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Abstract 

 
 

Empirical and numerical approaches to predicting the thermal performance of 

green roofs 

 

 

 

Luke Gebert 

 

 

 

Green roofs are increasingly recognised as a sustainable option for reducing building 

energy demand. However, given the large investment required for their construction, 

accurate modelling methods are needed to predict their economic benefits for building 

owners and maximize their effectiveness. The representation of vegetation in the green roof 

energy balance model literature is reviewed to identify their limitations. It is concluded that 

an overemphasis on single source models, minimal validation periods and limited input 

data is likely burdening the robustness and applicability of these models. Using data 

collected in Calgary, Halifax and London, this study then aims to develop empirical models 

to offer another approach for predicting the thermal performance of green roofs. Significant 

multiple linear regression models highlight the importance of net radiation, air-to-surface 

temperature difference and humidity in predicting the substrate heat flux, with the green 

roof in the driest climate; Calgary, being the most effective.   
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Chapter 1: Introduction 
 

 

 

The socio-economic activities of urban areas exert considerable pressure on natural 

resources and the environment. For instance, cities are estimated to account for more than 

70% of the world’s energy-related CO2 emissions (Kort et al. 2012). Buildings are one of 

the main sites of energy use in urban areas. Population growth and improvements in 

building services have resulted in building energy demand increasing to the levels of the 

transportation and industry sectors (Pérez-Lombard et al. 2008). Buildings were 

responsible for approximately 32% of the world’s energy demand in 2010, representing 

approximately 30% of energy-related CO2 emissions and one-third of black carbon 

emissions (Lucon et al. 2014). Thermal energy demand comprises a large but temporally 

and spatially variable portion of the total energy demand for buildings.  

Preventing heat stress and optimizing indoor thermal conditions to achieve 

acceptable standards of thermal comfort accounts for a large portion of the thermal energy 

demand. The human body responds to the thermal environment in a dynamic interaction 

that can lead to death if the body’s response is inappropriate or if the energy levels are 

beyond the limits that are survivable. A person’s response to the thermal environment 

determines the stress on their body as it uses its resources to maintain an optimum state and 

will therefore determine whether or not they are in thermal comfort (Parsons, 2014). 

Research has consistently shown that heat stress negatively impacts cognitive performance 

as stress forces an individual to allocate attentional resources to coping with the stress, 

reducing their capacity to process relevant information (Hancock et al. 2007).    
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In developed countries, improving thermal comfort with the use of space 

conditioning; heat, ventilation and air conditioning (HVAC) systems, accounts for around 

half of the energy demand for buildings and roughly 20% of the total energy use in the 

USA (Pérez-Lombard et al. 2008). At a global scale, it is estimated that over 60% of 

residential and around 50% of commercial building energy demand is for thermal purposes; 

with water heating and cooling being the dominant contributors for residential and 

commercial buildings, respectively (Ürge-Vorsatz et al. 2015).  

 

1.1 Future stresses of thermal energy demand 

 

The future thermal and energy performance of buildings is likely to be burdened by 

anthropogenic climate change (Li et al. 2012). Average global surface temperatures are 

anticipated to rise by 0.8-2.6 °C by 2050 and 2.5-7.8 °C by 2100 compared to pre-industrial 

levels as a result of continued greenhouse gas emissions and land use change. Rises in 

average temperatures are also likely to be accompanied by an increase in the frequency and 

intensity of heatwaves, with the IPCC Fifth Assessment report stating a 90% likelihood of 

significant increases occurring by the end of the 21st century (Collins et al. 2013).  

These predictions are imposed on the existing urban heat island (UHI). The UHI 

refers to the higher temperatures commonly occurring in urban areas compared to their 

rural surroundings and is the most documented phenomenon of climate change. It results 
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from the following modifications to the energy balance associated with urban development 

(Landsberg, 1981; van der Zee et al. 1998; Akbari & Konopacki, 2005; Rizwan et al. 2008): 

 

 Building materials, such as asphalt and concrete, store and re-radiate a greater 

amount of heat compared to natural environments 

 Building materials also have a lower albedo than natural surfaces increasing the 

amount of energy that is absorbed 

 Substituting vegetation with impervious surfaces reduces passive cooling via 

evapotranspiration  

 Urban canyons increase heat absorption and decrease wind flow thus reducing heat 

losses by turbulent transfer  

 Anthropogenic heat generation, including industrial and vehicular combustion, 

provides additional heat sources in urban areas 

 Higher concentrations of greenhouse gases in urban areas due to more emission 

sources enhances the absorption of long-wave radiation by the urban atmosphere 

 

Contemporary observations of the urban heat island intensity (UHII) have been in 

excess of 6 ºC (Hinkel et al. 2003). Higher urban temperatures result in greater energy 

consumption for cooling and peak electricity demand in cities (Akbari & Konopacki, 2004; 

Hirano & Fujita, 2012). Additionally, it has been predicted that the UHII in some cities 
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could rise to more than 10 ºC by 2100 (Wilby, 2008). This will have important implications 

for the health of urban populations and urban healthcare facilities as the effect of heat waves 

on human health is more pronounced in urban populations compared to their rural 

counterparts (Tan et al. 2007). Tan and colleagues observed that heat-related mortalities 

were generally much greater in the inner city areas of Shanghai, China compared to 

surrounding areas. This has been attributed to city inhabitants experiencing the thermal 

anomalies associated with heat waves for longer periods of time and at greater intensities 

than rural populations (Sheridan & Dolney 2003). 

Future urban population growth is likely to further exacerbate energy demand 

concerns in urban areas. According to the 2014 United Nation population projections 

shown in Fig 1.1, the percentage of the world’s population living in urban areas is expected 

to rise from 54% in 2014 to 66% by 2050. This represents an additional 2.5 billion people 

to the world’s urban population by mid-century (UN, 2014).  
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Fig 1.1 UN projections of urban and rural populations (UN, 2014) 

 

Fig 1.2 combines these anticipated climate and population stressors using the mean 

surface air temperature projections for the mid-21st century and the predicted populations 

of the world’s largest cities. As seen in this figure, large North American cities will likely 

face significant temperature increases by mid-century. These projections highlight the 

urgent need for energy conservation measures if buildings are to be more sustainable while 

simultaneously being able to provide comfortable thermal conditions in spite of rising 

average temperatures for an increasingly urbanized world. It is anticipated that if energy-

efficient technologies are broadly applied to new and existing buildings, total energy use 

by buildings may stay constant or even decline by mid-century (Lucon et al. 2014). 

 

Rural population Urban population Urban population as percentage of world population 



  6 
 

 
 
  

 

 

     

 

 

 

 

 

Fig 1.2 Large cities (populations 750,000+) according to 2025 population projections and 

mid-21st century temperature increase according to an unchanged current GHG emission 

scenario (Source: Revi et al. 2014) 

 

1.2 Approaches to energy conservation  

 

A variety of energy conservation measures exists to lower a building’s energy 

demand for thermal purposes. The building envelope (i.e. walls, roofs, floors, doors and 

windows) will impact the energy demand for conditioning a building. Common approaches 

to improving the thermal performance of the existing building envelope include the 

addition of thermal insulation, installing more energy-efficient windows and simple and 

Mid-21st century °C 2025 city population 
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inexpensive weatherstripping techniques to reduce air leakage into the building (Krarti, 

2010).  

These envelope conservation measures are particularly effective for residential 

buildings as their energy use is dominated by weather since heat gains and losses from 

direct heat conduction or from air infiltration or exfiltration through building surfaces 

accounts for a large portion of the buildings energy consumption (Krarti, 2010). However, 

for commercial buildings, which represent between 10 and 30% of total building sector 

thermal energy consumption in most regions (Lucon et al. 2014), improvements to the 

building envelope are often not cost-effective as modifications such as replacing windows 

and adding thermal insulation are  usually considerably expensive (Krarti, 2010).   

Another measure commonly recommended for conserving building thermal energy 

demand, typically for commercial buildings, is the modification of HVAC systems. There 

are numerous options for improving the energy efficiency of a HVAC system, including 

thermostat set-backs or set-ups during unoccupied periods, installing heat recovery systems 

if possible and retrofitting constant air volume systems with variable air volume systems 

when the existing HVAC system relies on constant volume fans to condition part or the 

entire building (Krarti, 2010). Through upgrades of HVAC equipment, and without 

changing the building envelope, commercial buildings have generally been able to achieve 

approximately a 25-50% reduction in space conditioning energy use (Harvey, 2013).  
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To complement these energy-efficient methods, green roofs, also known as 

vegetated or living roofs, offer a passive and more sustainable means to mitigating building 

thermal energy demand. These engineered roofing systems contain a growing medium 

(substrate) to support vegetation growth on man-made structures, most commonly rooftops. 

Green roofs impact building energy demands through their direct and indirect effects. The 

direct effect refers to green roofs altering the heat flow through a roof as a result of changing 

the surface temperature and increasing insulation levels. The indirect effect refers to green 

roofs altering the near surface air temperature which is assumed to increase the cooling 

capacity and energy efficiency of a HVAC system (Virk et al. 2015). 

The support layers between the substrate and the roof structure varies but, as 

displayed in Fig 1.3, typically includes a root barrier to protect the roofing membrane from 

root penetration damage. Above the barrier, a drainage layer allows excess water not 

retained by the substrate to flow away from the roof and separating the substrate and 

drainage layer is a filter medium to prevent silt and particulate matter from blocking the 

drainage layer (Getter and Rowe, 2006).  
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Fig 1.3 Cross-section of a typical green roof  

 

 

Green roofs are typically categorised according to the depth of their growing 

medium, with intensive green roofs having deeper substrates of 15+ cm and extensive green 

roofs featuring shallower soils, typically between 5 and 15 cm. The deeper substrate of 

intensive green roofs can support a wider variety of plants, including shrubs and trees, than 

extensive green roofs offering enhanced ecosystem services over their shallower 

counterparts (Berndtsson et al. 2009; Razzaghmanesh & Beecham, 2014). However, the 

application of intensive green roofs is restricted due to their increased maintenance needs 

and weight, the latter limiting their establishment to buildings with a sufficient vertical load 

capacity. Given their lighter weight, extensive green roofs have a greater range of 

application.  

Given the generally harsh environmental conditions plants are exposed to on green 

roofs, such as limited water availability due to shallow substrates, large temperature 

fluctuations, increased exposure to wind and solar radiation and nutrient deficient soils, 

appropriate plant species selection is vital to increase survival rates. Many perennial 
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succulents, particularly Sedum species which are the most commonly used plants on 

extensive green roofs, such as Sedum acre L. and Sedum album L., (Monterusso et al. 2005; 

Nagase & Dunnett, 2010), have proven to be ideal for extensive green roofs as they are 

physiologically adapted to withstand similar environmental conditions. Such adaptations 

include an increased water storage capacity and some species exhibiting the Crassulacean 

acid metabolism (CAM) photosynthetic pathway which involves stomata opening at night 

to fix carbon allowing the stomata to remain closed during the day when the vapour 

pressure deficit (VPD, kPa) is greater in order to minimize transpirational water loss 

(Reyes-García & Griffiths, 2009). The results of Butler and Orians (2011) also suggested 

that Sedum may expand the range of suitable plants for green roofs as they found Sedum 

spp. to have a facilitating effect on neighbouring species during times of summer water 

deficit.  

Other commonly used low-maintenance plants that have been shown to be suitable 

in extensive green roof applications include grasses, such as Festuca L., and herbaceous 

perennials, like Allium L. and Dianthus L (Dunnett & Nolan, 2004; Snodgrass & Snodgrass, 

2006). Given the importance of evapotranspiration to the cooling performance of green 

roofs and succulents water use efficiency minimizing their transpiration rates, non-

succulents have generally been found to be more beneficial for cooling. In a study by 

Blanusa and colleagues (2013), the broad-leaved herbaceous perennial Stachys byzantine 

was found to cool the soil surface greater than other test species, including a Sedum mixture.   
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1.3 Thermal performance of green roofs 

 

Through modification of the surface energy balance, relative to conventional roofs, 

green roofs reduce the amount of incoming solar radiation that enters the building through 

the roof membrane. In particular, the increase in heat dissipation through latent fluxes as 

well as an increase in albedo and thermal insulation are the main processes by which green 

roofs provide a thermal benefit to buildings. The specific energy benefits that a particular 

green roof provides depend on the local climate, time of year, design parameters and the 

building’s characteristics. From existing studies performed on various types of buildings, 

the anticipated reduction in the annual energy load for a building installed with a green roof 

is between approximately 1% and 40% (Santamouris 2014).     

Seasonal studies have shown that green roofs generally exhibited less fluctuation in 

surface temperatures and heat flux compared to conventional roofs (Eumorfopoulou & 

Aravantinos, 1998; Teemusk & Mander, 2009; Getter et al. 2011). In empirical studies, 

green roofs have been shown to significantly reduce heat flux in comparison to 

conventional roofs during summer periods as they minimize heat gains and maximize heat 

losses (Niachou et al. 2001; Santamouris et al. 2007; Getter et al. 2011; Theodosiou et al. 

2014). Conversely, while research has suggested that the reduction of indoor heat loss in 

winter by green roofs is significantly less than the cooling effect in summer (Spolek, 2008; 
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Jim & Tsang, 2011; Jim, 2014), other studies have suggested that the thermal effect of 

green roofs is negligible during winter as the substrate is usually wet and therefore has a 

high thermal conductivity thus limiting its thermal insulation (Santamouris et al. 2007; 

Spala et al. 2008; Theodosiou et al. 2014). On the contrary, low soil moisture in drier 

climates may result in green roofs being less effective due to a reduction in latent heat loss 

(Coutts et al. 2013; Li et al. 2014).  

Aside from the moisture content of the substrate, the substrate’s depth is considered 

the most important design parameter for optimizing the thermal performance of a green 

roof as it largely defines its overall heat transfer coefficient; U-value. While research has 

suggested that green roof vegetation plays little role in the thermal performance of a green 

roof (Liu & Minor, 2005), other studies have emphasised the importance of plant species 

selection, with the optical properties of individual plants and increased species diversity 

correlated with a reduction in heat flux (Lundholm et al. 2010; Morau et al. 2012; Zhao et 

al. 2014).      

Building characteristics, particularly insulation and building height, also greatly 

influence the energy contribution of green roofs. The energy benefit tends to be neutralised, 

particularly during summer, for well and moderately insulated buildings due to the lower 

thermal transmittance between the green roof and the interior space of the building 

(Nichaou et al. 2001; D’Orazio et al. 2012; Zinzi & Agnoli, 2012; Zhao et al. 2014). 

Nevertheless, green roofs are still practical for retrofitting non-insulated buildings. For 
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instance, in Tokyo and London, extensive retrofitting of urban buildings with improved 

insulation has begun in order to reduce energy requirements (Walker & Bellingham, 2011). 

Furthermore, in the case of Tokyo where the Philippine Sea plate subducts under the 

metropolitan region resulting in an increased earthquake risk (Sato et al. 2005), the existing 

seismic load capacity of buildings means their vertical load capacity, which plays an 

important role in the lateral-force-resisting system, is also enhanced due to the need for a 

high vertical load redistribution capacity (Taranath, 2004). This requirement of a high 

vertical load capacity means many Tokyo buildings can support green roof infrastructure. 

Additionally, in a modelling study undertaken using 2050 climate projections for London, 

Virk and colleagues (2014) found a simulated conditioned commercial building regularly 

exceeded thermal comfort limits without the presence of a retrofitted green roof. Therefore, 

in cities such as Tokyo and London where the widespread retrofitting of buildings’ 

insulation has begun to minimize future energy use and adapt to climate change, green roofs 

are also a viable option for reducing building energy needs and improving thermal comfort.   

When green roofs are installed on high rise buildings, the expected thermal benefits 

are very limited due to the dominance of heat transfer through the walls (Min et al. 2014). 

Additionally, for buildings in which the energy load is primarily due to the transfer of heat 

through the envelope, green roofs can contribute significantly to the reduction of heating 

and cooling loads. On the contrary, if a building’s energy load is primarily governed by 
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ventilation gains or losses and/or internal or solar gains through walls and windows, green 

roofs are likely to have a limited energy contribution (Santamouris, 2014).    

Cool or reflective roofs are another roofing approach to minimizing the influence 

meteorological conditions have on building energy demand. Cool roofs are characterized 

by roofing materials that have a high solar reflectance and high thermal emittance (Zinzi & 

Agnoli, 2012). This approach provides a cooling effect due to the greatly increased 

reflectance and emittance of radiation, with commercially available materials typically 

have a reflectance between 0.4 and an emissivity of 0.9 (Bretz & Akbari, 1997). 

Conventional roofs on the other hand typically have an albedo in the lower end of the range 

0.05-0.25 (USEPA, 2005) while green roofs have an average albedo around 0.2 (Gaffin et 

al. 2009). For instance, comparing a white elastomeric coating that had an albedo greater 

than 0.72 with a black coating with an albedo of 0.08, Taha and colleagues (1992) found 

the surface temperature of cool roof was 45°C cooler.  

While cool roofs have been found to reduce urban heat island intensity and surface 

temperatures more effectively than green roofs (Scherba et al. 2011; Mackey et al. 2012), 

research has varied as to whether or not green roofs are more effective for internal building 

comfort, given the very low U-value of cool roofs (Di Giuseppe & D'Orazio, 2015). A 

comparative simulation study by Sailor and colleagues (2011) found cool roofs provided 

more energy savings in warmer climates while green roofs were more beneficial in cooler 

climates. As an empirical example of cool roofs enhanced energy saving potential in 
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warmer climates, Coutts et al. (2013) found cool roofs to be more beneficial for the energy 

transfer into buildings when the soil moisture in the green roof system was low in 

Melbourne, Australia, a city with a Mediterranean climate characterized by extended 

periods of hot dry weather during the summer. However, in a review by Santamouris (2014) 

it was noted that the result of specific studies comparing the performance of green and cool 

roofs is case sensitive and they are greatly influenced by the characteristics of the particular 

roofing systems considered, such as the difference in their thermal capacitance and 

insulation properties. Additionally, weathering has been found to decrease the reflectance 

of cool roofs as a result of damage due to ultraviolet radiation, wind and acid rain, dust 

load, microbial growth and biomass accumulation, moisture penetration and condensation 

(Bretz & Akbari, 1997; Berdahl et al. 2002; Miller et al. 2002; Levinson et al. 2005; Cheng 

et al. 2011, 2012).  

Besides the thermal benefits of green roofs, evidence suggests they can also offer a 

multitude of other benefits at a building and urban scale, an attribute cool roofs do not 

possess. As roofs tend to account for approximately 40-50% of the impermeable surface 

area in most developed cities (Stovin et al. 2012) and available free ground area in urban 

areas is often quite limited and of high economic value (Santamouris 2014), green roofs 

can greatly increase the amount of green space in heavily urbanized areas. By reintroducing 

vegetation into the urban environment, green roofs have been found to be effective in 

retaining and detaining stormwater to provide a decentralised stormwater management tool 
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(Hathaway, et al. 2008; Monterusso et al., 2002; Rowe, 2011; Schmidt, 2006), reducing air 

and stormwater pollution (Rowe, 2011), noise attenuation (Van Renterghem & 

Botteldooren, 2011), increasing fire resistance (Köhler, 2003), providing habitat and 

enhancing urban biodiversity (Brenneisen, 2003; Dunnett et al. 2008; Gedge & Kadas, 

2005) carbon sequestration (Getter et al., 2009), agricultural production (Whittinghill et al. 

2013) and increasing the lifespan of the roofing membrane (Porsche and Köhler 2003). On 

the other hand, cool roofs only offer the benefit of surface cooling which requires regular 

maintenance to be fully achieved. As green roofs vary so much in design and performance, 

Simmons and colleagues (2008) suggested that they must be designed according to specific 

goals rather than relying on assumed inherent attributes.   

    

1.4 Predicting the thermal performance of green roofs 

   

Given the monetary expense required to construct a green roof and the 

interconnected sensitivity of a green roof’s energy performance to its design and climate, 

the accurate prediction of a green roof’s energy conservation potential will likely increase 

the likelihood of a building owner investing in a green roof as well as increase the design’s 

effectiveness if the installation of a green roof is deemed advantageous. Recent initial 

construction costs of standard green roofs in Canada have been reported as $130/m2-

$165/m2 for extensive green roofs and starting at approximately $540/m2 for intensive 

http://www.sciencedirect.com/science/article/pii/S0360132310002982
http://www.sciencedirect.com/science/article/pii/S0360132310002982
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green roofs (Bianchini & Hewage, 2012a). Additionally, annual operation and maintenance 

costs have been estimated to be between $0.7/m2 and $13.5/m2 (Acks, 2006). However, 

considering these costs and the benefits of green roofs like those mentioned in Section 1.3, 

Bianchini and Hewage (2012b) estimated an average payback period in Canada of 10.4 

years for extensive green roofs and 14 years for intensive green roofs, with green roofs 

expected to have a lifespan between 40 (Clark et al. 2008) and 55 years (Acks, 2006). Cost-

benefit analyses like theirs rely heavily on the accurate prediction of the environmental 

benefits that green roofs can offer, including their thermal performance.     

Mathematical models allow observations to be used to make predictions. They 

facilitate prognoses of how processes may operate in conditions other than those observed. 

Models also provide an opportunity for mechanistic insights to be gained through the 

organization of observations into explicit mathematical expressions. Models and 

observations are not perfect representations of real systems and therefore error must be 

accommodated for in both observations and models (Monson & Baldocchi, 2014). 

Mathematical models can be generated in one of two ways: 

 

 Empirical models: Observations are organized using statistical correlations 

allowing unknown dependent variables to be predicted from known independent 

variables 
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 Mechanistic (numerical) models: Theoretical knowledge (process theory) is used to 

relate dependent variables to independent variables 

 

Empirical models contain the implicit assumption that multivariate correlations are 

maintained in conditions other than those of the original observations. Mechanistic models 

on the other hand are often burdened by available theory with assumptions often having to 

be made to fill gaps in knowledge. Conventionally, mechanistic models are expected to be 

more accurate at predicting unobserved conditions as empirical models are based on limited 

observations that are not necessarily going to overlap with future states of the system. 

However, assumptions resulting from gaps in theory and uncertainties regarding 

appropriate input parameters for plants and substrates can result in as much, or more, error 

in mechanistic model predictions as empirical models (Monson & Baldocchi, 2014).  

 

1.5 Direction of thesis 

 

Given the importance of predicting the thermal performance of green roofs and the 

modelling techniques involved, this thesis will involve both empirical and mechanistic 

approaches to modelling the thermal behaviour of green roofs. Firstly, given the recent 

increase in published green roof energy models, Chapter 2 will provide a theoretical review 

substantiated by empirical evidence of the processes underpinning these existing 
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mechanistic models. Secondly, the development and application of an empirical model for 

green roof thermal performance will be discussed in Chapter 3. This model will involve 

green roof data collected from three identical sites in Canada; Calgary, Alberta; Halifax, 

Nova Scotia; and London, Ontario. Lastly, Chapter 4 will provide conclusions. 

 

The research objectives are therefore summarised as: 

 

(1) Critically review the representation of vegetation in the green roof energy model 

literature by combining existing theoretical and experimental data to provide 

general conclusions  and suggestions for the refinement of numerical models 

 

(2) Characterize substrate heat flux of green roofs located in different climates as well 

as develop and validate empirical green roof energy models for the prediction of 

substrate heat fluxes  

 

 

 

 

 

 

 

 

 

 

 

 



  20 
 

 
 
  

 

 

References 

 

Acks, K. (2006). A framework for cost-benefit analysis of green roofs: Initial estimates. In  

Green roofs in the New York Metropolitan Region: Research report. New York: 

Columbia University Center for Climate Research and NASA Goddard Institute for 

Space Studies. 

 

Akbari, H., & Konopacki, S. (2004). Energy effects of heat-island reduction strategies in  

 Toronto, Canada. Energy and Buildings, 29, 191–210. 

 

Akbari, H., & Konopacki, S. (2005). Calculating energy-saving potentials of heat-island  

 reduction strategies. Energy Policy, 33(6), 721-756. 

 

Berdahl, P., Akbari, H., & Rose, L.S. (2002). Aging of reflective roofs: Soot deposition.  

 Applied Optics, 41, 2355–2360. 

 

Berndtsson, J.C., Bengtsson, L., & Jinno, K. (2009). Runoff water quality from intensive  

 and extensive vegetated roofs. Ecological Engineering, 35(3), 369-380. 

 

Bianchini, F., & Hewage, K. (2012a). How “green” are the green roofs? Lifecycle analysis  

 of green roof materials. Building and Environment, 48, 57-65. 

 

Bianchini, F., & Hewage, K. (2012b). Probabilistic social cost-benefit analysis for green  

 roofs: A lifecycle approach. Building and Environment, 58, 152-162. 

 

Blanusa, T., Monteiro, M.M.V., Fantozzi, F., Vysini, E., Li, Y., & Cameron, R.W. (2013).  

Alternatives to Sedum on green roofs: Can broad leaf perennial plants offer better 

‘cooling service’?. Building and Environment, 59, 99-106. 

 

Brenneisen, S. (2003, May). The benefits of biodiversity from green roofs: Key design  

consequences. In Proceedings of the 1st North American Green Roof Conference 

(pp. 323-329). 

 

Bretz, S.E., & Akbari, H. (1997). Long-term performance of high-albedo roof coatings.  

 Energy and Buildings, 25, 159–167. 

 

Butler, C., & Orians, C.M. (2011). Sedum cools soil and can improve neighboring plant  

performance during water deficit on a green roof. Ecological Engineering, 37(11), 

1796-1803. 

 



  21 
 

 
 
  

 

 

Cheng, M.D., Miller, W., New, J., & Berdahl, P. (2012). Understanding the long-term  

effects of environmental exposure on roof reflectance in California. Construction 

and Building Materials, 26(1), 516-526. 

 

Cheng, M.D., Pfiffner, S.M., Miller, W.A., & Berdahl, P. (2011). Chemical and microbial  

effects of atmospheric particles on the performance of steep-slope roofing 

materials. Building and Environment, 46(5), 999-1010. 

 

Clark, C., Adriaens, P., & Talbot, F.B. (2008). Green roof valuation: A probabilistic  

economic analysis of environmental benefits. Environmental Science & 

Technology, 42(6), 2155-2161. 

