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ABSTRACT

We use two-dimensional stellar models and a two-dimensional finite difference integration of the linearized pul-
sation equations to calculate nonradial oscillations. This approach allows us to directly calculate the pulsation modes
for a distorted rotating star without treating the rotation as a perturbation. We are also able to express the finite dif-
ference solution in the horizontal direction as a sum of multiple spherical harmonics for any given mode. Using these
methods, we have investigated the effects of increasing rotation and the number of spherical harmonics on the cal-
culated eigenfrequencies and eigenfunctions and compared the results to perturbation theory. We use 10M� models
with velocities ranging from 0 to 420 km s�1 (0:89�c) and examine low-order p-modes. We find that one spherical
harmonic remains reasonable up to a rotation rate around 300 km s�1 (0:69�c) for the radial fundamental mode, but
can fail at rotation rates as low as 90 km s�1 (0:23�c) for the l ¼ 2 p2 mode, based on the eigenfrequencies alone.
Depending on the mode in question, a single spherical harmonic may fail at lower rotation rates if the shape of the
eigenfunction is taken into consideration. Perturbation theory, in contrast, remains valid up to relatively high rotation
rates for most modes. We find the lowest failure surface equatorial velocity is 120 km s�1 (0:30�c) for the l ¼ 2 p2
mode, but failure velocities between 240 and 300 km s�1 (0:58�cY0:69�c) are more typical.

Subject headinggs: stars: oscillations — stars: rotation

1. INTRODUCTION

Stellar oscillations provide us with a probe of the internal
structure of stars. The oscillations depend on the stellar structure
and are modified by factors such as rotation, magnetic fields, and
tidal forces. In theory, if we have sufficiently accurate parame-
ters for a star, we can produce models which will constrain the
internal structure. Unfortunately, due to the uncertainties on the
temperature and luminosity of the star and the large number of
free parameters (mass, rotation rate, age, etc.), this process is
much more difficult in practice. Accurate modeling also requires
enough observedmodes to actually place some constraints on the
star. The more modes available, the tighter these constraints can
be, but we must be sure that all the modes used are real. Artificial
or extraneous modes can make it impossible to produce a match-
ing model. In recent years, the number of stars with multiple
modes has increased greatly, thanks to both the ground-based
networks such as STEPHI (Belmonte et al. 1993) and WET
(Nather et al. 1990) as well as space-based observations such
as WIRE (Hacking et al. 1999) and MOST (Walker et al. 2003).
Current and upcoming space missions, such as Kepler (Basri
et al. 2005) and COROT (Baglin et al. 2001), are expected to
further increase the number of multiperiodic variables. Unfor-
tunately, the theory still lags behind the observations, particu-
larly for rotating stars.

The first investigation of nonradial oscillations was undertaken
by Pekeris (1938). This paper derived the linearized, adiabatic
equations for nonradial oscillations of nonrotating stars, and then
solved the equations for models of uniform density. At the time, it
was assumed that nonradial modes would be subject to significant
amounts of damping, more so than the purely radial modes. As a
result, nonradial oscillations were generally not studied exten-
sively. However, these assumptions do not hold for the low-order
p-modes or for all g-modes. Unlike radial oscillations, which are
unstable only for � < 4

3
, there are some nonradial oscillations of

a uniform density sphere which are unstable for all values of �.
Based on these results, Pekeris (1938) concluded that nonradial

oscillations must be considered. Using these results, Cowling
(1941) calculated the periods of nonradial oscillations for non-
rotating polytropes.

Before the advent of numerical techniques, these equations
had to be solved using analytical methods. Much of this work
was done by Chandrasekhar, who explored the variational prin-
ciple as a method of solving the linear adiabatic pulsation equa-
tions (Chandrasekhar & Lebovitz 1962; Chandrasekhar 1964).
This method depends on an arbitrary guess at the form of the
eigenfunction, and the resulting eigenvalues depend on the guess.
Fortunately, even marginal guesses at the eigenfunction can pro-
duce reasonable results for the eigenfrequencies with this method.
This approach is largely unused today, as it has been superseded
by computational work using more efficient and accurate nu-
merical techniques.

The first direct numerical integration of the linearized equa-
tions for nonradial oscillations was performed by Hurley et al.
(1966). In this work, they calculated oscillation frequencies for
nonrotating, polytropic stellar models, for comparison with the
earlier analytic approaches discussed above. Although they re-
stricted themselves to polytropic models, their method can rel-
atively easily be extended to more realistic stellar models.

All of these approaches depend on perturbations to a non-
rotating (i.e., spherical) stellar model. In this case, the calcula-
tions are relatively straightforward. Rotation, even moderate
rotation, can significantly complicate the calculation, and many
attempts have beenmade over the years to solve the problemwith
varying degrees of success. These will be discussed in more
detail below.

In spherical stars, the solution to the linear adiabatic pulsation
equations is separable and can be written as

�r ¼ X rð ÞYm
l �; �ð Þ: ð1Þ

The angular variation can be characterized by a single spher-
ical harmonic, Ym

l , and both l and m are legitimate quantum
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numbers. Once a star becomes distorted, e.g., through tidal ef-
fects or rotation, the situation becomes more complex and sev-
eral problems arise. The eigenfunction can no longer strictly be
described by a single spherical harmonic, and thus l is no longer
a valid quantum number. As long as the star remains axisym-
metric, m remains valid. As well as changes in the structure of
the eigenfunction, the pulsation frequencies themselves will
change. It is this change in eigenfrequency that has been of most
interest to researchers, particularly as observations continue to
find more and more rotating and pulsating stars, many with mul-
tiple frequencies.

