
Data Mining and Exploration of the

Nuclear Science References

by Andrew Valencik

A Thesis Submitted to Saint Mary’s University, Halifax,

Nova Scotia in Partial Fulfillment of the Requirements for

the Degree of Master in Applied Science.

December 2015, Halifax, Nova Scotia

Copyright Andrew Valencik

Approved: Dr. Roby Austin
Supervisor

Approved: Dr. Adam Sarty
Examiner

Approved: Dr. Paul Muir
Examiner

Approved: Dr. Pawan Lingras
Examiner

Approved: Dr. Svetlana Barkanova
External Examiner

December 11th, 2015

Abstract

Data Mining and Exploration of the Nuclear Science References

by Andrew Valencik

The Nuclear Science References (NSR) is a carefully curated

bibliographic dataset focused on nuclear science literature. A domain-

specific search engine and supporting tools have been developed to

aid and encourage the exploration of the NSR. User queries are

analyzed to form a series of filters to retrieve relevant NSR entries

from a database. The resulting information is presented in multiple

views including lists, bar charts, and network graphs. The network

graph representations offer unique insights on collaborations centered

around a given parameter such as a nuclide or group of authors.

The capability of clustering algorithms to expose trends within the

dataset is demonstrated by clustering authors based on publication

traits. A vector space model based on the metadata provided in

the NSR is used to recommend semantically similar NSR entries.

The completed work serves as both an example and a framework for

future analysis of the NSR.

December 11th, 2015

Acknowledgments

There is no one more deserving of thanks than my very dedicated supervisor, Dr.

Roby Austin (Saint Mary’s University - Dept. of Astronomy and Physics). I have

had the great advantage of her endless support throughout my undergraduate

degree and my masters. I am not sure if it was my curiosity or hers that was

so contagious, but her indulgence has resulted in so much encouragement and

a wonderful picture of how science should work. Thank you Roby, for your

considerable and consistent efforts in correcting, suggesting, motivating, and

inspiring.

I would also like to thank my committee members, Dr. Adam J. Sarty (Saint

Mary’s University - Dept. of Astronomy and Physics), Dr. Paul Muir (Saint

Mary’s University - Dept. of Mathematics and Computing Science), Dr. Pawan

Lingras (Saint Mary’s University - Dept. of Mathematics and Computing

Science), and my external examiner Dr. Svetlana Barkanova (Acadia University

- Dept. of Physics). Their support over the past 3 years has been critical to

completing this work.

My partner in crime and life, Alicia Beazley, has provided so much support when

I needed it most. Thank you for your understanding, reassurance, and reminders

that I actually need to eat and sleep.

I appreciate so much my family’s support. I am very happy I have made them

proud.

Many thanks to the Mathematics and Computing Science department which

has provided a very valuable collection of minds that were a constant source

of suggestions and support. Finally, I would like to acknowledge that I cannot

thank everyone who has helped of the last 3 years because there are so many of

you, and for that I am very grateful.

Contents

1 Introduction 8

1.1 Thesis Organization . 9

1.2 The Nuclear Science References Website 10

1.3 NSR Explorer - Web Application 13

2 The Data and Database 20

2.1 NSR Data . 20

2.1.1 Keyword Abstracts . 22

2.2 Data Preparation . 23

2.3 Data Representation . 26

2.4 The Database . 28

2.4.1 MongoDB . 28

2.4.2 Indexing the Data . 30

2.4.3 MongoDB Aggregation Framework 30

2.4.4 Future Work - The Database 31

2.5 Conclusion . 32

3 Data Summarization 33

3.1 Data Composition and Queries 33

3.2 Author Contributions . 36

3.3 Visualizations . 39

1

4 Network Analysis and Visualization 43

4.1 Data Graphs . 43

4.2 Nuclide Graphs . 51

4.3 Implementation . 52

4.4 Exporting Graph Data . 52

5 Text Mining 53

5.1 Vector Space Model . 54

5.1.1 Similar Papers . 56

5.2 Author Name Analysis . 57

5.2.1 Levenshtein Distance . 59

5.2.2 Transformations . 59

5.2.3 Collaboration Groups . 61

5.3 The Application . 62

5.4 Future Work - Text Mining . 63

6 Data Mining 64

6.1 Association Mining . 64

6.2 Cluster Analysis . 68

6.2.1 K-means Clustering . 69

6.2.2 Initial Author Clustering 71

6.2.3 Secondary Clustering . 79

6.2.4 The Application . 84

6.3 Future Work - Data Mining . 84

2

7 Conclusions 86

8 Appendix 87

8.1 parseNSRtoJSON.pl . 92

8.2 massageJSONtoSchema.pl . 94

8.3 flattenJSONforMongo.pl . 97

8.4 prepare-data.py . 98

8.5 update-database.py . 104

8.6 calc-author-name-dist.py . 106

8.7 calc-author-name-transform-pairs.py 107

8.8 calc-cosine-sims.py . 108

8.9 parse-arules-output.py . 111

8.10 nsr_app.py . 112

8.11 main.js . 118

8.12 force-graph.js . 119

Bibliography 122

3

List of Figures

1 The main interface for the NNDC’s NSR website. Captured June

28th 2015 . 11

2 The list view for “R.A.E.Austin” 14

3 The list view of a query taking advantage of combined filters . . 15

4 The chart view for “R.A.E.Austin” 16

5 The graph view for “R.A.E.Austin” 17

6 The graph-labels view for “R.A.E.Austin” 18

7 The similar papers view for “R.A.E.Austin” 19

8 NSR entries remaining after author removal 38

9 A histogram of all NSR entries published from 1896 to 2014 . . . 40

10 A histogram showing the contribution types over all years 41

11 A pie chart showing the types of NSR entries over all years . . . 42

12 A single component of the 1940 author graph. 44

13 Network graph of the first 50 years of NSR data 48

14 Network Graph of 1989 produced in Gephi with the Yifan Hu ML

layout algorithm. 49

15 Network Graph of 1989 produced in Gephi with the Atlas 2 layout

algorithm. 50

16 Network graph of authors publishing on Lithium-11 51

4

17 Step by step illustration of K-means algorithm. (a) The initial

input data. (b) Three seed points are chosen as the starting

‘centroids’ and the data points are assigned to the cluster with

the closest seed point. (c) (d) The centroids of the new clusters

are calculated, and data labels updated; (e) the iteration stops

when the clusters converge. 70

18 Number of entries from an author related to the number of years

the author has published. 72

19 Number of coauthors associated with an author given the number

of years the author has published. 73

20 Number of coauthors associated with an author given the number

of entries the author has published. 74

21 Davies-Bouldin index for number of clusters 75

22 G1 index for number of clusters 76

23 Initial clustering on authors with K-means 78

24 Davies-Bouldin index for secondary clustering 81

25 G1 index for secondary clustering 82

26 Secondary K-means clustering with 6 centers 83

27 Number of entries contributed by an author related to the number

of years the author has published. 87

28 Number of coauthors associated with an author related to the

number of years the author has published. 88

29 Number of coauthors associated with an author related to the

number of entries the author has published. 89

30 Complete 1940 author graph. 90

5

List of Code Snippets

1 An example NSR entry showing the raw NSR EXCHANGE data

format. 21

2 An example NSR entry showing the final data representation as a

JSON object. Note that newlines are ignored in JSON and only

present for readability. Also note that the order of keys and values

in an object is not garunteed to be preserved, as can be seen from

the selectors objects. 27

3 Python code to get all NSR entries from 1970 to 1979. 29

4 The aggregation query to get amount of types in the NSR. 34

5 Aggregation query to get the types of an author’s publications. . 34

6 Python code to get the NSR entries in Figure 12. 43

7 JSON documents for the NSR entries in Figure 12. 46

8 Identifiers which became duplicates after transformation 1. . . . 60

9 Identifiers which became duplicates after transformations 1 and 2. 60

10 Identifiers which became duplicates after transformations 1, 2,

and 3. 60

11 Levenshtein distances > 1 on collaborations. 62

12 The mongoshell code to determine the results shown in Table 6 . 91

6

List of Tables

1 The nine legal record identifiers from the Nuclear Science Refer-

ences Coding Manual [5]. 21

2 The amounts of each type of NSR entry in the whole data set. . 33

3 Different types of NSR entries for author A.J.Sarty. 34

4 Different types of NSR entries in 1989. 35

5 The top 10 most prolific authors in the NSR database. 35

6 NSR entries affected by removal of authors with a publication

count less than the cutoff. 37

7 Types without any authors. 37

8 Term vectors for d1 and d2. 55

9 Frequent itemset rules for authors of entries. 66

10 Frequent itemset rules for selectors in NSR entries. 67

11 Frequent itemset rules for selectors in entries. 68

12 Centroid data points for 5 cluster K-Means on initial data 77

13 Centroid data points for 6 cluster K-Means on initial data 77

14 Centroid data points for 6 cluster K-Means on initial data 80

7

1 Introduction

Information retrieval has been repeatedly improved by large search engines like

Google, Yahoo, DuckDuckGo, and more. Vast quantities of information are

now easily retrieved on an extensive array of subjects. Scientific literature has

received special attention through projects like Google Scholar or Microsoft

Academic Search. These projects are generalized to accommodate all sciences.

Information retrieval and data exploration can be improved by customizing an

application to a specific domain.

The United States National Nuclear Data Center (NNDC) prepares an evaluated

database of nuclear science literature that poses a rich opportunity for knowledge

discovery directed at scientific work and study. The academic field of nuclear

science is over one hundred years old, starting with the discovery of radiation

[1]. This discovery represents the first of many entries in the Nuclear Science

References database, collected, cataloged, distributed, and evaluated by the

National Nuclear Data Center [2]. The Nuclear Science References, or NSR, has

over 210,000 entries documenting the body of nuclear science literature, which

provides the opportunity for knowledge discovery on the literature’s metadata.

The metadata that the NSR provides is contributed and maintained by neutral

third party experts from the NNDC. This fact separates the information in the

NSR from metadata available through services such as ResearchGate.

This work is a cross disciplinary effort, combining semantic information of nuclear

physics literature and data mining techniques to build a custom application for

data exploration and information retrieval in nuclear science. The practice of

knowledge discovery and data mining on the NSR dataset can reveal trends

in the collective scientific study of nuclear structure, processes, and detection.

These data are presented through a web application that extends the existing

facilities of the Nuclear Science References web retrieval system [3]. The ultimate

8

https://scholar.google.ca
http://academic.research.microsoft.com
http://academic.research.microsoft.com
http://www.nndc.bnl.gov
http://researchgate.net/

goal of this work is to enable further analysis on the body of nuclear science

literature.

This is a thesis that applies science from one domain to science from another

domain. To facilitate understanding by all readers, no matter their expertise,

background information is placed in the thesis close to where it is used. Thus,

this thesis has no “theory” chapter, as essential knowledge is provided in the

chapters that require it.

The primary contribution of this thesis is the construction of tools and a frame-

work for future analysis into the valuable NSR dataset. Assertions about the

interpretation of results from these tools have been avoided. The goal of this

work was not to study physics or physicists, but instead to apply expertise

in nuclear science and data analytics to enable diverse researchers, including

network analysts and social scientists to explore the NSR dataset. The resulting

work is flexible enough, by design, to be easily adapted to the needs of anyone

investigating the NSR.

1.1 Thesis Organization

The existing NSR website and interface are outlined in this introduction chapter.

Additionally, the web application created as a result of this work is discussed.

The transformation of the provided raw data is discussed in the Data Preparation

and Data Representation sections. The data are stored in a database as discussed

in The Database.

Chapter 3 is the first exploration of the NSR data and the database created with

our data representation. We discuss the types of queries that can be made on the

data, show some examples, and discuss the results. The Author Contributions

section analyzes how the authors of works catalogued in the NSR contribute to

9

the NSR collection as a whole. Visualizations for the queries discussed in this

chapter are shown.

Chapter 4 introduces the concept and tools for analyzing the NSR data as a

network graph. A brief overview of graph theory concepts and terminology is

given. We discuss different queries that can be used to produce graphs of the

NSR data in the Data Graphs and Nuclide Graphs sections. The Libraries used

are discussed as well as an exportation feature.

Chapter 5 details the usage of tools and techniques from text mining. A paper

recommender system is built in the Similar Papers section by using a modification

of cosine similarity. The second component of this chapter analyzes author names

to build a system of finding authors who may have multiple identifications in

the NSR.

Chapter 6 discusses two common data mining techniques and their applications

with regard to the NSR data. Association mining is performed on nuclides in

papers, author names in papers, and author names in selectors. In the Cluster

Analysis section, K-means is used to cluster authors.

Finally, we review the contributions and discuss future works in the Conclusions

chapter.

1.2 The Nuclear Science References Website

Please note, the data that these interfaces interact with and return as results

are fully discussed in the Data and Database section.

The NNDC maintains the NSR website which serves a web interface to the

Nuclear Science References database. The functionality and architecture of the

NSR database and web site is discussed by Pritychenko in [3]. Four search

interfaces are offered: quick search, text search, indexed search, and keynumber

search. The quick search interface is shown in Figure 1.

10

http://www.nndc.bnl.gov/nsr/

Figure 1: The main interface for the NNDC’s NSR website. Captured June 28th
2015

11

The quick search functionality is the most commonly used interface [3]. It enables

searching by author name, nuclide, or reaction. Two types of filters are available

to limit the results: a year range, and reference type which can return only

experimental or theory entries. Each of the search fields show examples of the

type of search as well. For example the author field shows a search for an author

using their first initials and their last name, or only their last name.

The text search interface enables text searching in the title, keywords, or both

fields. The search is not case sensitive and requires a search string of at least three

characters in length. Phrases can be used by enclosing them in quotes. The user

can specify a publication year range, or choose a date to filter when the entries

were added to the database. Additionally the user can enable ‘primary only’

or ‘require measured quantity’ flags. The results can be sorted in ascending or

descending order and presented in HTML, BibTex, Text, Keynum, or Exchange

formats. The quick search results do not offer these output customizations.

The interface for indexed searching is similar to the Text Search. The most

important difference is the functionality offered by the browse buttons for the

search parameters. The user can select a parameter of the following types:

Author, FirstAuthor, Nuclide, Target, Parent, Daughter, Subject, Measured,

Deduced, Calculated, Reaction, Incident, Outgoing, Journal, Topic, Z(range).

For each of the types available the browser button will redirect to another page

that either details the possible values or provides another search through the

possible values. For example, Author and First Author direct to a simple search

interface that allows some partial matches against the list of known authors.

Search queries are remembered and presented in the ‘Combine View’ tab. Users

can combine the results of recent queries with boolean logic. Analysis is offered

on the search queries which displays how many nuclides, authors, journals, and

publication years the query involved.

12

1.3 NSR Explorer - Web Application

As a contribution to this thesis, we have developed a web application, NSR

Explorer, to increase accessibility to exploration of the Nuclear Science References

data. This includes the authors documented, the entries recorded and keyworded,

their links, and all available metadata for the nearly 120 years of records. The

application makes use of a web interface to aid in increasing accessibility. All

that is required to use the application is a modern web browser. Interactive

visualizations are used to encourage exploration of the data. Additionally, the

new database structure that is developed in this work enables searches that were

previously cumbersome or impossible.

The web application presents a single search interface as shown in Figure 2. This

interface supports a variety of filters to retrieve NSR entries from the database.

For example, if the user inputs a string that matches an author name, the

application retrieves all NSR entries for that author. An example list view for

input “R.A.E.Austin” is shown in Figure 2.

If the user inputs a year or year range such as “1989” or “1970-1979” the

entries that were published in those years are retrieved. Selector values (further

discussed in Keyword Abstracts) such as “11Li” can also be used as a filter.

Finally, these filters can be combined to form advanced queries retrieving NSR

entries on certain authors working on particular nuclides in a given range as

shown in Figure 3.

The web application provides 5 basic views of retrieved NSR entries. The “List”

view shows basic information such as the publication year, title, author list, and

selector values. The “Charts” view shows a bar chart depicted the amount and

type of NSR entry per year as shown in Figure 4. The “Graph” view shows a

network graph with nodes coloured by author cluster membership as shown in

Figure 5 (further discussion on author clusters in Cluster Analysis). The “Graph

13

(labels)” view presents the same information as the “Graph” view but with text

labels on the nodes as shown in 6. Analysis of the network graphs is further

discussed in Network Analysis and Visualization.

The “Similar Papers” reuses the “List” view but instead displays semantically

similar papers for the searched author. An example for author “R.A.E.Austin”

is shown in Figure 7. The method by which NSR entries are determined to be

similar is discussed in the Similar Papers section.

Figure 2: The list view for “R.A.E.Austin”

14

Figure 3: The list view of a query taking advantage of combined filters

15

Figure 4: The chart view for “R.A.E.Austin”

16

Figure 5: The graph view for “R.A.E.Austin”

17

Figure 6: The graph-labels view for “R.A.E.Austin”

18

Figure 7: The similar papers view for “R.A.E.Austin”

19

2 The Data and Database

The United States National Nuclear Data Center (NNDC) has composed the

Nuclear Science References (NSR) database. A full database dump of the NSR

was acquired on January 29th 2014 [4]. For simplicity, the data acquired from

the NNDC on that date will be referred to as if it were the complete NSR

database. All efforts have been taken to ensure the research procedures can

easily be extended and repeated on new NSR data.

The work discussed in this chapter is motivated by the need to easily retrieve in-

formation from the NSR data and manipulate it to facilitate answering questions.

We first discuss the NSR data as provided by the NNDC [4]. Special attention

is given to the keyword abstracts as the metadata they provided is what sets

the NSR data apart from other bibliographic databases. Then the method for

converting the provided raw data into our JSON representation is discussed.