 

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L. , Fichefet, T., Friedlingstein, P., Gao,  

X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J., 

& Wehner, M. (2013). Long-term climate change: Projections, commitments and 

irreversibility. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. 

Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (eds.), Climate change 2013: 

The physical science basis. Contribution of Working Group I to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 

& New York: Cambridge University Press. 

 

Coutts, A.M., Daly, E., Beringer, J., & Tapper, N.J. (2013). Assessing practical measures  

to reduce urban heat: Green and cool roofs. Building and Environment, 70, 266-

276. 

 

D’Orazio, M., Di Perna, C., & Di Giuseppe, E. (2012). Green roof yearly performance: A  

case study in a highly insulated building under temperate climate. Energy and   

Buildings, 55, 439-451. 

 

Di Giuseppe, E., & D'Orazio, M. (2015). Assessment of the effectiveness of cool and green  

roofs for the mitigation of the Heat Island effect and for the improvement of thermal 

comfort in Nearly Zero Energy Building. Architectural Science Review, 58(2), 134-

143. 

 

Dunnett, N., Nagase, A., & Hallam, A. (2008). The dynamics of planted and colonising 

species on a green roof over six growing seasons 2001–2006: Influence of substrate 

depth. Urban Ecosystem, 11, 373–384. 

 

 

 



  22 
 

 
 
  

 

 

Dunnett, N., & Nolan, A. (2004). Effect of substrate depth and supplementary watering on  

the growth of nine herbaceous perennials in a semi-extensive green roof. Acta 

Horticulturae, 643, 305-309. 

 

Eumorfopoulou, E., & Aravantinos, D. (1998). The contribution of a planted roof to the  

 thermal protection of buildings in Greece. Energy and Buildings, 27(1), 29-36. 
 

Gaffin, S.R., Khanbilvardi, R., & Rosenzweig, C. (2009). Development of a green roof  

environmental monitoring and meteorological network in New York 

City. Sensors, 9(4), 2647-2660. 

 

Gedge, D., & Kadas, G. (2005). Green roofs and biodiversity. Biologist, 52 (3), 161–169. 

 

Getter, K.L., & Rowe, D.B. (2006). The role of extensive green roofs in sustainable  

 development. HortScience, 41(5), 1276-1285. 

 

Getter, K.L., Rowe, D.B., Andresen, J.A., & Wichman, I.S. (2011). Seasonal heat flux  

properties of an extensive green roof in a Midwestern US climate. Energy and 

Buildings, 43(12), 3548-3557. 

 

Getter, K.L., Rowe, D.B., Robertson, G.P., Cregg, B.M., & Andresen, J.A. (2009). Carbon  

sequestration potential of extensive green roofs. Environmental Science & 

Technology, 43, 7564–7570. 

 

Hancock, P.A., Ross, J.M., & Szalma, J.L. (2007). A meta-analysis of performance  

response under thermal stressors. Human Factors: The Journal of the Human 

Factors and Ergonomics Society, 49(5), 851-877. 

 

Harvey, L.D. (2013). Recent advances in sustainable buildings: Review of the energy and  

cost performance of the state-of-the-art best practices from around the 

world. Annual Review of Environment and Resources, 38, 281-309. 

 

Hathaway, A.M., Hunt, W.F., & Jennings, G.D. (2008). A field study of green roof  

 hydrologic and water quality performance . Trans ASABE, 51, 37–44. 

 

 

Hinkel, K.M., Nelson, F.E., Klene, A.E., & Bell, J.H. (2003). The urban heat island in  

winter at Barrow, Alaska. International Journal of Climatology, 23 (15), 1889-

1905. 

 



  23 
 

 
 
  

 

 

Hirano, Y., & Fujita, T. (2012). Evaluation of the impact of the urban heat island on  

Residential and commercial energy consumption in Tokyo. Energy, 37(1), 371-

383. 

 

Jim, C.Y. (2014). Passive warming of indoor space induced by tropical green roof in  

 winter. Energy, 68, 272-282. 

 

Jim, C.Y., & Tsang, S.W. (2011). Biophysical properties and thermal performance of an  

 intensive green roof. Building and Environment, 46(6), 1263-1274. 

 

Krarti, M. (2010). Energy audit of building systems: An engineering approach (2nd ed.).  

 Boca Raton: CRC Press. 

 

Köhler, M. (2003, May). Plant survival research and biodiversity: Lessons from Europe.  

Presented at Greening Rooftops for Sustainable Communities (pp. 313–322), 

Chicago. 
 

Kort, E.A., Frankenberg, C., Miller, C.E., & Oda, T. (2012). Space‐based observations of  

 megacity carbon dioxide. Geophysical Research Letters, 39(17), L17806. 

 

Landsberg, H.E. (1981). The Urban Climate. New York: Academic Press. 

 

Levinson, R., Berdahl, P., Berhe, A.A., & Akbari, H. (2005). Effects of soiling and cleaning  

on the reflectance and solar heat gain of a light-colored roofing 

membrane. Atmospheric Environment, 39(40), 7807-7824. 

 

Li, D., Bou-Zeid, E., & Oppenheimer, M. (2014). The effectiveness of cool and green roofs  

as urban heat island mitigation strategies. Environmental Research Letters, 9(5), 

055002. 

 

Li, D.H., Yang, L., & Lam, J.C. (2012). Impact of climate change on energy use in the built  

 environment in different climate zones–a review. Energy, 42(1), 103-112. 

 

Liu, K., & Minor, J. (2005, May). Performance evaluation of an extensive green roof.  

Presented at Green rooftops for sustainable communities (pp. 1-11), Washington 

D.C. 

 

 

 

 



  24 
 

 
 
  

 

 

Lucon O., Ürge-Vorsatz, D., Zain Ahmed, A., Akbari, H., Bertoldi, P., Cabeza, L.F., Eyre,  

N., Gadgil, A., Harvey, L.D.D., Jiang, Y., Liphoto, E., Mirasgedis, S., Murakami, 

S., Parikh, J., Pyke, C., & Vilariño, M.V. (2014). Buildings. In O. Edenhofer, R. 

Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, 

S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von 

Stechow, T. Zwickel & J.C. Minx (eds.), Climate change 2014: Mitigation of 

climate change (pp. 671-738). Contribution of Working Group III to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 

& New York: Cambridge University Press. 

 

Lundholm, J., MacIvor, J. S., MacDougall, Z., & Ranalli, M. (2010). Plant species and  

functional group combinations affect green roof ecosystem functions. PLoS 

One, 5(3), e9677. 

 

Mackey, C.W., Lee, X., & Smith, R.B. (2012). Remotely sensing the cooling effects of city  

 scale efforts to reduce urban heat island. Building and Environment, 49, 348-358. 

 

Miller, W.A., Cheng, M-D., Pfiffner, S., & Byars, N. (2002). The field performance of high-  

reflectance single-ply membranes exposed to three years of weathering in various 

U.S. climates. Final Report to SPRI, Inc. 

 

Min, H., Yoon, D., & Ju, S. (2014). Heating and cooling energy conservation effects by  

green roof systems in relation with building location, usage and number of floors. 

KIEAE Journal, 14(2), 11-19. 

 

Monson, R., & Baldocchi, D. (2014). Terrestrial biosphere-atmosphere fluxes. New York:  

 Cambridge University Press. 

 

Monterusso, M.A., Rowe, D.B., & Rugh, C.L. (2005). Establishment and persistence of  

Sedum spp. and native taxa for green roof applications. HortScience, 40(2), 391-

396. 

 

Monterusso, M.A., Rowe, D.B., Rugh, C.L., & Russell, D.K. (2002, August). Runoff water  

quantity and quality from green roof systems. In XXVI International Horticultural 

Congress: Expanding Roles for Horticulture in Improving Human Well-Being and 

Life Quality 639 (pp. 369-376). 

 

Morau, D., Libelle, T., & Garde, F. (2012). Performance evaluation of green roof for  

thermal protection of buildings in Reunion Island. Energy Procedia, 14, 1008-

1016. 



  25 
 

 
 
  

 

 

Nagase, A., & Dunnett, N. (2010). Drought tolerance in different vegetation types for  

extensive green roofs: Effects of watering and diversity. Landscape and Urban 

Planning, 97(4), 318-327. 

 

Niachou, A., Papakonstantinou, K., Santamouris, M., Tsangrassoulis, A., & Mihalakakou,  

G. (2001). Analysis of the green roof thermal properties and investigation of its 

energy performance. Energy and Buildings, 33(7), 719-729. 

 

Parsons, K. (2014). Human thermal environments: The effects of hot, moderate, and cold  

environments on human health, comfort, and performance (3rd ed.). Boca Raton: 

CRC Press. 

 

Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption  

 information. Energy and Buildings, 40(3), 394-398. 

 

Porsche, U., & Köhler, M. (2003, December). Life cycle costs of green roofs: A comparison  

of Germany, USA, and Brazil. In Proceedings of the World Climate and Energy 

Event. Retrieved from http://www.gruendach-mv. de/en/ri03_461_u_porsche.pdf  

 

Razzaghmanesh, M., & Beecham, S. (2014). The hydrological behaviour of extensive and  

intensive green roofs in a dry climate. Science of the Total Environment, 499, 284-

296. 

 

Revi, A., Satterthwaite, D.E., Aragón-Durand, F., Corfee-Morlot, J., Kiunsi, R.B.R.,  

Pelling, M., Roberts, D.C., & Solecki, W. (2014). Urban areas. In C.B. Field, V.R. 

Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. 

Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, 

P.R. Mastrandrea, & L.L.White (eds), Climate change 2014: Impacts, adaptation, 

and vulnerability (pp. 535-612). Contribution of Working Group II to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 

& New York: Cambridge University Press. 

 

Reyes-García, C., & Griffiths, H. (2009). Ecophysiological studies of perennials of the 

Bromeliaceae in a dry forest: Strategies for survival. In E. De La Barrera & W.K. 

Smith (eds.), Perspectives in biophysical plant ecophysiology: A tribute to Park S. 

Nobel (pp. 121-152). Mexico City: UNAM.  

 

Rizwan, A. M., Dennis, L. Y., & Chunho, L. I. U. (2008). A review on the generation,  

determination and mitigation of Urban Heat Island. Journal of Environmental 

Sciences, 20(1), 120-128. 



  26 
 

 
 
  

 

 

Rowe, D.B. (2011). Green roofs as a means of pollution abatement. Environmental  

 Pollution, 159, 2100–2110. 

 

Sailor, D.J., Elley, T.B., & Gibson, M. (2011). Exploring the building energy impacts of  

green roof design decisions–a modeling study of buildings in four distinct 

climates. Journal of Building Physics, 1744259111420076. 

 

Santamouris, M. (2014). Cooling the cities–a review of reflective and green roof mitigation  

technologies to fight heat island and improve comfort in urban environments. Solar 

Energy, 103, 682-703. 

 

Santamouris, M., Pavlou, C., Doukas, P., Mihalakakou, G., Synnefa, A., Hatzibiros, A., &  

Patargias, P. (2007). Investigating and analysing the energy and environmental 

performance of an experimental green roof system installed in a nursery school 

building in Athens, Greece. Energy, 32(9), 1781-1788. 

 

Sato, H., Hirata, N., Koketsu, K., Okaya, D., Abe, S., Kobayashi, R., Matsubara, M.,  

Iwasaki, T., Ito, T., Ikawa, T., Kawanaka, T., Kasahara, K., & Harder, S. (2005). 

Earthquake source fault beneath Tokyo. Science, 309(5733), 462-464. 

 

Schmidt, M. (2006). The evapotranspiration of greened roofs and facades. In Proceedings  

 of the 4th Greening Rooftops for Sustainable Communities.  

 

Scherba, A., Sailor, D.J., Rosenstiel, T.N., & Wamser, C.C. (2011). Modeling impacts of  

roof reflectivity, integrated photovoltaic panels and green roof systems on sensible 

heat flux into the urban environment. Building and Environment, 46(12), 2542-

2551. 

 

Sheridan, S.C., & Dolney, T.J. (2003). Heat, mortality, and level of urbanization:  

 Measuring vulnerability across Ohio, US. Climate Research, 24, 255-266. 

  

Simmons, M.T., Gardiner, B., Windhager, S., & Tinsley, J. (2008). Green roofs are not  

created equal: The hydrologic and thermal performance of six different extensive 

green roofs and reflective and non-reflective roofs in a sub-tropical climate. Urban 

Ecosystems, 11(4), 339-348. 

 

Snodgrass, E.C., & Snodgrass, L.L. (2006). Green roof plants: A resource and planting  

 guide. Portland: Timber Press. 

 

 



  27 
 

 
 
  

 

 

Spala, A., Bagiorgas, H.S., Assimakopoulos, M.N., Kalavrouziotis, J., Matthopoulos, D.,  

& Mihalakakou, G. (2008). On the green roof system. Selection, state of the art and 

energy potential investigation of a system installed in an office building in Athens, 

Greece. Renewable Energy, 33(1), 173-177. 

 

Spolek, G. (2008). Performance monitoring of three ecoroofs in Portland, Oregon. Urban  

 Ecosystems, 11(4), 349-359. 

 

Stovin, V., Vesuviano, G., & Kasmin, H. (2012). The hydrological performance of a green  

roof test bed under UK climatic conditions. Journal of Hydrology, 414–415, 148–

161. 

 

Taha, H., Sailor, D., & Akbari, H. (1992). High-albedo materials for reducing building 

cooling energy use. Lawrence Berkeley Laboratory Report 31721, Berkeley.  

 

Tan, J., Zheng, Y., Song, G., Kalkstein, L., Kalkstein, A., & Tang, X. (2007). Heat wave 

impacts on mortality in Shanghai, 1998 and 2003. International Journal of 

Biometeorology, 51, 193–200. 

 

Taranath, B.S. (2004). Wind and earthquake resistant buildings: Structural analysis and  

 design. Boca Raton: CRC press. 

 

Teemusk, A., & Mander, Ü. (2009). Greenroof potential to reduce temperature fluctuations  

of a roof membrane: A case study from Estonia. Building and Environment, 44(3), 

643-650. 

 

Theodosiou, T., Aravantinos, D., & Tsikaloudaki, K. (2014). Thermal behaviour of a green  

vs. a conventional roof under Mediterranean climate conditions. International 

Journal of Sustainable Energy, 33(1), 227-241. 

 

United States Environmental Protection Agency (2005). Cool roofs. Retrieved from  

 http://www.epa.gov/heatisland/strategies/coolroofs.html/ 

 

United Nations, Department of Social and Economic Affairs (2014). World urbanization.  

prospects: The 2014 revision, highlights. Retrieved from 

http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf 

 

Ürge-Vorsatz, D., Cabeza, L.F., Serrano, S., Barreneche, C., & Petrichenko, K. (2015).  

Heating and cooling energy trends and drivers in buildings. Renewable and 

Sustainable Energy Reviews, 41, 85-98. 



  28 
 

 
 
  

 

 

van der Zee, S.C., Hoek, G., Harssema, H., & Brunekreef, B. (1998). Characterization of  

particulate air pollution in urban and non-urban areas in the Nethderlands. 

Atmospheric Environment, 32 (21), 3717-3729. 
 

Van Renterghem, T., & Botteldooren, D. (2011). In-situ measurements of sound  

propagating over extensive green roofs. Building and Environment, 46 (3), 729–

738. 

 

Virk, G., Jansz, A., Mavrogianni, A., Mylona, A., Stocker, J., & Davies, M. (2014). The  

effectiveness of retrofitted green and cool roofs at reducing overheating in a 

naturally ventilated office in London: Direct and indirect effects in current and 

future climates. Indoor and Built Environment, 23(3), 504-520. 

 

Virk, G., Jansz, A., Mavrogianni, A., Mylona, A., Stocker, J., & Davies, M. (2015).  

Microclimatic effects of green and cool roofs in London and their impacts on energy 

use for a typical office building. Energy and Buildings, 88, 214-228. 

 

Walker, L.R., & Bellingham, P. (2011). Island environments in a changing world.  

 Cambridge: Cambridge University Press. 

 

Whittinghill, L.J., Rowe, D.B., & Cregg, B.M. (2013). Evaluation of vegetable production  

on extensive green roofs. Agroecology and Sustainable Food Systems, 37(4), 465-

484. 

 

Wilby, R.L. (2008). Constructing climate change scenarios of urban heat island intensity  

 and air quality. Environment and Planning B: Planning and Design, 35, 902-919. 

 

Zhao, M., Tabares-Velasco, P.C., Srebric, J., Komarneni, S., & Berghage, R. (2014).  

Effects of plant and substrate selection on thermal performance of green roofs 

during the summer. Building and Environment, 78, 199-211. 

 

Zinzi, M., & Agnoli, S. (2012). Cool and green roofs. An energy and comfort comparison  

between passive cooling and mitigation urban heat island techniques for residential 

buildings in the Mediterranean region. Energy and Buildings, 55, 66-76.

http://www.sciencedirect.com/science/article/pii/S0360132310002982
http://www.sciencedirect.com/science/article/pii/S0360132310002982
http://www.sciencedirect.com/science/journal/03601323
http://www.sciencedirect.com/science/journal/03601323/46/3


29 

 

Chapter 2: The representation of vegetation in green roof energy 

balance models    
 

 

Green roofs mitigate energy and hydrological perturbations resulting from urbanisation. As 

a roofing system that supports plant growth, green roofs are a means of reintroducing 

vegetation into urban environments by using otherwise vacant impervious surfaces. At the 

building scale, minimizing heat transfer between indoor and outdoor environments means 

green roofs can reduce demand on space conditioning (Niachou et al. 2001) which is 

estimated to account for approximately 20% of the total energy requirements in developed 

nations (Pérez-Lombard et al. 2008). At an urban climate-scale, the modified energy 

balance that results from the widespread transformation of dry impervious roof surfaces 

into a vegetated green roof surfaces directly affects the urban boundary layer (Takebayashi 

& Moriyama, 2007).  

Quantifying the energy balance of green roofs can enumerate these thermal benefits 

and enable informed design decisions to maximize their effectiveness. Numerical 

simulation models use a series of equations involving assumptions that simplify thermal 

processes in order to model the thermal performance of green roofs. Numerous green roof 

energy balance models have been developed in recent years, with the more dynamic and 

detailed of these simulating the energy balance of green roofs. For that reason, this review 

will focus on the energy balance-based green roof models. Table 2.1 features a list of some 

of the green roof energy balance models that have been developed.  
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Table 2.1 Examples of green roof energy balance-based models 

 

Model Year Evaluation study 

location 

Plant(s) used*  

Del Barrio  1998 None  

Theodosiou 2003 Thessaloniki, Greece - 

Kumar & Kaushik 

Lazzarin et al.  

2005 

2005 

Yamuna Nagar, India 

Vincenza, Italy 

- 

Sedum 

Alexandri & Jones  2007 Cardiff, UK Grass 

Takebayashi & 

Moriyama 

2007 Kobe, Japan Grass 

Sailor  2008 Orlando, USA  - 

Feng et al.  2010 Guangzhou, China Sedum lineare 

He & Jim  2010 Hong Kong Arachis pintoi, Duranta 

repens & Zoysia tenuifolia 

Ouldboukhitine et al. 2011 La Rochelle, France Sedum & pampas grass 

Djedjig et al.  2012 La Rochelle, France Sedum & pampas grass 

Morau et al.  2012 Le Tampon, Réunion Kalanchoe, 

Plectranthus & Sedum 

Tabares-Velasco & 

Srebric  

2012 Environmental chamber 

& Chicago, USA+ 

Delosperma nubigenum & 

Sedum spurium   

* species name featured if provided in the literature 

-  plant not mentioned 

+ Tabares-Velasco et al. (2012) 

 

 

These models commonly divide the green roof into two layers; vegetation and 

substrate layers, and calculate the temperatures of these layers for each time-step. They can 
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then be incorporated into existing building energy models to provide accurate predictions 

on the likely reduction in energy consumption resulting from the installation of a green 

roof. However, for energy simulations, vegetation introduces tremendous complexity due 

to its structural and physiological heterogeneity. Given the ecological literature for green 

roofs is limited in comparison to that of natural environments (Blank et al. 2013), modeling 

the energy balance of green roof environments often relies on the application of classical 

predictive equations and assumptions to estimate the effect of the vegetation layer. Recent 

reviews examine the effects of green roofs and other greening systems on building energy 

usage in general (Castleton et al., 2010; Raji et al., 2015), and environmental benefits of 

green roofs related to energy (Saadatian et al., 2013), but there has been no comprehensive 

review of numerical models used to describe green roof energy transfer.  Given the 

importance of understanding plant characteristics for green roof modelling, the following 

review will focus solely on the vegetation layer of green roof energy balance models. 

The aim of this review is to therefore examine green roof energy balance models. 

These models help us understand how energy is partitioned within the vegetation layer of 

a green roof. The review will highlight how these models have contributed to our 

understanding of green roofs and provide a critical analysis of their theoretical framework 

and overall effectiveness. This analysis will provide recommendations for the future 

development of these models and the empirical data required for their refinement and 

evaluation. 
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2.1 Energy balance of a green roof      

 

The energy balance is the equilibrium that exists between the heat that enters and 

leaves the green roof system. As the first law of thermodynamics states that energy cannot 

be created or destroyed, only transformed; all of the energy should be accounted for in a 

system analysis (Jones, 2013). The energy balance for a green roof system can be written 

as (Jones 1992; Hillel, 1998):  

 

Rn - H - L - G - ∆S - ∆M - ∆A = 0                      (2.1) 

                                                                                                             

Rn = net radiative flux (W m-2)  H = convective sensible heat flux (W m-2)  

L = convective latent heat flux (W m-2) G = surface conductive heat flux (W m-2)  

S = net thermal storage by plants & substrate (W m-2)                                                               

M = metabolic storage (W m-2)  A = advection heat flux (W m-2)   

 

 

Fig 2.1 conceptually represents these flux and storage terms in the layers of a green 

roof model. The radiant energy balance; the incoming and outgoing short- and long-wave 

radiation, is the net radiation. This sum of gains minus losses from the system means the 

net radiation represents the amount of radiant energy that the system absorbs. The net short-

wave radiative flux involves the incoming direct and diffuse solar radiation and the 

outgoing reflected solar radiation. The net long-wave flux includes the incoming diffusive 

thermal radiation and minus the thermal radiation emitted (re-radiated) by the surface. 
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Given the emission of long-wave radiation from an object is hemispherical, long-wave 

radiation will also be exchanged between the vegetation and substrate layers of a green 

roof, as depicted by LWf,g in Fig 2.1. These radiative heat exchanges will be examined 

further in Section 2.2.1. 

 

 

 

SW = short-wave radiation   LW = long-wave radiation 

        = radiative heat flux          = non-radiative heat flux 

Subscripts: 

f = foliage     g = ground 

conv = convection    cond = conduction 

 

Fig 2.1 Conceptual diagram depicting the heat fluxes between and the energy storages 

within the layers of a green roof 
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Under most conditions, the net radiation represents the total amount of energy 

available at the surface for non-radiative processes; sensible, latent and surface heat fluxes, 

as depicted in Fig 2.1. As these sensible and latent heat transfers between the vegetation, 

substrate and lower atmosphere occur between a solid surface and a fluid, they are 

convective processes, a mechanism that will be explained in greater detail later. Convective 

sensible heat fluxes occur when a temperature differential exists between the surface and 

the overlying fluid. If the temperature of a surface is greater than that of the overlying air, 

an outgoing convective sensible heat flux will warm the air. Conversely, there will be a 

cooling of the air and a convective sensible heat flux toward the surface when its 

temperature is less than that of the air. Latent heat fluxes involve energy changing the phase 

of a substance rather than its temperature. When evaporation and transpiration occur, the 

flow of energy as latent heat is away from the surface while during condensation the flow 

is towards the surface. The sensible and latent heat fluxes are closely coupled; when latent 

heat loss is reduced it will be compensated by an increase in sensible heat loss, and vice 

versa (Monson & Baldocchi, 2014). The sensible and latent heat fluxes for the vegetation 

layer will be further examined in Sections 2.2.2 and 2.2.3, respectively  

Conversely, when a temperature gradient exists within a plant or the within canopy 

air column, a sensible heat transfer will occur by means of conduction. While thermal 

conduction through the substrate is an important component of green roof energy balance 

models, conduction within plants and the within-canopy air is commonly neglected in most 
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energy balance models (Monteith & Unsworth, 1990; Pielke, 2002), including those for 

green roofs (Alexandri & Jones, 2007; Sailor, 2008; Tabares-Velasco & Srebric, 2012). In 

this review, conductive heat fluxes in the vegetation layer are discussed in Section 2.2.2.       

Additionally, besides heat fluxes, some of the available energy will be stored within 

the system temporarily. Due to the thermal capacity of the masses that compose the 

vegetation and substrate layers, each sub-system will store thermal energy. The storage of 

thermal energy by a mass will cause a change in its temperature. The heat storage in the 

system increases (warms) when the net radiation is larger than the sum of the other energy 

fluxes in Eq. 2.1 and the system cools when the net radiation is smaller than these fluxes. 

As both the vegetation and soil layers contain biological systems; flora and fauna, 

respectively, each sub-system also involves a metabolic storage of energy as a result of the 

biochemical reactions involved in metabolism (Shuttleworth, 2012). These storages of 

energy are small and often neglected in green roof energy balance models. Metabolic 

energy storage is examined in Section 2.2.4.    

For particular applications of the surface energy balance it may be important to 

consider not only the surface transfers of sensible and latent heat, but also advective 

transfers. In the surface energy balance the convective sensible and latent heat fluxes are 

considered one dimensional (vertical direction only) and we assume the atmosphere is not 

significantly storing energy.  Advection is the net horizontal transfer of heat, or other 

characteristics, across the volume that is defined for the energy balance of the system.  
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Where the surface is homogeneous and extensive we assume the horizontal flux at the 

upwind edge is equal to that at the downwind edge so that the net advective flux is then 

zero. Advection has not been considered in green roof energy models but it will be 

examined further in Section 2.2.5.  

Besides the short-wave radiation not intercepted by vegetation, the partitioning and 

dissipation of energy within the vegetation layer just described largely determines the 

substrate surface temperature. Determining the surface temperature of the substrate is 

particularly important as the conduction of heat through the substrate layer will ultimately 

determine a green roof’s influence on the thermal environment of the indoor space below. 

