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Abstract  

______________________________________________________________________________________________________  
Despite the availability of studies on mobile learning adoption, its theoretical foundations have not yet 

matured. However, studies on mobile learning adoption in the context of form six student in Malaysia is 
still very limited. Against this concern, a study was conducted with the aim of investigating factors that 

could influence the adoption of mobile learning. Based on The Unified Theory of Acceptance and Use 

of Technology (UTAUT) and two other variables which are Perceived Playfulness and Self-Directed 

Learning, an empirical structured has been developed to identify predictors of mobile learning. A self-

administered questionnaire was adopted and a total of 314 responses were employed for the analysis, 
using Structural Equation Modelling (SEM). The findings of the analysis revealed that all key constructs 

(except social influence) affect mobile learning adoption among form six students. Besides that, Self-

Directed Learning become the strongest predictor and followed by Effort Expectancy. These findings 

provide crucial implications for educators and practitioners to take individual characteristic (Self -

Directed Learning) into consideration while promoting mobile learning. This study represents one of the 
few attempts to reveal the extended UTAUT model could be increased explanation power of technology 

acceptance by the users. Directions for future study are suggested at the end of the paper.  

 

Keywords: mobile learning adoption, unified theory of acceptance and use of technology, perceived 

playfulness, self-directed learning 

______________________________________________________________________________________________________ 
 
 
Introduction 
 
Mobile learning acceptance and adoption is gaining traction in popularity around the world due to the 

increasing and availability of low-cost mobile devices and supporting mobile technology infrastructure 

(Jalil et al. 2015). The pervasive existence of these technologies makes mobile learning ideal for 

developing countries since there is lack of advanced training technologies (Okai et al. 2020). Generally, 

mobile learning studies focused on developing countries (Okai et al. 2017; Kaliisa et al. 2017; Lamptey 

et al. 2017) have shown that mobile technology has great potential to expand educational opportunities 
in the region. Finding of these investigations show that mobile learning has the potential to become a 

reliable instructional tool in higher education sector and could help attain technology-enhanced teaching 

and learning benefits hindered by the digital divide. Indeed, the prospect has been investigated from 

various perspectives. While some studies have considered technology design (Grant et al. 2019; 

Suartama et al. 2019), most studies have focused on students’ perception, their ownership of mobile 
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devices and willingness for mobile learning adoption (Abdullah et al. 2019; Kumar & Chand, 2019; 
Masrek & Shahibi, 2019; Ramakrisnan et al. 2019).  

 

Along with mobile technology expansion, the emergence of mobile learning has resulted in the revolution 

of the of distance learning. Therefore, mobile learning is popularly described as a learning process which 

taking advantage of mobile devices, ubiquitous communications technology and intelligent user 

interfaces (Masrek & Shahibi, 2019). Generally, mobile learning helps educational institutions to expand 
the accessibility, inter connection and reusability of learning resources, also to enhance flexibility and 

interactivity of learning behaviour at appropriate times and places (Alam & Aljohani, 2020). Besides 

that, mobile learning could encourage the use of previously unproductive time, allow learning behaviours 

irrespective of time and place and provide great opportunities for personalized, customize and context-

aware learning support services (Erazo et al. 2019; Curum & Khedo, 2019). However, the availability of 
mobile learning does not guarantee that it will be accepted by the users or learners, especially when it 

comes to supportive tools for the learning. Despite its strong penetration into the education system, there 

is no assurance that it will be accepted as a learning medium by students. As a matter of fact, the 

understanding of the adoption of mobile technologies in educational environments is still in its incipient 

stage.  
 

Indeed, mobile learning has not been formally integrated into the delivery of form six level in Malaysia. 

In the same way for e-learning in general, but e-learning technologies are being used by students and 

teachers (Thomas et al. 2013). In this context, mobile devices also have the potential to be integrated into 

form six education. However, in addition to the infrastructure and other physical requirements, the 

adoption of mobile learning will depend on human factors including skills, attitude and culture (Mustafa 
et al. 2018; Kukulska et al, 2007). Studies of mobile learning adoption in form six level are therefore 

important since they will help to identify the important drivers of adoption. 

 

According to Grant (2019) and Shorfuzzaman et al. (2019), while there were huge studies on mobile 

learning, its theoretical foundations were still immature. Thus, questions on how mobile learning can be 
promoted are still largely unresolved. Hence, by having this study, it could hopefully fill the gap on the 

absence of mobile learning in form six students. The findings could be new learning discoveries which 

would provide some beneficial insights on how the mobile learning as a new learning tool could be useful 

in helping form six students in improving their learning based. Against this background, a study was 

conducted with the following objectives:  
 

i. to identify factors that influence ML adoption among form six students,  

ii. to ascertain whether the following factors correlate to use behaviour of mobile learning: 

performance expectancy, effort expectancy, social influence, facilitating conditions, 

perceived playfulness and Self-Directed Learning, 

iii. to evaluate the influence of these factors towards use behaviour. 
 