The MongoDB database software is introduced and its aggregation framework

is discussed. The mechanics of transform and importing the data are not fully

described in this text. Instead, the conversion and importing procedures have

all been scripted and made available as included source code in the Appendix.

2.1 NSR Data

The NSR has 9 possible types of fields which are shown in Table 1. Each entry

can only have one of each field type except for <KEYWORDS> and <SELECTRS>

which exist as a pair and an entry can have multiple pairs of them. An example

of the raw data for a single paper can be seen in Snippet 1.

20

<KEYNO >1988AB01 &
<HISTORY >A19880309 M19880315 &
<CODEN >JOUR PRVCA 37 401 &
<REFRENCE>Phys.Rev. C37, 401 (1988) &
<AUTHORS >A.Abzouzi, M.S.Antony &
<TITLE >Calculation of Energy Levels of {+232}Th,{+232}{+-}{+238}U for K(|p) =&
0{++} Ground State Bands &

<KEYWORDS>NUCLEAR STRUCTURE {+232}Th,{+232},{+234},{+236},{+238}U; calculated le&
vels,band features. Semi-empirical formalism. &
<SELECTRS>N:232TH;A. N:232U;A. N:234U;A. N:236U;A. N:238U;A. C:OTHER;A. &
<DOI >10.1103/PhysRevC.37.401 &

Snippet 1: An example NSR entry showing the raw NSR EXCHANGE data

format.

Table 1: The nine legal record identifiers from the Nuclear Science

References Coding Manual [5].

Identifiers Description

<KEYNO > Reference keynumber

<HISTORY > Administrative record

<CODEN > Standard form reference

<REFRENCE> Free text reference

<AUTHORS > Author names

<TITLE > Reference title

<KEYWORDS> Keyword abstract

<SELECTRS> Indexing parameter list

<DOI > Digital object identifier

The <KEYNO > field is a unique key number assigned to each NSR entry. The

date on which a particular entry was added to the database or last modified

is encoded in the <HISTORY > field. The <CODEN > and <REFRENCE> fields

contain information about the journal or other type of resource the document

21

came from. The <AUTHORS > field is a comma-separated list of author names.

The author list is one of the key relational components of the data, establishing

links between NSR entries and other authors. The <TITLE > field is a free text

field representing the title of the reference with a custom set of abbreviations

for special characters like Greek letters. These abbreviations are detailed in the

NSR coding manual [5]. In this work, the abbreviations have been translated

to LATEX. The <DOI > field contains the digital object identifier code that

uniquely links to the source document’s metadata. While not strictly necessary,

the DOI often has a URL associated with it that links to the source document

on the website of the publishing journal [6]. The two fields, <KEYWORDS> and

<SELECTRS> have the most structure and require special attention which is given

in Keyword Abstracts.

2.1.1 Keyword Abstracts

The <KEYWORDS> field , or keyword abstract, is written by the maintainers of

the NSR database, and then used to generate the <SELECTRS> field [5]. Each

NSR entry is read and then a keyword abstract is manually created to reflect

the physical systems that were studied and measured in the work.

“What distinguishes NSR from more general bibliographic databases

is the level of detail provided in the keyword abstracts.” [5]

Keyword abstracts each have one of the following major topics: NUCLEAR

REACTIONS, RADIOACTIVITY, NUCLEAR STRUCTURE, NUCLEAR MOMENTS, ATOMIC

PHYSICS, ATOMIC MASSES, and COMPILATION. To accommodate work that spans

multiple topics, NSR entries can have multiple keyword abstracts. Following

these major topics are one or more indexed sentences. These sentences de-

scribe the elements of the physical system studied, and any measurements that

were made. For example, the <KEYWORDS> field in Snippet 1 encodes that the

22

referenced work calculated energy (implied) levels and band features using a

semi-empirical formalism for 232Th, 232U, 234U, 236U, and 238U.

It is this structure that provides the most semantic information about the NSR

entry. Thanks to the careful work of the NSR maintainers, the <KEYWORDS> and

resulting <SELECTRS> fields reveal the NSR entry’s content in a machine-readable

manner. Without this information any data mining project using the content of

the NSR entries would require raw text access to the either the full document or

the abstract. Getting full text access to thousands of papers is often significantly

challenged by copyright laws.

The selectors are computer generated from the keyword abstracts. The schema

used in this work, as discussed in Data Representation, has <SELECTRS> parsed

into a 3 dimensional array with type, value, and subkey variables. The following

quote from the NSR Coding Manual [5] describes the valid types:

N, T, P, G, R, S, M, D, C, X, A, or Z, which stand for nuclide, target,

parent, daughter, reaction, subject, measured, deduced, calculated,

other subject, mass range, and charge range, respectively. [5]

The type of data for value changes based on the value of the type. For types

N, T, P, and G, the value is a nuclide written in the form AX with A equal to

the mass number, and X equal to the chemical symbol. The value for A may

have any number of digits. X may be one, two, or three letters. The subkey

variable is used to link together multiple selectors of the same keyword sentence.

2.2 Data Preparation

The NSR data are maintained in a custom EXCHANGE format [5]. This format

is flat text that is not suitable for direct analysis. The data needs to be parsed

into data structures for analysis and use. The approach least likely to introduce

23

errors is to transform the data into a common format for which parsers already

exist.

JavaScript Object Notation, or JSON, was chosen as the data format for this work.

While other data formats could have sufficed (perhaps YAML, for example),

certain common data formats like comma-separated values (csv) would have

been more difficult. JSON met the following requirements: support for arrays,

openly available, well-supported, with an established user community, and it was

familiar to the author. The requirement for array support is discussed further in

the Data Representation section.

Each NSR entry will be represented as a JSON object.1 JSON objects are

composed of keys and values. A key is a unique string that maps to a value. A

value can be a string, a number, an array, or another object. Similarly, arrays

can contain strings, numbers, objects or additional arrays. The arrays in JSON

may be considered as ordered lists by some as they can contain elements of

mixed types. However, the arrays in the NSR data do not contain mixed types.

Snippet 2 shows an example of a JSON object and the final representation of an

NSR entry.

Transforming the NSR data to a collection of JSON objects is possible with

a series of search and replace commands using regular expressions. The

commands are recorded in the Perl2 script parseNSRtoJSON.pl available at

github.com/valencik/mastersAPSC. The result of the scripts is a file with a

valid JSON object for each NSR entry. The scripts can be used to reproduce the

transformation data as new NSR data becomes available.

The data representation is the result of careful consideration of the types of

queries to be made on the data. The data schema uses data types that best

reflect how the data will be used. This is important as the data schema will
1These objects are referred to as documents once stored in the database. See The Database.
2Perl is used here as it remains one of the best RegEx implementations, and allowed for

scripts that read as a simple ordered list of transformations to apply.

24

http://json.org
http://yaml.org
https://github.com/valencik/mastersAPSC

determine the types of queries we can make on the database. For example, with

data spanning 120 years, it is helpful to filter the data based on a numeric year

value. As such the year value in the data schema is an integer. This allows the

construction simple queries to get NSR entries from a specific year or from a

year range. Queries and example code are discussed in The Database.

The list of authors for a NSR entry is a more complicated data type as it involves

multiple elements. It is best represented as an array of strings, with each unique

author being a separate string element in the array. The representation of the

author list as an array instead of a free text field is beneficial as the author

list is now a data structure. With this structure comes information and ease

of computing different properties of that data. The length of the array tells

us how many authors collaborated on a given NSR entry. And since arrays

are ordered, we can easily determine the first author3 of an entry. While it is

possible to extract the same information from a free text field, parsing our data

into data structures creates structures that are compatible with many tools, such

as MongoDB. Users of the database can now sort entries by their number of

authors, or count the number of times someone was first author. Additionally,

almost every aggregation query4 made in our work relied on using array specific

operations on the author array at some stage.

It is possible to store the NSR data in a relational model. In a relational

database the authors would have their own tables, separate from papers, as they

are separate entities. This inefficient choice would entail a table and data schema

created for the papers and then a separate table and schema for the authors, and

similarly for keywords, selectors, and history. It is more efficient to convert the

original data into a data schema that uses arrays. This is the primary motivator

for not using a standard relational database.
3The significance, if any, of being first author changes amongst journals. A clever data

scientist will want to consider the <REFRENCE> information along with any first author analysis.
4See the MongoDB Aggregation Framework section for more details.

25

2.3 Data Representation

An example of the final data representation we use is shown in Snippet 2. It is a

JSON object for the NSR entry with keynumber 1988AB01. The _id value is a

string used as the unique identifier in the MongoDB collection (as discussed in

The Database), its value is the same as the <KEYNO > of the original NSR entry.

The year value is an integer and represents the year the resource was published.

The history value is an array that contains encoded information representing

dates when the original NSR document was added and/or modified. The code

value is a string copy of the CODEN value in the NSR data. The type value is a

string that describes what publication type (journal, thesis, conference paper,

etc) the resource is. The reference value is a string copy of REFRENCE from

the NSR data. The authors value is an array of string elements representing

the authors who published that resource. The title value is a string, formatted

for LATEX, that represents the title of the resource. The keywords value is an

array of strings that represent the KEYWORD sentences as described in the

NSR manual. The selectors value is an array of objects that contain the type,

value, and subkey information generated by the keyword entry by the NSR. The

DOI value is a string of the Digital Object Identifier for the published resource.

Finally, the simPapers value is an array that contains objects, where each object

refers to another NSR entry that is above a minimum similarity threshold. The

objects in simPapers are determined via calculation which is discussed in Similar

Papers.

26

{
"_id": "1988AB01",
"year": 1988,
"history": ["A19880309", "M19880315"],
"code": "JOUR PRVCA 37 401",
"type": "JOUR",
"reference": "Phys.Rev. C37, 401 (1988)",
"authors": ["A.Abzouzi", "M.S.Antony"],
"title": "Calculation of Energy Levels of {+232}Th,{+232}{+-}{+238}U for K(\\pi

) = 0{++} Ground State Bands",↪→

"keywords": ["NUCLEAR STRUCTURE {+232}Th,{+232},{+234},{+236},{+238}U;
calculated levels,band features. Semi-empirical formalism."],↪→

"selectors": [
{ "type": "N", "value": "232TH", "subkey": "A" },
{ "value": "232U", "subkey": "A", "type": "N" },
{ "type": "N", "value": "234U", "subkey": "A" },
{ "subkey": "A", "type": "N", "value": "236U" },
{ "type": "N", "value": "238U", "subkey": "A" },
{ "type": "C", "value": "OTHER", "subkey": "A" }

],
"DOI": "10.1103\/PhysRevC.37.401",
"simPapers": [

{ "score": 0.90890002250671, "paper": "1992BAZJ" },
{ "score": 0.89768290519714, "paper": "1994CH14" },
{ "score": 0.88365876674652, "paper": "1979FAZX" },
{ "score": 0.81536161899567, "paper": "1983DU10" },
{ "score": 0.8083301782608, "paper": "1979CH02" },
{ "score": 0.7871305346489, "paper": "1984PE01" },
{ "score": 0.76397824287415, "paper": "1960DU10" },
{ "score": 0.76397824287415, "paper": "1981SE07" },
{ "score": 0.76397824287415, "paper": "1995KU31" },
{ "score": 0.76397824287415, "paper": "1999BU03" },
{ "score": 0.76397824287415, "paper": "2011NA24" },
{ "score": 0.76335608959198, "paper": "1985ZH08" },
{ "score": 0.74211376905441, "paper": "1975IVZM" },
{ "score": 0.73295497894287, "paper": "1981MA35" },
{ "score": 0.73295497894287, "paper": "1996ZH29" },
{ "score": 0.72842478752136, "paper": "1979ES06" },
{ "score": 0.72127419710159, "paper": "1982MI12" },
{ "score": 0.72127419710159, "paper": "1983MI19" },
{ "score": 0.70403093099594, "paper": "1973IM02" }

]
}

Snippet 2: An example NSR entry showing the final data representation as a

JSON object. Note that newlines are ignored in JSON and only present for

readability. Also note that the order of keys and values in an object is not

garunteed to be preserved, as can be seen from the selectors objects.

27

2.4 The Database

Database systems are an important tool in information retrieval. Large datasets

should be organized in databases to provide useful abstractions for users. E.

F. Codd discusses this in his 1970 paper [7], as such the idea is not new nor

uncommon. In the Data Preparation and Data Representation sections we

discussed the transformation of the provided data into our own representation.

The users of our application, NSR Explorer, should not be concerned with the

internal representation of data.5 The resulting data representation is imported

and stored in a database to enable the NSR Explorer web application to query

the data. This section will detail our choice in database software, how queries

are made, and briefly introduce some performance considerations.

2.4.1 MongoDB

MongoDB is an open source NoSQL document store database system. It was

chosen because it is open source, easy to use, well supported, and the author

is familiar with it. Additionally it has nice features such as JSON support, an

aggregation framework (see MongoDB Aggregation Framework), and is easy to

set up.

Other NoSQL databases like CouchDB support JSON and may have been ac-

ceptable as well. MongoDB and CouchDB are both comparatively new database

systems. Postgres also supports JSON and is a mature database system. Despite

the prevalence of MySQL, it was not chosen because it is a relational database

and would thus not support the arrays in the data schema as outlined in Data

Preparation.

In a relational database system such as MySQL, each NSR entry would have to
5The work in [7] goes further to suggest that even the developers of the NSR Explorer

application should not be concerned about the internal data representation. This should be
abstracted by the relational model of data discussed in that work.

28

https://www.mongodb.org

be split up, with different pieces of information populating different database

tables. Authors would be a type of entity in their own authors table, that each

NSR entry in an NSR table would link to. This type of relationship would be

necessary for keywords and selectors as well.

As reported in the section Data Preparation, a JSON object was constructed for

each entry in the NSR data. We create a database in MongoDB titled masters.

This database will hold multiple collections. MongoDB collections store multiple

documents. Each JSON object is a document in MongoDB terminology. To

populate the MongoDB database, these JSON structures were flattened into a

single file, and imported into a MongoDB collection using the mongoimport tool.

After importing was completed, there were 212835 documents in the MongoDB

collection, one for each entry in the NSR database.

The pymongo module [8] can be used to query our database using the Python

programming language. Example python code to retrieve all NSR entries from

the 1970s is given in Snippet 3. The first line imports the pymongo module

which enables communication with a MongoDB database. We then establish a

connection with the local database titled masters and save that connection in

the db object. Finally we use the NSR collection of the database and pass the

find method our query expressed as a JSON object. Note the use of $gte and

$lt which correspond to the mathematical operators greater than or equal to

and less than.

import pymongo
db = pymongo.MongoClient()['masters']
db.NSR.find({"year": {"$gte": 1970, "$lt": 1980}})

Snippet 3: Python code to get all NSR entries from 1970 to 1979.

29

http://docs.mongodb.org/manual/reference/program/mongoimport/

2.4.2 Indexing the Data

The performance of the database can be optimized by indexing on important or

frequently referenced fields such as “authors” and “year”. Indexing speeds up

search queries in a manner similar to sorting a series of data elements. MongoDB

allows for many different types of indexes. We create single field indexes on

the _id, year, authors, selectors.type, selectors.value, and type fields6.

This enables fast lookups for documents7 according to the indexed fields. For

example it would be quick to find all the documents with type ‘Journal’ and

year ‘1983’. Text indexes can also be created to enable fast search of words in

the titles or keyword fields. This has not been done as the titles and keyword

fields are not used in our analysis. We instead make use of the list of selectors

to infer the topic of a given NSR entry.

There are additional concerns in hosting a database server and web applica-

tion. Typically a database is hosted on a dedicated server, separate from

the web application, and perhaps not publicly facing. These issues, and addi-

tional performance configurations will not be further addressed in this work.

They are however addressed in the code repository for this work available at:

github.com/valencik/mastersAPSC.

2.4.3 MongoDB Aggregation Framework

The MongoDB aggregation framework is powerful and enables data manipulation

similar to that obtain in SQL8 via the GROUP BY operation [9]. There are a

handful of simple aggregation operations that can be piped together to build
6We use dot notation to denote that selectors.type refers to the type field of the selectors

object.
7Recall that MongoDB is a ‘document’ store database, and each NSR entry has been

imported as a ‘document’ in the MongoDB collection.
8SQL or Structured Query Language is a common programming language for interacting

with data.

30

https://github.com/valencik/mastersAPSC

complex queries. All aggregation operations take in a list of data documents,

manipulate them in some way, and then output the results to the next operation.

The match operation acts as a filter, returning only the documents that meet the

specified criteria. The project operation manipulates each individual document

renaming, omitting, or changing each field according to the input parameters.

The unwind operation acts on an array field of the input documents. It creates

a new document for each element in the array, with all fields duplicated except

the array field which is equal to the element. The group operation can combine

similar documents and can perform calculations based on that combination. A

common usage is to sum a value, perhaps price, of all the input documents.

There are some additional, more straightforward, operations such as sort, limit,

skip, and redact. The final results from an aggregation query can be saved to a

collection using the out operation, or can be returned to the calling application

through the many MongoDB APIs.

MongoDB is currently a popular database and there exist tutorials and example

applications. The MongoDB documentation is well written and provides a good

overview of the aggregation framework [10]. All MongoDB interactions in this

work use the python driver, pymongo [8].

2.4.4 Future Work - The Database

An extension to this work is to support additional database systems. The

prevalence of MySQL is motivation to support it. However, in continuing with

the desire to use a NoSQL database system, the work could be extended to

support CouchDB with relative ease.

31

2.5 Conclusion

We have described the NSR data as provided by the NNDC [4]. Scripts have

been prepared to transform the NSR EXCHANGE format into a list of JSON

objects, one for each NSR entry. The JSON objects have been imported into

a MongoDB database called masters in a collection called NSR. Basic queries

as well as aggregation queries have been introduced. The system architecture

for querying the data is complete as described. The sections following this will

describe different analyses and results from querying the data.