 

2.1.1 Approaches to vegetation energy modelling 

 

The presence of vegetation over a flat surface introduces several complications for 

energy modelling. Firstly, the ground surface can no longer be considered the most 

appropriate point for the surface energy balance as the radiative, latent and sensible heat 

fluxes vary spatially within the canopy. Secondly, the rate of thermal and metabolic 

storages and the latent heat exchange composed of condensation or evaporation at the 

vegetation surfaces as well as transpiration, the latter two collectively termed 

evapotranspiration, within the vegetation layer is difficult to measure and calculate (Arya, 

2001). A canopy is therefore a complex system of sources and sinks of heat and mass, with 
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the spatial complexity and heterogeneity of the foliage and the turbulent air flow within 

and above the canopy resulting in the direction and magnitude of energy and mass fluxes 

constantly varying and ultimately being unpredictable on small scales (Del Barrio, 1998).   

Most green roof energy balance models employ the simplifying assumption of 

horizontal homogeneity of heat fluxes within the vegetation canopy. This permits the use 

of one-dimensional models that consider the fluxes only in the vertical direction. This 

assumption has been justified in the literature on the basis that the vertical fluxes in the 

green roof vegetation layer are adequately greater than the horizontal divergence as the 

horizontal scale is small enough to render the divergence negligible (Del Barrio, 1998; 

Alexandri & Jones, 2007). However, on small scales advection is more likely because the 

surface types are less homogeneous at that scale.    

A canopy is also vertically heterogeneous as a result of vertical gradients in leaf and 

air properties. This canopy structure can be represented as a single layer, dual layers or a 

continuum of layers. Simple single layer, or single source, models consider only one source 

of sensible and latent heat fluxes within the vegetation layer. They assume that the 

absorption and re-emission of scalars and momentum as well as the partitioning of energy 

into latent and sensible heat for the whole canopy can be accurately represented by a single 

theoretical plane; a single ‘leaf’. This representative leaf is scaled up to the canopy level 

using the dimensionless leaf area index (LAI), which refers to the single-side leaf area per 

unit of ground area. As the energy exchange between the atmosphere and an extensive, 
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homogenous dense canopy are fairly well understood, such a simplified approach can be 

considered valid (Kaimal & Finnigan, 1994; Shuttleworth, 2012). 

In dual source models, two sources of heat and water vapour are represented. There 

can be transfers between the two layers as a coupled dual source model, commonly with a 

semi-transparent upper canopy layer (Lhomme et al. 1994). In a coupled dual source model, 

the component fluxes are additive (Lhomme & Chehbouni, 1999). In uncoupled dual source 

models, the two sources are considered separately without the interaction of fluxes from 

each source (Blyth & Harding, 1995). Unlike coupled dual source models, the component 

fluxes should be weighted by the respective area of each source in an uncoupled model 

(Lhomme & Chehbouni, 1999).  The use of either a coupled or an uncoupled dual source 

model is generally a matter of scale, with small-scale heterogeneity more suitably 

represented as sparse vegetation in a coupled model and large-scale heterogeneity better 

represented by an uncoupled model (Lhomme & Chehbouni, 1999).  

Multilayer models offer a more detailed representation of the energy and mass 

fluxes in a plant canopy by subdividing the canopy into homogenous horizontal layers. 

Each of these layers can be furthered divided into sunlit and shaded leaves and different 

leaf-angles. A detailed energy balance can be included to determine the profile of 

meteorological parameters within the canopy. Multilayer models are primarily used for 

research purposes, particularly as standard against which the performances of simpler 

models are compared (Landsberg & Sands, 2010). 
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While multilayer or multisource models offer the most representative depiction of 

within-canopy profiles, the green roof literature generally applies single source or ‘big-leaf’ 

models for the vegetation layer. The simplified big-leaf approach has the benefit over more 

complex multilayer models of not requiring detailed specifications of canopy structure and 

properties or a detailed consideration of the distribution of turbulence in the canopy air 

space. The need for detailed information generally limits the application of multilayer 

models to sites where this information is known (Shuttleworth, 2012). Del Barrio (1998) 

suggests within-canopy profiles available from multi-layer models also do not provide 

additional useful information on the thermal performance of green roofs. Moreover, when 

representing and modelling within-canopy parameters, it is more important to accurately 

determine the bulk aerodynamic and surface resistances between the canopy and the 

atmosphere than the detailed representation of within-canopy exchanges (Raupach and 

Finnigan, 1988). 

  Single layer models can take one of two forms - those derived from surface layer 

similarity and those that apply combination equations to the whole canopy. Both groups of 

models have been utilised in the green roof modelling literature. Surface layer similarity 

theory involves using logarithmic profiles within and above the canopy for velocity and 

scalars as well as bulk transfer formulas to characterize the canopy’s capacity to absorb 

heat, water vapour and momentum. This approach considers the transfer of different scalars 
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and of momentum independently while combination equations on the other hand emphasize 

the relationship between sensible and latent heat fluxes (Kaimal & Finnigan, 1994).    

Green roof energy balance models tend to apply sub-models originally intended as 

single source models, such as the Penman-Monteith (1965) model of evapotranspiration 

which will be discussed in Section 2.2.3, to both the vegetation and substrate layers in an 

uncoupled dual source configuration (Sailor, 2008). The fluxes of each layer can be simply 

distinguished by the fractional vegetation coverage. This parameter is an estimate of the 

proportion of an area that is covered by vegetation on the horizontal plane. Uncoupled 

models allow a simpler approach to dual source modelling that requires fewer assumptions 

than coupled dual source models such as the widely used expansion on the Penman-

Monteith model; the Shuttleworth-Wallace model (1985).     

 

2.2 Energy balance components 

 

2.2.1 Radiative heat transfers  

 

The law of conservation of energy means that when radiation interacts with the 

vegetation layer the total amount of energy that is absorbed, reflected and transmitted, as 

shown in Fig 2.2, is equal to the incident energy. The proportion of incident energy involved 

in each mechanism is represented in modelling by its respective coefficient; absorption (α), 
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reflection (ρ) and transmission (τ), such that 1 = α + ρ + τ. The absorption of radiation 

increases the internal thermal energy of the vegetation while reflection and transmission 

have no net effect on the canopy layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.2 The interaction of radiation at the leaf surface 

 

 

The ratio of absorption, reflection and transmission varies depending on the incident 

wavelength. As shown in Fig 2.3, leaves generally absorb the majority of incident 

ultraviolet (UV), photosynthetically active/visible (PAR/VIS) and mid-infrared radiation 

(MIR) while reflecting and transmitting the majority of energy in the near-infrared radiation 

region (NIR). 
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Fig 2.3 Typical leaf absorption (α), reflection (ρ) and transmission (τ) spectra (adapted 

from Jones & Vaughan, 2010; 1. Walter-Shea & Norman (1991); 2. Gausman (1977); 3. 

Verdebout et al. (1994))  

 

 

Scaling these spectra up from a single leaf to a canopy level is complicated by the 

shading of leaves and multiple within-canopy reflections. The transmittance of a canopy is 

the sum of the unintercepted radiation and the radiation that is transmitted through or 

reflected downwards by leaves. Most common plant leaves have a solar transmittance of 

~0.20 (Ross, 1975). However, for succulent plants like those commonly planted on green 

roofs, thick leaves result in higher absorptance and a very low or negligible transmittance 
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(Jones, 1983). Some green roof models have used Beer’s Law (Eq. 2.2) to approximate 

transmittance (Del Barrio, 1998; Alexandri & Jones, 2007). This approach represents an 

exponential decrease of radiation through the canopy with larger LAI values decreasing 

transmittance and increasing shading. Jim & Tsang (2011) found that the transmittance and 

therefore extinction coefficient (k0) was mostly dependent on LAI. Seasonally, their 

transmittance values varied from 0.17 in winter to 0.27 in summer. Aside from seasonal 

variations in LAI, this difference is also the result of the extinction coefficient in Beer’s 

Law varying according to the solar angle. Leaf configuration also influences the extinction 

coefficient, with the larger k0 values of a planophile canopy (horizontal leaf inclination) 

resulting in a greater absorptance than those of an erectophile canopy (vertical).  

  

τ = exp (-k0 LAI)             (2.2) 

          

Generalized values for the extinction coefficient can be found in the literature or 

calculated using expressions like Eq. 2.3 from Campbell (1986) used in Jim & Tsang 

(2011). 

 

k0 = 
√𝑥2+ 𝑡𝑎𝑛2𝜓

𝑥+1.774(𝑥+1.182)−0.733
                                  (2.3) 

 

x = ratio of averaged projected areas of canopy on horizontal and vertical surfaces, 

typically ranging from 0.6 to 2.5    
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As k0 decreases, the canopy albedo is also reduced for each unit of LAI. Within-

canopy reflectance means that the albedo of a canopy is smaller than the reflectance of the 

leaves of which it is composed (Del Barrio, 1998). Canopy albedo is an important 

component of the energy balance as it reduces the net radiation entering the system. Taller 

vegetation generally has a lower albedo as it facilitates greater within-canopy reflectance. 

Although the typical solar reflection coefficient for leaves is around 0.3 (Jones, 2013), for 

canopies below 1 m in height it is generally between 0.18 and 0.25 (Oke, 1987).  

While spectral analyses are limited for green roofs, Zhao et al. (2014) measured the 

reflectivity of six species of Sedum and a Sedum mixture in a green roof study. While the 

spectral reflectivity of each Sedum condition resembled that shown in Fig 2.3 with respect 

to wavelength, the reflectivity varied between species at the same wavelength. Using the 

reflectance coefficients they obtained, Zhao and colleagues used the model of Tabares-

Velasco & Srebric (2012) to simulate the thermal performance of green roof assemblies 

planted with Sedum tomentosum and the Sedum mix, which had the highest and lowest ρ 

values of 0.23 and 0.11, respectively. The results showed an average difference of 15.9-

16.3% in the peak net radiation and 17.9-20.2% in the average net radiation between the 

two conditions when simulated in four cities. Given the difference in reflectivity observed 

within one genus and the influence this variation had on simulated net radiation, there is a 

need to measure the albedo of various green roof species to improve the predictive power 

of models for different plant species.       
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  Multiple reflections within the canopy increase the canopy’s absorption of 

radiation. The total absorptance for most common plant leaves has been reported to be 

between 0.4 and 0.6, with 0.5 commonly used for calculations (Nobel, 1983). However, 

Onmura et al. (2001) estimated from measurements an average absorptance of 0.77 for a 

green roof sample of grass.  Furthermore, in a comparison of 30 species, Sedum spectabile 

Boreau was found to have the highest absorptance (Gausman & Allen, 1973). For Sedum 

and other succulent plants, absorptance is generally higher than non-succulents, reported 

between 0.59 and 0.83 (Gates et al. 1965), as a result of high leaf thickness and water 

content (Gausman & Allen, 1973). For green roof applications, Jim and Tsang (2011) 

recommended absorptance values of 0.8 and 0.2 for PAR and NIR, respectively.  

   The absorption, reflectance and transmission spectra vary temporally due to 

phenological changes associated with the solar zenith angle as well as the plant growth 

stage and environmental conditions. At a diurnal time-scale, the reflection coefficient has 

a pronounced U-shaped pattern with a minimum at solar noon coinciding with the minimum 

incidence angle as observed by Gaffin and colleagues (2009) for a green roof sample of 

Sedum. This phenomenon is observed in the reflection from vegetated surfaces as specular 

reflection occurs with the highest reflectivity occurring at large zenith angles. This is a 

result of vegetation having a non-Lambertian surface, with the roughness of the surface 

preventing diffuse reflection (Moene & van Dam, 2014). Despite this dynamic pattern 

τ 
α 
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which is largely due to changes in the solar zenith angle, a constant reflection coefficient is 

commonly applied in green roof modelling.  

  While the solar angle will also vary albedo at a seasonal scale, leaf growth and 

senescence also affects the spectra throughout the year. As well as affecting the 

transmission of radiation through the canopy and the sensible and latent heat fluxes through 

changes in LAI, effects relating to the life cycle of leaves also change the canopy’s 

absorption and reflection spectra throughout the year. These leaf optical properties are 

affected by factors such as the amount and distribution of pigments and water content which 

vary seasonally in response to environmental variations. For example, during leaf 

senescence, leaf reflectance and transmittance in the 400-700 nm region decreases with the 

appearance of tannins (brown pigments) while a decline in NIR reflectance results from the 

spongy mesophyll layer collapsing (Fourty et al. 1996). 

Leaf senescence may also be stress-induced. During periods of stress, plants alter 

their physiology, morphology and development. These changes can affect the partitioning 

of incident energy at the leaf surface. Leaf reflectance is most commonly affected in the 

VIS spectral band for many common stressors and vascular plant species (Carter, 1993, 

1994), due to the lowering of leaf chlorophyll concentrations because of metabolic 

disturbances (Knipling, 1970). Mori et al. (2009) compared the chlorophyll content of 

stressed and less-stressed leaves from four Sedum species grown on a green roof with 

chlorosis being observed in three of the species in stressed conditions.  While acute stress 
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tends to affect the far-red spectrum (Carter & Knapp, 2001) it will likely have a negligible 

effect on the energy balance. However, continued stress and chlorophyll loss will 

progressively narrow the absorption spectrum of VIS (Gates, 1980). This is noteworthy as 

Nagase & Dunnett (2010) found in greenhouse conditions that eight species of forb and 

grass reached their permanent wilting point after two to three weeks without water in a 

green roof substrate, with similar results found in a green roof study (Bates et al. 2013). 

The availability of substrate moisture is considered to be the most limiting factor for plants 

in green roof ecosystems (Monterusso et al. 2005; Nagase & Dunnett, 2010) and may have 

consequences for the albedo of green roof species during dry periods.  

Besides radiative exchanges between the sky and the vegetation layer, long-wave 

radiation exchanges should also be considered between the plant canopy and the substrate 

surface, as represented by LWf,g (W m-2) in Fig 2.1. These exchanges are complex and 

difficult to calculate so are commonly neglected or simplified in green roof models using 

several assumptions, the most common of which is to represent the vegetation layer and 

substrate as two flat surfaces. A simplified approach is justified on the basis of extensive 

green roof plants having a low stature. Tabares-Velasco and Srebric (2012) compared three 

assumptions commonly used in the literature to calculate these exchanges and found they 

differed by less than 10%, or 4 W m-2. They attributed the lack of variability between the 

three assumptions was likely due to the use of similar emissivity values for the canopy and 

substrate layers. They did not recommend representing the layers as two parallel surfaces 
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with different areas as it is relies on the sky view factor which requires LAI and plant height 

information. The sky view factor is defined as the geometric ratio between the radiation 

received by a surface from the sky and the radiation emitted from the entire hemispheric 

radiating environment (Watson & Johnson, 1987). On the contrary, the authors 

recommended assuming the layers can be represented as two infinite and parallel surfaces, 

shown in Eq. 2.4, as its simplicity does not compromise the accuracy of calculations and 

provided values in the middle of the other assumptions.  

                                                                                                       

LWf,g = (1 – τIR) 
𝜎 (𝑇𝑝𝑙𝑎𝑛𝑡𝑠 

4 − 𝑇 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒  
4 )

1

𝜀𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
+ 

1

𝜀𝑝𝑙𝑎𝑛𝑡𝑠
−1

                                                     (2.4) 

σ = Stefan-Boltzmann constant (5.67 ∙ 10-8 W m-2 K-4) 

τIR = long-wave transmittance of the vegetation layer 

𝑇𝑝𝑙𝑎𝑛𝑡𝑠  = plant temperature (°C)   

𝑇 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒  = temperature of substrate surface (°C)    

𝜀𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 = emissivity of the substrate           𝜀𝑝𝑙𝑎𝑛𝑡𝑠 = emissivity of the plants 

 

 

 

Foliage emissivity is defined as the ratio of energy radiated from the plant surface 

to that radiated from a black body. The emissivity of leaves as reported in the literature is 

around 0.96, ranging between 0.92 and 0.98 (Gates, 1980; Nobel, 1983). The emissivity of 

succulents has been found to be as high as 0.98 (Monteith & Unsworth, 2007) but grass 

emissivity ranges from 0.90-0.97 (Pielke, 2002). However, the emissivity of a canopy is 

greater than that of the leaves of which it is composed, often nearing 0.99 for dense canopies 
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due to the increased absoprtion that results from within-canopy reflectance (Campbell & 

Norman, 2012) 

As noted by Feng et al. (2010), although the optical properties are the basic 

parameters of a green roof’s energy balance, there is generally little knowledge regarding 

these properties amongst the species most commonly planted on green roofs. While a 

detailed representation of green roof vegetation’s response to abiotic stress and seasonal 

variations in energy models is unrealistic, models of plant phenology exist for climate 

models. However, to verify these phenological models for green roof applications will 

require further research to quantify the variation in the spectral characteristics of these 

species during both healthy and stressed periods in order for green roof heat transfer models 

to be more dynamic in response to vegetation changes. Additionally, it appears that despite 

drought-tolerant species having a relatively low albedo compared to most plants, modelling 

suggests they can still play a significant role in reducing the surface heat flux through the 

substrate. 

 

2.2.2 Sensible heat flux 

 

When a temperature gradient exists within or between a solid and a fluid medium, 

a sensible heat flux will occur. While conduction refers to the transfer of heat across either 

a solid or fluid medium from particles with more energy to those with less, convection 
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refers to the transfer of heat between a surface and a moving fluid through the processes of 

conduction near the surface and bulk fluid motion above the surface (Bergman et al. 2011). 

Convection is the primary means of sensible heat transfer in the vegetation layer of a green 

roof and to the atmosphere above.  

The rate of convective heat transfer, Hconv (W m-2), between a flat surface and a fluid 

is given by Newton’s law of cooling, shown in Eq. 2.5. A sensible heat flux, as seen in this 

equation, is proportional to the difference in temperature between the two bodies. 

 

𝐻𝑐𝑜𝑛𝑣 = ℎ 𝐴𝑓𝑙𝑢𝑖𝑑,𝑠𝑜𝑙𝑖𝑑 ∆𝑇             (2.5) 

                                                                      

h = convective heat transfer coefficient (W m-2 K-1) 

Af,s = area of fluid-solid interface (m2) 

∆𝑇 = temperature difference between solid and fluid (°C) 

 

A convective heat flux is commonly represented as the transfer of heat across a thin 

layer of fluid at the fluid-solid interface, known as the boundary layer. A heat flux occurs 

when this layer features a temperature gradient stemming from the bordering solid surface 

and fluid bulk having different temperatures. The temperatures of these two bodies are 

assumed to be uniform. The boundary layer acts as an insulating layer that provides 

resistance to the flow of heat between the solid and the fluid. The thickness of this boundary 

layer varies inversely to the heat transfer coefficient, thus conditions that result in a 

reduction in boundary layer thickness enhance convective heat transfer by increasing the 

transfer coefficient (Monson & Baldocchi, 2014).     
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The heat transfer coefficient is a proportionality factor that represents the 

convective heat flux per unit of temperature difference between the solid and the fluid. It 

depends on the physical properties as well as the motion and velocity of the fluid within 

the boundary layer and the geometry of the surface. It is also dependent on the nature of 

the convection, namely free (or natural) and forced convection. Free convection occurs 

when a temperature difference between a solid and a still fluid produces a density difference 

between the boundary layer and the bulk fluid. This creates a buoyancy force causing the 

boundary layer fluid to flow and transfer heat. Forced convection, on the other hand, 

involves an external force, such as wind, generating fluid motion. The flow velocities 

involved in forced convection are greater than those of free convection resulting in higher 

convective heat transfer coefficient in forced flow conditions. When both free and forced 

mechanisms act together to transfer heat, it is referred to as mixed convection (Shah & 

Sekulić, 2003).  

Given the complexity of fluid movement, the value of the convective heat transfer 

coefficient is obtained using an empirical approach involving dimensionless numbers. 

These numbers are derived from correlational relationships that usually involve 

correlations with wind speed for forced convection and with a temperature difference for 

free convection (Defraeye et al 2013). Those used in the green roof literature are commonly 

derived or adapted from measurements on flat or rough rectangular plates. While an in-

depth explanation of the convective heat transfer coefficient’s approximation is beyond the 
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scope of this review, Table 2.2 provides a brief explanation of the dimensionless numbers 

commonly used in its estimation. 

 

 

Table 2.2 Definitions of dimensionless numbers used in the approximation of the 

convective heat transfer coefficient 

 

Number Definition 

Grashof (Gr) Ratio of free convection buoyancy force to viscous force 

Nusselt (Nu) Ratio of convective and conductive heat transfer 

Prandtl (Pr) Ratio of the momentum and thermal diffusivities 

Rayleigh (Ra) Ratio of natural convective to diffusive transport 

Reynolds (Re) Ratio of the inertial and viscous forces 

 

The green roof model of Tabares-Velasco and Srebric (2012) employed a modified 

form of Newton’s law of cooling shown in Eq. 2.6. The LAI provides the area of the leaf-

air interface at which convective heat transfer occurs. However, the calculation of non-

dimensional models were originally developed from experiments involving flat surfaces. 

Therefore, when considering convective heat transfer from objects where geometrical 

similarity with flat surfaces cannot be assumed, such as from plant canopies, the calculation 

of non-dimensional models for free, mixed and forced convection must be modified. Rough 

surfaces enhance convective heat and mass transfer by increasing turbulence and the total 

contact area between the surface and the fluid. The addition of vegetation above a bare soil 

therefore increases the surface roughness, ultimately enhancing the turbulence and 
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increasing the surface area which subsequently increases convective heat loss (Ghiaasiaan, 

2011). As Eq. 2.5 estimates the flux over a flat surface, Tabares-Velasco and Srebric (2012) 

included an enhancement factor (β) in Eq. 2.6 to account for the roughness of the plant 

canopy.  

 

Hf,conv = β h LAI (Tf - Ta)            (2.6) 

                                           

Tf = foliage temperature (°C)   Ta = temperature of within canopy air (°C) 

                                                        

 

As suggested by Schuepp (1993), the roughness coefficient (β) used by Tabares-

Velasco & Srebirc (2012) was originally set to 1.5. However, the authors found that the 

Penman-Monteith equation for evapotranspiration, to be discussed in Section 2.2.3, 

underestimated the maximum evapotranspiration rate. They believed this may have been 

attributed to the use of the convective heat and mass transfer enhancement factor. 

Therefore, they later changed the enhancement factor to 3 for vegetated surfaces and 2.1 

for non-vegetated surfaces (Tabares-Velasco et al. 2012) based on research by Clear et al. 

(2003) concerning convection on rooftops.   

Additionally, based on previous green roof modelling research (Alexandri & Jones, 

2007), Tabares-Velasco and Srebric (2012) proposed the incorporation of mixed 

convection to more accurately estimate the convective heat transfer coefficient. They 

included mixed convection by incorporating it into the Nusselt number, as shown in Eq. 
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2.7, to better detail the laminar-turbulent transition. This expression calculates the 

resistance to convection over a flat surface depending on the ratio of the Grashof number 

divided by the Reynolds number. The value of the Grashof number distinguishes between 

forced, mixed and free convection. For this approach, the influence of wind speed is 

included by use of the Reynolds number as it is linearly dependent on wind speed. 

 

 

Nu = {2.53 (
𝐺𝑟

𝑅𝑒2.2)
1

3

3 + 1.25 ∗ 0.0253 𝑅𝑒0.8

(3 + 1.25 ∗ 0.0253 𝑅𝑒0.8)𝐿
1

15

0.15 𝑅𝑒
1

3

𝐺𝑟 < 0.068 𝑅𝑒2.2 𝐹𝑜𝑟𝑐𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

0.068 𝑅𝑒2.2 < 𝐺𝑟 < 55.3 𝑅𝑒
5

3 𝑀𝑖𝑥𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

55.3 𝑅𝑒
5

3 < 𝐺𝑟 𝐹𝑟𝑒𝑒 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

   (2.7)      

  

 

 

Aside from the dimensionless model of convection, several correlational models 

have been specifically developed for vegetated surfaces using empirical and semi-empirical 

methods. The semi-empirical approaches, which are the most widely used in the green roof 

literature, involve modifying Newton’s law of cooling by including plant characteristics 

and employing the logarithmic wind profile for the estimation of aerodynamic resistance. 

Conversely, the empirical methods involve defining correlations between heat transfer and 

scalar parameters or the convective heat transfer coefficient based on an extensive amount 

of experimental work.  

The most commonly applied semi-empirical convection models in the green roof 

energy literature are Eq. 2.8 and 2.9. These similar models use a resistance network to 

estimate the transfer of heat across the boundary layer. This approach is analogous to 
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Ohm’s law for an electrical circuit; the heat transfer rate (current) is proportional to the 

temperature difference (voltage) and inversely proportional to the thermal resistance. Eq. 

2.8 is used in the green roof models of Del Barrio (1998), Kumar & Kaushik (2005), 

Alexandri & Jones (2007) and Djedjig et al. (2012), while Eq. 2.9; a multiplicative model 

from Deardorff (1978), is used in Sailor (2008) and Ouldboukhitine et al. (2011).  

 

Hf,conv = LAI 
𝜌𝑎𝑓 𝐶𝑝,𝑎 

𝑟𝑎
(Tf – Ta)            (2.8) 

 

Hf,conv = 1.1 LAI ρaf  Cp,a  Cf  uw (Ta - Tf)           (2.9) 

                                                                  

  

𝑟𝑎 = aerodynamic resistance (s m-1)   

ρaf = density of air at foliage temperature (kg m-3) 

Cp,a = specific heat of air at constant pressure (J kg-1 K-1) 

Cf = bulk transfer coefficient   uw = within-canopy wind speed (m s-1) 

  

 

As LAI only accounts for the surface of the leaves, Deardorff (1978) included a 

scale factor of 1.1 in Eq. 2.9 to approximate the heat transfer from the stems, twigs and 

limbs of the plant which exchange sensible heat but do not transpire. As featured in the 

FASST low vegetation model (Frankenstein & Koenig, 2004), Ouldboukhitine and 

colleagues (2011) added a windless exchange coefficient, e0 (2.0 W m-2), to Eq. 2.9. This 

prevents a decoupling of the plant surface from the atmosphere under extremely stable 

conditions when the wind speed at the air-foliage interface, uw, approaches zero as 

convection will still occur under these conditions. The dimensionless heat transfer 
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coefficient Cf in Eq. 2.9 takes into account both sides of the leaves and is inversely 

proportional to the within-canopy wind speed. However, Eq. 2.9 has been criticised for 

requiring a lot of parameters that are not easily accessed without on-site measurements 

(Ayata et al. 2011). 

