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Abstract

Chasing DRAGNs: A Numerical Investigation into the Absence of

Plume Structures in Observations of Double Radiosources

Associated with Galactic Nuclei

by Stephen M. Campbell

submitted on April 22, 2014:

The formation of plume structures has long been a consequence of fluid modelling of
extragalactic radio jets. Simulations performed to date, which have been executed
with and without reflective boundary conditions along the equatorial plane, have
exhibited these structures, without being able to explain their lack of prevalence in
the observations.

I have shown, through use of synthetic synchrotron emission images, that plumes
should indeed exist in radio observations and suggest that, because of the extremely
low energy content of the material in the plumes, these structures should be visible
for any source given a low enough observation frequency.
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Chapter 1

Introduction

1.1 Radio Jets

M87, a giant elliptical galaxy in Virgo, was first noted for its peculiarity by Curtis

(1918), who described it as a “curious straight ray. . . apparently connected to the

nucleus by a thin line of matter”. It was later confirmed as a strong radio source

by Baade & Minkowski (1954). Evident in figure 1.1 (Hines et al., 1989) is the fea-

ture noted by Curtis extending approximately 25
′′

from the nucleus, now commonly

referred to as a jet. At the distance of M87 (16 Mpc) this corresponds to approxi-

mately 1500 pc. Neither Curtis nor Baade & Minkowski gave any hypothesis on the

formation of the jet feature nor the state of the jet material.

Further study into radio sources (Baade and Minkowski, 1954) lead to objects

showing extended radio emission of low intensity in lobe structures with compact

regions of high brightness embedded within them referred to as ‘hot spots’ (see figure

1.2). Sources showing extended lobe features were much more commonly observed at

the time than those with jets like that of M87 (figure 1.1) or Cygnus A (figure 1.2).

In the 1970’s, a distinction was made between two classes of radio sources (Fanaroff

and Riley, 1974). Active radio sources showing decreasing luminosity as the distance
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Figure 1.1: The object M87 imaged at 1.4GHz. Image courtesy of NRAO/AUI and
F. Owen

from the nucleus increases (i.e. into the lobe structure) are said to be of class I (FR-I)

(e.g figures 1.1 and 1.3), whereas class II (FR-II) sources show increasing luminosity

in the lobes (e.g. figure 1.2). A clear division between the classes in the total source

power at 178MHz (P178) was noted at 2 × 1025 W Hz−1(Fanaroff and Riley, 1974).

Objects below the cut off are almost entirely FR-I, while those above are nearly all

FR-II. FR-I objects are typically associated with small elliptical galaxies belonging to

galxy clusters. FR-II sources, on the other hand, tend to be associated with distant

quasars (precursors to the nearby galaxies, e.g figure 1.4) and with giant elliptical,

even central dominated, galaxies closer by (figure 1.2).

As better instrumentation was developed, such as the radio telescope interfer-

ometers MERLIN (Foley and Davis, 1985) and the VLA (Hjellming, 1983), features
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Figure 1.2: The object Cygnus A imaged at 5.0GHz. “Hotpots” are visible as the
bright emission regions in the top-right and bottom-left corners. Image courtesy of
NRAO/AUI, R. Perley, C. Carilli & J. Dreher

within the radio sources become resolved and many were shown to contain radio jets

(Bridle and Perley, 1984). Radio jets are considered to be the mechanism of energy

transport within active radio sources from the core to the lobe regions, even though

many sources present observationally as double-lobes with a single jet. Investigations

of jets seek to answer the remaining question of sidedness, as well as more intrinsic

characteristics such as material properties, pressures, magnetic field strengths and

flow velocities.

1.2 Observations

This investigation is a direct continuation of the work of Mike Seymour. For a more

in depth perspective of the field up to the 1990’s, the interested reader is referred to

his thesis (Seymour, 1997).
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(a) 3C31 imaged at 1.4GHz showing S-shaped
jets.

(b) The C-shaped jet source 3C83.1.

Figure 1.3: Exemplar images for observed jet morphologies. Images courtesy of
NRAO/AUI as well as R. Laing, A. Bridle, R. Perley, L. Feretti, G. Giovannini,
& P. Parma. (figure 1.3a) and C. O’Dea & F. Owen (figure 1.3b)

Weak radio sources (FR-I) tend to show two sided jets on kiloparsec scales (Bridle

and Perley, 1984). These sources are often devoid of hotspots or ordered lobe features.

Instead, luminous material fades out into the intergalactic medium (IGM), often

forming S-shaped (figure 1.3a) or C-shaped structures (figure 1.3b) (O’Dea and Owen,

1986).

Strong radio sources (FR-II) exhibit extended lobes (see figure 1.5), with hotpot

regions of higher radio intensity near the outer limits of the detected lobes. A compact

core region, associated with the nucleus of a galaxy (known as an “active galactic

nucleus”, or AGN), is connected to the lobes by collimated jet features which are

thought to be highly relativistic, though observations often show only one jet.

Some FR-II observations also show the existence of lower intensity plumes around
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Figure 1.4: The object 4C 12.03 imaged at 1.4Ghz. Image credit Leahy and Perley,
reproduced with permission.

the core. These present as extended features perpendicular to the jet axis that increase

in brightness when observed at longer wavelengths (see figure 1.4).

