each w ∈ NH [v1] that Hw =

H\NH [w] is well-covered with β(Hw) = 2.
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Case 5.2.5.1 w = v−1 or w = v1.

By symmetry, we need only examine w = v1. We first note that V
(
Hw

)
={

vi : −
⌊
n
2

⌋
≤ i ≤ −(d+ 1)

}
∪
{
vi : d+ 2 ≤ i ≤

⌊
n
2

⌋}
. To show that Hw is well-

covered we are going to apply Lemma 5.1 with u0 = vd+2. Since vd+2 is adjacent

to v(d+2)+j and v(d+2)−j for each j in the set S, it follows that NHw [vd+2] ={
vi : −

⌊
n
2

⌋
≤ i ≤ −(d + 1)

}
∪
{
vd+2

}
∪
{
vi : d + 4 ≤ i ≤

⌊
n
2

⌋}
. We will show

for each u ∈ NHw [vd+2] that Hu = Hw\NHw [u] is well-covered with β(Hu) = 1.

Case 5.2.5.1.1 u = vd+2.

In this case V
(
Hu) = {vd+3}. Hence, Hu is well-covered with β(Hu) = 1.

Case 5.2.5.1.2 u = vk or u = v−k for d+ 4 ≤ k ≤
⌊
n
2

⌋
.

By symmetry, we need only examine u = vk. Since 1 is not in S, we can deduce

that vk is adjacent to neither vk−1 nor vk+1, and thence V
(
Hu

)
= {vk−1, vk+1}.

Note that vk+1 ∼ vk−1 since |(k+1)−(k−1)| = 2 ∈ S. Hence, Hu is well-covered

with β(Hu) = 1.

Case 5.2.5.1.3 u = v−(d+3).

In this case V
(
Hu) = {v−(d+4), v−(d+2)}. Note that v−(d+4) ∼ v−(d+2) since

| − (d+ 2)− (−(d+ 4))| = 2 ∈ S. Hence, Hu is well-covered with β(Hu) = 1.

Case 5.2.5.1.4 u = v−(d+2).

In this case V
(
Hu) = {v−(d+3), v−(d+1)}. Note that v−(d+1) ∼ v−(d+3) since

| − (d+ 1)− (−(d+ 3))| = 2 ∈ S. Hence, Hu is well-covered with β(Hu) = 1.

Case 5.2.5.1.5 u = v−(d+1).

In this case V
(
Hu) = {v−(d+2)}. Hence, Hu is well-covered with β(Hu) = 1.
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This concludes Case 5.2.5.1.

Case 5.2.5.2 w = vd+1.

In this case V
(
Hw) = {v−1, vd+2}. Note that vd+2 6∼ v−1 since |(d+ 2)− (−1)| =

d+ 3 6∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Hence, G is well-covered with β
(
G
)

= 4, concluding the proof of Case 5.2.5.

(iv) n = 3d+ 4.

To show that H is well-covered we are going to apply Lemma 5.1 with w0 =

v1. Since v1 is adjacent to v1+j and v1−j for each j in the set S, it follows

that NH [v1] =
{
v−1, v1, vd+1

}
. We will show for each w ∈ NH [v1] that Hw =

H\NH [w] is well-covered with β(Hw) = 2.

Case 5.2.6 w = v−1 or w = v1.

By symmetry, we need only examine w = v1. We first note that V
(
Hw

)
={

vi : −
⌊
n
2

⌋
≤ i ≤ −(d+ 1)

}
∪
{
vi : d+ 2 ≤ i ≤

⌊
n
2

⌋}
. To show that Hw is well-

covered we are going to apply Lemma 5.1 with u0 = vd+2. Since vd+2 is adjacent

to v(d+2)+j and v(d+2)−j for each j in the set S, it follows that NHw [vd+2] ={
vi : −

⌊
n
2

⌋
≤ i ≤ −(d + 2)

}
∪
{
vd+2

}
∪
{
vi : d + 4 ≤ i ≤

⌊
n
2

⌋}
. We will show

for each u ∈ NHw [vd+2] that Hu = Hw\NHw [u] is well-covered with β(Hu) = 1.

Case 5.2.6.1 u = vd+2.

In this case V
(
Hu) = {v−(d+1), vd+3}. Note that vd+3 ∼ v−(d+1) since |(d+ 3)−

(−(d+ 1))| = 2d+ 4 ≡ −d (mod 3d+ 4) ∈ 〈S〉. Hence, Hu is well-covered with

β(Hu) = 1.
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Case 5.2.6.2 u = vk for d+ 4 ≤ k ≤ 2d+ 2.

Since 1 is not in S, we can deduce that vk is adjacent to neither vk−1 nor vk+1, and

thence V
(
Hu

)
= {vk−1, vk+1}. Note that vk+1 ∼ vk−1 since |(k+ 1)− (k− 1)| =

2 ∈ S. Hence, Hu is well-covered with β(Hu) = 1.

This concludes Case 5.2.6.

Case 5.2.7 w = vd+1.

Let H
′
w = H

[{
v−(d+1), v−1

}]
and H

′′
w = H

[{
v−(d+2), vd+2

}]
. Note that V (H

′
w)

together with V (H
′′
w) forms a partition of V (Hw).

We claim that no vertex in H
′
w is adjacent to a vertex in H

′′
w. Observe that v−1

is adjacent to neither v−(d+2) nor vd+2 since |(−1)−(−(d+2))| = d+1 6∈ 〈S〉 and

|(d+ 2)− (−1)| = d+ 3 6∈ 〈S〉. Next, we note that v−(d+1) is adjacent to neither

v−(d+2) nor vd+2 since |−(d+1)−(−(d+2))| = 1 6∈ S and |(d+2)−(−(d+1))| =

2d+ 3 ≡ −(d+ 1) (mod 3d+ 4) 6∈ 〈S〉.

We now note that vd+2 ∼ v−(d+2) since |(d + 2) − (−(d + 2))| = 2d + 4 ≡ −d

(mod 3d + 4) ∈ 〈S〉, and thence H
′′
w is well-covered with β(H

′′
w) = 1. Fur-

thermore, v−(d+1) ∼ v−1 since |(−1) − (−(d + 1))| = d ∈ S, and thence H
′
w is

well-covered with β(H
′
w) = 1. Therefore, Hw is well-covered with β(Hw) = 2.

Hence, G is well-covered with β
(
G
)

= 4, concluding the proof of Case (iv).

(v) n = 4d+ 6.

First, we note that C
(
14, {2}

)
, C

(
18, {2, 3}

)
, and C

(
22, {2, 3, 4}

)
are well-

covered and β
(
G
)

= 6.

Next, we consider the case where d ≥ 5. Note that V (H) =
{
vi : − (2d + 2) ≤

i ≤ −(d + 1)
}
∪
{
v−1
}
∪
{
v1
}
∪
{
vi : d + 1 ≤ i ≤ 2d + 2

}
∪
{
v2d+3

}
. To show
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that H is well-covered we are going to apply Lemma 5.1 with w0 = v2d+3. Since

v2d+3 is adjacent to v(2d+3)+j and v(2d+3)−j for each j in the set S, it follows that

NH [v2d+3] =
{
vi : −(2d+1) ≤ i ≤ −(d+3)

}
∪
{
vi : d+3 ≤ i ≤ 2d+1

}
∪
{
v2d+3}.

We will show for each w ∈ NH [v2d+3] that Hw = H\NH [w] is well-covered with

β(Hw) = 4.

Case 5.2.8 w = v2d+3.

Let H
′
w = H

[{
v−(d+1), v−1, v1, vd+1

}]
and H

′′
w = H

[{
v−(2d+2), v−(d+2), vd+2,

v2d+2

}]
. Note that V (H

′
w) together with V (H

′′
w) forms a partition of V (Hw).

We claim that no vertex in H
′
w is adjacent to a vertex in H

′′
w. Observe that v1

is adjacent to neither v−(2d+2), v−(d+2), vd+2 nor v2d+2 since |1− (−(2d+ 2))| =

2d + 3 6∈ 〈S〉, |1 − (−(d + 2))| = d + 3 6∈ 〈S〉, |(d + 2) − 1| = d + 1 6∈ 〈S〉

and |(2d + 2) − 1| = 2d + 1 6∈ 〈S〉. Next, we note that vd+1 is adjacent to

neither v−(d+2), vd+2 nor v2d+2 since |(d + 1) − (−(d + 2))| = 2d + 3 6∈ 〈S〉,

|(d+ 2)− (d+ 1)| = 1 6∈ S and |(2d+ 2)− (d+ 1)| = d+ 1 6∈ 〈S〉. Furthermore,

vd+1 6∼ v−(2d+2) since |(d+1)− (−(2d+2))| = 3d+3 ≡ −(d+3) (mod 4d+6) 6∈

〈S〉. By symmetry, we can also deduce that v−1 is adjacent to neither v−(2d+2),

v−(d+2), vd+2 nor v2d+2; and v−(d+1) is adjacent to neither v−(2d+2), v−(d+2), vd+2

nor v2d+2.

We now show that H
′
w is isomorphic to P4. Observe that v1 is adjacent to both

v−1 and vd+1 since |1− (−1)| = 2 ∈ S and |(d+ 1)− 1| = d ∈ S. Next, we note

that v−(d+1) is adjacent to neither v1 nor vd+1 since |(1)−(−(d+1))| = d+2 6∈ 〈S〉

and |(d + 1) − (−(d + 1))| = 2d + 2 6∈ 〈S〉. By symmetry, we can also deduce

that v−(d+1) ∼ v−1 and vd+1 6∼ v−1. Hence, H
′
w is isomorphic to P4, and thus is

well-covered with β(H
′
w) = 2.

Finally, we show that H
′′
w is isomorphic to P4. Observe that v2d+2 is adjacent to
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both vd+2 and v−(2d+2) since |(2d+ 2)− (d+ 2)| = d ∈ S and |(2d+ 2)− (−(2d+

2))| = 4d + 4 ≡ −2 (mod 4d + 6) ∈ 〈S〉. Next, we note that v−(2d+2) 6∼ vd+2

since |(d + 2) − (−(2d + 2))| = 3d + 4 ≡ −(d + 2) (mod 4d + 6) 6∈ 〈S〉, and

v−(d+2) 6∼ vd+2 since |(d + 2) − (−(d + 2))| = 2d + 4 6∈ 〈S〉. By symmetry,

we can also deduce that v−(2d+2) ∼ v−(d+2) and v2d+2 6∼ v−(d+2). Hence, H
′′
w is

isomorphic to P4, and thus is well-covered with β(H
′′
w) = 2. Therefore, Hw is

well-covered with β(Hw) = 4.

Case 5.2.9 w = vd+3 or w = v−(d+3).

By symmetry, we need only examine w = vd+3. Note that V
(
Hw

)
=
{
vi : −

(2d + 2) ≤ i ≤ −(d + 1)
}
∪
{
v−1, v1, vd+2, vd+4

}
. To show that Hw is well-

covered we are going to apply Lemma 5.1 with u0 = v−(2d+1). Since v−(2d+1)

is adjacent to v−(2d+1)+j and v−(2d+1)−j for each j in the set S, it follows that

NHw [v−(2d+1)] =
{
v−(2d+1)}∪

{
vi : − (2d− 1) ≤ i ≤ −(d+ 1)

}
. We will show for

each u ∈ NHw [v−(2d+1)] that Hu = Hw\NHw [u] is well-covered with β(Hu) = 3.

Case 5.2.9.1 u = v−(2d+1).

Let H
′
u = Hw

[{
v−(2d+2), v−2d, vd+2, vd+4

}]
and H

′′
u = Hw

[{
v−1, v1

}]
. Note that

V (H
′
u) together with V (H

′′
u ) forms a partition of V (Hu).

We claim that no vertex in H
′
u is adjacent to a vertex in H

′′
u . Observe that v1 is

adjacent to neither v−(2d+2), v−2d, vd+2 nor vd+4 since |1−(−(2d+2))| = 2d+3 6∈

〈S〉, |1− (−2d)| = 2d+ 1 6∈ 〈S〉, |(d+ 2)− 1| = d+ 1 6∈ 〈S〉 and |(d+ 4)− 1| =

d + 3 6∈ 〈S〉. Also note that v−1 is adjacent to neither v−(2d+2), v−2d, vd+2 nor

vd+4 since |(−1)− (−(2d+ 2))| = 2d+ 1 6∈ 〈S〉, |(−1)− (−2d)| = 2d− 1 6∈ 〈S〉,

|(d+ 2)− (−1)| = d+ 3 6∈ 〈S〉 and |(d+ 4)− (−1)| = d+ 5 6∈ 〈S〉.

Next, we show that H
′
u is isomorphic to P4. Observe that vd+4 ∼ v−(2d+2) since

|(d + 4) − (−(2d + 2))| = 3d + 6 ≡ −d (mod 4d + 6) ∈ 〈S〉, and vd+4 6∼ v−2d
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since |(d + 4) − (−2d)| = 3d + 4 ≡ −(d + 2) (mod 4d + 6) 6∈ 〈S〉. Also note

that vd+2 is adjacent to neither v−(2d+2) nor v−2d since |(d+ 2)− (−(2d+ 2))| =

3d+4 ≡ −(d+2) (mod 4d+6) 6∈ 〈S〉 and |(d+2)− (−2d)| = 3d+2 ≡ −(d+4)

(mod 4d+ 6) 6∈ 〈S〉. Furthermore, vd+2 ∼ vd+4 since |(d+ 4)− (d+ 2)| = 2 ∈ S,

and v−2d ∼ v−(2d+2) since |(−2d)−(−(2d+2))| = 2 ∈ S. Hence, H
′
u is isomorphic

to P4, and thus is well-covered with β(H
′
u) = 2.

Finally, we note that v−1 ∼ v1 since |1−(−1)| = 2 ∈ S, hence H
′′
u is well-covered

with β(H
′′
u ) = 1. Therefore, Hu is well-covered with β(Hu) = 3.

Case 5.2.9.2 u = vk for −(2d− 1) ≤ k ≤ −(d+ 3).

Since 1 in not in S, we can deduce that vk is adjacent to neither vk−1 nor

vk+1. Next, we note that vk 6∼ v1 since d + 4 ≤ 1 − k ≤ 2d and vk 6∼ v−1 since

d+2 ≤ −1−k ≤ 2d−2. Furthermore, vk 6∼ vd+2 since 2d+5 ≤ (d+2)−k ≤ 3d+1

and vk 6∼ vd+4 since 2d+ 7 ≤ (d+ 4)− k ≤ 3d+ 3.

Let H
′
u = Hw

[{
v1, v−1

}]
, H

′′
u = Hw

[{
vk−1, vk+1

}]
and H

′′′
u = Hw

[{
vd+2, vd+4

}
].

Note that V (H
′
u) together with V (H

′′
u ) and V (H

′′′
u ) forms a partition of V (Hu).

We claim that no vertex in one of the graphs H
′
u, H

′′
u and H

′′′
u is adjacent

to a vertex in either of the other two graphs. Observe that v1 is adjacent

to neither vk−1 nor vk+1 since d + 5 ≤ 1 − (k − 1) ≤ 2d + 1 and d + 3 ≤

1 − (k + 1) ≤ 2d − 1. Similarly, v−1 is adjacent to neither vk−1 nor vk+1 since

d+3 ≤ (−1)−(k−1) ≤ 2d−1 and d+1 ≤ (−1)−(k+1) ≤ 2d−3. Next, we note

that v1 is adjacent to neither vd+2 nor vd+4 since |(d+ 2)− 1| = d+ 1 6∈ 〈S〉 and

|(d+4)−1| = d+3 6∈ 〈S〉. Similarly, v−1 is adjacent to neither vd+2 nor vd+4 since

|(d+ 2)− (−1)| = d+ 3 6∈ 〈S〉 and |(d+ 4)− (−1)| = d+ 5 6∈ 〈S〉. Furthermore,

vd+2 is adjacent to neither vk−1 nor vk+1 since 2d+6 ≤ (d+2)− (k−1) ≤ 3d+2

and 2d+4 ≤ (d+2)− (k+1) ≤ 3d; and vd+4 is adjacent to neither vk−1 nor vk+1
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since 2d+ 8 ≤ (d+ 4)− (k− 1) ≤ 3d+ 4 and 2d+ 6 ≤ (d+ 4)− (k+ 1) ≤ 3d+ 2.

Finally, we note that v−1 ∼ v1 since |1 − (−1)| = 2 ∈ S; vk+1 ∼ vk−1 since

|(k + 1) − (k − 1)| = 2 ∈ S; and vd+2 ∼ vd+4 since |(d + 4) − (d + 2)| = 2 ∈ S.

Hence, H
′
u, H

′′
u and H

′′′
u are well-covered with β(H

′
u) = β(H

′′
u ) = β(H

′′′
u ) = 1.

Therefore, Hu is well-covered with β(Hu) = 3.

Case 5.2.9.3 u = v−(d+2).

Let H
′
u = Hw

[{
v−(d+3), v−(d+1), v−1, v1

}]
and H

′′
u = Hw

[{
vd+2, vd+4

}]
. Note

that V (H
′
u) together with V (H

′′
u ) forms a partition of V (Hu).

We claim that no vertex in H
′
u is adjacent to a vertex in H

′′
u . Observe that vd+2

is adjacent to neither v−(d+3), v−(d+1), v−1 nor v1 since |(d+ 2)− (−(d+ 3))| =

2d+5 6∈ 〈S〉, |(d+2)− (−(d+1))| = 2d+3 6∈ 〈S〉, |(d+2)− (−1)| = d+3 6∈ 〈S〉

and |(d + 2) − 1| = d + 1 6∈ 〈S〉. Next, we note that vd+4 is adjacent to

neither v−(d+3), v−(d+1), v−1 nor v1 since |(d + 4)− (−(d + 3))| = 2d + 7 6∈ 〈S〉,

|(d + 4) − (−(d + 1))| = 2d + 5 6∈ 〈S〉, |(d + 4) − (−1)| = d + 5 6∈ 〈S〉 and

|(d+ 4)− 1| = d+ 3 6∈ 〈S〉.

Next, we show that H
′
u is isomorphic to P4. Observe that v−1 is adjacent to

both v−(d+1) and v1 since |(−1)− (−(d + 1))| = d ∈ S and |1− (−1)| = 2 ∈ S.

Also note that v−(d+3) ∼ v−(d+1) since | − (d + 1) − (−(d + 3))| = 2 ∈ S, and

v−1 6∼ v−(d+3) since |(−1) − (−(d + 3))| = d + 2 6∈ 〈S〉. Furthermore, v1 is

adjacent to neither v−(d+3) nor v−(d+1) since |1− (−(d+ 3))| = d+ 4 6∈ 〈S〉 and

|1 − (−(d + 1))| = d + 2 6∈ 〈S〉. Hence, H
′
u is isomorphic to P4, and thus is

well-covered with β(H
′
u) = 2.

Finally, we note that vd+4 ∼ vd+2 since |(d+ 4)− (d+ 2)| = 2 ∈ S, hence H
′′
u is

well-covered with β(H
′′
u ) = 1. Therefore, Hu is well-covered with β(Hu) = 3.
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Case 5.2.9.4 u = v−(d+1).

Let H
′
u = Hw

[{
v−(2d+2), v−(d+2), vd+2, vd+4

}]
and H

′′
u = Hw

[{
v1
}]

. Note that

V (H
′
u) together with V (H

′′
u ) forms a partition of V (Hu).

We claim that no vertex in H
′
u is adjacent to a vertex in H

′′
u . Note that v1 is

adjacent to neither v−(2d+2), v−(d+2), vd+2 nor vd+4 since |1 − (−(2d + 2))| =

2d + 3 6∈ 〈S〉, |1 − (−(d + 2))| = d + 3 6∈ 〈S〉, |(d + 2) − 1| = d + 1 6∈ 〈S〉 and

|(d+ 4)− 1| = d+ 3 6∈ 〈S〉.

Next, we show that H
′
u is isomorphic to P4. Observe that vd+4 ∼ v−(2d+2) since

|(d+ 4)− (−(2d+ 2))| = 3d+ 6 ≡ −d (mod 4d+ 6) ∈ 〈S〉, and vd+2 6∼ v−(2d+2)

since |(d + 2) − (−(2d + 2))| = 3d + 4 ≡ −(d + 2) (mod 4d + 6) 6∈ 〈S〉. Also

note that vd+2 ∼ vd+4 since |(d + 4) − (d + 2)| = 2 ∈ S, and v−(2d+2) ∼ v−(d+2)

since | − (d + 2) − (−(2d + 2))| = d ∈ S. Furthermore, v−(d+2) is adjacent

to neither vd+2 nor vd+4 since |(d + 2) − (−(d + 2))| = 2d + 4 6∈ 〈S〉 and

|(d+ 4)− (−(d+ 2))| = 2d+ 6 6∈ 〈S〉. Hence, H
′
u is isomorphic to P4, and thus

is well-covered with β(H
′
u) = 2.

Finally, we note that H
′′
u is well-covered with β(H

′′
u ) = 1. Therefore, Hu is

well-covered with β(Hu) = 3.

This concludes Case 5.2.9.

Case 5.2.10 w = vk or w = v−k for d+ 4 ≤ k ≤ 2d− 1.

By symmetry, we need only examine w = vk. Note that V
(
Hw

)
=
{
v−1, v1, vk−1,

vk+1

}
∪
{
vi : k + d + 1 ≤ i ≤ 3d + 5

}
. To show that Hw is well-covered we

are going to apply Lemma 5.1 with x0 = vk+d+2. Since vk+d+2 is adjacent to

v(k+d+2)+j and v(k+d+2)−j for each j in the set S, it follows that NHw [v(k+d+2)] ={
vk+d+2}∪

{
vi : k+ d+ 4 ≤ i ≤ 3d+ 5

}
. We will show for each x ∈ NHw [vk+d+2]
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that Hx = Hw\NHw [x] is well-covered with β(Hx) = 3.

Case 5.2.10.1 x = vk+d+2.

Let H
′
x = Hw

[{
v−1, v1

}]
and H

′′
x = Hw

[{
vk−1, vk+1, vk+d+1, vk+d+3

}]
. Note that

V (H
′
x) together with V (H

′′
x ) forms a partition of V (Hx).

We claim that no vertex in H
′
x is adjacent to a vertex in H

′′
x . First, we consider

v1. Observe that v1 6∼ vk+1 since |(k + 1) − 1| = k 6∈ 〈S〉. Also note that

|(k−1)−1| = k−2, |(k+d+1)−1| = k+d and |(k+d+3)−1| = k+d+2. Since

d+4 ≤ k ≤ 2d−1, it follows that d+2 ≤ k−2 ≤ 2d−3, 2d+4 ≤ k+d ≤ 3d−1

and 2d + 6 ≤ k + d + 2 ≤ 3d + 1. Given our assumption that n = 4d + 6, it

follows that d + 7 ≤ n − (k + d) ≤ 2d + 2 and d + 5 ≤ n − (k + d + 2) ≤ 2d.

Hence, v1 is adjacent to neither vk−1, vk+d+1 nor vk+d+3. Next, we consider v−1.

Note that |(k + 1)− (−1)| = k + 2 and |(k + d+ 3)− (−1)| = k + d+ 4. Since

d + 4 ≤ k ≤ 2d − 1, it follows that d + 6 ≤ k + 2 ≤ 2d + 1 and 2d + 8 ≤

k + d + 4 ≤ 3d + 3. Given our assumption that n = 4d + 6, it follows that

d + 3 ≤ n − (k + d + 4) ≤ 2d − 2. Hence, v−1 is adjacent to neither vk+1

nor vk+d+3. Furthermore, v−1 6∼ vk−1 since |(k − 1) − (−1)| = k 6∈ 〈S〉, and

v−1 6∼ vk+d+1 since |(k + d+ 1)− (−1)| = k + d+ 2 6∈ 〈S〉.

Next, we show that H
′′
x is isomorphic to P4. Observe that vk−1 ∼ vk+1 since

|(k+1)−(k−1)| = 2 ∈ S, and vk+1 ∼ vk+d+1 since |(k+d+1)−(k+1)| = d ∈ S.

Also note that vk+d+1 ∼ vk+d+3 since |(k + d + 3) − (k + d + 1)| = 2 ∈ S, and

vk+d+3 6∼ vk−1 since |(k + d + 3) − (k − 1)| = d + 4 6∈ 〈S〉. Furthermore,

vk+d+3 6∼ vk+1 since |(k + d + 3) − (k + 1)| = d + 2 6∈ 〈S〉, and vk+d+1 6∼ vk−1

since |(k + d+ 1)− (k − 1)| = d+ 2 6∈ 〈S〉. Hence, H
′′
x is isomorphic to P4, and

thus is well-covered with β(H
′′
x ) = 2.

Finally, we note that v−1 ∼ v1 since |1−(−1)| = 2 ∈ S, hence H
′
x is well-covered
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with β(H
′
x) = 1. Therefore, Hx is well-covered with β(Hx) = 3.

Case 5.2.10.2 x = vu for k + d+ 4 ≤ u ≤ 3d+ 3.

Let H
′
x = Hw

[{
v−1, v1

}]
, H

′′
x = Hw

[{
vk−1, vk+1

}]
and H

′′′
x = Hw

[{
vu−1, vu+1

}]
.

Note that V (H
′
x) together with V (H

′′
x ) and V (H

′′′
x ) forms a partition of V (Hx).

We claim that no vertex in H
′
x is adjacent to a vertex in H

′′′
x . First, we consider

v1. Note that |(u−1)−1| = u−2 and |(u+1)−1| = u. Since k+d+4 ≤ u ≤ 3d+3,

it follows that k+d+2 ≤ u−2 ≤ 3d+1. Given our assumption that n = 4d+6,

it follows that d+ 5 ≤ n− (u− 2) ≤ 3d+ 4− k and d+ 3 ≤ n− u ≤ 3d+ 2− k.

Furthermore, since −k ≤ −(d + 4), it follows that 3d + 2 − k ≤ 2d − 2 and

3d + 4 − k ≤ 2d. Hence, v1 is adjacent to neither vu−1 nor vu+1. Next, we

consider v−1. Note that |(u− 1)− (−1)| = u and |(u+ 1)− (−1)| = u+ 2. Since

k + d + 4 ≤ u ≤ 3d + 3, it follows that k + d + 6 ≤ u + 2 ≤ 3d + 5. Given

our assumption that n = 4d + 6, it follows that d + 1 ≤ n − (u + 2) ≤ 3d − k.

Furthermore, since −k ≤ −(d+ 4), it follows that 3d− k ≤ 2d− 4. Hence, v−1

is adjacent to neither vu−1 nor vu+1.

Next, we claim that no vertex in H
′
x is adjacent to a vertex in H

′′
x . Observe that

v1 6∼ vk+1 since |(k+ 1)− 1| = k 6∈ 〈S〉, and v−1 6∼ vk−1 since |(k− 1)− (−1)| =

k 6∈ 〈S〉. We now show that v−1 6∼ vk+1. Note that |(k + 1) − (−1)| = k + 2.

Since d + 4 ≤ k ≤ 2d − 1, it follows that d + 6 ≤ k + 2 ≤ 2d + 1. Similarly,

v1 6∼ vk−1 since |(k − 1)− 1| = k + 2 6∈ 〈S〉.

We also claim that no vertex in H
′′
x is adjacent to a vertex in H

′′′
x . First, we

consider vk−1. Note that |(u − 1) − (k − 1)| = u − k and |(u + 1) − (k − 1)| =

u− k + 2. Since k + d+ 4 ≤ u ≤ 3d+ 3 and d+ 4 ≤ k ≤ 2d− 1, it follows that

k − d + 5 ≤ u− k ≤ 2d− 1 and k − d + 7 ≤ u− k + 2 ≤ 2d + 1. Furthermore,

k− d+ 5 ≤ d+ 4 and k− d+ 7 ≤ d+ 6. Hence, vk−1 is adjacent to neither vu−1



74

nor vu+1. Next, we consider vk+1. Note that |(u− 1)− (k+ 1)| = u− k− 2 and

|(u+ 1)− (k+ 1)| = u−k. Since k+d+ 4 ≤ u ≤ 3d+ 3 and d+ 4 ≤ k ≤ 2d− 1,

it follows that k − d+ 3 ≤ u− k − 2 ≤ 2d− 3. Furthermore, k − d+ 3 ≤ d+ 2.

Hence, vk+1 is adjacent to neither vu−1 nor vu+1.

To conclude v−1 ∼ v1 since |1 − (−1)| = 2 ∈ S; vk−1 ∼ vk+1 since |(k + 1) −

(k− 1)| = 2 ∈ S; and vu−1 ∼ vu+1 since |(u+ 1)− (u− 1)| = 2 ∈ S. Hence, H
′
x,

H
′′
x and H

′′′
x are well-covered with β(H

′
x) = β(H

′′
x ) = β(H

′′′
x ) = 1. Therefore,

V
(
Hx

)
is well-covered with β(Hx) = 3.

Case 5.2.10.3 x = v3d+4.

Let H
′
x = Hw

[{
v−1, v1, v3d+3, v3d+5

}]
and H

′′
x = Hw

[{
vk−1, vk+1

}]
. Note that

V (H
′
x) together with V (H

′′
x ) forms a partition of V (Hx).

We claim that no vertex in H
′
x is adjacent to a vertex in H

′′
x . First, we consider

v3d+3. Note that |(3d+3)−(k−1)| = 3d−k+4 and |(3d+3)−(k+1)| = 3d−k+2.

Since d + 4 ≤ k ≤ 2d − 1, it follows that d + 5 ≤ 3d − k + 4 ≤ 2d and

d + 4 ≤ 3d − k + 3 ≤ 2d − 1. Hence, v3d+3 is adjacent to neither vk−1 nor

vk+1. Next, we consider v3d+5. Note that |(3d+ 5)− (k − 1)| = 3d− k + 6 and

|(3d + 5) − (k + 1)| = 3d − k + 4. Since d + 4 ≤ k ≤ 2d − 1, it follows that

d+ 7 ≤ 3d− k + 6 ≤ 2d+ 2. Hence, v3d+5 is adjacent to neither vk−1 nor vk+1.

Furthermore, from Case 5.2.10.1, we know that vk−1 is adjacent to neither v−1

nor v1; and vk+1 is adjacent to neither v−1 nor v1.

Next, we show that H
′
x is isomorphic to P4. Observe that v3d+3 ∼ v3d+5 since

|(3d+ 5)− (3d+ 3)| = 2 ∈ S, and v1 ∼ v−1 since |1− (−1)| = 2 ∈ S. Next, we

note that v3d+5 ∼ v−1 since |(3d+5)− (−1)| = 3d+6 ≡ −d (mod 4d+6) ∈ 〈S〉,

and v3d+3 6∼ v−1 since |(3d+3)− (−1)| = 3d+4 ≡ −(d+2) (mod 4d+6) 6∈ 〈S〉.

Furthermore, v1 is adjacent to neither v3d+3 nor v3d+5 since |(3d + 3) − 1| =
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3d + 2 ≡ −(d + 4) (mod 4d + 6) 6∈ 〈S〉 and |(3d + 5)− 1| = 3d + 4 ≡ −(d + 2)

(mod 4d + 6) 6∈ 〈S〉. Hence, H
′
x is isomorphic to P4, and thus is well-covered

with β(H
′
x) = 2.

Finally, we note that vk−1 ∼ vk+1 since |(k + 1)− (k− 1)| = 2 ∈ S, hence H
′′
x is

well-covered with β(H
′′
x ) = 1. Therefore, V

(
Hx

)
is well-covered with β(Hx) = 3.

Case 5.2.10.4 x = v3d+5.

Let H
′
x = Hw

[{
vk−1, vk+1

}]
, H

′′
x = Hw

[{
v1
}]

and H
′′′
x = Hw

[{
v3d+4

}]
. Note

that V (H
′
x) together with V (H

′′
x ) and V (H

′′′
x ) forms a partition of V (Hx).

We claim that no vertex in one of the graphs H
′
x, H

′′
x and H

′′′
x is adjacent

to a vertex in either of the other two graphs. Observe that v1 6∼ v3d+4 since

|(3d+ 4)− 1| = 3d+ 3 ≡ −(d+ 3) (mod 4d+ 6) 6∈ 〈S〉. Next, we consider v3d+4.

Note that |(3d+ 4)− (k− 1)| = 3d− k+ 5 and |(3d+ 4)− (k+ 1)| = 3d− k+ 3.

Since d + 4 ≤ k ≤ 2d − 1, it follows that d + 6 ≤ 3d − k + 5 ≤ 2d + 1 and

d+ 4 ≤ 3d− k + 3 ≤ 2d− 1. Hence, v3d+4 is adjacent to neither vk−1 nor vk+1.

Furthermore, from Case 5.2.10.1, we know that v1 is adjacent to neither vk−1

nor vk+1.

Next, we note that vk−1 ∼ vk+1 since |(k + 1) − (k − 1)| = 2 ∈ S, hence H
′
x is

well-covered with β(H
′
x) = 1. Furthermore, H

′′
x and H

′′′
x are well-covered with

β(H
′′
x ) = β(H

′′′
x ) = 1. Therefore, Hx is well-covered with β(Hx) = 3.

This concludes Case 5.2.10.

Case 5.2.11 w = v2d or w = v−2d.

By symmetry, we need only examine w = v2d. Note that V
(
Hw

)
=
{
v−(d+5),

v−(d+4), v−(d+3), v−(d+2), v−(d+1), v−1, v1, v2d−1, v2d+1

}
. To show that Hw is well-

covered we are going to apply Lemma 5.1 with y0 = v−(d+3). Since v−(d+3)
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is adjacent to v−(d+3)+j and v−(d+3)−j for each j in the set S, it follows that

NHw [v−(d+3)] = {v−(d+5), v−(d+3), v−(d+1)}. We will show for each y ∈ NHw [v−(d+3)]

that Hy = Hw\NHw [y] is well-covered with β(Hy) = 3.

Case 5.2.11.1 y = v−(d+3).

Let H
′
y = Hw

[{
v−1, v1

}]
, H

′′
y = Hw

[{
v2d−1, v2d+1

}]
and H

′′′
y = Hw

[{
v−(d+4),

v−(d+2)

}]
. Note that V (H

′
y) together with V (H

′′
y ) and V (H

′′′
y ) forms a partition

of V (Hy).

We claim that no vertex in one of the graphs H
′
y, H

′′
y and H

′′′
y is adjacent to a

vertex in either of the other two graphs. First, we note that v1 is adjacent to

neither v−(d+4), v−(d+2), v2d−1 nor v2d+1 since |1 − (−(d + 4))| = d + 5 6∈ 〈S〉,

|1− (−(d+ 2))| = d+ 3 6∈ 〈S〉, |(2d− 1)− 1| = 2d− 2 6∈ 〈S〉 and |(2d+ 1)− 1| =

2d 6∈ 〈S〉. Similarly, v−1 is adjacent to neither v−(d+4), v−(d+2), v2d−1 nor v2d+1

since |(−1) − (−(d + 4))| = d + 3 6∈ 〈S〉, |(−1) − (−(d + 2))| = d + 1 6∈ 〈S〉,

|(2d−1)− (−1)| = 2d 6∈ 〈S〉 and |(2d+1)− (−1)| = 2d+2 6∈ 〈S〉. Next, we note

that v−(d+2) is adjacent to neither v2d−1 nor v2d+1 since |(2d− 1)− (−(d+ 2))| =

3d + 1 ≡ −(d + 5) (mod 4d + 6) 6∈ 〈S〉 and |(2d + 1)− (−(d + 2))| = 3d + 3 ≡

−(d+ 3) (mod 4d+ 6) 6∈ 〈S〉. Furthermore, v−(d+4) is adjacent to neither v2d−1

nor v2d+1 since |(2d− 1)− (−(d+ 4))| = 3d+ 3 ≡ −(d+ 3) (mod 4d+ 6) 6∈ 〈S〉

and |(2d+ 1)− (−(d+ 4))| = 3d+ 5 ≡ −(d+ 1) (mod 4d+ 6) 6∈ 〈S〉.

To conclude v−1 ∼ v1 since |1− (−1)| = 2 ∈ S; v2d−1 ∼ v2d+1 since |(2d + 1)−

(2d− 1)| = 2 ∈ S; and v−(d+4) ∼ v−(d+2) since |(−(d+ 2)− (−(d+ 4))| = 2 ∈ S.

Hence, H
′
y, H

′′
y and H

′′′
y are well-covered with β(H

′
y) = β(H

′′
y ) = β(H

′′′
y ) = 1.