 
Literature Review 
 

According to Grant (2019) mobile learning generally contains four categories of definitions, there are 

relationship to distance education and e-learning, exploitation of devices and technologies, mediation 

with technology, and nomadic nature of learner and learning. While, the most acceptance of mobile 

learning definitions are the using of mobile technology to facilitate, support, enhance and extend the 
reach of teaching and learning. Based on its characteristics, mobile learning is said to be ubiquitous, 

personal, collaboratives and instant information (Zhang, 2019). As a result, the advantages of mobile 

learning are (Mabruri et al. 2019; Uther, 2019): 

 

i. just-enough learning – highly applied, easily digestible learning  

ii. just-in-time learning – convenient, flexible and relevant learning at the exact moment learning 

is required 

iii.         just-for-me learning – learner-driven learning in a suitable format  
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iv. cost-saving – mobile learning can be cost effective and using a learner’s own mobile device   

eliminates technological barriers to accessing learning. 

In addition, mobile learning research ought to examine the relationship between learners and their 
learning context. This study attempts to explore factors that motivate learners to use mobile learning in 

both formal and informal learning contexts. Although mobile technology was utilized very differently in 

both learning contexts (Laurillard, 2007), previous research does not differentiate between learners’ 

adoption to use mobile learning in formal and informal settings. In fact, focus of existing literature is 

mainly on formal learning (Looi et al., 2016) in which mobile learning platforms are used frequently for 
learning activities (see for example Wang et al. 2009; Liu et al., 2010). However, learners not only use 

virtual learning platforms but also access online information to facilitate their learning. Despite being 

informal, this is an important aspect of learning process. However, there is insufficient empirical 

evidence for mobile learning usage in informal learning context (Jones, Scanlon, & Clough, 2013). This 

could be due to the difficulty of capturing use of technology in this context (Pachler, 2007). As the design 
of mobile learning activities for informal contexts is scaling up (Looi et al., 2014), this environment 

needs further investigation (Kearney et al. 2012). Moreover, it is known that individual differences of 

learners affect self-directed learning (Kreber, 1998). Extant research neglects the influences of individual 

characteristics on mobile learning usage which is highly dependent on self-direction. This study 

contributes to current literature by considering and examining the relationship between the context of 

learning and learners’ characteristics. 
 

Since the dawn of mobile learning, scholars have been studying factors that influence its adoption. 

Theories, models or framework such as Theory of Reasoned Action (TRA); Social Cognitive Theory 

(SCT); Technology Acceptance Model (TAM); Theory of Planned Behaviour (TPB); Model of PC 

Utilization (MPCU); Innovation Diffusion Theory (IDT); and The Unified Theory of Acceptance and 
Use of Technology (UTAUT) have been referred and adapted by researchers to investigate the adoption 

of mobile learning(Masrek & Shahibi, 2019). Among the various theories and models, UTAUT was 

found to be the most adopted or referred in the context of mobile learning. The literature suggests that 

UTAUT could explain up to 70% variances of technology acceptance behaviour (Venkatesh et al. 2003). 

UTAUT identified four key constructs which are performance expectancy, effort expectancy, social 
factors and facilitating conditions to have a direct influence on intention to adopt technology. Previous 

mobile learning studies have constantly shown the contribution of these four constructs.  

 

However, Pedersen & Ling (2003); Wang et al. (2009) and Karimi (2016) argued, the main constructs 

of UTAUT may not be fully applicable to mobile learning adoption. Indeed, testing and verification of 

this model by modifying it and extending it with other determinants is essential. This paper follows the 
above literature and proposes and empirically tests an alternative mobile learning adoption model for 

specific learning contexts. Besides these four constructs, researchers have also explored the role of 

perceived playfulness and self-directed of learning. The reason for including perceived playfulness was 

because the features of the applications in the mobile learning environment were generally fun to explore 

and engage, making the users fully absorbed in their use (Masrek & Shahibi, 2019). On the other hand, 
self-directed learning was also studied because mobile learning environment promotes self-management 

learning or student-centred learning (Karimi et al. 2016; Lin et al, 2016). Thus, the mobile learning is 

best suited for learners or students who are very independent or being supervised or facilitated minimally 

by the instructors.  

 
Venkatesh et al. (2003) suggested that performance expectancy, effort expectancy, social influence and 

facilitating conditions have are direct determinants of technology behavioural intention. Even so, some 

studies of mobile learning have incorporated new concepts of perceived playfulness and self-directed of 

learning into this model. While playfulness was consistently found influential, results for self-directed 

learning are contradictory. A study by Wang et al., (2009) reported a significant effect whereas 
Lowenthal (2010) did not found a significant influence. Therefore, the influence of self-directed learning 

as a significant determinant for mobile technology adoption, should be given more attention. Drawing 

upon this premise, the present study will investigate the factors that influence the adoption of mobile 

learning as shown in Figure 1. 
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Figure 1: Theoretical Framework 
 