Very Long Baseline Interferometry (VLBI) observations are used to determine

apparent jet speeds by directly measuring the distance features move over several-

year time periods. VLBI is used because the milliarcseond resolution (Middelberg

et al., 2013) enables the imaging of small features that are not resolved with VLA.

Many jets exhibit apparent superluminal motion on both parsec (Homan et al., 2001)

and kiloparsec (Mullin et al., 2008) scales. This is merely a projection effect caused by

orientation of the jet axis against the sky. Observed jet speeds range from βj = vj/c ∼
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Figure 1.5: Cartoon of a double radio source. Noted features include a compact core,
both radio jets, emission knots, extended lobe structures and hotspots within the
lobes. The arrows indicating the direction of electron aging is addressed in section
2.2.

0.1 in Centaurus A (Tingay et al., 1998) to βj ∼ 0.95 in 3C 345 (Vermeulen, 1996).

As all extragalactic jets appear to be at least somewhat relativistic, beaming

effects are considered to explain certain phenomena, most important of which being

jet-sidedness. Single jet detection occurrences in strong radio sources are by far the

most prevalent. If the plane of the jet is tilted at an angle with the plane of the

sky the jet flowing toward the observer will be Doppler boosted, appearing brighter,

while the opposite jet will be Doppler diminished, often to the point where it becomes

undetectable.

The so-called Laing-Garrington effect provides further evidence for the relativis-

tic beaming in jets (Laing, 1988; Garrington et al., 1988). The effect describes the
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association between jet detected side with the less depolarized lobe. Depolarization

is caused by differential Faraday rotation through irregularities in a magnetoionic

medium surrounding the radio source; the jet closer to observer should be less depo-

larized as there is less depolarizing medium between us and the lobe (Laing, 1988).

The tendency for the jet, or the brighter jet in the case of a double detection, to

be associated with this lobe implies that beaming is a key factor in jet detection

(Scheuer, 1987).

Another observation is that the less depolarized lobe is characterized by a flatter

spectral index (Liu-Pooley correlation) (Liu and Pooley, 1991). Upon investigation

this effect was correlated with jet detection, which is known to be a manifestation of

Doppler beaming, suggesting that the spectral index asymmetry in the lobes is also

a relativistic effect (Dennett-Thorpe et al., 1997).

The intrinsic brightness temperature of a source, Tb,int is assumed to be associated

with the equipartition temperature, Teq (Readhead, 1994). Teq is the calculated value

of source temperature for maximum synchrotron emission lifetime assuming energy

is equally divided amongst the radiative particles and the magnetic field. VLBI

can be used to determine the observed brightness temperature of the source (Tb,obs).

The difference between these values yields an excess that can be interpreted as the

Doppler boosting factor (Readhead, 1994; Lähteenmäki et al., 1999). This method

has been used to calculate Doppler boosting factors in many sources (Hovatta et al.,

2009). More recent methods developed further support that the intrinsic brightness

temperature is near the equipartition temperature (Hovatta et al., 2012).

Polarization data allow for the study of the magnetic field configuration present
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in the radio sources, which must exist if the radiation is caused by the synchrotron

mechanism. The data analysed from MOJAVE (Monitoring of Jets in Active Galac-

tic Nuclei with VLBA experiments) suggest that the magnetic field configuration is

helical, as the Faraday rotation measure is observed to change sign in transverse cuts

along the jet axis (Hovatta et al., 2012).

1.3 Simulations

The initial ‘standard model’ for jet production, first proposed Blandford & Rees

(1974) and subsequently refined after extensive numerical simulations begun by Nor-

man et al. (1982), posits that a low density, supersonic jet penetrates into an equal

pressure ambient medium of higher density. Many numerical simulations have been

performed since (e.g. Steffen et al. 1996, Koide et al. 1996, Hooda and Wiita 1996,

to name a few) in which the jet is launched into a quiescent, not necessarily uniform,

gas from one of the computational domain boundaries.

Simulations of this type show a leading bow shock in front of the jet (due to the

supersonic nature of the flow) that separates the quiescent ambient medium from

the ambient material disturbed by the jet (Norman et al. 1982; see figure 1.6). The

jet terminates at the ‘working surface’ (see figure 1.6), believed to be seen observa-

tionally as a hot spot (see figure 1.2). The working surface propagates forward with

a velocity much lower than the flow speed along the jet because the density in the

jet is significantly lower than in the ambient medium. This causes jet material to

be strongly shocked, compressed, and redirected in the transverse direction, inflating
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the lobe and making its way back toward the launch site (figure 1.6). The sideways

and backward flowing material that inflates the surrounding region is best described

as hot, rarefied, turbulent, transonic and super-Alfvénic (for weak magnetic fields)

material that surrounds the jet, creating a “buffer”, or “cocoon”, protecting it from

the influences of the ambient medium. As the cocoons of the opposing jets meet near

the equatorial plane, flow is once again forced in a direction perpendicular to the jet

axis, creating plumes around the launch site (e.g. Seymour, 1997).