One of the earlier attempts to solve the linear adiabatic pul-
sation equations for rotating stars was made by Chandrasekhar &
Lebovitz (1962), who applied the virial theorem to rotating in-
compressible fluids. The variational principle has also been ex-
tended to include slowly rotating stars by Clement (1964, 1965).
Further attempts at improving themethod through a better choice
of basis vectors have also been made by Clement (1986). Al-
though the variational equations themselves can be applied to a
star with an arbitrary rotation rate (�), the method also depends
on being able to model the structure of the star. The structure of
rotating stars has generally been modeled as a perturbation to the
nonrotating structure. Because the structural perturbations are
limited to modeling slowly rotating stars, the variational method
was also limited to slowly rotating stars.

An approach used more frequently now is based on a pertur-
bation approach, as developed by Saio (1981). In this framework,
the rotation is treated as a perturbation on the structure of the star.
For example, the radial location in a rotating model would be
written as

r ¼ a½1þ �(a; �; �)�: ð2Þ

The linearized pulsation equations are expanded in a series in
powers of the rotation rate. The zeroth power merely gives the
nonrotating eigenvalues and eigenfunctions. Each nonrotating
eigenfunction can be written in terms of a single spherical har-
monic, and the eigenfunction can be characterized by three quan-
tum numbers, one relating to the number of radial nodes and the
two angular quantum numbers, l andm, associatedwith the spher-
ical harmonics. The first order in the expansion in powers of the
rotation rate lifts the 2l þ 1 fold degeneracy in the eigenvalues,
while the eigenfunctions that correspond to this order are still
characterized by a single spherical harmonic.

We note that this will not be true in the general set of linearized
pulsation equations of a rotating star. The coefficients of the per-
turbations in the pulsation equations, composed of terms based
on the static rotating model, will have latitudinal variations. The
eigenfunctions will also have a latitudinal variation, so that the
equations can be expressed as products of spherical harmonics,
which in turn can be written as sums of spherical harmonics
through appropriate recursion relations.

In perturbation theory the rotation rate is assumed to be much
smaller than the frequency being calculated. This keeps the ro-
tational perturbation ‘‘small’’ so that including only the first one
or two terms in the power series expansion is satisfactory. ‘‘Small’’
is, of course, a vague term, and it is not clear how small is ‘‘small.’’
Based on discussions at the Workshop on the Future of Aster-
oseismology held in Vienna in 2006 September, estimates of the
limiting rotation rate ranged from 50 to 300 km s�1. Of course,
the limiting surface equatorial velocity will be dependent on the
mass of the star in question.

Efforts to more accurately include rotation have been devel-
oped. These methods require two-dimensional (2D) calculations,

so they are more time-consuming and complex. As a result, pre-
vious studies have all faced restrictions and limitations. For exam-
ple, Espinosa et al. (2004) calculated the adiabatic oscillations of
rapidly rotating stars with uniform rotation. To succeed, they ap-
plied the Cowling approximation, neglected the Coriolis force,
and neglected the Brunt-Väisälä frequency in the adiabatic equa-
tion.Yoshida&Eriguchi (2001) havemodeled quasi-radial modes
at a range of rotation rates in rotating neutron stars using the
relativistic Cowling approximation. Other methods, such as that
employed by Lignières et al. (2006) and Reese et al. (2006), have
fewer physical restrictions, but have so far been restricted to ex-
plorations of polytropic models.
The effects discussed in this paper are only expected to matter

for stars undergoingmoderate to rapid rotation. A recent study of
OB stars (Daflon 2007) found that 50%of OB stars have rotation
velocities greater than 100 km s�1. At least some of these stars are
expected to pulsate. For example, � CepheiY type pulsations have
been detected in Spica (Sterken et al. 1986), which is also rotating
with a v sin i � 160 km s�1. For the � Cephei stars as a category,
the projected rotation velocities range from 0 to 300 km s�1

(Stankov & Handler 2005). The average v sin i � 100 km s�1,
although this could be a selection effect, as the highest amplitude
pulsators are the more slowly rotating stars. Another category of
pulsating stars, the low-amplitude � Scuti (LADS) stars, have
been detected with v sin i up to 250Y300 km s�1 (Breger 2007).
The models we consider in this paper are 10 M� zero-age main
sequence (ZAMS) models with solar (Z ¼ 0:02) metallicity.
Although � Cephei stars have evolved along the main sequence,
the trends produced by these models should be comparable to
typical � Cephei stars. One effect which may be important is
mode bumping, which will appear in real � Cephei stars but does
not appear in our unevolved models. Our models include uni-
form rotation at rates from 0 to 0:89�c. Our method also allows
us to consider differential rotation, which will be discussed in a
future paper.
Clement (1998) has developed a finite difference method for

directly evaluating the eigenfunctions on a 2D grid. In this paper,
we combine this method with 2D stellar models produced by
ROTORC (Deupree 1990, 1995). The combination of these two
approaches bypasses many of the restrictions faced by previous
approaches. Our numerical methods and models are described in
more detail in x 2. We investigate the effects of rotation on the
calculated eigenfrequencies (x 3) and eigenfunctions (x 4), with
the aim of establishing the range of validity of modes calculated
with one spherical harmonic. In x 5 we compare our results with
those predicted by second-order perturbation theory.