Therefore, Hy is well-covered with β(Hy) = 3.
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Case 5.2.11.2 y = v−(d+5).

Let H
′
y = Hw

[{
v−1, v1

}]
, H

′′
y = Hw

[{
v2d−1

}]
and H

′′′
y = Hw

[{
v−(d+4)

}]
. Note

that V (H
′
y) together with V (H

′′
y ) and V (H

′′′
y ) forms a partition of V (Hy).

From Case 5.2.11.1, we know that v−(d+4) is adjacent to neither v−1, v1 nor

v2d−1; and v2d−1 is adjacent to neither v−1 nor v1. Hence, no vertex in one of the

graphs H
′
y, H

′′
y and H

′′′
y is adjacent to a vertex in either of the other two graphs.

Next, we note that v1 ∼ v−1 since |1− (−1)| = 2 ∈ S, hence H
′
y is well-covered

with β(H
′
y) = 1. Furthermore, H

′′
y and H

′′′
y are well-covered with β(H

′′
y ) =

β(H
′′′
y ) = 1. Therefore, Hy is well-covered with β(Hy) = 3.

Case 5.2.11.3 y = v−(d+1).

Let H
′
y = Hw

[{
v1
}]

, H
′′
y = Hw

[{
v2d−1, v2d+1

}]
and H

′′′
y = Hw

[{
v−(d+2)

}]
. Note

that V (H
′
y) together with V (H

′′
y ) and V (H

′′′
y ) forms a partition of V (Hy).

From Case 5.2.11.1, we know that v1 is adjacent to neither v−(d+2), v2d−1 nor

v2d+1; and v−(d+2) is adjacent to neither v2d−1 nor v2d+1. Hence, no vertex in one

of the graphs H
′
y, H

′′
y and H

′′′
y is adjacent to a vertex in either of the other two

graphs.

Next, we note that v2d−1 ∼ v2d+1 since |(2d+ 1)− (2d− 1)| = 2 ∈ S, hence H
′′
y

is well-covered with β(H
′′
y ) = 1. Furthermore, H

′
y and H

′′′
y are well-covered with

β(H
′
y) = β(H

′′′
y ) = 1. Therefore, Hy is well-covered with β(Hy) = 3.

This concludes Case 5.2.11.

Case 5.2.12 w = v2d+1 or w = v−(2d+1).

By symmetry, we need only examine w = v2d+1. Note that V
(
Hw

)
=
{
v−(d+4),

v−(d+3), v−(d+2), v−(d+1), v−1, v1, v2d, v2d+2

}
. To show that Hw is well-covered we
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are going to apply Lemma 5.1 with z0 = v−(d+1). Since v−(d+1) is adjacent to

v−(d+1)+j and v−(d+1)−j for each j in the set S, it follows that NHw [v−(d+1)] =

{v−(d+4), v−(d+3), v−(d+1), v−1}. We will show for each z ∈ NHw [v−(d+1)] that

Hz = Hw\NHw [z] is well-covered with β(Hz) = 3.

Case 5.2.12.1 z = v−(d+1).

Let H
′
z = Hw

[{
v2d, v2d+2

}]
, H

′′
z = Hw

[{
v1
}]

and H
′′′
z = Hw

[{
v−(d+2)

}]
. Note

that V (H
′
z) together with V (H

′′
z ) and V (H

′′′
z ) forms a partition of V (Hz).

We claim that no vertex in one of the graphs H
′
z, H

′′
z and H

′′′
z is adjacent to a

vertex in either of the other two graphs. Observe that v1 is adjacent to neither

v2d nor v2d+2 since |2d−1| = 2d−1 6∈ 〈S〉 and |(2d+2)−1| = 2d+1 6∈ 〈S〉. Next,

we note that v−(d+2) is adjacent to neither v2d nor v2d+2 since |(2d) − (−(d +

2))| = 3d + 2 ≡ −(d + 4) (mod 4d + 6) 6∈ 〈S〉 and |(2d + 2) − (−(d + 2))| =

3d + 4 ≡ −(d + 2) (mod 4d + 6) 6∈ 〈S〉. Furthermore, v1 6∼ v−(d+2) since

|1− (−(d+ 2))| = d+ 3 6∈ 〈S〉.

Next, we note that v2d+2 ∼ v2d since |(2d + 2) − 2d| = 2 ∈ S, hence H
′
z is

well-covered with β(H
′
z) = 1. Furthermore, H

′′
z and H

′′′
z are well-covered with

β(H
′′
z ) = β(H

′′′
z ) = 1. Therefore, Hz is well-covered with β(Hz) = 3.

Case 5.2.12.2 z = v−1.

Let H
′
z = Hw

[{
v−(d+4), v−(d+2), v2d, v2d+2

}]
and H

′′
z = Hw

[{
v−(d+3)

}]
. Note that

V (H
′
z) together with V (H

′′
z ) forms a partition of V (Hz).

We claim that no vertex in H
′
z is adjacent to a vertex in H

′′
z . Observe that v−(d+3)

is adjacent to neither v−(d+4) nor v−(d+2) since | − (d+ 3)− (−(d+ 4))| = 1 6∈ S

and |−(d+2)−(−(d+3))| = 1 6∈ S. Furthermore, v−(d+3) is adjacent to neither
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v2d nor v2d+2 since |(2d)− (−(d+ 3))| = 3d+ 3 ≡ −(d+ 3) (mod 4d+ 6) 6∈ 〈S〉

and |(2d+ 2)− (−(d+ 3))| = 3d+ 5 ≡ −(d+ 1) (mod 4d+ 6) 6∈ 〈S〉.

Next, we show that H
′
z is isomorphic to P4. Observe that v2d+2 ∼ v−(d+4) since

|(2d + 2) − (−(d + 4))| = 3d + 6 ≡ −d (mod 4d + 6) ∈ 〈S〉, and v2d 6∼ v−(d+4)

since |(2d)− (−(d+4))| = 3d+4 ≡ −(d+2) (mod 4d+6) 6∈ 〈S〉. Next, we note

that v−(d+2) is adjacent to neither v2d nor v2d+2 since |(2d + 2)− (−(d + 2))| =

3d+4 ≡ −(d+2) (mod 4d+6) 6∈ 〈S〉 and |(2d)−(−(d+2))| = 3d+2 ≡ −(d+4)

(mod 4d + 6) 6∈ 〈S〉. Furthermore, v2d+2 ∼ v2d since |(2d + 2) − (2d)| = 2 ∈ S,

and v−(d+2) ∼ v−(d+4) since | − (d + 2) − (−(d + 4))| = 2 ∈ S. Hence, H
′
z is

isomorphic to P4, and thus is well-covered with β(H
′
z) = 2.

Furthermore, H
′′
z is well-covered with β(H

′′
z ) = 1. Therefore, Hz is well-covered

with β(Hz) = 3.

Case 5.2.12.3 z = v−(d+3).

Let H
′
z = Hw

[{
v−(d+4), v−(d+2), v2d, v2d+2

}]
and H

′′
z = Hw

[{
v−1, v1

}]
. Note that

V (H
′
z) together with V (H

′′
z ) forms a partition of V (Hz).

We claim that no vertex in H
′
z is adjacent to a vertex in H

′′
z . Observe that v1 is

adjacent to neither v−(d+4), v−(d+2), v2d nor v2d+2 since |1− (−(d+4))| = d+5 6∈

〈S〉, |1− (−(d+ 2))| = d+ 3 6∈ 〈S〉, |2d− 1| = 2d− 1 6∈ 〈S〉 and |(2d+ 2)− 1| =

2d+ 1 6∈ 〈S〉. Similarly, v−1 is adjacent to neither v−(d+4), v−(d+2), v2d nor v2d+2

since |(−1) − (−(d + 4))| = d + 3 6∈ 〈S〉, |(−1) − (−(d + 2))| = d + 1 6∈ 〈S〉,

|2d− (−1)| = 2d+ 1 6∈ 〈S〉 and |(2d+ 2)− (−1)| = 2d+ 3 6∈ 〈S〉.

We now note that v1 ∼ v−1 since |1− (−1)| = 2 ∈ S, hence H
′′
z is well-covered

with β(H
′′
z ) = 1. Furthermore, from Case 5.2.12.2, we know that H

′
z is well-

covered with β(H
′
z) = 2. Therefore, Hz is well-covered with β(Hz) = 3.
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Case 5.2.12.4 z = v−(d+4).

Let H
′
z = Hw

[{
v−1, v1

}]
, H

′′
z = Hw

[{
v2d
}]

and H
′′′
z = Hw

[{
v−(d+3)

}]
. Note

that V (H
′
z) together with V (H

′′
z ) and V (H

′′′
z ) forms a partition of V (Hz).

We claim that no vertex in one of the graphs H
′
z, H

′′
z and H

′′′
z is adjacent

to a vertex in either of the other two graphs. Observe that v1 is adjacent to

neither v−(d+3) nor v2d since |1 − (−(d + 3))| = d + 4 6∈ 〈S〉 and |2d − 1| =

2d − 1 6∈ 〈S〉. Next, we note that v−1 is adjacent to neither v−(d+3) nor v2d

since |(−1) − (−(d + 3))| = d + 2 6∈ 〈S〉 and since |2d − (−1)| = 2d + 1 6∈ 〈S〉.

Furthermore, v2d 6∼ v−(d+3) since |(2d) − (−(d + 3))| = 3d + 3 ≡ −(d + 3)

(mod 4d+ 6) 6∈ 〈S〉.

Next, we note that v1 ∼ v−1 since |1− (−1)| = 2 ∈ S, hence H
′
z is well-covered

with β(H
′
z) = 1. Furthermore, H

′′
z and H

′′′
z are well-covered with β(H

′′
z ) =

β(H
′′′
z ) = 1. Therefore, Hz is well-covered with β(Hz) = 3.

This concludes Case 5.2.12.

Hence, G is well-covered with β
(
G
)

= 6, concluding the proof of Case (v).

We now proceed to prove the ‘only if’ direction.

Case 5.2.13 n = 3d+ 3.

Then V (H) =
{
vi : −

⌊
n
2

⌋
≤ i ≤ −(d+1)

}
∪
{
v−1
}
∪
{
v1
}
∪
{
vi : d+1 ≤ i ≤

⌊
n
2

⌋}
.

Let I1 =
{
v0, vd+1, v−(d+1)

}
. Observe that v0 is adjacent to neither vd+1 nor v−(d+1)

since |(d+ 1)−0| = d+ 1 6∈ 〈S〉 and |0− (−(d+ 1))| = d+ 1 6∈ 〈S〉. We also note that

vd+1 6∼ v−(d+1) since |(d+ 1)− (−(d+ 1))| = 2d+ 2 ≡ −(d+ 1) (mod 3d+ 3) 6∈ 〈S〉.

Hence, I1 is an independent set in G. Since vd+1 is adjacent to vd+1+j and vd+1−j for

each j in the set S, NH [vd+1] =
{
vi : −

⌊
n
2

⌋
≤ i ≤ −(d + 2)

}
∪
{
v1
}
∪
{
vi : d + 3 ≤
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i ≤
⌊
n
2

⌋ }
. Furthermore, vd+2 ∼ v−(d+1) since |(d + 2) − (−(d + 1))| = 2d + 3 ≡ −d

(mod 3d+ 3) ∈ 〈S〉. Hence, I1 is a maximal independent set in G.

Now, let I2 =
{
v−(d+1), v−d, vd, vd+1

}
. Observe that vd is adjacent to neither vd+1

nor v−d since |(d+1)−d| = 1 6∈ S and |d−(−d)| = 2d ≡ −(d+3) (mod 3d+3) 6∈ 〈S〉.

Next, we note that v−(d+1) is adjacent to neither vd nor vd+1 since |d− (−(d+ 1))| =

2d+ 1 ≡ −(d+ 2) (mod 3d+ 3) 6∈ 〈S〉 and |(d+ 1)− (−(d+ 1))| = 2d+ 2 ≡ −(d+ 1)

(mod 3d+ 3) 6∈ 〈S〉. By symmetry, we can also deduce that v−d is adjacent to neither

v−(d+1) nor vd+1. Hence, I2 is an independent set in G with cardinality greater than

that of I1, and thus G is not well-covered.

Case 5.2.14 3d+ 5 ≤ n ≤ 4d+ 4.

Let I
′
=
{
v−(d+2), v−(d+1), vd+1

}
. Observe that v−(d+2) 6∼ v−(d+1) since |− (d+1)−

(−(d+2))| = 1 6∈ S. Next, we consider vd+1. Note that |(d+1)− (−(d+2))| = 2d+3

and |(d+ 1)− (−(d+ 1))| = 2d+ 2. Given our assumption that 3d+ 5 ≤ n ≤ 4d+ 4,

it follows that d + 2 ≤ n − (2d + 3) ≤ 2d + 1 and d + 3 ≤ n − (2d + 2) ≤ 2d + 2.

Therefore, vd+1 is adjacent to neither v−(d+2) nor v−(d+1). Hence, I
′

is an independent

set in G.

Now, let H1 be the component of G\N [I
′
] containing v0. It follows that V (H1) ={

v0, vd, vd+2

}
. First, let K1 =

{
vd
}

. Note that vd is adjacent to both v0 and vd+2 since

|d− 0| = d ∈ S and |(d+ 2)− d| = 2 ∈ S. Thus, K1 is a maximal independent set in

H1. Next, let K2 =
{
v0, vd+2

}
. Observe that vd+2 6∼ v0 since |(d+2)−0| = d+2 6∈ 〈S〉.

Therefore, K2 is an independent set in H1 with cardinality greater than that of K1.

So H1 is not well-covered, and hence by Proposition 2.5, G is not well-covered.

Case 5.2.15 n = 4d+ 5.

Let I
′

=
{
v−(2d+2), v−(2d+1), v0

}
. Observe that v0 is adjacent to neither v−(2d+2)

nor v−(2d+1) since |0−(−(2d+2))| = 2d+2 6∈ 〈S〉 and |0−(−(2d+1))| = 2d+1 6∈ 〈S〉.
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Furthermore, v−(2d+2) 6∼ v−(2d+1) since | − (2d+ 1)− (−(2d+ 2))| = 1 6∈ S. Hence, I
′

is an independent set in G.

Now, let H1 be the component of G\N [I
′
] containing v1. It follows that V (H1) ={

v−1, v1, vd+1

}
. First, let K1 =

{
v1
}

. Note that v1 is adjacent to both v−1 and vd+1

since |1−(−1)| = 2 ∈ S and |(d+1)−1| = d ∈ S. Thus, K1 is a maximal independent

set in H1. Next, let K2 =
{
v−1, vd+1

}
. Observe that vd+1 6∼ v−1 since |(d+1)−(−1)| =

d+ 2 6∈ 〈S〉. Therefore, K2 is an independent set in H1 with cardinality greater than

that of K1. So H1 is not well-covered, and hence by Proposition 2.5, G is not well-

covered.

Case 5.2.16 n ≥ 4d+ 7.

Let I
′

=
{
v−(d+3), v0, v2d+2, v2d+3,

}
. Observe that v−(d+3) 6∼ v0 since |0 − (−(d +

3))| = d + 3 6∈ 〈S〉, and v2d+2 6∼ v2d+3 since |(2d + 3) − (2d + 2)| = 1 6∈ S. Next, we

consider v−(d+3). Note that |(2d+2)−(−(d+3))| = 3d+5 and |(2d+3)−(−(d+3))| =

3d + 6. Given our assumption that n ≥ 4d + 7, it follows that n − (3d + 5) ≥ d + 2

and n − (3d + 6) ≥ d + 1. Therefore, v−(d+3) is adjacent to neither v2d+2 nor v2d+3.

Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v1. It follows that V (H1) ={

v−1, v1, vd+1

}
. First, let K1 =

{
v1
}

. Note that v1 is adjacent to both v−1 and vd+1

since |1−(−1)| = 2 ∈ S and |(d+1)−1| = d ∈ S. Thus, K1 is a maximal independent

set in H1. Next, let K2 =
{
v−1, vd+1

}
. Observe that vd+1 6∼ v−1 since |(d+1)−(−1)| =

d+ 2 6∈ 〈S〉. Therefore, K2 is an independent set in H1 with cardinality greater than

that of K1. So H1 is not well-covered, and hence by Proposition 2.5, G is not well-

covered.
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A characterization of the well-covered graphs in Class 8 can now be stated.

Theorem 5.3 Let n and d be integers with 3 ≤ d ≤ n
2
. Then G = C

(
n, {1} ∪

{3, 4, . . . , d}
)

is well-covered if and only if one of the following conditions holds:

(i) d ≥ 5 and 2d+ 7 ≤ n ≤ 3d+ 2, or

(ii) d ≥ 4 and 2d ≤ n ≤ 2d+ 3, or

(iii) d ≥ 4 and n = 2d+ 5, or

(iv) G is one of the following: C
(
6, {1, 3}

)
, C
(
7, {1, 3}

)
, C
(
8, {1, 3}

)
, C
(
9, {1, 3}

)
,

C
(
11, {1, 3}

)
or C

(
13, {1, 3}

)
.

Furthermore, if 2d+7 ≤ n ≤ 3d+2 or if G is one of C
(
8, {1, 3}

)
or C

(
11, {1, 3}

)
then β

(
G
)

= 4; if 2d ≤ n ≤ 2d+ 3 or G = C
(
7, {1, 3}

)
then β

(
G
)

= 2; if n = 2d+ 5

or if G is one of C
(
6, {1, 3}

)
or C

(
9, {1, 3}

)
then β

(
G
)

= 3; and if G = C
(
13, {1, 3}

)
then β

(
G
)

= 5.

Proof. Let V (G) =
{
vi : i = 0, 1, . . . , n − 1

}
. First, we prove the ‘if’ direction.

In each case let I be a maximal independent set of G. Without loss of generality,

assume that v0 ∈ I and let H be the graph induced by G \N [v0]. Note that V (H) ={
vi : −

⌊
n
2

⌋
≤ i ≤ −(d+1)

}
∪
{
v−2
}
∪
{
v2
}
∪
{
vi : d+1 ≤ i ≤

⌊
n
2

⌋}
. By Corollary 2.6,

it suffices to show that in Case (i) H is well-covered with β
(
H
)

= 3; in Case (ii) H

is well-covered with β
(
H
)

= 1; and in Case (iii) H is well-covered with β
(
H
)

= 2.

(i) d ≥ 5 and 2d+ 7 ≤ n ≤ 3d+ 2.

We must consider the following four cases:
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Case 5.3.1 d ≥ 5 and n = 2d+ 7.

In this case V (H) =
{
v−(d+3), v−(d+2), v−(d+1), v−2, v2, vd+1, vd+2, vd+3

}
. To show

that H is well-covered we are going to apply Lemma 5.1 with w0 = v2. Since

v2 is adjacent to v2+j and v2−j for each j in the set S, it follows that NH [v2] ={
v−2, v2, vd+1, vd+2

}
. We will show for each w ∈ NH [v2] that Hw = H\NH [w] is

well-covered with β(Hw) = 2.

Case 5.3.1.1 w = v−2 or w = v2.

By symmetry, we need only examine w = v2. We first note that V (Hw) ={
v−(d+3), v−(d+2), v−(d+1), vd+3

}
. Observe that vd+3 is adjacent to both v−(d+3)

and v−(d+1) since |(d+ 3)− (−(d+ 3))| = 2d+ 6 ≡ −1 (mod 2d+ 7) ∈ 〈S〉 and

|(d + 3) − (−(d + 1))| = 2d + 4 ≡ −3 (mod 2d + 7) ∈ 〈S〉. Next, we note that

v−(d+2) is adjacent to both v−(d+3) and v−(d+1) since |−(d+2)−(−(d+3))| = 1 ∈ S

and | − (d + 1) − (−(d + 2))| = 1 ∈ S. Furthermore, vd+3 6∼ v−(d+2) since

|(d+ 3)− (−(d+ 2))| = 2d+ 5 ≡ −2 (mod 2d+ 7) 6∈ 〈S〉, and v−(d+3) 6∼ v−(d+1)

since |− (d+ 1)− (−(d+ 3))| = 2 6∈ S. Hence, Hw is isomorphic to C4, and thus

is well-covered with β(Hw) = 2.

Case 5.3.1.2 w = vd+1.

In this case V
(
Hw) = {v−2, vd+3}. Observe that vd+3 6∼ v−2 since |(d + 3) −

(−2)| = d+ 5 6∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Case 5.3.1.3 w = vd+2.

In this case V
(
Hw) = {v−(d+3), v−2}. Observe that v−(d+3) 6∼ v−2 since |(−2) −

(−(d+ 3))| = d+ 1 6∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Hence, G is well-covered with β
(
G
)

= 4, concluding the proof of Case 5.3.1.
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Case 5.3.2 d ≥ 6 and n = 2d+ 8.

In this case V (H) =
{
v−(d+3), v−(d+2), v−(d+1), v−2, v2, vd+1, vd+2, vd+3, vd+4

}
. To

show that H is well-covered we are going to apply Lemma 5.1 with w0 = v2.

Since v2 is adjacent to v2+j and v2−j for each j in the set S, it follows that

NH [v2] =
{
v−2, v2, vd+1, vd+2

}
. We will show for each w ∈ NH [v2] that Hw =

H\NH [w] is well-covered with β(Hw) = 2.

Case 5.3.2.1 w = v−2 or w = v2.

By symmetry, we need only examine w = v2. We first note that V (Hw) ={
v−(d+3), v−(d+2), v−(d+1), vd+3, vd+4

}
. To show that Hw is well-covered we are

going to apply Lemma 5.1 with u0 = v−(d+3). Since v−(d+3) is adjacent to

v−(d+3)+j and v−(d+3)−j for each j in the set S, it follows that NHw [v−(d+3)] ={
v−(d+3), v−(d+2), vd+4

}
. We will show for each u ∈ NHw [v−(d+3)] that Hu =

Hw\NHw [u] is well-covered with β(Hu) = 1.

Case 5.3.2.1.1 u = v−(d+3)

In this case V
(
Hu

)
= {v−(d+1), vd+3}. Observe that vd+3 ∼ v−(d+1) since |(d +

3)− (−(d+ 1))| = 2d+ 4 ≡ −4 (mod 2d+ 8) ∈ 〈S〉. Hence, Hu is well-covered

with β(Hu) = 1.

Case 5.3.2.1.2 u = v−(d+2).

In this case V
(
Hu

)
= {vd+4}. Hence, Hu is well-covered with β(Hu) = 1.

Case 5.3.2.1.3 u = vd+4.

In this case V
(
Hu

)
= {v−(d+2)}. Hence, Hu is well-covered with β(Hu) = 1.

This concludes Case 5.3.2.1.
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Case 5.3.2.2 w = vd+1.

In this case V
(
Hw) = {v−2, vd+3}. Observe that vd+3 6∼ v−2 since |(d + 3) −

(−2)| = d+ 5 6∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Case 5.3.2.3 w = vd+2.

In this case V
(
Hw) = {v−2, vd+4}. Observe that vd+4 6∼ v−2 since |(d + 4) −

(−2)| = d+ 6 6∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Hence, G is well-covered with β
(
G
)

= 4, concluding the proof of Case 5.3.2.

Case 5.3.3 d ≥ 7 and n = 2d+ 9.

Note that V (H) =
{
v−(d+4), v−(d+3), v−(d+2), v−(d+1), v−2, v2, vd+1, vd+2, vd+3, vd+4

}
.

To show that H is well-covered we are going to apply Lemma 5.1 with w0 = v2.

Since v2 is adjacent to v2+j and v2−j for each j in the set S, it follows that

NH [v2] =
{
v−2, v2, vd+1, vd+2

}
. We will show for each w ∈ NH [v2] that Hw =

H\NH [w] is well-covered with β(Hw) = 2.

Case 5.3.3.1 w = v−2 or w = v2.

By symmetry, we need only examine w = v2. We first note that V (Hw) ={
v−(d+4), v−(d+3), v−(d+2), v−(d+1), vd+3, vd+4

}
. To show that Hw is well-covered

we are going to apply Lemma 5.1 with u0 = v−(d+3). Since v−(d+3) is adjacent

to v−(d+3)+j and v−(d+3)−j for each j in the set S, it follows that NHw [v−(d+3)] ={
v−(d+4), v−(d+3), v−(d+2), vd+3

}
. We will show for each u ∈ NHw [v−(d+3)] that

Hu = Hw\NHw [u] is well-covered with β(Hu) = 1.
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Case 5.3.3.1.1 u = v−(d+3).

In this case V
(
Hu

)
= {v−(d+1), vd+4}. Observe that vd+4 ∼ v−(d+1) since |(d +

4)− (−(d+ 1))| = 2d+ 5 ≡ −4 (mod 2d+ 9) ∈ 〈S〉. Hence, Hu is well-covered

with β(Hu) = 1.

Case 5.3.3.1.2 u = v−(d+4).

In this case V
(
Hu

)
= {v−(d+2), vd+3}. Observe that vd+3 ∼ v−(d+2) since |(d +

3)− (−(d+ 2))| = 2d+ 5 ≡ −4 (mod 2d+ 9) ∈ 〈S〉. Hence, Hu is well-covered

with β(Hu) = 1.

Case 5.3.3.1.3 u = v−(d+2).

In this case V
(
Hu

)
= {v−(d+4)}. Hence, Hu is well-covered with β(Hu) = 1.

Case 5.3.3.1.4 u = vd+3.

In this case V
(
Hu

)
= {v−(d+4)}. Hence, Hu is well-covered with β(Hu) = 1.

This concludes Case 5.3.3.1.

Case 5.3.3.2 w = vd+1.

In this case V
(
Hw) = {v−2, vd+3}. Observe that vd+3 6∼ v−2 since |(d + 3) −

(−2)| = d+ 5 6∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Case 5.3.3.3 w = vd+2.

In this case V
(
Hw) = {v−2, vd+4}. Observe that vd+4 6∼ v−2 since |(d + 4) −

(−2)| = d+ 6 6∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Hence, G is well-covered with β
(
G
)

= 4, concluding the proof of Case 5.3.3.
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Case 5.3.4 d ≥ 8 and 2d+ 10 ≤ n ≤ 3d+ 2.

To show that H is well-covered we are going to apply Lemma 5.1 with w0 = v−2.

Since v−2 is adjacent to v−2+j and v−2−j for each j in the set S, it follows that

NH [v−2] =
{
v−(d+2), v−(d+1), v−2, v2

}
. We will show for each w ∈ NH [v−2] that

Hw = H\NH [w] is well-covered with β(Hw) = 2.

Case 5.3.4.1 w = v−2 or w = v2.

By symmetry, we need only examine w = v−2. We first note that V (Hw) ={
vi : −

⌊
n
2

⌋
≤ i ≤ −(d + 3)

}
∪
{
vi : d + 1 ≤ i ≤

⌊
n
2

⌋}
. To show that Hw is

well-covered we are going to apply Lemma 5.1 with u0 = vd+1. Since vd+1 is

adjacent to vd+1+j and vd+1−j for each j in the set S, it follows that NHw [vd+1] ={
vi : −

⌊
n
2

⌋
≤ i ≤ −(d+3)

}
∪
{
vd+1, vd+2

}
∪
{
vi : d+4 ≤ i ≤

⌊
n
2

⌋}
. We will show

for each u ∈ NHw [vd+1] that Hu = Hw\NHw [u] is well-covered with β(Hu) = 1.

Case 5.3.4.1.1 u = vd+1.

In this case V
(
Hu

)
= {vd+3}. Hence, Hu is well-covered with β(Hu) = 1.

Case 5.3.4.1.2 u = vd+2.

In this case V
(
Hu

)
= {vd+4}. Hence, Hu is well-covered with β(Hu) = 1.

Case 5.3.4.1.3 u = vk or u = v−k for d+ 4 ≤ k ≤
⌊
n
2

⌋
.

By symmetry, we need only examine u = vk. Since 2 in not in S, we can deduce

that vk is adjacent to neither vk−2 nor vk+2, and thence V
(
Hu

)
= {vk−2, vk+2}.

Note that vk+2 ∼ vk−2 since |(k+2)−(k−2)| = 4 ∈ S. Hence, Hu is well-covered

with β(Hu) = 1.
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Case 5.3.4.1.4 u = v−(d+3).

In this case V
(
Hu

)
= {v−(d+5)}. Hence, Hu is well-covered with β(Hu) = 1.

This concludes Case 5.3.4.1.

Case 5.3.4.2 w = v−(d+2).

In this case V
(
Hw) = {v2, v−(d+4)}. Observe that v−(d+4) 6∼ v2 since |2− (−(d+

4))| = d+ 6 6∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Case 5.3.4.3 w = v−(d+1).

In this case V
(
Hw) = {v2, v−(d+3)}. Observe that v−(d+3) 6∼ v2 since |2− (−(d+

3))| = d+ 5 6∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Hence, G is well-covered with β
(
G
)

= 4, concluding the proof of Case 5.3.4.

(ii) d ≥ 4 and 2d ≤ n ≤ 2d+ 3.

We must consider the following three cases:

Case 5.3.5 n = 2d+ k for k = 0 or 1.

In this case V (H) =
{
v−2, v2

}
. Observe that v2 ∼ v−2 since |2− (−2)| = 4 ∈ S.

H is therefore a complete graph and |I ∩ V (H)| = 1. Hence, |I| = 2, G is

well-covered and β
(
G
)

= 2.

Case 5.3.6 n = 2d+ 2.

In this case V (H) =
{
v−2, v2, vd+1

}
. Observe that v2 ∼ vd+1 since |(d+1)−2| =

d−1 ∈ S. Next, we note that v−2 ∼ vd+1 since |(d+1)−(−2)| = d+3 ≡ −(d−1)

(mod 2d + 2) ∈ 〈S〉. Furthermore, v2 ∼ v−2. H is therefore a complete graph

and |I ∩ V (H)| = 1. Hence, |I| = 2, G is well-covered and β
(
G
)

= 2.



90

Case 5.3.7 n = 2d+ 3.

In this case V (H) =
{
v−(d+1), v−2, v2, vd+1

}
. Observe that v−2 ∼ v−(d+1) since

|(−2) − (−(d + 1))| = d − 1 ∈ S. Next, we note that vd+1 is adjacent to both

v−(d+1) and v−2 since |(d+ 1)− (−(d+ 1))| = 2d+ 2 ≡ −1 (mod 2d+ 3) ∈ 〈S〉

and |(d + 1)− (−2)| = d + 3 ≡ −d (mod 2d + 3) ∈ 〈S〉. By symmetry, we can

also deduce that v2 is adjacent to both v−(d+1) and vd+1. Furthermore, v2 ∼ v−2.

H is therefore a complete graph and |I ∩ V (H)| = 1. Hence, |I| = 2, G is

well-covered and β
(
G
)

= 2.

(iii) d ≥ 4 and n = 2d+ 5.

In this case V (H) =
{
v−(d+2), v−(d+1), v−2, v2, vd+1, vd+2

}
. To show that H is

well-covered we are going to apply Lemma 5.1 with w0 = v2. Since v2 is

adjacent to v2+j and v2−j for each j in the set S, it follows that NH [v2] ={
v−2, v2, vd+1, vd+2

}
. We will show for each w ∈ NH [v2] that Hw = H\NH [w] is

well-covered with β(Hw) = 1.

Case 5.3.8 w = v−2 or w = v2.

By symmetry, we need only examine w = v2. We first note that V (Hw) ={
v−(d+2), v−(d+1)

}
. Observe that v−(d+2) ∼ v−(d+1) since |−(d+1)−(−(d+2))| =

1 ∈ S. Hence, Hw is well-covered with β(Hw) = 1.

Case 5.3.9 w = vd+1.

In this case V
(
Hw) = {v−2, v−(d+2)}. Observe that v−(d+2) ∼ v−2 since |(−2) −

(−(d+ 2))| = d ∈ S. Hence, Hw is well-covered with β(Hw) = 1.
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Case 5.3.10 w = vd+2.

In this case V
(
Hw) = {v−(d+1), v−2}. Observe that v−(d+1) ∼ v−2 since |(−2) −

(−(d+ 1))| = d− 1 ∈ S. Hence, Hw is well-covered with β(Hw) = 1.

Hence, G is well-covered and β
(
G
)

= 3.

(iv) G is one of the following C
(
6, {1, 3}

)
, C
(
7, {1, 3}

)
, C
(
8, {1, 3}

)
, C
(
9, {1, 3}

)
,

C
(
11, {1, 3}

)
or C

(
13, {1, 3}

)
.

Note that C
(
6, {1, 3}

)
and C

(
9, {1, 3}

)
are well-covered and β

(
G
)

= 3; C
(
7, {1,

3}
)

is well-covered and β
(
G
)

= 2; C
(
8, {1, 3}

)
and C

(
11, {1, 3}

)
are well-

covered and β
(
G
)

= 4; and C
(
13, {1, 3}

)
is well-covered and β

(
G
)

= 5.

We now proceed to prove the ‘only if’ direction.

Case 5.3.11 d ≥ 3 and n = 2d+ 4.

First, we note that C
(
10, {1, 3}

)
is not well-covered.

Next, we consider the case where d ≥ 4. Let I
′

=
{
vd+2

}
and let H1 be the

component of G \ N [I
′
] containing v0. It follows that V (H1) =

{
v−d, v−1, v0, v1, vd

}
.

First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in H1. Next, let

K2 =
{
v−1, v1

}
. Observe that v−1 6∼ v1 since |1 − (−1)| = 2 6∈ S. Therefore, K2

is an independent set in H1 with cardinality greater than that of K1. So H1 is not

well-covered, and hence by Proposition 2.5, G is not well-covered.

Case 5.3.12 d ≥ 3 and n = 2d+ 6.

First, we note that C
(
12, {1, 3}

)
is not well-covered.

Next, we consider the case where d ≥ 4. Let I
′

=
{
v−(d+2), vd+2

}
. Observe that

v−(d+2) 6∼ vd+2 since |(d+ 2)− (−(d+ 2))| = 2d+ 4 ≡ −2 (mod 2d+ 6) 6∈ 〈S〉. Hence,

I
′

is an independent set in G.



92

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−1, v0, v1
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in H1.

Next, let K2 =
{
v−1, v1

}
. Observe that v−1 6∼ v1 since |1− (−1)| = 2 6∈ S. Therefore,

K2 is an independent set in H1 with cardinality greater than that of K1. So H1 is

not well-covered, and hence by Proposition 2.5, G is not well-covered.

Case 5.3.13 d = 3 and n ≥ 3d+ 5.

Let I
′

=
{
v−(d+2), vd+2

}
. First, we show that v−(d+2) 6∼ vd+2. Note that |(d +

2) − (−(d + 2))| = 2d + 4. Given our assumption that n ≥ 3d + 5, it follows that

n− (2d+ 4) ≥ d+ 1. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−3, v−1, v0, v1, v3
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent

set in H1. Next, let K2 =
{
v−3, v−1, v1, v3

}
. Observe that v1 is adjacent to neither

v−1 nor v3 since |1 − (−1)| = 2 6∈ S and |3 − 1| = 2 6∈ S. Next, we note that v3 is

adjacent to neither v−3 nor v−1 since |3− (−3)| = 6 6∈ S and |3− (−1)| = 4 6∈ S. By

symmetry, we can also deduce that v−3 is adjacent to neither v−1 nor v1. Therefore,

K2 is an independent set in H1 with cardinality greater than that of K1. So H1 is

not well-covered, and hence by Proposition 2.5, G is not well-covered.

Case 5.3.14 d ≥ 4 and n ≥ 3d+ 3.

Case 5.3.14.1 n = 3d+ 3.

Let I
′
=
{
v−(d+1), vd+1

}
. Observe that v−(d+1) 6∼ vd+1 since |(d+1)−(−(d+1))| =

2d+ 2 ≡ −(d+ 1) (mod 3d+ 3) 6∈ 〈S〉. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−(d−1), v0, vd−1
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set

in H1. Next, let K2 =
{
v−(d−1), vd−1

}
. Observe that v−(d−1) 6∼ vd−1 since |(d − 1) −

(−(d−1))| = 2d−2 ≡ −(d+5) (mod 3d+3) 6∈ 〈S〉. Therefore, K2 is an independent



93

set in H1 with cardinality greater than that of K1. So H1 is not well-covered, and

hence by Proposition 2.5, G is not well-covered.

Case 5.3.14.2 n = 3d+ 4.