The rearward flowing material establishes a shear layer across the contact dis-

continuity (CD) between the cocoon and the shocked ambient atmosphere. Kelvin-

Helmholtz instabilities form eddies that perturb the jet flow (Norman et al., 1982)

exciting oblique shocks within the jet. These shocks correspond to the knots observed

in radio jets, and are responsible for the re-energization of the synchrotron emitting

electrons.

The first magnetohydrodynamical (MHD) jet simulations examined the effects

of a toroidal magnetic field on the dynamics and morphology of the propagating jet

(Clarke et al., 1986). In the magnetically confined model, the cocoon was considerably

less extensive than in the purely HD counterpart. Instead, material was captured by

the toroidal magnetic field at the head of the jet, forming a “nose cone” leading the

working surface.

The morphology of simulated jets is heavily dependent on the dimensionality

imposed on the simulation. Simplifications such as reduced dimensionality (e.g. 2-

D) and reflective boundary conditions along both the axis of the jet and the inflow

boundary limited the degrees of freedom available.
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Figure 1.6: Schematic of a computer simulated double jet.

In cylindrical geometry, one is obliged to preserve top-down symmetry across the

axis. In Cartesian geometry, one can “wiggle” the jet thereby breaking this symmetry

and produce a more realistic simulation. The “wiggle” is created by imposing a

sinusoidal velocity perturbation (one to two percent of the jet velocity) at the orifice

perpendicular to the propagation direction (Norman, 1990).

Stability analysis of simulated jets showed agreement with earlier linear analysis

(Hardee et al., 1991). Both 2D “slab jets” in Cartesian geometry and cylindrical

jets exhibit similar spatial stability properties, and thus is was believed that the 2D

“slab jet” captured the essential physics of the three-dimensional cylindrical case. It

was found that jets in initial static pressure balance with the ambient medium are

stabilized by adiabatic expansion and by the presence of an axial magnetic field, both

of which were predicted by the linear perturbation analysis.

Initially simulations as described above were hydrodynamical (HD) in nature (e.g.

Norman et al., 1982). Blandford & Payne (1982; hereafter, BP) posited that energy
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and angular momentum were removed magnetically from accretions disks, such as

those formed by growing black holes and protostars. The mechanism is such that

material is driven outward along magnetic field lines protruding from the disk so long

as the poloidal component of the field makes an angle of less than 60° with the disk

surface. As the disk rotates, material confined by the field lines is rotated with the

system. When the condition noted above is met, the rotating material is ejected

outward along the field lines centrifugally, akin to a bead being flung outward on an

inclined and rotating wire. At large distances the toroidal component of the magnetic

field collimates the outflow into a pair of jets perpendicular to the disk surface.

Numerical work with BP type models (Ouyed and Pudritz, 1997; Ustyugova et al.,

1995) supported the disk wind theory, yielding results of outflow from centrifugal

effects whereby, at a point along sufficiently inclined field lines, centrifugal force

dominates gravity and material is flung away. A toroidal field component is created

because the field lines corotate with the disk. Inertia of the flow material forces the

field to fall behind the rotation of the disk, producing the toroidal field component

and, in so doing, collimates the flow and enforces the collimation far from the disk

region along the length of the jet.

Meier et al. (1997) proposed the so called ‘Magnetic switch’ model for launching

jets from AGN. The model sought to explain the speed differences noted between FR

class I and II objects through different configurations of the magnetized corona of

the black hole accretion disk. According to the model the flow behaviour depends on

the ratio between the Alfvén velocity in the inner disk corona to the escape velocity

there. A transition between transonic (FRI) and highly supersonic is induced by
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increasing the magnetic field strength. The model was able to produce the required

speeds and characteristic separation between the archetypes but failed to explain the

morphological differences in the objects as there was no reason for the strength of

the magnetic field to remain fixed at high or low values over such long timescales.

(Meier, 1999).

The model was revised (Meier, 1999) to include black hole rotation as a trigger

parameter within the magnetic switch. Coupled with non-Keplerian rotation in the

disk, the refined model is consistent with black hole accretion models for AGN and

MHD simulations of jet production while still predicting a break in the FRI/II jets

speeds. The model also predicts a sharp transition in jet morphology should occur

with increasing radio power, as observations show, using a mechanism — black hole

spin — that allows for constant morphology over the flow time scales.

Finally, Ramsey & Clarke (2011) showed that the magnetocentrifugal launching

mechanism (Blandford and Payne, 1982) is, by itself, capable of launching realistic

jets on observational scales. At large distances from the disk, jet dynamics become

dominated by the polodial magnetic field component, and thus, a jet launched in this

way at the sub-astronomical unit (AU) scale looks, by the time it reaches the sub-pc

scale to have, for all intents and purposes, been launches from a hole in the boundary.

Thus, for the purposes of modelling large-scale properties of jets, the approach taken

by Norman (1982) and the many others that followed is justified, and we shall assume

that approach henceforth.
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1.4 Current Investigation

With the advent of full 3-D simulations of propagating jets, the last imposed sym-

metry to be dropped is the reflection symmetry implied by the boundary into which

the jet is launched. Such a symmetry requires that the jet become a pair of exactly

matched jets from the launch site, that there be no differences imposed by asymme-

tries in the ambient medium, and that the variability of the AGN be exactly identical

at both poles. Observationally, this should result in every aspect, two identical jets

and lobes, which is simply never observed.