2. METHOD

Our stellar models are calculated using the 2D stellar evolu-
tion code ROTORC (Deupree 1990, 1995), allowing us to self-
consistently model the surface and structure of the star for
rotation rates from zero up to near-critical rotation. In this paper
we focus on uniformly rotating 10 M� ZAMS models with
X ¼ 0:7, Z ¼ 0:02. We use the OPAL opacities ( Iglesias &
Rogers 1996) and equation of state (Rogers et al. 1996) in these
calculations. These models are fully 2D, with 10 angular zones
from pole to equator and 349 radial zones. We have computed a
few models using 20 angular zones and find differences in the
horizontal variation of the density to be only about 0.1%. The
pulsation code uses Fourier transform interpolation to convert
from our angular zoning to its own angular zoning, and we feel
the ROTORC angular zoning is not a major source of error in the
calculations and use our 10 angular zone models in this work.
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The location of the surface of the stellar model is found by
assuming it lies on an equipotential surface. The value of the
equipotential is determined by the value of the total potential in
the angular zone which has the largest radius (for uniformly
rotating models, this is always at the equator). The radial zone
which has this value of the total potential is found at each angular
zone and the surface boundary conditions applied there. One
source of inaccuracy is that a radial zone is either completely
interior or completely exterior to the surface, so that the sur-
face is defined as the radial zone interface which is closest to
the location of the equipotential. Our rotating models are made
by imposing a surface equatorial velocity and an internal angular
momentum distribution (in this case, uniform rotation) and al-
lowing the surface to change as needed. This can lead to small
differences between the imposed (target) surface equatorial ve-
locity and the actual surface equatorial velocity, typically less
than 2 km s�1. Throughout this paper, we refer to models by the
target surface equatorial velocity.

For our pulsation calculations, we use the nonradial oscilla-
tion code (NRO) developed by Clement (1998). Instead of ex-
pressing the solution as a sum of spherical harmonics, the code
solves the perturbation equations on a 2D spherical grid. In
ROTORC, the stellar model is defined on a spherical polar grid,
with the stellar surface location being an equipotential surface as
discussed above. NRO transforms this into a model defined on
surfaces of constant density. The 2D nature of the code allows
us to account for the effect of the centrifugal distortion, but the
Coriolis force is neglected. The pressure perturbation can be
expressed in two ways:

�P r; �; �; l;m; nð Þ ¼ eim�
X1
l¼m

aml r; n; lð ÞPm
l cos �ð Þ

or

¼ eim�
X1
k¼m

Am
k r; �; n; lð Þr k :

In this code, the second form of this general equation is used.
Keeping this general solution in mind, the linear adiabatic pul-
sation equations can be recast using five variables, related to the
radial and angular velocity perturbation, the pressure and gravity
perturbations, and the radial derivative of the gravitational per-
turbation. These variables are defined as follows:

y1 �
�r

r k�1 sinm�
;

y2 �
��

r k�1 sinm�1� cos �
;

y3 �
�p

r k sinm�
;

y4 �
��

r k sinm�
;

y5 � @ry4; ð3Þ

where k is the radial exponent, m is the azimuthal quantum
number, and k ¼ 0 and m ¼ 0 are special cases. If k � 1 and
m� 1 are negative, they are replaced by 1. This form of the
equations allows the boundary conditions to be applied while
avoiding singularities. With these variables, the relevant linear-
ized equations can be expressed in the general form:

@ryi ¼ f yi; @ryj 6¼i; @�yi
� �

: ð4Þ

The full form of the equations and their derivations can be found
in Clement (1998).

The coefficients of the finite difference expressions of the
equations (as represented in eq. [4]) covering the entire 2D grid
can be put in a band diagonal matrix. Each element of this band
diagonal matrix is itself a matrix, containing the coefficients at
each zone in the 2D grid. The solution of the finite difference
pulsation equations proceeds in two steps, from the center out-
ward and from the surface inward. Each integration also requires
an initial guess of the eigenfrequency.

The inward and outward integrations of the eigenfunctions are
required to be continuous at some intermediate fitting surface.
Once all of the coefficients of the equations have been evaluated,
a subset of the matrix, including the fitting surface and the radial
zones immediately surrounding it, can be inverted to solve for
the perturbations at the fitting surface and the radial zone either
directly above or directly below the fitting surface. These values
can then be used to step inward and outward through the mesh to
solve for the perturbations throughout the rest of the grid. At
some point on the surface, one of the perturbations is forced to be
a constant (typically, �r/r ¼ 1) to eliminate the trivial solution of
all variables being zero everywhere. As a result, there is one con-
dition that has not been used. This can be used to evaluate a
discriminant, which will only be satisfied (equal to zero) if an
eigenvalue has been located. Using this method, we can step
through eigenfrequency space, solving the matrix, evaluating the
discriminant, and looking for zero crossings. Once a crossing has
been located, various convergence schemes can be used to calculate
the exact eigenfrequency. Thismethod canmiss frequencies when
two eigenfrequencies are quite close together, although these can
usually be avoided by reducing the frequency step size.

The code can include up to nine angular zones in the solution
for the eigenfunctions, performing one radial integration for
each angle included. At the end of the calculation, the solution is
known at N angles, which can subsequently be decomposed into
the contributions of individual spherical harmonics. This is done
with Fourier transforms, which transform the N discrete points
into coefficients of the appropriate cosine series. After some
algebraic manipulation, this series is converted into a Legendre
series, which gives us the relative contribution of each Ym

l (or
Legendre polynomial for the case in whichm ¼ 0). Because each
radial integration contains angular derivatives, also evaluated
using finite differencing, the resultant coupling among spherical
harmonics arises naturally. Thus, this method allows us to di-
rectly model the coupling among spherical harmonics in a single
pulsation mode for rotating stars in a natural way.

Because l is not a legitimate quantum number for rotating
models, specifying l is not necessary. In the pulsation code the
input value of l is used to specify the parity of the mode, not
the exact value of l. Based on the parity of l, the code includes the
first k even or odd basis functions, where k is the input value of
the number of angular zones to be included. We limit ourselves
to small input values of l because those are expected to be the
most easily observable.We also restrict ourselves to axisymmetric
modes (m ¼ 0), although this is not a constraint intrinsic to the
method. We have also restricted ourselves to modes with small
radial quantum number (n).