Let I
′
=
{
v−(d+1), vd+2

}
. Observe that v−(d+1) 6∼ vd+2 since |(d+2)−(−(d+1))| =

2d+ 3 ≡ −(d+ 1) (mod 3d+ 4) 6∈ 〈S〉. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−(d−1), v0, v1, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in

H1. Next, let K2 =
{
v−(d−1), vd

}
. Observe that v−(d−1) 6∼ vd since |d− (−(d− 1))| =

2d − 1 ≡ −(d + 5) (mod 3d + 4) 6∈ 〈S〉. Therefore, K2 is an independent set in H1

with cardinality greater than that of K1. So H1 is not well-covered, and hence by

Proposition 2.5, G is not well-covered.

Case 5.3.14.3 n = 3d+ 5.

Let I
′
=
{
v−(d+2), vd+2

}
. Observe that v−(d+2) 6∼ vd+2 since |(d+2)−(−(d+2))| =

2d+ 4 ≡ −(d+ 1) (mod 3d+ 5) 6∈ 〈S〉. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−d, v−1, v0, v1, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set

in H1. Next, let K2 =
{
v−1, v1

}
. Observe that v−1 6∼ v1 since |1 − (−1)| = 2 6∈ S.

Therefore, K2 is an independent set in H1 with cardinality greater than that of K1.

So H1 is not well-covered, and hence by Proposition 2.5, G is not well-covered. A

similar argument shows that n = 3d+ 6 is also not well-covered.

Case 5.3.14.4 n = 3d+ 7.

Let I
′
=
{
v−(d+2), vd+2, vd+4

}
. Observe that vd+2 6∼ vd+4 since |(d+ 4)− (d+ 2)| =

2 6∈ S. Next, we note that vd+4 6∼ v−(d+2) since |(d+4)−(−(d+2))| = 2d+6 ≡ −(d+1)

(mod 3d+7) 6∈ 〈S〉. Furthermore, vd+2 6∼ v−(d+2) since |(d+2)−(−(d+2))| = 2d+4 ≡

−(d+ 3) (mod 3d+ 7) 6∈ 〈S〉. Hence, I
′

is an independent set in G.
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Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−d, v−1, v0, v1
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set

in H1. Next, let K2 =
{
v−1, v1

}
. Observe that v−1 6∼ v1 since |1 − (−1)| = 2 6∈ S.

Therefore, K2 is an independent set in H1 with cardinality greater than that of K1.

So H1 is not well-covered, and hence by Proposition 2.5, G is not well-covered. A

similar argument shows that n = 3d+ 8 is also not well-covered.

Case 5.3.14.5 n ≥ 3d+ 9.

Let I
′

=
{
v−(d+4), v−(d+2), vd+2, vd+4

}
. Observe that vd+2 6∼ vd+4 since |(d + 4) −

(d+ 2)| = 2 6∈ S. Next, we consider v−(d+2). Note that |(d+ 2)− (−(d+ 2))| = 2d+ 4

and |(d + 4) − (−(d + 2))| = 2d + 6. Given our assumption that n ≥ 3d + 9, it

follows that n − (2d + 4) ≥ d + 5 and n − (2d + 6) ≥ d + 3. Hence, v−(d+2) is

adjacent to neither vd+2 nor vd+4. Finally, we show that vd+4 6∼ v−(d+4). Note that

|(d + 4) − (−(d + 4))| = 2d + 8. Given our assumption that n ≥ 3d + 9, it follows

that n− (2d+ 8) ≥ d+ 1. By symmetry, we can also deduce that v−(d+4) is adjacent

to neither v−(d+2) nor vd+2. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−1, v0, v1
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in H1.

Next, let K2 =
{
v−1, v1

}
. Observe that v−1 6∼ v1 since |1− (−1)| = 2 6∈ S. Therefore,

K2 is an independent set in H1 with cardinality greater than that of K1. So H1 is

not well-covered, and hence by Proposition 2.5, G is not well-covered.

A characterization of the well-covered graphs in Class 9 can now be stated.

Theorem 5.4 Let n and d be integers with 4 ≤ d ≤ n
2
. Then G = C

(
n, {1} ∪

{4, 5, . . . , d}
)

is well-covered if and only if one of the following conditions holds:

(i) d ≥ 6 and 2d ≤ n ≤ 2d+ 3, or
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(ii) d ≥ 6 and n = 2d+ 5, or

(iii) d ≥ 6 and 2d+ 8 ≤ n ≤ 3d+ 2, or

(iv) G is one of the following: C
(
10, {1, 4, 5}

)
, C
(
11, {1, 4, 5}

)
, C
(
8, {1, 4}

)
,

C
(
10, {1, 4}

)
, C
(
11, {1, 4}

)
, C
(
12, {1, 4}

)
, or C

(
13, {1, 4}

)
.

Furthermore, if 2d ≤ n ≤ 2d+3 or if G is one of C
(
10, {1, 4, 5}

)
or C

(
11, {1, 4, 5}

)
then β

(
G
)

= 2; if n = 2d+5 or G = C
(
8, {1, 4}

)
then β

(
G
)

= 3; if 2d+8 ≤ n ≤ 3d+2

or if G is one of C
(
10, {1, 4}

)
, C
(
11, {1, 4}

)
or C

(
12, {1, 4}

)
then β

(
G
)

= 4; and if

G = C
(
13, {1, 4}

)
then β

(
G
)

= 5.

Proof. Let V (G) =
{
vi : i = 0, 1, . . . , n − 1

}
. First, we prove the ‘if’ direction.

In each case let I be a maximal independent set of G. Without loss of generality,

assume that v0 ∈ I and let H be the graph induced by G \N [v0]. Note that V (H) ={
vi : −

⌊
n
2

⌋
≤ i ≤ −(d + 1)

}
∪
{
v−3, v−2

}
∪
{
v2, v3

}
∪
{
vi : d + 1 ≤ i ≤

⌊
n
2

⌋}
. By

Corollary 2.6, it suffices to show that in Case (i) H is well-covered with β
(
H
)

= 1; in

Case (ii) H is well-covered with β
(
H
)

= 2; and in Case (iii) H is well-covered with

β
(
H
)

= 3.

(i) d ≥ 6 and 2d ≤ n ≤ 2d+ 3.

We must consider the following three cases:

Case 5.4.1 n = 2d+ k for k = 0 or 1.

In this case V (H) =
{
v−3, v−2, v2, v3

}
. We claim that V (H) is a complete

graph. Observe that v2 is adjacent to v−3, v3 and v−2 since |2− (−3)| = 5 ∈ S,

|3 − 2| = 1 ∈ S and |2 − (−2)| = 4 ∈ S. Next, we note that v3 ∼ v−3 since

|3 − (−3)| = 6 ∈ S. By symmetry, we can also deduce that v−2 is adjacent to

both v−3 and v3. Hence, H is a complete graph and β(H) = 1. Therefore, G is

well-covered and β
(
G
)

= 2.
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Case 5.4.2 n = 2d+ 2.

In this case V (H) =
{
v−3, v−2, v2, v3, vd+1

}
. We claim that V (H) is a complete

graph. Observe that vd+1 is adjacent to both v2 and v3 since |(d + 1) − 2| =

d− 1 ∈ S and |(d+ 1)− 3| = d− 2 ∈ S. Next, we note that vd+1 is adjacent to

both v−3 and v−2 since |(d+ 1)− (−2)| = d+ 3 ≡ −(d− 1) (mod 2d+ 2) ∈ 〈S〉

and |(d+ 1)− (−3)| = d+ 4 ≡ −(d−2) (mod 2d+ 2) ∈ 〈S〉. Furthermore, from

Case 5.4.1, we know that v2 is adjacent to v−3, v−2 and v3; v3 is adjacent to

both v−3 and v−2; and v−2 ∼ v−3. Hence, H is a complete graph and β(H) = 1.

Therefore, G is well-covered and β
(
G
)

= 2.

Case 5.4.3 n = 2d+ 3.

In this case V (H) =
{
v−3, v−2, v2, v3, vd+1, vd+2

}
. We claim that V (H) is a

complete graph. Observe that vd+2 is adjacent to v2, v3 and vd+1 since |(d+2)−

2| = d ∈ S, |(d+2)−3| = d−1 ∈ S and |(d+2)−(d+1)| = 1 ∈ S. Next, we note

that vd+2 is adjacent to both v−3 and v−2 since |(d+2)−(−2)| = d+4 ≡ −(d−1)

(mod 2d+3) ∈ 〈S〉 and |(d+2)− (−3)| = d+5 ≡ −(d−2) (mod 2d+3) ∈ 〈S〉.

Furthermore, from Case 5.4.1 and 5.4.2, we know that v2 is adjacent to v−3, v−2

and v3; v3 is adjacent to both v−3 and v−2; vd+1 is adjacent to v−3, v−2, v2 and

v3; and v−2 ∼ v−3. Hence, H is a complete graph and β(H) = 1. Therefore, G

is well-covered and β
(
G
)

= 2.

(ii) d ≥ 6 and n = 2d+ 5.

Let H1 = G
[{
v2, v3, vd+1, vd+2

}]
and H2 = G

[{
v−(d+2), v−(d+1), v−3, v−2

}]
. Note

that V (H1) together with V (H2) forms a partition of V (H).

We claim that Hi is a complete graph for i = 1 and 2. Observe that v2 is

adjacent to v3, vd+1 and vd+2 since |3 − 2| = 1 ∈ S, |(d + 1) − 2| = d − 1 ∈ S
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and |(d + 2) − 2| = d ∈ S. Next, we note that v3 is adjacent to both vd+1 and

vd+2 since |(d+ 1)− 3| = d− 2 ∈ S and |(d+ 2)− 3| = d− 1 ∈ S. Furthermore,

vd+1 ∼ vd+2 since |(d + 2) − (d + 1)| = 1 ∈ S. Hence, H1 is a complete graph.

Similarly, H2 is a complete graph.

Note that V (H) 6= ∅, hence |I ∩ V (H)| 6= ∅. Without loss of generality, let

vk ∈ I ∩ V (H1). Next, consider v−(d+1) a vertex in V (H2). We claim that

|k− (−(d+ 1))| > d. First, we note that v−(d+1) is adjacent to neither v2 nor v3

since |2− (−(d + 1))| = d + 3 6∈ 〈S〉 and |3− (−(d + 1))| = d + 4 6∈ 〈S〉. Next,

observe that v−(d+1) is adjacent to neither vd+1 nor vd+2 since |(d+ 1)− (−(d+

1))| = 2d+2 ≡ −3 (mod 2d+5) 6∈ 〈S〉 and |(d+2)− (−(d+1))| = 2d+3 ≡ −2

(mod 2d+ 5) ∈ 〈S〉. Therefore, v−(d+1) 6∼ vk, hence |I ∩V (H2)| 6= ∅ and |I| ≥ 3.

Since Hi is complete, it follows that |I ∩ V (Hi)| = 1 for i = 1 and 2. Hence,

|I| = 3, G is well-covered and β
(
G
)

= 3.

(iii) d ≥ 6 and 2d+ 8 ≤ n ≤ 3d+ 2.

We must consider the following three cases:

Case 5.4.4 d ≥ 6 and n = 2d+ 8.

Note that V (H) =
{
v−(d+3), v−(d+2), v−(d+1), v−3, v−2, v2, v3, vd+1, vd+2, vd+3, vd+4

}
.

To show that H is well-covered we are going to apply Lemma 5.1 with w0 = v−2.

Since v−2 is adjacent to v−2+j and v−2−j for each j in the set S, it follows that

NH [v−2] =
{
v−(d+2), v−(d+1), v−3, v−2, v2, v3

}
. We will show for each w ∈ NH [v−2]

that Hw = H\NH [w] is well-covered with β(Hw) = 2.

Case 5.4.4.1 w = v−2 or w = v2.

By symmetry, we need only examine w = v−2. We first note that V (Hw) ={
v−(d+3), vd+1, vd+2, vd+3, vd+4

}
. We claim that Hw is isomorphic to C5. Observe
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that vd+2 is adjacent to both vd+1 and vd+3 since |(d + 2) − (d + 1)| = 1 ∈ S

and |(d + 3) − (d + 2)| = 1 ∈ S. Similarly, v−(d+3) is adjacent to both vd+1

and vd+4 since |(d + 1) − (−(d + 3))| = 2d + 4 ≡ −4 (mod 2d + 8) ∈ 〈S〉 and

|(d + 4) − (−(d + 3))| = 2d + 7 ≡ −1 (mod 2d + 8) ∈ 〈S〉. Next, we note

that vd+4 ∼ vd+3 since |(d + 4) − (d + 3)| = 1 ∈ S, and vd+4 6∼ vd+2 since

|(d + 4) − (d + 2)| = 2 6∈ S. Also note that v−(d+3) is adjacent to neither

vd+2 nor vd+3 since |(d + 2) − (−(d + 3))| = 2d + 5 ≡ −3 (mod 2d + 8) 6∈ 〈S〉

and |(d + 3) − (−(d + 3))| = 2d + 6 ≡ −2 (mod 2d + 8) 6∈ 〈S〉. Furthermore,

vd+1 is adjacent to neither vd+3 nor vd+4 since |(d + 3) − (d + 1)| = 2 6∈ S

and |(d + 4) − (d + 1)| = 3 6∈ S. Hence, Hw is isomorphic to C5, and thus is

well-covered with β(Hw) = 2.

Case 5.4.4.2 w = v−(d+1).

Let H
′
w = H

[{
v2, v3

}]
and H

′′
w = H

[{
v−(d+3), vd+4

}]
. Note that V (H

′
w) together

with V (H
′′
w) forms a partition of V (Hw).

We claim that no vertex in H
′
w is adjacent to a vertex in H

′′
w. Observe that

v−(d+3) is adjacent to neither v2 nor v3 since |2− (−(d+ 3))| = d+ 5 6∈ 〈S〉 and

|3 − (−(d + 3))| = d + 6 6∈ 〈S〉. Similarly, vd+4 is adjacent to neither v2 nor v3

since |(d+ 4)− 2| = d+ 2 6∈ 〈S〉 and |(d+ 4)− 3| = d+ 1 6∈ 〈S〉.

We now note that v−(d+3) ∼ vd+4 since |(d + 4) − (−(d + 3))| = 2d + 7 ≡ −1

(mod 2d + 8) ∈ 〈S〉, and thence H
′′
w is well-covered with β(H

′′
w) = 1. Fur-

thermore, v2 ∼ v3 since |3 − 2| = 1 ∈ S, and thence H
′
w is well-covered with

β(H
′
w) = 1. Therefore, Hw is well-covered with β(Hw) = 2.

Case 5.4.4.3 w = v−(d+2).

We first note that V
(
Hw

)
=
{
v2, v3, vd+3, vd+4

}
. We claim that Hw is isomorphic

to P4. Observe that vd+3 is adjacent to both v3 and vd+4 since |(d+3)−3| = d ∈ S
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and |(d+ 4)− (d+ 3)| = 1 ∈ S. Also note that v2 is adjacent to neither vd+3 nor

vd+4 since |(d+3)−2| = d+1 6∈ 〈S〉 and |(d+4)−2| = d+2 6∈ 〈S〉. Furthermore,

v2 ∼ v3 since |3 − 2| = 1 ∈ S, and v3 6∼ vd+4 since |(d + 4) − 3| = d + 1 6∈ 〈S〉.

Hence, Hw is isomorphic to P4, and thus is well-covered with β(Hw) = 2.

Case 5.4.4.4 w = v3 or w = v−3.

By symmetry, we need only examine w = v−3. Observe V (Hw) =
{
vd+1, vd+2,

vd+3, vd+4

}
. We claim that Hw is isomorphic to P4. Observe that vd+3 is adjacent

to both vd+2 and vd+4 since |(d+ 3)− (d+ 2)| = 1 ∈ S and |(d+ 4)− (d+ 3)| =

1 ∈ S. Next, we note that vd+1 is adjacent to neither vd+3 nor vd+4 since

|(d+3)−(d+1)| = 2 6∈ S and |(d+4)−(d+1)| = 3 6∈ S. Furthermore, vd+2 ∼ vd+1

since |(d+2)−(d+1)| = 1 ∈ S, and vd+2 6∼ vd+4 since |(d+4)−(d+2)| = 2 6∈ S.

Hence, Hw is isomorphic to P4, and thus is well-covered with β(Hw) = 2.

Hence, G is well-covered with β
(
G
)

= 4, concluding the proof of Case 5.4.4.

Case 5.4.5 d ≥ 7 and n = 2d+ 9.

Note that V (H) =
{
v−(d+4), v−(d+3), v−(d+2), v−(d+1), v−3, v−2, v2, v3, vd+1, vd+2,

vd+3, vd+4

}
. To show that H is well-covered we are going to apply Lemma 5.1

with w0 = v−2. Since v−2 is adjacent to v−2+j and v−2−j for each j in the set

S, it follows that NH [v−2] =
{
v−(d+2), v−(d+1), v−3, v−2, v2, v3

}
. We will show for

each w ∈ NH [v−2] that Hw = H\NH [w] is well-covered with β(Hw) = 2.

Case 5.4.5.1 w = v−2 or w = v2.

By symmetry, we need only examine w = v−2. In this case V (Hw) =
{
v−(d+4),

v−(d+3), vd+1, vd+2, vd+3, vd+4

}
. To show that Hw is well-covered we are going

to apply Lemma 5.1 with u0 = vd+3. Since vd+3 is adjacent to v(d+3)+j and
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v(d+3)−j for each j in the set S, it follows that NHw [vd+3] =
{
vd+2, vd+3, vd+4

}
.

We will show for each u ∈ NHw [vd+3] that Hu = Hw\NHw [u] is well-covered with

β(Hu) = 1.

Case 5.4.5.1.1 u = vd+3.

In this case V
(
Hu

)
= {v−(d+4), v−(d+3), vd+1}. Observe that v−(d+4) ∼ v−(d+3)

since |−(d+3)−(−(d+4))| = 1 ∈ S. Next, we note that vd+1 is adjacent to both

v−(d+4) and v−(d+3) since |(d+1)−(−(d+4))| = 2d+5 ≡ −4 (mod 2d+9) ∈ 〈S〉

and |(d + 1) − (−(d + 3))| = 2d + 4 ≡ −5 (mod 2d + 9) ∈ 〈S〉. Hence, Hu is

isomorphic to C3, and thus is well-covered with β(Hu) = 1.

Case 5.4.5.1.2 u = vd+4.

In this case V
(
u
)

= {v−(d+3), vd+1, vd+2}. Observe that v−(d+3) is adjacent to

both vd+1 and vd+2 since |(d+1)−(−(d+3))| = 2d+4 ≡ −5 (mod 2d+9) ∈ 〈S〉

and |(d + 2) − (−(d + 3))| = 2d + 5 ≡ −4 (mod 2d + 9) ∈ 〈S〉. Furthermore,

vd+1 ∼ vd+2 since |(d + 2) − (d + 1)| = 1 ∈ S. Hence, Hu is isomorphic to C3,

and thus is well-covered with β(Hu) = 1.

Case 5.4.5.1.3 u = vd+2.

In this case V
(
Hu

)
= {v−(d+4), vd+4}. Observe that vd+4 ∼ v−(d+4) since |(d +

4)− (−(d+ 4))| = 2d+ 8 ≡ −1 (mod 2d+ 9) ∈ 〈S〉. Hence, Hu is well-covered

with β(Hu) = 1.

This concludes Case 5.4.5.1.

Case 5.4.5.2 w = v−(d+1).

Let H
′
w = H

[{
v2, v3

}]
and H

′′
w = H

[{
v−(d+4), v−(d+3)

}]
. Note that V (H

′
w)

together with V (H
′′
w) forms a partition of V (Hw).
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We claim that no vertex in H
′
w is adjacent to a vertex in H

′′
w. Observe that

v−(d+3) is adjacent to neither v2 nor v3 since |2− (−(d+ 3))| = d+ 5 6∈ 〈S〉 and

|3 − (−(d + 3))| = d + 6 6∈ 〈S〉. Similarly, v−(d+4) is adjacent to neither v2 nor

v3 since |2− (−(d+ 4))| = d+ 6 6∈ 〈S〉 and |3− (−(d+ 4))| = d+ 7 6∈ 〈S〉.

We now note that v−(d+3) ∼ v−(d+4) since | − (d + 3) − (−(d + 4))| = 1 ∈ S,

and thence H
′′
w is well-covered with β(H

′′
w) = 1. Furthermore, v2 ∼ v3 since

|3− 2| = 1 ∈ S, and thence H
′
w is well-covered with β(H

′
w) = 1. Therefore, Hw

is well-covered with β(Hw) = 2.

Case 5.4.5.3 w = v−(d+2).

Let H
′
w = H

[{
v2, v3

}]
and H

′′
w = H

[{
v−(d+4), vd+4

}]
. Note that V (H

′
w) together

with V (H
′′
w) forms a partition of V (Hw).

We claim that no vertex in H
′
w is adjacent to a vertex in H

′′
w. Observe that

v−(d+4) is adjacent to neither v2 nor v3 since |2− (−(d+ 4))| = d+ 6 6∈ 〈S〉 and

|3 − (−(d + 4))| = d + 7 6∈ 〈S〉. Similarly, vd+4 is adjacent to neither v2 nor v3

since |(d+ 4)− 2| = d+ 2 6∈ 〈S〉 and |(d+ 4)− 3| = d+ 1 6∈ 〈S〉.

We now note that v−(d+4) ∼ vd+4 since |(d + 4) − (−(d + 4))| = 2d + 8 ≡ −1

(mod 2d + 9) ∈ 〈S〉, and thence H
′′
w is well-covered with β(H

′′
w) = 1. Fur-

thermore, v2 ∼ v3 since |3 − 2| = 1 ∈ S, and thence H
′
w is well-covered with

β(H
′
w) = 1. Therefore, Hw is well-covered with β(Hw) = 2.

Case 5.4.5.4 w = v3 or w = v−3.

By symmetry, we need only examine w = v−3. Note that V (Hw) =
{
v−(d+4), vd+1,

vd+2, vd+3, vd+4

}
.

We claim thatHw is isomorphic to C5. Observe that v−(d+4) is adjacent to neither

vd+2 nor vd+3 since |(d+2)− (−(d+4))| = 2d+6 ≡ −3 (mod 2d+9) 6∈ 〈S〉 and
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|(d + 3) − (−(d + 4))| = 2d + 7 ≡ −2 (mod 2d + 9) 6∈ 〈S〉. Next, we note that

v−(d+4) is adjacent to both vd+1 and vd+4 since |(d+1)−(−(d+4))| = 2d+5 ≡ −4

(mod 2d+9) ∈ 〈S〉 and |(d+4)−(−(d+4))| = 2d+8 ≡ −1 (mod 2d+9) ∈ 〈S〉.

Furthermore, from Case 5.4.4.1, we know that vd+2 is adjacent to both vd+1 and

vd+3; vd+1 is adjacent to neither vd+3 nor vd+4; vd+4 ∼ vd+3; and vd+4 6∼ vd+2.

Hence, Hw is isomorphic to C5, and thus is well-covered with β(Hw) = 2.

Hence, G is well-covered with β
(
G
)

= 4, concluding the proof of Case 5.4.5.

Case 5.4.6 d ≥ 6 and 2d+ 8 ≤ n ≤ 3d+ 2.

To show that H is well-covered we are going to apply Lemma 5.1 with w0 = v−2.

Since v−2 is adjacent to v−2+j and v−2−j for each j in the set S, it follows that

NH [v−2] =
{
v−(d+2), v−(d+1), v−3, v−2, v2, v3

}
. We will show for each w ∈ NH [v−2]

that Hw = H\NH [w] is well-covered with β(Hw) = 2.

Case 5.4.6.1 w = v2 or w = v−2.

By symmetry, we need only examine w = v−2. Note that V (Hw) =
{
vi : −

⌊
n
2

⌋
≤

i ≤ −(d + 3)
}
∪
{
vi : d + 1 ≤ i ≤

⌊
n
2

⌋}
. To show that Hw is well-covered we

are going to apply Lemma 5.1 with u0 = vd+1. Since vd+1 is adjacent to vd+1+j

and vd+1−j for each j in the set S, it follows that NHw [vd+1] =
{
vi : −

⌊
n
2

⌋
≤

i ≤ −(d + 3)
}
∪
{
vd+1, vd+2

}
∪
{
vi : d + 5 ≤ i ≤

⌊
n
2

⌋}
. We will show for each

u ∈ NHw [vd+1] that Hu = Hw\NHw [u] is well-covered with β(Hu) = 1.

Case 5.4.6.1.1 u = vd+1.

In this case V
(
Hu

)
= {vd+3, vd+4}. Observe that vd+3 ∼ vd+4 since |(d + 4) −

(d+ 3)| = 1 ∈ S. Hence, Hu is well-covered with β(Hu) = 1.
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Case 5.4.6.1.2 u = vd+2.

In this case V
(
u
)

= {vd+4, vd+5}. Observe that vd+5 ∼ vd+4 since |(d+ 5)− (d+

4)| = 1 ∈ S. Hence, Hu is well-covered with β(Hu) = 1.

Case 5.4.6.1.3 u = vk or u = v−k for d+ 5 ≤ k ≤
⌊
n
2

⌋
.

By symmetry, we need only examine u = vk. Since neither 2 nor 3 is in S,

we can deduce that vk is adjacent to neither vk−3, vk−2, vk+2 nor vk+3, and

thus V
(
Hu

)
= {vk−3, vk−2, vk+2, vk+3}. We claim that Hu is isomorphic to K4.

Observe that vk+2 is adjacent to vk−3, vk−2 and vk+3 since |(k + 2)− (k − 3)| =

5 ∈ S, |(k+ 2)− (k− 2)| = 4 ∈ S and |(k+ 3)− (k+ 2)| = 1 ∈ S. Next, we note

that vk+3 is adjacent to both vk−3 and vk−2 since |(k+ 3)− (k− 3)| = 6 ∈ S and

|(k+ 3)− (k− 2)| = 5 ∈ S. Furthermore, vk−2 ∼ vk−3 since |(k− 2)− (k− 3)| =

1 ∈ S. Hence, Hu is isomorphic to K4, and thus is well-covered with β(Hu) = 1.

Case 5.4.6.1.4 u = v−(d+4).

In this case V
(
Hu

)
= {v−(d+7), v−(d+6)}. Observe that v−(d+7) ∼ v−(d+6) since

| − (d+ 6)− (−(d+ 7))| = 1 ∈ S. Hence, Hu is well-covered with β(Hu) = 1.

Case 5.4.6.1.5 u = v−(d+3).

In this case V
(
Hu

)
= {v−(d+6), v−(d+5)}. Observe that v−(d+6) ∼ v−(d+5) since

| − (d+ 5)− (−(d+ 6))| = 1 ∈ S. Hence, Hu is well-covered with β(Hu) = 1.

This concludes Case 5.4.6.1.

Case 5.4.6.2 w = v−(d+1).

Let H
′
w = H

[{
v2, v3

}]
and H

′′
w = H

[{
v−(d+4), v−(d+3)

}]
. Note that V (H

′
w)

together with V (H
′′
w) forms a partition of V (Hw).
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We claim that no vertex in H
′
w is adjacent to a vertex in H

′′
w. Observe that

v−(d+3) is adjacent to neither v2 nor v3 since |2− (−(d+ 3))| = d+ 5 6∈ 〈S〉 and

|3 − (−(d + 3))| = d + 6 6∈ 〈S〉. Similarly, v−(d+4) is adjacent to neither v2 nor

v3 since |2− (−(d+ 4))| = d+ 6 6∈ 〈S〉 and |(3− (−(d+ 4))| = d+ 7 6∈ 〈S〉.

We now note that v−(d+3) ∼ v−(d+4) since | − (d + 3) − (−(d + 4))| = 1 ∈ S,

and thence H
′′
w is well-covered with β(H

′′
w) = 1. Furthermore, v2 ∼ v3 since

|3− 2| = 1 ∈ S, and thence H
′
w is well-covered with β(H

′
w) = 1. Therefore, Hw

is well-covered with β(Hw) = 2.

Case 5.4.6.3 w = v−(d+2).

Let H
′
w = H

[{
v2, v3

}]
and H

′′
w = H

[{
v−(d+5), v−(d+4)

}]
. Note that V (H

′
w)

together with V (H
′′
w) forms a partition of V (Hw).

We claim that no vertex in H
′
w is adjacent to a vertex in H

′′
w. Observe that

v−(d+5) is adjacent to neither v2 nor v3 since |2− (−(d+ 5))| = d+ 7 6∈ 〈S〉 and

|3 − (−(d + 5))| = d + 8 6∈ 〈S〉. Similarly, v−(d+4) is adjacent to neither v2 nor

v3 since |2− (−(d+ 4))| = d+ 6 6∈ 〈S〉 and |(3− (−(d+ 4))| = d+ 7 6∈ 〈S〉.

We now note that v−(d+4) ∼ v−(d+5) since | − (d + 4) − (−(d + 5))| = 1 ∈ S,

and thence H
′′
w is well-covered with β(H

′′
w) = 1. Furthermore, v2 ∼ v3 since

|3− 2| = 1 ∈ S, and thence H
′
w is well-covered with β(H

′
w) = 1. Therefore, Hw

is well-covered with β(Hw) = 2.

Case 5.4.6.4 w = v3 or w = v−3.

By symmetry, we need only examine w = v3. Note that V (Hw) =
{
vi : −bn2 c ≤

i ≤ −(d + 1)
}
∪
{
vi : d + 4 ≤ i ≤ bn

2
c
}
. To show that Hw is well-covered we

are going to apply Lemma 5.1 with x0 = v−(d+1). Since v−(d+1) is adjacent to

v−(d+1)+j and v−(d+1)−j for each j in the set S, it follows that NHw [v−(d+1)] =
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vi : −

⌊
n
2

⌋
≤ i ≤ −(d + 5)

}
∪
{
v−(d+2), v−(d+1)

}
∪
{
vi : d + 4 ≤ i ≤

⌊
n
2

⌋}
. We

will show for each x ∈ NHw [v−(d+1)] that Hx = Hw\NHw [x] is well-covered with

β(Hx) = 1.

Case 5.4.6.4.1 x = v−(d+1).

In this case V
(
Hx

)
= {v−(d+4), v−(d+3)}. Observe that v−(d+3) ∼ v−(d+4) since

| − (d+ 3)− (−(d+ 4))| = 1 ∈ S. Hence, Hx is well-covered with β(Hx) = 1.

Case 5.4.6.4.2 x = v−(d+2).

In this case V
(
Hx

)
= {v−(d+5), v−(d+4)}. Observe that v−(d+5) ∼ v−(d+4) since

| − (d+ 4)− (−(d+ 5))| = 1 ∈ S. Hence, Hx is well-covered with β(Hx) = 1.

Case 5.4.6.4.3 x = vk or x = v−k for d+ 5 ≤ k ≤
⌊
n
2

⌋
.

By symmetry, we need only examine x = vk. Since neither 2 nor 3 is in S,

we can deduce that vk is adjacent to neither vk−3, vk−2, vk+2 nor vk+3, and

thus V
(
Hx

)
= {vk−3, vk−2, vk+2, vk+3}. From Case 5.4.6.1.3, we know that Hx is

isomorphic to K4, and thus is well-covered with β(Hx) = 1.

Case 5.4.6.4.4 x = vd+4.

In this case V
(
Hx

)
= {vd+6, vd+7}. Observe that vd+6 ∼ vd+7 since |(d + 7) −

(d+ 6)| = 1 ∈ S. Hence, Hx is well-covered with β(Hx) = 1.

This concludes Case 5.4.6.4.

Hence, G is well-covered with β
(
G
)

= 4, concluding the proof of Case 5.4.6.



106

(iv) G is one of the following: C
(
10, {1, 4, 5}

)
, C
(
11, {1, 4, 5}

)
, C
(
8, {1, 4}

)
, C
(
10, {1,

4}
)
, C
(
11, {1, 4}

)
, C
(
12, {1, 4}

)
, or C

(
13, {1, 4}

)
.

Note that C
(
10, {1, 4, 5}

)
and C

(
11, {1, 4, 5}

)
are well-covered and β

(
G
)

= 2;

C
(
8, {1, 4}

)
is well-covered and β

(
G
)

= 3; C
(
10, {1, 4}

)
, C
(
11, {1, 4}

)
and

C
(
12, {1, 4}

)
are well-covered and β

(
G
)

= 4; and C
(
13, {1, 4}

)
is well-covered

and β
(
G
)

= 5.

We now proceed to prove the ‘only if’ direction. First, observe that C
(
9, {1, 4}

)
is not well-covered. Next, we consider the remaining cases.

Case 5.4.7 d = 4 and n ≥ 14.

Observe that for each 14 ≤ n ≤ 18 one can verify that G is not well-covered.

Consider the case where n ≥ 19. Let I
′

=
{
v−5, v−2, v7, v9

}
. Observe that v−2 is

adjacent to neither v−5 nor v7 since |(−2) − (−5)| = 3 6∈ S and |7 − (−2)| = 9 6∈ S.

Also note that v7 6∼ v9 since |9 − 7| = 2 6∈ S. Next, we consider v−5. Note that

|7 − (−5)| = 12 and |9 − (−5)| = 14. Given our assumption that n ≥ 19, it follows

that n− 12 ≥ 7 and n− 14 ≥ 5. Hence, v−5 is adjacent to neither v7 nor v9. Finally,

we show that v−2 6∼ v9. Note that |9−(−2)| = 11. Given our assumption that n ≥ 19,

it follows that n− 11 ≥ 8. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v0, v1, v4
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in H1.

Next, let K2 =
{
v1, v4

}
. Note that v1 6∼ v4 since |4 − 1| = 3 6∈ S. Therefore, K2

is an independent set in H1 with cardinality greater than that of K1. So H1 is not

well-covered, and hence by Proposition 2.5, G is not well-covered.

Case 5.4.8 d = 5 and n ≥ 12.

Observe that for each 12 ≤ n ≤ 29 one can verify that G is not well-covered.
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Consider the case where n ≥ 30. Let I
′

=
{
v−12, v−5, v5, v12

}
. Observe that v5

is adjacent to neither v−5 nor v12 since |5 − (−5)| = 10 6∈ S and |12 − 5| = 7 6∈ S.

Next, we consider v12. Note that |12 − (−5)| = 17 and |12 − (−12)| = 24. Given

our assumption that n ≥ 30, it follows that n− 17 ≥ 13 and n− 24 ≥ 6. Hence, v12

is adjacent to neither v−5 nor v−12. By symmetry, we can also deduce that v−12 is

adjacent to neither v−5 nor v5. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v2. It follows that V (H1) ={

v−3, v−2, v2, v3
}

. First, let K1 =
{
v2
}

. Note that v2 is adjacent to v−3, v2 and v3

since |2 − (−3)| = 5 ∈ S, |2 − (−2)| = 4 ∈ S and |3 − 2| = 1 ∈ S. Hence, K1 is a

maximal independent set in H1. Next, let K2 =
{
v−3, v3

}
. Observe that v3 6∼ v−3

since |3− (−3)| = 6 6∈ S. Therefore, K2 is an independent set in H1 with cardinality

greater than that of K1. So H1 is not well-covered, and hence by Proposition 2.5, G

is not well-covered.

Case 5.4.9 d ≥ 6 and n = 2d+ 4.

Then V (H) =
{
v−(d+1), v−3, v−2, v2, v3, vd+1, vd+2

}
. Let I1 =

{
v0, vd+2

}
. Observe

that v0 6∼ vd+2 since |(d+ 2)− 0| = d+ 2 6∈ 〈S〉. Consider any vertex vi ∈ V (H) with

vi 6= vd+2. We claim that vi ∼ vd+2. Note that vd+2 is adjacent to v2, v3 and vd+1

since |(d+2)−2| = d ∈ S, |(d+2)−3| = d−1 ∈ S and |(d+2)−(d+1)| = 1 ∈ S. By

symmetry, we can also deduce that vd+2 is adjacent to v−(d+1), v−3 and v−2. Hence,

I1 is a maximal independent set in G.

Next, let I2 =
{
v0, vd+1, v−(d+1)

}
. Observe that v0 is adjacent to neither v−(d+1) nor

vd+1 since |0− (−(d+1))| = d+1 6∈ 〈S〉 and |(d+1)−0| = d+1 6∈ 〈S〉. Furthermore,

vd+1 6∼ v−(d+1) since |(d+ 1)− (−(d+ 1))| = 2d+ 2 ≡ −2 (mod 2d+ 4) 6∈ 〈S〉. Hence,

I2 is an independent set in G with cardinality greater than that of I1, and thus G is

not well-covered.
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Case 5.4.10 d ≥ 6 and n = 2d+ 6.