When they meet up again at the equatorial plane, the back flow of two identical

jets collide, redirecting back flow to a direction perpendicular to the jet axis, thus

forming plumes. That plumes are so rarely observed then begs the following questions

1. Are plumes rare because asymmetric jets somehow do not form plumes as the

back flow meets up? If so, what is the fate of the back flowing material?

2. Alternately, do plumes form for asymmetric jets as well but, because of obser-

vational effects, are normally absent from the observations?

Seymour (1997) was able to address the first of these questions in his 2-D HD

simulations. Indeed even in strongly asymmetric jets, the back flowing material from

both jets does get redirected perpendicular to the jet axis. What he was not able

to address was the second question. His 2-D HD simulations did not include the

magnetic fields nor did they keep track of electron age to give a good estimate of the

emissivity of the flow.
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This thesis addresses both of these issues. In the chapters that follow, I outline

how both the magnetic field, ~B, and the age of the emitting electrons have been

added to the simulations so that it can be determined whether observational effects

can account for the absence of these plumes.
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Chapter 2

Methods and Procedure

2.1 ZEUS-3D

We have opted to use the most recent version of ZEUS-3D (Clarke, 1996, 2010), an

ideal MHD code that implements an operator-split MHD algorithm, incorporating

the constrained transport (CT) method (Evans and Hawley, 1988) and the consistent

method of characteristics (CMoC) (Clarke, 1996). The ideal MHD equations are as

follows:

∂ρ

∂t
+∇ · (ρ~v) = 0 (2.1)

∂~s

∂t
+∇ · (~s~v) = −∇p+

1

µ0

(∇× ~B)× ~B (2.2)

∂e∗T
∂t

+∇ · (e∗T~v) +∇ ·
(
p~v +

1

µ0

~B × (~v × ~B)

)
= 0 (2.3)

∂ ~B

∂t
−∇× (~v × ~B) = 0 (2.4)

~s = ρ~v (2.5)

e∗T = e+
ρv2

2
+
B2

2µ0

(2.6)

p = (γ − 1)(eT −
1

2
ρv2) (2.7)
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where ρ ≡ matter density, p ≡ thermal pressure, e∗T ≡ total MHD energy density,

~v ≡ flow velocity, ~s ≡ momentum density, µ0 ≡ permeability of free space and ~B ≡

magnetic field. These equations represent mass conservation (2.1), Newton’s second

law (2.2), conservation of energy (2.3) and conservation of magnetic flux (2.4) which

are complemented by the constitutive equations (2.5) – (2.7).

The operator split method solves these equations in two distinct steps, the source

step and the transport step. The terms on the right hand side (RHS) of equation (2.2)

are updated in the source step, while the perfect curls and divergences in equations

(2.1) – (2.4) are handled in the transport step.

The CT algorithm (Evans and Hawley, 1988) evolves the magnetic field while

maintaining the solenoidal condition. The method uses the induced electric field,

~E = −~v × ~B, to update the magnetic field, which is done in a way that preserves

∇ · ~B = 0 to machine round-off error within the computational domain. The CMoC

algorithm is a departure from the previous MoC algorithm in that the directional-

split treatment of the induction and transport operators is replaced with a planar-split

scheme, required for multidimensional accuracy (Clarke, 1996). For further details

on ZEUS-3D the interested reader is referred to Clarke (1996, 2010).

2.2 Initializing a twin jet

In a single jet simulation, zones along the boundary are used as the jet origin (see

figure 2.1) by assigning values for ρ, ~v and e corresponding to the conditions at the

jet inlet. As the simulation progresses, these values remained unchanged while the
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Figure 2.1: Diagram comparing the previous “single jet” to the “twinjet” computa-
tional set up. The jet inflow is moved from the domain boundary in the “single jet”
scheme into the center of the domain for the “twinjet”. The reflective boundary is
not required, thus outflow boundaries surround the entire domain.

equations of (magneto)hydrodynamics are solved in the “active zones”. This allows

a supersonic jet to be launched and maintained throughout the simulation.

The “twinjet” scheme (Seymour, 1997) removes the reflective boundary condition

previously used to simulate the existence of a second, or “counter” jet. This was

achieved by moving the jet origin to the center of the grid (figure 2.1). In the center

of the grid, a region six zones thick and as wide as the jet diameter is designated as

the “fertile zone” region, in which conditions necessary to launch two opposing jets

are maintained. In essence, these “fertile zones” are treated much like the boundary

zones used to launch a jet in the single-jet simulations. Following each of the update

steps (source and transport), the values in the “fertile zones” are overwritten with

the original settings. This maintains the jet flow using a method consistent with two

opposing jets launched from a compact, unresolved core region into the active grid

zones.