   While these models are related, the parameterization of aerodynamic or external 

resistance to heat transfer is a key component which importantly separates green roof 

energy models’ estimation of convective heat transfer. The transfer of heat and mass by 

diffusion from the canopy to the atmosphere is regulated by an aerodynamic resistance. 

The magnitude of this diffusion resistance depends largely on wind speed, with high 

resistance occurring in still or slow winds (Mansfield, 1973). A lower resistance occurs 

with higher wind speeds as the greater air movement continuously replenishes the air close 

to the boundary layer, thus maintaining a steep gradient to drive diffusion (Jones, 2014).  

Aerodynamic resistance arises as a consequence of the frictional drag exerted by a surface, 

in this case the foliage, with wind speed increasing logarithmically above flat, extensive 

uniform surfaces (Hanan, 1997). Aerodynamic resistance therefore links the characteristics 

of the foliage surface and the turbulence that drives the transfer of sensible heat away or 

towards the surface (Pitman, 2003).  

However, there is an insufficient understanding of physical atmospheric processes 

to derive laws from first principles in order to quantify these transfers. Consequently, 

surface layer modelling commonly utilizes theories of similarity which are based on the 
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consistency and repeatability of boundary layer observations for particular assumptions to 

be justified and empirical relationships derived. The green roof models of Sailor (2008), 

Ouldboukhitine et al. (2011) and Djedjig et al. (2012) apply Monin-Obukhov similarity 

theory (MOST, Monin & Obukhov, 1954) formulations to estimate aerodynamic 

resistance. MOST relates surface layer turbulent fluxes of momentum, sensible heat and 

moisture to mean vertical gradients of wind, temperature and water vapour, respectively 

(Brutsaert, 1982; Garratt, 1992; Arya, 2001). Eq. 2.10 provides a MOST-derived estimation 

of the aerodynamic resistance to heat commonly used in green roof models. As this 

expression indicates, aerodynamic resistance is inversely related to the log of the surface 

roughness length which is an aerodynamic measure of roughness defined as the height at 

which the neutral wind profile will extrapolate to a wind speed of zero. The roughness 

lengths are approximated as a fraction of the height of the plants, but their specification can 

be very difficult. Nevertheless, at a given wind speed, taller vegetation has a lower 

aerodynamic resistance, facilitating a greater turbulent transfer of convective heat away 

from the canopy surface (Hungate & Koch, 2014). Expressions for the featured parameters 

in Eq. 2.10 can be found in Ayata et al. (2011) and Djedjig et al. (2012).  

 

ra = 
𝐼𝑛[

(𝑧 − 𝑑)

𝑧𝑚
]𝐼𝑛[

(𝑧−𝑑)

𝑧ℎ
]

𝜅2𝑢𝑧
                                                       (2.10) 

                      

d = zero plane displacement height (m) zm = roughness length for momentum (m)  

zh = roughness length for heat (m)  κ = von Karman’s constant (~0.4)   

uz = wind speed at height z (m s-1) 



       58 

 

 
 
  

 

 

However, the logarithmic wind profile assumed in Eq. 2.10 is only valid in neutral 

and near-neutral atmospheric conditions. In non-neutral conditions, both thermal and 

mechanical turbulence occurs unless the wind speed is zero or is constant with height. In 

unstable conditions, vertical motion resulting from turbulence is enhanced while it is 

dampened in stable conditions. This leads to distortions of the logarithmic wind profile 

method in non-neutral conditions (Rohli & Vega, 2013). Some green roof models combine 

Eq. 2.10 with stability functions to account for these buoyancy effects (Sailor, 2008). 

However, Djedjig and colleagues (2012) suggested that the effects of buoyancy could be 

assumed negligible for green roof applications and applied a simpler form of Eq. 2.10. They 

justified this assumption with the premise that the minimal leaf-air temperature differential 

and the generally high wind speed compared to the average size of the leaves limits the 

influence of buoyancy on the wind profile.  

An alternative approach is to use a correlational model to estimate aerodynamic 

resistance. Del Barrio (1998) used Eq. 2.11 for a green roof simulation. The equation was 

originally developed by Stahghellini (1987) from an extensive data set collected from 

greenhouse tomato plants.  

 

ra = 
𝑎𝐿𝑐ℎ

𝑚

(𝐿𝑐ℎ (𝑇𝑓− 𝑇𝑎)+𝑏 𝑢2)𝑛                      (2.11) 

 

Lch = characteristic length (m)  a = 1174 

b = 207     m = 0.5 

n = 0.25 
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Stahghellini (1987) found that for increasing wind speeds, particularly those above 

0.2 m s-1, the consequence of error in the aerodynamic resistance diminishes, which is 

beneficial given the high wind speeds commonly associated with rooftop environments 

(Dunnett & Kingsbury 2004). However, it should be noted that the coefficients derived for 

Eq. 2.11 may not be applicable for species other than tomato plants and for the air flow 

conditions commonly found on rooftops.   

Early green roof studies used a linear relationship with wind speed to calculate the 

convective heat transfer coefficient (Nayak et al. 1982; Cappelli et al. 1998). Feng and 

colleagues (2010) employed a correlational model of convective heat flux, wind speed and 

the leaf-air temperature differential to estimate convection on a green roof. Alexandri and 

Jones (2007) compared the accuracy of a linear relationship between the convective heat 

transfer coefficient, as used in Eq. 2.5, and wind speed, u (m s-1), shown in Eq. 2.12, with 

the semi-empirical logarithmic wind profile method in Eq. 2.8 for calculating the 

convective heat transfer. 

 

h =  
5.6 + 18.6 𝑢 𝑢 < 5 𝑚 𝑠−1

7.2 𝑢0.78 5 𝑚 𝑠−1 < 𝑢 < 30 𝑚 𝑠−1 
                                        (2.12)                           

 

They found that calculated above-canopy air temperatures using the log wind 

profile method averaged 0.3 °C in error with a maximum error of 1.3 °C during the day 

compared to measured temperatures. Meanwhile, the correlational method averaged 1.0 °C 
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in error with a maximum of 2.4 °C. However, the largest difference between the measured 

and calculated data from both equations used by Alexandri & Jones (2007) occurred at the 

warmest air temperatures, which is what motivated Tabares-Velasco and Srebric (2012) to 

include mixed convection in the Nusselt number formulation of Eq. 2.7. 

For a comparison between different methods, Ayata and colleagues (2011) 

measured the sensible heat flux of a Delosperma nubigenum green roof sample for both 

free and forced convection regimes using a laboratory apparatus based on the overall energy 

balance. They compared this data with calculated values from a modified form of Newton’s 

law of cooling (Eq. 2.5) with dimensionless analysis deriving the convective heat transfer 

coefficient, the semi-empirical logarithmic wind profile method of Eq. 2.8 and the 

empirical McAdams’ method for estimating the convective heat transfer coefficient 

(McAdams, 1954, Eq. 2.13). The McAdams’ method had not previously been used for 

green roof applications but is recommended when forced convection is the dominant form 

of convection and the leaf sizes are relatively small. Assuming conditions on each side of 

a thin leaf are similar, the McAdams derived coefficient is used in Newton’s cooling law 

with a factor of 2 in order to account for both sides of the leaves. The measured and 

calculated results showed fairly good agreement for each method, as shown by the root 

mean square error (RMSE) and r2 values displayed in Table 2.3, although the McAdams’ 

method provided only moderate accuracy for forced convection conditions. 
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ℎ =  5.9 + 4.1 𝑢 
511+294

511+ 𝑇𝑎
                                  (2.13) 

 

Table 2.3 Root mean square error and r squared values between calculated and energy 

balance residuals (Source: Ayata et al. 2011) 

 

 Forced convection Free convection 

Method RMSE (W m-2) r2 RMSE (W m-2) r2 

Modified Newton’s law 18 0.73 23 0.71 

Logarithmic wind profile 19 0.72 61 0.78 

McAdams’ method 30 0.52 13 0.87 

Ayata et al.  11 0.81 6.60 0.90 

 

 

During their comparison of existing models, Ayata and colleagues (2011) observed 

a strong relationship between the soil volumetric water content (VWC) and the convective 

heat flux, noting it was even greater than the correlation between the temperature 

differential and convection. As the soil moisture decreased exponentially over several days, 

the latent heat flux also decreased exponentially while convection increased at a similar 

rate. As will be discussed further in Section 2.2.3, lower soil moisture reduces transpiration 

and the evaporative cooling it provides to the surface of leaves, thus increasing leaf 

temperatures, the leaf-air temperature differential and ultimately the convective heat flux. 

Ayata and colleagues suggested that a robust model of convective heat transfer for green 

roofs must therefore incorporate the volumetric water content of the substrate, as shown in 

Eq. 2.14, with measures of its accuracy shown in Table 2.3. This model needs to be tested 
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with on-site experimental studies to better understand its performance. In particular, for 

wind speeds greater than 3 m s-1 and for temperature differences greater than 7 °C, values 

for the exponent n need to be further investigated.    

 

Hf,conv = 
σ𝑓 LAI h (

𝑒𝑢

(11 𝑢 𝑉𝑊𝐶)2) (𝑇𝑓 −  𝑇𝑎)
𝑛

𝐹𝑜𝑟𝑐𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

σ𝑓 LAI h (
𝑉𝑊𝐶

𝑢
𝑒3 𝑉𝑊𝐶) (𝑇𝑓 − 𝑇𝑎) 𝐹𝑟𝑒𝑒 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

     (2.14) 

 

σ𝑓 = vegetation fractional coverage   

n = exponent dependent on flow regime (0 to 1) 

 

The results of this study and the model proposed highlight the difficulties faced 

when using conventional methods to estimate not only the convective heat transfer on green 

roofs, but vegetation in general. Green roofs have additional parameters that affect 

convection, such as the fractional vegetation coverage. This is an important consideration 

as the convective models discussed rely on correlations developed in conditions that may 

differ greatly from those experienced on a green roof. Empirically-derived relationships 

contain the implicit assumption that multivariate correlations are maintained in conditions 

other than those of the original observations. As convection is affected by a variety of 

environmental, and in the case of leaves, physiological factors, this reduces the likelihood 

of overlap between green roof and non-green roof environments.  

For instance, green roof parameters differ greatly from those of the rectangular 

plates from which the dimensionless numbers are generally derived. Defraeye et al. (2013) 
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noted that for convective exchanges at the leaf surface, the boundary conditions for the 

plates differ from those of real leaves as a result of leaves not having uniform surface 

temperature. Although the incoming heat flux may be quasi constant across the surface, 

depending on leaf orientation, it is not balanced by convection alone as conduction and the 

emission of long-wave radiation also contribute to non-uniformity. However, the impact of 

these different thermal boundary conditions on the dimensionless numbers is considered 

limited for leaves (Schuepp, 1993).  

Additionally, for the dimensionless numbers, the flat plate correlations are different 

from leaf surfaces as a result of different flow patterns. The flow of air along a leaf and its 

degree of turbulence will be markedly different to that of a flat plate due to leaf inclination 

and edge effects (Defraeye et al. 2013). There are flat rectangular leaf models for 

dimensionless numbers (Chen et al. 1988; Monteith & Unsworth, 1990) however leaves 

have some degree of curvature and when considered at a canopy level by means of the LAI, 

the vegetation layer is not analogous to a flat surface.  Tabares-Velasco and Srebric (2012) 

did attempt to account for this difference between leaves and plates by means of the 

empirically-derived enhancement factor in Eq. 2.6, although amendments were required 

highlighting the difficulty in quantifying the differences due to the geometry of the canopy 

surface. 

The structure of vegetation, as well as fractional vegetation coverage, also limits 

the suitability of MOST in the estimation of aerodynamic resistance. These properties 
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violate the assumption of a horizontally homogenous turbulence field. Panin and colleagues 

(1998) found that horizontal inhomogeneity resulted in the underestimation of turbulent 

fluxes in terrains of varying heterogeneity. The authors noted that it has generally been 

assumed that the MOST approach is still applicable for individual positions of an 

inhomogeneous terrain. Nevertheless, scintillometry studies by Lagouarde et al. (1996) and 

Chebouni et al. (1999) over an area consisting of two adjacent and contrasting vegetated 

surfaces indicated that the violation of MOST was small. Huo and colleagues (2015) 

showed that MOST functions can be accurately adjusted for heterogeneous surfaces using 

a coefficient that specifies the degree of heterogeneity.  

The location of a green roof on a rooftop also complicates the use of MOST as it 

modifies the wind field. MOST only considers the wind flow over a flat surface but this 

condition is not analogues to a rooftop. Buildings disturb the wind environment of urban 

areas and, depending on the geometry of the urban landscape, particularly the height to 

width ratio between two buildings, can produce complicated patterns of wind flow that will 

violate the assumptions of MOST (Oke, 1987).  

While the convective model developed by Ayata and colleagues (2011) is an 

important step forward in the estimation of green roof heat convection, results obtained 

from experiments are generally very case specific. In particular, canopy differences such 

as leaf orientations, surface roughness, turbulence conditions, stomatal distribution and 

morphologies like leaf shape and thickness means the ability of a model to accurately 
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predict the convective heat flux of canopy from which it was not derived may be 

compromised. Furthermore, correlations are often expressed as a function of different 

characteristic lengths and wind speeds (Defraeye et al. 2013).  

Although conduction is involved in the convection process, as noted earlier, the 

conduction of heat within the vegetation layer is generally considered negligible. However, 

Tabares-Velasco and Srebric (2012) included the thermal conductivity of the vegetation 

layer in their model with Eq. 2.15. The conduction of heat in vegetation layer depends on 

the ability of plants and within-canopy air to conduct heat; their thermal conductivity (kplant 

and kair, respectively, W m-1 K-1), and the porosity of the layer (ɸ). Thermal conductivity 

varies according to the material’s moisture content, pressure and temperature 

(Thirumaleshwar, 2009). 

 

Hf,cond = ɸ 𝑘𝑎𝑖𝑟 + (1 − ɸ)𝑘𝑝𝑙𝑎𝑛𝑡                    (2.15) 

 

The thermal conductivity of plants is fairly low, averaging around 0.54 W m-1 K-1 

for the stem of herbaceous plants (Kirkham, 2014) and around 0.24-0.50 W m-1 K-1 for 

leaves (Nobel, 2009). These coefficients are slightly less than that of water which is to be 

expected given plant biomass is generally composed of water, air and organic polymers, all 

of which have low conductivity. Due to the high leaf water content of succulents, Tabares-

Velasco and Srebric (2012) selected a thermal conductivity value of 0.50 W m-1 K-1 for 



       66 

 

 
 
  

 

 

their Delosperma nubigenum and Sedum spurium green roof samples. The thermal 

conductivity of the within-canopy air in the vegetation layer will be even lower, generally 

in the range of 0.024-0.027 W m-1 K-1 (Thirumaleshwar, 2009). From LAI and plant height 

measurements, they estimated a porosity of 0.85. The temperature differential driving 

conductive heat transfer in green roof plants and the within-canopy air can be expected to 

be quite minimal given the small stature of canopies like those on extensive green roofs 

which minimizes conduction in the layer.  

The inappropriateness of conductivity formulae that assume uniform temperatures 

for plant structures, such as leaves, has been raised as measurements have shown 

inhomogeneous temperature distributions (Vogel, 1970, 1981). The leaf temperature over 

the thickness of a leaf is usually considered quasi-constant, with little or no temperature 

gradient given the thickness is typically less than 5 mm for Sedum species (Teeri et al. 

1981). Conversely, in the lateral direction, distinctive temperature gradients are apparent 

as a result of low thermal conductivity (Jayalakshmy and Philip, 2010).  

The validation of sensible heat conduction estimates within the canopy layer is 

difficult given practical limitations similar to those encountered in the quantification of 

convection. Accurate temperature measurements for the top and bottom of the canopy air 

profile and the plant biomass are required for a comprehensive validation of conduction 

estimates. Temperatures also will be horizontally heterogeneous throughout the green roof 

canopy, further complicating attempts to accurately quantify conduction.  
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The inability of the convective sensible heat flux to be directly quantified limits the 

precision of its expression in energy balance models as models are compared to likely 

erroneous empirical data. Nevertheless, comparisons between models like those in Ayata 

et al. (2011) are valuable in determining the best approach for estimating convective heat 

transfer. Given the high wind velocities commonly present in rooftop environments, 

validating models across a greater range of wind speeds would also be beneficial. 

Regarding the overall heat transfer of green roof assemblies, models have detailed the 

important role the sensible heat flux plays in heat dissipation, particularly when soil 

moisture is low.  

 

2.2.3 Latent heat flux  

 

The latent heat flux that results in passive cooling involves soil and wet-canopy 

evaporation and plant transpiration, collectively termed evapotranspiration (ET, kg m-2 s-

1). A considerable amount of energy is required for water to change from a liquid to vapour 

and when this change occurs, energy is absorbed from the evaporating surface without a 

change in temperature occurring. Whereas sensible heat transfers are driven by a 

temperature gradient, the driving force of ET is the vapour pressure differential between 

saturated plants and the relatively drier surrounding air; the vapor pressure deficit (VPD). 

Latent heat’s contribution to the energy balance is almost always negative as heat absorbed 
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by a plant is converted to an increase in the kinetic energy of water molecules in latent heat 

transfers, with sufficient energy causing vaporization. The flux can be positive when water 

condenses on a leaf (Monson & Baldocchi, 2014), although this is generally not considered 

in green roof models. 

The direct role of plants in the ET process; transpiration, involves the evaporation 

of water from the air-liquid interfaces along pores in the cell walls of epidermal, mesophyll 

and guard cells which diffuses out of the leaf through stomata that are opened to absorb 

CO2 during photosynthesis (Nobel, 2009). In green roof modelling, as in most plant models, 

the air beneath the stomata is assumed to be saturated (Alexandri & Jones, 2007).  

Ouldboukhitine and colleagues (2014) aimed to quantify green roof transpiration rates and 

the thermal resistance of green roof arrays by comparing ET and evaporation in vegetated 

and bare modules, respectively. The thermal resistance of the trays without plants were 

measured as ~0.8 m2 K W-1 while the thermal resistance of the trays containing Lolium 

perenne were ~0.92 m2 K W-1 and ~1.27 m2 K W-1 for Vinca major. Transpiration 

accounted for approximately 13% of the additional thermal resistance of Lolium perenne 

and 37% for Vinca major. While these results show the benefits of plant transpiration for 

heat dissipation, they also highlight the difference in transpiration rates between species. 

Green roof models have tended to apply methods of ET estimation developed for 

agricultural applications. There is limited validation of these techniques against direct 

measurements of green roof ET (Marasco et al. 2014). The green roof energy balance 



       69 

 

 
 
  

 

 

literature has generally employed one of two single source models for estimating the latent 

heat flux of ET from the canopy layer, meaning they only consider one source of latent heat 

flux. These models involve a resistance network similar to those for sensible heat (Eqs. 2.8 

and 2.9). The following ET model from Deardorff (1978) has been used in energy balance 

models that adapted the FASST low vegetation model (Frankenstein & Koenig, 2004) for 

green roof applications (Sailor, 2008; Ouldboukhitine et al. 2011).  

 

Lf = LAI ρaf Cf l Waf r'' (qaf – qf,sat)                    (2.16) 

         

l = latent heat of vaporization (J kg-1)  r'' = foliage surface wetness  

qaf  = mixing ratio of the air at the foliage interface 

qf,sat = saturation mixing ratio at foliage temperature 

   

Like the sensible heat flux, the diffusion of water vapour from the leaf surface 

encounters resistance in the boundary layer to its outward movement into the atmosphere. 

Deardorff (1978) represented this resistance by the foliage surface wetness factor, which is 

the ratio of aerodynamic resistance to the total resistance, as displayed in Eq. 2.17. While 

the roughness lengths for both heat and moisture are both much less than the momentum 

roughness length due to the additional resistance to molecular diffusion for heat and 

moisture exchange, both are assumed to have the same value.     

 

r'' = 
𝑟𝑎

𝑟𝑎+ 𝑟𝑠
                       (2.17) 

 

rs  = stomatal resistance to mass transfer (s m-1) 
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The other model of ET commonly applied in the green roof modelling literature is 

the widely used Penman-Monteith model (1965), shown in Eq. 2.18. For this approach, 

Monteith modified the original Penman equation (1948) to incorporate the effects of water 

stress on vegetation with the addition of stomatal resistance. Variations of this model have 

been used in the green roof models of Del Barrio (1998), Kamur and Kaushik (2005), 

Alexandri & Jones (2007), Djedjig et al. (2012), Morau et al. (2012) and Tabares-Velasco 

& Srebric (2012).  

 

Lf = LAI 
𝜌𝑎𝑓 𝐶𝑝

𝛾(𝑟𝑠+𝑟𝑎)
(𝑒𝑠,𝑝𝑙𝑎𝑛𝑡𝑠 − 𝑒)          (2.18)      

                                     

Cp = specific heat of air (J kg-1 K-1)  𝛾 = psychrometric constant (~0.059 kPa K-1)  

𝑒𝑠,𝑝𝑙𝑎𝑛𝑡𝑠 = vapour pressure of air in contact with plants (kPa)  

𝑒 = vapour pressure of air (kPa) 

 

Ouldboukhitine and colleagues (2012) compared the estimated ET as calculated 

using the Penman-Monteith model with measured ET from green roof samples of a Sedum 

and a grass. The measurements showed the grass had a higher ET rate than the Sedum and 

after 3 days approximately double the amount of water had evapotranspired from the grass 

than had evaporated from a non-vegetated substrate. The daily ET rate for the grass, 

measured as 2.53 mm, was underestimated using the Penman-Monteith equation (1.66 

mm/day), with the authors determining a correction factor of 1.37 to correct the model. 

However, this correction factor may only be applicable to the species and conditions used 

in the study. 
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Conversely, Djedjig et al. (2012) found the Penman-Monteith equation provided 

accurate modelling of substrate surface temperatures and water content changes following 

a heavy rain event for Sedum and pampas grass assemblies. Their simulations found that 

following a long period of no precipitation when the substrate water content was below 

10% of its maximum capacity, ET was greatly reduced and nearly all of the absorbed 

radiation by the vegetation was dissipated as sensible heat (Tf > Ta). However, they found 

the energy balance differed with higher substrate water contents, with ET becoming the 

primary flux when the leaf temperature neared the air temperature as transpiration rates 

increased to passively cool the leaves. Djedjig and colleagues were able to link the 

reduction in the green roof’s surface temperature to the water availability in the substrate 

by comparing substrate surface temperatures for different substrate saturation ratios. The 

results showed surface temperature differed by approximately 25 °C between dry and 

saturated substrates due to the effect of transpiration. Sensible heat was reduced with 

increased soil water content because the increase in transpiration reduced the temperature 

difference between the air and the leaves (Ayata et al. 2011). 

Like the Deardorff (1978) approach, the Penman-Monteith model features a sub-

model for canopy stomatal resistance. The degree of accuracy of the Penman-Monteith 

model has been shown to be largely dependent on the estimation of canopy resistance 

(Vogel et al. 1995). Stomatal resistance, the reciprocal of stomatal conductance, refers to 

the stomatal response to internal and external stressors that limit the diffusion of water 
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vapour from the intercellular openings between guard cells (stomata) on the surface of 

leaves. Sub-models of stomatal resistance generally assume that these intercellular spaces 

contain saturated air, as previously mentioned.  

Stomatal regulation involves a balance between controlling water loss by 

preventing the loss of this saturated air while maintaining adequate rates of photosynthesis 

and evaporative cooling (Hall et al. 1976). Succulents, such as Sedum, contain tissue that 

serves to store utilizable water during periods of low soil moisture content (von Willert et 

al. 1992). They exhibit high stomatal resistance in response to high atmospheric demand 

(high VPD) during dry soil conditions. This is a means of retaining temporary storages of 

water as transpiration has an inverse linear relationship with stomatal resistance (Lambers 

et al. 2008). Green roof modelling of succulents has shown that stomatal resistance largely 

controls the latent heat flux, with aerodynamic resistance playing a very minor role 

(Tabares-Velasco & Srebric, 2012). Conversely, aerodynamic resistance to water vapour 

diffusion has a more significant effect on the transpiration of plants such as grasses, which 

have a comparatively lower stomatal resistance.     

It is particularly difficult to simulate stomatal behaviour due to numerous factors 

such as both long- and short-distance chemical and hydraulic signalling being involved in 

stomatal response to environmental changes (Jones, 2013). Stomatal regulation has been 

empirically shown at the leaf scale to be sensitive to a number of environmental factors 

(Jarvis & Morison, 1981; Avissar et al. 1985). The green roof model literature tends to 
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employ variations of the Jarvis-Stewart model (Jarvis, 1976; Stewart, 1988) which 

parameterizes the effect that particular environmental factors have on stomatal behaviour 

(Del Barrio, 1998; Sailor, 2008; Djedjig et al. 2012; Tabares-Velasco & Srebric, 2012). 

Shown in Eq. 2.19, this approach expresses stomatal resistance as a species-specific 

minimum resistance (i.e. stomatal resistance under optimal conditions, rs,min, s m) 

multiplied by a series of independent stress functions represented in Eq. 2.19 by fn(x), where 

x is the parameter that affects stomatal resistance. This regression model represents a 

meteorological approach to soil-vegetation-atmosphere transfer (SVAT) parameterization 

of stomatal response rather than a physiological approach which involves the CO2 

assimilation rate (Leuning, 1995).  

 

rs = 
𝑟𝑠,𝑚𝑖𝑛

𝐿𝐴𝐼
𝑓1(𝜑𝑠)𝑓2(𝑇𝑓)𝑓3(𝑉𝑊𝐶)𝑓4  (𝑉𝑃𝐷)𝑓5 (𝐶𝑂2)                   (2.19) 

 

𝜑𝑠 = solar radiation (W m-2)  𝐶𝑂2 = ambient CO2 concentration (ppm) 

 

The green roof models vary in which functions are included in their expression of 

stomatal resistance. For instance, Del Barrio (1998) did not include 𝑓3, Sailor (2008) 

considered neither 𝑓2 nor 𝑓5  and Tabares-Velasco & Srebric (2012) did not include 𝑓5 .  