Then V (H) =
{
v−(d+2), v−(d+1), v−3, v−2, v2, v3, vd+1, vd+2, vd+3

}
. Let I1 =

{
v0, vd+2,

v−(d+2)

}
. Observe that v0 is adjacent to neither v−(d+2) nor vd+2 since |0−(−(d+2))| =

d + 2 6∈ 〈S〉 and |(d + 2) − 0| = d + 2 6∈ 〈S〉. Next, we note that vd+2 ∼ vd+3 since

|(d+3)−(d+2)| = 1 ∈ S, and v−(d+2) ∼ v−(d+1) since |−(d+1)−(−(d+2))| = 1 ∈ S.

Also note that vd+2 6∼ v−(d+2) since |(d+2)−(−(d+2))| = 2d+4 ≡ −2 (mod 2d+6) 6∈

〈S〉, and v−(d+2) is adjacent to v−2 and v−3 since | − 2 − (−(d + 2))| = d ∈ S and

| − 3− (−(d+ 2))| = d− 1 ∈ S. Furthermore, from Case 5.4.9, we know that vd+2 is

adjacent to v2, v3 and vd+1. Hence, I1 is a maximal independent set in G.

Next, let I2 =
{
v0, v2, vd+3, v−(d+1)

}
. Observe that v0 is adjacent to neither v−(d+1),

v2 nor vd+3 since |0− (−(d+ 1))| = d+ 1 6∈ 〈S〉, |2− 0| = 2 6∈ S and |(d+ 3)− 0| =

d + 3 6∈ 〈S〉. Next, we note that v2 is adjacent to neither v−(d+1) nor vd+3 since

|2 − (−(d + 1))| = d + 3 6∈ 〈S〉 and |(d + 3) − 2| = d + 1 6∈ 〈S〉. Furthermore,

vd+3 6∼ v−(d+1) since |(d+ 3)− (−(d+ 1)| = 2d+ 4 ≡ −2 (mod 2d+ 6) 6∈ 〈S〉. Hence,

I2 is an independent set in G with cardinality greater than that of I1, and thus G is

not well-covered.

Case 5.4.11 d ≥ 6 and n = 2d+ 7.

Then V (H) =
{
v−(d+3), v−(d+2), v−(d+1), v−3, v−2, v2, v3, vd+1, vd+2, vd+3,

}
. Let I1 ={

v0, vd+2, v−(d+2)

}
. Observe that vd+2 6∼ v−(d+2) since |(d+2)− (−(d+2))| = 2d+4 ≡

−3 (mod 2d + 7) 6∈ 〈S〉. Next, we note that v−(d+2) ∼ v−(d+3) since | − (d + 2) −

(−(d+3))| = 1. Furthermore, from Case 5.4.9 and 5.4.10, we know that v0 is adjacent

to neither v−(d+2) nor vd+2; vd+2 is adjacent to v2, v3, vd+1 and vd+3; and v−(d+2) is

adjacent to v−2, v−3 and v−(d+1). Hence, I1 is a maximal independent set in G.

Next, let I2 =
{
v0, v2, vd+3, v−(d+2)

}
. Observe that v−(d+2) is adjacent to neither v0

nor v2 since |0−(−(d+2))| = d+2 6∈ 〈S〉 and |2−(−(d+2))| = d+4 6∈ 〈S〉. Next, we

note that vd+3 6∼ v−(d+2) since |(d+3)−(−(d+2))| = 2d+5 ≡ −2 (mod 2d+7) 6∈ 〈S〉.
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Furthermore, from Case 5.4.10, we know that v0 is adjacent to neither v2 nor vd+3

and v2 6∼ vd+3. Hence, I2 is an independent set in G with cardinality greater than

that of I1, and thus G is not well-covered.

Case 5.4.12 d ≥ 6 and n ≥ 3d+ 3.

Case 5.4.12.1 n = 3d+ 3.

Let I
′

=
{
v−(d+1), vd+1

}
. Note that v−(d+1) 6∼ vd+1 since |(d + 1)− (−(d + 1))| =

2d+ 2 ≡ −(d+ 1) (mod 3d+ 3) 6∈ 〈S〉. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−(d−1), v−(d−2), v0, vd−2, vd−1
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal

independent set in H1. Next, let K2 =
{
v−(d−2), vd−2

}
. Note that v−(d−2) 6∼ vd−2

since |(d− 2)− (−(d− 2))| = 2d− 4 ≡ −(d+ 7) (mod 3d+ 3) 6∈ 〈S〉. Therefore, K2

is an independent set in H1 with cardinality greater than that of K1. So H1 is not

well-covered, and hence by Proposition 2.5, G is not well-covered. A similar argument

shows that n = 3d+ 4 is also not well-covered.

Case 5.4.12.2 n = 3d+ 5.

Let I
′

=
{
v−(d+2), vd+2

}
. Note that v−(d+2) 6∼ vd+2 since |(d + 2)− (−(d + 2))| =

2d+ 4 ≡ −(d+ 1) (mod 3d+ 5) 6∈ 〈S〉. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−(d−1), v−d, v−1, v0, v1, vd−1, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal

independent set in H1. Next, let K2 =
{
v−(d−1), vd−1

}
. Note that v−(d−1) 6∼ vd−1

since |(d− 1)− (−(d− 1))| = 2d− 2 ≡ −(d+ 7) (mod 3d+ 5) 6∈ 〈S〉. Therefore, K2

is an independent set in H1 with cardinality greater than that of K1. So H1 is not

well-covered, and hence by Proposition 2.5, G is not well-covered. A similar argument

shows that n = 3d+ 6 is also not well-covered.
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Case 5.4.12.3 n = 3d+ 7.

Let I
′

=
{
v−(d+2), vd+4, vd+2

}
. Observe that vd+4 6∼ vd+2 since |(d + 4) − (d +

2)| = 2 6∈ S. Next, we note that v−(d+2) is adjacent to neither vd+4 nor vd+2 since

|(d+4)−(−(d+2))| = 2d+6 ≡ −(d+1) (mod 3d+7) 6∈ 〈S〉 and |(d+2)−(−(d+2))| =

2d+ 4 ≡ −(d+ 3) (mod 3d+ 7) 6∈ 〈S〉. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−(d−1), v−d, v−1, v0, v1
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent

set in H1. Next, let K2 =
{
v−1, v1

}
. Note that v1 6∼ v−1 since |1 − (−1)| = 2 6∈ S.

Therefore, K2 is an independent set in H1 with cardinality greater than that of K1.

So H1 is not well-covered, and hence by Proposition 2.5, G is not well-covered. A

similar argument shows that n = 3d+ 8 is also not well-covered.

Case 5.4.12.4 n ≥ 3d+ 9.

Let I
′
=
{
v−(d+4), v−(d+2), vd+2, vd+4

}
. Observe that vd+4 6∼ vd+2 since |(d+4)−(d+

2)| = 2 6∈ S. Next, we show that vd+4 6∼ v−(d+4). Note that |(d + 4)− (−(d + 4))| =

2d + 8. Given our assumption that n ≥ 3d + 9, it follows that n − (2d + 8) ≥

d + 1. Finally, we consider v−(d+2). Note that |(d + 4) − (−(d + 2))| = 2d + 6 and

|(d+ 2)− (−(d+ 2))| = 2d+ 4. Given our assumption that n ≥ 3d+ 9, it follows that

n− (2d+ 6) ≥ d+ 3 and n− (2d+ 4) ≥ d+ 5. Hence, v−(d+2) is adjacent to neither

vd+4 nor vd+2. By symmetry, we can also deduce that v−(d+4) is adjacent to neither

v−(d+2) nor vd+2.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−1, v0, v1
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in H1.

Next, let K2 =
{
v−1, v1

}
. Note that v1 6∼ v−1 since |1 − (−1)| = 2 6∈ S. Therefore,

K2 is an independent set in H1 with cardinality greater than that of K1. So H1 is

not well-covered, and hence by Proposition 2.5, G is not well-covered.
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A characterization of the well-covered graphs in Class 10 can now be stated.

Theorem 5.5 Let n and d be integers with 3 ≤ d ≤ n
2
. Then G = C

(
n, {3, 4, . . . , d}

)
is well-covered if and only if one of the following conditions holds:

(i) d ≥ 3 and either n = 2d or n = 2d+ 1, or

(ii) d ≥ 3 and n = 2d+ 3, or

(iii) d ≥ 4 and n = 2d+ 4, or

(iv) d ≥ 4 and n = 2d+ 5, or

(v) d ≥ 3 and n = 2d+ 6, or

(vi) d ≥ 4 and 2d+ 7 ≤ n ≤ 3d+ 2, or

(vii) d ≥ 3 and n = 3d+ 6, or

(viii) G = C
(
21, {3}

)
.

Furthermore, if (i) or (ii) holds β
(
G
)

= 3; if (iii) holds β
(
G
)

= 4; if (iv) holds

β
(
G
)

= 5; if (v), (vi) or (vii) holds β
(
G
)

= 6; and if (viii) holds β
(
G
)

= 9.

Proof. Let V (G) =
{
vi : i = 0, 1, . . . , n − 1

}
. First, we prove the ‘if’ direction. In

each case let I be a maximal independent set of G. Without loss of generality, assume

that v0 ∈ I and let H be the graph induced by G\N [v0]. Then V (H) =
{
vi : −

⌊
n
2

⌋
≤

i ≤ −(d + 1)
}
∪
{
v−2, v−1

}
∪
{
v1, v2

}
∪
{
vi : d + 1 ≤ i ≤

⌊
n
2

⌋}
. By Corollary 2.6, it

suffices to show that in Case (ii) H is well-covered with β
(
H
)

= 2; in Case (iii) H is

well-covered with β
(
H
)

= 3; in Case (iv) H is well-covered with β
(
H
)

= 4; and in

Case (v), (vi) or (vii) H is well-covered with β
(
H
)

= 5.
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(i) d ≥ 3 and either n = 2d or n = 2d+ 1.

In this case, the theorem follows as a consequence of Theorem 3.4. Furthermore,

β
(
G
)

= 3.

(ii) d ≥ 3 and n = 2d+ 3.

First, when d = 3 we note that C
(
9, {3}

)
is well-covered and β

(
G
)

= 3.

Next, we consider the case where d ≥ 4. Note that V (H) =
{
v−(d+1), v−2, v−1, v1,

v2, vd+1

}
. To show that H is well-covered we are going to apply Lemma 5.1 with

w0 = v1. Since v1 is adjacent to v1+j and v1−j for each j in the set S, it fol-

lows that NH [v1] = {v−2, v1, vd+1}. We will show for each w ∈ NH [v1] that

Hw = H\NH [w] is well-covered with β(Hw) = 1.

Case 5.5.1 w = v1.

In this case V (Hw) =
{
v−(d+1), v−1, v2

}
. Note that v−1 is adjacent to both

v−(d+1) and v2 since |(−1) − (−(d + 1))| = d ∈ S and |2 − (−1)| = 3 ∈ S. In

addition, v−(d+1) ∼ v2 since |2− (−(d+ 1))| = d+ 3 ≡ −d (mod 2d+ 3) ∈ 〈S〉.

Hence, Hw is isomorphic to C3, and thus is well-covered with β(Hw) = 1.

Case 5.5.2 w = vd+1.

In this case V
(
Hw) = {v−(d+1), v−1}. Note that v−(d+1) ∼ v−1. Hence, Hw is

well-covered with β(Hw) = 1.

Case 5.5.3 w = v−2.

In this case V
(
Hw) = {v−1}. Hence, Hw is well-covered with β(Hw) = 1.

Hence, G is well-covered with β
(
G
)

= 3, concluding the proof of Case (ii).
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(iii) d ≥ 4 and n = 2d+ 4.

In this case V (H) =
{
v−(d+1), v−2, v−1, v1, v2, vd+1, vd+2

}
. To show thatH is well-

covered we are going to apply Lemma 5.1 with w0 = v1. Since v1 is adjacent to

v1+j and v1−j for each j in the set S, it follows that NH [v1] = {v−2, v1, vd+1}.

We will show for each w ∈ NH [v1] that Hw = H\NH [w] is well-covered with

β(Hw) = 2.

Case 5.5.4 w = v1.

In this case V (Hw) =
{
v−(d+1), v−1, v2, vd+2

}
. We claim that Hw is isomorphic to

P4. Observe that v−(d+1) is adjacent to neither v2 nor vd+2 since |2−(−(d+1))| =

d+ 3 ≡ −(d+ 1) (mod 2d+ 4) 6∈ 〈S〉 and |(d+ 2)− (−(d+ 1))| = 2d+ 3 ≡ −1

(mod 2d + 4) 6∈ 〈S〉. Next, we note that v2 ∼ vd+2 since |(d + 2) − 2| = d ∈ S,

and v−1 6∼ vd+2 since |(d + 2)− (−1)| = d + 3 ≡ −(d + 1) (mod 2d + 4) 6∈ 〈S〉.

Furthermore, from Case (ii), we know that v−1 is adjacent to both v−(d+1) and

v2. Hence, Hw is isomorphic to P4, and thus is well-covered with β(Hw) = 2.

Case 5.5.5 w = vd+1.

In this case V
(
Hw) = {v−(d+1), v−2, v−1, vd+2}. We claim that Hw is isomorphic

to P4. Observe that v−2 ∼ v−(d+1) since |(−2) − (−(d + 1))| = d − 1 ∈ S, and

v−(d+1) 6∼ vd+2 since |(d + 2) − (−(d + 1))| = 2d + 3 ≡ −1 (mod 2d + 4) 6∈

〈S〉. Next, we note that v−2 ∼ vd+2 since |(d + 2) − (−2)| = d + 4 ≡ −d

(mod 2d + 4) ∈ 〈S〉. We also note that v−1 is adjacent to neither v−2 nor

vd+2 since |(−1) − (−2)| = 1 6∈ S and |(d + 2) − (−1)| = d + 3 ≡ −(d + 1)

(mod 2d + 4) 6∈ 〈S〉. Furthermore, from Case (ii), we know that v−1 ∼ v−(d+1).

Hence, Hw is isomorphic to P4, and thus is well-covered with β(Hw) = 2.
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Case 5.5.6 w = v−2.

In this case V
(
Hw) = {v−1, vd+1}. Observe that vd+1 6∼ v−1 since |(d + 1) −

(−1)| = d+ 2 6∈ 〈S〉. Hence, Hw is well-covered with β(Hw) = 2.

Hence, G is well-covered with β
(
G
)

= 4, concluding the proof of Case (iii).

(iv) d ≥ 4 and n = 2d+ 5.

In this case V (H) =
{
v−(d+2), v−(d+1), v−2, v−1, v1, v2, vd+1, vd+2

}
. To show that

H is well-covered we are going to apply Lemma 5.1 with w0 = v1. Since v1

is adjacent to v1+j and v1−j for each j in the set S, it follows that NH [v1] =

{v−2, v1, vd+1}. We will show for each w ∈ NH [v1] that Hw = H\NH [w] is

well-covered with β(Hw) = 3.

Case 5.5.7 w = v1.

Let H
′
w = H

[{
v−(d+1), v−1, v2, vd+2

}]
and H

′′
w = H

[{
v−(d+2)

}]
. Note that

V (H
′
w) together with V (H

′′
w) forms a partition of V (Hw).

We claim that no vertex inH
′
w is adjacent to a vertex inH

′′
w. Observe that v−(d+2)

is adjacent to neither v−(d+1) nor v−1 since | − (d+ 1)− (−(d+ 2))| = 1 6∈ S and

|(−1) − (−(d + 2))| = d + 1 6∈ 〈S〉. Furthermore, v−(d+2) is adjacent to neither

v2 nor vd+2 since |2− (−(d + 2))| = d + 4 ≡ −(d + 1) (mod 2d + 5) 6∈ 〈S〉 and

|(d+ 2)− (−(d+ 2))| = 2d+ 4 ≡ −1 (mod 2d+ 5) 6∈ 〈S〉.

Next, we show that H
′
w is isomorphic to P4. Observe that v−(d+1) is adjacent to

neither v2 nor vd+2 since |(2)−(−(d+1))| = d+3 ≡ −(d+2) (mod 2d+5) 6∈ 〈S〉

and |(d + 2) − (−(d + 1))| = 2d + 3 ≡ −2 (mod 2d + 5) 6∈ 〈S〉. Next, we note

that v−1 6∼ vd+2 since |(d+ 2)− (−1)| = d+ 3 ≡ −(d+ 2) (mod 2d+ 5) 6∈ 〈S〉.

Furthermore, from Case (ii) and (iii), we know that v−1 is adjacent to both
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v−(d+1) and v2; and v2 ∼ vd+2. Hence, H
′
w is isomorphic to P4, and thus is

well-covered with β(H
′
w) = 2.

Finally, we note that H
′′
w is well-covered with β(H

′′
w) = 1. Hence, Hw is well-

covered with β(Hw) = 3.

Case 5.5.8 w = vd+1.

Let H
′
w = H

[{
v−(d+2), v−2

}]
, H

′′
w = H

[{
vd+2

}]
and H

′′′
w = H

[{
v−1
}]

. Note

that V (H
′
w) together with V (H

′′
w) and V (H

′′′
w ) forms a partition of V (Hw).

We claim that no vertex in one of the graphs H
′
w, H

′′
w and H

′′′
w is adjacent to

a vertex in either of the other two graphs. Observe that v−1 is adjacent to

neither v−(d+2) nor v−2 since |(−1) − (−(d + 2))| = d + 1 6∈ 〈S〉 and |(−1) −

(−2)| = 1 6∈ S. Next, we note that vd+2 is adjacent to neither v−(d+2) nor

v−2 since |(d + 2) − (−(d + 2))| = 2d + 4 ≡ −1 (mod 2d + 5) 6∈ 〈S〉 and

|(d+2)−(−2)| = d+4 ≡ −(d+1) (mod 2d+5) 6∈ 〈S〉. Furthermore, vd+2 6∼ v−1

since |(d+ 2)− (−1)| = d+ 3 ≡ −(d+ 2) (mod 2d+ 5) 6∈ 〈S〉.

We now note that v−2 ∼ v−(d+2) since |(−2)− (−(d+ 2))| = d ∈ S, hence H
′
w is

well-covered with β(H
′
w) = 1. Furthermore, H

′′
w and H

′′′
w are well-covered with

β(H
′′
w) = β(H

′′′
w ) = 1. Hence, Hw is well-covered with β(Hw) = 3.

Case 5.5.9 w = v−2.

Let H
′
w = H

[{
v−1
}]

, H
′′
w = H

[{
vd+1

}]
and H

′′′
w = H

[{
vd+2

}]
. Note that

V (H
′
w) together with V (H

′′
w) and V (H

′′′
w ) forms a partition of V (Hw).

We claim that no vertex in one of the graphs H
′
w, H

′′
w and H

′′′
w is adjacent to

a vertex in either of the other two graphs. Observe that vd+1 is adjacent to

neither v−1 nor vd+2 since |(d+1)− (−1)| = d+2 6∈ 〈S〉 and |(d+2)− (d+1)| =

1 6∈ S. Furthermore, vd+2 6∼ v−1 since |(d + 2) − (−1)| = d + 3 ≡ −(d + 2)
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(mod 2d + 5) 6∈ 〈S〉. Hence, H
′
w, H

′′
w and H

′′′
w are well-covered with β(H

′
w) =

β(H
′′
w) = β(H

′′′
w ) = 1. Therefore, Hw is well-covered with β(Hw) = 3.

Hence, G is well-covered with β
(
G
)

= 5, concluding the proof of Case (iv).

(v) d ≥ 3 and n = 2d+ 6.

First, when d = 3 we note that C
(
12, {3}

)
is well-covered and β

(
G
)

= 6.

Next, we consider the case where d ≥ 4. Then V (H) =
{
v−(d+2), v−(d+1), v−2, v−1,

v1, v2, vd+1, vd+2, vd+3

}
. To show that H is well-covered we are going to apply

Lemma 5.1 with w0 = v1. Since v1 is adjacent to v1+j and v1−j for each j in the

set S, it follows that NH [v1] = {v−2, v1, vd+1}. We will show for each w ∈ NH [v1]

that Hw = H\NH [w] is well-covered with β(Hw) = 4.

Case 5.5.10 w = v1.

LetH
′
w = H

[{
v−(d+1), v−1, v2, vd+2

}]
, H

′′
w = H

[{
vd+3

}]
andH

′′′
w = H

[{
v−(d+2)

}]
.

Note that V (H
′
w) together with V (H

′′
w) and V (H

′′′
w ) forms a partition of V (Hw).

We claim that no vertex in one of the graphs H
′
w, H

′′
w and H

′′′
w is adjacent to

a vertex in either of the other two graphs. Observe that v−(d+2) is adjacent to

neither v−(d+1), v−1 nor v2 since |− (d+1)− (−(d+2))| = 1 6∈ S, |(−1)− (−(d+

2))| = d+1 6∈ 〈S〉 and |2− (−(d+2))| = d+4 6∈ 〈S〉. Next, we note that v−(d+2)

is adjacent to neither vd+2 nor vd+3 since |(d + 2)− (−(d + 2))| = 2d + 4 ≡ −2

(mod 2d+6) 6∈ 〈S〉 and |(d+3)−(−(d+2))| = 2d+5 ≡ −1 (mod 2d+6) 6∈ 〈S〉.

Furthermore, vd+3 is adjacent to neither v−(d+1), v−1, v2 nor vd+2 since |(d+3)−

(−(d+ 1))| = 2d+ 4 ≡ −2 (mod 2d+ 6) 6∈ 〈S〉, |(d+ 3)− (−1)| = d+ 4 6∈ 〈S〉,

|(d+ 3)− 2| = d+ 1 6∈ 〈S〉 and |(d+ 3)− (d+ 2)| = 1 6∈ S.

Next, we will show that H
′
w is isomorphic to C4. Observe that v−(d+1) ∼ vd+2

since |(d+ 2)− (−(d+ 1))| = 2d+ 3 ≡ −3 (mod 2d+ 6) ∈ 〈S〉. Next, we note
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that v−1 6∼ vd+2 since |(d + 2) − (−1)| = d + 3 6∈ 〈S〉, and v−(d+1) 6∼ v2 since

|(2) − (−(d + 1))| = d + 3 6∈ 〈S〉. Furthermore, from Case (ii) and (iii), we

know that v−1 is adjacent to both v−(d+1) and v2, and v2 ∼ vd+2. Hence, H
′
w is

isomorphic to C4, and thus is well-covered with β(H
′
w) = 2.

Finally, H
′′
w and H

′′′
w are well-covered with β(H

′′
w) = β(H

′′′
w ) = 1. Hence, H1 is

well-covered with β(H1) = 4.

Case 5.5.11 w = vd+1.

LetH
′
w = H

[{
v−2
}]

, H
′′
w = H

[{
v−1
}]

, H
′′′
w = H

[{
vd+2

}]
andH

′′′′
w = H

[{
vd+3

}]
.

Note that V (H
′
w) together with V (H

′′
w), V (H

′′′′
w ) and V (H

′′′
w ) forms a partition

of V (Hw).

We claim that no vertex in one of the graphs H
′
w, H

′′
w, H

′′′
w and H

′′′′
w is adjacent to

a vertex in either of the other two graphs. Observe that v−2 is adjacent to neither

v−1, vd+2 nor vd+3 since |(−1)− (−2)| = 1 6∈ S, |(d + 2)− (−2)| = d + 4 6∈ 〈S〉

and |(d+3)−(−2)| = d+5 6∈ 〈S〉. Next, we note that vd+3 is adjacent to neither

v−1 nor vd+2 since |(d+ 3)− (−1)| = d+ 4 6∈ 〈S〉 and |(d+ 3)− (d+ 2)| = 1 6∈ S.

Furthermore, v−1 6∼ vd+2 since |(d+ 2)− (−1)| = d+ 3 6∈ 〈S〉. Hence, H
′
w, H

′′
w,

H
′′′
w and H

′′′′
w are well-covered with β(H

′
w) = β(H

′′
w) = β(H

′′′
w ) = β(H

′′′′
w ) = 1.

Therefore, Hw is well-covered with β(Hw) = 4.

Case 5.5.12 w = v−2.

LetH
′
w = H

[{
v−1
}]

, H
′′
w = H

[{
vd+1

}]
, H

′′′
w = H

[{
vd+2

}]
andH

′′′′
w = H

[{
vd+3

}]
.

Note that V (H
′
w) together with V (H

′′
w), V (H

′′′′
w ) and V (H

′′′
w ) forms a partition

of V (Hw).

Observe that v−1 is adjacent to neither vd+1, vd+2 nor vd+3 since |(d+1)−(−1)| =

d+2 6∈ 〈S〉, |(d+2)−(−1)| = d+3 6∈ 〈S〉 and |(d+3)−(−1)| = d+4 6∈ 〈S〉. Next,
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we note that vd+2 is adjacent to neither vd+1 nor vd+3 since |(d+ 2)− (d+ 1)| =

1 6∈ S and |(d + 3) − (d + 2)| = 1 6∈ S. Furthermore, vd+1 6∼ vd+3 since

|(d + 3) − (d + 1)| = 2 6∈ S. Hence, H
′
w, H

′′
w, H

′′′
w and H

′′′′
w are well-covered

with β(H
′
w) = β(H

′′
w) = β(H

′′′
w ) = β(H

′′′′
w ) = 1. Hence, Hw is well-covered with

β(Hw) = 4.

Hence, G is well-covered and β
(
G
)

= 6, concluding the proof of Case (v).

(vi) d ≥ 4 and 2d+ 7 ≤ n ≤ 3d+ 2.

We consider the following four cases:

Case 5.5.13 d ≥ 5 and n = 2d+ 7.

In this case V (H) =
{
v−(d+3), v−(d+2), v−(d+1), v−2, v−1, v1, v2, vd+1, vd+2, vd+3

}
.

To show that H is well-covered we are going to apply Lemma 5.1 with w0 = v1.

Since v1 is adjacent to v1+j and v1−j for each j in the set S, it follows that

NH [v1] = {v−2, v1, vd+1}. We will show for each w ∈ NH [v1] thatHw = H\NH [w]

is well-covered with β(Hw) = 4.

Case 5.5.13.1 w = v1.

Let H
′
w = H

[{
v−(d+2), v−(d+1), v−1, v2, vd+2, vd+3

}]
and H

′′
w = H

[{
v−(d+3)

}]
.

Note that V (H
′
w) together with V (H

′′
w) forms a partition of V (Hw).

We claim that no vertex in H
′
w is adjacent to a vertex in H

′′
w. Since neither 1

nor 2 is in S, we can deduce that v−(d+3) is adjacent to neither v−(d+2), v−(d+1),

vd+2 nor vd+3. Furthermore, v−(d+3) is adjacent to neither v−1 nor v2 since

|(−1)− (−(d+ 3))| = d+ 2 6∈ 〈S〉 and |2− (−(d+ 3))| = d+ 5 6∈ 〈S〉.

Next, to show that H
′
w is well-covered we are going to apply Lemma 5.1 with

u0 = vd+3. Since vd+3 is adjacent to v(d+3)+j and v(d+3)−j for each j in the set S,
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it follows that NH′w
[vd+3] =

{
v−(d+1), vd+3

}
. We will show for each u ∈ NH′w

[vd+3]

that Hu = H
′
w\NH′w

[u] is well-covered with β(Hu) = 2.

Case 5.5.13.1.1 u = vd+3.

In this case V
(
Hu) =

{
v−(d+2), v−1, v2, vd+2

}
. We claim that Hu is isomorphic

to P4. Observe that vd+2 ∼ v−(d+2) since |(d + 2) − (−(d + 2))| = 2d + 4 ≡ −3

(mod 2d+ 7) 6∈ 〈S〉, and vd+2 6∼ v−1 since |(d+ 2)− (−1)| = d+ 3 6∈ 〈S〉. Next,

we note that v2 is adjacent to both v−1 and vd+2 since |2 − (−1)| = 3 ∈ S and

|(d + 2) − 2| = d ∈ S. Furthermore, v−(d+2) is adjacent to neither v−1 nor v2

since |(−1) − (−(d + 2))| = d + 1 6∈ 〈S〉 and |2 − (−(d + 2))| = d + 4 6∈ 〈S〉.

Hence, Hu is isomorphic to P4, and thus is well-covered with β(Hu) = 2.

Case 5.5.13.1.2 u = v−(d+1).

In this case V
(
Hu) =

{
v−(d+2), v2

}
. Note that v−(d+2) 6∼ v2 since |2 − (−(d +

2))| = d+ 3 6∈ 〈S〉. Hence, Hu is well-covered with β(Hu) = 2.

Hence, H
′
w is well-covered and β

(
H
′
w

)
= 3. Furthermore, H

′′
w is well-covered

with β(H
′′
w) = 1. Therefore, Hw is well-covered with β(Hw) = 4.

Case 5.5.13.2 w = vd+1.

In this case V
(
Hw) = {v−2, v−1, vd+2, vd+3}. From Case 5.5.11, we know that

Hw is well-covered with β(Hw) = 4.

Case 5.5.13.3 w = v−2.

Let H
′
w = H

[{
v−(d+3), vd+1

}]
, H

′′
w = H

[{
vd+2

}]
, H

′′′
w = H

[{
vd+3

}]
and H

′′′′
w =

H
[{
v−1
}]

. Note that V (H
′
w) together with V (H

′′
w), V (H

′′′′
w ) and V (H

′′′
w ) forms

a partition of V (Hw).
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We claim that no vertex in one of the graphs H
′
w, H

′′
w, H

′′′
w and H

′′′′
w is adjacent

to a vertex in either of the other two graphs. Observe that v−1 is adjacent

to neither v−(d+3), vd+1, vd+2 nor vd+3 since |(−1)− (−(d + 3))| = d + 2 6∈ 〈S〉,

|(d+1)−(−1)| = d+2 6∈ 〈S〉, |(d+2)−(−1)| = d+3 6∈ 〈S〉 and |(d+3)−(−1)| =

d + 4 6∈ 〈S〉. Next, we note that vd+3 is adjacent to neither vd+1 nor vd+2 since

|(d + 3) − (d + 1)| = 2 6∈ S and |(d + 3) − (d + 2)| = 1 6∈ S; and vd+2 6∼ vd+1

since |(d + 2) − (d + 1)| = 1 6∈ S. Furthermore, v−(d+3) is adjacent to neither

vd+2 nor vd+3 since |(d + 2) − (−(d + 3))| = 2d + 5 ≡ −2 (mod 2d + 7) 6∈ 〈S〉

and |(d+ 3)− (−(d+ 3))| = 2d+ 6 ≡ −1 (mod 2d+ 7) 6∈ 〈S〉.

Next, we note that v−(d+3) ∼ vd+1 since |(d + 1) − (−(d + 3))| = 2d + 4 ≡ −3

(mod 2d + 7) ∈ 〈S〉. Hence, H
′
w is well-covered with β(H

′
w) = 1. Further-

more, H
′′
5 , H

′′′
w , and H

′′′′
w are well-covered with β(H

′′
w) = β(H

′′′
w ) = β(H

′′′′
w ) = 1.

Therefore, Hw is well-covered with β(Hw) = 4.

Hence, G is well-covered and β
(
G
)

= 6, concluding the proof of Case 5.5.13.

Case 5.5.14 d ≥ 6 and n = 2d+ 8.

In this case V (H) =
{
v−(d+3), v−(d+2), v−(d+1), v−2, v−1, v1, v2, vd+1, vd+2, vd+3,

vd+4

}
. To show that H is well-covered we are going to apply Lemma 5.1 with

w0 = v1. Since v1 is adjacent to v1+j and v1−j for each j in the set S, it

follows that NH [v1] = {v−2, v1, vd+1}. We will show for each w ∈ NH [v1] that

Hw = H\NH [w] is well-covered with β(Hw) = 4.

Case 5.5.14.1 w = v1.

In this case V (Hw) =
{
v−(d+3), v−(d+2), v−(d+1), v−1, v2, vd+2, vd+3, vd+4

}
. To show

that Hw is well-covered we are going to apply Lemma 5.1 with w0 = vd+3. Since

vd+3 is adjacent to v(d+3)+j and v(d+3)−j for each j in the set S, it follows that



121

NHw [vd+3] =
{
v−(d+2), v−(d+1), vd+3

}
. We will show for each u ∈ NHw [vd+3] that

Hu = Hw\NHw [u] is well-covered with β(Hu) = 3.

Case 5.5.14.1.1 u = vd+3.

Let H
′
u = Hw

[{
v−(d+3), v−1, v2, vd+2

}]
and H

′′
u = Hw

[{
vd+4

}]
. Note that V (H

′
u)

together with V (H
′′
u ) forms a partition of V (Hu).

We claim that no vertex in H
′
u is adjacent to a vertex in H

′′
u . Note that v−(d+3) 6∼

vd+4 since |(d+4)−(−(d+3))| = 2d+7 ≡ −1 (mod 2d+8) 6∈ 〈S〉. Furthermore,

vd+4 is adjacent to neither v−1, v2 nor vd+2 since |(d+ 4)− (−1)| = d+ 5 6∈ 〈S〉,

|(d+ 4)− (2)| = d+ 2 6∈ 〈S〉 and |(d+ 4)− (d+ 2)| = 2 6∈ S.

Next, we show that H
′
u is isomorphic to P4. Observe that vd+2 ∼ v−(d+3) since

|(d+2)−(−(d+3))| = 2d+5 ≡ −3 (mod 2d+8) ∈ 〈S〉. Next, we note that v2 is

adjacent to both v−1 and vd+2 since |2−(−1)| = 3 ∈ S and |(d+2)−2| = d ∈ S.

Also note that v−1 is adjacent to neither v−(d+3) nor vd+2 since |(−1)− (−(d +

3))| = d+ 2 6∈ 〈S〉 and |(d+ 2)− (−1)| = d+ 3 6∈ 〈S〉. Furthermore, v2 6∼ v−(d+3)

since |2 − (−(d + 3))| = d + 5 6∈ 〈S〉. Hence, H
′
u is isomorphic to P4, and thus

is well-covered with β(H
′
u) = 2.

Finally, H
′′
u is well-covered with β(H

′′
u ) = 1. Hence, Hu is well-covered with

β(Hu) = 3.

Case 5.5.14.1.2 u = v−(d+1).

In this case V
(
Hu) =

{
v−(d+3), v−(d+2), v2

}
. Note that v2 is adjacent to neither

v−(d+3) nor v−(d+2) since |2− (−(d + 3))| = d + 5 6∈ 〈S〉 and |2− (−(d + 2))| =

d+4 6∈ 〈S〉. Furthermore, v−(d+3) 6∼ v−(d+2) since |−(d+2)−(−(d+3))| = 1 6∈ S.

Hence, Hu is well-covered with β(Hu) = 3.
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Case 5.5.14.1.3 u = v−(d+2).

Let H
′
u = Hw

[{
v−(d+1), v−1, v2, vd+4

}]
and H

′′
u = Hw

[{
v−(d+3)

}]
. Note that

V (H
′
u) together with V (H

′′
u ) forms a partition of V (Hu).

We claim that no vertex in H
′
u is adjacent to a vertex in H

′′
u . Note that v−(d+3)

is adjacent to neither v−(d+1), v−1, v2 nor vd+4 since |(−(d+ 1))− (−(d+ 3))| =

2 6∈ S, |(−1) − (−(d + 3))| = d + 2 6∈ 〈S〉, |2 − (−(d + 3))| = d + 5 6∈ 〈S〉 and

|(d+ 4)− (−(d+ 3))| = 2d+ 7 ≡ −1 (mod 2d+ 8) 6∈ 〈S〉.

Next, we show that H
′
u is isomorphic to P4. Observe that v−1 is adjacent to both

v−(d+1) and v2 since |(−1)− (−(d+ 1))| = d ∈ S and |2− (−1)| = 3 ∈ S. Next,

we note that v2 is adjacent to neither v−(d+1) nor vd+4 since |2− (−(d + 1))| =

d + 3 6∈ 〈S〉 and |(d + 4)− 2| = d + 2 6∈ 〈S〉. Furthermore, vd+4 ∼ v−(d+1) since

|(d+ 4)− (−(d+ 1))| = 2d+ 5 ≡ −3 (mod 2d+ 8) ∈ 〈S〉, and v−1 6∼ vd+4 since

|(d + 4) − (−1)| = d + 5 6∈ 〈S〉. Hence, H
′
u is isomorphic to P4, and thus is

well-covered with β(H
′
u) = 2.