Modifying the “fertile zones” to launch a magnetic field into the simulation proved
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Figure 2.2: Diagram depicting basic grid scheme to update magnetic field values.

much more challenging. Consider the portion of the grid depicted in figure 2.2,

showing a single “fertile zone” in grey abutting on its immediate right, an active

zone on the grid. Assume that the grid is initialized in such a way that ∇ · ~B = 0

everywhere. As the jet flows onto the active grid, the magnetic field must be updated

accordingly. If, after one MHD step, one were to restore the value of Bx only at the

boundary interface to the value required in the jet material (as one does with the

HD variables) the solenoidal condition would suddenly be violated at the zone center,

labeled ∇· ~B in figure 2.2. In principle, this violation could be corrected by adjusting

the values of Bx and By at the other faces of the active zone but then, by induction,

it is easy to see that all values of Bi (i = x, y, z) across the grid would have to be

adjusted for each time step, violating the integrity of the developing MHD solution.
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Instead, the magnetic field is set in the fertile zones by use of a pre-determined

edge-centered vector potential which is updated in time by use of an edge-centered

induced electric field. Since ~E ≡ −~v × ~B, the induction equation may be written as:

∂ ~B

∂t
+∇× ~E = 0.

Since ~B ≡ ∇× ~A, where ~A is the vector potential, this can be rewritten as:

∂

∂t
∇× ~A+∇× ~E = ∇×

(
∂ ~A

∂t
+ ~E

)
= 0.

This implies that, for the appropriate choice of gauge,

∂ ~A

∂t
= − ~E, (2.8)

showing that the magnetic vector potential can be evolved with the induced electric

field.

By using the vector potential, one can maintain the solenoidal condition to ma-

chine round-off error even if one alters the value of ~A in just one zone. To see this,

first note that in the x-y plane where ~A = Az ẑ,

~B = ∇× ~A = (∂yAz,−∂xAz, 0)

which implies that,

∇Az = (∂xAz, ∂yAz, 0) ⊥ ~B

and thus contours of Az are everywhere aligned with magnetic field lines. We can

therefore imagine that Az is to ~B what elevation (of a hill, for example) is to topo-

logical contours.
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Thus, instead of trying to advance a particular magnetic field configuration into

the grid, imagine instead the task of advancing a hill or a “bluff” of “elevation” Az

into the grid with its topographical contours being the desired magnetic field lines

advancing into the grid with Az (see figure 2.3). The problem of setting the desired ~B

at the jet orifice then becomes a problem of setting the desired Az (as evolved using

equation 2.8) and, as Evans and Hawley (1988) and numerous others have shown, it

is easy then to preserve the solenoidal condition to machine round-off.

A helical magnetic field was used for this investigation. By superposition, a

toroidal field can be generated in conjunction with a poloidal field to generate a

helical magnetic field configuration. It has been shown (Clarke, 1996; 2010, and

references therein) that a toroidal field can be generated in a similar fashion to the

poloidal field, discussed previously. By establishing ~B with a vector potential, ~A,

and evolving it with the induced electric field, ~E (as in equation 2.8), the solenoidal

condition is maintained to machine round-off error. The sum of these divergence-free

magnetic fields, evolved with the divergence-free induced electric field, will therefore

remain divergence-free.

The TWINJET routine in ZEUS-3D uses “fertile zones” to launch the jets. Variables

in these zones, which now includes the induced electric field, ~E, which, in turn, is used

to evolve ~A, are overwritten after each update step. As ~A evolves in the “fertile zones”

so does the magnetic field to provide the desired field configuration (e.g. toroidal,

poloidal or even helical) transported by the jets. In this fashion, the magnetic field

lines form “semi-infinite flux loops” (see figure 2.4) in which all field lines form closed

loops, leaving no open field lines thereby maintaining the solenoidal condition to
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Figure 2.3: Diagram depicting the vector potential “bluff” advancing into the grid.

machine round-off everywhere.

Test simulations were executed to examine the symmetry of the “twinjet” model

as well as the level of agreement between the single jet and “twinjet” schemes. All

test simulations were configured in two dimensional slab symmetry, with 5 jet radii

(rj) per jet resolved in the 1-direction, and 5rj in the 2-direction. The simulations

were 50×50 zones for the “single jet” and 100×50 zones for the “twinjet” to maintain

symmetric conditions between the schemes. The “single jet” orifice was offset by three

zones into the computational grid to mimic the right half of the “fertile zones” of the

“twin jet”.

The “twinjet” showed agreement in the flow variables (e.g. ρ, ~v) to machine

round-off error between the opposing jets (see figure 2.5). The density and velocity

were identical across the midplane, with an expected sign change of the axial velocity
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Figure 2.4: 2-D slice of the computational domain for a small test run. The pressure
of the jet is plotted (colour contours) with the magnetic field lines over-plotted (as

the curl of the 3-component of the vector potential ~A, corresponding to Az).

(vx) in the two jets.