Several expressions of each of these functions exist, with each one commonly 

formulated in controlled environments for a particular species determined by the statistical 

analysis of a wide range of measurements (Lhomme et al. 1998). Many are formulated for 

pine or rainforests which are not comparable to green roof ecosystems. For this reason, 
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Tabares-Velasco & Srebric (2012) evaluated various functions to find the most accurate for 

their green roof samples of Delosperma nubigenum and Sedum spurium. They found the 

following four function equations were most congruent with their measured data, with 

𝑓5  (𝐶𝑂2) excluded from their comparisons.  

𝑓1(𝜑𝑠) represents the impact that variations in solar radiation (𝜑𝑠,W m-2) , have on 

stomatal resistance. The irradiance at which maximum stomatal aperture is reached is 

difficult to quantify given this characteristic varies not only between species but also by 

radiation environment. For example, the stomata of shaded leaves will open at lower light 

levels than those of sun-adapted leaves, which could result in significant differences with 

higher LAI (Jones, 2013). It is generally expressed using an exponential or a hyperbolic 

function (Lhomme et al. 1998), with Tabares-Velasco & Srebric (2012) finding an 

exponential model from Avissar & Pielke (1991), developed using a tobacco plant, to 

provide the most accurate output when compared to measured evapotranspiration rates. 

Djedjig et al. (2012) also employed Eq. 2.20 in their green roof model.   

 

𝑓1(𝜑𝑠) = 1 + 𝑒𝑥𝑝−0.034(𝑆𝑊−3.5)         (2.20) 

 

𝑆𝑊 = short-wave radiation (W m-2) 

 

𝑓2(𝑇𝑓) characterizes the role that foliage temperature has on transpiration. Stomata 

generally open in response to increasing leaf temperature until an optimum temperature is 

reached, although a change in temperature will nearly always be accompanied by a change 
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in leaf-air VPD so the two functions are closely related (Campbell & Norman, 1998). The 

relationship between stomatal resistance and temperature can be modelled using an 

exponential or a power function. Tabares-Velasco & Srebric (2012) found a power function 

they adapted from Noilhan & Planton (1989) had the best fit with measured data. The value 

of 35 °C in Eq. 2.21 represents the optimum temperature for maximum stomatal aperture, 

although this value is species-specific and generally ranges from 20-35 °C but is typically 

around 30 °C (Willmer & Fricker, 1996).    

 

𝑓2(𝑇𝑓) = 
1

1−0.0016(35− 𝑇𝑓)
2                (2.21) 

 

𝑓3(𝑉𝑊𝐶) represents the role that soil moisture has on stomatal resistance. Tabares-

Velasco & Srebric (2011) found that substrate water content was the dominant factor 

determining evapotranspiration rates in their green roof study, although radiation was 

affected in their study by the limitations of their artificial light source. They adapted a 

previous model (Jacquemin & Noilhan, 1990) to incorporate measurements of Delosperma 

nubigenum and Sedum spurium under numerous environmental conditions (Eq. 2.22). 

Stomatal regulation is generally insensitive to water availability until plants have depleted 

a particular amount of plant-available soil water; 0.7 𝑉𝑊𝐶𝑓𝑐in Eq. 2.22. Below this value, 

an abrupt increase in stomatal resistance occurs as hydraulic conductivity decreases. 

Eventually, plant stomata close in response to water stress (Chapin et al. 2012). 



       76 

 

 
 
  

 

 

𝑓3(𝑉𝑊𝐶) = {

1
0.7 𝑉𝑊𝐶𝑓𝑐−𝑉𝑊𝐶𝑤𝑝

𝑉𝑊𝐶−𝑉𝑊𝐶𝑤𝑝
   

1000

𝑉𝑊𝐶 > 0.7 𝑉𝑊𝐶𝑓𝑐

𝑉𝑊𝐶𝑤𝑝 < 𝑉𝑊𝐶 < 0.7 𝑉𝑊𝐶𝑓𝑐

𝑉𝑊𝐶𝑤𝑝 > 𝑉𝑊𝐶
                 (2.22) 

 

𝑉𝑊𝐶𝑓𝑐= VWC at field capacity  

𝑉𝑊𝐶𝑤𝑝= VWC at wilting point  

 

𝑓4  (𝑉𝑃𝐷) represents the influence of VPD on stomatal resistance. In general, 

stomatal resistance increases with increasing VPD to avoid a decline in plant water 

potential (Saliendra et al. 1995). This relationship can be simulated using either a linear or 

logarithmic function (Jones, 1992). Tabares-Velasco & Srebric (2012) suggested a 

logarithmic function from Oren et al. (1999) and Ogle & Reynolds (2002) for desert plants 

as drought-tolerant species have been found to exhibit less strict regulation of water 

potential during higher VPD conditions (Oren et al. 1999).  

 

𝑓4  (𝑉𝑃𝐷) = 
1

1−0.41 𝐼𝑛 (𝑒𝑠,𝑝𝑙𝑎𝑛𝑡𝑠−𝑒) 
                                                                                           (2.23) 

 

Comparing the stomatal sub-functions in Eqs. 2.20 to 2.23, Tabares-Velasco & 

Srebric (2012) found 𝑓4  (𝑉𝑃𝐷)  was the most sensitive to environmental changes as the 

vapour pressure differential depends on both air and leaf temperature as well as atmospheric 

humidity.  

Stomata are also generally sensitive to the CO2 mole fraction in intercellular spaces, 

with intercellular CO2 concentration negatively correlated to stomatal aperture. Sensitivity 
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to ambient CO2 concentrations is species and environment dependent, with C4 species being 

most sensitive (Willmer & Fricker, 1996). However, it is not uncommon for the influence 

of CO2 to be omitted from the Jarvis-Stewart stomatal resistance model given ambient CO2 

concentration varies little during diurnal periods when the available energy is greatest 

(Lhomme et al. 1998).  However, Del Barrio (1998) included 𝑓5  (𝐶𝑂2) using an equation 

formulated by Stanghellini (1987) from tomato plant data.  

 

 𝑓5 (𝐶𝑂2) =  1 + 6.08 × 10−7(𝐶𝑂2 − 200)2                                                                        (2.24) 

 

Alexandri & Jones (2007) compared a multiplicative Jarvis-type model (Baldocchi 

et al. 1987; Wesely, 1989, Eq. 2.25) of stomatal resistance, originally developed to model 

the deposition of trace gases, and an additive model of variable resistances (Deardorff, 

1978, Eq. 2.26) to porometer measurements of ET. The stomatal resistance values for the 

green roof sample of grass (species not specified) ranged between approximately 250-600 

s m-1. 
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rs = rmin [1 + (
200

𝜑𝑠+0.1
)2 ]

400

𝑇𝑎.𝑐(313.15− 𝑇𝑎,𝑐)
 

𝐷𝑣

𝐷𝑞
          (2.25)

                                                 

rs = 
𝑟𝑙

0.5 𝐿𝐴𝐼
[

𝜑𝑠,𝑚𝑎𝑥

0.03 𝜑𝑠,𝑚𝑎𝑥+ 𝜑𝑠
+ 𝑃 +  (

𝑛𝑤𝑖𝑙𝑡

𝑛𝑟𝑜𝑜𝑡
)2]                                                                               (2.26) 

 

𝑇𝑎.𝑐 = air temperature at the foliage (ranges from 273.15-313.15 K, outside of which 

stomatal resistance is assumed infinite (Jacobson, 1999)) 
𝐷𝑣

𝐷𝑞
 = the ratio of the molecular diffusion of water vapour to that of gas q (mm2 s-1) 

P = growing phase (function of the time of year, P = 0 during the growing season) 

𝑛𝑤𝑖𝑙𝑡 = soil moisture value below which permanent wilting occurs  

𝑛𝑟𝑜𝑜𝑡 = minimum value of soil moisture in the root zone  

 

Alexandri & Jones (2007) found the additive model had better convergence with 

the measured data than the multiplicative approach. The additive equation provided 

estimates within the 10% error band of the porometer for both diurnal and nocturnal 

resistances. Conversely, the multiplicative equation underestimated diurnal resistances and 

nocturnal resistances became infinite as I = 0 which the authors suggested makes this 

approach problematic for modelling. While inclusion of the growing phase parameter may 

explain the better accuracy of Eq. 2.26, the multiplicative model does not include a function 

pertaining to water stress which likely affected its accuracy. Additionally, the validation 

study period of 5 days did not facilitate an extensive evaluation of either method. It is also 

important to note for models that use the wilting point (ex. Deardorff, 1978), due to their 

capacity to store water and minimize water loss, Sedum species have been found to survive 

months without rain (Snodgrass & Snodgrass, 2006). Jarrett et al. (2006) noted that this 

makes it difficult to define their permanent wilting point. Rana & Katerji (2000) 
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recommended using a multiplicative model approach for more accurate estimations of 

stomatal resistance. 

The Jarvis-Stewart model and its variations have been criticized for their 

multiplicative approach. By multiplying concomitant effects any synergistic interactions 

between the environmental functions and the plant are not considered (Gerosa et al. 2012). 

Another concern that has been expressed is the exclusion of physiological influences on 

stomatal resistance. For instance, leaf age and morphology have been found to affect 

stomatal resistance (Field, 1987; Schulze et al. 1987). Stomatal resistance is also affected 

by other environmental factors not considered by the functions of the Jarvis-Stewart model, 

such as air pollutants which may be particularly relevant to green roof vegetation given 

urban areas tend to exhibit elevated concentrations of pollutants such as SO2 and O3 

(Robinson et al. 1998; Mayer, 1999). While it is currently difficult to apply more 

mechanistic approaches to stomatal modelling due to limited physiological data for green 

roof species, considering functions like the growing phase, which was featured in the 

Deardorff (1978) model, in multiplicative models may ameliorate the performance of green 

roof models.    

Besides representative stomatal resistance sub-models, the accuracy of the Penman-

Monteith is also dependent on the minimum stomatal resistance value. For green roof 

studies, limited empirical investigations mean authors commonly use values obtained from 

the literature. For instance, some green roof models have assumed minimum stomatal 
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resistance varies from 50 to 300 s m-1 (Del Barrio, 1998; Sailor, 2008). However, Jones 

(1992) noted that for succulent plants, stomatal resistances vary from 450-1000 s m-1 and 

225-1125 s m-1 for desert plants. Alexandri & Jones (2007) measured stomatal resistance 

values between 250-600 s m-1 for a green roof sample of grass. Furthermore, the stomatal 

behaviour of species and plant types on green roofs may not be comparable to their 

counterparts in natural environments given the restrictions commonly placed on plants by 

green roof ecosystems. A green roof study by Starry and colleagues (2014) found that 

stomatal resistance ranged from a minimum of 6.59 and 16.18 s m-1 for Sedum album and 

Sedum kamtschaticum, respectively, during well-watered conditions to more than 1000 s 

m-1 for both species during dry conditions. This considerable change in stomatal resistance 

presents a challenge to the models currently employed for green roof applications. It also 

highlights the need for empirical data for green roof species to determine minimum 

stomatal resistance values and the range of values expected in response to environmental 

perturbations.        

Stomatal resistance models require an upscaling from single leaf stomatal resistance 

to the whole canopy bulk stomatal resistance. Given the available energy needed for 

evapotranspiration varies throughout a plant canopy, vertical heterogeneity should be 

accounted for in single source models. This was crudely accounted for in Alexandri & Jones 

(2007) by assuming that approximately half of the canopy is illuminated and actively 

contributing to heat and vapour transfer with Eq. 2.27 from Allen et al. (1998).       
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𝑟𝑠 =  
𝑟𝑠𝑖

𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒
              (2.27) 

 

rsi = stomatal resistance of illuminated leaf (s m-1)      

LAIactive = 0.5 LAI      

 

Another approach for estimating evapotranspiration that has been used in green roof 

modelling (Lazzarin et al. 2005) is the crop coefficient model originally proposed by Jensen 

(1969). This model is most commonly used in agricultural applications to estimate the 

water use of squared kilometres of crop fields. The effect of climate on plant water 

requirements is represented by the reference maximum evapotranspiration (ET0, kg m-2 s-

1) and the effect of the plant by the crop coefficient (Kc), which is the ratio of the measured 

ET and ET0 (Hiscock & Bense, 2014), as shown in Eq. 2.28. The crop coefficient is 

therefore a scaling factor that distinguishes the plant from the reference vegetation.    

 

ET = KcET0            (2.28) 

 

The reference ET can be measured or estimated but it must be subjected to the same 

weather conditions as the plant whose evapotranspiration is being estimated. The approach 

used in Lazzarin and colleagues (2005) defines the ET0 value from a hypothetical grass that 

is actively growing and well-watered which they estimated according to the Penman 
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combination equation (1956), shown in Eq. 2.29. This method assumes that 

evapotranspiration is a function of net radiation, saturation deficit and wind speed.  

 

ET0 = 
∆ 𝑅𝑛+ 𝛾 𝑓(𝑢)(𝑒𝑠,𝑝𝑙𝑎𝑛𝑡𝑠−𝑒)

∆+ 𝛾
            (2.29) 

 

∆ = slope of the saturation vapour pressure vs temperature function (kPa °C-1)  

f(u) = wind function (W m-2 kPa) 

 

The wind function is a linear regression adjustment intended to account for the 

differences in ET regulation between estimated and observed ET0 for grass grown in the 

UK. It is therefore necessary to adapt the wind function to each site to correctly apply the 

Penman formula (Rana & Katerji, 2000). It has been modified several times with numerous 

linear relationships existing that vary according to geographical location and plant type 

(Jensen et al. 1990). Lazzarin et al. (2005) applied the following estimation for the wind 

function. 

 

𝑓(u) = 0.26 (1 + 0.54u)          (2.30) 

  

Validated using a green roof assembly planted with Sedum, the results of the 

simulation of Lazzarin and colleagues (2005) provided accurate predictions of measured 

ET rates in well-watered conditions but the estimations showed a weak correlation with 

measured data during water-stressed conditions. Their crop coefficient varied from as high 
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as 0.51 during periods without water stress to below zero during dry periods. A possible 

explanation for the inconsistent accuracy of this model was the use of the Penman model 

for the reference ET. Additionally, ET was only measured as the residual of the energy 

terms rather than a direct measurement. Using linear regressions like the wind function does 

not take into account the variability in canopy properties (Rana & Katerji, 2000).  

Other green roof studies have obtained mixed levels of accuracy in ET estimations 

using variations of the Penman-Monteith (1965) equation to estimate Sedum reference ET 

for the crop coefficient method (DiGiovanni et al. 2012; Sherrard & Jacobs, 2011; Marasco 

et al. 2014). With the use of a constant crop coefficient value of 0.53 and a short study 

period that was late in the growing season, Sherrard & Jacobs (2012) noted the accuracy of 

their hydrological model would have likely suffered from an underestimated crop 

coefficient during the mid-summer period. Cumulatively, DiGiovanni and colleagues 

(2011) found the British Meteorological Office Rainfall and Evaporation Calculation 

System (NRCC) version of the Penman-Monteith equation overestimated ET by 15% while 

the ASCE Standardized Reference Evapotranspiration Equation (Allen et al. 2005) version 

of the Penman-Monteith model overestimated ET by 80%. Conversely, Marasaco et al. 

(2014) found the ASCE equation provided a more accurate estimation of chamber ET 

measurements than an energy balance model. Although the results of the ASCE approach 

were generally similar to the measured ET, they found it overestimated the lowest ET 

values during winter months and underestimated peak ET values during the summer 
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months. Nevertheless, the advantage of using reference ET and crop coefficients to estimate 

ET is that plant and local climate effects are considered separately and it provides a 

standardized method allowing values to be compared across sites. Sherrard & Jacobs (2012) 

recommended longer study periods to refine crop coefficients according to seasonal 

changes and also assess the effects of plant species, soil types and depths. 

However, single source models treat the surface as a uniform layer. As such, scale 

is an important consideration when using single source evapotranspiration models. 

Combination equations, such as the Penman-Monteith model, are intended for closed 

canopies where advective effects, discussed in Section 2.2.5, can be neglected. These 

models are most suitable for canopies 1 km2 or greater (Rose & Sharma, 1984) when near 

equilibrium conditions with constant one-dimensional transfer occur in a well-developed 

boundary layer (Dunin, 1991).  For smaller canopies, such as green roofs, isolation 

exposure, i.e. increased wind and radiation loading, will likely minimize the effectiveness 

of these models (Rose & Sharma, 1984). Other relevant factors being equal, green roof 

canopies will likely exhibit different rates of evapotranspiration to agricultural crop 

communities typically used to develop evapotranspiration models. Additionally, green roof 

plants and substrates also differ from the agricultural crops and further work is therefore 

required to refine these models to more accurately reflect the processes occurring within 

green roof systems (Stovin et al. 2013). Models of evapotranspiration exist for isolated 
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stands that may be more suitable for green roofs and these will be discussed further in 

Section 2.2.5. 

Given latent heat is the primary means of heat dissipation for green roofs in wet 

conditions (Lazzarin et al. 2005; Tabares-Velasco & Srebric, 2011), its accurate 

representation is paramount to the performance of energy models. As discussed, there are 

numerous approaches in the literature for calculating the latent heat flux, with each one 

requiring parameters that are species-specific. This poses a challenge to green roof 

modelling as it depends on a considerable quantity of empirical data in order for these 

models to be adequately versatile. While the aim of some studies has been to find the 

existing model that most accurately estimates green roof latent heat fluxes (Tabares-

Velasco & Srebric, 2012), others have modified such models to better correlate with green 

roof empirical data (Tabares-Velasco & Srebric, 2011; Ouldboukhitine et al. 2012). 

However, green roofs may require further refinement of single source models or the 

application of more complex models in order to accurately and robustly calculate latent 

heat fluxes due to their unique conditions and plant species.  

 

2.2.4 Energy storages – thermal and metabolic 

 

While most of the incoming energy that reaches the plants’ surfaces will be re-

radiated back into atmosphere or dissipated through sensible and latent heat fluxes, some 



       86 

 

 
 
  

 

 

of the energy will be stored within the vegetation layer. Of this stored energy, that which 

increases/decreases the internal heat energy (temperature) of the plants and within-canopy 

air is referred to as thermal energy storage whereas the energy involved in the physiological 

processes of the plants is referred to as metabolic energy storage. 

The specific heat of foliage is fairly high for a solid material, with Jayalakshmy and 

Philip (2010) finding fresh leaves from various species ranging from 1287 to 2267 J kg-1 

K-1 and 1514 and 5174 J kg-1 K-1 for dry leaves. However, little heat can be stored in the 

canopy layer of a green roof due to the limited air and biomass. This means temperature 

within the canopy can change relatively fast in response to cooling or heating mechanisms. 

Feng et al. (2010) used the following calculation of heat content in a solid of Sedum lineare 

on a green roof. They estimated that the thermal energy storage only accounted for 0.1% 

of the net radiation. This is a likely estimate given only large plant structures such as trunks 

can store considerable amounts of energy (Nobel, 2009). This model can also be used to 

quantify the storage of energy by the within-canopy air, which comprises majority of the 

canopy layer’s volume but has a much lower energy density.  

 

 

Sf = 𝜌𝑓𝐶𝑝𝑙𝑎𝑛𝑡𝑠 
∆𝑇𝑓

∆𝑡
           (2.31) 

 

𝜌𝑓 = areal density of foliage (kg m-3)  𝐶𝑝𝑙𝑎𝑛𝑡𝑠 = specific heat of plants (J kg-1 K-1) 

∆𝑡 = time interval (s) 
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Feng and colleagues (2010) also estimated the metabolic storage of their green roof 

by means of the photosynthetic rate. Photosynthesis is the process by which plants convert 

radiative energy into chemical energy for growth, reproduction and maintenance. Although 

metabolic storage is only estimated to account for approximately 1-2% of the net radiation 

in vegetated environments (Gates, 1980), Feng and colleagues (2010) estimated that the net 

photosynthesis of the Sedum lineare accounted for 9.5% of the net radiation. Although a 

large mass of active vegetation in low light could have a metabolic storage accounting for 

~5% of the net radiation (Hillel, 1998), these circumstances are not applicable to an 

extensive green roof. Feng and colleagues (2010) did not verify this estimate with empirical 

data and they likely overestimated its contribution due to erroneous parameterizations of 

minimalistic equations that considered solar radiation as the sole factor determining net 

photosynthesis rates. This approach ignored the complex interaction of plant and other 

environmental variables that affect net photosynthesis such as soil moisture content, leaf 

age and morphology and ambient CO2 concentrations (Mohr & Schopfer, 1995). In 

contrast, Starry and colleagues (2014) measured relatively low net photosynthetic rates of 

Sedum album and Sedum kamtschaticum on green roofs even during periods of high soil 

volumetric water content (VWC). Nevertheless, it is recommended that future studies 

examine net photosynthesis within the context of the energy balance to assess the findings 

of Feng et al. (2010).  
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Regarding the relationship between the thermal and metabolic storages, the harsh 

environment green roofs often present for plants limits their net storage of energy. Stresses 

that commonly occur on green roofs, such as water stress due to shallow substrates, 

elevated temperatures and high radiative heat flux intensities, soil nutrient deficiencies and 

desiccation and physical damage due to high wind speeds (Dunnett and Kingsbury, 2004), 

mean green roofs are suboptimal environments for plants. These stresses, either singularly 

or collectively, will result in lower photosynthetic rates compared to non-stressed 

counterparts (Chapin, 1991). Lower rates of photosynthesis lead to lower growth rates, and 

therefore less thermal mass, as less energy is apportioned to producing biomass. 

Additionally, any damage suffered due to the aforementioned stresses, such as 

photodamage to the photosynthetic apparatus resulting from excessive radiative heat 

exposure, requires a greater allocation of photosynthetic products to the maintenance of 

plant tissue rather than contributing to the growth of the plant. Therefore, the harsh 

environment of green roofs ultimately limits both the thermal and metabolic energy storage 

of the vegetation layer by reducing growth.  

As green roofs are commonly planted with succulents which have relatively high 

water content for plants, the canopy layer is likely to have a high thermal storage per unit 

mass for a vegetated system. However, succulents are also likely to have a comparatively 

lower metabolic storage compared to most plant types and coupled with the minimal mass 

of the low stature vegetation on green roofs, the combined storage of energy by the plants 
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on a green roof likely comprises only a small portion of the net radiation. Nevertheless, 

further quantification of the thermal and metabolic storage on green roofs will provide 

energy balance closure (ie. Eq. 2.1 equals zero) which is particularly important given 

sensible heat convection is commonly quantified as the residual.   

 

2.2.5 Advection heat flux 

 

The assumption of a closed system with solar radiation as the system’s only external 

energy input means the one-dimensional approach commonly used in green roof modelling 

ignores the energy exchanged by advection. Horizontal transfer of energy, for instance, can 

represent a significant net gain or loss for the canopy system, with advection potentially 

causing local turbulent fluxes to vary considerably on a green roof. Advection stems from 

air flow over changing surfaces; variations in surface roughness, such as between a green 

roof and surrounding concrete. This causes a change in surface momentum flux which 

affects the wind field as well as changes in the surface availability of scalars, including heat 

and moisture (Kaimal & Finnigan, 1994). 

Previous research has found that the local and micro-advection of warmer, drier air 

from upstream built-up areas can enhance the evapotranspiration flux from urban 

vegetation. This effect arises from increased sensible heat and surface-to-air humidity 

gradient, ultimately leading to an increase in the latent heat flux and a decrease in the 
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sensible heat flux if the radiative energy remains constant (Kaimal & Finnigan, 1994). With 

the presence of advection, the latent heat flux can even exceed the net radiation due to the 

additional energy for evapotranspiration supplied by the sensible heat flux (Oke, 1979). 

Referred to as the ‘clothesline effect’, this phenomenon occurs in small isolated 

vegetation areas or along the upwind edge of a vegetation canopy that is surrounded by a 

surface of lower roughness, such as concrete. The air above the surface surrounding a green 

roof is likely to be higher in sensible heat compared to the air above a green roof, which is 

higher in latent heat because there is more water available at the surface. Evapotranspiration 

from the green roof will be enhanced when wind transports the drier, warmer urban air over 

a green roof. Importantly for advective enhancement in green roof systems is the often lack 

of obstacles to radiation and wind surrounding a green roof.  

Spronken-Smith and colleagues (2000) found the evapotranspiration from an 

irrigated suburban park was greatest at its upwind edge with an exponential decline in rates 

over a fetch of approximately 20 m; the leading-edge or fetch effect. The total 

evapotranspiration from the park was over 3 times greater than that of the surrounding 

suburban area and 1.3 times greater than an irrigated rural grass site. This effect was caused 

by the advection of sensible heat towards the park as the neighbouring dry paved area was 

consistently 1-2 °C higher. Additionally, this advected air was drier given the lower water 

availability over the paved surface which increased the humidity driving force for 

evapotranspiration over the park. The magnitude of this observed clothesline effect varies 



       91 

 

 
 
  

 

 

depending on the height of the vegetation. For a 100 m2 area, grass will have an 

evapotranspiration rate approximately 10% higher than the reference evapotranspiration 

rate while trees will have an evapotranspiration rate around 30% greater than the reference 

evapotranspiration (Doorenbos and Pruitt, 1984). Estimations of the horizontal extent of 

the clothesline effect have varied from less than 20 m at a grass site (Rider et al. 1967) to 

over 200 m at a cotton site (Rijks, 1971).   

Even at fetch distances sufficiently large enough for edge effects to be negligible, 

evapotranspiration can still be enhanced compared to the potential rate; the ‘oasis effect’. 

In this instance, the enhancement of evapotranspiration is the result of warmer urban air 

subsiding over the cooler park due to mass divergence. This additional downward flux of 

sensible heat further enhances evaporation. While the oasis effect has been estimated to 

occur at a minimum area of approximately 1000 m2 for an irrigated grassed area 

(Doorenbos and Pruitt, 1984), micro-oasis effects can occur over much smaller areas 

(Jones, 2014).  