Finally, H
′′
u is well-covered with β(H

′′
u ) = 1. Hence, Hu is well-covered with

β(Hu) = 3.

This concludes Case 5.5.14.1.

Case 5.5.14.2 w = vd+1.

In this case V
(
Hw) = {v−2, v−1, vd+2, vd+3}. From Case 5.5.11, we know that

Hw is well-covered with β(Hw) = 4.

Case 5.5.14.3 w = v−2.

LetH
′
w = H

[{
v−(d+3), vd+1, vd+2, vd+4

}]
, H

′′
w = H

[{
v−1
}]

andH
′′′
w = H

[{
vd+3

}]
.

Note that V (H
′
w) together with V (H

′′
w) and V (H

′′′
w ) forms a partition of V (Hw).
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We claim that no vertex in one of the graphs H
′
w, H

′′
w and H

′′′
w is adjacent to

a vertex in either of the other two graphs. Observe that v−1 is adjacent to

neither v−(d+3), vd+1, vd+2, nor vd+4 since |(−1) − (−(d + 3))| = d + 2 6∈ 〈S〉,

|(d+1)−(−1)| = d+2 6∈ 〈S〉, |(d+2)−(−1)| = d+3 6∈ 〈S〉 and |(d+4)−(−1)| =

d + 5 6∈ 〈S〉. Next, we note that vd+3 is adjacent to neither vd+1, vd+2 nor vd+4

since |(d+3)−(d+1)| = 2 6∈ S, |(d+3)−(d+2)| = 1 6∈ S and |(d+4)−(d+3)| =

1 6∈ S. Furthermore, v−(d+3) 6∼ vd+3 since |(d + 3)− (−(d + 3))| = 2d + 6 ≡ −2

(mod 2d+ 8) 6∈ 〈S〉, and vd+3 6∼ v−1 since |(d+ 3)− (−1)| = d+ 4 6∈ 〈S〉.

Next, we claim that H
′
w is isomorphic to P4. Observe that v−(d+3) ∼ vd+1 since

|(d + 1) − (−(d + 3))| = 2d + 4 ≡ −4 (mod 2d + 8) ∈ 〈S〉. Next, we note that

v−(d+3) ∼ vd+2 since |(d+2)−(−(d+3))| = 2d+5 ≡ −3 (mod 2d+8) ∈ 〈S〉, and

vd+4 ∼ vd+1 since |(d+ 4)− (d+ 1)| = 3 ∈ S. We also note that vd+2 is adjacent

to neither vd+1 nor vd+4 since |(d+2)− (d+1)| = 1 6∈ S and |(d+4)− (d+2)| =

2 6∈ S. Furthermore, v−(d+3) 6∼ vd+4 since |(d + 4)− (−(d + 3))| = 2d + 7 ≡ −1

(mod 2d + 8) 6∈ 〈S〉. Hence, H
′
w is isomorphic to P4, and thus is well-covered

with β(H
′
w) = 2.

Furthermore, H
′′
w and H

′′′
w are well-covered with β(H

′′
w) = β(H

′′
w) = 1. Hence,

Hw is well-covered with β(Hw) = 4.

Hence, G is well-covered and β
(
G
)

= 6, concluding the proof of Case 5.5.14.

Case 5.5.15 d ≥ 7 and n = 2d+ 9.

In this case V (H) =
{
v−(d+4), v−(d+3), v−(d+2), v−(d+1), v−2, v−1, v1, v2, vd+1, vd+2,

vd+3, vd+4

}
. To show that H is well-covered we are going to apply Lemma 5.1

with w0 = v1. Since v1 is adjacent to v1+j and v1−j for each j in the set S, it

follows that NH [v1] = {v−2, v1, vd+1}. We will show for each w ∈ NH [v1] that

Hw = H\NH [w] is well-covered with β(Hw) = 4.
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Case 5.5.15.1 w = v1.

In this case V (Hw) =
{
v−(d+4), v−(d+3), v−(d+2), v−(d+1), v−1, v2, vd+2, vd+3, vd+4

}
.

To show that Hw is well-covered we are going to apply Lemma 5.1 with u0 = v2.

Since v2 is adjacent to v2+j and v2−j for each j in the set S, it follows that

NHw [v2] =
{
v−1, v2, vd+2

}
. We will show for each u ∈ NHw [v2] that Hu =

Hw\NHw [u] is well-covered with β(Hu) = 3.

Case 5.5.15.1.1 u = v2.

In this case V
(
Hu) =

{
v−(d+4), v−(d+3), v−(d+2), v−(d+1), vd+3, vd+4

}
. To show that

Hu is well-covered we are going to apply Lemma 5.1 with x0 = v−(d+3). Since

v−(d+3) is adjacent to v−(d+3)+j and v−(d+3)−j for each j in the set S, it follows

that NHu [v−(d+3)] =
{
v−(d+3), vd+3

}
. We will show for each x ∈ NHu [v−(d+3)]

that Hx = Hu\NHu [x] is well-covered with β(Hx) = 2.

Case 5.5.15.1.1.1 x = v−(d+3).

In this case V
(
Hx) =

{
v−(d+4), v−(d+2), v−(d+1), vd+4

}
. Now we show that Hx is

isomorphic to P4. Observe that vd+4 is adjacent to both v−(d+2) and v−(d+1) since

|(d+4)−(−(d+2))| = 2d+6 ≡ −3 (mod 2d+9) ∈ 〈S〉 and |(d+4)−(−(d+1))| =

2d + 5 ≡ −4 (mod 2d + 9) ∈ 〈S〉. Next, we note that v−(d+1) ∼ v−(d+4) since

| − (d+ 1)− (−(d+ 4))| = 3 ∈ S, and v−(d+2) is adjacent to neither v−(d+4) nor

v−(d+1) since | − (d + 2)− (−(d + 4))| = 2 6∈ S and | − (d + 1)− (−(d + 2))| =

1 6∈ S. Furthermore, vd+4 6∼ v−(d+4) since |(d + 4)− (−(d + 4))| = 2d + 8 ≡ −1

(mod 2d + 9) 6∈ 〈S〉. Hence, Hx is isomorphic to P4, and thus is well-covered

with β(Hx) = 2.
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Case 5.5.15.1.1.2 x = vd+3.

In this case V
(
Hx) =

{
v−(d+4), vd+4

}
. Note that v−(d+4) 6∼ vd+4 since |(d+ 4)−

(−(d+ 4))| = 2d+ 8 ≡ −1 (mod 2d+ 9) 6∈ 〈S〉. Hence, Hx is well-covered with

β(Hx) = 2.

This concludes Case 5.5.15.1.1.

Case 5.5.15.1.2 u = vd+2.

Let H
′
u = Hw

[{
v−1
}]

, H
′′
u = Hw

[{
vd+3

}]
and H

′′′
u = Hw

[{
vd+4

}]
. Note that

V (H
′
u) together with V (H

′′
u ) and V (H

′′′
u ) forms a partition of V (Hu).

We claim that no vertex in one of the graphs H
′
u, H

′′
u and H

′′′
u is adjacent to a

vertex in either of the other two graphs. Observe that vd+3 is adjacent to neither

v−1 nor vd+4 since |(d+ 3)− (−1)| = d+ 4 6∈ S and |(d+ 4)− (d+ 3)| = 1 6∈ S.

We now note that vd+4 6∼ v−1 since |(d+ 4)− (−1)| = d+ 5 6∈ 〈S〉. Hence, H
′
u,

H
′′
u and H

′′′
u are well-covered with β(H

′
u) = β(H

′′
u ) = β(H

′′′
u ) = 1. Therefore, Hu

is well-covered with β(Hu) = 3.

Case 5.5.15.1.3 u = v−1.

In this case V
(
Hu) = {v−(d+4), v−(d+3), v−(d+2), vd+2, vd+3, vd+4}. To show that

Hu is well-covered we are going to apply Lemma 5.1 with y0 = v−(d+4). Since

v−(d+4) is adjacent to v−(d+4)+j and v−(d+4)−j for each j in the set S, it follows

that NHu [v−(d+4)] =
{
v−(d+4), vd+2

}
. We will show for each y ∈ NHu [v−(d+4)]

that Hy = Hu\NHu [y] is well-covered with β(Hy) = 2.

Case 5.5.15.1.3.1 y = v−(d+4).

In this case V
(
Hy) =

{
v−(d+3), v−(d+2), vd+3, vd+4

}
. We claim that Hy is iso-

morphic to P4. Observe that v−(d+2) is adjacent to both vd+3 and vd+4 since
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|(d+ 3)− (−(d+ 2))| = 2d+ 5 ≡ −4 (mod 2d+ 9) ∈ 〈S〉 and |(d+ 4)− (−(d+

2))| = 2d + 6 ≡ −3 (mod 2d + 9) ∈ 〈S〉. Next, we note that v−(d+3) ∼ vd+3

since |(d + 3) − (−(d + 3))| = 2d + 6 ≡ −3 (mod 2d + 9) ∈ 〈S〉. Also

note that v−(d+3) 6∼ v−(d+2) since |(−(d + 2)) − (−(d + 3))| = 1 6∈ S, and

vd+3 6∼ vd+4 since |(d + 4) − (d + 3)| = 1 6∈ S. Furthermore, vd+4 6∼ v−(d+3)

since |(d + 4) − (−(d + 3))| = 2d + 7 ≡ −2 (mod 2d + 9) 6∈ 〈S〉. Hence, Hy is

isomorphic to P4, and thus is well-covered with β(Hy) = 2.

Case 5.5.15.1.3.2 y = vd+2.

In this case V
(
Hy) =

{
vd+3, vd+4

}
. Note that vd+4 6∼ vd+3 since |(d+ 4)− (d+

3)| = 1 6∈ S. Hence, Hy is well-covered with β(Hy) = 2.

This concludes Case 5.5.15.1.3 and Case 5.5.15.1.

Case 5.5.15.2 w = vd+1.

In this case V
(
Hw) = {v−2, v−1, vd+2, vd+3}. From Case 5.5.11, we know that

Hw is well-covered with β(Hw) = 4.

Case 5.5.15.3 w = v−2.

Let H
′
w = H

[{
v−(d+4), v−(d+3), vd+1, vd+2, vd+3, vd+4

}]
and H

′′
w = H

[{
v−1
}]

.

Note that V (H
′
w) together with V (H

′′
w) forms a partition of V (Hw). Observe

that v−1 is adjacent to neither v−(d+4), v−(d+3), vd+1, vd+2, vd+3 nor vd+4 since

|(−1) − (−(d + 4))| = d + 3 6∈ 〈S〉, |(−1) − (−(d + 3))| = d + 2 6∈ 〈S〉,

|(d+ 1)− (−1)| = d+ 2 6∈ 〈S〉, |(d+ 2)− (−1)| = d+ 3 6∈ 〈S〉, |(d+ 3)− (−1)| =

d + 4 6∈ 〈S〉 and |(d + 4) − (−1)| = d + 5 6∈ 〈S〉. Hence, no vertex in H
′
w is

adjacent to a vertex in H
′′
w.
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Next, to show that H
′
w is well-covered we are going to apply Lemma 5.1 with

z0 = vd+3. Since vd+3 is adjacent to v(d+3)+j and v(d+3)−j for each j in the set S,

it follows that NH′w
[vd+3] =

{
v−(d+3), vd+3

}
. We will show for each z ∈ NH′w

[vd+3]

that Hz = H
′
w\NH′w

[z] is well-covered with β(Hz) = 2.

Case 5.5.15.3.1 z = vd+3.

In this case V
(
Hz) =

{
v−(d+4), vd+1, vd+2, vd+4

}
. We claim that Hz is isomorphic

to P4. Observe that vd+2 ∼ v−(d+4) since |(d + 2) − (−(d + 4))| = 2d + 6 ≡ −3

(mod 2d + 9) ∈ 〈S〉. Next, we note that vd+1 is adjacent to both v−(d+4) and

vd+4 since |(d + 1) − (−(d + 4))| = 2d + 5 ≡ −4 (mod 2d + 9) ∈ 〈S〉 and

|(d + 4) − (d + 1)| = 3 ∈ S. Also note that vd+4 is adjacent to neither v−(d+4)

nor vd+2 since |(d + 4) − (−(d + 4))| = 2d + 8 ≡ −1 (mod 2d + 9) 6∈ 〈S〉 and

|(d+ 4)− (d+ 2)| = 2 6∈ S. Furthermore, vd+2 6∼ vd+1 since |(d+ 2)− (d+ 1)| =

1 6∈ S. Hence, Hz is isomorphic to P4, and thus is well-covered with β(Hz) = 2.

Case 5.5.15.3.2 z = v−(d+3).

In this case V
(
Hz) =

{
v−(d+4), vd+4

}
. Note that v−(d+4) 6∼ vd+4 since |(d+ 4)−

(−(d+ 4))| = 2d+ 8 ≡ −1 (mod 2d+ 9) 6∈ 〈S〉. Hence, Hz is well-covered with

β(Hz) = 2.

Finally, we note that H
′′
w is well-covered with β(H

′′
w) = 1. Hence, Hw is well-

covered with β(Hw) = 4.

This concludes Case 5.5.15.3.

Hence, G is well-covered and β
(
G
)

= 6, concluding the proof of Case 5.5.15.
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Case 5.5.16 d ≥ 8 and 2d+ 10 ≤ n ≤ 3d+ 2.

To show thatH is well-covered we are going to apply Lemma 5.1 with w0 = vbn2 c.

Since vbn2 c is adjacent to vbn2 c+j and vbn2 c−j for each j in the set S, it follows that

NH [vbn2 c] =
{
vi : d+1 ≤ i ≤

⌊
n
2

⌋
−3
}
∪
{
vbn2 c

}
∪
{
vi :

⌊
n
2

⌋
+3 ≤ i ≤ n−(d+1)

}
.

We will show for each w ∈ NH [vbn2 c] that Hw = H\NH [w] is well-covered with

β(Hw) = 4.

Case 5.5.16.1 w = vbn2 c.

LetH
′
w = H

[{
v−2, v−1, v1, v2

}]
andH

′′
w = H

[{
vbn2 c−2, vbn2 c−1, vbn2 c+1, vbn2 c+2

}]
.

Note that V (H
′
w) together with V (H

′′
w) forms a partition of V (Hw). We also

note that no vertex in H
′
w is adjacent to a vertex in H

′′
w.

We claim that H
′
w is isomorphic to P4. Observe that v−2 is adjacent to both v1

and v2 since |1− (−2)| = 3 ∈ S and |2− (−2)| = 4 ∈ S. Next, we note that v1

is adjacent to neither v−1 nor v2 since |1− (−1)| = 2 6∈ S and |2− 1| = 1 6∈ S.

By symmetry, we can also deduce that v2 ∼ v−1 and v−1 6∼ v−2. Hence, H
′
w is

isomorphic to P4, and thus is well-covered with β(H
′
w) = 2.

Next, we show that H
′′
w is isomorphic to P4. Observe that vbn2 c+2 is adjacent

to both vbn2 c−2 and vbn2 c−1 since |(
⌊
n
2

⌋
+ 2) − (

⌊
n
2

⌋
− 2)| = 4 ∈ S and |(

⌊
n
2

⌋
+

2)− (
⌊
n
2

⌋
− 1)| = 3 ∈ S. Next, we note that vbn2 c−2 ∼ vbn2 c+1 since |(

⌊
n
2

⌋
+ 1)−

(
⌊
n
2

⌋
− 2)| = 3 ∈ S. Also note that vbn2 c−1 is adjacent to neither vbn2 c−2 nor

vbn2 c+1 since |(
⌊
n
2

⌋
−1)− (

⌊
n
2

⌋
−2)| = 1 6∈ S and |(

⌊
n
2

⌋
+1)− (

⌊
n
2

⌋
−1)| = 2 6∈ S.

Furthermore, vbn2 c+2 6∼ vbn2 c+1 since |(
⌊
n
2

⌋
+ 2) − (

⌊
n
2

⌋
+ 1)| = 1 6∈ S. Hence,

H
′′
w is isomorphic to P4, and thus is well-covered with β(H

′′
w) = 2. Therefore,

Hw is well-covered with β(Hw) = 4.
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Case 5.5.16.2 w = vd+1 or w = v−(d+1).

By symmetry, we need only examine w = vd+1. In this case V
(
Hw

)
=
{
v−2, v−1,

vd+2, vd+3

}
. From Case 5.5.11, we know that Hw is well-covered with β(Hw) = 4.

Case 5.5.16.3 w = vd+2 or w = v−(d+2).

By symmetry, we need only examine w = vd+2. Let H
′
w = H

[{
v−2, v1, vd+1,

vd+4

}]
, H

′′
w = H

[{
vd+3

}]
and H

′′
w = H

[{
v−1
}]

. Note that V (H
′
w) together with

V (H
′′
w) and V (H

′′′
w ) forms a partition of V (Hw).

We claim that no vertex in one of the graphs H
′
w, H

′′
w and H

′′′
w is adjacent to a

vertex in either of the other two graphs. Observe that vd+3 is adjacent to neither

v−2, v1, vd+1 nor vd+4 since |(d+3)−(−2)| = d+5 6∈ 〈S〉, |(d+3)−1| = d+2 6∈ 〈S〉,

|(d+ 3)− (d+ 1)| = 2 6∈ S and |(d+ 4)− (d+ 3)| = 1 6∈ S. Next, we note that

v−1 is adjacent to neither v−2, v1, vd+1 nor vd+4 since |(−1) − (−2)| = 1 6∈ S,

|1−(−1)| = 2 6∈ S, |(d+1)−(−1)| = d+2 6∈ 〈S〉 and |(d+4)−(−1)| = d+5 6∈ 〈S〉.

Furthermore, vd+3 6∼ v−1 since |(d+ 3)− (−1)| = d+ 4 6∈ 〈S〉.

Next, we show that H
′
w is isomorphic to P4. Observe that v1 is adjacent to both

v−2 and vd+1 since |1− (−2)| = 3 ∈ S and |(d+ 1)− 1| = d ∈ S. Next, we note

that vd+4 is adjacent to neither v−2 nor v1 since |(d+ 4)− (−2)| = d+ 6 6∈ 〈S〉

and |(d+4)−1| = d+3 6∈ 〈S〉. Furthermore, vd+1 6∼ v−2 since |(d+1)− (−2)| =

d + 3 6∈ 〈S〉, and vd+1 ∼ vd+4 since |(d + 4) − (d + 1)| = 3 ∈ S. Hence, H
′
w is

isomorphic to P4, and thus is well-covered with β(H
′
w) = 2.

Finally, we note that H
′′
w and H

′′′
w are well-covered with β(H

′′
w) = β(H

′′′
w ) = 1.

Therefore, Hw is well-covered with β(Hw) = 4.

Case 5.5.16.4 w = vd+3 or w = v−(d+3) and d ≥ 10. Note that this is only

valid if 2d+ 12 ≤ n ≤ 3d+ 2.
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By symmetry, we need only examine w = vd+3. In this case V
(
Hw

)
=
{
v−2, v−1,

v1, v2, vd+1, vd+2, vd+4, vd+5

}
. To show that Hw is well-covered we are going to

apply Lemma 5.1 with u0 = v−2. Since v−2 is adjacent to v−2+j and v−2−j for

each j in the set S, it follows that NHw [v−2] =
{
v−2, v1, v2

}
. We will show for

each u ∈ NHw [v−2] that Hu = Hw\NHw [u] is well-covered with β(Hu) = 3.

Case 5.5.16.4.1 u = v−2.

Let H
′
u = Hw

[{
vd+1, vd+2, vd+4, vd+5

}]
and H

′′
u = Hw

[{
v−1
}]

. Note that V (H
′
u)

together with V (H
′′
u ) forms a partition of V (Hu). Observe that v−1 is adjacent

to neither vd+1, vd+2, vd+4 nor vd+5 since |(d + 1) − (−1)| = d + 2 6∈ 〈S〉,

|(d+2)−(−1)| = d+3 6∈ 〈S〉, |(d+4)−(−1)| = d+5 6∈ 〈S〉 and |(d+5)−(−1)| =

d+ 6 6∈ 〈S〉. Hence, no vertex in H
′
u is adjacent to a vertex in H

′′
u .

Next, we show that H
′
u is isomorphic to P4. Observe that vd+1 is adjacent to

both vd+4 and vd+5 since |(d+4)−(d+1)| = 3 ∈ S and |(d+5)−(d+1)| = 4 ∈ S.

Next, we note that vd+2 ∼ vd+5 since |(d+ 5)− (d+ 2)| = 3 ∈ S and vd+1 6∼ vd+2

since |(d+ 2)− (d+ 1)| = 1 6∈ S. Furthermore, vd+4 is adjacent to neither vd+2

nor vd+5 since |(d+ 4)− (d+ 2)| = 2 6∈ S and |(d+ 5)− (d+ 4)| = 1 6∈ S. Hence,

H
′
u is isomorphic to P4, and thus is well-covered with β(H

′
u) = 2.

Finally, we note that H
′′
u is well-covered with β(H

′′
u ) = 1, and thus Hu is well-

covered with β(Hu) = 3.

Case 5.5.16.4.2 u = v1.

Let H
′
u = Hw

[{
v−1, v2, vd+2, vd+5

}]
and H

′′
u = Hw

[{
vd+4

}]
. Note that V (H

′
u)

together with V (H
′′
u ) forms a partition of V (Hu). Observe that vd+4 is adjacent

to neither v−1, v2, vd+2 nor vd+5 since |(d+4)−(−1)| = d+5 6∈ 〈S〉, |(d+4)−2| =

d+ 2 6∈ 〈S〉, |(d+ 4)− (d+ 2)| = 2 6∈ S and |(d+ 5)− (d+ 4)| = 1 6∈ S. Hence,

no vertex in H
′
u is adjacent to a vertex in H

′′
u .
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Next, we show that H
′
u is isomorphic to P4. Observe that vd+2 is adjacent to

both v2 and vd+5 since |(d + 2) − 2| = d ∈ S and |(d + 5) − (d + 2)| = 3 ∈ S.

Next, we note that v2 ∼ v−1 since |2 − (−1)| = 3 ∈ S, and vd+2 6∼ v−1 since

|(d+ 2)− (−1)| = d+ 3 6∈ 〈S〉. Furthermore, vd+5 is adjacent to neither v−1 nor

v2 since |(d+ 5)− (−1)| = d+ 6 6∈ 〈S〉 and |(d+ 5)− 2| = d+ 3 6∈ 〈S〉. Hence,

H
′
u is isomorphic to P4, and thus is well-covered with β(H

′
u) = 2.

Finally, we note that H
′′
u is well-covered with β(H

′′
u ) = 1, and hence Hu is

well-covered with β(Hu) = 3.

Case 5.5.16.4.3 u = v2.

In this case V
(
Hu) =

{
v1, vd+4, vd+5

}
. Observe that v1 is adjacent to neither

vd+4 nor vd+5 since |(d+ 4)− 1| = d+ 3 6∈ 〈S〉 and |(d+ 5)− 1| = d+ 4 6∈ 〈S〉.

Furthermore, vd+4 6∼ vd+5 since |(d + 5) − (d + 4)| = 1 6∈ S. Hence, Hu is

well-covered with β(Hu) = 3.

This concludes Case 5.5.16.4.

Case 5.5.16.5 w = v2−bn2 c. Note that this is only valid if n is odd.

Let H
′
w = H

[{
v−bn2 c, v1−bn2 c, v3−bn2 c, v4−bn2 c

}]
and H

′′
w = H

[{
v−2, v−1, v1, v2

}]
.

Note that V (H
′
w) together with V (H

′′
w) forms a partition of V (Hw). We also

note that no vertex in H
′
w is adjacent to a vertex in H

′′
w.

Next, we show that H
′
w is isomorphic to P4. Observe that v4−bn2 c is adjacent to

both v−bn2 c and v1−bn2 c since |(4 −
⌊
n
2

⌋
) − (−

⌊
n
2

⌋
)| = 4 ∈ S, and |(4 −

⌊
n
2

⌋
) −

(1−
⌊
n
2

⌋
)| = 3 ∈ S. Next, we note that v1−bn2 c is adjacent to neither v−bn2 c nor

v3−bn2 c since |(1−
⌊
n
2

⌋
)− (−

⌊
n
2

⌋
)| = 1 6∈ S and |(3−

⌊
n
2

⌋
)− (1−

⌊
n
2

⌋
)| = 2 6∈ S.

Furthermore, v4−bn2 c 6∼ v3−bn2 c since |(4 −
⌊
n
2

⌋
) − (3 −

⌊
n
2

⌋
)| = 1 6∈ S, and
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v3−bn2 c ∼ v−bn2 c since |(3 −
⌊
n
2

⌋
) − (−

⌊
n
2

⌋
)| = 3 ∈ S. Hence, H

′
w is isomorphic

to P4, and thus is well-covered with β(H
′
w) = 2.

From Case 5.5.16.1, we know that H
′′
w is well-covered with β(H

′′
w) = 2. Hence,

Hw is well-covered with β(Hw) = 4.

Case 5.5.16.6 w = vk or w = v−k for d+ 4 ≤ k ≤
⌊
n
2

⌋
− 3 and d ≥ 12.

By symmetry, we need only examine w = vk. Since neither 1 nor 2 is in S,

we can deduce that vk is adjacent to neither vk−2, vk−1, vk+1 nor vk+2. Let

H
′
w = H

[{
v−2, v−1, v1, v2

}]
and H

′′
w = H

[{
vk−2, vk−1, vk+1, vk+2

}]
. Note that

V (H
′
w) together with V (H

′′
w) forms a partition of V (Hw). We also note that no

vertex in H
′
w is adjacent to a vertex in H

′′
w.

Next, we show that H
′′
w is isomorphic to P4. Observe that vk+2 is adjacent to

both vk−2 and vk−1 since |(k+2)−(k−2)| = 4 ∈ S and |(k+2)−(k−1)| = 3 ∈ S.

Next, we note that vk+1 ∼ vk−2 since |(k+1)−(k−2)| = 3 ∈ S, and vk−2 6∼ vk−1

since |(k − 1)− (k − 2)| = 1 6∈ S. Furthermore, vk+1 is adjacent to neither vk−1

nor vk+2 since |(k+ 1)− (k−1)| = 2 6∈ S and |(k+ 2)− (k+ 1)| = 1 6∈ S. Hence,

H
′′
w is isomorphic to P4, and thus is well-covered with β(H

′′
w) = 2.

From Case 5.5.16.1, we know that H
′
w is well-covered with β(H

′
w) = 2. Hence,

Hw is well-covered with β(Hw) = 4.

Hence, G is well-covered and β
(
G
)

= 6, concluding the proof of Case 5.5.16.

(vii) d ≥ 3 and n = 3d+ 6.

First, when d = 3 we note that C
(
15, {3}

)
is well-covered and β

(
G
)

= 6.

Next, we consider the case where d ≥ 4. Then V (H) =
{
vi : −

⌊
n
2

⌋
≤ i ≤

−(d + 1)
}
∪
{
v−2, v−1

}
∪
{
v1, v2

}
∪
{
vi : d + 1 ≤ i ≤

⌊
n
2

⌋ }
. To show that
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H is well-covered we are going to apply Lemma 5.1 with w0 = vbn2 c. Since

vbn2 c is adjacent to vbn2 c+j and vbn2 c−j for each j in the set S, it follows that

NH [vbn2 c] =
{
vi : d+1 ≤ i ≤

⌊
n
2

⌋
−3
}
∪
{
vbn2 c

}
∪
{
vi :

⌊
n
2

⌋
+3 ≤ i ≤ n−(d+1)

}
.

We will show for each w ∈ NH [vbn2 c] that Hw = H\NH [w] is well-covered with

β(Hw) = 4.

Case 5.5.17 w = vbn2 c.

LetH
′
w = H

[{
v−2, v−1, v1, v2

}]
andH

′′
w = H

[{
vbn2 c−2, vbn2 c−1, vbn2 c+1, vbn2 c+2

}]
.

Note that V (H
′
w) together with V (H

′′
w) forms a partition of V (Hw). From

Case 5.5.16.1, we know that H
′
w and H

′′
w are well-covered with β(H

′
w) = β(H

′′
w) =

2. Hence, Hw is well-covered with β(Hw) = 4.

Case 5.5.17.1 w = vd+1 or w = v−(d+1).

By symmetry, we need only examine w = vd+1. In this case V
(
Hw

)
=
{
v−(d+4),

v−(d+3), v−(d+2), v−(d+1), v−2, v−1, vd+2, vd+3

}
. To show that Hw is well-covered we

are going to apply Lemma 5.1 with u0 = v−1. Since v−1 is adjacent to v−1+j

and v−1−j for each j in the set S, it follows that NHw [v−1] =
{
v−(d+1), v−1

}
.

We will show for each u ∈ NHw [v−1] that Hu = Hw\NHw [u] is well-covered with

β(Hu) = 3.

Case 5.5.17.1.1 u = v−1.

Let H
′
u = Hw

[{
v−(d+4), v−(d+3), vd+2, vd+3

}]
and H

′′
u = Hw

[{
v−(d+2), v−2

}]
. Note

that V (H
′
u) together with V (H

′′
u ) forms a partition of V (Hu).

We claim that no vertex in H
′
u is adjacent to a vertex in H

′′
u . Observe that v−2

is adjacent to neither v−(d+4), v−(d+3), vd+2 nor vd+3 since |(−2)− (−(d+ 4))| =

d + 2 6∈ 〈S〉, |(−2)− (−(d + 3))| = d + 1 6∈ 〈S〉, |(d + 2)− (−2)| = d + 4 6∈ 〈S〉
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and |(d + 3) − (−2)| = d + 5 6∈ 〈S〉. Next, we note that v−(d+2) is adjacent

to neither v−(d+4) nor v−(d+3) since | − (d + 2) − (−(d + 4))| = 2 6∈ S and

| − (d + 2) − (−(d + 3))| = 1 6∈ S. Furthermore, v−(d+2) is adjacent to neither

vd+2 nor vd+3 since |(d+2)−(−(d+2))| = 2d+4 ≡ −(d+2) (mod 3d+6) 6∈ 〈S〉

and |(d+ 3)− (−(d+ 2))| = 2d+ 5 ≡ −(d+ 1) (mod 3d+ 6) 6∈ 〈S〉.

Next, we claim that H
′
u is isomorphic to P4. Observe that vd+2 ∼ v−(d+4) since

|(d + 2) − (−(d + 4))| = 2d + 6 ≡ −d (mod 3d + 6) ∈ 〈S〉. Next, we note that

vd+3 ∼ v−(d+4) since |(d+3)−(−(d+4))| = 2d+7 ≡ −(d−1) (mod 3d+6) ∈ 〈S〉.

Also note that v−(d+3) 6∼ v−(d+4) since | − (d + 3) − (−(d + 4))| = 1 6∈ S, and

vd+2 6∼ vd+3 since |(d+ 3)− (d+ 2)| = 1 6∈ S. Furthermore, vd+3 ∼ v−(d+3) since

|(d + 3) − (−(d + 3))| = 2d + 6 ≡ −d (mod 3d + 6) ∈ 〈S〉, and vd+2 6∼ v−(d+3)

since |(d + 2) − (−(d + 3))| = 2d + 5 ≡ −(d + 1) (mod 3d + 6) 6∈ 〈S〉. Hence,

H
′
u is isomorphic to P4, and thus is well-covered with β(H

′
u) = 2.

Finally, we note that v−2 ∼ v−(d+2) since |(−2)− (−(d+ 2))| = d ∈ S, and thus

H
′′
u is well-covered with β(H

′′
u ) = 1. Hence, H3 is well-covered with β(Hu) = 3.

Case 5.5.17.1.2 u = v−(d+1).

Let H
′
u = Hw

[{
v−(d+3), vd+3

}]
, H

′′
u = Hw

[{
vd+2

}]
and H

′′′
u = Hw

[{
v−(d+2)

}]
.

Note that V (H
′
u) together with V (H

′′
u ) and V (H

′′′
u ) forms a partition of V (Hu).

We claim that no vertex in one of the graphs H
′
u, H

′′
u and H

′′′
u is adjacent to a

vertex in either of the other two graphs. First, we note that vd+2 6∼ v−(d+2) since

|(d+2)−(−(d+2))| = 2d+4 ≡ −(d+2) (mod 3d+6) 6∈ 〈S〉, and vd+2 6∼ v−(d+3)

since |(d + 2) − (−(d + 3))| = 2d + 5 ≡ −(d + 1) (mod 3d + 6) 6∈ 〈S〉. Next,

observe that vd+2 6∼ vd+3 since |(d + 3) − (d + 2)| = 1 6∈ S. By symmetry, we

can also deduce that v−(d+2) 6∼ v−(d+3) and vd+3 6∼ v−(d+2).

We now note that vd+3 ∼ v−(d+3) since |(d + 3) − (−(d + 3))| = 2d + 6 ≡ −d
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(mod 3d+ 6) ∈ 〈S〉, and thus H
′
u is well-covered with β(H

′
u) = 1. Furthermore,

H
′′
u and H

′′′
u are well-covered with β(H

′′
u ) = β(H

′′′
u ) = 1. Hence, Hu is well-

covered with β(Hu) = 3.

This concludes Case 5.5.17.1.

Case 5.5.17.2 w = vd+2 or w = v−(d+2).

By symmetry, we need only examine w = vd+2. In this case V
(
Hw

)
=
{
v−(d+3),

v−(d+2), v−(d+1), v−2, v−1, v1, vd+1, vd+3, vd+4

}
. To show that Hw is well-covered

we are going to apply Lemma 5.1 with x0 = v−(d+2). Since v−(d+2) is adjacent

to v−(d+2)+j and v−(d+2)−j for each j in the set S, it follows that NHw [v−(d+2)] ={
v−2, v−(d+2), vd+4

}
. We will show for each x ∈ NHw [v−(d+2)] that Hx = Hw\

NHw [x] is well-covered with β(Hx) = 3.

Case 5.5.17.2.1 x = v−(d+2).

Let H
′
x = Hw

[{
v1, vd+1

}]
, H

′′
x = Hw

[{
v−1, v−(d+1)

}]
and H

′′′
x = Hw

[{
vd+3,

v−(d+3)

}]
. Note that V (H

′
x) together with V (H

′′
x ) and V (H

′′′
x ) forms a partition

of V (Hx).

We claim that no vertex in one of the graphs H
′
x, H

′′
x and H

′′′
x is adjacent to a

vertex in either of the other two graphs. Observe that v1 is adjacent to neither

v−(d+3), v−(d+1), v−1 nor vd+3 since |1−(−(d+3))| = d+4 6∈ 〈S〉, |1−(−(d+1))| =

d+2 6∈ 〈S〉, |1−(−1)| = 2 6∈ S, and |(d+3)−1| = d+2 6∈ 〈S〉. Next, we note that

vd+1 6∼ vd+3 since |(d+3)−(d+1)| = 2 6∈ S, and vd+1 is adjacent to neither v−(d+3)

nor v−(d+1) since |(d+ 1)− (−(d+ 3))| = 2d+ 4 ≡ −(d+ 2) (mod 3d+ 6) 6∈ 〈S〉

and |(d+1)−(−(d+1))| = 2d+2 ≡ −(d+4) (mod 3d+6) 6∈ 〈S〉. By symmetry,

we can also deduce that v−1 is adjacent to neither v−(d+3), vd+1 nor vd+3; and

v−(d+1) is adjacent to neither v−(d+3) nor vd+3.
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Next, we note that v1 ∼ vd+1 since |(d + 1) − (1)| = d ∈ S. Hence, H
′
x is

well-covered with β(H
′
x) = 1. Similarly, H

′′
x is well-covered with β(H

′′
x ) =

1. Furthermore, vd+3 ∼ v−(d+3) since |(d + 3) − (−(d + 3))| = 2d + 6 ≡ −d

(mod 3d + 6) ∈ 〈S〉, and thus H
′′′
x is well-covered with β(H

′′′
x ) = 1. Therefore,

Hx is well-covered with β(Hx) = 3.

Case 5.5.17.2.2 x = vd+4.