Because l is no longer a valid quantum number, we need a new
designation for mode identification. We have chosen to identify
the mode with a quantum number, l0, which is the value of l of
the mode in the nonrotating model to which a given mode can be
traced back. This tracing back is based on examining both the
eigenfrequency and the angular shape of the eigenfunction (the
modes at different radial quantum numbers are easy to resolve;
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no mode bumping is exhibited in these ZAMS models). This is
quite easy up to moderate rotation rates because one spherical
harmonic tends to dominate. This method fails for rotation ve-
locities above 420 km s�1 because no spherical harmonic domi-
nates. For rotation velocities above 360 km s�1, we find this
method becomes somewhat uncertain and produces an irregular
progression in frequency for some modes. We thus consider the
pulsation properties for models up to 420 km s�1, but regard the
frequencies above 360 km s�1 as uncertain. Although we only
consider pulsation up to 420 km s�1, our static models go up to
near-critical rotation.

3. ACCURACY OF EIGENFREQUENCIES

As described in the above section, NRO, combined with
2D structure models from ROTORC, allows us to calculate the
eigenfrequencies for a rotating star without making any a priori
assumptions about the structure of the star. The method of so-
lution of NRO allows for the inclusion of multiple spherical
harmonics. As a result, we can calculate eigenfunctions for dis-
torted stars including the coupling between spherical harmonics.
In contrast most current calculations and observations generally
assume that pulsation frequencies and observed modes can be
characterized by a single spherical harmonic. It is therefore of
interest to determine at what surface equatorial velocity modes
can no longer be adequately described by a single spherical
harmonic.

One of the issues arising out of the following discussion is
where a difference between two calculated modes becomes sig-
nificant. Both ground-based and space-based observations con-
tinue to improve, as new projects are continuously launched
(figuratively and literally). As an example, COROT is expected
to measure frequencies to a precision of less than 0.01 �Hz for
the long runs, and better than 0.065 �Hz for a faint object during
short runs (Michel et al. 2007). Based on these numbers, cal-
culated frequencies do not need to change by much to be outside
the observational uncertainties. However, we must ask ourselves
whether it is reasonable to expect our models to match this ac-
curacy. The linear adiabatic pulsation code uses 10�6 as the con-
vergence criterion on the discriminant described in x 2. There
will be other sources of error on the final eigenfrequency, such as
from the finite difference representation of the pulsation equa-
tions. Neglecting these other sources of error, NRO converges
modes to an accuracy of about 10�6, or about 0.001 �Hz, more
than sufficient to match the predicted COROT accuracy. How-
ever, there are inaccuracies that result from the finite difference
zoning in the static models. When we change the surface equa-
torial velocity from one model to the next, we change the dis-
tribution of material in the star, although the radial zoning
(fractional surface equatorial radius) remains the same. The
changes become larger as the rotation rate increases. This is
equivalent to changing the radial zoning, for which experience
from the early calculations of linear radial pulsation indicated
a sensitivity on about the 1% level. We have also fairly dra-
matically rezoned a couple of our models and found that the
eigenfrequencies changed on about the 1% level, or about 8.5�Hz
for our models. The higher radial order p-modes are slightly
more affected because the outer layers of the model, where the
gradients of model quantities are steeper, play a larger role.
Clearly, our ability to measure observational frequencies to high
precision is irrelevant until models improve enough to match
them. Until then, for changes induced by rotational effects to
be considered significant, they must be larger than our model
uncertainties.

Another uncertainty consideration is the angular resolution of
our pulsation calculations. As described above, the number of
spherical harmonics used inNROdetermines the number of radial
integrations performed. There are several ways we can assess the
effects of this changing angular resolution. First, we would ex-
pect the slowly rotating modes to be relatively unaffected by an-
gular resolution. This is indeed what we find. In the case of slow
rotation, the coefficients for the higher order spherical harmonics
are small, typically not more than a percent up to 120 km s�1.
Over these same rotation ranges, we also expect the frequency to
be relatively unaffected by angular resolution, and this is indeed
what we find. The frequencies shown in Figure 1 differ by less
than a quarter of a percent over this rotation range.
In the majority of our plots, we show our results as a function

of surface equatorial velocity, as this is the unit most easily com-
pared to observations. However, for comparison with other
models, it is more useful to show results as a function of angular
rotation rate expressed as a fraction of critical rotation (�/�c). Crit-
ical rotation was calculated using a model rotating at 575 km s�1,
with an equatorial radius of 5.792 R�. This model is quite close
to critical rotation.We have summarized the conversion between

Fig. 1.—Frequency changes as a function of surface equatorial velocity for
the fundamental mode for l0 ¼ 0 (top) and l0 ¼ 1 (bottom). Frequencies shown
are calculated with one Ym

l (diamonds), two Ym
l ’s (circles), three Y

m
l ’s (squares),

and six Ym
l ’s (triangles).
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these two frames of reference, as well as some other parameters
of our models, in Table 1.

3.1. Frequency Changes

The simplest way to determine where the assumption that a
single Ym

l can be used is to compare the frequencies as calculated
with different numbers of spherical harmonics. This is illustrated
in Figure 1, which shows the normalized frequencies for the
l0 ¼ 0 and 1 fundamental modes, as calculated using 1, 2, 3, and
6 spherical harmonics. At some cutoff surface equatorial ve-
locity, the eigenfunctions calculated with only a few spherical
harmonics begin to deviate significantly from those calculated
using six spherical harmonics. For the l0 ¼ 0 mode, the frequen-
cies calculated with one spherical harmonic are in reasonably
good agreement to quite high velocities, remaining within ap-
proximately 0.5% of the frequencies calculated with more spher-
ical harmonics. The l0 ¼ 1mode as calculated with one spherical
harmonic rapidly diverges from the frequencies as calculated with
multiple basis functions. In this case, the single spherical har-
monic frequency reaches a difference of 1% at a surface equa-
torial velocity of 210 km s�1 (0:51�c).

Similar results are found for higher order modes. These results
are summarized in Table 2. To determine the location of the cut-
off surface equatorial velocity, as described above, we take a
difference of 1% to be significant, as discussed in x 3.