While many green roofs may not be sufficiently large enough for a significant oasis 

effect to occur, advection by means of the clothesline effect will likely result in significant 

differences (heterogeneity) in the latent heat flux. As evidence of this on a micro-scale, 

Hagishima et al. (2007) measured the evapotranspiration from homogenous potted 

Camellia plants on a concrete slab arranged in three different horizontal densities. Within 

the densest canopy, composed of 169 plants separated by 0.5 m, the evapotranspiration rate 

http://www.sciencedirect.com.library.smu.ca:2048/science/article/pii/S0921344911002564#bib0055
http://www.sciencedirect.com.library.smu.ca:2048/science/article/pii/S0921344911002564#bib0055
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for plants on the leading edge was around 1.3 times the evapotranspiration rate of the plants 

located in the centre of the canopy. Furthermore, their results suggested the importance of 

horizontal biomass density on latent heat flux, with the evapotranspiration rate of the low 

density canopy being 1.5 times greater than that of the high density canopy. As a result of 

landscaping choices, varying canopy densities may exist on a green roof, further increasing 

the horizontal heterogeneity of the latent heat flux. Hagishima and colleagues 

recommended the parameterization of surface water availability in evapotranspiration 

models for urban vegetation.      

Additionally, the effects of advection on the latent heat flux may cause additional 

stress to green roof plants, thereby further modifying the surface energy balance. Using the 

Soil Water Atmosphere and Plant (SWAP) model to simulate the water balance of a green 

roof, Metselaar (2012) accounted for a possible clothesline effect by increasing the 

reference evapotranspiration rate by 25%. Results showed that the possible advective 

enhancement of evapotranspiration could lower the median pressure head and increase 

drought stress, particularly for mineral substrates. Metselaar noted that even for identical 

green roof designs, the location of a rooftop can have a profound effect on the 

evapotranspiration as each roof has distinctive conditions.  

Limited empirical knowledge of advection in urban environments stems from the 

considerable effort involved in making field measurements. These measurements require 

the deployment of multiple flux towers involving the duplication of expensive equipment. 
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As such, micrometeorological studies have tended to quantify advection by mathematical 

simulations rather than experiments (Kaimal & Finnigan, 1994). A considerable limitation 

for the development of these analytical models of wind fields though is the lack of empirical 

data against which to compare them (Finnigan, 2005). Urban research has tended to ignore 

local- and micro-scale heat and moisture advection based on the theoretical assumption of 

its negligibility due to horizontal homogeneity (Lietzke et al. 2015). From an energy 

modelling perspective, assuming the effect of advection on the energy balance is negligible 

avoids an uncertain and complex task but is likely to result in erroneous predictions. 

  In order to approximate the flux divergence resulting from advection, a method 

from Alfieri et al. (2012) adapted from Prueger et al. (1996) is shown in Eq. 2.32. In this 

advection-diffusion model, the evapotranspiration resulting from the contribution of 

advection (ETadv, kg m-2 s-1) is estimated using the depletion of sensible heat content in the 

air above the green roof. 

 

-ETadv = ∆H = Hs – Hm = ρCp,a∫ 𝑢(𝑧)
𝑧𝑚ℎ

𝑧0

𝜕𝑇𝑎(𝑧)

𝜕𝑥
𝜕𝑧         (2.32)

                                                                 

∆H = flux divergence of H (W m-2)  Hs = H at surface (W m-2)   

Hm = H at measurement height z (W m-2) zmh = measurement height (m)  

z0 = roughness length (m)   z = height above surface (m)    

x= downwind distance from edge (m) 

 

Aside from using partial differential equations to approximate advective 

enhancement of the latent heat flux, empirical methods, such as the lysimetry study of 



       94 

 

 
 
  

 

 

Hagishima et al. (2007), could provide further insight into the effects of advection on green 

roofs. With measurements under multiple wind conditions, these empirical methods could 

lead to more accurate enhancement factors than the rough estimation used by Metselaar 

(2012) for use in green roof energy balance modelling. 

Given the significant advective fluxes observed in empirical studies, its neglect will 

likely limit the accuracy of green roof energy balance models. As wind velocities are 

generally high on rooftops as a result of the high surface roughness of urban areas and 

vertical wind shear, the transport of heat and moisture by bulk fluid motion is likely to be 

non-negligible. While models of evapotranspiration enhancement by advection will likely 

alleviate current oversights, further research is required to improve these methods for green 

roof systems. The fact that buildings modify airflow so that it does not behave as if it was 

over a flat open surface requires addressing as it may greatly affect the energy balance of 

green roofs. 

    

2.3 Discussion of green roof energy modelling approaches 

 

As shown in this review, green roof models rely on several assumptions regarding 

the partitioning of energy above and within the plant canopy. Unlike multilayer modelling 

which can use direct leaf-scale measurements, the big-leaf models used for modelling the 

vegetation layer require canopy-scale parameters that cannot be measured directly. This is 
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because the microclimate variables that drive fluxes of heat and mass occur as gradients 

within the canopy. These gradients lead to differences in the temperature, vapour pressures 

and latent and sensible heat fluxes between individual leaves. These differences are the 

result of varied leaf inclinations, orientations and shading within the canopy (Avissar, 

1993). Assuming the canopy fluxes are linearly coupled to the average of these 

environmental drivers, big-leaf models use mean values to represent these gradients. This 

assumption introduces the risk of non-linear averaging errors occurring due to the 

possibility of a heterogeneous distribution of a driving variable and a non-linear response 

to that driver (Monson & Baldocchi, 2014). These non-linear averaging errors are a 

common reason for the overestimation of ET by big-leaf models (Landsberg & Sands, 

2011).  

Given the low stature of extensive green roof plants, particularly Sedum, the limited 

within-canopy profiles of microclimate parameters means they are unlikely to have an 

expansive range of values that would benefit from the use of a multilayer model. A simpler 

and more suitable approach for such canopies may be two-leaf single source models that 

differentiate between sunlit and shaded leaves (Wang & Leuning, 1998; Dai et al. 2004). 

Although requiring more parameters than big-leaf models, two-leaf modelling provides a 

better representation of the within-canopy microclimate and the response to these drivers. 

The results of Dai and colleagues (2004) showed their two-leaf model performed better 

than a similar big-leaf model. Leuning et al. (1998) found their two-leaf model (Wang & 
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Leuning, 1998) provided simulations that were fairly congruent with a data-intensive 

multilayer model (Leuning et al. 1995). Overestimations of latent heat fluxes and 

underestimations of sensible heat fluxes were typically <5%. However, further refinements 

regarding the calculation of canopy photosynthesis by Wang (2000) to the Wang & Leuning 

model (1998) reduced discrepancies between the two-leaf model and the multi-layered 

model (Leuning et al. 1995) to <3%. Incorporating two-leaf rather than big-leaf modelling 

approaches into green roof models may therefore provide more accurate and robust 

predictions by better representing the within-canopy profile.  

Coupled dual source models may also provide robust simulations of the vegetation 

and substrate layers. As mentioned in Section 2.1.1, small-scale heterogeneity is more 

suitably represented in a coupled model (Lhomme & Chehbouni, 1999) which may be more 

realistic for green roofs, especially those with multiple plant species and/or those without 

total vegetation cover. Single source models are generally derived for horizontally 

homogenous vegetation, possibly limiting their suitability for green roofs. The interaction 

of fluxes between the vegetation and substrate may be more suitable for extensive green 

roofs given the low stature of the plants increasing the impact of fluxes between the plants 

and the substrate.      

Aside from the number of layers included in green roof models, another concern 

regarding existing green roof models is their nominal and deterministic treatment of 

parameter values. Sensitivity analyses have highlighted the significant impact that 
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parametrization of plant properties such as LAI and albedo can have on the energy 

performance of green roofs. However, due to the variation in vegetation properties both 

spatially and temporally and the unavoidable deviation from designated parameter values 

during and after the construction of green roofs means these values will change. Due to this 

inherent deviation, Liu (2014) noted that the energy performance of green roofs cannot be 

predicted deterministically but rather probabilistically. Consequently, Liu undertook a 

parametric uncertainty analysis to examine the range of building energy prediction 

outcomes using EnergyPlus software. This involved treating the values of the most 

significant green roof parameters as random variables with prescribed probability 

distributions. Simulation results showed that uncertainty at the parameter level can result 

in significant variations at the building energy level. The dispersion of energy saving values 

was almost linearly proportional to key green roof parameters over a relatively large range. 

For a reliable assessment of the long-term cost-effectiveness of a green roof installation, 

nominal parametric values will therefore likely limit the accuracy of these assessments 

regarding building energy savings. However, future research needs to acquire information 

regarding the probabilistic distribution of key parameters as currently the confidence level 

of achieving target energy savings is ultimately unknown, undermining the quality of green 

roof life cycle assessments.  
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2.4 Conclusion 

 

 Numerous studies have attempted to model the energy balance of green roofs. Given 

the overwhelming complexity of the heat storages and fluxes within the vegetation layer, 

these researchers have adopted various assumptions in order to provide estimates of the 

green roof systems’ thermal performance. However, given the limited number of empirical 

studies concerning the energy fluxes and storages within green roof systems, these 

assumptions are based on information taken from ground environments that may not be 

easily transferred to vegetation on rooftops. Green roof vegetation may differ greatly from 

that of the vegetation at ground level given differences in physiology and advection that 

may affect each component of the energy balance.  

 Therefore, the use of single source models, which use averaged values either based 

on the limited number of green roof studies or from ground-level measurements from the 

literature, may be oversimplifying heat transfers in the vegetation layer. Comparisons with 

more complex modelling approaches, such as two-leaf models, is required to determine 

whether or not more accurate representations of green roof vegetation yield more precise 

estimates of green roofs’ thermal performance. Additionally, there is a considerable amount 

of diversity amongst plant species regarding growth, phenology, physiology and optical 

properties. For the validation and application of these numerical models, further research 
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concerning the diversity of these properties is needed in order for these models to be 

purposeful.  

 However, as explained during this review, the vegetation layer and thermal 

performance of a green roof is greatly affected by the rooftop’s climate. Empirical green 

roof studies have had the limitation thus far of only representing a single climate. Each 

numerical model’s validation study has involved monitoring only one green roof. This may 

have limited the climate regions to which the minimal number of green roof models that 

have been developed are appropriate. The study featured in the following chapter therefore 

will provide important information for the validation of these models and provide an 

unprecedented level of insight into the relationship between the thermal performance of 

green roofs and climate.   
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Chapter 3: Empirical investigation of green roof energy performance 

in different climates 
 

 

 

3.1 Introduction 

 

As highlighted in Chapter 2, as living systems, plants introduce a tremendous amount of 

uncertainty in the prediction of green roofs’ energy performance. Given the complexity of 

mechanistic models, a comprehensive knowledge of the plants, as well as the substrate, is 

required for computations to accurately reflect any given green roof system. Additionally, 

due to the numerous assumptions involved in these models, further research is required to 

explore the relationships between environmental and design parameters. 

 Extensive observations not only provide information to validate the theoretical 

relationships that form the foundation of numerical models, they also provide a means for 

predicting through empirical modelling. The most extensive empirical modelling study 

conducted on a vegetated building surface involved fitting an autoregressive model to data 

collected over a 3-year period from a green wall in Spain to estimate the vegetated surface’s 

effect on indoor temperatures (Olivieri et al. 2014). Predicting the temperature difference 

between the exterior and interior spaces, their models provided a high degree of accuracy 

with the multiple r-squares around 0.85 with their standard error measures between 0.48-

4.12 °C depending on the time of the day. However, as an inherit limitation of empirical 

models and as noted by the authors, the application of their model may only be suitable for 



       116 

 

 
 
  

 

 

green walls located in a similar Mediterranean climate. Furthermore, with independent 

variables being the surface temperature of a metal sheet on the exterior and interior of the 

building and the air temperature near the ceiling and the floor of the interior space, this 

study provided no information on the transfer of heat and relationship between parameters 

within the green wall system. Given the greater depth of their substrate and vegetation 

layers, green roofs also ultimately have a more complex thermal effect on buildings. 

The performance of the ecosystem services that green roofs provide have been 

found to be largely dependent on the local environment (Jim & Peng, 2012; Lin et al. 2013). 

For example, the hydrological performance of green roofs has been shown by simulations 

to vary between climates, with green roofs in warmer, drier climates have a greater retention 

performance compared to those in cooler, wetter climates (Stovin et al. 2013). Pertaining 

to the thermal benefits afforded by green roofs, numerical simulation studies have 

suggested that during summer periods, green roofs are most beneficial in warmer climates 

(Jaffal et al. 2012). Applying a numerical model based on the work of Sailor (2008) to data 

typical of the temperate oceanic climate of La Rochelle, France, the hot Mediterranean 

climate of Athens, Greece, and the cold climate of Stockholm, Sweden, Jaffal and 

colleagues’ (2012) findings suggested indoor air temperatures would be most significantly 

reduced by the presence of a green roof in Athens. Mean indoor air temperature reductions 

of 2.6, 2.0 and 1.4 °C were found for Athens, La Rochelle and Stockholm, respectively.  
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However, as noted by the authors (Jaffal et al. 2012), the numerical model used in 

their study did not precisely consider the physiology or the growth of the vegetation. These 

parameters are important as they can have important impacts on the transfer of heat through 

green roofs by affecting the partitioning of available energy at the surface and the 

transmission of solar radiation through the vegetation layer. By assuming the different 

climates considered in their study had no effect on physiological model parameters such as 

the minimum stomatal resistance or growth factors such as the LAI, Jaffal and colleagues 

ignored the impact that the environment has on the functioning, and even the survival, of 

green roof vegetation.  

 These points highlight the current deficiencies limiting the ability of numerical 

models to accurately predict the likely benefits of green roof installations and maximize 

design options. In situ modelling studies like that of Olivieri et al. (2014) encompass all 

aspects of the vegetated surface’s energy balance, including plant parameters, but the 

findings are likely to be site-specific limiting comparisons with sites in other climates. 

Additionally, the independent variables used in the study by Olivieri and colleagues had 

limited relevance to the parameters used in numerical modelling studies and therefore little 

could be gained as far as the refinement of numerical models. If empirical models are more 

closely related to their mechanistic counterparts, the relationships between parameters 

within a green roof system and between the system and its environment could be better 
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understood so that these models could be more accurately applied to buildings in a range 

of climatic conditions.    

Given the need to develop more detailed green roof models, as suggested by Jaffal 

and colleagues (2012), and the lack of empirical studies comparing the thermal 

performance of green roofs in different climates, the current study aims to develop 

regression models that accurately predict the flux of heat through green roof substrates 

during summer. By installing identical green roofs, the effect of design parameters on 

thermal performance will be minimized so the effect of climate can be better observed and 

predicted. This will also facilitate the characterization of heat transfer through the substrate. 

Furthermore, a model should be validated using an extensive data set, an approach that has 

not been undertaken in the development of numerous mechanistic green roof models 

(Lazzarin et al. 2005; Alexandri & Jones, 2007). Therefore, the current study also aims to 

validate the regression models using extensive data collected during the summer period of 

different years.      
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3.2 Method 

 

3.2.1 Study sites 

 

 In an effort to maximize the effect of climate on the performance of the green roof 

design, three Canadian cities located in different climate regions were chosen to conduct 

the study. As displayed in Fig 3.1, the selected cities of Calgary (Alberta), Halifax (Nova 

Scotia) and London (Ontario) differ significantly in their average annual precipitation. Each 

of the green roofs was installed in August, 2012. The rooftops on which the green roofs 

were located were three, four and five storeys above the ground surface in Calgary, London 

and Halifax, respectively.  
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Fig 3.1 Location of green roof sites used in study and their climate classification, USDA 

plant hardiness zone and climate averages  

 
● 1981-2010 average at Calgary International Airport weather station (51°06' N 114°01' W) 

○ 1981-2010 average at Shearwater weather station (44°38', 63°30' W) 

+ 1981-2010 average at London International Airport weather station (43°01' N, 81°09' W)                                                                       

 

Climate data source: Environment Canada 

 

Halifax, Nova Scotia 

Park Place V, Dartmouth 

(44°41’ N, 63°34’ W) 

Climate: Humid continental 

USDA plant hardiness zone: 6b 

Average summer precipitation: 313 mm○ 

Average summer temperature: 17.0 °C○ 

Warmest summer month: August (18.5 °C)○  

Driest summer month: August (92 mm)○    

London, Ontario 

Talbot College, University of Western Ontario 

(43°00’ N, 81°16’ W) 

Climate: Humid continental 

USDA plant hardiness zone: 6a 

Average summer precipitation: 257 mm+ 

Average summer temperature: 19.6 °C+ 

Warmest summer month: July (20.8 °C)+  

Driest summer month: July (83 mm)+   

Calgary, Alberta 

Earth Sciences Building, University of 

Calgary 

(51°40’ N, 114°70’ W) 

Climate: Dry humid continental 

USDA plant hardiness zone: 4a 

Average summer precipitation: 216 mm● 

Average summer temperature: 15.4 °C● 

Warmest summer month: July (16.5 °C)●  

Driest summer month: August (57 mm)●    
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3.2.2 Materials and data collection 

 

 Using a modular system, each of the extensive green roofs were almost identical in 

design, with the roofs consisting of 400, 395 and 514 1’ x 1’ modules in Calgary, Halifax 

and London, respectively. The green roofs were composed of a relatively large number of 

modules to minimize leading edge effects. The substrate in each module was either 10.2 or 

15.2 cm in depth. The substrate used was a LiveRoof® engineered growing medium which 

was a blend of organic and inorganic materials. This lightweight substrate has a high 

porosity, giving the mixture a high water holding capacity.  

The modules were planted as either monocultures containing one of the three major 

taxonomic and functional plant groups commonly used on green roofs; the forb Aquilegia 

canadensis, the succulent Sedum spurium or the grass Sporobolus heterolepis, or a mixture 

containing all three species. Approximately 50% of the modules of each green roof were 

Sedum spurium monocultures, with this species chosen for the current study as the 

monitoring equipment was installed exclusively on Sedum spurium monocultures at each 

study site.  

 As mentioned in Chapter 2, Sedum spurium was previously used in the validation 

study (Tabares-Velasco et al. 2012) for the green roof model of Tabares-Velasco and 

Srebric (2012) and is a popular choice for both extensive green roof research studies and 

industry designs. Displayed in Fig 3.2, previous research has shown this species can survive 
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long periods in the harsh environmental conditions that green roofs present (Rowe et al. 

2012). 

Given the importance of vegetation coverage to a green roofs energy balance, for 

descriptive purposes and assisting the interpretation of statistical analyses, the canopy 

density of each module was measured. The pin-frame technique was conducted once per 

month during the 2013 summer period and once per week during the 2014 summer at each 

of the sites. This technique involved placing 1’ x 1’ frame above each module which 

contained four pairs of strings across the frame, both vertically and horizontally, so as to 

provide 16 intersections between the pairs of strings. A pin was then lowered towards the 

substrate surface at each intersection and the number of leaves that touched the pin was 

recorded. This technique allowed an approximation of density that involved aspects of both 

LAI and vegetation fractional coverage. As this technique was only undertaken once per 

month during the 2013 study period, only one mid-month measurement was considered for 

the 2014 study period. Due to the poor temporal resolution of this technique, the canopy 

density data was not included in the statistical analyses as it was unable to provide a 

significant increase in models’ predictive power. 
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Fig 3.2 Overhead view of the Sedum spurium canopy on the Halifax green roof in 2014 

 

  

To measure the transfer of heat through the green roofs and its relationship with 

environmental variables, micrometeorological monitoring equipment was installed at each 

of the sites. Shown in Table 3.1, the parameters measured by the monitoring instruments 

included a temperature profile spanning from above and within the green roof system, the 

amount of radiation entering the system, soil moisture and the wind speed. The data 

collected by these instruments was also used to calculate additional variables; the surface-

to-air and canopy-to-air temperature differences as well as an estimate of the vapour 

pressure deficit (VPD) value for the within-canopy air. Positive values of the dependent 

variable meant the transfer of heat was downwards; towards the building, while negative 

values represented the transfer of heat upward; away from the building. 
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Table 3.1 List of parameters measured and calculated for this study and accompanying 

notes on location of measurements or calculation methods 

 

Parameter Notes 

Dependent variable  

  Substrate heat flux Placed 7 cm deep in the heat flux module substrate 

Independent variables  

  Radiation:  

    -Solar radiation  

    -Net radiation Measured approximately 40 cm above the substrate 

surface 

  Temperature:  

    -Air temperature Measured approximately 1.8 m above the roof surface  

    -Sub-canopy air temp Measured approximately 5 cm above the substrate 

surface 

    -Surface temperature Measured on a module neighbouring the heat flux 

module 

    -Soil temperature at 1’’ Soil temperature in the heat flux module 1’’ below the 

substrate surface 

    -Soil temperature at 4’’ Soil temperature in the heat flux module 4’’ below the 

substrate surface 

  Temperature difference: Represents the gradient driving convective sensible heat 

fluxes 

    -Surface-to-air temp dif Surface temperature minus air temperature  

    -Surf-canopy air temp dif Surface temperature minus sub-canopy air temperature  

  Humidity: Represents the gradient driving latent heat fluxes 

(except for the absolute measure of specific humidity 

which does not represent a gradient) 

    -Relative humidity Measured approximately 1.8 m above the roof surface  

    -Specific humidity Calculated using air temperature and RH data 

    -VPDcanopy Calculated using canopy air temperature and RH data 

  Additional:  

    -Soil moisture Measured in the heat flux module at a depth of 

approximately 3’’ below the substrate surface with the 

probe positioned horizontally within the substrate 

    -Wind speed Measured approximately 1.8 m above the roof surface 
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Table 3.2 shows a list of the instruments used to measure these parameters. The net 

radiometer was placed above the module containing the heat flux plate, the soil temperature 

sensors and the soil moisture sensor, as shown in Fig 3.3. The sub-canopy air temperature 

sensors were located above another neighbouring module. All of these modules that either 

contained or were located below instruments were a part of a centre array containing 103 

modules in Calgary and Halifax and 91 modules in London; each a Sedum spurium 

monoculture. The instruments were all connected to a CR3000 data logger (Campbell 

Scientific Inc., Logan, Utah, USA). The data were composed of five minute-averaged 

measurements for each variable. 
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Table 3.2 List of instruments used in data collection and the manufacturers’ reported 

accuracy   

 

Variable Instrument Accuracy 

• Air temperature 

◦ Relative humidity 

RH and temperature probe (HC2-S3-L, 

Campbell Scientific Inc.) 

• ±0.1 °C at 0 °C 

◦ 0.8% at 23 °C 

Net radiation Net radiometer (Q-7.1, Campbell Scientific 

Inc.) 

NA 

Soil moisture Soil moisture sensor (EC-5, Decagon Devices 

Inc., Pullman, Washington, USA) 

±3% 

Solar radiation Pyranometer (TSP-400, Yankee 

Environmental Systems Inc., Turners Falls, 

Massachusetts, USA)  

NA 

 

 

Soil temperature 

(1’’ & 4’’) 

Thermistor temperature sensor (ST-100, 

Apogee Instruments Inc., Logan, Utah, USA) 

±0.2 °C at 0-70 

°C 

Sub-canopy air 

temperature 

Thermistor temperature sensors (ST-200, 

Apogee Instruments Inc.) 

±0.2 °C at 0-70 

°C 

Substrate heat flux Soil heat flux plate (HFT3, Campbell 

Scientific Inc.) 

<±5% 

Surface 

temperature 

Infrared radiometer (SI-100, Apogee 

Instruments Inc.) 

±0.2 °C at -10-65 

°C 

Wind speed Anemometer (03101, Campbell Scientific 

Inc.)  

±0.5 m s-1 
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To correct for errors in the net radiometer measurements caused by convective 

cooling as air passes the sensors, the correction functions supplied by the manufacturer 

(s.campbellsci.com/documents/us/manuals/q-7-1.pdf) were applied to the data.  

As atmospheric pressure (p, kPa) was not measured in the study, the ideal gas law 

could not be used to calculate the specific humidity (q, g kg-1). As an alternative, the 

specific humidity was estimated using the approximation shown in Eq. 3.1. The 

S S S S S S S

S S S S S S S

S S S S S S S

S S S S S S S

S S S S S S S

S S S S S S S

S S S S S S S

S = IRT = Net radiometer  S = Sedum module   

S = Within-canopy temperature sensors 

Weather station 

(anemometer & 

RH/airT probe) 

1’’ deep soil temp thermistor 

4’’ deep soil temp thermistor 

Fig 3.3 Photograph of Halifax green roof research site with inset of centre module array 

with inset: (1) overhead diagram of centre module array; and (2) side view-diagram of 

heat flux module 

1 2

. 

7 cm deep soil heat flux 

plate 
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atmospheric pressure in Eq. 3.1 was kept constant at 101 kPa as hourly pressure 

measurements from the three weather stations mentioned in Fig 3.1 varied between 

approximately 1005 hPa and 1020 hPa during the study period. The saturation vapour 

pressure was calculated using Buck’s (1981) version of the Tetens (1930) formula. 

 

q = 
623 𝑒

𝑝−0.377 𝑒
                         (3.1) 

 

Soil moisture was expressed as volumetric water content (VWC). To calculate the 

VWC from the EC-5 soil moisture sensors’ data, Eqs. 3.2 and 3.3 from Sakaki et al. (2008) 

were employed. The saturated and dry substrate values as well as the porosity (ɸ) were 

obtained from previous research on the LiveRoof® growing medium (Perelli, 2014).  

 

VWC = 
𝐴𝐷𝐶𝛼−𝐴𝐷𝐶𝑑𝑟𝑦

𝛼

𝐴𝐷𝐶𝑠𝑎𝑡
𝛼−𝐴𝐷𝐶𝑑𝑟𝑦

𝛼 ɸ            (3.2) 

 

ADC = 𝑚𝑉 × 1.3661            (3.3) 

 

The VPDcanopy was calculated from the sub-canopy air temperature and relative 

humidity data using Eq. 3.4 for the saturation vapour pressure (es), which is required for 

the calculation of VPD, as shown in Eq. 3.5 (Monteith, 1973). 
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es = 0.0611 𝑒 (
17.27 𝑇𝑎

𝑇𝑎+237.3
)                         (3.4) 

          

VPD = es (1 −
𝑅𝐻

100
)             (3.5) 

                       

Data acquisition commenced in August 2012 and while still continuing in London, 

the data collection period concluded in Calgary in October 2014 and in Halifax in 

November 2014. This facilitated two full simultaneous summer periods of data collection 

across the sites. The meteorological summer; June, July and August, was chosen as the 

study period as it represents the period of peak incoming solar radiation, maximum heat 

flux through conventional roofing and the period when green roofs have shown to be most 

beneficial in reducing the heat flux through roofing membranes (Getter et al. 2011). It was 

also chosen because particular instruments, such as the thermistor temperature and soil 

moisture sensors, were recurrently inoperative during the fall, winter and early spring 

periods.    