Let H
′
x = Hw

[{
v−(d+1), v−2, v−1, v1

}]
and H

′′
x = Hw

[{
vd+3

}]
. Note that V (H

′
x)

together with V (H
′′
x ) forms a partition of V (Hx). Note that vd+3 is adjacent to

neither v−(d+1), v−2, v−1 nor v1 since |(d+ 3)− (−(d+ 1))| = 2d+ 4 ≡ −(d+ 2)

(mod 3d+6) 6∈ 〈S〉, |(d+3)−(−2)| = d+5 6∈ 〈S〉, |(d+3)−(−1)| = d+4 6∈ 〈S〉

and |(d+ 3)− 1| = d+ 2 6∈ 〈S〉. Hence, no vertex in H
′
x is adjacent to a vertex

in H
′′
x .

Next, we show that H
′
x is isomorphic to P4. Observe that v−(d+1) is adjacent to

both v−2 and v−1 since |(−2)−(−(d+1))| = d−1 ∈ S and |(−1)−(−(d+1))| =

d ∈ S. Next, we note that v−2 ∼ v1 since |1− (−2)| = 3 ∈ S, and v−(d+1) 6∼ v1

since |1 − (−(d + 1))| = d + 2 6∈ 〈S〉. Furthermore, v−1 is adjacent to neither

v−2 nor v1 since |(−1) − (−2)| = 1 6∈ S and |1 − (−1)| = 2 6∈ S. Hence, H
′
x is

isomorphic to P4, and thus is well-covered with β(H
′
x) = 2.

Finally, we note that H
′′
x is well-covered with β(H

′′
x ) = 1. Therefore, Hx is

well-covered with β(Hx) = 3.

Case 5.5.17.2.3 x = v−2.

Let H
′
x = Hw

[{
v−(d+3), vd+1, vd+3, vd+4

}]
and H

′′
x = Hw

[{
v−1
}]

. Note that

V (H
′
x) together with V (H

′′
x ) forms a partition of V (Hx). Note that v−1 is

adjacent to neither v−(d+3), vd+1, vd+3 nor vd+4 since |(−1) − (−(d + 3))| =
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d+ 2 6∈ 〈S〉, |(d+ 1)− (−1)| = d+ 2 6∈ 〈S〉, |(d+ 3)− (−1)| = d+ 4 6∈ 〈S〉, and

|(d + 4) − (−1)| = d + 5 6∈ 〈S〉. Hence, no vertex in H
′
x is adjacent to a vertex

in H
′′
x .

Next, we show that H
′
x is isomorphic to P4. Observe that v−(d+3) is adjacent to

both vd+3 and vd+4 since |(d+3)−(−(d+3))| = 2d+6 ≡ −d (mod 3d+6) ∈ 〈S〉

and |(d + 4)− (−(d + 3))| = 2d + 7 ≡ −(d− 1) (mod 3d + 6) ∈ 〈S〉. Next, we

note that vd+4 ∼ vd+1 since |(d+ 4)− (d+ 1)| = 3 ∈ S, and vd+1 6∼ v−(d+3) since

|(d + 1) − (−(d + 3))| = 2d + 4 ≡ −(d + 2) (mod 3d + 6) 6∈ 〈S〉. Furthermore,

vd+3 is adjacent to neither vd+1 nor vd+4 since |(d + 3) − (d + 1)| = 2 6∈ S

and |(d + 4) − (d + 3)| = 1 6∈ S. Hence, H
′
x is isomorphic to P4, and thus is

well-covered with β(H
′
x) = 2.

Finally, we note that H
′′
x is well-covered with β(H

′′
x ) = 1. Hence, Hx is well-

covered with β(Hx) = 3.

This concludes Case 5.5.17.2.

Case 5.5.17.3 w = vd+3 or w = v−(d+3) and d ≥ 6.

By symmetry, we need only examine w = vd+3. In this case V
(
Hw

)
=
{
v−(d+2),

v−(d+1), v−2, v−1, v1, v2, vd+1, vd+2, vd+4, vd+5

}
. To show that Hw is well-covered

we are going to apply Lemma 5.1 with z0 = v1. Since v1 is adjacent to v1+j

and v1−j for each j in the set S, it follows that NHw [v1] =
{
v−2, v1, vd+1

}
. We

will show for each z ∈ NHw [v−(d+2)] that Hz = Hw\NHw [z] is well-covered with

β(Hz) = 3.

Case 5.5.17.3.1 z = v1.

In this case V
(
Hz) =

{
v−(d+2), v−(d+1), v−1, v2, vd+2, vd+4, vd+5

}
. To show that

Hz is well-covered we are going to apply Lemma 5.1 with q0 = vd+4. Since
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vd+4 is adjacent to v(d+4)+j and v(d+4)−j for each j in the set S, it follows that

NHz [vd+4] =
{
v−(d+2), vd+4

}
. We will show for each q ∈ NHz [vd+4] that Hq =

Hw\NHw [q] is well-covered with β(Hq) = 2.

Case 5.5.17.3.1.1 q = vd+4.

In this case V
(
Hq) =

{
v−(d+1), v−1, v2, vd+2, vd+5

}
. We claim that Hq is isomor-

phic to C5. Observe that vd+2 is adjacent to both v2 and vd+5 since |(d+2)−2| =

d ∈ S and |(d + 5) − (d + 2)| = 3 ∈ S. Next, we note that v−1 is adjacent

to both v2 and v−(d+1) since |2 − (−1)| = 3 ∈ S and |(−1) − (−(d + 1))| =

d ∈ S. We also note that vd+2 is adjacent to neither v−1 nor v−(d+1) since

|(d + 2) − (−(1))| = d + 3 6∈ 〈S〉 and |(d + 2) − (−(d + 1))| = 2d + 3 ≡

−(d + 3) (mod 3d + 6) 6∈ 〈S〉; and vd+5 is adjacent to neither v−1 nor v2 since

|(d+ 5)− (−(1))| = d+ 6 6∈ 〈S〉 and |(d+ 5)− 2| = d+ 3 6∈ 〈S〉. Furthermore,

v−(d+1) ∼ vd+5 since |(d + 5)− (−(d + 1))| = 2d + 6 ≡ −d (mod 3d + 6) ∈ 〈S〉,

and v−(d+1) 6∼ v2 since |2− (−(d+ 1))| = d+ 3 6∈ 〈S〉. Hence, Hq is isomorphic

to C5, and thus is well-covered with β(Hq) = 2.

Case 5.5.17.3.1.2 q = v−(d+2).

In this case V
(
Hq) =

{
v−(d+1), v−1, v2, vd+2

}
. From Case 5.5.17.3.1.1, we know

that vd+2 is adjacent to v2; v−1 is adjacent to both v2 and v−(d+1); vd+2 is adjacent

to neither v−1 nor v−(d+1); and v−(d+1) 6∼ v2. Hence, Hq is isomorphic to P4, and

thus is well-covered with β(Hq) = 2.

This concludes Case 5.5.17.3.1.
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Case 5.5.17.3.2 z = vd+1.

Let H
′
z = Hw

[{
v−(d+2), v−(d+1), v−2, v−1

}]
and H

′′
z = Hw

[{
vd+2

}]
. Note that

V (H
′
z) together with V (H

′′
z ) forms a partition of V (Hz). Note that vd+2 is

adjacent to neither v−(d+2), v−(d+1), v−2 nor v−1 since |(d + 2) − (−(d + 2))| =

2d+4 ≡ −(d+2) (mod 3d+6) 6∈ 〈S〉, |(d+2)− (−(d+1))| = 2d+3 ≡ −(d+3)

(mod 3d+6) 6∈ 〈S〉, |(d+2)− (−2)| = d+4 6∈ 〈S〉 and |(d+2)− (−1)| = d+3 6∈

〈S〉. Hence, no vertex in H
′
z is adjacent to a vertex in H

′′
z .

We claim that H
′
z is isomorphic to P4. Observe that v−(d+1) is adjacent to both

v−2 and v−1 since |(−2)−(−(d+1))| = d−1 ∈ S and |(−1)−(−(d+1))| = d ∈ S.

Next, we note that v−2 ∼ v−(d+2) since |(−2)−(−(d+2))| = d ∈ S, and v−2 6∼ v−1

since |(−1)− (−2)| = 1 6∈ S. Furthermore, v−(d+2) is adjacent to neither v−(d+1)

nor v−1 since |−(d+1)−(−(d+2))| = 1 6∈ S and |(−1)−(−(d+2))| = d+1 6∈ 〈S〉.

Hence, H
′
z is isomorphic to P4, and thus is well-covered with β(H

′
z) = 2.

Finally, we note that H
′′
z is well-covered with β(H

′′
z ) = 1. Therefore, Hz is

well-covered with β(Hz) = 3.

Case 5.5.17.3.3 z = v−2.

Let H
′
z = Hw

[{
vd+1, vd+2, vd+4, vd+5

}]
and H

′′
z = Hw

[{
v−1
}]

. Note that V (H
′
z)

together with V (H
′′
z ) forms a partition of V (Hz). Note that v−1 is adjacent

to neither vd+1, vd+2, vd+4 nor vd+5 since |(d + 1) − (−1)| = d + 2 6∈ 〈S〉,

|(d+2)−(−1)| = d+3 6∈ 〈S〉, |(d+4)−(−1)| = d+5 6∈ 〈S〉 and |(d+5)−(−1)| =

d+ 6 6∈ 〈S〉. Hence, no vertex in H
′
z is adjacent to a vertex in H

′′
z .

Next, we show that H
′
z is isomorphic to P4. Observe that vd+1 is adjacent to

both vd+4 and vd+5 since |(d+4)−(d+1)| = 3 ∈ S and |(d+5)−(d+1)| = 4 ∈ S.

Next, we note that vd+2 ∼ vd+5 since |(d+5)− (d+2)| = 3 ∈ S, and vd+1 6∼ vd+2

since |(d+ 2)− (d+ 1)| = 1 6∈ S. Furthermore, vd+4 is adjacent to neither vd+2
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nor vd+5 since |(d+ 4)− (d+ 2)| = 2 6∈ S and |(d+ 5)− (d+ 4)| = 1 6∈ S. Hence,

H
′
z is isomorphic to P4, and thus is well-covered with β(H

′
z) = 2.

Finally, we note that H
′′
z is well-covered with β(H

′′
z ) = 1. Therefore, Hz is

well-covered with β(Hz) = 3.

This concludes Case 5.5.17.3.

Case 5.5.17.4 w = vd+4 or w = v−(d+4) and d ≥ 8.

By symmetry, we need only examine w = vd+4. In this case V
(
Hw

)
=
{
v−(d+1),

v−2, v−1, v1, v2, vd+2, vd+3, vd+5, vd+6

}
. To show that Hw is well-covered we are

going to apply Lemma 5.1 with r0 = v−(d+1). Since v−(d+1) is adjacent to

v−(d+1)+j and v−(d+1)−j for each j in the set S, it follows that NHw [v−(d+1)] ={
v−(d+1), v−2, v−1, vd+5, vd+6

}
. We will show for each r ∈ NHw [v−(d+1)] that

Hr = Hw\NHw [r] is well-covered with β(Hr) = 3.

Case 5.5.17.4.1 r = v−(d+1).

Let H
′
r = Hw

[{
v2, vd+2

}]
, H

′′
r = Hw

[{
vd+3

}]
and H

′′′
r = Hw

[{
v1
}]

. Note that

V (H
′
r) together with V (H

′′
r ) and V (H

′′′
r ) forms a partition of V (Hr).

We claim that no vertex in one of the graphs H
′
r, H

′′
r and H

′′′
r is adjacent to a

vertex in either of the other two graphs. Observe that vd+3 is adjacent to neither

v2 nor vd+2 since |(d + 3) − 2| = d + 1 6∈ 〈S〉 and |(d + 3) − (d + 2)| = 1 6∈ S.

Next, we note that v1 is adjacent to neither v2 nor vd+2 since |2−1| = 1 6∈ S and

|(d+2)−1| = d+1 6∈ 〈S〉. Furthermore, v1 6∼ vd+3 since |(d+3)−1| = d+2 6∈ 〈S〉.

We now note that vd+2 ∼ v2 since |(d + 2) − 2| = d ∈ S, and thus H
′
r is

well-covered with β(H
′
r) = 1. Furthermore, H

′′
r and H

′′′
r are well-covered with

β(H
′′
r ) = β(H

′′′
r ) = 1. Hence, Hr is well-covered with β(Hr) = 3.
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Case 5.5.17.4.2 r = vd+6.

Let H
′
r = Hw

[{
v−2, v−1, v1, v2

}]
and H

′′
r = Hw

[{
vd+5

}]
. Note that V (H

′
r)

together with V (H
′′
r ) forms a partition of V (Hr). Note that vd+5 is adjacent to

neither v−2, v−1, v1 nor v2 since |(d+5)− (−2)| = d+7 6∈ 〈S〉, |(d+5)− (−1)| =

d+ 6 6∈ 〈S〉, |(d+ 5)− 1| = d+ 4 6∈ 〈S〉, and |(d+ 5)− 2| = d+ 3 6∈ 〈S〉. Hence,

no vertex in H
′
r is adjacent to a vertex in H

′′
r .

From Case 5.5.16.1, we know that H
′
r is well-covered with β(H

′
r) = 2. Fur-

thermore, H
′′
r is well-covered with β(H

′′
r ) = 1. Hence, Hr is well-covered with

β(Hr) = 3.

Case 5.5.17.4.3 r = v−2.

Let H
′
r = Hw

[{
vd+2, vd+3, vd+5, vd+6

}]
and H

′′
r = Hw

[{
v−1
}]

. Note that V (H
′
r)

together with V (H
′′
r ) forms a partition of V (Hr). Note that v−1 is adjacent

to neither vd+2, vd+3, vd+5 nor vd+6 since |(d + 2) − (−1)| = d + 3 6∈ 〈S〉,

|(d+3)−(−1)| = d+4 6∈ 〈S〉, |(d+5)−(−1)| = d+6 6∈ 〈S〉 and |(d+6)−(−1)| =

d+ 7 6∈ 〈S〉. Hence, no vertex in H
′
r is adjacent to a vertex in H

′′
r .

Next, we show that H
′
r is isomorphic to P4. Observe that vd+6 is adjacent to

both vd+2 and vd+3 since |(d+6)−(d+2)| = 4 ∈ S and |(d+6)−(d+3)| = 3 ∈ S.

Next, we note that vd+2 ∼ vd+5 since |(d+5)− (d+2)| = 3 ∈ S, and vd+5 6∼ vd+6

since |(d+ 6)− (d+ 5)| = 1 6∈ S. Furthermore, vd+3 is adjacent to neither vd+2

nor vd+5 since |(d+ 3)− (d+ 2)| = 1 6∈ S and |(d+ 5)− (d+ 3)| = 2 6∈ S. Hence,

H
′
r is isomorphic to P4, and thus is well-covered with β(H

′
r) = 2.

Finally, we note that H
′′
r is well-covered with β(H

′′
r ) = 1. Hence, Hr is well-

covered with β(Hr) = 3.
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Case 5.5.17.4.4 r = vd+5.

Let H
′
r = Hw

[{
v−2, v−1, v1, v2

}]
and H

′′
r = Hw

[{
vd+3, vd+6

}]
. Note that V (H

′
r)

together with V (H
′′
r ) forms a partition of V (Hr).

We claim that no vertex in H
′
r is adjacent to a vertex in H

′′
r . Observe that

vd+3 is adjacent to neither v−2, v−1, v1 nor v2 since |(d + 3) − (−2)| = d +

5 6∈ 〈S〉, |(d + 3) − (−1)| = d + 4 6∈ 〈S〉, |(d + 3) − 1| = d + 2 6∈ 〈S〉 and

|(d + 3) − 2| = d + 1 6∈ 〈S〉. Furthermore, vd+6 is adjacent to neither v−2, v−1,

v1 nor v2 since |(d + 6) − (−2)| = d + 8 6∈ 〈S〉, |(d + 6) − (−1)| = d + 7 6∈ 〈S〉,

|(d+ 6)− 1| = d+ 5 6∈ 〈S〉 and |(d+ 6)− 2| = d+ 4 6∈ 〈S〉.

From Case 5.5.16.1, we know that H
′
r is well-covered with β(H

′
r) = 2. Further-

more, vd+3 ∼ vd+6 since |(d+ 6)− (d+ 3)| = 3 ∈ S, and thus H
′′
r is well-covered

with β(H
′′
r ) = 1. Hence, Hr is well-covered with β(Hr) = 3.

Case 5.5.17.4.5 r = v−1.

Let H
′
r = Hw

[{
vd+2, vd+3, vd+5, vd+6

}]
and H

′′
r = Hw

[{
v−2, v1

}]
. Note that

V (H
′
r) together with V (H

′′
r ) forms a partition of V (Hr).

We claim that no vertex in H
′
r is adjacent to a vertex in H

′′
r . Observe that v1

is adjacent to neither vd+2, vd+3, vd+5 nor vd+6 since |(d+ 2)− 1| = d+ 1 6∈ 〈S〉,

|(d + 3) − 1| = d + 2 6∈ 〈S〉, |(d + 5) − 1| = d + 4 6∈ 〈S〉, and |(d + 6) − 1| =

d + 5 6∈ 〈S〉. Furthermore, v−2 is adjacent to neither vd+2, vd+3, vd+5 nor

vd+6 since |(d + 2) − (−2)| = d + 4 6∈ 〈S〉, |(d + 3) − (−2)| = d + 5 6∈ 〈S〉,

|(d+ 5)− (−2)| = d+ 7 6∈ 〈S〉, and |(d+ 6)− (−2)| = d+ 8 6∈ 〈S〉.

From Case 5.5.17.4.3, we know that H
′
r is well-covered with β(H

′
r) = 2. Fur-

thermore, v1 ∼ v−2 since |1− (−2)| = 3 ∈ S, and thus H
′′
r is well-covered with

β(H
′′
r ) = 1. Hence, Hr is well-covered with β(Hr) = 3.
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This concludes Case 5.5.17.4.

Case 5.5.17.5 w = vk or w = v−k for d+ 5 ≤ k ≤
⌊
n
2

⌋
− 3 and d ≥ 10.

By symmetry, we need only examine w = vk. Since neither 1 nor 2 is in S,

we can deduce that vk is adjacent to neither vk−2, vk−1, vk+1 nor vk+2. Let

H
′
w = H

[{
v−2, v−1, v1, v2

}]
and H

′′
w = H

[{
vk−2, vk−1, vk+1, vk+2

}]
. Note that

V (H
′
w) together with V (H

′′
w) forms a partition of V (Hw). From Case 5.5.16.6,

we know that H
′
w and H

′′
w are well-covered with β(H

′
w) = β(H

′′
w) = 2. Hence,

Hw is well-covered with β(Hw) = 4.

Case 5.5.17.6 w = v2−bn2 c. Note that this case is only valid if n is odd.

Let H
′
w = H

[{
v−bn2 c, v1−bn2 c, v3−bn2 c, v4−bn2 c

}]
and H

′′
w = H

[{
v−2, v−1, v1, v2

}]
.

Note that V (H
′
w) together with V (H

′′
w) forms a partition of V (Hw). From Case

5.5.16.5, we know that H
′
w and H

′′
w are well-covered with β(H

′
w) = β(H

′′
w) = 2.

Hence, Hw is well-covered with β(Hw) = 4.

Hence, G is well-covered with β
(
G
)

= 6, concluding the proof of Case (vii).

(viii) C
(
21, {3}

)
.

Note that C
(
21, {3}

)
is well-covered and β

(
G
)

= 9.

We now proceed to prove the ‘only if’ direction.

Case 5.5.18 d = 3 and n ≥ 22.

Observe that for each n = 10, 11, 13, 14 and 16 ≤ n ≤ 20 one can verify that G is

not well-covered.

Assume that n ≥ 22. Let I
′

=
{
v−9, v9

}
. First, we show that v−9 6∼ v9. Note

that |9− (−9)| = 18. Given our assumption that n ≥ 22, it follows that n− 18 ≥ 4.

Hence, I
′

is an independent set in G.
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Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−3, v0, v3
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in H1.

Next, let K2 =
{
v−3, v3

}
. Note that v−3 6∼ v3 since |3 − (−3)| = 6 6∈ S. Therefore,

K2 is an independent set in H1 with cardinality greater than that of K1. So H1 is

not well-covered, and hence by Proposition 2.5, G is not well-covered.

Case 5.5.19 d ≥ 3 and n = 2d+ 2.

First, we note that C
(
8, {3}

)
is not well-covered.

Next, we consider the case where d ≥ 4. Let I
′

=
{
vd+1

}
. Clearly I

′
is an

independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−(d−1), v−d, v0, vd−1, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent

set in H1. Next, let K2 =
{
v−d, vd

}
. Note that v−d 6∼ vd since |d− (−d)| = 2d ≡ −2

(mod 2d + 2) 6∈ 〈S〉. Therefore, K2 is an independent set in H1 with cardinality

greater than that of K1. So H1 is not well-covered, and hence by Proposition 2.5, G

is not well-covered.

Case 5.5.20 d ≥ 4 and 3d+ 3 ≤ n ≤ 3d+ 5.

Case 5.5.20.1 n = 3d+ 3.

Let I
′
=
{
v−(d+1), vd+1

}
. Observe that v−(d+1) 6∼ vd+1 since |(d+1)−(−(d+1))| =

2d+ 2 ≡ −(d+ 1) (mod 3d+ 3) 6∈ 〈S〉. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−d, v−(d−1), v0, vd−1, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent

set in H1. Next, let K2 =
{
v−d, v−(d−1), vd−1, vd

}
. Observe that vd 6∼ vd−1 since

|d − (d − 1)| = 1 6∈ S. Next, we note that v−(d−1) is adjacent to neither vd−1 nor

vd since |(d − 1) − (−(d − 1))| = 2d − 2 ≡ −(d + 5) (mod 3d + 3) 6∈ 〈S〉 and

|d − (−(d − 1))| = 2d − 1 ≡ −(d + 4) (mod 3d + 3) 6∈ 〈S〉. Furthermore, vd 6∼ v−d
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since |d−(−d)| = 2d ≡ −(d+3) (mod 3d+3) 6∈ 〈S〉. By symmetry, we can also deduce

that v−d is adjacent to neither v−(d−1) nor vd−1. Therefore, K2 is an independent set

in H1 with cardinality greater than that of K1. So H1 is not well-covered, and hence

by Proposition 2.5, G is not well-covered.

Case 5.5.20.2 n = 3d+ 4.

Let I
′
=
{
v−(d+1), vd+1, vd+2

}
. Observe that vd+1 6∼ vd+2 since |(d+ 2)− (d+ 1)| =

1 6∈ S. Next, we note that vd+2 6∼ v−(d+1) since |(d+2)−(−(d+1))| = 2d+3 ≡ −(d+1)

(mod 3d+4) 6∈ 〈S〉. Furthermore, vd+1 6∼ v−(d+1) since |(d+1)−(−(d+1))| = 2d+2 ≡

−(d+ 2) (mod 3d+ 4) 6∈ 〈S〉. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−d, v−(d−1), v0, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent

set in H1. Next, let K2 =
{
v−d, v−(d−1), vd

}
. Observe that v−(d−1) 6∼ v−d since

| − (d− 1)− (−d)| = 1 6∈ S. Next, we note that v−(d−1) 6∼ vd since |d− (−(d− 1))| =

2d − 1 ≡ −(d + 5) (mod 3d + 4) 6∈ 〈S〉. Furthermore, vd 6∼ v−d since |d − (−d)| =

2d ≡ −(d + 4) (mod 3d + 4) 6∈ 〈S〉. Therefore, K2 is an independent set in H1

with cardinality greater than that of K1. So H1 is not well-covered, and hence by

Proposition 2.5, G is not well-covered.

Case 5.5.20.3 n = 3d+ 5.

Let I
′

=
{
v−(d+2), v−(d+1), vd+1, vd+2

}
. Observe that v−(d+2) 6∼ v−(d+1) since | −

(d + 1) − (−(d + 2))| = 1 6∈ S. Next, we note that v−(d+2) is adjacent to neither

vd+1 nor vd+2 since |(d + 1) − (−(d + 2))| = 2d + 3 ≡ −(d + 2) (mod 3d + 5) 6∈ 〈S〉

and |(d + 2) − (−(d + 2))| = 2d + 4 ≡ −(d + 1) (mod 3d + 5) 6∈ 〈S〉. Furthermore,

vd+1 6∼ v−(d+1) since |(d+ 1)− (−(d+ 1))| = 2d+ 2 ≡ −(d+ 3) (mod 3d+ 5) 6∈ 〈S〉.

By symmetry, we can also deduce that vd+2 is adjacent to neither v−(d+1) nor vd+1.

Hence, I
′

is an independent set in G.
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Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−d, v0, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in H1.

Next, let K2 =
{
v−d, vd

}
. Note that v−d 6∼ vd since |d − (−d)| = 2d ≡ −(d + 5)

(mod 3d + 5) 6∈ 〈S〉. Therefore, K2 is an independent set in H1 with cardinality

greater than that of K1. So H1 is not well-covered, and hence by Proposition 2.5, G

is not well-covered.

Case 5.5.21 d ≥ 4 and n ≥ 3d+ 7.

Case 5.5.21.1 n = 3d+ 7 and d ≥ 4.

Let I
′

=
{
v−2, v−1, v2d+1, v2d+3

}
. Observe that v−2 6∼ v−1 since | − 1 − (−2)| =

1 6∈ S, and v2d+1 6∼ v2d+3 since |(2d + 3) − (2d + 1)| = 2 6∈ S. Next, we note that

v2d+1 is adjacent to neither v−2 nor v−1 since |(2d + 1)− (−2)| = 2d + 3 ≡ −(d + 4)

(mod 3d + 7) 6∈ 〈S〉 and |(2d + 1)− (−1)| = 2d + 2 ≡ −(d + 5) (mod 3d + 7) 6∈ 〈S〉.

Furthermore, v2d+3 is adjacent to neither v−2 nor v−1 since |(2d + 3) − (−2)| =

2d + 5 ≡ −(d + 2) (mod 3d + 7) 6∈ 〈S〉 and |(2d + 3) − (−1)| = 2d + 4 ≡ −(d + 3)

(mod 3d+ 7) 6∈ 〈S〉. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−3, v0, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in

H1. Next, let K2 =
{
v−3, vd

}
. Note that v−3 6∼ vd since |d − (−3)| = d + 3 6∈ 〈S〉.

Therefore, K2 is an independent set in H1 with cardinality greater than that of K1.

So H1 is not well-covered, and hence by Proposition 2.5, G is not well-covered.

Case 5.5.21.2 d ≥ 5 and n = 3d+ 8.

Let I
′

=
{
v−2, v−1, v2d+1, v2d+3

}
. Observe that v2d+1 is adjacent to neither v−2

nor v−1 since |(2d + 1) − (−2)| = 2d + 3 ≡ −(d + 5) (mod 3d + 8) 6∈ 〈S〉 and

|(2d + 1) − (−1)| = 2d + 2 ≡ −(d + 6) (mod 3d + 8) 6∈ 〈S〉. Next, we note that

v2d+3 is adjacent to neither v−2 nor v−1 since |(2d + 3)− (−2)| = 2d + 5 ≡ −(d + 3)
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(mod 3d + 8) 6∈ 〈S〉 and |(2d + 3)− (−1)| = 2d + 4 ≡ −(d + 4) (mod 3d + 8) 6∈ 〈S〉.

Furthermore, from Case 5.5.21.1, we know that v−2 6∼ v−1 and v2d+1 6∼ v2d+3. Hence,

I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−3, v0, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in

H1. Next, let K2 =
{
v−3, vd

}
. Note that v−3 6∼ vd since |d − (−3)| = d + 3 6∈ 〈S〉.

Therefore, K2 is an independent set in H1 with cardinality greater than that of K1.

So H1 is not well-covered, and hence by Proposition 2.5, G is not well-covered. A

similar argument shows that n = 3d+ 9 is also not well-covered.

Case 5.5.21.3 d ≥ 6 and 3d+ 10 ≤ n ≤ 4d+ 5.

Let I
′

=
{
v−2, v−1, v2d+1, v2d+3

}
. First, we consider v2d+1. Note that |(2d + 1) −

(−2)| = 2d+ 3 and |(2d+ 1)− (−1)| = 2d+ 2. Given our assumption that 3d+ 10 ≤

n ≤ 4d+6, it follows that d+7 ≤ n−(2d+3) ≤ 2d+3 and d+8 ≤ n−(2d+2) ≤ 2d+4.

Hence, v2d+1 is adjacent to neither v−2 nor v−1. Next, we consider v2d+3. Note that

|(2d + 3) − (−2)| = 2d + 5 and |(2d + 3) − (−1)| = 2d + 4. Given our assumption

that 3d + 10 ≤ n ≤ 4d + 6, it follows that d + 5 ≤ n − (2d + 5) ≤ 2d + 1 and

d + 6 ≤ n − (2d + 4) ≤ 2d + 2. Hence, v2d+3 is adjacent to neither v−2 nor v−1.

Furthermore, from Case 5.5.21.1, we know that v−2 6∼ v−1 and v2d+1 6∼ v2d+3. Hence,

I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−3, v0, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in

H1. Next, let K2 =
{
v−3, vd

}
. Note that v−3 6∼ vd since |d − (−3)| = d + 3 6∈ 〈S〉.

Therefore, K2 is an independent set in H1 with cardinality greater than that of K1.

So H1 is not well-covered, and hence by Proposition 2.5, G is not well-covered.
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Case 5.5.21.4 d ≥ 7 and n = 4d+ 6.

Let I
′
=
{
v−2, v−1, v2d+1, v2d+3

}
. Observe that v2d+1 is adjacent to neither v−2 nor

v−1 since |(2d+1)−(−2)| = 2d+3 6∈ 〈S〉 and |(2d+1)−(−1)| = 2d+2 6∈ 〈S〉. Next, we

note that v2d+3 is adjacent to neither v−2 nor v−1 since |(2d+3)−(−2)| = 2d+5 6∈ 〈S〉

and |(2d+ 3)− (−1)| = 2d+ 4 6∈ 〈S〉. Furthermore, from Case 5.5.21.1, we know that

v−2 6∼ v−1 and v2d+1 6∼ v2d+3. Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−3, v0, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in

H1. Next, let K2 =
{
v−3, vd

}
. Note that v−3 6∼ vd since |d − (−3)| = d + 3 6∈ 〈S〉.

Therefore, K2 is an independent set in H1 with cardinality greater than that of K1.

So H1 is not well-covered, and hence by Proposition 2.5, G is not well-covered.

Case 5.5.21.5 d ≥ 8 and 4d+ 7 ≤ n ≤ 5d− 1.

Let I
′
=
{
v−(d+3), v−(d+2), v−(d+1), vd+1, v2d+2

}
. Observe that v−(d+3) is adjacent to

neither v−(d+2), v−(d+1) nor vd+1 since | − (d+ 2)− (−(d+ 3))| = 1 6∈ S, | − (d+ 1)−

(−(d + 3))| = 2 6∈ S and |(d + 1) − (−(d + 3))| = 2d + 4 6∈ 〈S〉. Next, we note that

v−(d+1) is adjacent to neither v−(d+2) nor vd+1 since | − (d+ 1)− (−(d+ 2))| = 1 6∈ S

and |(d+1)−(−(d+1))| = 2d+2 6∈ 〈S〉. We also note that vd+1 is adjacent to neither

v−(d+2) nor v2d+2 since |(d+ 1)− (−(d+ 2))| = 2d+ 3 6∈ 〈S〉 and |(2d+ 2)− (d+ 1)| =

d + 1 6∈ 〈S〉. Finally, we consider v2d+2. Note that |(2d + 2) − (−(d + 3))| = 3d + 5,

|(2d + 2) − (−(d + 2))| = 3d + 4 and |(2d + 2) − (−(d + 1))| = 3d + 3. Given our

assumption that 4d+ 7 ≤ n ≤ 5d− 1, it follows that d+ 2 ≤ n− (3d+ 5) ≤ 2d− 6,

d + 3 ≤ n − (3d + 4) ≤ 2d − 5, and d + 4 ≤ n − (3d + 3) ≤ 2d − 4. Hence, v2d+2 is

adjacent to neither v−(d+3), v−(d+2) nor v−(d+1). Hence, I
′

is an independent set in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v0, vd−1, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in H1.

Next, let K2 =
{
vd−1, vd

}
. Note that vd−1 6∼ vd since |d− (d−1)| = 1 6∈ S. Therefore,
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K2 is an independent set in H1 with cardinality greater than that of K1. So H1 is

not well-covered, and hence by Proposition 2.5, G is not well-covered.

Case 5.5.21.6 d ≥ 4 and n ≥ 5d.

Let I
′

=
{
v−(d+6), v−2, v−1, v2d+1, v2d+3

}
. Observe that v−1 is adjacent to neither

v−(d+6), v−2, v2d+1 nor v2d+3 since |(−1)− (−(d+ 6))| = d+ 5 6∈ 〈S〉, |(−1)− (−2)| =

1 6∈ S, |(2d+1)− (−1)| = 2d+2 6∈ 〈S〉 and |(2d+3)− (−1)| = 2d+4 6∈ 〈S〉. Next, we

note that v−2 is adjacent to neither v−(d+6), v2d+1 nor v2d+3 since |(−2)−(−(d+6))| =

d+4 6∈ 〈S〉, |(2d+1)−(−2)| = 2d+3 6∈ 〈S〉 and |(2d+3)−(−2)| = 2d+5 6∈ 〈S〉. Also

note that v2d+1 6∼ v2d+3 since |(2d+3)−(2d+1)| = 2 6∈ S. Finally, we consider v−(d+6).

Note that |(2d+1)−(−(d+6))| = 3d+7 and |(2d+3)−(−(d+6))| = 3d+9. Given our

assumption that n ≥ 5d, it follows that n−(3d+7) ≥ 2d−7 and n−(3d+9) ≥ 2d−9.

Hence, v−(d+6) is adjacent to neither v2d+1 nor v2d+3. Hence, I
′

is an independent set

in G.

Now let H1 be the component of G \N [I
′
] containing v0. It follows that V (H1) ={

v−3, v0, vd
}

. First, let K1 =
{
v0
}

. Clearly K1 is a maximal independent set in

H1. Next, let K2 =
{
v−3, vd

}
. Note that v−3 6∼ vd since |d − (−3)| = d + 3 6∈ 〈S〉.

Therefore, K2 is an independent set in H1 with cardinality greater than that of K1.

So H1 is not well-covered, and hence by Proposition 2.5, G is not well-covered.



Chapter 6

Characterization of Well-Covered Graphs in Classes 11, 12,

and 13

In this chapter, we investigate the class of circulant graphs on n vertices with a

generating set S − A, where A is a subset of S such that A is of size one, two, or

three and S =
{

1, 2, . . . ,
⌊
n
2

⌋}
. To determine the well-coveredness of G it turns out

to be useful to work with the maximal cliques in G. Note that the set of vertices of a

maximal independent set of G is a maximal clique in G. The converse is true as well.

Hence, one could choose either point of view to tackle the property of well-coveredness.

This is done via the following:

Proposition 6.1 A graph G is well-covered if and only if every maximal clique in

the complement graph, G, has the same size.

Proof. Suppose that every maximal clique in G is of the same size. Since every

maximal clique in G corresponds to a maximal independent set in G, it follows that

all maximal independent sets are of the same size in G, thus G is well-covered.

Next, assume that G is well-covered. By definition, every maximal independent

set is of the same size. Since every independent set in G corresponds to a maximal

clique in G, it follows that all maximal cliques are of the same size in G.

Proposition 6.2 Let G = C
(
n, S

)
be a circulant graph on n vertices. Then G =

C
(
n, S

)
is also circulant.

150
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Corollary 6.3 Let G = C
(
n, S

)
be a circulant graph on n vertices and let v be an

arbitrary vertex in G. If all maximal cliques in G containing v are of the same size

then G is well-covered.

Now we can determine which graphs in Class 11 (see Section 1.2) are well-covered.

Theorem 6.4 Let G = C
(
n, S

)
be a circulant graph on n vertices with a generating

set S =
{

1, 2, . . . ,
⌊
n
2

⌋}
− A, where A ⊆ S and |A| = 1. Then G is well-covered.

Furthermore, β
(
G
)

= 2 unless
{
n
3

}
∈ A in which case β

(
G
)

= 3.

Proof. Let V (G) =
{
vi : i = 0, 1, . . . , n − 1

}
. By Corollary 6.2, G = C

(
n, S

)
. Let

A = {x} and without loss of generality assume that 0 < x ≤ n
2
. Note that S = A.