Although the periods are expected to change depending on the
details of the model, period differences are expected to be much
more stable. Hence, in the next subsection, we will consider the
large separation and period ratios of our frequency calculations.

3.2. Large Separations

We have studied the large separation between the n ¼ 0, 1,
and 2 modes for l0 ¼ 0Y3. We have calculated the large sepa-
rations in the usual way:

�	 ¼ 	l;nþ1 � 	l;n: ð5Þ

Before comparing these for the effects of the number of spher-
ical harmonics included, we need to account for rotation, which

can change the large separation by changing the model structure.
First, we normalize these large separations with respect to the
nonrotating model:

D	 ¼ �	 v ¼ 0ð Þ ��	 vð Þ: ð6Þ

We can then use these normalized large separations to look for
the effects of the number of spherical harmonics included in the
calculation (N ):

D	 ¼ D	N � D	N¼6: ð7Þ

For this calculation, we have assumed that the frequencies cal-
culated with six Ym

l ’s are closest to the true pulsation frequencies,
so the smaller the differences between this and other calculations,
the more accurate the smaller number of spherical harmonics.
This is illustrated in Figure 2, which shows the results of equa-
tion (7) as a function of surface equatorial velocity for the sep-
aration between the l0 ¼ 0 fundamental and first harmonic.

The uncertainty in the theoretical calculations of large sepa-
ration is inversely proportional to the uncertainty in the radius of
the stellar model in question. Taking the uncertainty in radius to
be the size of one radial zone, for our models, this is approxi-
mately 0.04 �Hz. Observationally, large separations are well
determined for solar-type stars, with uncertainties typically less
than 1�Hz. As a conservative estimate, we have chosen 1�Hz as
our significance criterion, as shown by the dashed lines in Fig-
ure 2. It should be noted that once the large separations with one
and two spherical harmonics begin to diverge, they do so quite
rapidly, so unless the cutoff criterion is appreciably smaller
(P0.5 �Hz), the cutoff surface equatorial velocity is not an ex-
tremely sensitive function of the cutoff criterion. The limiting
rotational velocities estimated using the large separations are
summarized in column (4) of Table 2.

4. ACCURACY OF EIGENFUNCTIONS

So far, the limiting rotation rates entered in Table 2 have been
for the l0 ¼ 0 and 1 modes only. This is a result of the way

TABLE 1

Summary of Model Parameters

Target veq
( km s�1) Actual veq

�

(10�3 s�1) �/�c

Req

(R�) Rp/Req Tp/Teq

0....................... 0 0.0000 0.00 3.973 1.000 1.000

10..................... 9.97 0.0036 0.03 3.973 1.000 1.000

30..................... 29.91 0.0108 0.08 3.976 0.999 1.001

50..................... 49.85 0.0180 0.13 3.981 0.997 1.003

90..................... 89.72 0.0322 0.23 4.000 0.991 1.008

120................... 119.63 0.0428 0.30 4.021 0.986 1.013

150................... 149.54 0.0531 0.37 4.048 0.977 1.021

180................... 179.45 0.0632 0.44 4.082 0.967 1.032

210................... 209.35 0.0729 0.51 4.125 0.953 1.051

240................... 239.26 0.0824 0.58 4.175 0.924 1.065

270................... 269.17 0.0913 0.64 4.237 0.908 1.082

300................... 299.08 0.0998 0.69 4.307 0.887 1.100

330................... 328.98 0.1076 0.76 4.393 0.866 1.125

360................... 358.89 0.1148 0.81 4.491 0.846 1.149

390................... 388.80 0.1215 0.85 4.600 0.821 1.173

420................... 418.71 0.1272 0.89 4.729 0.796 1.203

TABLE 2

Summary of Velocities at Which One Ym
l Fails

to Accurately Reproduce the Mode

l0
(1)

n

(2)

Frequencya

(3)

D	b

(4)

Eigenfunctionc

(5)

0.............................. 0 >360 . . . 165

1 240 160 60

2 180 24 25

1.............................. 0 210 . . . 110

1 210 140 105

2 180 30 85

2.............................. 0 . . . . . . 75

1 . . . . . . 60

2 . . . . . . 45

3.............................. 0 . . . . . . 70

1 . . . . . . 85

2 . . . . . . . . .

a Limiting surface equatorial velocity based on frequency differences larger
than 1%.

b Limiting surface equatorial velocity based on difference in the large sepa-
ration greater than 1 �Hz.

c Limiting surface equatorial velocity based on eigenfunctions with mean
differences larger than 0.06.
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spherical harmonics are included in NRO. To calculate the l0 ¼
2 mode, for example, the code will select even Ym

l starting
with l0 ¼ 0, so at least two Ym

l ’s are required. This is true for
any mode with l0 � 2. As a result, we cannot directly compare
eigenfrequencies calculated with several spherical harmonics
to those calculated with a single spherical harmonic.

We can still compare the eigenfunctions, and in this section
this is what we will do. One of the advantages of including sev-
eral spherical harmonics is the ability to study the effect of ro-
tation not only on the eigenfrequencies, but also on the shapes of
the eigenfunctions. For a nonrotating object, regardless of how
many spherical harmonics are included, the eigenfunction re-
mains a pure Ym

l , as it should. As the rotation rate increases,
neighboring spherical harmonics begin to contribute progres-
sively more to the shape of the eigenfunction. These effects could
be quite important for mode identification and need to be con-
sidered in rapidly rotating stars. One technique for mode iden-
tification uses the pulsation amplitudes in different colors as
determined by single spherical harmonics. With rotation signifi-
cantly altering the modes by coupling spherical harmonics, it
could alter these color amplitudes and change the mode identi-
fication. We find that the effects of the coupling can become sig-
nificant, even at very moderate rotation rates.