 

3.2.3 Data analysis 

 

In order to model the time series data, multiple linear regression was employed. 

This approach allows for the examination of how much a particular set of independent 

variables can explain the variation in the substrate heat flux. During data preparation, data 
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points were removed based on missing variable(s) data and obvious instrument errors. The 

data points removed for each site based on these methods were also removed from the other 

sites’ data sets so as to maintain an equal number of data points for each site. This was done 

to prevent skewing of the models’ accuracy of estimates toward a particular site(s). Given 

large periods of data were missing at each site, the 2013 data collected in Calgary and 

London and the 2014 data collected in Halifax were used to formulate the models in order 

to maximize their respective data sets. 

Multiple linear regression modelling relies on several assumptions for its results to 

be valid so the data were then examined to evaluate whether or not these assumptions were 

met prior to conducting the regression analysis. Firstly, the assumption of linearity contends 

that for a linear regression model to be appropriate for a particular data set, the independent 

variables should have a linear relationship with the dependent variable. This was tested 

visually by plotting each independent variable with the heat flux data. As each plot showed 

a linear relationship between the independent and dependent variables, linearity could be 

assumed (Stevens, 2009).  

Multiple linear regression models also assume that the residuals (errors) of the 

dependent variable are normally distributed. A histogram and a normal probability plot of 

the standardized residuals were utilized (Keith, 2006; Stevens, 2009). As these plots 

provided no evidence to suggest the assumption of normality had been violated, no further 

testing was required for this assumption. 
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  The data must also be homoscedastic, that is, the error in the predicted values is the 

same across the range of the dependent variable’s values. To determine whether or not the 

data deviated considerably from homoscedasticity, a scatterplot of the predicted scores 

versus the residuals scores was used. The random distribution of data values in the 

scatterplot was sufficient evidence to suggest the assumption of homoscedasticity had not 

been violated. 

The measurement of the variables must also be independent; a data value should 

provide no indication of subsequent data values. Conversely, for dependent (or 

autocorrelated) processes, the best predictor of the next data value is the previous 

observation(s). Autocorrelation is an inherent concern when using regression models for 

time series analysis. As such, both the Durban-Watson statistic and a plot of the 

unstandardized residuals versus time were used to test the assumption of independent 

observations. Given the Durban-Watson statistic did not exceed the critical value and the 

scatterplot had a random distribution, it was concluded that the data did not violate the 

assumption of independent observations.  

It is also assumed for multiple linear regression models that the data contains no 

outliers as these data points can have a significant influence on the models’ predictions. To 

define outliers in the data, the Mahalanobis and Cook’s distances were computed. Although 

some of the data points exceeded the critical values for the Mahalanobis distance test, they 

were included in the final data set as they did not appear to be the result of instrument 
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errors. This decision was justified on account of none of the data points exceeding the 

critical Cook’s distance value of 1, therefore suggesting that none of the outliers would 

have a significant influence on the model as a whole (Cook & Weisberg, 1982). 

Finally, there should also be no multicollinearity between the independent variables 

in a multiple linear regression model. This refers to a high degree of linear dependency; 

correlation, between predictor variables that occurs as a result of multiple variables 

measuring the same phenomenon. The degree of multicollinearity was tested using multiple 

measures. As a preliminary investigation, a matrix of Pearson’s Bivariate Correlation 

coefficients for the independent variables was used to identify closely related variables, 

with a Pearson Correlation of 0.9 used to identify cases of possible collinearity (Field, 

2009). Next, the tolerance and its reciprocal; the variance inflation factor (VIF), were also 

used as additional evidence of multicollinearity. Both measures were considered given the 

debate over acceptable critical values. A tolerance value below 0.2, as suggested by Menard 

(1995), and a VIF value above 10, as suggested by Bowerman and O’Connell (1990) and 

Myers (1990), were considered critical for this study and were assumed to suggest 

multicollinearity. Using these measures of multicollinearity, there appeared to be within-

parameter group collinearity.  

 With the dataset meeting the other assumptions, the multiple linear regression 

analysis was conducted using multiple combinations of independent variables. This 

approach allowed for the most accurate model that did not violate the assumption of little 
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or no multicollinearity to be determined. Once the regression model’s predictor variables 

were determined for the entire data set (all sites), data transformations were performed to 

see if they elevated the accuracy of predictions. These included logarithmic 

transformations, squaring, one and three hour time lags as well as one, two and three hour 

moving averages for the dependent and/or independent variables.   

With the model parameters finalised, multiple linear regression models were then 

formulated for the sites individually and for two-site combinations (Calgary-Halifax, 

Calgary-London and Halifax-London). A total of seven multiple linear regression models 

were thus developed in order to compare the importance of independent variables at 

different sites as well as compare the performance of models developed from different data 

sets. The r-square and normalized root mean square error (NRMSE) values were used to 

assess and compare the predictive power of the regression models. Given the models were 

formulated using different data sets, the NRMSE was used rather than the root mean square 

error (RMSE) as some of the data sets had different ranges of values for the dependent 

variable. Using the NRMSE allowed for a comparison of the models’ standard error 

because, unlike the RMSE, it is a non-dimensional measure of a model’s predictive power 

that is solved by dividing the standard error by the range of observed measures. The RMSE 

and NRMSE statistics were chosen as they, unlike the mean absolute error, amplify large 

errors.     
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 To validate the developed models, data for the independent variables collected 

during contiguous years (Calgary and London, 2014; Halifax, 2013) were used to compute 

estimates of the substrate heat flux. These estimates were compared to the heat flux 

measurements collected during these years using the r-square, RMSE and NRMSE values. 

A validation period of 25 days for each site was used as this was the maximum number of 

days that data was available for each of the independent variables and the dependent 

variable at the Halifax site for 2013. The 25 day period was also employed in the validation 

of the models in Calgary and London in order to obtain an equal validation between the 

sites.    

All statistical analyses were performed using IBM SPSS Version 21.   

 

3.3 Results 

 

 As a general overview of the data, the descriptive statistics of means and standard 

deviations for each of the independent variables and the dependent variable are displayed 

in Table 3.3. These figures highlight some key differences between the study sites. Of 

particular interest is the dependent variable; the substrate heat flux, which showed much 

greater variability in Halifax compared to the other sites. Interestingly however, the 

incoming and available energy (solar and net radiation, respectively); the radiation 

parameters, were similar between the three sites. The temperature parameter averages were 



       135 

 

 
 
  

 

 

all highest in London and lowest in Calgary while the other independent variables were 

generally fairly similar between the study sites. 

Table 3.3 Means, with standard deviations in parenthesis, for the measured and calculated 

variables at each study site 

 

 Heat flux Solar rad Net rad Air temp Sub can T Surface T 

Calgary 0.9 (5.1) 221 (291) 108 (211) 16.0 (5.2) 17.4 (5.9) 17.4 (7.6) 

Halifax 2.2 (15.2) 223 (293) 119 (207) 18.1 (4.0) 18.6 (4.6) 19.5 (6.2) 

London 0.5 (8.4) 221 (291) 120 (185) 19.9 (5.1) 20.5 (6.3) 20.6 (7.1) 

 

 

 Soil T 1’’ Soil T 4’’ S-A T diff S-C T diff Rel hum Spec hum 

Calgary 16.5 (4.3) 16.3 (4.0) 1.4 (3.7) 0.0 (2.9) 65 (18) 7.1 (1.8) 

Halifax 19.5 (4.0) 19.3 (3.6) 1.3 (3.2) 0.9 (2.4) 74 (19) 9.5 (2.5) 

London 20.4 (4.0) 20.4 (3.8) 0.8 (3.3) 0.1 (3.0) 71 (17) 10.2 (2.8) 

 

 VPDcan Soil Moist Wind Spd 

Calgary 1.3 (1.0) 0.17 (0.03) 1.6 (1.4) 

Halifax 1.3 (1.0) 0.27 (0.03) 1.6 (1.4) 

London 1.3 (1.0) 0.24 (0.03) 1.6 (1.4) 

 

As indicated by the standard deviation, the substrate heat flux exhibited more 

dynamic variation in Halifax compared to Calgary, as highlighted by the week shown in 

Fig 3.4. The heat flow through the substrate in Halifax exhibited higher maximum (towards 

the building) and lower minimum (away from the building) values compared to Calgary. 

On the other hand, London’s heat flux values were intermediate, occasionally exceeding 

the extremes of Halifax while at other times showing less fluctuation than Calgary. 

 

(cont.) 

 

(cont.) 
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Fig 3.4 Heat flux measurements during 22/7-28/7 in Halifax, London and Calgary 

 

 

The available energy at the surface; the net radiation, is shown in Fig 3.5 for the 

same period. Unlike the heat flux data, the three sites were more comparable in the amount 

of energy available at their surfaces for non-radiative processes. There also appears to be 

considerable variation in net radiation between the days at each site, with the highest net 

radiation values occurring at different sites on different days. During this particular week, 

London’s daily maximum values varied markedly between days which correspond with the 

heat flux data.  
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Fig 3.5 Net radiation measurements during 22/7-28/7 in Calgary, Halifax and London 

 

 

 Under normal circumstances during diurnal periods, the majority of the available 

energy that is absorbed by the surface but not conducted downward through the substrate 

constituting the ground heat flux, is dissipated through sensible and latent heat mechanisms. 

The gradient forces that result in these processes are that of vapour pressure for latent heat 

processes and temperature for sensible heat dissipation. Fig 3.6 shows the relationship 

between these two drivers of heat dissipation at the surface over the same period at each 

site as represented by the relative humidity and the surface-to-air temperature difference. 

The two variables generally showed an inverse pattern with each other at each of the sites 
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with the surface-to-air temperature difference peaking during diurnal periods and the 

relative humidity peaking during nocturnal periods. This is to be expected as an increase in 

evapotranspiration will result in a decrease in surface temperatures. Noticeable and almost 

immediate increases in the relative humidity followed the rain events that exceeded 27 mm, 

while delayed decreases in the temperature difference followed these events. The highest 

surface-to-air temperature differences featured in Fig 3.6 at each of the sites occurred 

during days when there were no rain events exceeding 27 mm. Of particular note is London, 

which showed the highest temperature differences of above 15 °C for the three days 24/7-

26/7 but then following rain the daily peaks were less than 6 °C for the following two days.  

 

a) Calgary 
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b) Halifax 
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c) London         

 

 
Fig 3.6 Relative humidity and surface-air temperature difference from 22/7-28/7 in a) 

Calgary; b) Halifax; and c) London, featuring rain events where the rainfall was above 27 

mm 

 

 

 Given the important role of hydrology on the energy balance, as suggested by Fig 

3.6, the volumetric water content (VWC) of the substrate is shown in Fig 3.7 for the entire 

study period. The plot shows a marked difference between the sites, with Halifax generally 

having the highest VWC and Calgary having the lowest. Calgary had a period of 

particularly low VWC during August. Each site also appeared to receive fairly large rainfall 

events following extended dry periods.  
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Fig 3.7 Soil moisture in Calgary, Halifax and London for the duration of the study period 

(01/06-31/08) 

 

 

3.3.1 Regression analysis 

 

 Besides characterizing the conditions at each of the study sites, these variables were 

also measured with the aim of developing multiple regression models for predicting the 

substrate heat flux. As mentioned in the Methods section, multicollinearity occurred 

between parameters within the same parameter group; radiation, temperature, temperature 

difference and humidity. Nevertheless, as seen in Table 3.4, comparing between the models 

containing related parameters shows little difference in terms of model performance and 

were all statistically significant (p<.001). While the combinations of parameters shown in 
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the table is not as extensive as those trialled, it features the highest and lowest coefficient 

of determination values obtained and allows for a comparison between the variables within 

parameter groups. It also does not include models that featured independent variables that 

were collinear.  

 

Table 3.4 Selected combinations of different model parameters with respective r-squared 

and p values for entire data set (all sites) 

  

  Parameter group 

Parameter Radiation Temperature Temp 

diff 

Hum 

Solar radiation •         

Net radiation  • • • • • • • • 

Air T   •       

Sub canopy T    •  •    

Surface T     •     

Soil T 1’’ • •     • • • 

Soil T 4’’      •    

S-A Temp diff  • • • • • •  • • 

S-C Temp diff       •   

Relative hum • • • • • • •   

Specific hum        •  

VPD can         • 

Soil moisture • • • • • • • • • 

Wind speed • • • • • • • • • 

r2 

p 

.604 

<.001 

.614 

<.001 

.610 

<.001 

.611 

<.001 

.610 

<.001 

.609 

<.001 

.609 

<.001 

604 

<.001 

.609 

<.001 

 

  

Greater variability between regression results was found when data transformations 

were considered. The Pearson Correlation coefficient matrix displayed in Table 3.5 shows 
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the relationships between the substrate heat flux and the independent variables that were 

found to provide the most accurate predictions in the regression analysis. Except for a few 

results showing weak or no correlation between variables, all of the correlations were 

statistically significant (p<0.01, 2-tailed). Strong correlations were generally found 

between the dependent variable and the net radiation with a one hour moving average, the 

relative humidity with a one hour moving average and the surface-to-air temperature 

difference with a one hour moving average.   

 

 

Table 3.5 Pearson correlation coefficient matrix for the dependent (heat flux) and 

independent variables of the multiple linear regression models at each of the study sites 

 

 Net rad1 hr R hum1 hr Soil moist Soil temp 1 S-A T dif1 hr Wind speed 

 C H L C H L C H L C H L C H L C H L 
Heat 

flux 
.79 .93 .83 -.77 -.50 -.70 .11 .07 .08 .33 .46 .34 .70 .85 .72 -.04 .00 .01 

Net 

rad 
   -.64 -.56 -.64 .06 .04 .10 .22 .50 .20 .86 .86 .86 -.01 -.03 .01 

Rel 

hum 
      -.05 -.01 .06 -.38 -.39 -32 -.46 -.37 -.49 .06 .07 -.01 

Soil 

M 
         -.51 -.30 .07 -.08 -.03 .03 -.22 -.12 -.07 

Soil T 

1  
            .25 .51 .14 .16 .20 .14 

S-A 

TD 
               .04 .04 .05 

Underlined = non-significant (p > 0.01, 2-tailed) 

C = Calgary H = Halifax L = London 

Note: the Pearson correlation coefficients for a particular column (variable/study site) are 

calculated with data collected at the same site for the other variable (row)  
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The coefficients and performance statistics for the multiple linear regression models 

developed for all of the sites, each site individually and for the two-site combinations are 

shown in Table 3.6. The Halifax and Halifax-London models were the most accurate while 

all sites model was least accurate by linear dependence (r2) and the Calgary model was the 

least accurate according to the normalized standard error. The models involving Halifax 

data tended to be the most accurate while the models developed using Calgary data were 

generally the least accurate. As noted below the table, all of the models were statistically 

significant (p<.001). 

 

Table 3.6 Regression model results for all sites, each individual site and two-site 

combinations 

 

 Unstandardized coefficients    

  Net 

rad  

1 hour avg 

R hum   

1 hr avg 

Soil 

Moist 

Soil 

temp 

1’’ 

S-A T 

dif 1 hr 

avg  

Wind 

speed 

F r2  

All sites● -5.333 0.033 -0.060 10.528 0.217 0.455 -0.073 16371 .67 0.076 

Calgary○ 0.177 0.007 -0.122 27.548 0.157 0.443 -0.016 9377 .78 0.092 

Halifax○ -10.905 0.056 -0.003 23.251 -0.065 1.104 0.201 19028 .88 0.067 

London○ -2.008 0.025 -0.126 9.913 0.288 0.324 -0.134 8285 .75 0.086 

Calgary-

Halifax+ -7.650 0.035 -0.034 12.889 0.235 0.535 -0.072 10641 .66 0.083 

Calgary-

London+ 4.466 0.013 -0.142 8.031 0.122 0.467 -0.068 12099 .69 0.080 

Halifax-

London+ -15.665 0.047 -0.023 26.674 0.295 0.424 -0.046 18758 .78 0.073 

Note: Each model is significant (p<.001) 

          r2
adjusted = r2 for each model 

          ● df = 6, 48791 

          ○ df = 6, 16259 

          + df = 6, 32525 

 

NRMSE Constant 
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 When comparing the standardized regression coefficients in Table 3.7, which are 

measured in standard deviation units so are directly comparable, there are marked 

differences between the models as to the relative importance of certain variables. Of 

particular note, Calgary data lowered the net radiation and increased the relative humidity 

coefficients while Halifax data tended to increase the net radiation and reduce the effect of 

relative humidity. Interestingly, the Halifax model was the only analysis to feature a 

negative soil temperature 1’’ and positive wind speed standardized coefficient. 

 

Table 3.7 Standardized coefficients of regression models  

 

 Standardized coefficients 

 Net rad  

1 hour avg 

R Hum    

1 hr avg 

VWC Soil temp 

1’’ 

S-A T dif  

1 hr avg  

Wind speed 

All sites● 0.607 -0.104 0.048 0.091 0.125 -0.010 
Calgary○ 0.263 -0.427 0.162 0.133 0.255 -0.005 
Halifax○ 0.755 -0.004 0.043 -0.017 0.208 0.019 
London○ 0.543 -0.252 0.034 0.136 0.111 -0.023 
Calgary-

Halifax+ 
0.620 -0.057 0.062 0.091 0.136 -0.009 

Calgary-

London+ 
0.366 -0.359 0.050 0.080 0.195 -0.014 

Halifax-

London+ 
0.730 -0.034 0.069 0.096 0.099 -0.005 
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3.3.2 Model validation 

 

 The results of the validation were generally similar to those obtained during the 

development of the models. As seen in Table 3.8, the models involving Halifax tended to 

be amongst the most accurate and Calgary models were generally the weakest. The Halifax-

London model was even slightly more accurate at predicting the London heat flux during 

the 2014 period than the London model that was developed with 2013 data. It also more 

accurately predicted the 2013 Halifax heat flux than the 2014 Halifax model. Although it 

was poor at predicting the heat flux with the combined data set, the All sites regression 

model generally performed well. The model even provided more accurate estimates of the 

Halifax and London heat fluxes than the models developed exclusively with data from those 

sites.  
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Table 3.8 Regression model validation performance for each model and green roof site 

 

 Model 

 All sites Calgary Halifax London 

Site(s) r2 RMSE NRMSE r2 RMSE NRMSE r2 RMSE NRMSE r2 RMSE NRMSE 

All sites .50 7.13 0.102          

Calgary .65 1.79 0.094 .68 1.71 0.090       

Halifax .87 4.60 0.066    .86 4.87 0.070    

London .91 3.33 0.067       .89 3.61 0.072 

 

 

 

 

  

 

 

 

 

As highlighted graphically in Fig 3.8, except for the Calgary model which was 

reasonably accurate, the regression models tended to overestimate Calgary’s diurnal heat 

flux. During the nocturnal periods, the All sites and Calgary-Halifax generally 

overestimated the flow of heat toward the substrate surface while the Calgary and Calgary-

London models either underestimated the upward flow of heat (negative) or predicted a 

downward (positive) flux of heat, such as 28/07. Generally the greater the fluctuation in the 

heat flux measurements, the more inaccurate the models’ predicted values.  

 

 Model 

 Calgary-Halifax Calgary-London Halifax-London 

Site(s) r2 RMSE NRMSE r2 RMSE NRMSE r2 RMSE NRMSE 

Calgary .65 1.78 0.094 .68 1.71 0.090    

Halifax .88 4.49 0.064    .88 4.40 0.063 

London    .87 3.95 0.079 .90 3.52 0.071 

(cont.) 

 



       148 

 

 
 
  

 

 

 
Fig 3.8 Heat flux measured in Calgary for period 23/07/14-29/07/14 and model predictions 

 

 

 Conversely, aside from the Halifax model, the models tended to underestimate the 

diurnal peaks in the Halifax heat flux when it rose above 20 W m-2, as shown in Fig 3.9. 

However, during days when the substrate heat flux did not rise above 10 W m-2, the models’ 

predictions were fairly accurate. During nocturnal periods, besides the All sites model 

generally underestimating the magnitude of the upward (negative) heat flux, the models 

tended to be fairly accurate.  
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Fig 3.9 Heat flux measured in Halifax for period 23/08/13-29/08/13 and model predictions 

 

 During the diurnal periods in London, the models tended to coalesce more in 

London than the other sites, as highlighted by Fig 3.10. While they were fairly accurate 

during the day, they generally tended to underestimate the heat flow away from the building 

during the night. Despite a tendency to overestimate the most during diurnal periods, the 

Halifax-London model was regularly the most accurate during the validation study. 
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Fig 3.10 Heat flux measured in London for period 23/07/14-29/07/14 and model 

predictions 

 

3.3.3 Supplementary substrate heat flux data analysis 

 

 Given the considerable differences in the pattern of substrate heat flux between the 

three sites, further analysis was performed. As the temperature gradient force in the 

substrate results in the conduction of heat through the substrate layer, a comparison of the 

difference between soil temperatures recorded at 1’’ and 4’’ were compared to the heat flux 

data. The relationship between the soil temperature difference and the heat flux is shown 

in Table 3.9. 
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Table 3.9 Statistics for the relationship between the measured substrate heat flux and the 

soil temperature difference between the depths of 1’’ and 4’’ 

 

 r2 RMSE NRMSE Min °C (W m-2) Max °C (W m-2) 

Calgary .95 0.47 0.053 -2.41 (-7.89) 6.30 (18.19) 

Halifax .84 0.83 0.056 -6.75 (-21.48) 6.95 (58.39) 

London .97 0.25 0.041 -2.06 (-12.96) 3.98 (35.48) 

Note: the minimum and maximum values for the entire time series are the soil temperature 

differences with the minimum and maximum heat flux values in parenthesis 

 

 Although Halifax was the weakest, each of the sites’ data showed a strong 

relationship between the substrate heat flux and the soil temperature gradient. Halifax 

recorded the lowest and highest temperature difference and heat flux values. London 

recorded the highest minimum and lowest maximum temperature difference values of any 

site while its heat flux minimum and maximum values were intermediate.  

 

3.3.4 Canopy density 

 

 Lastly, the pin-frame data showed discernible differences between the heat flux 

module’s vegetation coverage in the Halifax compared to those in Calgary and London. 

Presented in Table 3.10, the Halifax canopy density was approximately half that of the 

other sites. The heat flux modules in Calgary and Halifax did show a decreasing trend in 

measurements, with a small decrease in canopy density between June and July and then a 

larger decrease between July and August. Vegetation fractional coverage data in London 

echoed the small decrease between June and July and then comparing measurements taken 
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early-August with those recorded mid-August, London also has a significant reduction in 

canopy density between July and August.    

 

Table 3.10 Heat flux module canopy density during the study period at each of the sites 

 # of hits 

Site June July August 

Calgary2013 65 62 46 

Halifax2014  32 31 23 

London2013 80* 75* 44 

 

* = pin-frame data was not collected in London during this period so values were estimated 

according to vegetation fractional coverage estimates and data collected early in August, 

2013 

 

3.4 Discussion 

 

The goal of this study was to characterize the heat transfer through green roof 

substrate in three climates during the summer period and develop empirical models for the 

purposes of predicting the substrate heat flux. This is the first empirical study to compare 

the thermal performance of green roofs in different climates. Using identical green roof 

designs at each of the three sites aided the comparison of the environment’s relationship 

with the transfer of heat through the green roof substrate between the sites by minimizing 

the influence of design parameters. The results provided an unprecedented opportunity to 

validate numerical energy balance models and the theoretical framework from which they 

are derived.    
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 Congruent with previous simulation studies (Jaffal et al. 2012; Zhao et al. 2014), 

the heat transfer in green roofs was found to vary between climates. Halifax had the greatest 

fluctuation in its substrate heat flux while Calgary generally had the lowest variability. The 

micrometeorological results of this study suggest that these differences in the ground heat 

flux were likely the result of variations in the partitioning of energy at the surface of the 

green roofs and the soil moisture content. Regression modelling highlighted the importance 

of net radiation, humidity and leaf-air temperature differences, which are related to 

available energy, latent heat and sensible heat dissipation, respectively, for predicting the 

variability in the substrate heat flux.  

 The multiple linear regression models developed in this study were validated using 

data collected during the summer period of other years. This validation showed that the 

models generally predicted the substrate heat flux accurately, although they tended to 

overestimate the heat transfers when the fluxes were minimal, like those in Calgary, and 

underestimate them when the fluxes are high, like in Halifax. The heat flux model that was 

developed using data from all of the sites was fairly accurate compared to the other models, 

particularly for the Halifax and London green roofs.  

The almost identical solar radiation average values suggest that, on average, the 

same amount of energy was entering each of the green roof system. However, differences 

in the net radiation averages and standard deviations suggest that the partitioning of this 

incoming energy at the surface varied between the three sites. The finding that the net 



       154 

 

 
 
  

 

 

radiation was the strongest predictor of variability in the heat flux is understandable as it 

indicates that the amount of energy available at the surface of the green roof system is 

related to the variability in the heat transferred through the substrate. 

 

3.4.1 Calgary 

 

The driving forces of the sensible and latent heat fluxes, namely the canopy-air 

temperature differences and the vapour pressure gradient, respectively, were generally 

greatest in Calgary. Calgary tended to have the greatest atmospheric demand for 

evapotranspiration, particularly during diurnal periods when the available energy for heat 

dissipation is greatest. However, while this atmospheric demand alone would account for 

a greater latent heat flux through the evaporation of soil moisture and intercepted rainfall 

by the canopy, the transpiration rates of the Sedum may have been reduced in Calgary as a 

result of the higher VPD, lower volumetric water content and surface (foliage) 

temperatures. As mentioned in Chapter 2 (section 2.2.3), higher soil moisture content and 

higher foliage temperatures (usually peaking at around 30-35 °C) support stomatal aperture 

and therefore result in greater transpiration (Willmer & Fricker, 1996).  