The comparator simulations of the single jet launched from an offset position and

the “twinjet” right propagating jet produced morphologically similar jets (see figure

2.6). Agreement between them was about one part in 106 (in certain tracked scalars)

and not to machine round-off. It was found that the single jet is initialized with an

identical x-direction velocity to the edge of the last boundary zone, while the “fertile

zones” in the “twinjet” is forced the change sign at the midpoint for the “counter”

jet. This difference in configuration caused differing interpolations across the base

of the offset (where vj > 0) and at the analogous location across the “fertile zones”

(where vj = 0 or < 0). These differing interpolations made their effects felt on to the

active grid, causing minute differences in the single and “twinjet” simulations. These

differences were very slight, and deemed to be inconsequential.



Chapter 2. Methods and Procedure 23

Figure 2.5: 2-D slice of the computational domain for a small test run. The density
of the jet is plotted (colour contours) with the velocity vectors over-plotted.

(a) Single Jet. (b) “Twinjet” (Right propagating)

Figure 2.6: 2-D slices of the computational domains for small test runs. The single
jet is plotted with the “twinjet” (right propagating) for comparison. The density of
the jets are plotted (colour contours) with the velocity vectors over-plotted.
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The magnetic field is included in these simulations largely so that a false syn-

chrotron emission image of the jets may be made to compare with observations. Syn-

chrotron emission is caused by charged particles, such as electrons, spiralling about a

magnetic field and, for most extragalactic radio sources obey a power-law spectrum:

i(ν) ∝ ν−α, (2.9)

where α is referred to as the spectral index and i(ν) is the synchrotron emissivity.

An ensemble of electrons emitting synchrotron radiation loses energy over time.

To characterise this, one can define a break frequency, νbr, such that for frequencies

below νbr, the electrons are still energetic enough to emit the full (flatter) synchrotron

spectrum. Above νbr, the electrons are depleted of energy and emit a steeper spec-

trum. For an in-depth development of the theory behind this emission model, the

interested reader is referred to MacDonald (2008). Here, I will assume the results of

that analysis, namely that the synchrotron age of the electron ensemble is given as:

tsyn = 1.2974× 106 ν
− 1

2
br B− 2

3 , (2.10)

where tsyn is the synchrotron age of the electrons (s), νbr is the break frequency of

the ensemble (Hz) and B is the magnetic field strength (T). From equation 2.10, the

break frequency is given by:

νbr = 1.6761× 1012 B−3t−2
syn. (2.11)
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The electron aging algorithm used in the simulations was developed by Nick Mac-

Donald (2008). The method tracks the synchrotron age of the fluid, tsyn according to

the following advection equation:

dtsyn

dt
=
∂tsyn

∂t
+ ~v · ∇tsyn = 1− ξtsyn (2.12)

where the first term on the right hand side of equation 2.12 account for synchrotron

aging and the second term for shock re-acceleration. As the synchrotron age of the

fluid increases, the break frequency, νbr, is driven to lower frequencies. On the other

hand, the synchrotron age can be reduced by shocks, effectively moving νbr to higher

frequencies.

With these results, the emissivity as a function of tsyn may be written as:

i(ν, tsyn) =


κnew(B sinψ)(x+1)/2 ν−(x−1)/2, ν < νbr;

κold(B sinψ)−2 ν−(2x+1)/3 t
−(x+5)/3
syn , ν > νbr,

(2.13)

where B is the magnitude of the magnetic field, x is a power-law index related to

the spectral index, α, κnew and κold are proportionality constants related to the total

number density of relativistic electrons contained within each portion of the spectrum,

and ψ is the angle between the magnetic field and the line-of-sight. The emissivity is

tracked for each zone during the calculation. The emission can be integrated along the

line of sight to produce simulated synchrotron emission images that can, in principle,

be compared directly to observations such as those in figures 1.2 – 1.4.



Chapter 2. Methods and Procedure 26

2.3 Procedure

A set of 3-D calculations were carried out using ZEUS-3D, with the augmented “twin-

jet” scheme described previously. The jet radius (rj) was resolved on the computa-

tional grid (250×130×130 zones) by 10 zones. Densities and Mach numbers for each

jet in the various runs are listed in table 2.1. A slight precession of each jet, 180° out

of phase with each other, was introduced to break the quadrantal symmetry of the

calculation. The simulations were run until problem time t = 5.0 rj/ca where ca is

the ambient sound speed, at which point the fastest bow shock reached the edge of

the grid. The ACEnet Mahone cluster housed at Saint Mary’s University was used

for the production runs. Since the parallelisability of the code was not re-established

and tested for this work, all runs were executed in serial, limiting the resolution of the

simulations. Still, the simulations were of sufficient quality that the primary ques-

tions posed in §1.4 could be addressed.

Table 2.1: Parameters used for production runs, where the subscripts denote the left
(l) or right (r) propagating jet, M is the mach number, η is the ratio of jet density to
the ambient medium.