We have used a combination of the value of the eigenfrequency
and the angular variation of the eigenfunction at the surface to
identify the modes as we progressed from one rotating model to
the next. Of course, with the finite difference approach the angu-
lar variation of the eigenfunction can vary with depth. Figure 3
presents this variation for several rotation rates for the l0 ¼ 2
fundamental mode. Each plot contains the variation at several
different depths. As expected, the variation with depth is small
for slowly rotatingmodels and grows as the rotation rate increases.
Despite this growth in variation, the profile remains recognizably
the same until themost rapid rotation rate presented. This occurs at
a rotation rate at which we are already beginning to have trouble
tracing the modes from one rotation rate to the next, as we have
previously mentioned.

Figure 4 shows the angular variation at the surface in the
radial component of the l0 ¼ 0 fundamental mode at 90 and
270 km s�1. At 90 km s�1, the distorting effects of rotation are

negligible, although the differences are visible. In contrast, by
270 km s�1 the differences between the numbers of spherical har-
monics are quite significant, and one spherical harmonic is clearly
not sufficient to model the horizontal shape of the mode. In com-
parison, the eigenfrequencieswere considered to be accurate using
one spherical harmonic up to rotation rates of 300 km s�1. This
highlights the truism that even marginal eigenfunctions can give
reasonable eigenfrequencies. By 270 km s�1, themode no longer
looks like an l ¼ 0 mode, nor even an l ¼ 2, but is beginning to
distinctly show the characteristics of the l ¼ 4 contribution.
These two velocities were chosen based on the relative contribu-
tion of each Ym

l , shown for the radial fundamental mode in Fig-
ure 5. At 90 km s�1, with all three sets of basis functions, the
l ¼ 0 component contributes nearly 100%, while at 270 km s�1,
the contribution of the same component drops below 50% when
six spherical harmonics are considered.
From Figure 5, we can see that with two and three spherical

harmonics, all of the spherical harmonics contribute a relatively
significant amount by the time the model is rotating at inter-
mediate speeds. In contrast, with six spherical harmonics, the
contribution from the highest order spherical harmonics (l ¼ 10)
remains small out to at least 300 km s�1. Although the contri-
bution starts to become significant at very high rotation rates
(vk 350 km s�1), it still remains a factor of 2Y3 lower than the
main contributors. From this, we have taken the shape of the
eigenfunction with six spherical harmonics as being the most
correct and have used it as a basis of comparison.
Based on the results shown in Figure 4, we know that one

spherical harmonic ceases to be sufficient somewhere between
90 and 270 km s�1. From Figure 5, we can see that the relative
contribution of the Ym

0 drops below 90% at a surface equatorial
velocity between 150 and 180 km s�1. The angular variations of
the eigenfunctions for these two velocities are shown in Figure 6.
It is at this point that we would say multiple spherical harmonics
are required to accurately reproduce the shape of the mode (see
Figure 6).
We have developed a quantitative measure of how the shapes

of the eigenfunction differ from that calculated using six spher-
ical harmonics. This estimate is calculated by taking the ab-
solute value of the difference between the six-basis function
eigenfunction (standard) and one of the other eigenfunctions
(comparison) at nine points. These points are equally spaced
across the surface of the model, with � ¼ 10i. The point at � ¼ 0
is excluded, as all the eigenfunctions are normalized to 1 at this
point. These differences are then squared and summed. The square
root of the sum is normalized by the number of points to give a
measure of how different the two curves are:

mean diAerence ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ai � bið Þ2
s

: ð8Þ

This difference as a function of surface equatorial velocity is
shown in Figure 7. The differences between the eigenfunctions
calculated with one, two, and three spherical harmonics rela-
tive to six spherical harmonics rise sharply starting at a surface
equatorial velocity of 180 km s�1. Based on this rise and the
eigenfunctions shown in Figure 6, we estimate that when the
mean difference rises above 0.06, more spherical harmonics are
needed to accurately reproduce the shape of the mode.
For the other modes, the results are qualitatively similar, al-

though the extent of the differences varies. The results for all four
l0 values considered in this paper are summarized in Table 2.
Overall, one spherical harmonic remains a good approximation

Fig. 2.—Relative large separation (eq. [7]) as a function of surface equa-
torial velocity between the l0 ¼ 0 fundamental and first harmonic, for one spherical
harmonic (diamonds), two spherical harmonics (triangles), and three spherical
harmonics (circles), all relative to six spherical harmonics. Dashed lines indicate
the significance criterion adopted in this work.
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Fig. 4.—Angular variation in the radial eigenfunction for the radial funda-
mental mode of a model rotating at 90 km s�1 (top) and 270 km s�1 (bottom). On
both plots, the shape of the eigenfunction is shown as calculated using one (dotted
line), two (solid line), three (dashed line), and six (dot-dashed line) spherical
harmonics.

Fig. 5.—Relative contribution to the f-mode of each spherical harmonic for
two (top), three (middle), and six (bottom) spherical harmonics, for l ¼ 0 (dia-
amonds), l ¼ 2 (squares), l ¼ 4 (crosses), l ¼ 6 (circles), l ¼ 8 ( plus signs), and
l ¼ 10 (triangles). In the top plot, after v � 150 km s�1, the contribution from
l0 ¼ 0 drops below�90% and we say that you need more spherical harmonics to
be able to model the mode.