By Corollary 6.3, it suffices to show that all maximal cliques of G containing v0

are of the same size. Since v0 is adjacent to v0+j and v0−j for each j in the set S,

NG[v0] =
{
v−x, vx

}
.

Case 6.4.1 vx ∼ v−x.

Note that vx ∼ v−x in G if and only if |2x| (mod n) ∈ 〈S〉; that is, 2x ≡ x

(mod n) or 2x ≡ −x (mod n). Observe that x = 0 contradicts our assumption that

x > 0, hence 3x = n. Thus, we have exactly one 3-vertex maximal clique in G

containing v0. Hence, A =
{
n
3

}
, G is well-covered and β

(
G
)

= 3.

Case 6.4.2 vx = v−x.

Note that vx = v−x in G if and only if |2x| ≡ 0 (mod n), and thus 2x = n.

Therefore, we have exactly one 2-vertex maximal clique in G containing v0. Hence,

A =
{
n
2

}
, G is well-covered and β

(
G
)

= 2.

Case 6.4.3 vx 6∼ v−x and {n
2
, n
3
} ∩ A = ∅.

Note that vx 6∼ v−x in G if and only if |2x| (mod n) 6∈ 〈S〉. Thus, we have

exactly two 2-vertex maximal cliques in G containing v0. Hence, G is well-covered

and β
(
G
)

= 2.
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Next, employing a similar approach we characterize our second family in which A

is of cardinality two. However, the following two lemmas are needed prior to stating

our results.

Lemma 6.5 Let G = C
(
n, S

)
be a circulant graph on n vertices with a generating

set S = {x, y}, where without loss of generality 0 < x < y ≤ n
2
. Then

(i) vx ∼ vy and v−x ∼ v−y if and only if y = 2x;

(ii) vx ∼ v−y and v−x ∼ vy if and only if 2y + x = n or 2x+ y = n;

(iii) vx ∼ v−x if and only if y = 2x, 2x+ y = n or 3x = n;

(iv) vy ∼ v−y if and only if 2y + x = n or 3y = n;

(v) vy = v−y if and only if 2y = n.

Proof.

(i) vx ∼ vy in G if and only if |y − x| (mod n) ∈ 〈S〉.

First note that v−x ∼ v−y if and only if vx ∼ vy. Now vx ∼ vy implies at least

one of the following:

(a) y − x ≡ −x (mod n) but y ≡ 0 (mod n) contradicts the assumption that

n
2
≥ y > 0.

(b) y − x ≡ y (mod n) but x ≡ 0 (mod n) contradicts the assumption that

n
2
> x > 0.

(c) y − x ≡ −y (mod n) but x ≡ 2y (mod n) contradicts the assumption that

n
2
≥ y > x.
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(d) y − x ≡ x (mod n).

Hence, y = 2x is the only possibility, completing case (i).

(ii) vx ∼ v−y in G if and only if |x+ y| (mod n) ∈ 〈S〉.

First note that v−x ∼ vy if and only if vx ∼ v−y. Now vx ∼ v−y implies at least

one of the following:

(a) x + y ≡ x (mod n) but y ≡ 0 (mod n) contradicts the assumption that

n
2
≥ y > 0.

(b) x + y ≡ y (mod n) but x ≡ 0 (mod n) contradicts the assumption that

n
2
> x > 0.

(c) x+ y ≡ −x (mod n).

(d) x+ y ≡ −y (mod n).

Hence, 2x + y = n and 2y + x = n are the only possibilities, completing case

(ii).

(iii) vx ∼ v−x in G if and only if |2x| (mod n) ∈ 〈S〉.

Note that vx ∼ v−x implies at least one of the following:

(a) 2x ≡ x (mod n) but x ≡ 0 (mod n) contradicts the assumption that n
2
>

x > 0.

(b) 2x ≡ −x (mod n).

(c) 2x ≡ y (mod n).

(d) 2x ≡ −y (mod n).

Hence, 3x = n, y = 2x and 2x + y = n are the only possibilities, completing

case (iii).
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(iv) vy ∼ v−y in G if and only if |2y| (mod n) ∈ 〈S〉.

Note that vy ∼ v−y implies at least one of the following:

(a) 2y ≡ x (mod n) but x ≡ 2y (mod n) contradicts the assumption that

n
2
≥ y > x.

(b) 2y ≡ y (mod n) but y ≡ 0 (mod n) contradicts the assumption that n
2
≥

y > 0.

(c) 2y ≡ −x (mod n).

(d) 2y ≡ −y (mod n).

Hence, 2y + x = n and 3y = n are the only possibilities, completing case (iv).

(v) vy = v−y in G if and only if |2y| ≡ 0 (mod n), and thus 2y = n, completing

case (v).

Lemma 6.6 Suppose x, y and z ∈ Zn. In each of the following, the given set of

equations is inconsistent with the inequalities 0 < x < y ≤ n
2
.

(i) 3x = n and y = 2x;

(ii) 3x = n and 2x+ y = n;

(iii) 3x = n and 2y + x = n;

(iv) 3x = n and 3y = n;

(v) 3y = n and 2x+ y = n;

(vi) 3y = n and 2y + x = n;
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(vii) 3y = n and 2y = n;

(viii) 2y = n and 2y + x = n;

(ix) 2y + x = n and 2x+ y = n.

Proof. Let G = C
(
n, S

)
be a circulant graph on n vertices with a generating set

S = {x, y}. Without loss of generality assume that 0 < x < y ≤ n
2
.

(i) If 3x = n and y = 2x, then x = n
3

and y = 2n
3

, a contradiction since y ≤ n
2
.

(ii) If 3x = n and 2x+ y = n, then x = y, a contradiction since x < y.

(iii) If 3x = n and 2y + x = n, then x = y, a contradiction since x < y.

(iv) If 3x = n and 3y = n, then x = y, a contradiction since x < y.

(v) If 3y = n and 2x+ y = n, then x = y, a contradiction since x < y.

(vi) If 3y = n and 2y + x = n, then x = y, a contradiction since x < y.

(vii) If 3y = n and 2y = n, then y = 0, a contradiction since y > 0.

(viii) If 2y = n and 2y + x = n, then x = 0, a contradiction since x > 0.

(ix) If 2y + x = n and 2x+ y = n, then x = y, a contradiction since x < y.

Now we can determine which graphs in Class 12 (see Section 1.2) are well-covered.

Theorem 6.7 Let G = C
(
n, S

)
be a circulant graph on n vertices with a generating

set S =
{

1, 2, . . . ,
⌊
n
2

⌋}
− A, where A ⊆ S and |A| = 2. Let A = {x, y} where

0 < x < y ≤ n
2
.
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(i) If n is not divisible by three, then G is well-covered.

(ii) If n is divisible by three, then G is well-covered if and only if one of the following

is true:

(a) n
3
6∈ A, or

(b) A =
{
n
6
, n
3

}
.

Furthermore,

• β
(
G
)

= 2 if either

y = n
2
; or

if all of y 6= 2x, 2y + x 6= n, 2x+ y 6= n and 2y 6= n hold;

• β
(
G
)

= 3 if A is any one of

{n− 2y, y},

{x, n− 2x},

{x, 2x}, or{
n
6
, n
3

}
;

• β
(
G
)

= 4 if A =
{
n
4
, n
2

}
; and

• β
(
G
)

= 5 if A =
{
n
5
, 2n

5

}
.

Proof. Let V (G) =
{
vi : i = 0, 1, . . . , n − 1

}
. By Corollary 6.2, G = C

(
n, S

)
. Let

A = {x, y} and without loss of generality assume that 0 < x < y ≤ n
2
. Note that

S = A. By Corollary 6.3, it suffices to show that all maximal cliques of G containing

v0 are of the same size. Since v0 is adjacent to v0+j and v0−j for each j in the set S,

NG[v0] =
{
v−y, v−x, vx, vy

}
.
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Case 6.7.1 3x = n.

By Lemma 6.5, vx ∼ v−x, and by Lemma 6.6, y 6= 2x, 2y+ x 6= n, 2x+ y 6= n and

3y 6= n. We consider two cases.

Case 6.7.1.1 2y = n.

By Lemma 6.5, vy = v−y. Thus, we have one 3-vertex maximal clique and one

2-vertex maximal clique in G containing v0. Hence, A =
{
n
3
, n
2

}
and G is not well-

covered.

Case 6.7.1.2 2y 6= n.

By Lemma 6.5, vy 6= v−y. Thus, we have one 3-vertex maximal clique and two

2-vertex maximal cliques in G containing v0. Hence, A =
{
n
3
, y
}

and G is not well-

covered.

Case 6.7.2 3x 6= n.

We consider two cases.

Case 6.7.2.1 y 6= 2x.

We consider two cases.

Case 6.7.2.1.1 2y + x = n.

By Lemma 6.5, vx ∼ v−y, vy ∼ v−x and vy ∼ v−y, and by Lemma 6.6, 2x+ y 6= n,

2y 6= n and 3y 6= n. Thus, we have exactly three 3-vertex maximal cliques in G

containing v0. Hence, A = {n− 2y, y}, G is well-covered and β
(
G
)

= 3.

Case 6.7.2.1.2 2y + x 6= n.

We consider two cases.
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Case 6.7.2.1.2.1 2x+ y = n.

By Lemma 6.5, vx ∼ v−y, vy ∼ v−x and vx ∼ v−x, and by Lemma 6.6, 3y 6= n. We

also note that 2x + y = n together with 2y = n is inconsistent with our assumption

that y 6= 2x, and hence 2y 6= n and by Lemma 6.5 vy 6= v−y. Thus, we have exactly

three 3-vertex maximal cliques in G containing v0. Hence, A = {x, n − 2x}, G is

well-covered and β
(
G
)

= 3.

Case 6.7.2.1.2.2 2x+ y 6= n.

We consider two cases.

Case 6.7.2.1.2.2.1 3y = n.

By Lemma 6.5, vy ∼ v−y, and by Lemma 6.6, 2y 6= n. Thus, we have one 3-

vertex maximal clique and two 2-vertex maximal cliques in G containing v0. Hence,

A =
{
x, n

3

}
and G is not well-covered.

Case 6.7.2.1.2.2.2 3y 6= n.

We consider two cases.

Case 6.7.2.1.2.2.2.1 2y = n.

By Lemma 6.5, vy = v−y. Thus, we have exactly three 2-vertex maximal cliques

in G containing v0. Hence, A =
{
x, n

2

}
, G is well-covered and β

(
G
)

= 2.

Case 6.7.2.1.2.2.2.2 2y 6= n.

By Lemma 6.5, vy 6= v−y. Thus, we have exactly four 2-vertex maximal cliques in

G containing v0. Hence, G is well-covered and β
(
G
)

= 2.

Case 6.7.2.2 y = 2x.

By Lemma 6.5, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. We consider two cases.
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Case 6.7.2.2.1 2y + x = n.

By Lemma 6.5, vx ∼ v−y, vy ∼ v−x and vy ∼ v−y, and by Lemma 6.6, 2x+ y 6= n,

2y 6= n and 3y 6= n. Thus, we have exactly one 5-vertex maximal clique in G

containing v0. Hence, A =
{
n
5
, 2n

5

}
, G is well-covered and β

(
G
)

= 5.

Case 6.7.2.2.2 2y + x 6= n.

We consider two cases.

Case 6.7.2.2.2.1 2x+ y = n.

By Lemma 6.5, vx ∼ v−y, vy ∼ v−x and vx ∼ v−x, and by Lemma 6.6, 3y 6= n.

Given our assumption that y = 2x, we can also deduce that 2y = n, and hence,

by Lemma 6.5, vy = v−y. Thus, we have exactly one 4-vertex maximal clique in G

containing v0. Hence, A =
{
n
4
, n
2

}
, G is well-covered and β

(
G
)

= 4.

Case 6.7.2.2.2.2 2x+ y 6= n.

We consider two cases.

Case 6.7.2.2.2.2.1 3y = n.

By Lemma 6.5, vy ∼ v−y, and by Lemma 6.6, 2y 6= n. Thus, we have exactly four

3-vertex maximal cliques in G containing v0. Hence, A =
{
n
6
, n
3

}
, G is well-covered

and β
(
G
)

= 3.

Case 6.7.2.2.2.2.2 3y 6= n.

Note that y = 2x together with 2y = n is inconsistent with our assumption that

2x+ y 6= n, and hence 2y 6= n. Thus, we have exactly three 3-vertex maximal cliques

in G containing v0. Hence, A = {x, 2x}, G is well-covered and β
(
G
)

= 3.

We turn our focus to the case where A is of cardinality three. The following two

lemmas are needed prior to stating our main results.
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Lemma 6.8 Let G = C
(
n, S

)
be a circulant graph on n vertices with a generating

set S = {x, y, z}, where without loss of generality 0 < x < y < z ≤ n
2
. Then

(i) vx ∼ vy and v−x ∼ v−y if and only if y = 2x;

(ii) vy ∼ vz and v−y ∼ v−z if and only if z = 2y or z = x+ y;

(iii) vx ∼ vz and v−x ∼ v−z if and only if z = 2x or z = x+ y;

(iv) vx ∼ v−y and v−x ∼ vy if and only if z = x + y, 2x + y = n, 2y + x = n or

x+ y + z = n;

(v) vx ∼ v−z and v−x ∼ vz if and only if 2z + x = n, 2x+ z = n or x+ y + z = n;

(vi) vy ∼ v−z and v−y ∼ vz if and only if 2y + z = n, 2z + y = n or x+ y + z = n;

(vii) vx ∼ v−x if and only if 2x+ y = n, 2x+ z = n, y = 2x, z = 2x or 3x = n;

(viii) vy ∼ v−y if and only if 2y + x = n, 2y + z = n, z = 2y or 3y = n;

(ix) vz ∼ v−z if and only if 2z + x = n or 2z + y = n or 3z = n;

(x) vz = v−z if and only if 2z = n.

Proof.

(i) vx ∼ vy in G if and only if |y − x| (mod n) ∈ 〈S〉.

First note that v−x ∼ v−y if and only if vx ∼ vy. Now vx ∼ vy implies at least

one of the cases looked at in the proof of Lemma 6.5 (Case (i)) together with

the following.

(a) y−x ≡ z (mod n) but y ≡ x+ z (mod n) contradicts the assumption that

n
2
≥ z > y.
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(b) y − x ≡ −z (mod n) but x ≡ y + z (mod n) contradicts the assumption

that n
2
≥ z > y > x.

Hence, by this and the proof of Lemma 6.5, y = 2x is the only possibility,

completing case (i).

(ii) vy ∼ vz in G if and only if |z − y| (mod n) ∈ 〈S〉.

First note that v−y ∼ v−z if and only if vy ∼ vz. Now vy ∼ vz implies at least

one of the following:

(a) z − y ≡ −x (mod n) but y ≡ x + z (mod n) contradicts the assumption

that n
2
≥ z > y.

(b) z − y ≡ −y (mod n) but z ≡ 0 (mod n) contradicts the assumption that

n
2
≥ z > 0.

(c) z − y ≡ −z (mod n) but y ≡ 2z (mod n) contradicts the assumption that

n
2
≥ z > y.

(d) z − y ≡ z (mod n) but y ≡ 0 (mod n) contradicts the assumption that

n
2
> y > 0.

(e) z − y ≡ x (mod n).

(f) z − y ≡ y (mod n).

Hence, z = y + x and z = 2y are the only possibilities, completing case (ii).

(iii) vx ∼ vz in G if and only if |z − x| (mod n) ∈ 〈S〉.

First note that v−x ∼ v−z if and only if vx ∼ vz. Now vx ∼ vz implies at least

one of the following:

(a) z − x ≡ −x (mod n) but z ≡ 0 (mod n) contradicts the assumption that

n
2
≥ z > 0.
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(b) z − x ≡ −y (mod n) but x ≡ y + z (mod n) contradicts the assumption

that n
2
≥ z > x.

(c) z − x ≡ z (mod n) but x ≡ 0 (mod n) contradicts the assumption that

n
2
> x > 0.

(d) z − x ≡ −z (mod n) but x ≡ 2z (mod n) contradicts the assumption that

n
2
≥ z > x.

(e) z − x ≡ x (mod n).

(f) z − x ≡ y (mod n).

Hence, z = 2x and z = x+ y are the only possibilities, completing case (iii).

(iv) vx ∼ v−y in G if and only if |x+ y| (mod n) ∈ 〈S〉.

First note that v−x ∼ vy if and only if vx ∼ v−y. Now vx ∼ v−y implies at least

one of the cases looked at in the proof of Lemma 6.5 (Case (ii)) together with

the following.

(a) x+ y ≡ z (mod n).

(b) x+ y ≡ −z (mod n).

Hence, by this and by the proof of Lemma 6.5, z = x + y, x + y + z = n,

2x+ y = n and 2y + x = n are the only possibilities, completing case (iv).

(v) vx ∼ v−z in G if and only if |x+ z| (mod n) ∈ 〈S〉.

First note that v−x ∼ vz if and only if vx ∼ v−z. Now vx ∼ v−z implies at least

one of the following:

(a) x + z ≡ x (mod n) but z ≡ 0 (mod n) contradicts the assumption that

n
2
≥ z > 0.
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(b) x+ z ≡ y (mod n) but y ≡ x+ z (mod n) contradicts the assumption that

n
2
≥ z > y.

(c) x + z ≡ z (mod n) but x ≡ 0 (mod n) contradicts the assumption that

n
2
> x > 0.

(d) x+ z ≡ −x (mod n).

(e) x+ z ≡ −y (mod n).

(f) x+ z ≡ −z (mod n).

Hence, 2x + z = n, x + y + z = n and 2z + x = n are the only possibilities,

completing case (v).

(vi) vy ∼ v−z in G if and only if |y + z| (mod n) ∈ 〈S〉.

First note that v−y ∼ vz if and only if vy ∼ v−z. Now vy ∼ v−z implies at least

one of the following:

(a) y+ z ≡ x (mod n) but x ≡ y+ z (mod n) contradicts the assumption that

n
2
≥ z > x.

(b) y + z ≡ y (mod n) but z ≡ 0 (mod n) contradicts the assumption that

n
2
≥ z > 0.

(c) y + z ≡ z (mod n) but y ≡ 0 (mod n) contradicts the assumption that

n
2
> y > 0.

(d) y + z ≡ −x (mod n).

(e) y + z ≡ −y (mod n).

(f) y + z ≡ −z (mod n).

Hence, x + y + z = n, 2y + z = n and 2z + y = n are the only possibilities,

completing case (vi).
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(vii) vx ∼ v−x in G if and only if |2x| (mod n) ∈ 〈S〉.

Note that vx ∼ v−x implies at least one of the cases looked at in the proof of

Lemma 6.5 (Case (iii)) together with the following.

(a) 2x ≡ z (mod n).

(b) 2x ≡ −z (mod n).

Hence, by this and by the proof of Lemma 6.5, z = 2x, 2x + z = n, y = 2x,

2x+ y = n and 3x = n are the only possibilities, completing case (vii).

(viii) vy ∼ v−y in G if and only if |2y| (mod n) ∈ 〈S〉.

Note that vy ∼ v−y implies at least one of the cases looked at in the proof of

Lemma 6.5 (Case (iv)) together with the following.

(a) 2y ≡ z (mod n).

(b) 2y ≡ −z (mod n).

Hence, by this and the proof of Lemma 6.5, z = 2y, 2y + z = n, 3y = n and

2y + x = n are the only possibilities, completing case (viii).

(ix) vz ∼ v−z in G if and only if |2z| (mod n) ∈ 〈S〉.

Note that vz ∼ v−z implies at least one of the following:

(a) 2z ≡ x (mod n) but x ≡ 2z (mod n) contradicts the assumption that

n
2
≥ z > x.

(b) 2z ≡ y (mod n) but y ≡ 2z (mod n) contradicts the assumption that n
2
≥

z > y.

(c) 2z ≡ z (mod n) but z ≡ 0 (mod n) contradicts the assumption that n
2
≥

z > 0.



165

(d) 2z ≡ −x (mod n).

(e) 2z ≡ −y (mod n).

(f) 2z ≡ −z (mod n).

Hence, 2z+x = n, 2z+ y = n and 3z = n are the only possibilities, completing

case (ix).

(x) vz = v−z in G if and only if |2z| ≡ 0 (mod n), and thus 2z = n, completing

case (x).

Lemma 6.9 Suppose x, y and z ∈ Zn. In each of the following, the given set of

equations is inconsistent with the inequalities 0 < x < y < z ≤ n
2
.

(i) y = 2x and z = 2x;

(ii) y = 2x and 2x+ z = n;

(iii) 2z = n and 2z + x = n;

(iv) 2z = n and 2z + y = n;

(v) 2z = n and 3z = n;

(vi) z = x+ y and z = 2y;

(vii) z = x+ y and z = 2x;

(viii) z = x+ y and 2y + x = n;

(ix) z = 2x and z = 2y;

(x) z = 2y and 2y + x = n;
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(xi) 3x = n and z = x+ y;

(xii) 3y = n and z = 2y;

(xiii) 2z + x = n and x+ y + z = n;

(xiv) 2z + x = n and 2x+ z = n;

(xv) 2z + x = n and 2y + x = n;

(xvi) 2z + x = n and 2z + y = n;

(xvii) x+ y + z = n and 2x+ z = n;

(xviii) x+ y + z = n and 2y + x = n;

(xix) x+ y + z = n and 2z + y = n;

(xx) x+ y + z = n and 2y + z = n;

(xxi) 2y + z = n and 2x+ z = n;

(xxii) 2y + z = n and 2y + x = n;

(xxiii) 2y + z = n and 2z + y = n;

(xxiv) 3x = n and 2x+ z = n;

(xxv) 3z = n and 2x+ z = n;

(xxvi) 3x = n and 2z + x = n;

(xxvii) 3z = n and 2z + x = n;

(xxviii) 3y = n and 3x = n;

(xxix) 3z = n and 3x = n;
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(xxx) 3y = n and 2z + y = n;

(xxxi) 3z = n and 2z + y = n;

(xxxii) 3z = n and 3y = n;

(xxxiii) 3y = n and 2y + z = n;

(xxxiv) 3z = n and 2y + z = n;

(xxxv) y = 2x and 2x+ y = n;

(xxxvi) 2y + z = n and 3x = n;

(xxxvii) 2z + y = n and 2x+ y = n;

(xxxviii) z = x+ y and 2x+ y = n;

(xxxix) 2y + x = n and 2x+ y = n;

(xl) z = 2y and 3x = n;

(xli) z = 2y and 2x+ z = n;

(xlii) z = 2y and 2x+ y = n;

(xliii) z = 2y and x+ y + z = n;

(xliv) z = 2x and 2x+ y = n;

(xlv) 3x = n and z = 2x;

(xlvi) 3z = n and 2y + x = n;

(xlvii) 3z = n and 2x+ y = n;

(xlviii) 3x = n and x+ y + z = n;
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(xlix) 3z = n and x+ y + z = n;

(l) 2x+ z = n and 2x+ y = n;

(li) 2x+ y = n and x+ y + z = n;

(lii) 3x = n and 2z + y = n;

(liii) 2x+ y = n and 2y + z = n;

(liv) 2x+ z = n and 2z + y = n;

(lv) 2y + x = n and 2z + y = n;

(lvi) 2z + x = n and 2x+ y = n;

(lvii) z = x+ y and 2x+ z = n;

(lviii) 2y + z = n, z = 2x and 2z = n;

(lix) 2y + z = n, z = x+ y and 2z = n;

(lx) x+ y + z = n, z = 2x and 2z = n;

(lxi) z = 2y, 2y + z = n and 2z + x = n;

(lxii) 2z + x = n, z = x+ y, y = 2x and 3y = n.

Proof. Let G = C
(
n, S

)
be a circulant graph on n vertices with a generating set

S = {x, y, z}. Without loss of generality assume that 0 < x < y < z ≤ n
2
.

(i) If y = 2x and z = 2x, then y = z, a contradiction since y < z.

(ii) If y = 2x and 2x+ z = n, then z = n− y. Given our assumption that z ≤ n
2
, it

follows that n−y ≤ n
2
, and thus y ≥ n

2
. This is a contradiction since y < z ≤ n

2
.
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(iii) If 2z = n and 2z + x = n, then x = 0, a contradiction since x > 0.

(iv) If 2z = n and 2z + y = n, then y = 0, a contradiction since y > 0.

(v) If 2z = n and 3z = n, then z = 0, a contradiction since z > 0.

(vi) If z = x+ y and z = 2y, then x = y, a contradiction since x < y.

(vii) If z = x+ y and z = 2x, then x = y, a contradiction since x < y.

(viii) If z = x+ y and 2y + x = n, then z = n
2

+ x
2
, a contradiction since z ≤ n

2
.

(ix) If z = 2x and z = 2y, then x = y, a contradiction since x < y.

(x) If z = 2y and 2y+ x = n, then z = n− x. Given our assumption that z ≤ n
2
, it

follows that n−x ≤ n
2
, and thus x ≥ n

2
. This is a contradiction since x < z ≤ n

2
.

(xi) If 3x = n and z = x+ y, then x = n
3

and z = n
3

+ y. Given our assumption that

z ≤ n
2
, it follows that n

3
+ y ≤ n

2
, and thus y ≤ n

6
. This is a contradiction since

x < y.

(xii) If 3y = n and z = 2y, then y = n
3

and z = 2n
3

, a contradiction since z ≤ n
2
.

(xiii) If 2z + x = n and x+ y + z = n, then y = z, a contradiction since y < z.

(xiv) If 2z + x = n and 2x+ z = n, then x = z, a contradiction since x < z.

(xv) If 2z + x = n and 2y + x = n, then y = z, a contradiction since y < z.

(xvi) If 2z + x = n and 2z + y = n, then x = y, a contradiction since x < y.

(xvii) If x+ y + z = n and 2x+ z = n, then x = y, a contradiction since x < y.

(xviii) If x+ y + z = n and 2y + x = n, then y = z, a contradiction since y < z.

(xix) If x+ y + z = n and 2z + y = n, then x = z, a contradiction since x < z.
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(xx) If x+ y + z = n and 2y + z = n, then x = y, a contradiction since x < y.

(xxi) If 2y + z = n and 2x+ z = n, then x = y, a contradiction since x < y.

(xxii) If 2y + z = n and 2y + x = n, then x = z, a contradiction since x < z.

(xxiii) If 2y + z = n and 2z + y = n, then y = z, a contradiction since y < z.

(xxiv) If 3x = n and 2x+ z = n, then x = n
3

and z = n
3
, a contradiction since x < z.

(xxv) If 3z = n and 2x+ z = n, then z = n
3

and x = n
3
, a contradiction since x < z.

(xxvi) If 3x = n and 2z + x = n, then x = n
3

and z = n
3
, a contradiction since x < z.

(xxvii) If 3z = n and 2z + x = n, then z = n
3

and x = n
3
, a contradiction since x < z.

(xxviii) If 3y = n and 3x = n, then x = y, a contradiction since x < y.

(xxix) If 3z = n and 3x = n, then x = z, a contradiction since x < z.

(xxx) If 3y = n and 2z + y = n, then y = z, a contradiction since y < z.

(xxxi) If 3z = n and 2z + y = n, then y = z, a contradiction since y < z.

(xxxii) If 3z = n and 3y = n, then y = z, a contradiction since y < z.

(xxxiii) If 3y = n and 2y + z = n, then y = z, a contradiction since y < z.

(xxxiv) If 3z = n and 2y + z = n, then y = z, a contradiction since y < z.

(xxxv) If y = 2x and 2x+ y = n, then y = n
2
, a contradiction since y < z ≤ n

2
.

(xxxvi) If 2y + z = n and 3x = n, then x = n
3

and y = n
2
− z

2
. Given our assumption

that x < y, it follows that n
2
− z

2
> n

3
, and thus z < n

3
. This is a contradiction

since x < y < z.
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(xxxvii) If 2z + y = n and 2x+ y = n, then x = z, a contradiction since x < z.

(xxxviii) If z = x + y and 2x + y = n, then z = n − x. Given our assumption that

z ≤ n
2
, it follows that n− x ≤ n

2
, and thus x ≥ n

2
. This is a contradiction since

x < z ≤ n
2
.

(xxxix) If 2y + x = n and 2x+ y = n, then x = y, a contradiction since x < y.

(xl) If z = 2y and 3x = n. Given our assumption that z ≤ n
2
, it follows that 2y ≤ n

2
,

and thus y ≤ n
4
. This is a contradiction since x < y.

(xli) If z = 2y and 2x + z = n, then y = n
2
− x. Given our assumption that z ≤ n

2
,

it follows that 2y ≤ n
2
, and thus y ≤ n

4
. However, y = n

2
− x ≤ n

4
implies that

x ≥ n
4
. This is a contradiction since x < y.

(xlii) If z = 2y and 2x+ y = n, then y = n− 2x. Given our assumption that z ≤ n
2
,

it follows that 2y ≤ n
2
, and thus y ≤ n

4
. However, y = n− 2x ≤ n

4
implies that

x ≥ 3n
8

. This is a contradiction since x < y.

(xliii) If z = 2y and x+ y+ z = n, then y = n
3
− x

3
. Given our assumption that z ≤ n

2
,

it follows that 2y ≤ n
2
, and thus y ≤ n

4
. However, y = n

3
− x

3
≤ n

4
implies that

x ≥ n
4
. This is a contradiction since x < y.

(xliv) If z = 2x and 2x+ y = n, then z = n− y. Given our assumption that z ≤ n
2
, it

follows that n−y ≤ n
2
, and thus y ≥ n

2
. This is a contradiction since y < z ≤ n

2
.

(xlv) If 3x = n and z = 2x, then x = n
3

and z = 2n
3

, a contradiction since z ≤ n
2
.

(xlvi) If 3z = n and 2y + x = n, then z = n
3

and y = n
2
− x

2
. Given our assumption

that y < z, it follows that n
2
− x

2
< n

3
, and thus x > n

3
. This is a contradiction

since x < z.
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(xlvii) If 3z = n and 2x + y = n, then z = n
3

and y = n − 2x. Given our assumption

that y < z, it follows that n− 2x < n
3
, and thus x > n

3
. This is a contradiction

since x < z.

(xlviii) If 3x = n and x+ y+ z = n, then x = n
3

and y = 2n
3
− z. Given our assumption

that x < y, it follows that 2n
3
− z > n

3
, and thus z < n

3
. This is a contradiction

since x < y < z.

(xlix) If 3z = n and x+ y+ z = n, then z = n
3

and x = 2n
3
− y. Given our assumption

that x < y, it follows that 2n
3
− y < y, and thus y > n

3
. This is a contradiction

since y < z.

(l) If 2x+ z = n and 2x+ y = n, then y = z, a contradiction since y < z.

(li) If 2x+ y = n and x+ y + z = n, then x = z, a contradiction since x < z.

(lii) If 3x = n and 2z + y = n, then x = n
3

and y = n − 2z. Given our assumption

that x < y, it follows that n− 2z > n
3
, and thus z < n

3
. This is a contradiction

since x < z.

(liii) If 2x + y = n and 2y + z = n, then y = n − 2x and z = n − 2y. Given our

assumption that y < z, it follows that n−2x < n−2y thus implying that x > y.

This is a contradiction since x < y.

(liv) If 2x + z = n and 2z + y = n, then x = n
2
− z

2
and y = n − 2z. Given our

assumption that x < y, it follows that n
2
− z

2
< n−2z, and thus z < n

3
. However,

z = n
2
− y

2
< n

3
implies that y > n

3
, a contradiction since y < z.

(lv) If 2y + x = n and 2z + y = n, then x = n − 2y and y = n − 2z. Given our

assumption that x < y, it follows that n−2y < n−2z thus implying that y > z.

This is a contradiction since y < z.
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(lvi) If 2z + x = n and 2x + y = n, then y = 4z − n. Given our assumption that

y < z, it follows that 4z − n < z, and thus z < n
3
. However, z = n

2
− x

2
< n

3

implies that x > n
3
, a contradiction since x < z.

(lvii) If 2x+ z = n and z = x+ y, then x = n
3
− y

3
. Given our assumption that z ≤ n

2
,

it follows that z = n − 2x ≤ n
2
, and thus x ≥ n

4
. However, x = n

3
− y

3
≥ n

4

implies that y ≤ n
4
, a contradiction since x < y.

(lviii) If 2z = n, 2y+z = n, and z = 2x, then z = n
2
, x = n

4
and y = n

4
, a contradiction

since x < y.

(lix) If 2z = n, 2y + z = n, and z = x + y, then z = n
2
, x = n

4
and y = n

4
, a

contradiction since x < y.

(lx) If 2z = n, z = 2x and x + y + z = n, then z = n
2
, x = n

4
and y = n

4
, a

contradiction since x < y.

(lxi) If z = 2y and 2y + z = n, then y = n
4

and z = n
2
. However, 2z + x = n implies

that x = 0, a contradiction since x > 0.

(lxii) If y = 2x, z = x + y and 3y = n, then y = n
3
, x = n

6
and z = n

2
. However,

2z + x = n implies that z = 5n
12

, a contradiction since z = n
2
.

Now we can determine which graphs in Class 13 (see Section 1.2) are well-covered.

Theorem 6.10 Let G = C
(
n, S

)
be a circulant graph on n vertices with a generating

set S =
{

1, 2, . . . ,
⌊
n
2

⌋}
− A, where A ⊆ S and |A| = 3. Let A = {x, y, z} where

0 < x < y < z ≤ n
2
.
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(a) If n is divisible by two, then G is well-covered if and only if A is one of

{
n
6
, n
3
, n
2

}
,{

x, n
2
− x, n

2

}
, or{

x, y, n
2

}
.

(b) If n is not divisible by two, then G is well-covered if and only if

either none of the following inequalities holds: 2z 6= n, 3z 6= n, 3y 6= n, 3x 6= n,

2x + y 6= n, 2y + x 6= n, x + y + z 6= n, 2x + z 6= n, z 6= x + y, z 6= 2x, z 6= 2y,

2y + z 6= n, 2z + y 6= n, 2z + x 6= n and y 6= 2x; or

A is one of

(i)
{
n
12
, n
6
, n
3

}
,

(ii)
{
x, 2x, n

3

}
,

(iii)
{
x, n

3
− x, n

3

}
,

(iv)
{
n
6
, n
3
, 5n
12

}
,

(v)
{
x, n

3
, 2x
}

,

(vi)
{
x, n

3
, x+ n

3

}
,

(vii)
{
x, n

3
, 2n

3
− x
}

,

(viii)
{
x, n

3
, n− 2x

}
,

(ix)
{
x, n

3
, n
2
− x

2

}
,

(x)
{
x, n

2
− x

2
, 2x
}

,

(xi)
{
x, n

2
− x

2
, n− 2x

}
,

(xii) {x, n− 3x, 2x},

(xiii) {x, 2x, n− 3x},
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(xiv) {x, y, n− x− y},

(xv)
{
n
7
, 2n

7
, 3n

7

}
,

(xvi)
{
n− 3y, y, n− 2y

}
,

(xvii)
{
n
8
, n
4
, 3n

8

}
,

(xviii)
{

3z − n, n− 2z, z
}

,

(xix) {n− 2z, 3z − n, z},

(xx) {x, 2x, 3x},

(xxi) {x, y, x+ y},

(xxii)
{
x, n

2
− x, 2x

}
,

(xxiii) {x, n− 4x, 2x},

(xxiv)
{
n
9
, 2n

9
, 4n

9

}
,

(xxv) {n− 4y, y, 2y},

(xxvi) {x, 2x, 4x},

(xxvii) {4y − n, y, n− 2y},

(xxviii) {x, 2x, n− 4x},

(xxix)
{
x, 2x, n

2
− x
}

, or

(xxx)
{
x, 2x, n

2
− x

2

}
.