Simulation Ml Mr ηl ηr
A 10 10 0.4 0.4
B 10 10 0.2 0.2
C 9 10 0.4 0.4
D 9 10 0.2 0.2
E 9 10 0.4 0.2

Each simulation took ∼3 days to run on a single 2.5GHz processor. Outflow

boundaries were implemented along the entirety of the computational domain. Data



Chapter 2. Methods and Procedure 27

were visualized using pixel dumps, 2-D slices through the computational grid, each

displaying a certain variable (e.g. p, ρ, and emissivity, i to name a few). For the total

intensity, “numerical observations” were performed at various “frequencies” (in terms

of the average break frequency, νbr, in the simulations which, for real extragalactic

sources, typically corresponds to ∼5 GHz), and these results were then compared

with actual observations to address the prevalence of the radio plumes.
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Chapter 3

Results and Discussion

3.1 Numerical Results

All calculations show both jets exhibiting the characteristics of the “twinjet” model

as noted by Seymour (1997) (see figures 3.1 – 3.4). In each case, the jets propagate in

their respective directions, terminating at a working surface. Cocoons of material are

inflated around the jets which flow back into that of the opposing jet, creating plumes

near the jet origin. A contact discontinuity is formed where the cocoon and plume

material meets the shocked atmosphere. Kelvin-Helmholtz instabilities develop along

the CD around the cocoons, most noticeable in the higher η simulations (figures 3.1

and 3.2). Bow shocks created at the leading edge of the working surface meet above

and below the jet origin, forming a complete shell.

Figure 3.1: Density slice through the midplane of the computational grid for simula-
tion A (table 2.1). High/low density regions are plotted in red/blue.
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Figure 3.2: Density slice through the midplane of the computational grid for simula-
tion D (table 2.1). High/low density regions are plotted in red/blue.

The jets launched with different opposing velocities (figures 3.2 – 3.4) show one

working surface (right side) propagating faster than the other. This causes a reduced

cocoon length and an inequality in the average cross sections along the length, as

compared to the companion jet. As noted by Seymour (1997), the effect is caused

by the rate of material flowing back from each working surface. Material flows back

from the right working surface with greater velocity than the left, ultimately causing

a ram-pressure imbalance near the jet origin. The cocoon material from the fast

(right) jet pushes past the jet origin into the left cocoon. This causes a simultaneous

deflation of the right cocoon and inflation of the left. Seymour concluded that the

faster jet produces a longer and narrower cocoon than it would if the left jet were of

the same power.

Mach 10 jets (those on the right side of the simulations) all advance approximately

the same distance during the simulation time. In the frame of reference of the working

surface, the momentum flux of the jet fluid impinging into the working surface is

balanced with the momentum flux of the ambient medium pushing back against the

working surface (see figure 3.5). From this, an expression for the advance speed of
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Figure 3.3: Density slice through the midplane of the computational grid for simula-
tion C (table 2.1). High/low density regions are plotted in red/blue.

Figure 3.4: Density slice through the midplane of the computational grid for simula-
tion E (table 2.1). High/low density regions are plotted in red/blue.
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Figure 3.5: Simplified scheme of a jet in the rest frame of the working surface.

the working surface is derived as follows:

ρj(vj − vws)
2Aj = ρambv

2
wsAeff ,

where ρj is the jet density, ρamb is the ambient density, vj is the jet velocity, vws is

the velocity of the working surface, Aj is the area of the jet and Aeff is the effective

area of the ambient medium as it pushes against the bow shock. Rearranging the

expression in terms of vws we get:

vws =
vj

1 +
√

ζ
η

=
Mj/
√
η

1 +
√

ζ
η

=
Mj√
η +
√
ζ

,

where Mj is the Mach number of the jet, η ≡ ρj

vamb
and ζ ≡ Aeff

Aj
. From this expression

it is noted that the advance speed of the working surface has a very weak dependence

on the value of η when η << 0 and ζ ∼ 1, explaining why a lower density jet of the

same Mach number advances to the same approximate point during the simulation

time.

Jets with a value of η = 0.04 are a little more ballistic in nature than those of
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η = 0.02. As the denser jet material slams into the working surface, it moves the

working surface farther into the grid than a less dense jet would and less material is

forced back along the cocoon. In the lower density case (η = 0.02), the jet momentum

transfer to the working surface is less, causing more back flow towards the jet origin.

Thus the cocoon of the lower density tend to be hotter and have a greater diameter

than those of the higher density jets. When the cocoons of the lighter jets meet and

form the plumes, more material is available, inflating it to a greater size. To wit,

simulations with η = 0.02 for at least one jet (figures 3.3 and 3.4) exhibit larger

plumes than those with η = 0.04.

As jet material moves through the grid in both space and time, the electron age

increases (see figure 3.6). Shocks along the jet reduced the electron age of the material,

the last instance of which is when the material meets the working surface. From there

the back flow steadily ages along the cocoon and into the plumes. Because of the

reduced age, material in the cocoons and plumes is less emissive via the synchrotron

mechanism than that in the jet or at the working surface. Shocked atmosphere shows

the oldest electrons, pale in comparison to that of the jet or even the plume.