32

3 Data Summarization

This chapter introduces the queries that can be run on the database constructed

in The Data and Database section. Examples are shown that filter the data

using constraints on different data types such as year ranges or author names.

Bar charts and pie charts are introduced for visualizing the data.

Through data summarization we can reveal first-order characteristics of the data

set. Our goal was to make available a broad perspective of its structure and

composition.

3.1 Data Composition and Queries

We can construct queries to reveal the composition of the NSR data. For example,

there are 212835 entries9 that span from 1896 to 2014. We can answer questions

such as “What percentage of all entries are journal articles?” As Table 2 shows,

the majority of the document types in the NSR are journal articles. The next

most popular are reports and conference proceedings. There are fewer books

and preprints than there are unknown and unlabeled entries. The python code

to produce these results is shown in Snippet 4.

Table 2: The amounts of each type of NSR entry in the whole data

set.

Type Amount Percentage

THESIS 1934 0.908%

PREPRINT 779 0.366%

BOOK 107 0.050%

PC 1661 0.780%

9Recall that the data set used in this work is a snapshot of the entire NSR data as
downloaded in January 2014.

33

Type Amount Percentage

CONF 16836 7.910%

REPT 24554 11.53%

JOUR 165477 77.74%

UNKNOWN 1487 0.698%

import pymongo
db = pymongo.MongoClient()['masters']
db.NSR.aggregate([{"$group": {"_id": "$type", "count": {"$sum": 1}}}])

Snippet 4: The aggregation query to get amount of types in the NSR.

The summarization analysis can conveniently be applied to subsets of the data.

The data can be filtered to only involve a particular author. This provides

answers to questions such as “what percentage of A.J.Sarty’s contributions were

journal articles?” Table 3 shows A.J.Sarty has primarily worked on journal

articles, with one preprint article. The code for this query, which is shown in

Snippet 5, simply adds a $match operation to Snippet 4.

Table 3: Different types of NSR entries for author A.J.Sarty.

Type Amount Percentage

PREPRINT 1 5%

JOUR 21 95%

import pymongo
db = pymongo.MongoClient()['masters']
db.NSR.aggregate([{"$match": {"authors": "A.J.Sarty"}},

{"$group": {"_id": "$type", "count": {"$sum": 1}}}])

Snippet 5: Aggregation query to get the types of an author’s publications.

34

The data can also be partitioned or sliced in time, supporting questions such

as “what percentage of 1989 entries are journal articles?” As we can see from

Table 4 72.06% of the NSR entries in 1989 are journal articles. This percentage

is different than that of the whole work (as shown in Table 2), but not by a

significant amount. It does highlight a particular point of interest, i.e. that the

data are not uniform.

Table 4: Different types of NSR entries in 1989.

Type Amount Percentage

THESIS 16 0.398%

PREPRINT 21 0.523%

BOOK 7 0.174%

PC 14 0.348%

CONF 331 8.248%

REPT 732 18.24%

JOUR 2892 72.06%

For a particular selection of NSR data, it is useful to know the rankings for

important data fields. For example, when a user searches an author on the

application they are presented with a ranked list of their most frequent coauthors,

keywords, and nuclides. This type of analysis can of course be applied to the

whole dataset as well. Table 5 shows the authors with the highest count of NSR

entries in the entire database.

Table 5: The top 10 most prolific authors in the NSR database.

Author Number of Publications

R.V.F.Janssens 992

M.P.Carpenter 787

35

Author Number of Publications

A.Faessler 736

J.H.Hamilton 703

I.Ahmad 694

B.A.Brown 690

I.Y.Lee 671

W.Greiner 637

A.O.Macchiavelli 624

T.L.Khoo 614

3.2 Author Contributions

There is a wide range in publication numbers among the roughly 100, 000 authors

in the NSR. Table 5 shows the upper bound in publication numbers, and 41254

authors share the lower bound of one publication. These are authors with

different publication traits (a topic that is further explored in Cluster Analysis).

We want to enable discovery about the structure of author contributions. Are

the majority of NSR entries contributed by the many authors who publish once

or the few with hundreds of publications?

The database can be used to answer a similar question: How many of the NSR

entries are affected if every author who contributed to fewer than a given number

of entries is removed? First, every paper is taken and duplicated for every single

author in that paper’s author list. There is now a database object for each author

in each paper. Each time an author appears their publication count increments.

Next, each database object that has an author with a publication count below

the cutoff is removed. Finally, the unique remaining NSR entries are the ones

that have authors with more than the given publication count. Table 6 shows

the number of NSR entries that remain after all the authors with a specified

36

publication count are removed10. Note that the starting number is 190654 not

212835 as quite a few NSR entries do not have an author field. Table 7 shows a

breakdown of the NSR entry types that do not have authors. A large percentage

of those entries without author fields are reports and conference proceedings11.

Table 6: NSR entries affected by removal of authors with a publica-

tion count less than the cutoff.

Entry Number Cutoff Entries Remaining Difference

1 190654

2 187741 2913

3 185404 2337

4 183410 1994

5 181315 2095

6 179606 1709

7 177945 1661

8 176390 1555

9 174702 1688

10 173117 1585

11 171509 1608

Table 7: Types without any authors.

Type Amount

UNKNOWN 33

PC 48

CONF 4614
10The code to produce the results in Table 6 is shown in Appendix Snippet 12
11Of the 5564 journal articles without an author field, 5489 were written between 1970 and

1980.

37

Type Amount

PREPRINT 78

THESIS 968

REPT 10876

JOUR 5564

Total 22181

The relationship between publication amount cutoff and NSR entries remaining

is consistent. The same data in Table 6 is plotted in Figure 8.

Figure 8: NSR entries remaining after author removal

The values presented in Table 6 suggest that the bulk of the entries in the NSR

are associated with authors who publish more than just a few times. Taking the

last value in the table, the authors who publish 11 or more times in the NSR

make up about 90% of all the NSR entries with an author field. There are only

18006 authors who have published 11 or more times. Therefore, about 18% of

authors make up about 90% of the contributions in the NSR database.

38

3.3 Visualizations

Visualizations provide a summary of data at a glance. Consider Figure 9, which

quickly demonstrates that the majority of NSR entries were published in the

last 50 years.

The fact that there were comparatively low publication numbers in the first 50

years was a useful property of the dataset. It permitted testing data analysis

code on small portions of the data (years pre 1950), before applying the code to

the full dataset. This was helpful in developing the network analysis code and

visualizations, as post 1950 the networks are too large to process quickly.

There are two primary visual methods for displaying summary information in

this application: histograms and pie charts. The histograms, as seen in Figure 9,

can show how a slice of the database evolves over time. They are also useful to

see amounts in categorical data. Figure 10 shows the amount of each different

document type in the NSR database.

The pie charts demonstrate the relative sizes of portions of the data. The

document type amounts are shown in Figure 11 as a pie chart. Figures 10 and

11 are visual representations of the data in Table 2.

39

NSR Data Visuals
Created by Andrew

 Valencik.

This is a very early exploration of the Nuclear Science References database.

Visualizations built w
ith nvd3 (http://nvd3.org/) w

hich is pow
ered by d3.js (http://d3js.org/).

Papers Published Yearly
The NSR database has papers from

 1896 to 2014.

1899
1910

1920
1930

1940
1950

1960
1970

1980
1990

2000
2010

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

70000

7595

NSR Docum
ent Types

The NSR database is m
ade up of journal articles, reports, conference papers, thesis, private com

m
unications, preprints, and books.

Prolific Authors
Each segm

ent of the below
 pie charts represents an author's contributions in a given period.

Q
ueries passed over M

ongoView
er-Server (https://github.com

/G
lavin001/M

ongoView
er) a RESTful API for nvd3 and M

ongodb.

JO
U
R

R
E
P
T

C
O
N
F

JO
U
R

R
E
P
T

C
O
N
F

TH
E
S
IS

P
C

P
R
E
P
R
IN
T

B
O
O
K

JO
U
R

R
E
P
T

C
O
N
F

TH
E
S
IS

P
C

P
R
E
P
R
IN
T

B
O
O
K

20,000.0

40,000.0

60,000.0

80,000.0

100,000.0

120,000.0

140,000.0

160,000.0

0.0

165,468.0

1950 - 1960
1960 - 1970

1970 - 1980

N
SR

 Entries Published Yearly

Figure 9: A histogram of all NSR entries published from 1896 to 2014

40

Figure 10: A histogram showing the contribution types over all years

41

Figure 11: A pie chart showing the types of NSR entries over all years

42

4 Network Analysis and Visualization

This chapter explores the analysis of the NSR data as a network graph. The

list of authors of a paper is used to build a network graph of authors and their

copublication relationships. In this work, the word ‘graph’ will always refer to

the mathematical representation of a set of objects and their links.

Enabling exploration of the NSR data has been a core motivation for this work.

Transforming the NSR data into a network graph has made new questions

and analyses accessible. Additionally, network graphs lend themselves well to

interesting visualizations which has been another motivator.

This thesis does not consider the analysis of specific network graphs but rather

enables the NSR Explorer users to easily do so.

4.1 Data Graphs

The first graphs constructed in this work had each node represent an author, and

each edge or link represent a coauthorship. An example can be seen in Figure

12.

Figure 12 is a single component of the complete 1940 author graph (shown in

Appendix Figure 30). It has 7 nodes, each of which is a different author, and

12 edges, which represent a coauthorship between the two nodes. M.Ikawa has

published with everyone in the graph. We can use this knowledge in a database

query to get the entries that make up this graph (see Snippet 6).

import pymongo
db = pymongo.MongoClient()['masters']
db.NSR.find({"year": 1940, "authors": "M.Ikawa"})

Snippet 6: Python code to get the NSR entries in Figure 12.

The results of the database query (shown in Snippet 7) reveal there were 3 entries

43

K.Kimura

M.Ikawa

S.Kojima

T.Yasaki

R.Sagane

Y.Nishina

G.Miyamoto

Created by Andrew Valencik.
Visualizations built with nvd3 (http://nvd3.org/) which is powered by d3.js (http://d3js.org/).

Figure 12: A single component of the 1940 author graph.

44

in 1940 that contributed to this graph. One paper titled “Fission Products

of Uranium by Fast Neutrons” has authors Y.Nishina, T.Yasaki, K.Kimura,

and M.Ikawa. The other entries, titled “Neutron Induced Radioactivity in

Columbium” and “Artificial Radioactivity Induced in Zr and Mo” respectively

are both authored by R.Sagane, S.Kojima, G.Miyamoto, and M.Ikawa. This

demonstrates a limitation in the current graph visualization. G.Miyamoto and

M.Ikawa have published together twice (in 1940) but their edge looks no different

than the edge between Y.Nishina and T.Yasski. Most graph libraries allow for

customization and embedding of data. In future work, the graphing routines

could be modified to represent the number of copublications along the graph

edges. This could be achieved with a text label, an added thickness to the edge

line, or colour.

45

{
"_id": "1940NI03",
"year": 1940,
"history": [

"A19800701",
"M19860317"

],
"code": "JOUR PHRVA 58 660",
"type": "JOUR",
"reference": "Phys.Rev. 58, 660 (1940)",
"authors": [

"Y.Nishina",
"T.Yasaki",
"K.Kimura",
"M.Ikawa"

],
"title": "Fission Products of Uranium by Fast Neutrons",
"DOI": "10.1103\/PhysRev.58.660"

}
{

"_id": "1940SA06",
"year": 1940,
"history": [

"A19800701",
"M20010110"

],
"code": "JOUR PPMJA 22 174",
"type": "JOUR",
"reference": "Proc.Phys.-Math.Soc.Japan 22, 174 (1940)",
"authors": [

"R.Sagane",
"S.Kojima",
"G.Miyamoto",
"M.Ikawa"

],
"title": "Neutron Induced Radioactivity in Columbium"

}
{

"_id": "1940SA08",
"year": 1940,
"history": [

"A19800701",
"M19980402"

],
"code": "JOUR PHRVA 57 1179",
"type": "JOUR",
"reference": "Phys.Rev. 57, 1179 (1940)",
"authors": [

"R.Sagane",
"S.Kojima",
"G.Miyamoto",
"M.Ikawa"

],
"title": "Artificial Radioactivity Induced in Zr and Mo",
"DOI": "10.1103\/PhysRev.57.1179"

}

Snippet 7: JSON documents for the NSR entries in Figure 12.

46

We can also visualize graphs with multiple components. Disconnected compo-

nents, like those visible in Figure 13, are groups of authors who have published

together and not with any author in another component. There is only ever one

node per author identifier.

Most graphs produced from yearly data queries have multiple components. A

graph produced by papers including a single author will have a single component

by definition. As the number of NSR entries forming the graph gets larger, the

main connected component gets much larger than the rest of the components.

Researchers at Facebook have done some interesting work confirming this on

the largest social network studied [11]. They calculated that 99.91% of the 721

million users considered were in a single connected component.12

The visualization of large graphs is computationally intensive and produces

complex images. All the graphs produced in the web application use a modified

version of Mike Bostock’s Force Directed Graph.

Above a certain size, these images are of questionable usefulness. The resulting

shape or ‘layout’ of a graph is dependent on the graph layout algorithm used.

Figures 14 and 15 use the same input data and two different layout algorithms

(Yifan Hu ML and Atlas 2 respectively). The position of the nodes and edges

in these figures are products of the layout algorithm used. The two figures

are visually different enough to suggest that their positional information is

meaningless.

The colour of the nodes is determined by Gephi’s modularity function [12]. The

modularity of a graph is a measure of structure. The graph is partitioned into

communities where there are dense intra-community connections and sparse

inter-community connections.
12The work in [11] also serves as an accessible overview of the types of analysis one might

want to do on a network graph.

47

http://bl.ocks.org/mbostock/4062045

Created by Andrew Valencik. Figure 13: Network graph of the first 50 years of NSR data

48

Figure 14: Network Graph of 1989 produced in Gephi with the Yifan Hu ML
layout algorithm.

49

Figure 15: Network Graph of 1989 produced in Gephi with the Atlas 2 layout
algorithm.

50

4.2 Nuclide Graphs

Almost any parameter can be used as a filter to produce an author network

graph. The selector values present an interesting opportunity in this case. We

can filter the NSR data to only include entries that involved a particular nuclide.

Figure 16 shows an author node graph for all the NSR entries that have LI11 as

a selector value. The figure shows that there is one large connected component

of the graph, and many smaller components. The largest connected component,

alone, can be viewed by adding topnetwork:1 to the input query.
4/10/15, 11:49 AMMain Page

Page 1 of 1http://localhost:5000/

Created by Andrew Valencik.
Visualizations built with nvd3 (http://nvd3.org/) which is powered by d3.js (http://d3js.org/).

Figure 16: Network graph of authors publishing on Lithium-11

51

4.3 Implementation

The Python library Networkx was used to create the graph data structures,

which can then be sent to our visualization code, or be exported for analysis

with other tools. Networkx has a collection of algorithms and functions used to

analyze and manipulate the graphs.

The Networkx library is primarily used for its graph data structure reading

and writing methods. To be explicit, Networkx is used to create graphs from

data returned by aggregation queries, and then convert the graph data into a

format suitable for exporting to disk or to the NSR Explorer web application for

visualization. The identification of connected components is the only algorithm

provided by Networkx that is used in this work. For example, Figure 14 and

Figure 15 use only the largest connected graph of all the NSR entries in the year

1989.

4.4 Exporting Graph Data

Treating the NSR database as graph data fulfils one of the primary goals of this

thesis by opening up avenues for future work. All of the graphs we have created

are constituted of authors as nodes with edges determined by their coauthors.

These graphs are social networks of collaborating scientists. The study of them

may be of interest to social scientists and network scientists.

Exporting the graph data offers efficiencies to future work. The Networkx library

has support for writing the graph data structures to multiple file types, such

as gexf, GML, GraphML and others. These files can then be imported into other

analysis applications like Gephi. Example code for exporting the 1989 data to

gexf format is available at github.com/valencik/mastersAPSC.

52

https://networkx.github.io
http://networkx.readthedocs.org/en/latest/reference/readwrite.html
https://github.com/valencik/mastersAPSC

5 Text Mining

Text mining is an area of analysis that focuses on extracting useful information

from unstructured plain text data. The data to analyze is often natural language

text written by humans. Examples of such data include user reviews of a product

or service, customer feedback comments, emails, forum posts, or even academic

journal articles. Example goals of analyzing such works might be summarization,

determining sentiment, finding topics, or finding similar items.

In this section, two distinct goals of this work were achieved using tools commonly

employed in text mining. Recommending similar papers for a given selection of

papers was executed using cosine simularity in a vector space model. Determining

authors who may have multiple identifiers in the data was accomplished using

string edit distances. Reducing instances of multiple identification of individuals

in the NSR dataset facilitates later work by network analysts and social scientists.

A common task to both of these goals is comparing text. In order to compare

two items we need a metric by which we can measure them. The comparison of

individual strings as needed in the Author Name Analysis was done with string

edit distances as discussed in that section. The comparison of documents or

whole NSR entries requires another technique that operates on words instead

of individual characters. The vector space model was ultimately chosen as

mentioned above and fully discussed in the Vector Space Model section. However,

a topic modelling method is discussed in the Future Work - Text Mining section

of this chapter.

Introduction to Information Retrieval [13], or the Standford IR Book, serves as

an excellent and freely available resource introducing concepts and techniques in

information retrieval.

53

5.1 Vector Space Model

A substantial portion of the functionality of the NSR Explorer as an information

retrieval system is provided by simple queries to the database. However, in

developing the similar paper recommendation system, we make use of the vector

space model,13 an early information retrieval model [16] [13]. The vector space

model is simple and powerful. Documents are represented as vectors where each

dimension is a separate term. There are multiple ways of calculating the value

for each dimension such as tf-idf or bag of words [17] [18]. The work done in the

Similar Papers section uses 0 or 1 to represent whether a particular selector was

present in the NSR entry.