Fig. 3.—Variation in the radial eigenfunction for the l0 ¼ 2 mode as a function of colatitude at various depths (fractional surface equatorial radii of approximately 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0) for models rotating at 50 km s�1 (top left), 150 km s�1 (top right), 240 km s�1 (middle left), 300 km s�1 (middle right), 360 km s�1

(bottom left), and 420 km s�1 (bottom right). The convective boundary is located between 0:2Req and 0:3Req. The variation at each depth is normalized to be unity at the pole for
purposes of comparison. The variation is smallest at the center of the star, and increases toward the surface. On the plot for 420 km s�1 (bottom right), the layer closest to the
center is indicated with a dashed line, and the layer closest to the surface is indicated by a dot-dashed line. In most cases, 420 km s�1 is the most rapidly rotating model
considered, as mode identification becomes difficult.



out to at least 90 km s�1 (0:23�c). For some modes, such as the
radial fundamental, this approximation remains valid to much
higher rotation rates (270 km s�1, 0:64�c). As both the angular
and radial order of the mode increase, the limiting surface equa-
torial velocity decreases. In most cases, we find that the differ-
ences among calculations with different numbers of spherical
harmonics grow quickly as a function of surface equatorial ve-
locity once the differences become sizeable. We can conclude
that our results are not particularly sensitive to the exact value
of the cutoff criterion we have chosen, as long as it is not signifi-
cantly lower than what we have used.We also find that comparing
frequencies or frequency differences produces approximately the
same results. Based on our results for a 10 M� model, a single
spherical harmonic is never a good approximation for rotation
rates above 0:64�c, appears to always be a good approximation
for rotation rates below 0:23�c, and must be used with caution for
rotation rates between these two values. Although there may be
some mass effects, we do not expect these results to change sig-
nificantly for masses close to 10 M�.

5. COMPARISON WITH PERTURBATION THEORY

Second-order perturbation theory is routinely used to compute
linear pulsation modes for rotating stars in which the centrifugal
forces are expected to affect the pulsation frequencies. It has been
difficult to comment on when second-order perturbation theory
can be expected to fail because there have been few calculations
of eigenfrequencies using othermethods.Our approachwill allow
placing some limits on the range of applicability of second-order
perturbation theory, but again these limits will be a product of the
accuracy obtainable or required.

Second-order perturbation theory shows that, for such axisym-
metric modes as we consider here, the change in eigenfrequency
is a linear function of the square of the rotation rate (e.g., Saio
1981). We shall compare our results with this linear relation in
two separate ways, both of which determine the failure of per-
turbation theory by a deviation from this linear relation. Of course,
the result will depend on the quantitative value as to when the
deviation becomes significant, a point we will discuss at the end
of this section. We shall use the results we feel most accurately

reflect the true values of the pulsation frequencies, the results
with six angular zones in the 2D pulsation grid, for our com-
parison of eigenfrequencies.
The first method starts with the first four models in the rota-

tion sequence (surface equatorial rotation velocities from 0 to
90 km s�1). We calculate the best fit to the linear relationship,
as given by perturbation theory, and the standard deviation. We
repeat this exercise, each time adding one more model to the
analysis, until all rotation velocities are included. As long as the
linear relation is satisfied, we expect the standard deviation to be
approximately constant as we add results for more rapidly rotat-
ing models. At some point, as the rotation becomes more rapid,
the standard deviation will become larger and at some threshold
value will be declared no longer to be an adequate representation
of a straight line. Thus, second-order perturbation theory would
no longer be considered reliable. We plot this standard deviation
as a function of the rotation rate of the most rapidly rotating
member of each sample in Figure 8. We somewhat arbitrarily set
our threshold at 4 ; 10�6 as being a value above the flat region
for all modes. The values for the limits of applicability of pertur-
bation theory computed by this method are listed in column (3)
of Table 3. We have also examined the slope of each linear fit
and, as expected, find that the slope changes gradually where the
linear fit is good, and more rapidly as more points are added.
One difficulty with the above approach is that the coefficients

of the linear fit change as more rapidly rotating models are added.
A more constraining determination of the threshold of pertur-
bation theory might be obtained by using the first few members
of the sequence to determine the coefficient of the linear fit. The
assumption is that the slope that perturbation theory would pre-
dict is correctly computed using the first few slowly rotating
members of the sequence. We use the first five members in our
rotation sequence to calculate this coefficient. We then use this
coefficient to determine perturbation theory frequencies at each
of our surface equatorial velocities. As before, we take the dif-
ferences between the two methods as significant when they are
larger than 1%. The results for this method are listed in column (4)
of Table 3. We compare our pulsation frequencies with those
predicted assuming the coefficient computed for the first four

Fig. 6.—Same as Fig. 4, but for the velocities on either side of the cutoff
surface equatorial velocity. At the lower velocity (150 km s�1, top), the shape can
be calculated reasonably well using one Ym

l , but at the higher velocity (180 km s�1,
bottom), two or more are needed to accurately reproduce the horizontal variation in
the eigenfunction.

Fig. 7.—Mean difference between the shape of the radial fundamental
eigenfunction with six spherical harmonics and a pure P0 mode (diamonds),
two spherical harmonics (squares), and three spherical harmonics (triangles).
Although there is some variation, all three curves show a sharp rise beyond
200 km s�1. See text for the definition of the mean difference.

LOVEKIN & DEUPREE1506 Vol. 679



members of the sequence is valid at all rotational velocities in
Figure 9.

We find the trends for both methods of evaluating the thresh-
old are similar for the two methods, but that the thresholds com-
puted for the coefficient fit are more constrained. This is to be
expected because forcing a linear fit to have a certain slope is
more confining than merely forcing a fit to be linear. It is inter-
esting that the threshold for perturbation theory occurs at gen-
erally higher rotation speeds than the threshold for the validity of
a single spherical harmonic. The extrapolation of the linear fit to
higher rotation velocities is flatter than our calculation with six
angular zones andmuch flatter than our calculationwith only one
angular zone.