Furthermore,

• β
(
G
)

= 2 if either

z = n
2
; or
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if all of 2z 6= n, 3z 6= n, 3y 6= n, 3x 6= n, 2x + y 6= n, 2y + x 6= n,

x + y + z 6= n, 2x + z 6= n, z 6= x + y, z 6= 2x, z 6= 2y, 2y + z 6= n,

2z + y 6= n, 2z + x 6= n and y 6= 2x hold;

• β
(
G
)

= 3 if A is any one of

{
n
12
, n
6
, n
3

}
,{

x, 2x, n
3

}
,{

x, n
3
− x, n

3

}
,{

n
6
, n
3
, 5n
12

}
,{

x, n
3
, 2x
}

,{
x, n

3
, x+ n

3

}
,{

x, n
3
, 2n

3
− x
}

,{
x, n

3
, n− 2x

}
,{

x, n
3
, n
2
− x

2

}
,{

x, n
2
− x

2
, 2x
}

,{
x, n

2
− x

2
, n− 2x

}
,

{x, y, n− x− y},

{x, y, x+ y};{
x, n

2
− x, 2x

}
,

{x, n− 4x, 2x},{
n
9
, 2n

9
, 4n

9

}
,

{n− 4y, y, 2y},

{x, 2x, 4x},
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{4y − n, y, n− 2y},

{x, 2x, n− 4x},{
x, 2x, n

2
− x
}

, or{
x, 2x, n

2
− x

2

}
;

• β
(
G
)

= 4 if A is any one of

{
x, n

2
− x, n

2

}
;

{x, n− 3x, 2x},

{x, 2x, n− 3x},{
n− 3y, y, n− 2y

}
,{

n
8
, n
4
, 3n

8

}
,{

3z − n, n− 2z, z
}

,

{n− 2z, 3z − n, z}, or

{x, 2x, 3x};

• β
(
G
)

= 6 if A =
{
n
6
, n
3
, n
2

}
; and

• β
(
G
)

= 7 if A =
{
n
7
, 2n

7
, 3n

7

}
.

Proof. Let V (G) =
{
vi : i = 0, 1, . . . , n − 1

}
. By Corollary 6.2, G = C

(
n, S

)
. Let

A = {x, y, z} and without loss of generality assume that 0 < x < y < z ≤ n
2
. Note

that S = A. By Corollary 6.3, it suffices to show that all maximal cliques of G

containing v0 are of the same size. Since v0 is adjacent to v0+j and v0−j for each j in

the set S, NG[v0] =
{
v−z, v−y, v−x, vx, vy, vz

}
.
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Case 6.10.1 2z = n.

By Lemma 6.8, vz = v−z, and by Lemma 6.9, 3z 6= n, 2z + x 6= n and 2z + y 6= n.

We consider two cases.

Case 6.10.1.1 3x = n.

By Lemma 6.8, vx ∼ v−x, and by Lemma 6.9, y 6= 2x, z 6= 2x, 3y 6= n, 2y+x 6= n,

x+ y + z 6= n, z 6= 2y, 2x+ y 6= n, 2y + z 6= n, z 6= x+ y and 2x+ z 6= n. Thus, we

have one 3-vertex maximal clique and three 2-vertex maximal cliques in G containing

v0. Hence, A =
{
n
3
, y, n

2

}
and G is not well-covered.

Case 6.10.1.2 3x 6= n.

We consider two cases.

Case 6.10.1.2.1 3y = n.

By Lemma 6.8, vy ∼ v−y, and by Lemma 6.9, 2y+ z 6= n, z 6= 2y, 2y+ x 6= n and

2x+ y 6= n. We consider two cases.

Case 6.10.1.2.1.1 x+ y + z = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz, vx ∼ v−y, v−x ∼ vy, vy ∼ v−z and v−y ∼ vz,

and by Lemma 6.9, 2x + z 6= n. Observe that 2z = n together with x + y + z = n

implies that z = x+y, and hence by Lemma 6.9, z 6= 2x, and by Lemma 6.8, vy ∼ vz,

v−y ∼ v−z, vx ∼ vz and v−x ∼ v−z. We also note that 2z = n together with 3y = n

and z = x + y implies that y = 2x, and hence by Lemma 6.8, vx ∼ vy, v−x ∼ v−y

and vx ∼ v−x. Thus, we have exactly one 6-vertex maximal clique in G containing

v0. Hence, A =
{
n
6
, n
3
, n
2

}
, G is well-covered and β

(
G
)

= 6.

Case 6.10.1.2.1.2 x+ y + z 6= n.

Observe that 2z = n together with x + y + z 6= n implies that z 6= x + y, and

2z = n together with 3y = n and z 6= x + y implies that y 6= 2x. We consider two

cases.
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Case 6.10.1.2.1.2.1 2x+ z = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vx ∼ v−x. Observe that 2z = n together

with 2x + z = n implies that z = 2x, and hence by Lemma 6.8, vx ∼ vz and

v−x ∼ v−z. Thus, we have one 4-vertex maximal clique and one 3-vertex maximal

clique in G containing v0. Hence, A =
{
n
4
, n
3
, n
2

}
and G is not well-covered.

Case 6.10.1.2.1.2.2 2x+ z 6= n.

Observe that 2z = n together with 2x+z 6= n implies that z 6= 2x. Thus, we have

one 3-vertex maximal clique and three 2-vertex maximal cliques in G containing v0.

Hence, A =
{
x, n

3
, n
2

}
and G is not well-covered.

Case 6.10.1.2.2 3y 6= n.

We consider two cases.

Case 6.10.1.2.2.1 2y + z = n.

By Lemma 6.8, vy ∼ v−z, v−y ∼ vz and vy ∼ v−y, and by Lemma 6.9, 2x+ y 6= n,

2y + x 6= n, 2x + z 6= n and x + y + z 6= n. Observe that 2z = n together with

2y+z = n implies that z = 2y, and hence by Lemma 6.9, z 6= 2x, and by Lemma 6.8,

vy ∼ vz and v−y ∼ v−z. We also note that 2z = n together with x+ y+ z 6= n implies

that z 6= x+y, and 2z = n together with 2x+z 6= n implies that z 6= 2x. We consider

two cases.

Case 6.10.1.2.2.1.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Thus, we have three 3-

vertex maximal cliques and one 4-vertex maximal clique in G containing v0. Hence,

A =
{
n
8
, n
4
, n
2

}
and G is not well-covered.

Case 6.10.1.2.2.1.2 y 6= 2x.

We have one 4-vertex maximal clique and two 2-vertex maximal cliques in G

containing v0. Hence, A =
{
x, n

4
, n
2

}
and G is not well-covered.
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Case 6.10.1.2.2.2 2y + z 6= n.

We consider two cases.

Case 6.10.1.2.2.2.1 x+ y + z = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz, vx ∼ v−y, v−x ∼ vy, vy ∼ v−z and v−y ∼ vz,

and by Lemma 6.9, 2x + z 6= n, 2x + y 6= n, z 6= 2y and 2y + x 6= n. Observe that

2z = n together with x+ y+ z = n implies that z = x+ y, and hence by Lemma 6.9,

z 6= 2x, and by Lemma 6.8, vy ∼ vz, v−y ∼ v−z, vx ∼ vz and v−x ∼ v−z. We consider

two cases.

Case 6.10.1.2.2.2.1.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Observe that 2z = n together

with y = 2x and z = x+ y implies that 3y = n, and hence by Lemma 6.8, vy ∼ v−y.

Thus, we have exactly one 6-vertex maximal clique in G containing v0. Hence, A ={
n
6
, n
3
, n
2

}
, G is well-covered and β

(
G
)

= 6.

Case 6.10.1.2.2.2.1.2 y 6= 2x.

We have exactly two 4-vertex maximal cliques in G containing v0. Hence, A ={
x, n

2
− x, n

2

}
, G is well-covered and β

(
G
)

= 4.

Case 6.10.1.2.2.2.2 x+ y + z 6= n.

Observe that 2z = n together with x + y + z 6= n implies that z 6= x + y. We

consider two cases.

Case 6.10.1.2.2.2.2.1 2x+ z = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vx ∼ v−x, and by Lemma 6.9, 2x+ y 6= n,

z 6= 2y and y 6= 2x. Observe that 2z = n together with 2x + z = n implies that

z = 2x, and hence by Lemma 6.8, vx ∼ vz and v−x ∼ v−z. We consider two cases.
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Case 6.10.1.2.2.2.2.1.1 2y + x = n.

By Lemma 6.8, vx ∼ v−y, v−x ∼ vy and vy ∼ v−y. Thus, we have one 4-vertex

maximal clique and three 3-vertex maximal cliques in G containing v0. Hence, A ={
n
4
, 3n

8
, n
2

}
and G is not well-covered.

Case 6.10.1.2.2.2.2.1.2 2y + x 6= n.

We have one 4-vertex maximal clique and two 2-vertex maximal cliques in G

containing v0. Hence, A =
{
n
4
, y, n

2

}
and G is not well-covered.

Case 6.10.1.2.2.2.2.2 2x+ z 6= n.

Observe that 2z = n together with 2x + z 6= n implies that z 6= 2x. We consider

two cases.

Case 6.10.1.2.2.2.2.2.1 2y + x = n.

By Lemma 6.8, vx ∼ v−y, v−x ∼ vy and vy ∼ v−y, and by Lemma 6.9, 2x+ y 6= n

and z 6= 2y. We consider two cases.

Case 6.10.1.2.2.2.2.2.1.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Thus, we have one 5-vertex

maximal clique and one 2-vertex maximal clique in G containing v0. Hence, A ={
n
5
, 2n

5
, n
2

}
and G is not well-covered.

Case 6.10.1.2.2.2.2.2.1.2 y 6= 2x.

We have three 3-vertex maximal cliques and one 2-vertex maximal clique in G

containing v0. Hence, A =
{
n− 2y, y, n

2

}
and G is not well-covered.

Case 6.10.1.2.2.2.2.2.2 2y + x 6= n.

We consider two cases.
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Case 6.10.1.2.2.2.2.2.2.1 2x+ y = n.

By Lemma 6.8, vx ∼ v−y, v−x ∼ vy and vx ∼ v−x, and by Lemma 6.9, z 6= 2y and

y 6= 2x. Hence, we have three 3-vertex maximal cliques and one 2-vertex maximal

clique in G containing v0. Hence, A =
{
x, n− 2x, n

2

}
and G is not well-covered.

Case 6.10.1.2.2.2.2.2.2.2 2x+ y 6= n.

We consider two cases.

Case 6.10.1.2.2.2.2.2.2.2.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. We consider two cases.

Case 6.10.1.2.2.2.2.2.2.2.1.1 z = 2y.

By Lemma 6.8, vy ∼ vz, v−y ∼ v−z and vy ∼ v−y. Thus, we have three 3-

vertex maximal cliques and one 4-vertex maximal clique in G containing v0. Hence,

A =
{
n
8
, n
4
, n
2

}
and G is not well-covered.

Case 6.10.1.2.2.2.2.2.2.2.1.2 z 6= 2y.

We have one 2-vertex maximal clique and three 3-vertex maximal cliques in G

containing v0. Hence, A =
{
x, 2x, n

2

}
and G is not well-covered.

Case 6.10.1.2.2.2.2.2.2.2.2 y 6= 2x.

We consider two cases.

Case 6.10.1.2.2.2.2.2.2.2.2.1 z = 2y.

By Lemma 6.8, vy ∼ vz, v−y ∼ v−z and vy ∼ v−y. Thus, we have one 4-vertex

maximal clique and two 2-vertex maximal cliques in G containing v0. Hence, A ={
x, n

4
, n
2

}
and G is not well-covered.

Case 6.10.1.2.2.2.2.2.2.2.2.2 z 6= 2y.

We have exactly five 2-vertex maximal cliques in G containing v0. Hence, A ={
x, y, n

2

}
, G is well-covered and β

(
G
)

= 2.
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Case 6.10.2 2z 6= n.

We consider two cases.

Case 6.10.2.1 3z = n.

By Lemma 6.8, vz ∼ v−z, and by Lemma 6.9, 2y + x 6= n, 3x 6= n, 3y 6= n,

2x+ z 6= n, 2y + z 6= n, 2x+ y 6= n, x+ y + z 6= n , 2z + y 6= n, and 2z + x 6= n. We

consider two cases.

Case 6.10.2.1.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x, and by Lemma 6.9, z 6= 2x. We

consider two cases.

Case 6.10.2.1.1.1 z = 2y.

By Lemma 6.8, vy ∼ vz, v−y ∼ v−z and vy ∼ v−y, and by Lemma 6.9, z 6= x + y.

Thus, we have exactly seven 3-vertex maximal cliques in G containing v0. Hence,

A =
{
n
12
, n
6
, n
3

}
, G is well-covered and β

(
G
)

= 3.

Case 6.10.2.1.1.2 z 6= 2y.

We consider two cases.

Case 6.10.2.1.1.2.1 z = x+ y.

By Lemma 6.8, vy ∼ vz, v−y ∼ v−z, vx ∼ vz, v−x ∼ v−z, vx ∼ v−y and v−x ∼ vy.

Thus, we have four 4-vertex maximal cliques and one 3-vertex maximal clique in G

containing v0. Hence, A =
{
n
9
, 2n

9
, n
3

}
and G is not well-covered.

Case 6.10.2.1.1.2.2 z 6= x+ y.

We have exactly four 3-vertex maximal cliques in G containing v0. Hence, A ={
x, 2x, n

3

}
, G is well-covered and β

(
G
)

= 3.
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Case 6.10.2.1.2 y 6= 2x.

We consider two cases.

Case 6.10.2.1.2.1 z = 2x.

By Lemma 6.8, vx ∼ vz, v−x ∼ v−z and vx ∼ v−x, and by Lemma 6.9, z 6= x + y

and z 6= 2y. Thus, we have four 3-vertex maximal cliques and two 2-vertex maximal

cliques in G containing v0. Hence, A =
{
n
6
, y, n

3

}
and G is not well-covered.

Case 6.10.2.1.2.2 z 6= 2x.

We consider two cases.

Case 6.10.2.1.2.2.1 z = 2y.

By Lemma 6.8, vy ∼ vz, v−y ∼ v−z and vy ∼ v−y, by Lemma 6.9, z 6= x + y.

Thus, we have four 3-vertex maximal cliques and two 2-vertex maximal cliques in G

containing v0. Hence, A =
{
x, n

6
, n
3

}
and G is not well-covered.

Case 6.10.2.1.2.2.2 z 6= 2y.

We consider two cases.

Case 6.10.2.1.2.2.2.1 z = x+ y.

By Lemma 6.8, vy ∼ vz, v−y ∼ v−z, vx ∼ vz, v−x ∼ v−z, vx ∼ v−y and v−x ∼ vy.

Thus, we have exactly seven 3-vertex maximal cliques in G containing v0. Hence,

A =
{
x, n

3
− x, n

3

}
, G is well-covered and β

(
G
)

= 3.

Case 6.10.2.1.2.2.2.2 z 6= x+ y.

We have one 3-vertex maximal clique and four 2-vertex maximal cliques in G

containing v0. Hence, A =
{
x, y, n

3

}
and G is not well-covered.

Case 6.10.2.2 3z 6= n.

We consider two cases.
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Case 6.10.2.2.1 3y = n.

By Lemma 6.8, vy ∼ v−y, and by Lemma 6.9, z 6= 2y, 2y + x 6= n, 3x 6= n,

2x+ y 6= n, 2y + z 6= n and 2z + y 6= n. We consider two cases.

Case 6.10.2.2.1.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x, and by Lemma 6.9, z 6= 2x and

2x+ z 6= n. Observe that z = x+ y together with 3y = n and y = 2x is inconsistent

with our assumption that 2z 6= n, and hence z 6= x+y. We also note that x+y+z = n

together with 3y = n and y = 2x is inconsistent with our assumption that 2z 6= n,

and hence x+ y + z 6= n. We consider two cases.

Case 6.10.2.2.1.1.1 2z + x = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vz ∼ v−z. Thus, we have exactly seven

3-vertex maximal cliques in G containing v0. Hence, A =
{
n
6
, n
3
, 5n
12

}
, G is well-covered

and β
(
G
)

= 3.

Case 6.10.2.2.1.1.2 2z + x 6= n.

We have four 3-vertex maximal cliques and two 2-vertex maximal cliques in G

containing v0. Hence, A =
{
n
6
, n
3
, z
}

and G is not well-covered.

Case 6.10.2.2.1.2 y 6= 2x.

We consider two cases.

Case 6.10.2.2.1.2.1 z = 2x.

By Lemma 6.8, vx ∼ vz, v−x ∼ v−z and vx ∼ v−x, and by Lemma 6.9, z 6= x + y.

Observe that 2x + z = n together with z = 2x is inconsistent with our assumption

that 2z 6= n, and hence 2x+ z 6= n. We consider two cases.
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Case 6.10.2.2.1.2.1.1 2z + x = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vz ∼ v−z, and by Lemma 6.9, x+y+z 6= n.

Thus, we have one 5-vertex maximal clique and one 3-vertex maximal clique in G

containing v0. Hence, A =
{
n
5
, n
3
, 2n

5

}
and G is not well-covered.

Case 6.10.2.2.1.2.1.2 2z + x 6= n.

We consider two cases.

Case 6.10.2.2.1.2.1.2.1 x+ y + z = n.

By Lemma 6.8, vx ∼ v−y, v−x ∼ vy, vx ∼ v−z, v−x ∼ vz, vy ∼ v−z and v−y ∼ vz.

Thus, we have four 4-vertex maximal cliques and one 3-vertex maximal clique in G

containing v0. Hence, A =
{

2n
9
, n
3
, 4n

9

}
and G is not well-covered.

Case 6.10.2.2.1.2.1.2.2 x+ y + z 6= n.

We have exactly four 3-vertex maximal cliques in G containing v0. Hence, A ={
x, n

3
, 2x
}

, G is well-covered and β
(
G
)

= 3.

Case 6.10.2.2.1.2.2 z 6= 2x.

We consider two cases.

Case 6.10.2.2.1.2.2.1 z = x+ y.

By Lemma 6.8, vy ∼ vz, v−y ∼ v−z, vx ∼ vz, v−x ∼ v−z, vx ∼ v−y and v−x ∼ vy,

and by Lemma 6.9, 2x+ z 6= n. Observe that x+y+ z = n together with z = x+y is

inconsistent with our assumption that 2z 6= n, and hence x+ y+ z 6= n. We consider

two cases.

Case 6.10.2.2.1.2.2.1.1 2z + x = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vz ∼ v−z. Thus, we have four 4-vertex

maximal cliques and one 3-vertex maximal clique in G containing v0. Hence, A ={
n
9
, n
3
, 4n

9

}
and G is not well-covered.
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Case 6.10.2.2.1.2.2.1.2 2z + x 6= n.

We have exactly seven 3-vertex maximal cliques in G containing v0. Hence, A ={
x, n

3
, x+ n

3

}
, G is well-covered and β

(
G
)

= 3.

Case 6.10.2.2.1.2.2.2 z 6= x+ y.

We consider two cases.

Case 6.10.2.2.1.2.2.2.1 x+ y + z = n.

By Lemma 6.8, vx ∼ v−y, v−x ∼ vy, vx ∼ v−z, v−x ∼ vz, vy ∼ v−z and v−y ∼ vz,

and by Lemma 6.9, 2x + z 6= n and 2z + x 6= n. We have exactly seven 3-vertex

maximal cliques in G containing v0. Hence, A =
{
x, n

3
, 2n

3
−x
}

, G is well-covered and

β
(
G
)

= 3.

Case 6.10.2.2.1.2.2.2.2 x+ y + z 6= n.

We consider two cases.

Case 6.10.2.2.1.2.2.2.2.1 2x+ z = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vx ∼ v−x, and by Lemma 6.9, 2z + x 6= n.

Thus, we have exactly four 3-vertex maximal cliques in G containing v0. Hence,

A =
{
x, n

3
, n− 2x

}
, G is well-covered and β

(
G
)

= 3.

Case 6.10.2.2.1.2.2.2.2.2 2x+ z 6= n.

We consider two cases.

Case 6.10.2.2.1.2.2.2.2.2.1 2z + x = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vz ∼ v−z, and by Lemma 6.9, x+y+z 6= n.

Thus, we have exactly four 3-vertex maximal cliques in G containing v0. Hence,

A =
{
x, n

3
, n
2
− x

2

}
, G is well-covered and β

(
G
)

= 3.



188

Case 6.10.2.2.1.2.2.2.2.2.2 2z + x 6= n.

We have one 3-vertex maximal clique and four 2-vertex maximal cliques in G

containing v0. Hence, A =
{
x, n

3
, z
}

and G is not well-covered.

Case 6.10.2.2.2 3y 6= n.

We consider two cases.

Case 6.10.2.2.2.1 3x = n.

By Lemma 6.8, vx ∼ v−x, and by Lemma 6.9, y 6= 2x, z 6= 2x, 2y + x 6= n,

x+ y+ z 6= n, z 6= 2y, 2x+ y 6= n, 2y+ z 6= n, z 6= x+ y, 2x+ z 6= n, 2z+ y 6= n and

2z + x 6= n. Thus, we have one 3-vertex maximal clique and four 2-vertex maximal

cliques in G containing v0. Hence, A =
{
n
3
, y, z

}
and G is not well-covered.

Case 6.10.2.2.2.2 3x 6= n.

We consider two cases.

Case 6.10.2.2.2.2.1 2x+ y = n.

By Lemma 6.8, vx ∼ v−y, v−x ∼ vy and vx ∼ v−x, and by Lemma 6.9, y 6= 2x,

z 6= x + y, 2y + x 6= n, z 6= 2y, z 6= 2x, 2x + z 6= n, x + y + z 6= n, 2y + z 6= n,

2z + y 6= n and 2z + x 6= n. Thus, we have three 3-vertex maximal cliques and two

2-vertex maximal cliques in G containing v0. Hence, A = {x, n− 2x, z} and G is not

well-covered.

Case 6.10.2.2.2.2.2 2x+ y 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.1 2y + x = n.

By Lemma 6.8, vx ∼ v−y, v−x ∼ vy and vy ∼ v−y, and by Lemma 6.9, z 6= x + y,

x+ y+ z 6= n, 2z+x 6= n, 2y+ z 6= n, 2z+ y 6= n and z 6= 2y. We consider two cases.
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Case 6.10.2.2.2.2.2.1.1 z = 2x.

By Lemma 6.8, vx ∼ vz, v−x ∼ v−z and vx ∼ v−x, and by Lemma 6.9, y 6= 2x.

Observe that 2x+z = n together with z = 2x is inconsistent with our assumption that

2z 6= n, and hence 2x + z 6= n. Thus, we have exactly six 3-vertex maximal cliques

in G containing v0. Hence, A =
{
x, n

2
− x

2
, 2x
}

, G is well-covered and β
(
G
)

= 3.

Case 6.10.2.2.2.2.2.1.2 z 6= 2x.

We consider two cases.

Case 6.10.2.2.2.2.2.1.2.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x, and by Lemma 6.9, 2x+ z 6= n.

Thus, we have one 5-vertex maximal clique and two 2-vertex maximal cliques in G

containing v0. Hence, A =
{
n
5
, 2n

5
, z
}

and G is not well-covered.

Case 6.10.2.2.2.2.2.1.2.2 y 6= 2x.

We consider two cases.

Case 6.10.2.2.2.2.2.1.2.2.1 2x+ z = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vx ∼ v−x. Thus, we have exactly six

3-vertex maximal cliques in G containing v0. Hence, A =
{
x, n

2
− x

2
, n − 2x

}
, G is

well-covered and β
(
G
)

= 3.

Case 6.10.2.2.2.2.2.1.2.2.2 2x+ z 6= n.

We have three 3-vertex maximal cliques and two 2-vertex maximal cliques in G

containing v0. Hence, A =
{
x, n

2
− x

2
, z
}

and G is not well-covered.

Case 6.10.2.2.2.2.2.2 2y + x 6= n.

We consider two cases.
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Case 6.10.2.2.2.2.2.2.1 x+ y + z = n.

By Lemma 6.8, vx ∼ v−y, v−x ∼ vy, vx ∼ v−z, v−x ∼ vz, vy ∼ v−z and v−y ∼ vz,

and by Lemma 6.9, 2x + z 6= n, 2y + z 6= n, z 6= 2y, 2z + y 6= n and 2z + x 6= n.

Observe that x+y+z = n together with z = x+y is inconsistent with our assumption

that 2z 6= n, and hence z 6= x+ y. We consider two cases.

Case 6.10.2.2.2.2.2.2.1.1 z = 2x.

By Lemma 6.8, vx ∼ vz, v−x ∼ v−z and vx ∼ v−x, and by Lemma 6.9, y 6= 2x.

Thus, we have exactly two 4-vertex maximal cliques in G containing v0. Hence,

A = {x, n− 3x, 2x}, G is well-covered and β
(
G
)

= 4.

Case 6.10.2.2.2.2.2.2.1.2 z 6= 2x.

We consider two cases.

Case 6.10.2.2.2.2.2.2.1.2.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Thus, we have exactly four

4-vertex maximal cliques in G containing v0. Hence, A = {x, 2x, n − 3x}, G is well-

covered and β
(
G
)

= 4.

Case 6.10.2.2.2.2.2.2.1.2.2 y 6= 2x.

We have exactly four 3-vertex maximal cliques in G containing v0. Therefore,

A = {x, y, n− x− y}, G is well-covered and β
(
G
)

= 3.

Case 6.10.2.2.2.2.2.2.2 x+ y + z 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.1 2x+ z = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vx ∼ v−x, and by Lemma 6.9, y 6= 2x,

z 6= 2y, 2y + z 6= n, z 6= x+ y, 2z + y 6= n and 2z + x 6= n. Observe that 2x+ z = n
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together with z = 2x is inconsistent with our assumption that 2z 6= n, and hence

z 6= 2x. Thus, we have three 3-vertex maximal cliques and two 2-vertex maximal

cliques in G containing v0. Hence, A = {x, y, n− 2x} and G is not well-covered.

Case 6.10.2.2.2.2.2.2.2.2 2x+ z 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.1 z = x+ y.

By Lemma 6.8, vy ∼ vz, v−y ∼ v−z, vx ∼ vz, v−x ∼ v−z, vx ∼ v−y and v−x ∼ vy,

and by Lemma 6.9, z 6= 2y and z 6= 2x. We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.1.1 2y + z = n.

By Lemma 6.8, vy ∼ v−z, v−y ∼ vz and vy ∼ v−y, by Lemma 6.9, 2z + y 6= n. We

consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.1.1.1 2z + x = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vz ∼ v−z. Observe that 2y+z = n together

with z = x+y and 2z+x = n implies that y = 2x, and hence by Lemma 6.8, vx ∼ vy,

v−x ∼ v−y and vx ∼ v−x. Thus, we have exactly one 7-vertex maximal clique in G

containing v0. Hence, A =
{
n
7
, 2n

7
, 3n

7

}
, G is well-covered and β

(
G
)

= 7.

Case 6.10.2.2.2.2.2.2.2.2.1.1.2 2z + x 6= n.

Observe that 2y + z = n together with 2z + x 6= n and z = x + y implies that

y 6= 2x. Thus, we have exactly four 4-vertex maximal cliques in G containing v0.

Hence, A =
{
n− 3y, y, n− 2y

}
, G is well-covered and β

(
G
)

= 4.

Case 6.10.2.2.2.2.2.2.2.2.1.2 2y + z 6= n.

We consider two cases.
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Case 6.10.2.2.2.2.2.2.2.2.1.2.1 2z + y = n.

By Lemma 6.8, vy ∼ v−z, v−y ∼ vz, and vz ∼ v−z, and by Lemma 6.9, 2z+ x 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.1.2.1.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Thus, we have exactly six 4-

vertex maximal cliques in G containing v0. Hence, A =
{
n
8
, n
4
, 3n

8

}
, G is well-covered

and β
(
G
)

= 4.

Case 6.10.2.2.2.2.2.2.2.2.1.2.1.2 y 6= 2x.

Thus, we have exactly four 4-vertex maximal cliques in G containing v0. Hence,

A = {3z − n, n− 2z, z}, G is well-covered and β
(
G
)

= 4.

Case 6.10.2.2.2.2.2.2.2.2.1.2.2 2z + y 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.1.2.2.1 2z + x = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vz ∼ v−z. Observe that 2y + z 6= n

together with 2z + x = n and z = x + y implies that y 6= 2x. Thus, we have exactly

four 4-vertex maximal cliques in G containing v0. Hence, A = {n− 2z, 3z − n, z}, G

is well-covered and β
(
G
)

= 4.

Case 6.10.2.2.2.2.2.2.2.2.1.2.2.2 2z + x 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.1.2.2.2.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Thus, we have exactly four 4-

vertex maximal cliques in G containing v0. Hence, A = {x, 2x, 3x}, G is well-covered

and β
(
G
)

= 4.
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Case 6.10.2.2.2.2.2.2.2.2.1.2.2.2.2 y 6= 2x.

We have exactly six 3-vertex maximal cliques in G containing v0. Therefore,

A = {x, y, x+ y}, G is well-covered and β
(
G
)

= 3.

Case 6.10.2.2.2.2.2.2.2.2.2 z 6= x+ y.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.1 z = 2x.

By Lemma 6.8, vx ∼ vz, v−x ∼ v−z and vx ∼ v−x, and by Lemma 6.9, y 6= 2x and

z 6= 2y. We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.1.1 2y + z = n.

By Lemma 6.8, vy ∼ v−z, v−y ∼ vz and vy ∼ v−y, and by Lemma 6.9, 2z + y 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.1.1.1 2z + x = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vz ∼ v−z. Thus, we have one 5-vertex

maximal clique and two 3-vertex maximal cliques in G containing v0. Hence, A ={
n
5
, 3n
10
, 2n

5

}
and G is not well-covered.

Case 6.10.2.2.2.2.2.2.2.2.2.1.1.2 2z + x 6= n.

We have exactly six 3-vertex maximal cliques in G containing v0. Therefore,

A =
{
x, n

2
− x, 2x

}
, G is well-covered and β

(
G
)

= 3.

Case 6.10.2.2.2.2.2.2.2.2.2.1.2 2y + z 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.1.2.1 2z + y = n.

By Lemma 6.8, vy ∼ v−z, v−y ∼ vz, and vz ∼ v−z and by Lemma 6.9, 2z + x 6= n.

Thus, we have exactly six 3-vertex maximal cliques in G containing v0. Hence, A =

{x, n− 4x, 2x}, G is well-covered and β
(
G
)

= 3.
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Case 6.10.2.2.2.2.2.2.2.2.2.1.2.2 2z + y 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.1.2.2.1 2z + x = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vz ∼ v−z. Thus, we have one 5-vertex

maximal clique and two 2-vertex maximal cliques in G containing v0. Hence, A ={
n
5
, y, 2n

5

}
and G is not well-covered.

Case 6.10.2.2.2.2.2.2.2.2.2.1.2.2.2 2z + x 6= n.

We have three 3-vertex maximal cliques and two 2-vertex maximal cliques in G

containing v0. Hence, A = {x, y, 2x} and G is not well-covered.

Case 6.10.2.2.2.2.2.2.2.2.2.2 z 6= 2x.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.2.1 z = 2y.

By Lemma 6.8, vy ∼ vz, v−y ∼ v−z and vy ∼ v−y. Observe that 2y + z = n

together with z = 2y is inconsistent with our assumption that 2z 6= n, and hence

2y + z 6= n. We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.2.1.1 2z + x = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vz ∼ v−z, and by Lemma 6.9, 2z + y 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.2.1.1.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Thus, we have exactly seven 3-

vertex maximal cliques in G containing v0. Hence, A =
{
n
9
, 2n

9
, 4n

9

}
, G is well-covered

and β
(
G
)

= 3.
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Case 6.10.2.2.2.2.2.2.2.2.2.2.1.1.2 y 6= 2x.

We have exactly six 3-vertex maximal cliques in G containing v0. Hence, A =

{n− 4y, y, 2y}, G is well-covered and β
(
G
)

= 3.

Case 6.10.2.2.2.2.2.2.2.2.2.2.1.2 2z + x 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.2.1.2.1 2z + y = n.

By Lemma 6.8, vy ∼ v−z, v−y ∼ vz, and vz ∼ v−z. We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.2.1.2.1.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Thus, we have one 5-vertex

maximal clique and three 3-vertex maximal cliques in G containing v0. Hence, A ={
n
10
, n
5
, 2n

5

}
and G is not well-covered.

Case 6.10.2.2.2.2.2.2.2.2.2.2.1.2.1.2 y 6= 2x.

We have one 5-vertex maximal clique and two 2-vertex maximal cliques in G

containing v0. Hence, A =
{
x, n

5
, 2n

5

}
and G is not well-covered.

Case 6.10.2.2.2.2.2.2.2.2.2.2.1.2.2 2z + y 6= n.

Case 6.10.2.2.2.2.2.2.2.2.2.2.1.2.2.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Thus, we have exactly six 3-

vertex maximal cliques in G containing v0. Hence, A = {x, 2x, 4x}, G is well-covered

and β
(
G
)

= 3.

Case 6.10.2.2.2.2.2.2.2.2.2.2.1.2.2.2 y 6= 2x.

We have three 3-vertex maximal cliques and two 2-vertex maximal cliques in G

containing v0. Hence, A = {x, y, 2y} and G is not well-covered.
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Case 6.10.2.2.2.2.2.2.2.2.2.2.2 z 6= 2y.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.1 2y + z = n.

By Lemma 6.8, vy ∼ v−z, v−y ∼ vz and vy ∼ v−y, and by Lemma 6.9, 2z + y 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.1.1 2z + x = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vz ∼ v−z. We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.1.1.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Thus, we have exactly one

7-vertex maximal clique in G containing v0. Hence, A =
{
n
7
, 2n

7
, 3n

7

}
, G is well-covered

and β
(
G
)

= 7.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.1.1.2 y 6= 2x.

We have exactly six 3-vertex maximal cliques in G containing v0. Hence, A =

{4y − n, y, n− 2y}, G is well-covered and β
(
G
)

= 3.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.1.2 2z + x 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.1.2.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Thus, we have exactly six

3-vertex maximal cliques in G containing v0. Hence, A = {x, 2x, n − 4x}, G is well-

covered and β
(
G
)

= 3.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.1.2.2 y 6= 2x.

Thus, we have three 3-vertex maximal cliques and two 2-vertex maximal cliques

in G containing v0. Hence, A = {x, y, n− 2y} and G is not well-covered.
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Case 6.10.2.2.2.2.2.2.2.2.2.2.2.2 2y + z 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.2.1 2z + y = n.

By Lemma 6.8, vy ∼ v−z, v−y ∼ vz, and vz ∼ v−z and by Lemma 6.9, 2z + x 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.2.1.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Thus, we have exactly six

3-vertex maximal cliques in G containing v0. Hence, A =
{
x, 2x, n

2
− x
}

, G is well-

covered and β
(
G
)

= 3.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.2.1.2 y 6= 2x.

We have three 3-vertex maximal cliques and two 2-vertex maximal cliques in G

containing v0. Hence, A = {x, n− 2z, z} and G is not well-covered.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.2.2 2z + y 6= n.

We consider two cases.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.2.2.1 2z + x = n.

By Lemma 6.8, vx ∼ v−z, v−x ∼ vz and vz ∼ v−z.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.2.2.1.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Thus, we have exactly six

3-vertex maximal cliques in G containing v0. Hence, A =
{
x, 2x, n

2
− x

2

}
, G is well-

covered and β
(
G
)

= 3.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.2.2.1.2 y 6= 2x.

We have three 3-vertex maximal cliques and two 2-vertex maximal cliques in G

containing v0. Hence, A =
{
x, y, n

2
− x

2

}
and G is not well-covered.
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Case 6.10.2.2.2.2.2.2.2.2.2.2.2.2.2.2 2z + x 6= n.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.2.2.2.1 y = 2x.

By Lemma 6.8, vx ∼ vy, v−x ∼ v−y and vx ∼ v−x. Thus, we have three 3-

vertex maximal cliques and two 2-vertex maximal cliques in G containing v0. Hence,

A = {x, 2x, z} and G is not well-covered.

Case 6.10.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2 y 6= 2x.

We have exactly six 2-vertex maximal cliques in G containing v0, and hence G is

well-covered and β
(
G
)

= 2.



Chapter 7

Conclusion

In this thesis, we investigated circulant graphs. The main purpose of our research

was to determine necessary and sufficient conditions for certain families of circulant

graphs to be well-covered. Since the problem of determining well-coveredness of an

arbitrary circulant graph is co-NP-complete, attaining full characterization will be

difficult. We were able to identify several families of well-covered circulant graphs

that can be identified in polynomial time. These families could be extended by

applying the lexicographic product.

Future research in this area could investigate

(i) A well-covered graph is 1-well-covered if G − v is well-covered for all v in the

vertex set of G. Can we find necessary and sufficient conditions for a circulant

graph to be 1-well-covered?

(ii) The girth of a graph with a cycle is the length of its shortest cycle while a graph

with no cycle has infinite girth. Can we characterize well-covered circulants of

girth three and four?
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