As an example, let document one, d1, be “The quick brown fox jumps over the

lazy dog” and document two, d2, be “The brown dog jumped over the brown

fox”. We will model these two documents using a vector space model. A term

vector for each document is created using a dimension for each separate term

occuring in the collection of documents. The final vectorization of these two

documents is shown in Table 8.

Often in information retrieval systems the most frequent words, like “the” or

“a” are omitted. Consider the 5th and 4th of d1 and d2, “jumps” and “jumped”.

These words are clearly similar, but are strictly different terms and would thus

be represented with different dimensions after vectorization. Word stemming

addresses this issue by trimming the suffix of words such that we only use the

root word. The first stemming algorithm was published in 1968 [19] [20]. This

algorithm was later improved by Porter in 1980 and has since become widely

used thanks to the author making his continued improvements freely available

[21] [22].
13The correct earliest citation for the vector space model used today is not trivially found.

Frequently [14] is cited because of its title “A vector space model for automatic indexing”,
however, as Dubin outlines in [15], this paper does not describe the vector space model as an
information retrieval model.

54

Equations 1 and 2 are the term vectors for each document. The cosine similarity is

the dot product of the two documents divided by the product of their magnitudes

3. [23]

Table 8: Term vectors for d1 and d2.

vector quick brown fox jump over lazy dog

d1 1 1 1 1 1 1 1

d2 0 2 1 1 1 0 1

d1 = 〈1, 1, 1, 1, 1, 1, 1〉 (1)

d2 = 〈0, 2, 1, 1, 1, 0, 1〉 (2)

cos(d1, d1) = d1 · d2
|d1| |d2| (3)

d1 · d2 = (1)(0) + (1)(2) + (1)(1) + (1)(1) + (1)(1) + (1)(0) + (1)(1) = 6.0 (4)

|d1| =
(
(1)2 + (1)2 + (1)2 + (1)2 + (1)2 + (1)2 + (1)2) 1

2 = 2.645751311 (5)

|d2| =
(
(0)2 + (2)2 + (1)2 + (1)2 + (1)2 + (0)2 + (1)2) 1

2 = 2.828427125 (6)

55

cos(d1, d2) = d1 · d2
|d1| |d2| = 6.0

|2.645751311| |2.828427125| = 0.8017837257 (7)

As Equation 7 shows, the two documents are quite similar, and thus have a high

cosine similarity. When d1 = d2 the similarity is 1.0. This technique is a simple

way of numericizing text for further mathematical manipulation and treatment.

5.1.1 Similar Papers

A script was prepared to perform cosine similarity analysis on the NSR selectors.

The code is available at github.com/valencik/mastersAPSC. For each NSR entry,

a vector was formed from the entry’s selectors. These vectors were used to

form a corpus that calculated the frequency of each term in the vectors. Any

selector with a value equal to OTHER was filtered out. These selectors are similar

to stop words in text mining natural language data. Stop words14, and these

selectors, are the most commonly occuring, they contribute little meaning, and

are therefore removed.

The vectors are formed by turning the selectors into strings. We dropped the

subkey value for this analysis as we were not concerned with the ordering of the

selectors. The fact that cosine similarity does not take into account the ordering

of words is a limitation that negatively impacts its performance on real world

text documents [24]. This does not affect our analysis as we were not analyzing

natural language but constructing our “words” out of a list of items that act like

keywords.

The python package gensim was used to handle the vector creation and similarity

analysis. While gensim offers many features and different forms of similarity
14Common stop words in english are “the”, “and”, “it”, “is”, and “a”.

56

https://github.com/valencik/mastersAPSC

measures15, we made use of the cosine similarity routines.

The result was a list of paper _ids that were similar to the input paper in regards

to their selector vectors. These results were written to the database in a new

field simPapers. The simPapers field is actually an array of objects, similar to

the selectors field. Each object contains two items, the _id of the paper, and

the computed score from gensim. The usage of these similarity scores is shown

in the Application Section.

5.2 Author Name Analysis

In this section, we describe the analysis which identifies and makes steps towards

mitigating the issue of having multiple variants of author names in the database.

We will use the word “author” (formatted plainly and without quotes) to refer

to an individual human being who contributed to a work that is documented in

the NSR database. The term “identifier” (also formatted plainly and without

quotes) will refer to the string of text that occurs in the database. The actual

identifier strings will always appear in a fixed width typeface. For example, an

author may be Andrew Valencik, and he may have more than one identifier such

as A.Valencik, A. Valencik, and or A.C.Valencik.

This analysis locates multiple identifiers in the database that may correspond to

single authors. This may be caused by differences in style from one publication

to the next, changes in formatting, or simple typos. Authors themselves may

opt in some publications to be identified by more than one initial and only one

in others.

Pritychenko reports 96200 unique authors in his 2014 paper [25]. However, at

the end of the data preparation stage in this work, the database reported 100147

unique identifiers. An accurate total author count is not particularly important
15Documentation for gensim’s methods of calculating similarities is available at: radimre-

hurek.com/gensim/similarities/docsim.html

57

http://radimrehurek.com/gensim/similarities/docsim.html
http://radimrehurek.com/gensim/similarities/docsim.html

for this work creating a database and exploration application. However, correctly

identifying and including all authors when doing network analysis is important.

There are 41254 unique identifiers that appear only once in the NSR database.

Some portion of those are author name variances that only occur once. Knowing

that portion is important to understanding something about the database; in the

Initial Author Clustering section we investigated how the database changed as we

removed identifiers (referred to as “authors” in that section) below a publication

threshold. That analysis depended on correctly identifying the number of authors

who had published a given number of times. Variances in the list of authors

render such an analysis in inaccurate.

After the data preparation and importing step, the database contains identifiers

A.Herzan and A. Herzan. These two identifiers have 12 and 1 publication(s)

respectively. Although there are two identifiers in the database, it is highly

improbable that the presence of a space in one indicates a second author. In the

Further Analysis subsection we will discuss methods to determine if the multiple

identifiers represent the same author. In this subsection, the analysis described

finds identifiers that are similar to one another.

Searching for similar identifiers could happen either online (immediately after the

user-submits a query) or offline (before the app is presented to users). Because

our database is static and manually updated with new entries periodically, the

offline approach makes sense. An additional benefit to the offline approach is that

it can be easily moderated and tweaked with user submitted suggestions. The

general problem is referred to as approximate string matching. If the supplied

query was A.Herzan, then A. Herzan would be considered an approximate

string match. This type of match could be found without much sophistication.

However, we want to also consider more difficult matches like J.Svenne and

J.P.Svenne. Approximate string matching libraries often use the Levenshtein

distance metric to compare strings [26].

58

5.2.1 Levenshtein Distance

String edit distance measures such as the Levenshtein Distance [27] offer an

easy first approach to analyzing the author names. The Levenshtein distance is

one type of string metric to evaluate the difference between two sequences of

characters. A distance of 1 is attributed to every single character edit necessary

to transform one of the input strings into the other. Single character edits

include an insertion of a character, a deletion, or a substitution.

The Python library Jellyfish makes it quite easy to use a few different distance

metrics. Nevertheless, calculating any measure for all pairs of authors is a

large task. A quick estimate of 100, 000 authors means 5, 000, 000, 000 unique

(unordered) pairs to calculate. Thankfully this is not entirely prohibitive to

calculate on modest hardware. It does, however, produce a large amount of data,

making filtering absolutely necessary.

A small Python script, using Jellyfish, was prepared to calculate the Levenshtein

Distance for each author name pair. Only pairs with a distance less than 4

were written to file. This resulted in over 20 million pairs. It was observed that

pairs with a Levenshtein distances of 2 or greater were unlikely to be duplicate

representations of the same author. Furthermore, 20 million pairs is too many

for additional analysis.

5.2.2 Transformations

Three simple string transformations were constructed to locate similar identifiers.

The first stage transformed all the characters in the name string to lower case.

1936 author names became non-unique when reduced to only lower case letters.

59

http://jellyfish.readthedocs.org/en/latest/

C.Le Brun C.Le brun C.le Brun
P.Fan P.fan
A.De Waard A.de Waard
R.Del Moral R.del Moral
J.M.Van Den Cruyce J.M.Van den Cruyce J.M.van den Cruyce

Snippet 8: Identifiers which became duplicates after transformation 1.

The second stage took the lower case identifiers and removed all spaces. There

were 2619 identifiers that had duplicates when reduced to lower case letters with

no spaces.

B.N.Subba Rao B.N.Subbarao
R.M.Del Vecchio R.M.DelVecchio R.M.Delvecchio R.M.del Vecchio
J.Adam, Jr. J.Adam,Jr.
M.Le Vine M.LeVine M.Levine
C.Ciofi Degli Atti C.Ciofi Degliatti C.Ciofi degli Atti
C.Le Brun C.Le brun C.LeBrun C.Lebrun C.le Brun

Snippet 9: Identifiers which became duplicates after transformations 1 and 2.

Finally, we removed all punctuation as well, which resulted in 6561 identifiers that

were not unique. A python script, calc-author-name-transform-pairs.py

was prepared to perform these transformations and write the identifiers which

form duplicates to a file.

B.V.T.Rao B.V.Trao
A.M.Laird A.M<.Laird
H.-R.Kissener H.R.Kissener
W.-X.Huang W.-x.Huang W.X.Huang
C.Le Brun C.Le Brun, C.Le brun C.LeBrun C.Lebrun C.le Brun

Snippet 10: Identifiers which became duplicates after transformations 1, 2, and

3.

As the progression of transformations shows, an identifier that becomes non-

unique in transformation 1 will continue to appear in the output results of

transformations 2 and 3. Some authors have been represented up to 6 different

60

ways. Surnames composed of multiple words separated by spaces are likely

to be multiply represented. The output of transformation 3 provided a list of

reasonable size to apply additional analysis. There are 3063 groups of identifiers

identified as duplicates in the transformation 3 analysis (and 6561 identifiers in

total).

We have reduced, by two orders of magnitude, the number of identifiers that

should be subject to additional analysis. With the transformed list, it is worth

repeating analysis. Performing the Levenshtein distance analysis on the ‘nopunc’

list will locate identifiers where an initial has been omitted as an edit distance of

1. For example the edit distance of J.P.Svenne and J.Svenne is 2 before the

transformations and 1 afterwards.

Performing the Levenshtein distance analysis will still fall short of identifying

identifiers where the first name is fully spelled out. Adam Sarty and A.Sarty

are both valid identifiers for a single author. An application to locate multiple

identifiers of this type would require a significant modification to the existing

string metrics. There are many open source implementations of string distance

functions, so a modification is not out of the question. However, such modification

is outside the scope of this work.

5.2.3 Collaboration Groups

In addition to single authors who may or may not be multiply identified, there

are collaboration groups. There are 1359 identifiers that include “the” in their

name. Identifiers representing collaborations are often long with an acronym as

the informative part of their name. Table 11 shows that Levenshtein distances

of 2 or greater are likely to be different collaborations.

61

For the CMS Collaboration for the 8B Collaboration 4
For the CMS Collaboration for the A1 Collaboration 4
For the CMS Collaboration for the A4 Collaboration 4
For the CMS Collaboration for the AMS Collaboration 2
For the CMS Collaboration for the BES Collaboration 3
For the CMS Collaboration for the CBM Collaboration 3
For the CMS Collaboration for the CDF Collaboration 3
For the CMS Collaboration for the CE71 Collaboration 4
For the CMS Collaboration for the CERES Collaboration 4

Snippet 11: Levenshtein distances > 1 on collaborations.

5.3 The Application

The cosine similarity results are presented in the web application via the “Similar

Papers” view. The user of the application can search for an author and see

entries that are similar to the entries the author has coauthored.

A two-staged database query is then performed. We first get all of the similar

paper _ids from the simPapers array in each of the inputted author’s entries.

The total list of similar paper _ids can be filtered by the similarity score that is

also included in the simPapers array. At this stage we have a list of _ids that

are similar to one or more NSR entries the inputted author published. We fetch

the NSR entry for the full list of _ids and filter out any that were published by

the inputted author. The similarity ranking considers the selectors used, and

authors often publish multiple times using similar selectors, and as a result, the

recommended entries often include publications from the same author(s) as the

inputted paper.

The render object is then prepared to be sent to the html template to show the

user. The end user then sees a web page with the search author in prominent

text followed by a list of entries that have a cosine similarity to at least one of

their own entries greater than 0.65. An example for author “R.A.E.Austin” is

shown in Figure 7. The similar entries are sorted in descending order of their

62

score function value. The scoring function is the average of all the score fields

for that paper that were encountered in the aggregation.16

5.4 Future Work - Text Mining

Topic Modelling is a statistical model used to discover abstract topics in a

collection of text [28]. A commonly used topic modelling algorithm is Latent

Dirichlet Allocation (LDA) [29]. It models documents as having been created

by sampling a distribution of topics [30]. The topics are distributions of words.

This approach has proven effective on natural language text as well as on other

data sources [31]. The selectors present in NSR entries are not natural language

text but they could be used as input to LDA. This could find “topics” in the

NSR data where topics are made up of NSR selectors such as nuclear isotopes

and types of measurements. The Gensim package comes with topic modelling

modules and algorithms, such as LDA, that could be used in future work.

The product of the analysis in the section on Transformations is a list of

candidates which may represent cases of multiple identifiers for a single author. To

confirm multiply-identified single authors, that candidate list must be examined.

Since the list is comparatively small we propose computationally expensive

analyses may be performed to achieve that end. One method could use the

network graph information and compare neighbors in the network [32]. We could

find all the neighbours of two given nodes and see how many are common to

both. With this we should also consider what the chance of having common

neighbours is for any two random nodes. A first approximation would be to

consider the degree of the neighbours. Common neighbours with a low degree

are less likely to be common through random chance.

16Because we fetch the simPapers array for multiple entries when searching for an author’s
similar entries, we can see the same _id multiple times and with different scores each time.

63

6 Data Mining

The ultimate goal of the analysis in this section and the Text Mining section is

to create a flexible system that can recognize objects that are similar and not

the same. Support for different types of objects within the database has been

implemented. The work in the Similar Papers section enabled finding papers

that had similar nuclide selectors associated with them. In this section we use

association mining to produce lists of association rules that could be used in a

future recommendation system. Additionally this analysis enables finding similar

authors based on clustering attributes of their publication traits. An obvious

use case of this feature for nuclear scientists is to find similar authors to those

the user is currently inspecting or searching. Experts from other domains will

be able to use these developments in other use cases.

Implementing this feature requires a significant amount of offline data mining

and analysis. Once the analysis is done, the runtime of the application need only

do quick lookups in tables to find the desired results. With this in mind, the

high level summary of this analysis stage is to build data labels and relationships

and then enable the user interface to search and display the results.

6.1 Association Mining

Frequent pattern mining is an important part of data mining and knowledge

discovery [33]. It is also known as rule learning and is frequently used on market

basket analysis. A history of customer transactions at a supermarket is analyzed

to find groups of items that are frequently purchased together. For example,

when customers purchase item A, the frequently purchase item B in the same

transaction. The connection is between the items A and B and is independent

of customers.

Our analysis will make use of the Apriori algorithm implementation in the

64

arules[34] [35] package in R [36].

Association rules are similar to if-then constructs. A rule written {R (N,G),T

238U} => {N 239U} with support 0.00129 and confidence 0.9308 tells us that

the selectors R (N,G), T 238U, and N 239U appear together in 0.129% of the

data. The confidence is a measure of reliability in the rule. In the above example

93.08% of the time that R (N,G) and T 238U appear, N 239U also appears.

Formally the support is defined [33] in Equation 8, as is confidence in Equation

9. Lift is defined in Equation 10 as described in the arules package [34].

support = count (X ∪ Y)
n

(8)

confidence = count (X ∪ Y)
count (X) (9)

lift = P (X ∪ Y)
P (X)P (Y) (10)

The prepare-data.py program generates three transaction lists for analysis in

R. The R script Apriori-dedup.r takes an input file, output file, minimum

support, and minimum confidence as command line arguments. The arules

package provides facilities in helping prune duplicate rules, and rules that are

subsets of other rules. However, in analyses that produce many thousands of

rules, such as those using low minimum support thresholds, this pruning is

computationally expensive and thus not used. As a result, the final list of rules

on our extended runs contained many duplicates.

Our first analysis will use each NSR entry as a transaction, and the itemset will

be the list of authors for that NSR entry. The resulting rules will be made up of

authors who frequently publish together. Since Apriori finds frequent item sets,

this analysis will favour authors with many publications in the NSR (and thus

65

https://cran.r-project.org/web/packages/arules/index.html

appear frequently). If we specify a minimum support of 0.0008, Apriori yields

344 association rules involving 104 unique author identifiers. Table 9 shows a

sample of the resulting rules.

Table 9: Frequent itemset rules for authors of entries.

rules support confidence lift

{F.Scarlassara,L.Corradi} => {G.Montagnoli} 0.0008287 0.9813 1022.4

{A.M.Stefanini,L.Corradi} => {G.Montagnoli} 0.0008129 0.9687 1009.2

{A.M.Stefanini,F.Scarlassara} => {G.Montagnoli} 0.0008077 0.9625 1002.7

{A.M.Stefanini,F.Scarlassara} => {L.Corradi} 0.0008025 0.9562 974.9

{G.G.Adamian} => {N.V.Antonenko} 0.0008182 0.9397 942.9

{H.Iwasaki,S.Shimoura,S.Takeuchi} => {T.Minemura} 0.0008497 0.9257 928.9

{L.Corradi} => {G.Montagnoli} 0.0008549 0.8716 908.1

All of the 11 unique authors in Table 9 have published more than 165 times.