Our results indicate that perturbation theory is satisfactory to
appreciably larger rotation velocities than the results of Reese
et al. (2006), who found that third-order perturbation theory failed
for rotation rates above about 0:2�c. Much of this difference
arises from the much tighter constraint they placed on what dif-

ference in eigenvalues is significant. They are able to do this
because they perform their comparisons using polytropes, which
can be numerically integrated very accurately, whereas we use
finite difference techniques to generate our more realistic stellar
models. A subsidiary consideration is that they can control both
the total mass and radius, and thus can arbitrarily scale from one
model to the next, whereas our models include the conservation
of energy, which removes the radius as an arbitrary parameter. In
addition, the surface locations at each angle of our rotatingmodels
are quantized; the surface is regarded to include the full radial
zone instead of fractions of zones. Our errors are in line with
variations in eigenvalues computed for radial modes at a similar
stage of development (e.g., Castor 1971). We believe these errors
are reasonable at the present time because the deduced properties
of the stars observed will be inaccurate both from the conversion
from observed parameters to theoretical parameters and from the
uncertainties in the effects of inclination on the relation between
the observed and intrinsic properties. The model and parameter
inaccuracies will be far greater than the error in the observed
frequencies. Physical uncertainties, particularly in the internal
angular momentum distribution, are expected to be greater
than or equal to the uncertainties in an individual model, par-
ticularly for the more rapidly rotating stars in which we are
interested (v > 200 km s�1). We believe that being able to
compute the evolution of the rotation law as the star ages may, at
this stage, play a more important role than increasing the accu-
racy of the calculations. Of course, we recognize that improve-
ments in accuracy on all fronts are valuable.

6. CONCLUSIONS

In this paper, we have attempted to test the validity of two
independent assumptions commonly made in calculating stellar
oscillation frequencies. These are first that the nonradial modes
can bemodeled using a single Ym

l , and second that the modes can
be calculated using second-order perturbation theory out to some
limiting (highly uncertain) rotation rate.

We find that when a single spherical harmonic becomes inac-
curate ismode dependent,with it failing at lower rotation velocities
for higher order modes. The answer is also different depending
on what property one examines. A single spherical harmonic is
sufficient to reproduce frequencies to within 1% for rotation
velocities up to at least 180 km s�1 (0:44�c), and for some low-
order modes may even be valid up to 390 km s�1 (0:85�c). In

TABLE 3

Summary of Velocities at Which Perturbation Theory Fails

to Accurately Reproduce the Mode

l0
(1)

n

(2)

Linear Fit

(3)

Coefficient Fit

(4)

One Y m
l
a

(max /min)

(5)

0....................... 0 . . . 360 >360/160

1 . . . 240 240/60

2 300 270 180/25

1....................... 0 . . . . . . 210/110

1 >360 330 210/105

2 360 210 180/30

2....................... 0 330 240 75

1 330 180 60

2 270 120 45

3....................... 0 330 210 70

1 330 210 85

2 360 330 . . .

a Maximum and minimum rotation speeds at which one Ym
l is valid, where

more than one criterion exists.

Fig. 9.—Normalized frequencies as calculated with NRO (diamonds) and
using an estimate of the perturbation theory results (crosses) for the l0 ¼ 2 f-mode.

Fig. 8.—Standard deviation from a straight line as more points are included
for the l0 ¼ 0 and 1 modes (top) and l0 ¼ 2 and 3 modes (bottom), for funda-
mental mode (diamonds), first harmonic (squares), and second harmonic (tri-
angles).We take the cutoff standard deviation to be 4 ; 10�6. Solid lines represent
the even modes (0, 2), and dashed lines represent the odd modes (1, 3).
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contrast, the angular shapes of the eigenfunctions are extremely
sensitive to rotation, and the assumption fails at a maximum
surface equatorial velocity of 165 km s�1. In most cases, the
assumption fails at much lower rotation velocities, typically
around 50Y75 km s�1. Period differences ( large separations) are
expected to be of most interest, and these are also found to be
sensitive to the order of the mode. A single spherical harmonic
can accurately predict the difference between the fundamental
and first harmonic of the l0 ¼ 0 and 1 mode up to velocities of
around 150 km s�1 (0:37�c). The higher order modes are very
sensitive to rotation, and the assumption fails at velocities around
25Y30 km s�1 (0:08�c). One interesting consequence of the
limitations of a single spherical harmonic is the impact it may
have on mode identification, which is most often based on com-
paring the variation in pulsation amplitude with color, with
models computed assuming a single spherical harmonic (e.g.,
Heynderickx et al. 1994).

We have compared our eigenfrequencies with the relation
between eigenfrequency and rotation rate predicted by second-

order perturbation theory. The relationship is followed reason-
ably well for models rotating up to surface rotational velocities of
about 400 km s�1 for very low order modes. The relation fails at
lower rotational velocities (approximately 200 km s�1 or�/�c ¼
0:58) for modes with two or three radial nodes. These values are
dependent on the difference between the two sets of frequencies
tolerated. In these calculations, the limits are determined by the
properties of the rotating stellar models rather than the calcu-
lations of the eigenfunctions.
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Council of Canada (NSERC) Discovery grant and a NSERC grad-
uate scholarship.Computational facilitieswere providedwith grants
from theCanadian Foundation for Innovation and theNova Scotia
Innovation Research Trust.

REFERENCES

Baglin, A., et al. 2001, in Proc. SOHO 10/GONG 2000 Workshop, ed. A.
Wilson (ESA SP-464; Noordwijk: ESA), 395

Basri, G., Borucki, W. J., & Koch, D. 2005, NewA Rev., 49, 478
Belmonte, J. A., et al. 1993, in IAU Colloq. 137, Inside the Stars, ed. W. W.
Weiss & A. Baglin (ASP Conf. Ser. 40; San Francisco: ASP), 739

Breger, M. 2007, Commun. Astroseismology, 150, 25
Castor, J. I. 1971, ApJ, 166, 109
Chandrasekhar, S. 1964, ApJ, 139, 664
Chandrasekhar, S., & Lebovitz, N. R. 1962, ApJ, 135, 248
Clement, M. J. 1964, ApJ, 140, 1045
———. 1965, ApJ, 141, 210
———. 1986, ApJ, 301, 185
———. 1998, ApJS, 116, 57
Cowling, T. G. 1941, MNRAS, 101, 367
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