The electron age (equation 2.10) outlined in §2.2 was tracked throughout the

grid in all simulations. From this, synthetic emission images for the simulations was

created (see figure 3.7). The average break frequency, νbr, (see bottom of figure 3.6)

of the simulation was determined in the scale-free units of the simulation and then

associated with 5.0 GHz (6cm), a typical break frequency in an extragalctic radio

source. Each emission image was then created at frequencies that were multiples

of νbr. Thus, the lowest frequency (top panel, figure 3.7) is 1
9
νbr (corresponding
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Figure 3.6: Slice through the midplane of the computational grid of electron age
(top) and break frequency, νbr (bottom), for simulation C. Young/old age regions are
plotted in blue/red. High/low break frequency regions are plotted in red/blue.

to ∼60cm), followed by 1
3
νbr (second panel, ∼20cm), νbr (third panel, ∼6cm) and

3 νbr (bottom panel, ∼2cm). In higher observation wavelengths, increased levels of

emission are evident around the “fertile zone” region, along the jet and into the the

inflated cocoon towards the working surface. Whisps of emission are seen in the area

corresponding to the plumes. Observationally, this would be likened to figure 1.4,

exhibiting large amount of emission in the lobe regions, and dimmer, but still visible,

emission in the plumes, formed from the back flow.

As the wavelength decreases, (middle), no plume emission is observed and only

the brightest parts of the cocoon remain visible, corresponding to an extragalactic

source more akin to Cygnus A (figure 1.2). At the shortest wavelength (bottom),
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only the very edges of the jet origin and the tips of the cocoon are visible.

3.2 Discussion and Conclusions

While most extragalactic jet observations exhibit bright lobe and core emission, of-

ten times with only a single jet (figure 1.2), observations of plume structures (figure

1.4) are more rare. This thesis sought to explain these two types of observations by

expanding on the “twinjet” scheme (Seymour, 1997) implemented in the magnetohy-

drodynamical evolution code, ZEUS-3D.

Multiple simulations at low resolution were executed to simulate fully 3-D, twin

extragalactic jets evolved with a weak magnetic field along with a scalar to track

electron age for the purposes of creating synthetic synchrotron images. Similarities

and differences were observed between the synchrotron slices in figure 3.7, and the

observations of actual extragalactic radio sources, as shown in figures 1.1, 1.2, 1.3a,

1.3b and 1.4.

There is a likely connection between plume detection and wavelength of observa-

tion. Often, observations exhibiting plumes are higher redshift, younger objects such

as the quasars 3C 20, 4C 12.03(figure 1.4) (Leahy and Perley, 1991) and 3C 20 (R.

A. Laing, unpublished) than older, more close-by objects, such as Cygnus A (figure

1.2). In the case of quasars, the rest frame wavelength of the observation would be

shorter, thus visible plume structures at a longer wavelength, say 20cm, suggests that

here, the electron population in the plumes remains highly energetic, much more so

than in the closer radio galaxies which rarely exhibit any plumes. If the explanation
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Figure 3.7: Slice through the midplane of the computational grid of the synchrotron
emissivity simulation C. Images show emission at 1

9
, 1

3
, 1 and 3 times the putative

average break frequency (top to bottom) set here to be 5.0 GHz. High/low emissivity
is plotted in red/blue.
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presented in this these for the lack of plume emission — tired electrons in the plume

— this apparent counter example must be explained.

High redshift objects evolved in a younger universe, a universe in which forming

AGN would have had more material in their local environments to accreate; leading

to more energetic, even denser jets. Further, the higher redshift IGM is much denser

than in the present epoch, providing much more resistance to the quasar jet outflow.

Thus, quasar jets should be shorter and more energetic than in radio galaxies, with

greater rejuvenation at the hotspots owing to the higher-density IGM. All this speaks

to a plausibility argument that by the time the electrons reach the plume region

in a quasar, they should be substantially more energetic than in their radio galaxy

counterparts.

Absence of plume structures in observations, such as Cygnus A (figure 1.2) is

likely also linked to redshift and epoch effects. In contrast to the material rich envi-

ronment postulated for the plume observations, objects close to the observer would

have evolved into a much sparser IGM leading to higher η, and thus more confined

plume and lobe structures. Coupled with the lack of material available to the AGN,

it is likely that fewer synchrotron emitting electrons would be continuously fed into

the lobe structures, causing reduced emission in the back flow, and absence of plume

detection.

It is therefore the conclusion of this thesis that while plumes seem to be a necessary

consequence of modelling twin jets as weak-field plasma, their detection is rare largely

because of observational effects. Electrons spiraling about the background magnetic

field lose their energy and, as such, their ability to radiate at higher frequencies. Given
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the fluid model, the oldest electrons will be in the plumes and thus, it is here that

emissivity should be weakest. Compounding this could be ambipolar diffusion which,

because of the presence of some neutral particles particularily those mixed in from the

ambient medium along the contact, would diminish the background magnetic field

strength in the oldest and most mixed portion of the backflow, namely the plumes.

A prediction of this model is, therefore, that virtually all twin radio galaxies (FR-II)

should exhibit plume structures if observed at a low enough frequency.

These simulations present a more complete model of twin extragalactic jets than

those performed previously. Shortcomings of the work include the low resolution of

the simluations and the minimal investigation of the full parameter space. Ideally,

simulations that resolve the jet diameter with a minimum 40 zones should be run. The

currently available resources did not permit such simulations for this work. Exploring

the effect of larger asymmetries between the two jets can and should be attempted.

Lower values of η representing more a physically realistic problem, and a density

gradient in the quiescent atmosphere would also broaden the results.
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