There are only 608 authors who have greater than 165 publications in the

database. In order to have rules involving more authors17 we need to lower

the minimum support. The minimum support to see a given author in a rule

is dependent on their publication count. If an author has published 65 times,

support less than 65/212835 is required to include any rule that involves them.

The author still needs to have a rule that satisfied the confidence constraint as

well.

On an extended run with a low support of 0.00029 the Apriori algorithm produces

2.2 million rules. With this many rules we can no longer prune duplicates in

R as the memory requirements are enormous. However we can perform some

simple analyses like counting unique authors. With a support value of 0.00029

the analysis of author lists from NSR entries produces 2211797 rules involving
17Recall we have on the order of 100,000 authors in the database.

66

859 unique author identifiers.

Applying apriori with each paper as a transaction and selectors as items should

produce lists of selectors that frequently occur together in NSR entries. This

tends to produce association rules that look like a list of isotopes involved in

nuclear reactions. The first four rules in Table 10 can be read off as nuclear

reactions. 290Lv undergoes alpha decay and produces the daughter nucleus 286Fl,

along with an alpha particle but this is not recorded in the NSR selectors. We see

that 290Lv and alpha decay are never mentioned without 286Fl. With a support

value of 0.00029 the analysis of selectors from their NSR entry lists produces

3479553 rules involving 1202 unique selectors.

Table 10: Frequent itemset rules for selectors in NSR entries.

rules support confidence lift

{P 290LV,S A-DECAY} => {G 286FL} 0.000298 1.0000 3346.7

{P 289FL,S A-DECAY} => {G 285CN} 0.000310 1.0000 3225.0

{P 29418,S A-DECAY} => {G 290LV} 0.000310 1.0000 3225.0

{P 286FL,S A-DECAY} => {G 282CN} 0.000310 1.0000 3225.0

{G 285CN} => {P 289FL} 0.000310 1.0000 3167.4

{P 289FL} => {G 285CN} 0.000310 0.9821 3167.4

{G 286FL} => {P 290LV} 0.000298 1.0000 3167.4

{G 285CN,S A-DECAY} => {P 289FL} 0.000310 1.0000 3167.4

{G 286FL,S A-DECAY} => {P 290LV} 0.000298 1.0000 3167.4

{P 290LV} => {G 286FL} 0.000298 0.9464 3167.4

Our final analysis with Apriori uses each selector as a transaction and the list

of authors who have published with that selector as the itemset. Some of these

rules may involve authors who have not published together. This information

would be useful, however the analysis to find such a rule has not been completed.

67

With a support value of 0.0042 the analysis of author lists for each selector

produces 3832412 rules involving 774 unique author identifiers.

If we want to find authors who have not published together but do publish on

similar keywords, this analysis is not optimal. A more efficient approach would

leverage the graph data in Nuclide Graphs. The selector rules found above could

be used to enlarge the search query for a graph. So instead of searching for

just 290LV we could enlarge the search by also including entries with 286FL.

Alternatively we could reduce the search results by including only entries with

both 290LV and 286FL.

Table 11: Frequent itemset rules for selectors in entries.

rules support confidence lift

{B.Kindler} => {B.Lommel} 0.008280 0.9733 110.0

{W.G.Lynch} => {M.B.Tsang} 0.008723 0.9236 100.7

{V.I.Chepigin} => {A.P.Kabachenko} 0.008846 0.9148 96.7

{E.Fioretto,L.Corradi} => {S.Szilner} 0.008043 0.9536 93.6

{A.Gadea,A.M.Stefanini,G.Montagnoli} => {S.Szilner} 0.008012 0.9487 93.1

{A.Gadea,F.Scarlassara,G.Montagnoli} => {S.Szilner} 0.008125 0.9437 92.6

{A.Gadea,G.Montagnoli,L.Corradi} => {S.Szilner} 0.008115 0.9425 92.5

{F.Scarlassara,L.Corradi,S.Szilner} => {G.Montagnoli} 0.008517 1.0000 92.4

{A.M.Stefanini,L.Corradi,S.Szilner} => {G.Montagnoli} 0.008403 1.0000 92.4

6.2 Cluster Analysis

Classification and clustering are related approaches to organizing data elements

into groups for further analysis. Classification is the process of deciding to

which group a particular datum should most optimally belong. Clustering is the

grouping of multiple data points such that those belonging to a group are more

68

similar in some manner than those outside of that group.

6.2.1 K-means Clustering

K-means clustering is a cluster analysis technique that can group data objects in

k clusters based on minimizing their distances with respect to cluster centroids

[37] [38] [39]. K-means is a partitional clustering algorithm.

Take a finite set of objects, X = x1, x2, ..., xn where each is a data object in

d dimensions. We can create k clusters C = c1, c2, ..., ck where k <= n. The

process starts by randomly choosing k points, x1, ..., xk to be the centroids of a

cluster. The process continues by iterating over each object x and assigning it

to a cluster c based on the minimization of some parameter; for now, Euclidean

distance. The new centroids are then computed and the process is repeated until

cluster stability is achieved. The goal is to minimize the total sum of squared

errors between the centroids and all objects (see Equation 11).

J(C) =
K∑

k=1

∑
xi∈ck

|xi − µk|2 (11)

Three parameters for K-means must be specified initially. The number of clusters,

initial centroid guesses, and the distance metric. The metric is the function

on a space that describes how two points differ from one another, i.e. distance.

Euclidean distance is typically used, leading to ball-shaped or sphere-shaped

clusters. [38]

The chosen number of clusters has a huge impact on the data partitions. Some

heuristics exist to aid in determining an optimal k. [40] In practice, K-means is

normally run multiple times with varying k values and the optimum is selected

by a domain expert.

However, there exist methods to measure the effectiveness of a clustering con-

69

JðckÞ ¼
X

xi2ck

jjxi $ lkjj
2:

The goal of K-means is to minimize the sum of the squared error
over all K clusters,

JðCÞ ¼
XK

k¼1

X

xi2ck

jjxi $ lkjj
2:

Minimizing this objective function is known to be an NP-hard prob-
lem (even for K = 2) (Drineas et al., 1999). Thus K-means, which is a
greedy algorithm, can only converge to a local minimum, even
though recent study has shown with a large probability K-means
could converge to the global optimum when clusters are well sep-
arated (Meila, 2006). K-means starts with an initial partition with
K clusters and assign patterns to clusters so as to reduce the squared
error. Since the squared error always decreases with an increase in
the number of clusters K (with J(C) = 0 when K = n), it can be mini-
mized only for a fixed number of clusters. The main steps of K-
means algorithm are as follows (Jain and Dubes, 1988):

1. Select an initial partition with K clusters; repeat steps 2 and 3
until cluster membership stabilizes.

2. Generate a new partition by assigning each pattern to its closest
cluster center.

3. Compute new cluster centers.

Fig. 4 shows an illustration of the K-means algorithm on a 2-
dimensional dataset with three clusters.

2.4. Parameters of K-means

The K-means algorithm requires three user-specified parame-
ters: number of clusters K, cluster initialization, and distance met-
ric. The most critical choice is K. While no perfect mathematical
criterion exists, a number of heuristics (see (Tibshirani et al.,

2001), and discussion therein) are available for choosing K. Typi-
cally, K-means is run independently for different values of K and
the partition that appears the most meaningful to the domain ex-
pert is selected. Different initializations can lead to different final
clustering because K-means only converges to local minima. One
way to overcome the local minima is to run the K-means algo-
rithm, for a given K, with multiple different initial partitions and
choose the partition with the smallest squared error.

K-means is typically used with the Euclidean metric for com-
puting the distance between points and cluster centers. As a result,
K-means finds spherical or ball-shaped clusters in data. K-means
with Mahalanobis distance metric has been used to detect hyper-
ellipsoidal clusters (Mao and Jain, 1996), but this comes at the ex-
pense of higher computational cost. A variant of K-means using the
Itakura–Saito distance has been used for vector quantization in
speech processing (Linde et al., 1980) and K-means with L1 dis-
tance was proposed in (Kashima et al., 2008). Banerjee et al.
(2004) exploits the family of Bregman distances for K-means.

2.5. Extensions of K-means

The basic K-means algorithm has been extended in many differ-
ent ways. Some of these extensions deal with additional heuristics
involving the minimum cluster size and merging and splitting clus-
ters. Two well-known variants of K-means in pattern recognition
literature are ISODATA Ball and Hall (1965) and FORGY Forgy
(1965). In K-means, each data point is assigned to a single cluster
(called hard assignment). Fuzzy c-means, proposed by Dunn
(1973) and later improved by Bezdek (1981), is an extension of
K-means where each data point can be a member of multiple clus-
ters with a membership value (soft assignment). A good overview of
fuzzy set based clustering is available in (Backer, 1978). Data
reduction by replacing group examples with their centroids before
clustering them was used to speed up K-means and fuzzy C-means
in (Eschrich et al., 2003). Some of the other significant modifica-

 (a) Input data (b) Seed point selection (c) Iteration 2

 (d) Iteration 3 (e) Final clustering

Fig. 4. Illustration of K-means algorithm. (a) Two-dimensional input data with three clusters; (b) three seed points selected as cluster centers and initial assignment of the
data points to clusters; (c) and (d) intermediate iterations updating cluster labels and their centers; (e) final clustering obtained by K-means algorithm at convergence.

654 A.K. Jain / Pattern Recognition Letters 31 (2010) 651–666

Figure 17: Step by step illustration of K-means algorithm. (a) The initial
input data. (b) Three seed points are chosen as the starting ‘centroids’ and the
data points are assigned to the cluster with the closest seed point. (c) (d) The
centroids of the new clusters are calculated, and data labels updated; (e) the
iteration stops when the clusters converge.

70

figuration. The Davies-Bouldin index considers the ratio of external separation

between clusters to the scatter within a cluster [41] [42]. Given two clustering

schemes of the same input data, the one with the lowest Davies-Bouldin index

is preferred. The G1, or Calinski-Harabasz criterion is a hueristic device to

help evaluate different clustering schemes on the same input data [43]. It works

best when used on standardized data in a Euclidean space [44]. In contrast to

the Davies-Bouldin index, a higher G1 index value suggests a better cluster-

ing scheme. Both of these evaluation methods are provided in the R package

clusterSim [45].

6.2.2 Initial Author Clustering

There is a considerable amount of multivariate data in the NSR database. In

order to gain insight from this data, only a section is initially considered. In

this section, the authors will be analyzed to identify groups or clusters based on

publication traits. Specifically, we considered three parameters: the total length

in years an author has published to date, their average number of coauthors

across all their NSR entries, and their total publication count.

To help evaluate this summarization of authors, three heat maps of this data are

presented in figures 18, 19, and 20. Figure 18 shows an expected trend: Authors

who publish over more years tend to have more publications overall. Each of

these figures shows that there are a large number of authors who have published

only a few times. Additionally, there are comparatively few authors who have

published many times. The heat map colouring is on a logarithmic scale, while

the axes are linear. Without the log colour scale, the plots would be washed

out by the incredibly many authors who have published only once. (Linearly

coloured heat maps are shown in the Appendix, figures 27, 28, and 29.)

The three heat maps show that the 3 dimensional data are not well segmented

and are instead continuous. This is a result of the input data being continuous

71

Figure 18: Number of entries from an author related to the number of years the
author has published.

72

Figure 19: Number of coauthors associated with an author given the number of
years the author has published.

73

Figure 20: Number of coauthors associated with an author given the number of
entries the author has published.

74

in nature. Clustering categorical data could lead to more discrete or separated

clusters. Nevertheless, the cluster results of this data could be of value to

researchers using these tools.

The Davies-Bouldin index and G1 index have been calculated for all K-means

clustering schemes from 2 centers to 16. The results are plotted in Figure 21

for Davies-Bouldin index and Figure 22 for the G1 index. The Davies-Bouldin

index suggests either 5 or 6 cluster centers is best for this data. The G1 index

results suggest that 5 cluster centers is best, with 6 being the next best.

Figure 21: Davies-Bouldin index for number of clusters

75

Figure 22: G1 index for number of clusters

76

The two cluster evaluation metrics suggest that 5 or 6 cluster centers is optimal.

Table 12 shows the data point values for the 5 different cluster centroids. Table

13 shows the centroid information for the 6 cluster scheme. Note that the data

has been standardized, so the values in the tables are in standard deviations.

Figure 23 shows the numCoauthors, numYears, and numEntries data coloured

according to their cluster membership in the 5 cluster scheme. This figure again

demonstrates that the data are continuous and that well separated clusters do

not exist in this domain. As a result, the clusters function as segmentations

along a continuous spectrum. As the number of clusters increases, the size of

the segmentations decreases.

Table 12: Centroid data points for 5 cluster K-Means on initial data

careerLength meanCoauthors numEntries size

-0.67901 1.68445 -0.03426 2342

0.91890 -0.44386 -0.12959 5510

0.87978 2.90728 4.92022 316

-0.70500 -0.34365 -0.40397 8262

1.31926 0.26803 1.63938 1572

Table 13: Centroid data points for 6 cluster K-Means on initial data

careerLength meanCoauthors numEntries size

-0.69065 0.91707 -0.21925 3131

1.20883 2.50212 5.70388 231

1.29734 0.31428 1.68485 1537

-0.67117 -0.48459 -0.41750 7213

0.96457 -0.44891 -0.11525 5301

77

careerLength meanCoauthors numEntries size

-0.64999 3.29831 0.68203 589

Figure 23: Initial clustering on authors with K-means

The first cluster in Table 12 represents authors who have had short careers but

published an average number of entries with above-average numbers of coauthors.

The second cluster of authors have had long careers and published an average

amount with an average number of coauthors. The authors in the third cluster

78

have published the most and frequently publish with many coauthors. The

fourth and largest cluster of authors are those with shorter careers and fewer

publications with fewer coauthors. Finally, the fifth cluster of authors have had

the longest careers, published many times, and overall, have published with an

average amount of coauthors.

6.2.3 Secondary Clustering

In this analysis, an author publishing 20 entries in 1995 and 5 entries in 1997

has a numYears value of 3. The previous section’s analysis was blind to how

prolific a given author may have been in shorter periods. Our goal is for the

the author who published 20 entries in 1995 to be measured differently than an

author who published once in each of 1995 and 1997.

Instead of a single number representing an author’s number of publications, a

parameter representing the distribution of publications over time is used. How

many entries did a given author publish in the beginning of their career? How

many entries did the author publish at the end of their career, or most recently?

We take three measurements for each author regarding their publication history:

the percentage of their total publications in the first, second, and final third of

their career to date.

In order to break up the number of entries over time like this, each author needs

to have multiple entries over multiple years. Recall there are 41254 authors

with only a single publication in the database. That is 41254 out of 100147,

roughly 40% of the total unique authors. Therefore we lose 40% of the authors

in the database if we require an author to have published over multiple years.

In order to have a non-zero number of publications in each third an author must

have a minimum of 3 publications in three different years. The requirement for

publishing 3 or more times in any years cuts out 55% of authors in the database.

79

Recall the analysis in Author Contributions suggested that a small portion of the

authors contribute a large portion of the NSR entries. This result means that

filtering out low-publication authors in additional analyses does not affect the

majority of the NSR entries. As a result the secondary clustering only considered

the authors who contribute 90% of the NSR entries with author fields. Explicitly,

we considered authors who published 11 or more times. This amounted to 18006

authors. The code to produce the input data for the secondary clustering is

available in the prepare-data.py script.

The G1 index for the secondary clustering is shown in Figure 25. It suggests a

clustering scheme of either 4 or 6 centers. The Davies-Bouldin index, shown in

Figure 24 suggests either 2, 5, 6. The clustering results for 6 centers are shown

in Figure 26.

Table 14: Centroid data points for 6 cluster K-Means on initial data

cLength mCoauthors nEntries nEntries1 nEntries2 nEntries3 size

1.16972 -0.27103 0.46882 -0.45377 0.71277 -0.11090 3299

1.08866 1.88560 4.07120 -0.78269 0.51341 0.41716 564

0.41893 -0.21279 -0.17738 -0.83277 -0.83916 1.62115 2993

-0.64822 -0.31975 -0.36245 -0.25189 0.63417 -0.26423 5227

-0.71602 1.98927 0.10059 -0.02918 0.25118 -0.18162 1651

-0.27094 -0.26837 -0.37100 1.35796 -0.90415 -0.71240 4268

The clustering results are tabulated in Table 14. In this table, cLength repre-

sents the career length and mCoauthors the mean of the number of coauthors.

nEntries nEntries1 nEntries2 nEntries3 represent the total number of NSR

entries, the amount in the first, second, and final third of an authors career

respectively. Finally size is the number of authors in a given cluster.

80

Figure 24: Davies-Bouldin index for secondary clustering

81

Figure 25: G1 index for secondary clustering

82

Figure 26: Secondary K-means clustering with 6 centers

83

The first cluster presented in Table 14 represents authors who have had longer

careers, published with fewer coauthors, and published a relatively normal

amount of NSR entries, mostly in the middle of their careers. The second cluster

of authors had similar length careers and published with more coauthors and

contributed many more entries in total. These are the most prolific of authors,

and represent a small group of people, with only 564 members. The authors in

the third cluster have high publication numbers in the last third of their careers.

Most other features of these authors are typical. The fourth and largest cluster

are those with few publications over few years mostly in the middle of their

careers. The fifth cluster of authors have the shortest careers, but publish with

the most coauthors on average. The sixth and second largest cluster is similar

to the fourth except these authors had strong early years in their career, as well.

Note that there is currently no accounting for whether a career has ended years

ago, or if the author is still actively publishing. Therefore, in this analysis, every

author’s career either ends naturally on some year, or artificially in 2014 when

the data stops.