VWC was found by Tabares-Velasco & Srebric (2011) to be the dominant 

parameter limiting latent heat losses in their sample of Delosperma nubigenum and Sedum 

spurium. Soil moisture deficits likely caused reductions in the transpiration rate in Calgary 
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during several periods during the summer, particularly throughout August when the 

volumetric soil water content was at its minimum. Even more important to latent heat 

dissipation though is the effect lower VWC would have had on evaporation. The lower soil 

moisture content in Calgary would have minimized soil evaporation, thus limiting latent 

heat dissipation during periods of dry substrate, such as August. 

A suppression of transpiration in the Sedum spurium in Calgary explains its 

comparatively high average surface-to-air temperature difference. As seen in Fig 3.5, the 

lower the relative humidity, the greater the surface-to-air temperature. An increase in the 

surface (leaf) temperature would have occurred as transpiration acts as a cooling 

mechanism for the leaves by releasing water vapour through the stomata, reducing heat 

stress in the foliage in the process. Djedjig and colleagues (2012) observed in their green 

roof study that a dry substrate reduced evapotranspiration to a minimum with almost all of 

the radiation absorbed by the leaves being dissipated as sensible heat. Therefore, it is likely 

that during much of the study period, energy was predominately dissipated through sensible 

heat mechanisms at the surface in Calgary while drying rates following precipitation events 

were likely higher than at the other sites. 

The generally low volumetric water content in Calgary also would have minimized 

the thermal diffusivity of the substrate in Calgary relative to the other sites. Comparing the 

thermal conductivity of five different substrate types at particular percentages of their 

respective maximum water contents, Ouldboukhitine and colleagues (2012) found the 
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difference in thermal conductivity between the dry and saturated substrates was significant. 

The Siplast® substrate had the greatest difference, with the saturated sample having a 

thermal conductivity 12 times greater than that of the dry sample. As air is a better insulator 

than water, the generally lower water content in the Calgary substrate would have reduced 

thermal fluctuations in the ground heat flux. Given the Calgary green roof showed the 

highest thermal resistance, these findings support those of Zinzi and Agnoli (2012) who 

suggested that for the purposes of thermal insulation and the reduction of building energy 

costs, green roofs are most beneficial in drier climates.  

 

3.4.2 Halifax 

 

 Conversely, the comparatively higher volumetric water content in Halifax is likely 

an important factor explaining the more dynamic pattern of ground heat flux seen in Halifax 

compared to Calgary. The combination of more rainfall and less atmospheric evaporative 

demand in Halifax facilitates, on average, an increased diffusivity of heat through the 

substrate. In line with this finding, using thermal simulations Alcazar and Bass (2005) 

suggested that the heat transfer coefficient (U-value) of a modelled green roof would have 

increased by 26% when the moisture content of the substrate was increased from 0% to 

80%, leading to greater thermal diffusivity in the substrate layer.   
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 Like Calgary however, a higher average surface-to-air temperature difference was 

recorded, suggesting more heat dissipated by sensible mechanisms at the surface compared 

to London. This process was again likely the result of a decreased transpiration rate causing 

less cooling of the leaf surface. However, unlike the low soil moisture and high atmospheric 

evaporative demand found in Calgary, the suppression of evapotranspiration in Halifax was 

likely caused by a lower VPD. Essentially, although the stomata of the Sedum spurium 

would not have generally been closed in Halifax due to hydrological stress stemming from 

low VWC like in Calgary, a lower vapour pressure gradient would have resulted in a lower 

evapotranspiration rate. This is suggested by Halifax having the lowest correlation between 

relative humidity and substrate heat flux. This is congruent with the findings of Jim and 

Peng (2012) who observed that during periods of high relative humidity, lower 

evapotranspiration rates were caused by the low vapour pressure gradient. While 

transpiration was likely suppressed generally during the summer study period in Calgary 

and Halifax, unlike Calgary the reduced vapour pressure gradient would have also lowered 

evaporation rates in Halifax. Like Calgary, lower transpiration rates would have increased 

the dissipation of energy at the surface by sensible heat. Although the diurnal surface-to-

air temperature difference was not particularly high during the week plotted in Fig 3.5b, 

Halifax’s average surface-to-air temperature difference was similar to that in Calgary.  

 Important to consider though is the lower canopy density measured in Halifax. This 

may have been the result of a reduced growth rate following winter injury after a prolonged 
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2013-2014 winter period or due to physical injury sustained during data collection periods. 

This could have had important implications on the thermal performance of the green roof 

in Halifax and may explain the greater fluctuation observed in the substrate heat flux. 

Lower canopy density in Halifax would have resulted in greater transmittance of shortwave 

radiation through the vegetation layer, increasing substrate surface temperatures, as well as 

the substrate temperature at 1’’, and the heat flux during the day. As a result of the Halifax 

substrate layer absorbing more shortwave radiation during the day, there would have been 

increased heat loss during the evening by means of longwave emission. As evident in 

Chapter 2, the related plant canopy parameter of leaf area index has been repeatedly shown 

in numerical studies to affect the heat flux through green roofs, with higher values of 

vegetation coverage resulted in lower substrate surface temperatures and therefore heat 

transfer through the soil (Del Barrio, 1998; Kumar & Kaushik, 2005; Sailor, 2008; Jaffal 

et al. 2012). Together, the lower canopy density of the heat flux module in Halifax 

combined with the higher volumetric water content likely explain the more dynamic pattern 

observed in the Halifax substrate heat flux data compared to the other sites. 

 However, the combined Halifax models (Calgary-Halifax and Halifax-London) 

performed particularly well with predicting not only the Halifax heat flux but also Calgary 

and London relative to the other models. This suggests that although Halifax’s lower 

canopy density may have affected the magnitude of the heat flux, it did not greatly affect 
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the predictive power of the regression models. However, the underestimation of diurnal 

extremes like 25/08 in Fig 3.8 may be attributable to a decreased canopy density in August.   

   

3.4.3 London 

 

 The substrate heat flux, as well as the data of some important predictor variables, 

in London generally showed an intermediate pattern between the extremes of Calgary and 

Halifax. While the hydrometeorological conditions in Calgary and Halifax tended to 

suppress latent heat dissipation and increase sensible heat losses, these conditions were not 

replicated in London where generally high VWC and moderate humidity would have 

promoted evapotranspiration. This is reflected in London generally having the lowest 

surface-to-air temperature difference of any site suggesting the availability of moisture 

assisted transpiration. The site also had the strongest Pearson correlation coefficient 

between heat flux and relative humidity, likely resulting from London generally having 

high soil moisture complemented by a moderate atmospheric evaporative demand.  The 

variation in this atmospheric demand was likely the dominant factor affecting the latent 

heat flux in London. London’s regression model also has the lowest standardized 

coefficient for surface-to-air temperature difference, suggesting sensible heat dissipation 

had a weaker relationship with the ground heat flux in London. All this considered, unlike 
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Calgary and Halifax, latent heat was likely the predominant mechanism of heat dissipation 

of net radiation in London. 

 Like Halifax, the thermal conductivity of the London substrate was likely increased 

by the relatively high soil moisture compared to Calgary. This is consistent with the 

previously mentioned findings of Ouldboukhitine et al. (2012) whose thermal conductivity 

study showed a linear relationship between increasing soil moisture and increased 

conductivity in green roof substrates. Considering the thermal conductivity of the substrate 

alongside the differences in the canopy density between the heat flux modules at each of 

the sites, London’s higher canopy density would have likely increased the dissipation of 

net radiation at the surface relative to Halifax, while the generally higher soil moisture 

content in Halifax would have increased the thermal conductivity of the substrate relative 

to London. These two mechanisms combined are probably the major reasons behind the 

differences seen in the substrate heat fluxes at each of the sites.  

  

3.4.4 Regression modelling  

 

 Most of the models appeared to have a reasonable ability to predict the substrate 

heat flux when their standard error measures were considered with the observations from 

which they were developed as well as when the models were applied to data collected 

during other years. Given the respective performance of each of the models as measured 
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by normalized standard error, it would appear from the within-model data that the models 

formulated using Halifax data (Halifax, Calgary-Halifax and Halifax-London) generally 

were the most accurate while those formulated using data collected in Calgary (Calgary, 

Calgary-Halifax and Calgary-London) tended to be the least accurate. When validated 

against data collected from either the previous or following year, the order of predictive 

power did not change with the Halifax models remaining the most accurate.

 However, although the Halifax models are the most accurate according to the 

normalized standard error, given the greater range of substrate heat flux values measured 

in Halifax, their predictions are also the most inaccurate when considered by standard error. 

When considering the daily patterns of estimations in Halifax shown in Fig 3.8, the 

underestimation of extreme heat flux maximums like 25/08 sees the most accurate model 

underestimating the daily maximum by over 15 W m-2. This is a considerable amount given 

the substrate heat flux in Calgary rarely reached 15 W m-2 during the study period. The 

lower the fluctuation, like that seen on 23/08 in Halifax, the more accurate the predictions. 

This highlights the relative importance of the RMSE, as opposed to the NRMSE, for 

evaluating the performance of the models. From a relative perspective, for an uninsulated 

roof, 15 W m-2 may have significant implications for the thermal comfort of the indoor 

space below. On the contrary, the most accurate model for Calgary had a maximum 

absolute error of roughly 5 W m-2 during the same period. This highlights the difficulty of 

predicting greater thermal fluctuations like that observed in Halifax. Ideally, it is these 
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larger substrate heat flux values that should be most accurately predicted by a model given 

this is when the thermal insulation effect of green roofs is most beneficial.  Therefore, 

relatively the Halifax models were the most accurate, whereas from an absolute 

perspective, the Calgary models were the most accurate. 

Nevertheless, the error of the current study’s empirical models’ estimations was 

comparable to those of numerical models. The range of NRMSE for the current study’s 

models’ ranged from 0.07-0.09 for the data from which they were derived and 0.6-1.0 when 

validated with data from previous or following years while Tabares-Velasco and Srebric’s 

(2012) numerical model’s substrate temperature estimates yielded an NRMSE of 0.07 

(Tabares-Velasco & Srebric, 2011) and 0.06 (Tabares-Velasco & Srebric, 2012) when 

validated against data collected in an experimental laboratory apparatus. Noteworthy 

however is that the predictive power of the empirical models developed in the current study 

includes precipitation events whereas the numerical model of Tabares-Velasco and Srebric 

(2012) did not consider the thermal response of the green roof system during rain events. 

This is an important consideration as Jim and He (2010) observed that sensible heat fluxes 

were reduced by 20-75% following rain events during diurnal periods. The transitional 

period between these conditions; during the rain event, would then likely be a source of 

error for models, particularly for extended rain events. It is important for numerical models 

to include these events as they may be an important period for the substrate moisture 

content and evapotranspiration which greatly affect the energy balance of green roofs.    
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The relative importance of net radiation, relative humidity and the surface-to-air 

temperature difference in the regression models is consistent with the findings that the 

phenomena underlying these variables is closely related to the substrate heat flux (Ayata et 

al. 2011; Tabares-Velasco et al. 2012). This is understandable because if metabolic and 

thermal storages as well as advective heat fluxes are ignored, the net radiation minus the 

latent heat flux, related to the relative humidity, minus the sensible heat flux, associated 

with the surface-to-air temperature difference, equals the ground (substrate) heat flux. The 

increase in model predictive power gained by using a moving average for these three 

parameters is likely attributed to the heat capacity of the vegetation and substrate layers as 

well as delays in stomatal response. Model errors may have arisen as a result of the time 

period of the moving average being kept constant rather than varying. This could explain 

the general inability of the models to underestimate maximum and minimum values in 

Halifax and overestimate maximum and minimum values in Calgary as they could have 

suffered from resulted from longer or shorter than average periods of heat absorption and 

emission, respectively. A more accurate moving average would require the inclusion of 

properties relating to the thermal regime, including site latitude and longitude values. The 

fact that the wind speed was generally the least important parameter in the model was likely 

a result of Sedum spurium’s low stature. This would affect the influence of the wind speed 

parameter as, according to the wind profile discussed in in Section 2.2.2, the wind speed is 

expected to extrapolate to zero at the substrate surface, meaning wind will have less effect 
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on turbulent transfers for shorter vegetation (Hungate & Koch, 2014). The suggested 

importance of soil moisture in explaining the differences between the heat fluxes at the 

three sites is not evident by its apparent lack of importance in the regression models. 

However, as the variables were measured and estimated according to a five-minute time 

step, variations in the soil moisture were likely to be on a much larger time scale than the 

variations in the heat flux. This would have limited soil moisture’s importance in the 

regression models. 

Interestingly, the relative humidity provided a more useful measure of the vapour 

pressure gradient than the VPDcanopy. The measurement of the relative humidity was above 

and beside the green roof rather than the VPDcanopy which involved using the sub-canopy 

temperature. Although the VPDcanopy would be expected to provide a more accurate 

estimate of the driving force behind the latent heat flux as it includes a temperature measure 

closer to the leaf-air interface, it likely provided less predictive power as the sub-canopy 

air temperature sensor involved the use of an exposed thermistor. This was likely 

disadvantageous as temperature sensors are susceptible to a range of errors, the most 

significant of which is caused by heating of the thermistor by solar radiation; radiative error, 

which can exceed several degrees Celsius (Nakamura & Mahrt, 2005; Huwald et al. 2009). 

In the case of radiation errors, the sensor would be detecting its own temperature increase 

by absorption of solar radiation rather than the increase in the canopy air temperature. This 

would likely have caused errors during diurnal periods which would have perturbed 
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statistical analyses. The relative humidity-temperature probe on the other hand was 

protected from direct and reflected solar radiation exposure by a stacked multi-plate shield. 

Furthermore, the VPDcanopy measure was not ideal as there was no monitoring of the within-

canopy air vapour pressure, with the relative humidity measured outside of the green roof 

system used as a proxy. 

 As the vapour pressure gradient is largely dependent on air temperature, the 

relationship observed may have been a result of the relationship between the substrate heat 

flux and air temperature rather than the relative humidity. For this reason, specific humidity 

was included in the analysis as it is an absolute measure of humidity; it specifies the mass 

of water vapour present in a mass of air. The relative humidity essentially incorporates both 

the air temperature by means of the saturation vapour pressure and the specific humidity 

by way of the actual vapour pressure. Although the model that included the relative 

humidity provided better predictive power than that of the model that employed the specific 

humidity measure, this superior performance may have been due to the added effect of the 

air temperature. Nevertheless, for the purposes of validating and assisting the formulation 

of green roof energy balance models, a measure of the vapour pressure gradient is of more 

use than that of an absolute humidity measurement as it is this gradient force that drives 

evapotranspiration.   

 As shown in Chapter 2, the vegetation layer plays a very important role in 

determining the flow of energy within the green roof system. As greater canopy density 
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increases the surface area of the atmosphere interface, it will also increase the amount of 

energy that can be exchanged between the masses. Furthermore, as detailed in the 

modelling study by Zhao et al. (2014), the substrate has a very different surface energy 

balance than vegetation. In Halifax where the canopy density was lower, the vegetation 

fractional coverage was also likely reduced resulting in more of the substrate surface being 

exposed to direct solar radiation compared to the other green roofs. By increasing the 

surface temperature of the substrate, the additional absorption of solar radiation in Halifax 

would have increased the substrate’s temperature gradient thus increasing the transfer of 

heat. The sites differing in this key parameter may have compromised comparisons between 

the green roofs’ results although the differences in canopy density did not appear to have 

greatly affected the performance of the regression models. However, the canopy density 

values in the validation data years were similar. Although there were no June or July canopy 

density recordings for London in 2013, they could be assumed high based on vegetation 

fractional coverage estimates and canopy density estimates taken in early August. A 

parametric study by Jaffal and colleagues (2012) found that increasing the LAI value 

reduced simulated summer indoor air temperature but the impact of increasing this 

parameter reduced at higher LAI values. From this finding, it can be assumed that canopy 

density differences measured between the Calgary and London heat flux modules can be 

assumed negligible given their high values. Nevertheless, it is recommended that future 
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research applies these models using green roof arrays that feature a range of canopy 

densities.  

 The multicollinearity between variables within the same parameter group could be 

a useful finding for both green roof research and industry empirical evaluations. This 

finding suggests, from a predictive perspective, that the specific parameter chosen for 

measurement may not have a significant effect on the accuracy of the model’s output. It 

also highlights the closely related nature within these parameter groups. With regard to the 

temperature profile, the multicollinearity between these variables and the finding that time 

lags did not enhance the predictive power of the models suggests that there was limited 

temporal variation within the temperature profile. Zhao and colleagues (2014) found a time 

lag of approximately six hours between the substrate heat flux and net radiation due to the 

thermal mass of the substrate in their simulation study. The inability of time lag 

transformations to increase the predictive power of the regression models in the current 

study is likely explained by the use of a soil temperature measurement only one inch deep 

into the substrate. At this shallow depth, there will be much less of a time lag between the 

surface and atmospheric conditions and the substrate. Alternatively, it may be the result of 

the thermal properties of the Sedum spurium canopy and the LiveRoof substrate, which 

through different mechanisms increased thermal conductivity relative to the green roof 

array used in the study by Zhao et al. 
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It was suspected that errors may have occurred in the measurement of the heat fluxes 

due to the placement of the heat flux plates. When dismantling the green roofs, it was 

observed that the substrate was more heterogeneous than expected. The heterogeneity 

observed was either the result of introduced soil from when the plants were transplanted or 

a product of the soil’s manufacturing process. Nevertheless, this could have had important 

implications on the diffusivity of heat through the substrate as well as its measurement. If 

the heat flux plate at one or each of the sites was placed in soil with different properties to 

the other sites, particularly with respect to density and porosity, this could have 

significantly affected the results. Given this uncertainty, the supplementary analysis was 

performed in an attempt to verify the heat flux data. There were strong correlations between 

the heat flux and the temperature gradient at each of the sites, albeit the relationship in 

Halifax was noticeably weaker. This may have occurred because the VWC was generally 

highest in Halifax with the increased thermal conductivity resulting in heat fluxes that were 

higher relative to the temperature gradient. Furthermore, given the heterogeneity of the 

substrate, the temperature sensors in Halifax may also have been placed in soil with 

different thermal properties. While the results of this supplementary analysis were 

inconclusive and although the general differences between the three sites are explainable 

within the theoretical framework of heat transfer, the magnitude of these differences may 

have still of been exaggerated in the current study due to the inhomogeneity of the soil.    
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 Although the models developed in the current study showed similar levels of 

accuracy to numerical models reported in the literature, the assumption of empirical models 

that multivariate correlations remain consistent in different conditions to those observed 

may limit their application. As mentioned in Chapter 2, substrate types and plant species 

other than those used in this study may have markedly different thermal properties that will 

likely limit the predictive power of these models. Therefore, it is recommended that future 

studies apply the models devised in this study using green roof arrays that feature other 

species in monocultures and diverse plantings, different substrate types and depths as well 

as in other climates. The performance of the All sites regression model was fairly strong 

across the three sites, which is promising, but further applications are needed to confirm 

the robustness of these models.    

 

3.5 Conclusion 

 

 New empirical green roof models were proposed and validated using data collected 

during summer periods at three sites in an attempt to predict substrate heat fluxes. The 

analysis was performed using multiple linear regression with the validation being carried 

out with root mean square deviation and the coefficient of determination. The monitoring 

results showed that while each green roof greatly reduced the radiation that reached the 

building membrane, the green roof in the driest climate of Calgary was the most effective 



       170 

 

 
 
  

 

 

in providing thermal insulation while the least effective was in the wettest climate of 

Halifax. The regression models highlighted the importance of the variability in the net 

radiation at the surface of the green roof and the dissipation of this energy by latent and 

sensible heat gradients for predicting the variability in the heat transferred through the 

substrate.  

 Green roofs are very difficult systems to model numerically given the high number 

of parameters that affect heat transfer mechanisms and the limited amount of information 

pertaining to the input data, such as plant properties, required for these models. Employing 

an empirical method in this study allowed the performance of the system to be modelled 

without requiring an in-depth knowledge of the heat transfer mechanisms involved. 

Meanwhile, it also provided validating evidence for the results of numerical simulation 

studies that have found similar differences in performance between green roofs located in 

different climates. 

 However, the variability of green roofs in terms of design and components’ thermal 

characteristics means that further analysis involving different arrays is required. 

Nevertheless, the findings of the present study highlight the important relationship between 

heat transfer in the substrate and the water content of the system as well as the impact that 

canopy density and meteorological conditions have on the surface energy balance.   
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Chapter 4: Conclusion 
 

 

 

Given concerns over climate change adaptation and reducing building energy 

demand, in recent years there has been a significant effort towards predicting the passive 

cooling and building energy savings when a green roof is installed. These research efforts 

have generally focussed on predicting the thermal insulation supplied by green roofs using 

mechanistic models. Given the complex nature of this approach of modelling with respect 

to vegetation, green roof energy balance models have involved numerous assumptions 

related to the structure and physiology of green roof plants.  

Upon review of the energy balance modelling literature in Chapter 2, it was noted 

that these models tend to consider the thermal and metabolic storage of energy, as well as 

advective heat transfers, as negligible to the energy balance of a green roof. These 

assumptions are despite limited empirical investigation of the transfer and storage of heat 

within a rooftop environment. There is also limited research to support the adoption of 

single source models in the vegetation layer of green roof energy balance models. There 

has been insufficient investigation of the composition and uniformity (or non-uniformity) 

of parameters within green roof canopies for the use of averaged input parameters to be 

considered a practical representation.  

While these assumptions have not appeared to be particularly restraining for the 

predictive power of these models, their outputs have generally only been compared to the 

measured results obtained from a single green roof during a temporally narrow validation 

study. These assumptions may therefore be to the models’ detriment when they are applied 
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to green roofs in other climates or containing other plant species. Prior to this study, there 

had been no direct comparison of the energy performance of green roofs located in different 

climates. As a green roof is a living system, their functioning and survival is directly 

influenced by the climate, as the results of this study showed. The findings of Chapter 3 

highlighted the importance of soil moisture, humidity and canopy density in predicting the 

transfer of heat through a green roof’s substrate layer. These findings suggest that green 

roofs are most beneficial for reducing building energy demand in drier climates as the 

substrate provides more thermal insulation.  

The validation of multiple linear regression analyses suggested that empirical 

models can be fairly accurate when applied to different climates, although the model 

developed using a particular site’s data was generally the most accurate for that green roof. 

The underestimation of substrate heat flux extremes suggests that further research is 

necessary to predict thermal performance in these conditions. This is important given 

climate extremes correspond with peak electricity demand and deficits in heavily air 

conditioned cities (Miller et al. 2008). The accuracy of these regression models’ was 

similar, and at times better, than the accuracy of numerical models found in the literature.  
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4.1 Future research recommendations 

 

 The long term goal of this research, and that of similar studies, is to be able to 

predict building energy savings when a green roof is installed. The present research made 

significant progress to this end by providing the first empirical study comparing the thermal 

performance of a green roof design in different climates. Data from this study have shown 

that the insulation provided by green roofs varies significantly depending on climate.   

 The dataset collected in this study provides an unprecedented resource for the 

validation of green roof energy balance models. As mentioned in Chapter 2, these models 

have only previously been validated using data collected from one green roof. By using an 

identical design, the three green roofs used in this study allow numerical models to be tested 

across different climates. The dataset also provides an opportunity to validate urban climate 

models which are increasingly integrating green roofs into their surface schemes in order 

to assess climatic effects of widespread green roof installations. 

 New empirical models were also validated during this study. Further research is 

required to examine the accuracy of these models using different green roof design 

parameters, particularly for different plant species and substrate types and depths, and in 

climates other than those used in the current study. Regarding plant species, there is an 

increasing list of species that are being recommended for green roofs (Dvorak & Volder, 

2010; MacIvor & Lundholm, 2011; Van Mechelen et al. 2014). Those with markedly 
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different water use and architecture to the Sedum spurium used in the present study may 

yield significantly different results, thus likely adversely affecting the accuracy of the 

current regression models. While the current study provided data for the validation of 

numerical models across different climates, this future research would facilitate better 

validation of design parameters’ representation in numerical models.  

 The current study also only considered the summer period. Further research is also 

needed to investigate the influence of green roofs on energy transfer during other periods 

of the year in different climates, particularly in winter. While this study examined the 

performance of green roofs during the peak HVAC cooling period, green roofs can also 

provide energy savings in cold climates where there is significant energy use during winter 

for heating. Changes in season will also see significant changes in the green roof canopy 

related to plant phenology which will likely have important implications on the transfer of 

heat through the green roof. This may require different empirical models to be developed 

for different periods of the year.    

If one or more of the models in their current form, or with further refinement, show 

good predicative power across multiple green roof designs and climates, empirical models 

may be a satisfactory option for predicting the thermal performance of green roofs. As 

mechanistic models attempt to predict the influence of some factors for which there are no 

first principles, such as transpiration and the wind field, they too must rely on empirical 

and semi-empirical methods as well as a multitude of other assumptions that attempt to 
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simplify a complex system.  Multiple linear regression may ultimately provide a method 

more accurate than current numerical simulations while also not requiring extensive input 

parameter data for the green roof canopy. With further validation and refinement of these 

models and using some aspects of mechanistic models, the empirical models developed in 

this study may be able to provide accurate heat flux forecasts for prospective green roofs 

based solely on local climate data. For instance, the soil moisture parameter can be 

estimated using a water balance model in conjunction with information on the properties 

of the substrate. This approach may provide the opportunity to accurately estimate the 

thermal benefits a prospective green roof could offer prior to its construction.  
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Appendix 
 

 

Dependent and independent variable time series for study period 

 

 

 
Fig A.1 Heat flux in Calgary, Halifax and London for the duration of the study period 

(01/06-31/08) 
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Fig A.2 Net radiation in Calgary, Halifax and London for the duration of the study 

period (01/06-31/08) 
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Fig A.3 Relative humidity in Calgary, Halifax and London for the duration of the study 

period (01/06-31/08) 
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Fig A.4 Surface-to-air temperature difference in Calgary, Halifax and London for the 

duration of the study period (01/06-31/08) 

 

 

 

-10

-5

0

5

10

15

20

01-06 11-06 21-06 01-07 11-07 21-07 31-07 10-08 20-08 30-08

S
u
rf

ac
e-

to
-a

ir
 t

em
p

er
at

u
re

 d
if

fe
re

n
ce

 (
°C

)

Calgary Halifax London