6.2.4 The Application

The results of cluster analysis can be written to the database with the

update-database.py script. The clusters an author belongs to are used to

colour the nodes on network graphs. This is demonstrated in Figure 5.

6.3 Future Work - Data Mining

As the NSR database spans several decades, each data object presents time series

information. Finding similar authors separated in time could be interesting.

Additionally there is a dramatic change in the rate of publications over time.

The average number of coauthors in 1940 may be different from the average

84

number in later years. Weighting author publication traits in time could produce

better results.

The results from the association rule learning could be used to develop a classifi-

cation system. As authors input the keywords for their paper, the system could

try to match the user’s input with association rules. This would require relating

the association rules to the desired classification rules. Alternatively, the NSR

entries could be classified manually and then we could rerun Apriori to learn

rules that directly link to the classification label.

85

7 Conclusions

This work has enabled exploration and manipulation of the NSR dataset that

was inaccessible or impossible using the existing applications. The new tools

and web application provide interactive search and visualizations to aid data

exploration. Further research into the NSR is now more accessible by nonexperts,

or experts of other domains such as network analysis or social science.

The treatment of the data as a network is a new and flexible contribution. It

can be used to visualize an author’s collaborators, or to see the collaborations

that exist around a given topic. Accessing the data as a network can facilitate

further work in studying the NSR as a social network.

The data mining analysis revealed naming issues in the database, and methods

have been proposed for mitigating them. The use of text mining tools has

enabled the creation of a paper recommender system that recommends based on

semantic information of the given journal titles, theses, conference proceedings,

and other sources. Due to the high quality of the Nuclear Science References

database and in particular the selectors, this recommender system can function

without access to the whole text for each recommended source.

The metadata provided by the Nuclear Science References has enabled a custom

exploration and information retrieval system that extends the capabilities of the

existing system and other more general search engines.

86

8 Appendix

Figure 27: Number of entries contributed by an author related to the number of
years the author has published.

87

Figure 28: Number of coauthors associated with an author related to the number
of years the author has published.

88

Figure 29: Number of coauthors associated with an author related to the number
of entries the author has published.

89

E.Segre

R.W.Wood

F.Strassmann

R.N.Smith

K.Fajans

K.Kimura

L.A.DuBridge

J.M.Cork

J.E.Hill

E.C.Creutz

L.W.Alvarez

P.I.Dee

J.C.Butler

P.Kusch

C.S.Wu

R.D.Fowler

J.R.Risser

A.J.Ferguson

S.Millman

J.Marshall

T.Yasaki

L.A.Delsasso

N.F.Ramsey, Jr.

I.I.Rabi

J.Holt

R.A.Cooley

J.J.Livingood

J.Steigman

V.F.Weisskopf

E.A.Nahum
E.M.McMillan

Y.Nishina

E.T.Booth

R.D.O'Neal

S.Mrozowski

B.L.Moore

S.Kojima

R.B.Sutton

K.A.Petrjak

T.Schmidt
A.F.Voigt

W.H.Barkas

A.Langsdorf, Jr.

J.L.Lawson

P.H.Abelson

R.W.Dodson

J.R.Zacharias

H.Gotte

W.J.Henderson

O.Hahn

M.G.White

W.H.Sullivan

J.E.Strothers

A.V.Grosse

O.Minakawa

G.N.Glasoe

J.W.Kennedy

R.S.Krishnan

M.Ikawa

R.F.Bacher

R.Sutton

M.H.Hebb

L.M.Langer

K.Lark-Horowitz

D.H.Tomboulian

J.B.Hoag

W.Seelmann-Eggebert

G.H.Dieke

E.Nelson

J.M.B.Kellogg

H.Wittke

A.Hemmendinger

P.W.McDaniel

S.C.Curran

F.C.Thompson

J.O.Hancock

H.Reddemann

H.Walke

D.R.Hamilton

D.H.Ewing

J.G.FoxG.T.Seaborg

R.Thomas

A.C.G.Mitchell

A.C.Helmholz

L.D.P.King

D.C.Kalbfell

G.J.Neary

G.N.Flerov

M.Goldhaber

L.R.Walker

G.R.Ringo

R.Sagane
G.Miyamoto

H.Levi

Figure 30: Complete 1940 author graph.

90

1 for (i=0; i<=10; i++){
2 db.NSR.aggregate([
3 {$project: {_id: 1, authors: 1, year: 1}},
4 {$unwind: "$authors"},
5 {$group: {_id: "$authors", numEntries: {$sum: 1}, papers:

{$addToSet: "$_id"}}},↪→

6 {$match: {"numEntries": {$gte: i}}},
7 {$unwind: "$papers"},
8 {$group: {_id: "$papers", uniqueKey: {$sum: {$multiply: [1,

0]}}}},↪→

9 {$group: {_id: "$uniqueKey", papersRemaining: {$sum:1}}}
10], {allowDiskUse: true})
11 .forEach(function(myDoc) {
12 print("user: " + myDoc.papersRemaining); }
13) }

Snippet 12: The mongoshell code to determine the results shown in Table 6

91

The code used to prepare, manipulate, and transform the NSR dataset is included

in this appendix. The organization loosely follows the order one might follow

to recreate this work. Note that the most updated version of these programs

should be available at https://github.com/valencik/mastersAPSC.

8.1 parseNSRtoJSON.pl

1 #!/usr/bin/perl -pi
2

3 use strict;
4 use warnings;
5

6 # This helps with multiline regex
7 BEGIN {undef $/;}
8

9 #Fix erroneous verticle bars
10 s/\(\|\|\)/\\leftrightarrow/mg; # 2006VO15 and 2007EL04
11 s/\|\|V{-tb}\|\|/\\vert |V{-tb} \\vert/; # 2007AB22
12 s/\|\|g/\|g/mg; #2009RE20 2011KU10 2012KR07
13 #s/measured E\|g,I\|\|g\. Data/measured E|g,I|g. Data/; #2007MIZO
14 s/the \(\\{\+3\\}He,t\) Reaction/the ({+3}He,t) Reaction/;

#1984VAZR↪→

15 s/A\\\|'/\\AA/; #1996RA31
16

17 # Cleaning up the CODEN's
18 s/^<CODEN >(JOYR|JUOUR|JOur|PRVCA|Nature|J\{OUR) /<CODEN

>JOUR /mg;↪→

19 s/^<CODEN >Conf /<CODEN >CONF /mg;
20 s/^<CODEN >(REPR|REP>T|REPTT|Rept) /<CODEN >REPT /mg;
21 s/^<CODEN >Book /<CODEN >BOOK /mg;
22 s/^<CODEN >(THE{SIS|Thesis,) /<CODEN >THESIS /mg;
23

24 # Force any remaining problems to simply be type UNKNOWN
25 s/^<CODEN

>(?!JOUR)(?!REPT)(?!CONF)(?!THESIS)(?!PC)(?!PREPRINT)(?!BOOK)/<CODEN
>UNKNOWN /mg;

↪→

↪→

26

27 # Escape double quotes
28 s/"/\\"/g;
29

30 # Collapse all multiline entries to single line

92

https://github.com/valencik/mastersAPSC

31 s/&\n(.)(?!KEYNO)(?!HISTORY)(?!CODEN)(?!REFRENCE)(?!AUTHORS)(?!TITLE)
(?!KEYWORDS)(?!SELECTRS)(?!DOI)/$1/mg;↪→

32

33 # Remove tailing whitespace and tabs
34 s/ +&$/&/mg;
35 s/\t/ /mg;
36 s/, ,/, /g; #Fix empty separated values
37

38 # Basic parsing
39 s/^<KEYNO >(.*)&$/{\n"_id":"$1",/mg;
40 s/^<HISTORY >(.*)&$/"history":["$1"],/mg;
41 s/^<CODEN >(.*)&$/"code":"$1",/mg;
42 s/^<REFRENCE>(.*)&$/"reference":"$1",/mg;
43 s/^<AUTHORS >(.*)&$/"authors":["$1"],/mg;
44 s/^<TITLE >(.*)&$/"title":"$1",/mg;
45 s/^<DOI >(.*)&$/"DOI":"$1",/mg;
46 s/^<KEYWORDS>(.*)&$/"keywords":["$1"],/mg;
47 s/^<SELECTRS>(.*)&$/"selectors":["$1"],/mg;
48

49 # Remove double whitespace
50 s/ {2,}/ /g;
51

52 # End JSON structures
53 s/,\n{/\n}\n{/mg;
54 s/,$/\n}/;

93

8.2 massageJSONtoSchema.pl

1 #!/usr/bin/perl -pi
2

3 use strict;
4 use warnings;
5

6 # Extract year to its own field
7 s/^"_id":"((\d\d\d\d).*)",$/"_id":"$1",\n"year":$2,/g;
8

9 # Extract type into its own field
10 s/^"code":"((\w*).*)",$/"code":"$1",\n"type":"$2",/g;
11

12 # Turn author names into array elements
13 s/([^]]), /$1", "/g if /^"authors":\[/;
14 s/", "Jr."/, Jr."/g if /^"authors":\[/; #Fix the Jr's
15 s/"authors":\[""\],/"authors":["UNKNOWN"],/g if /^"authors":\[/;

#Fix empty fields↪→

16

17 # Turn history stamps into array elements
18 s/(\b) (\b)/$1", "$2/g if /^"history":\[/;
19

20 # Split selectors
21 s/([A-Z]):(.*?);(.*?)\./{"type":"$1", "value":"$2",

"subkey":"$3"},/g if /^"selectors":\[/;↪→

22 s/^"selectors":\["/"selectors":\[/g;
23 s/}, *"]/}]/ if /^"selectors":\[/;
24

25 # Turn NSR free text fields into valid LaTeX
26 # Special characters in NSR according to NSR Manual
27 s/\|A/A /g;
28 s/\|B/B /g;
29 s/\|C/H /g;
30 s/\|D/\\Delta /g;
31 s/\|E/E /g;
32 s/\|F/\\Phi /g;
33 s/\|G/\\Gamma /g;
34 s/\|H/X /g;
35 s/\|I/I /g;
36 s/\|J/\\sim /g;
37 s/\|K/K /g;
38 s/\|L/\\Lambda /g;
39 s/\|M/M /g;
40 s/\|N/N /g;
41 s/\|O/O /g;
42 s/\|P/\\Pi /g;

94

43 s/\|Q/\\Theta /g;
44 s/\|R/R /g;
45 s/\|S/\\Sigma /g;
46 s/\|T/T /g;
47 s/\|U/\\Upsilon /g;
48 s/\|V/\\nabla /g;
49 s/\|W/\\Omega /g;
50 s/\|X/\\Xi /g;
51 s/\|Y/\\Psi /g;
52 s/\|Z/Z /g;
53 s/\|a/\\alpha /g;
54 s/\|b/\\beta /g;
55 s/\|c/\\eta /g;
56 s/\|d/\\delta /g;
57 s/\|e/\\varepsilon /g;
58 s/\|f/\\phi /g;
59 s/\|g/\\gamma /g;
60 s/\|h/\\chi /g;
61 s/\|i/\\iota /g;
62 s/\|j/\\epsilon /g;
63 s/\|k/\\kappa /g;
64 s/\|l/\\lambda /g;
65 s/\|m/\\mu /g;
66 s/\|n/\\nu /g;
67 s/\|o/o /g;
68 s/\|p/\\pi /g;
69 s/\|q/\\theta /g;
70 s/\|r/\\rho /g;
71 s/\|s/\\sigma /g;
72 s/\|t/\\tau /g;
73 s/\|u/\\upsilon /g;
74 s/\|w/\\omega /g;
75 s/\|x/\\xi /g;
76 s/\|y/\\psi /g;
77 s/\|z/\\zeta /g;
78 s/\|'/^\\circ /g;
79 s/\|`/\\ell /g;
80 s/\|\(/\\gets /g;
81 s/\|\)/\\to /g;
82 s/\|*/\\times /g;
83 s/\|\+/\\pm /g;
84 s/\|\-/\\mp /g;
85 s/\|\./\\propto /g;
86 s/\|4/< /g;
87 s/\|5/> /g;
88 s/\|6/\\surd /g;

95

89 s/\|7/\\int /g;
90 s/\|8/\\prod /g;
91 s/\|9/\\sum /g;
92 s/\|</\\le /g;
93 s/\|=/\\ne /g;
94 s/\|>/\\ge /g;
95 s/\|\?/\\approx /g;
96 s/\|@/\\infty /g;
97 s/\|\[/\\{ /g;
98 s/\|\\/\\vert /g;
99 s/\|\]/\\} /g;

100 s/\|^/\\uparrow /g;
101 s/\|_/\\downarrow /g;
102

103 # Remove double whitespace
104 s/ {2,}/ /g;

96

8.3 flattenJSONforMongo.pl

1 #!/usr/bin/perl -pi
2

3 use strict;
4 use warnings;
5

6 # This helps with multiline regex
7 BEGIN {$/ = "}\n";}
8

9

10 # Flatten JSON for mongoimport
11 s/{\n/{/mg;
12 s/,\n"/, "/mg;
13 s/\n}/ }/mg;
14

15 # Escape all the backslashes
16 s/\\(?!")/\\\\/mg;

97

8.4 prepare-data.py

1 import csv
2 import os.path
3 import pymongo
4 import subprocess
5 import sys
6 import statistics
7 import math
8 import functools
9

10

11 def percentile(N, percent, key=lambda x: x):
12 """
13 Find the percentile of a list of values.
14 From: http://code.activestate.com/recipes/511478/
15

16 @parameter N - is a list of values. Note N MUST BE already
sorted.↪→

17 @parameter percent - a float value from 0.0 to 1.0.
18 @parameter key - optional key function to compute value from

each element of N.↪→

19

20 @return - the percentile of the values
21 """
22 if not N:
23 return None
24 k = (len(N) - 1) * percent
25 f = math.floor(k)
26 c = math.ceil(k)
27 if f == c:
28 return key(N[int(k)])
29 d0 = key(N[int(f)]) * (c - k)
30 d1 = key(N[int(c)]) * (k - f)
31 return d0 + d1
32

33

34 # Connect to the local Mongo server
35 try:
36 client = pymongo.MongoClient('localhost', 27017,

serverSelectionTimeoutMS=100)↪→

37 client.admin.command('ismaster') # Test command to see if we
can connect↪→

38

39 # If we can conenct, reset client to defaults
40 print("Successfully connected to MongoDB...")

98

41 client = pymongo.MongoClient('localhost', 27017)
42 except pymongo.errors.ConnectionFailure:
43 sys.exit("ERROR: Could not connect to database, are you sure

'mongod' is running?")↪→

44

45 # Create 'masters' database
46 if 'masters' not in client.database_names():
47 print("Database 'masters' was not found, creating...")
48 else:
49 print("Found database 'masters'...")
50 db = client['masters']
51

52 # Import NSR data
53 if 'NSR' not in db.collection_names():
54 if not os.path.isfile("NSR.json"):
55 if os.path.isfile("mastersNSRDataDump.tbz2"):
56 print("Could not find database file NSR.json...")
57 print("Found mastersNSRDataDump.tbz2, extracting...")
58 subprocess.call(["tar", "-xf",

"mastersNSRDataDump.tbz2"])↪→

59 subprocess.call(["mv", "NSRDump.out", "NSR.json"])
60 print("Running perl magic...")
61 subprocess.call(["perl", "parseNSRtoJSON.pl",

"NSR.json"])↪→

62 subprocess.call(["perl", "massageJSONtoSchema.pl",
"NSR.json"])↪→

63 subprocess.call(["perl", "flattenJSONforMongo.pl",
"NSR.json"])↪→

64 if os.path.isfile("NSR.json"):
65 print("NSR collection not found, importing NSR.json with

mongoimport...")↪→

66 subprocess.call(["mongoimport", "--db", "masters",
"--collection", "NSR",↪→

67 "--type", "json", "--file", "NSR.json"])
68 else:
69 sys.exit("ERROR: Could not find data files NSR.json or

mastersNSRDataDump.tbz2")↪→

70 print("Found NSR collection...")
71

72 # Ensure indexing for NSR collection
73 if 'NSR' in db.collection_names():
74 db.NSR.create_index("year")
75 db.NSR.create_index("authors")
76 db.NSR.create_index("type")
77 db.NSR.create_index("selectors.type")
78 db.NSR.create_index("selectors.value")

99

79

80 # Create collection authorSummary
81 if 'authorSummary' not in db.collection_names():
82 print("Collection authorSummary not found, creating...")
83 db.NSR.aggregate([
84 {"$project": {"_id": 1, "copyauthors": "$authors",

"authors": 1, "year": 1}},↪→

85 {"$unwind": "$authors"},
86 {"$unwind": "$copyauthors"},
87 {"$group": {"_id": "$authors", "coauthors": {"$addToSet":

"$copyauthors"},↪→

88 "years": {"$addToSet": "$year"}, "papers":
{"$addToSet": "$_id"}}},↪→

89 {"$out": "authorSummary"}
90], allowDiskUse=True)
91

92 # Ensure indexing for authorSummary collection
93 if 'authorSummary' in db.collection_names():
94 db.authorSummary.create_index("coauthors")
95 db.authorSummary.create_index("years")
96 db.authorSummary.create_index("papers")
97

98 # Create collection authorSummaryByYear
99 if 'authorSummaryByYear' not in db.collection_names():

100 print("Collection authorSummaryByYear not found,
creating...")↪→

101 db.NSR.aggregate([
102 {"$project": {"_id": 1, "copyauthors": "$authors",

"authors": 1, "year": 1}},↪→

103 {"$unwind": "$authors"},
104 {"$unwind": "$copyauthors"},
105 {"$group": {"_id": {"author": "$authors", "year":

"$year"}, "coauthors": {↪→

106 "$addToSet": "$copyauthors"}, "papers": {"$addToSet":
"$_id"}}},↪→

107 {"$out": "authorSummaryByYear"}
108], allowDiskUse=True)
109

110 # Ensure indexing for authorSummaryByYear collection
111 if 'authorSummaryByYear' in db.collection_names():
112 db.authorSummaryByYear.create_index("coauthors")
113 db.authorSummaryByYear.create_index("papers")
114

115

116 # Generate authorSummary tsv for clustering
117 if not os.path.exists('author-cluster-input.tsv'):

100

118 print("Aggregating authorSummary data...")
119 authorSummary_pipeline = [
120 {"$project": {"_id": 0, "author": "$_id", "numCoauthors":

{"$size": "$coauthors"},↪→

121 "numYears": {"$size": "$years"},
"numEntries": {"$size": "$papers"}}}↪→

122]
123 results = db.authorSummary.aggregate(authorSummary_pipeline,

allowDiskUse=True)↪→

124 with open('author-cluster-input.tsv', 'w', newline='') as
tsvfile:↪→

125 print("Writing authorSummary data to file...")
126 cluster_writer = csv.writer(tsvfile, delimiter='\t')
127 cluster_writer.writerow(["author", "numCoauthors",

"numYears", "numEntries"])↪→

128 for document in results:
129 cluster_list = [document['author']]
130 cluster_list.append(document['numCoauthors'])
131 cluster_list.append(document['numYears'])
132 cluster_list.append(document['numEntries'])
133 cluster_writer.writerow(cluster_list)
134

135

136 # Generate authorSummaryByYear tsv for clustering
137 if not

os.path.exists('author-cluster-entry-quartiles-input.tsv'):↪→

138 print("Aggregating authorSummaryByYear data...")
139 authorSummaryByYear_pipeline = [
140 {"$group": {"_id": "$_id.author", "yearData": { "$push":
141 {"year": "$_id.year", "numCoauthors": {"$size":

"$coauthors"}, "numEntries": {"$size": "$papers"}}}}},↪→

142 {"$project": {"author": "$_id", "yearData": 1,
"numYears": {"$size": "$yearData"}}}↪→

143]
144 results =

db.authorSummaryByYear.aggregate(authorSummaryByYear_pipeline,
allowDiskUse=True)

↪→

↪→

145 with open('author-cluster-entry-quartiles-input.tsv', 'w',
newline='') as tsvfile:↪→

146 print("Writing authorSummaryByYear data to file...")
147 cluster_writer = csv.writer(tsvfile, delimiter='\t')
148 cluster_writer.writerow(["author", "careerLength",

"meanCoauthors",↪→

149 "numEntries", "numEntries033",
"numEntries066", "numEntries100"])↪→

150 for document in results:

101

151 years = []
152 entries = []
153 coauthors = []
154 for yearDatum in document['yearData']:
155 years.append(yearDatum['year'])
156 coauthors.append(yearDatum['numCoauthors'])
157 entries.append(yearDatum['numEntries'])
158 assert int(len(years)) == int(document['numYears']),

"len(years) should be equal to numYears"↪→

159 if sum(entries) <= 10: continue
160 years, entries = zip(*sorted(zip(years,entries),

key=lambda x: x[0]))↪→

161 sumEntries = [entries[years.index(t)] if t in years
else 0 for t in range(min(years), max(years)+1)]↪→

162 assert len(sumEntries) == max(years)-min(years)+1
163 for i, entry in enumerate(sumEntries):
164 if i >= 1:
165 sumEntries[i] = sumEntries[i] + sumEntries[i

- 1]↪→

166 assert sumEntries[-1] == sum(entries),
"sumEntries[-1] should be equal to sum(entries)"↪→

167 numEntries033 = percentile(sumEntries, 0.33)
168 numEntries066 = percentile(sumEntries, 0.66) -

numEntries033↪→

169 numEntries100 = sumEntries[-1] - numEntries066 -
numEntries033↪→

170 cluster_list = [document['author']]
171 cluster_list.append(max(years) - min(years)+1)
172 cluster_list.append(statistics.mean(coauthors))
173 cluster_list.append(sumEntries[-1])
174 cluster_list.append(numEntries033 / sumEntries[-1])
175 cluster_list.append(numEntries066 / sumEntries[-1])
176 cluster_list.append(numEntries100 / sumEntries[-1])
177 cluster_writer.writerow(cluster_list)
178

179 # Generate paper -> author transactions tsv
180 if not os.path.exists('transactions-papers-authors.tsv'):
181 print("Generating papers -> authors transaction tsv files for

association rule learning...")↪→

182 pipeline = [
183 {"$match": {"authors": {"$exists": True}}},
184 {"$project": {"_id": 0, "authors": "$authors"}}
185]
186 results = db.NSR.aggregate(pipeline, allowDiskUse=True)
187 with open('transactions-papers-authors.tsv', 'w', newline='')

as tsvfile:↪→

102

188 transaction_writer = csv.writer(tsvfile, delimiter='\t')
189 for document in results:
190 transaction_writer.writerow(document['authors'])
191

192 # Generate papers -> selectors transactions tsv
193 if not os.path.exists('transactions-papers-selectors.tsv'):
194 print("Generating papers -> selectors transaction tsv files

for association rule learning...")↪→

195 pipeline = [
196 {"$match": {"selectors": {"$exists": True}}},
197 {"$project": {"_id": 0, "selectors": 1}}
198]
199 results = db.NSR.aggregate(pipeline, allowDiskUse=True)
200 with open('transactions-papers-selectors.tsv', 'w',

newline='') as tsvfile:↪→

201 transaction_writer = csv.writer(tsvfile, delimiter='\t')
202 for document in results:
203 selector_list = [s['type'] + " " + s['value'] for s

in document['selectors']]↪→

204 transaction_writer.writerow(selector_list)
205

206 # Generate selectors -> authors transactions tsv
207 if not os.path.exists('transactions-selectors-authors-set.tsv'):
208 print("Generating selectors -> authors transaction tsv files

for association rule learning...")↪→

209 pipeline = [
210 {"$match": {"selectors": {"$exists": True}}},
211 {"$unwind": "$selectors"},
212 {"$unwind": "$authors"},
213 {"$group": {"_id": "$selectors", "authors": {"$addToSet":

"$authors"}}},↪→

214 {"$project": {"_id": 0, "authors": "$authors"}}
215]
216 results = db.NSR.aggregate(pipeline, allowDiskUse=True)
217 with open('transactions-selectors-authors-set.tsv', 'w',

newline='') as tsvfile:↪→

218 transaction_writer = csv.writer(tsvfile, delimiter='\t')
219 for document in results:
220 transaction_writer.writerow(document['authors'])

103

8.5 update-database.py

1 import csv
2 import os.path
3 import pymongo
4 import subprocess
5 import sys
6 import argparse
7

8 # Parse command line input (filename of cluster memberships)
9 parser = argparse.ArgumentParser()

10 parser.add_argument('filename', type=argparse.FileType('r'))
11 args = parser.parse_args()
12 membership_document = args.filename
13

14 # Connect to the local Mongo server
15 try:
16 client = pymongo.MongoClient('localhost', 27017,

serverSelectionTimeoutMS=100)↪→

17 client.admin.command('ismaster') # Test command to see if we
can connect↪→

18

19 # If we can conenct, reset client to defaults
20 print("Successfully connected to MongoDB...")
21 client = pymongo.MongoClient('localhost', 27017)
22 except pymongo.errors.ConnectionFailure:
23 sys.exit("ERROR: Could not connect to database, are you sure

'mongod' is running?")↪→

24

25 # Check for 'masters' database
26 if 'masters' not in client.database_names():
27 sys.exit("ERROR: Database 'masters' was not found. Inspect

database and run 'prepare-data.py' if needed.")↪→

28 else:
29 print("Found database 'masters'...")
30 db = client['masters']
31

32

33 # Update collection authorSummary
34 if 'authorSummary' not in db.collection_names():
35 sys.exit("ERROR: Collection 'authorSummary' was not found.

Inspect database and run 'prepare-data.py' if needed.")↪→

36 else:
37 author_reader = csv.reader(membership_document,

delimiter='\t')↪→

38 for author_line in author_reader:

104

39 author = author_line[0]
40 cluster_membership = author_line[1]
41 db.authorSummary.update_one({"_id": author},{"$set":

{"cluster": cluster_membership}})↪→

105

8.6 calc-author-name-dist.py

1 import csv
2 import jellyfish
3

4 def dist_calc(author_pair):
5 dist = jellyfish.damerau_levenshtein_distance(author_pair[0],

author_pair[1])↪→

6 if dist <= 3:
7 author_pair.append(dist)
8 return author_pair
9 else:

10 return False
11

12 with open('author-cluster-input.tsv', 'r', newline='') as
tsvfile:↪→

13 reader = csv.DictReader(tsvfile, delimiter='\t',)
14 authors = []
15 for line in reader:
16 authors.append(line['author'])
17

18 with open('author-name-ld-distance.tsv', 'w', newline='') as
tsvfile:↪→

19 dist_writer = csv.writer(tsvfile, delimiter='\t')
20 dist_writer.writerow(["author1", "author2", "ld_dist"])
21 for i,first_author in enumerate(authors):
22 for second_author in authors[i+1:]:
23 dist_pair = dist_calc([first_author, second_author])
24 if dist_pair:
25 dist_writer.writerow(dist_pair)

106

8.7 calc-author-name-transform-pairs.py

1 import argparse
2 import csv
3 from collections import defaultdict
4 import re
5

6 parser = argparse.ArgumentParser()
7 parser.add_argument('filename')
8 args = parser.parse_args()
9 author_list = args.filename

10

11 spacing = re.compile(r'\s*')
12 punc = re.compile(r'[^a-zA-Z0-9]')
13

14 names_lower = defaultdict(list)
15 names_nospace = defaultdict(list)
16 names_nopunc = defaultdict(list)
17

18 def build_transformation_dicts(inputfile):
19 with open(inputfile, 'r', newline='') as tsvfile:
20 reader = csv.DictReader(tsvfile, delimiter='\t')
21 for line in reader:
22 author = line['author']
23 lower = author.lower()
24 names_lower[lower].append(author)
25 nospace = re.sub(spacing, '', author).lower()
26 names_nospace[nospace].append(author)
27 nopunc = re.sub(punc, '', author).lower()
28 names_nopunc[nopunc].append(author)
29

30 def write_transformation_pairs(dictionary, filename):
31 with open(filename, 'w', newline='') as tsvfile:
32 pair_writer = csv.writer(tsvfile, delimiter='\t')
33 for k in dictionary.keys():
34 if len(dictionary[k]) >= 2:
35 pair_writer.writerow(dictionary[k])
36

37 build_transformation_dicts(author_list)
38 write_transformation_pairs(names_lower, 'author-lower-pairs.tsv')
39 write_transformation_pairs(names_nospace,

'author-nospace-pairs.tsv')↪→

40 write_transformation_pairs(names_nopunc,
'author-nopunc-pairs.tsv')↪→

107

8.8 calc-cosine-sims.py

1 import pymongo
2 import sys
3 import csv
4 import functools
5 from collections import defaultdict
6 from gensim import corpora, models, similarities
7

8

9 # Connect to the local Mongo server
10 try:
11 client = pymongo.MongoClient('localhost', 27017,

serverSelectionTimeoutMS=100)↪→

12 client.admin.command('ismaster') # Test command to see if we
can connect↪→

13

14 # If we can conenct, reset client to defaults
15 print("Successfully connected to MongoDB...")
16 client = pymongo.MongoClient('localhost', 27017)
17 except pymongo.errors.ConnectionFailure:
18 sys.exit("ERROR: Could not connect to database, are you sure

'mongod' is running?")↪→

19

20 # Create 'masters' database
21 if 'masters' not in client.database_names():
22 sys.exit("ERROR: Database 'masters' was not found. Inspect

database and run 'prepare-data.py' if needed.")↪→

23 else:
24 print("Found database 'masters'...")
25 db = client['masters']
26

27

28 # Get the selectors for all papers
29 selectors_pipeline = [
30 {"$match": {"selectors": {"$exists": True}}},
31 {"$project": {"_id":1, "selectors":1}}
32]
33 results = db.NSR.aggregate(selectors_pipeline, allowDiskUse=True)
34

35 # Build the corpus
36 corpus = []
37 keynum_list = []
38 for document in results:
39 vec = []
40 for selector in document['selectors']:

108

41 if selector['value'] != "OTHER":
42 #vec.append((selector['type'], selector['value']))
43 vec.append(selector['type'] + " " +

selector['value'])↪→

44 keynum_list.append(document['_id'])
45 corpus.append(vec)
46

47 # Trim the corpus
48 frequency = defaultdict(int)
49 for selector_list in corpus:
50 for token in selector_list:
51 frequency[token] += 1
52 corpus = [[token for token in selector_list if frequency[token] >

1]↪→

53 for selector_list in corpus]
54

55 # Make a corpura dictionary
56 dictionary = corpora.Dictionary(corpus)
57 dictionary.save('selector-corpus.dict') # store the dictionary,

for future reference↪→

58

59 sparse_vectors = [dictionary.doc2bow(selector_list) for
selector_list in corpus]↪→

60 corpora.MmCorpus.serialize('selector-sparse-vectors.mm',
sparse_vectors) # store to disk, for later use↪→

61

62 # Initialize a transform
63 tfidf = models.TfidfModel(sparse_vectors)
64 index = similarities.Similarity('./', sparse_vectors,

num_features=len(frequency))↪→

65 index.num_best = 20
66

67 #with open('similar-papers-cosine-selectors.tsv', 'w',
newline='') as tsvfile:↪→

68 # print("Writing similar papers data to file...")
69 # sim_writer = csv.writer(tsvfile, delimiter='\t')
70 # for i,paper in enumerate(corpus):
71 # sims = index[tfidf[dictionary.doc2bow(corpus[i])]]
72 # sim_list = [keynum_list[hisim[0]] for hisim in sims if

hisim[1] > 0.65]↪→

73 # sim_list.insert(0, keynum_list[i])
74 # sim_writer.writerow(sim_list)
75

76 for i,paper in enumerate(corpus):
77 sims = index[tfidf[dictionary.doc2bow(corpus[i])]]

109

78 sim_list = [{"paper": keynum_list[hisim[0]], "score":
hisim[1]} for hisim in sims if hisim[1] > 0.65 and hisim[0]
!= i]

↪→

↪→

79 db.simNSR.update_one({"_id": keynum_list[i]},{"$set":
{"simPapers": sim_list}})↪→

110

8.9 parse-arules-output.py

1 import re
2 import csv
3

4 with open('myoutput.tsv', 'r') as tsvfile:
5 #Rule looks like: {"J.Pereira","L.Audouin","T.Enqvist"} =>

{"P.Napolitani"}↪→

6 rules_reader = csv.reader(tsvfile, delimiter='\t')
7 rules_iter = iter(rules_reader)
8 next(rules_iter) #skip tsv header
9 for rule in rules_iter:

10 rule_no_brackets = re.sub(r'[{}]',r'',rule[1])
11 rule_lhs,rule_rhs = re.split(r' => ',rule_no_brackets,

maxsplit=1)↪→

12 rule_lhs = re.split(r',', rule_lhs)
13 print(rule_lhs)

111

8.10 nsr_app.py

1 from pymongo import MongoClient
2 from flask import Flask, jsonify, request, render_template
3 import networkx as nx
4 from networkx.readwrite import json_graph
5 from itertools import combinations
6 from collections import defaultdict
7 import re
8 import json
9 from bson import json_util

10 from bson.objectid import ObjectId
11 import csv
12 import numpy as np
13

14 def toJson(data):
15 """
16 Convert Mongo object(s) to JSON
17 """
18 return json.dumps(data, default=json_util.default)
19

20 # Read in static cluster info
21 cluster_info = defaultdict(int)
22 with open('../data/results/k3p3c0.tsv') as cluster_file:
23 cluster_reader = csv.reader(cluster_file, delimiter='\t')
24 for author_line in cluster_reader:
25 cluster_info[author_line[0]] = author_line[1]
26

27 # Setup the connection to MongoDB and get the NSR collection
28 client = MongoClient('localhost', 27017)
29 db = client.masters
30 nsr = db.NSR
31

32 # Create our instance of the Flask class
33 app = Flask(__name__)
34

35 # Enable CORS
36 # https://gist.github.com/blixt/54d0a8bf9f64ce2ec6b8
37 # This should be investigated for security concerns
38 def add_cors_headers(response):
39 response.headers['Access-Control-Allow-Origin'] = '*'
40 if request.method == 'OPTIONS':
41 response.headers['Access-Control-Allow-Methods'] =

'DELETE, GET, POST, PUT'↪→

42 headers =
request.headers.get('Access-Control-Request-Headers')↪→

112

43 if headers:
44 response.headers['Access-Control-Allow-Headers'] =

headers↪→

45 return response
46 app.after_request(add_cors_headers)
47

48 # Root site route
49 @app.route('/')
50 def hello_world():
51 """
52 Serves the main web interface.
53 """
54 return render_template('index.html')
55

56 # Route for find_one(year)
57 @app.route('/api/year/<int:year_id>')
58 def find_year(year_id):
59 """
60 This code is not used in the main application.
61 It is kept as a small example of a possible API endpoint.
62 """
63 first_doc = nsr.find_one({"year": year_id})
64 title = first_doc['title']
65 return "The first title in {year} is:

{title}".format(year=year_id, title=title)↪→

66

67 # Main search route
68 @app.route('/api/search')
69 def parse_search():
70 """
71 We apply a series of RegEx to the user search query and use

tge matches to↪→

72 build a aggregation pipeline to pass to the NSR collection in
MongoDB.↪→

73 """
74 # Get the query parameter 'input' and setup an empty pipeline

list↪→

75 search = request.args['input']
76 print("NSR> recieved search: " + search)
77 pipeline = []
78 simpapers_pipeline = []
79 options = {}
80

81 # Try to match years (only supports four digit years)
82 year_list = re.findall(r"(?<![:=_])([12][0-9]{3})+", search)
83 if len(year_list) == 1:

113

84 pipeline.append({"$match": {"year": int(year_list[0])}})
85 if len(year_list) == 2:
86 year_start = int(min(year_list))
87 year_end = int(max(year_list))
88 pipeline.append({"$match": {"year": {"$gte": year_start,

"$lte": year_end}}})↪→

89 if len(year_list) > 2:
90 pipeline.append({"$match": {"year": {"$in": year_list}}})
91

92 # Try to match author names (room for improvement)
93 author_tuples =

re.findall(r"(?<![:=_])(([a-zA-Z]\.){1,3}[a-zA-Z-]+)+",
search)

↪→

↪→

94 if len(author_tuples) >= 1:
95 author_list = [author[0] for author in author_tuples]
96 pipeline.append({"$match": {"authors": {"$in":

author_list}}})↪→

97 # Copy the pipeline for use with simpapers query
98 simpapers_pipeline = list(pipeline)
99

100 # Try an match nuclides written like: 11li 12C 238U
101 nuclide_tuples =

re.findall(r"(?<![:=_])([0-9]{1,3}[a-zA-Z]{1,3})+", search)↪→

102 if len(nuclide_tuples) >= 1:
103 nuclide_list = [nuclide.upper() for nuclide in

nuclide_tuples]↪→

104 pipeline.append({"$match": {"selectors.value": {"$in":
nuclide_list}}})↪→

105

106 # Format data with a projection and then perform the
aggregation↪→

107 # The pipeline before projection is a good candidate for
building a cache↪→

108 pipeline.append({"$project":
109 {"_id": 1, "year": 1, "authors": 1, "type": 1,

"selectors": "$selectors.value", "title": 1}})↪→

110 results = nsr.aggregate(pipeline)
111

112

113 # Similar papers
114 simpaper_entries = []
115 if len(simpapers_pipeline) > 0:
116 simpapers_pipeline.extend([
117 {"$unwind": "$simPapers"},
118 {"$group": {"_id": "$simPapers.paper", "score":

{"$avg": "$simPapers.score"}}},↪→

114

119 {"$sort": {"score": -1}},
120 {"$limit": 100}
121])
122 recommended_papers =

db.simNSR.aggregate(simpapers_pipeline)↪→

123

124 # save the score for each recommended paper
125 scores = dict()
126 for paper in recommended_papers:
127 scores[paper['_id']] = paper['score']
128

129 # get the full documents for each paper
130 simpaper_results = nsr.aggregate([
131 {"$match": {"_id": {"$in": [x for x in

scores.keys()]}}},↪→

132 {"$project": {"_id": 1, "year": 1, "authors": 1,
"type": 1,↪→

133 "selectors": "$selectors.value", "title": 1}}])
134 simpaper_entries = []
135 for simpaper in simpaper_results:
136 simpaper['score'] = "Score:

{:6.4f}".format(scores[simpaper['_id']])↪→

137 simpaper_entries.append(simpaper)
138

139

140 # Iterate over MongoDB cursor and update defaultdict values
in _dict vars↪→

141 # This can throw IndexErrors which I am not catching
142 types_dict = defaultdict(lambda: defaultdict(int)) #2 level

deep defaultdict with in int↪→

143 years_dict = defaultdict(int)
144 nsr_entries = []
145 G = nx.Graph()
146 author_nodes = set()
147 for index, nsr_entry in enumerate(results):
148 nsr_year = int(nsr_entry['year'])
149 nsr_type = nsr_entry['type'] if 'type' in nsr_entry else

'UNKNOWN'↪→

150 years_dict[nsr_year] += 1
151 types_dict[nsr_year][nsr_type] += 1
152

153 # Limit nsr_entries and graph to only 1000 results
154 if index <= 1000:
155 nsr_entries.append(nsr_entry)
156 if 'authors' in nsr_entry:
157 author_nodes.update(nsr_entry['authors'])

115

158 for i in combinations(nsr_entry['authors'], 2):
159 G.add_edge(i[0], i[1])
160

161 # Layout graph
162 G.add_nodes_from(author_nodes)
163 dist_scale = pow(G.number_of_nodes(), -0.3)
164 # Fix Numpy random seed to generate reproducible graphs
165 np.random.seed(0)
166 positions=nx.spring_layout(G, k=dist_scale, iterations=75)
167 #positions=nx.spectral_layout(G)
168

169 # Split network-graph into components
170 if 'topnetwork' in options and int(options['topnetwork']) !=

0:↪→

171 graphs = list(nx.connected_component_subgraphs(G))
172 graphs.sort(key = lambda x: -x.number_of_edges())
173 top_num = int(options['topnetwork'])
174 network_data =

json_graph.node_link_data(graphs[top_num-1])↪→

175 else:
176 network_data = json_graph.node_link_data(G)
177

178 # Add positions to network_data
179 for n in network_data['nodes']:
180 n['x'] = int(positions[n['id']][0]*400+400)
181 n['y'] = int(positions[n['id']][1]*400+400)
182 n['k'] = cluster_info[n['id']]
183

184 year_start = min(years_dict.keys())
185 year_end = max(years_dict.keys())
186 nsr_types = ['JOUR', 'CONF', 'REPT', 'PC', 'BOOK', 'THESIS',

'PREPRINT', 'UNKNOWN']↪→

187

188 # Transform year data to NVD3 format for multibar chart: [{x:
1989, y: 10}, {x: 1999, y: 20}, ...]↪→

189 # Additionally we build x,y dicts for years that do not
appear in the results to avoid sparse data↪→

190 year_json = [{'x': year, 'y': years_dict[year]} for year in
range(year_start, year_end + 1)]↪→

191

192 # Transforms year and type data to NVD3 format for multibar
chart where each type is given a key↪→

193 # We use the nsr_types list to ensure all types are
represented even in sparse data↪→

194 types_json = [{'key': _type, 'values': [{'x': year, 'y':
int(types_dict[year][_type])} for year in↪→

116

195 range(year_start, year_end + 1)]} for _type in
nsr_types]↪→

196

197 # Convert everything to JSON and ship it to the client
198 return toJson({'years': year_json, 'types': types_json,

'entries': nsr_entries, 'network': network_data, 'simpapers':
simpaper_entries})

↪→

↪→

199

200

201 # If executed directly from python interpreter, run local server
202 if __name__ == '__main__':
203 app.run(debug=True)

117

8.11 main.js

1 // Enable debugging output
2 var verbose = true;
3

4 // Searches made with the navbar search form
5 document.getElementById("omnisearch").addEventListener("search",

omniSearch);↪→

6

7 function omniSearch(ev){
8

9 if(verbose){console.log("Running omniSearch()...");};
10

11 // Break the search value into key:value pairs
12 var search = document.getElementById("omnisearch").value;
13 var queryItems = search.split(/ (?=\w+:)/);
14 var command = queryItems[0].split(":")[0];
15 var commandParam = queryItems[0].split(":")[1]
16

17 //Create options object from queryItems
18 var options = {};
19 for (i=1; i<queryItems.length; i++){
20 queryItem = queryItems[i].split(":")
21 options[queryItem[0]] = JSON.parse(queryItem[1]);
22 }
23 if(!options.topnetwork) options.topnetwork = 0;
24

25 // Erase the current #charts output
26 document.getElementById("charts").innerHTML = '';
27

28 // Handle the passed search command
29 switch (command){
30

31 default:
32 // Send entire input to /api/search
33 d3.xhr("/api/search?input="+search)
34 .get(function(error, data){
35 response = JSON.parse(data.response)
36 listEntries(response.entries)
37 })
38 break;
39

40 }//end of switch on search command
41

42 ev.preventDefault();
43 };//end of search

118

8.12 force-graph.js

1 /* Define the main worker or execution function */
2 // Possible options for the force graph are:
3 // radius [5]
4 // links [30]
5 // charge [-120]
6 // friction [0.8]
7 // gravity [0.1]
8 // labels [off]
9 // drag [off]

10

11 function forceDirectedGraph(error, nodes, links, options) {
12

13 d3.select("#charts").remove()
14 var svg = d3.select("div#contentContainer")
15 .append("div")
16 .classed("svg-container", true) //container class to make

it responsive↪→

17 .attr("id", "charts")
18 .append("svg")
19 //responsive SVG needs these 2 attributes and no width and

height attr↪→

20 //.attr("preserveAspectRatio", "xMinYMin meet")
21 .attr("viewBox", "0 0 1000 1000")
22 //class to make it responsive
23 .classed("svg-content-responsive", true);
24

25 var container = svg.append("g")
26

27 // Optional radius customization or set default
28 var radius = options.radius || 5;
29 // Set the color scale we want to use
30 var color = d3.scale.category10();
31

32 // Draw the edges/links between the nodes
33 var edges = container.selectAll("line")
34 .data(links)
35 .enter()
36 .append("line")
37 .style("stroke", "#666")
38 .style("stroke-opacity", ".2")
39 .style("stroke-width", 1)
40 .attr("x1", function(d) { return nodes[d.source].x; })
41 .attr("y1", function(d) { return nodes[d.source].y; })
42 .attr("x2", function(d) { return nodes[d.target].x; })

119

43 .attr("y2", function(d) { return nodes[d.target].y; });
44

45 // Options node labels
46 if (options.labels) {
47 var texts = container.selectAll("text")
48 .data(nodes)
49 .enter()
50 .append("text")
51 .attr("fill", "black")
52 .attr("font-family", "sans-serif")
53 .attr("font-size", "12px")
54 .attr("x", function(d) { return d.x + 5; })
55 .attr("y", function(d) { return d.y + 5; })
56 .text(function(d) { return d.id; });
57 }
58

59 // Draw the nodes themselves
60 var nodes = container.selectAll("circle")
61 .data(nodes)
62 .enter()
63 .append("circle")
64 .attr("r", radius)
65 .style("fill", function(d,i) { return color(d.k); })
66 .style("stroke", "#fff")
67 .style("stroke-width", "1px")
68 .attr("cx", function(d) { return d.x; })
69 .attr("cy", function(d) { return d.y; })
70

71 }; // End forceDirectedGraph worker func
72

73 function stackedBar(data) {
74 d3.select("#charts").remove()
75 d3.select("#contentContainer").append("div").attr("id",

"charts").append("svg")↪→

76 .attr("width", 600).attr("height", 400)
77 nv.addGraph(function() {
78 var chart = nv.models.multiBarChart().stacked(true);
79

80 chart.xAxis
81 .tickFormat(d3.format(''));
82

83 chart.yAxis
84 .tickFormat(d3.format(''));
85

86 d3.select('#charts svg')
87 .datum(data)

120

88 .call(chart);
89

90 nv.utils.windowResize(chart.update);
91 chart.update()
92

93 return chart;
94 });
95 }
96

97 function listEntries(data) {
98 d3.select("#charts").remove()
99 d3.select("#contentContainer").append("div").attr("id",

"charts")↪→

100 data.forEach(function (nsr){
101 d3.select("#charts").append("div").attr("class",

"nsrEntry").attr("id", "id" + nsr._id)↪→

102 var entry = d3.select("#id" + nsr._id)
103 entry.append("span").attr("class",

"year").text(nsr.year);↪→

104

105 var title = typeof nsr.title === "undefined" ? "NA" :
nsr.title↪→

106 entry.append("span").attr("class", "title").text(title);
107

108 var score = typeof nsr.score === "undefined" ? "" :
nsr.score↪→

109 entry.append("span").attr("class", "score").text(score);
110

111 var authors = typeof nsr.authors === "undefined" ? "NA" :
nsr.authors.join(", ")↪→

112 entry.append("p").attr("class", "authors").text(authors);
113

114 var selectors = typeof nsr.selectors === "undefined" ?
"NA" : nsr.selectors.join(", ")↪→

115 entry.append("p").attr("class",
"selectors").text("Selectors: " + selectors);↪→

116 })
117

118 }

121

Bibliography

[1] A. H. Bécquerel, C. R. Acad. Sci. Paris 122, 501 (1896).

[2] L. Kurgan and P. Musilek, The Knowledge Engineering Review 21, 1 (2006).

[3] B. Pritychenko, E. Běták, M. A. Kellett, B. Singh, and J. Totans, Nuclear

Instruments and Methods in Physics Research A 640, 213 (2011).

[4] B. Pritychenko, Private Communication (2015).

[5] D. F. Winchell, Science 3 (2007).

[6] Wikipedia, Digital Object Identifier — Wikipedia, the Free Encyclopedia

(2015).

[7] E. F. Codd, Commun. ACM 13, 377 (1970).

[8] PyMongo, PyMongo 3.0.3 Documentation (2015).

[9] Wikipedia, MongoDB — Wikipedia, the Free Encyclopedia (2015).

[10] MongoDB, The MongoDB 3.0 Manual (2015).

[11] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, CoRR

abs/1111.4503, (2011).

[12] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, Journal of

Statistical Mechanics: Theory and Experiment 10, 8 (2008).

[13] C. Manning, P. Raghavan, and H. Schütze, Introduction to Information

Retrieval (Cambridge University Press, 2009).

[14] G. Salton, A. Wong, and C. S. Yang, Commun. ACM 18, 613 (1975).

[15] D. Dubin, Library Trends 2004 (n.d.).

[16] S. K. M. Wong and V. V. Raghavan, in Research and Development in

122

Information Retrieval (1984), pp. 167–185.

[17] K. Sparck Jones, Journal of Documentation 28, 11 (1972).

[18] Z. E. Xu, M. Chen, K. Q. Weinberger, and F. Sha, CoRR abs/1301.6770,

(2013).

[19] J. B. Lovins, (1968).

[20] M. Porter, The Lovins Stemming Algorithm (2015).

[21] M. Porter, Program 40, 211 (2006).

[22] P. Willett, Program 40, 219 (2006).

[23] A. Huang, in Proceedings of the Sixth New Zealand Computer Science

Research Student Conference (NZCSRSC2008), Christchurch, New Zealand

(2008), pp. 49–56.

[24] Wikipedia, Vector Space Model — Wikipedia, the Free Encyclopedia (2015).

[25] B. Pritychenko, CoRR abs/1411.1899, (2014).

[26] G. Navarro, ACM Comput. Surv. 33, 31 (2001).

[27] V. I. Levenshtein, Soviet Physics Doklady 10, 707 (1966).

[28] D. Blei, Probabilistic Topic Models (2012).

[29] D. Blei and J. Lafferty, Topic Models (2009).

[30] D. M. Blei, A. Y. Ng, and M. I. Jordan, The Journal of Machine Learning

Research 3, 993 (2003).

[31] P. Pinoli, D. Chicco, and M. Masseroli, Computational Intelligence in

Bioinformatics and Computational Biology, 2014 IEEE Conference on 1 (2014).

[32] M. Nikolić, Intelligent Data Analysis 40, (2012).

[33] C. C. Aggarwal, editor, Data Classification: Algorithms and Applications

123

(CRC Press, 2014).

[34] M. Hahsler, C. Buchta, B. Gruen, and K. Hornik, Arules: Mining Association

Rules and Frequent Itemsets (2015).

[35] M. Hahsler, B. Gruen, and K. Hornik, Journal of Statistical Software 14, 1

(2005).

[36] R. Agrawal, R. Srikant, and others, in Proc. 20th Int. Conf. Very Large

Data Bases, VLDB (1994), pp. 487–499.

[37] J. MacQueen and others, Proceedings of the Fifth Berkeley Symposium on

Mathematical Statistics and Probability 1, 281 (1967).

[38] A. K. Jain, Pattern Recognition Letters 31, 651 (2010).

[39] A. K. Jain, M. N. Murty, and P. J. Flynn, ACM Comput. Surv. 31, 264

(1999).

[40] R. Tibshirani, G. Walther, and T. Hastie, Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 63, 411 (2001).

[41] D. L. Davies and D. W. Bouldin, Pattern Analysis and Machine Intelligence,

IEEE Transactions on 224 (1979).

[42] Wikipedia, Davies–Bouldin Index — Wikipedia, the Free Encyclopedia

(2015).

[43] T. Calinski and J. Harabasz, Communications in Statistics-Theory and

Methods 3, 1 (1974).

[44] ttnphns, What Is an Acceptable Value of the Calinski & Harabasz (CH)

Criterion? (2015).

[45] M. Walesiak, A. Dudek, and, ClusterSim: Searching for Optimal Clustering

Procedure for a Data Set (n.d.).

124

	Introduction
	Thesis Organization
	The Nuclear Science References Website
	NSR Explorer - Web Application

	The Data and Database
	NSR Data
	Keyword Abstracts

	Data Preparation
	Data Representation
	The Database
	MongoDB
	Indexing the Data
	MongoDB Aggregation Framework
	Future Work - The Database

	Conclusion

	Data Summarization
	Data Composition and Queries
	Author Contributions
	Visualizations

	Network Analysis and Visualization
	Data Graphs
	Nuclide Graphs
	Implementation
	Exporting Graph Data

	Text Mining
	Vector Space Model
	Similar Papers

	Author Name Analysis
	Levenshtein Distance
	Transformations
	Collaboration Groups

	The Application
	Future Work - Text Mining

	Data Mining
	Association Mining
	Cluster Analysis
	K-means Clustering
	Initial Author Clustering
	Secondary Clustering
	The Application

	Future Work - Data Mining

	Conclusions
	Appendix
	parseNSRtoJSON.pl
	massageJSONtoSchema.pl
	flattenJSONforMongo.pl
	prepare-data.py
	update-database.py
	calc-author-name-dist.py
	calc-author-name-transform-pairs.py
	calc-cosine-sims.py
	parse-arules-output.py
	nsr_app.py
	main.js
	force-graph.js

	Bibliography