 
Mobile Learning Adoption 

 
There are various of acceptance technology models have been previously developed to examine users’ 

acceptance and intention to adopt a new technology. Recently, these models have found their way to 

studies of e-learning and mobile learning. Among of them, the unified theory of acceptance and use of 

technology (UTAUT), proposed by Venkatesh, Morris, Davis, and Davis (2003), has been widely used 

in this line of studies (Ariffin & Lim, 2020; Wong et al., 2019; Yip et al. 2018). This comprehensive 
model integrates eight prominent models of technology acceptance, including of  Theory of Reasoned 

Action (TRA) (Fishbein & Ajzen, 1975), Technology Acceptance Model (TAM) (Davis, 1989), Theory 

of Planned Behaviour (TPB) (Ajzen, 1991), combined TAM and TPB (C-TAM-TPB) (Taylor & Todd, 

1995a), Motivational Model (MM) (Davis, Bagozzi, & Warshaw, 1992), the model of PC utilisation 

(MPCU) (Thompson, Higgins, & Howell, 1991), Innovation Diffusion Theory (IDT) (Moore & 
Benbasat, 1991; Rogers, 2003) and Social Cognitive Theory (SCT) (Bandura, 1986). Later, the UTAUT 

has been proved to provide an excellent framework to identify the determinants of technology 

acceptance intentions and adoption in the literature (Gupta et al., 2018; Venkatesh et al., 2012; Wang et 

al., 2010). 

 

Based on the UTAUT theory, this study emphasizes on adoption of mobile learning in term of usage 
behaviour. According to Ajzen and Fishbein (1975), behavioural intention will lead to use behaviour. 

Therefore, when consumers have high technology adoption levels, such technology-use behaviour is 

likely to be triggered. As described, use behaviour refers to the frequency of actual use of information 

technology by the users (Ramírez et al. 2019). Besides, users with more experience will have more 

tendencies to strengthen their habit because they have spent more time to process cues and to carry out 
the associated behaviour (Kim & Malhotra, 2005). In addition, routine behaviour become automated 

and guided further by associated cues with more experience (Jasperson et al., 2005). As a result, the 

impact of behavioural intention on technology use will reduce when more experience is gained.  

 

Therefore, we use actual behaviour as a final dependent variable rather than intention as usual. The goal 
here is to understand usage as the dependent variable instead using of intention as a predictor of use 

behaviour (Venkatesh et a. 2003). While, most of the study focussed on intention behaviour to predict 

the usage of mobile learning, this study focuses on factors that directly influence the actual use 

behaviour. Some researchers determine significant impact, such as Ahmad (2014), Nistor et al. (2013) 

and Teo (2001). Moreover, Nistor et al. (2013) described that habits and high computer literacy could 

overshadowed intention behaviour because of the unique characteristic of the respondents as a millennial 
generation. Thus, this study tries to investigate factors that could influence actual usage directly in term 

of mobile learning adoption. All these explanations presume, however, that technology adoption is a 

rationale decision as conceptualized by Ajzen & Fishbein (2000). 
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Performance Expectancy 
 

Performance expectancy, which is described by Venkatesh et al. (2012), refers to “the degree to which 

an individual believes that using mobile learning will help him or her to attain gains in job 
performance”. Adapting performance expectancy to mobile learning suggests that users will find it 

useful because it enables learners to accomplish learning activities effectively and flexible (Masrek & 

Shahibi, 2019). It is one of the most significant determinants for technology adoption (Mohd Azli et al., 

2019; Amzauorou & Oubaha, 2018) and use behaviour (Duarte & Pinho, 2019; Alrawashdeh et al., 

2012; Yu, 2012). This construct consists of five criteria: extrinsic motivation, perceived usefulness, 

outcome expectations, job fit and relative advantage (Wong et al. 2020). Extrinsic motivation refers to 
the perception of the user as to whether to perform an activity when such an activity is recognized as an 

instrument for achieving different valued outcomes of the activity itself. (Teo et al., 1999; Chong, 2013). 

On the other hand, perceived usefulness is the degree to which a person assumes that new technology 

will enhance the efficiency of his or her work. (Davis, 1989). Next, the outcome expectations are the 

potential outcomes of a user's actions, where expectations concentrate on the outcome benefit and are 
relative to various individuals (Bandura, 1986). Job fit can be explained as how technologies can 

improve people's work efficiency. (Thompson et al., 1991; Jeng & Tzeng, 2012). Lastly, The relative 

benefit of the adoption of a new technology product over the cost (Rogers, 1962). Based on Oliver’s 

(1980) Expectation Confirmation Theory (ECT), when the expectation of a user is confirmed, 

satisfaction will follow. In the context of availability of various task environments, performance 
expectancy affects intention to use (Baptista & Oliveira, 2015). Therefore, performance expectancy is 

posited to affect the adoption of mobile learning. It is one of the key factors affecting technology 

adoption. Following the findings of the aforesaid studies, this study expects that performance expectancy 

is a significant predictor of the mobile learning adoption. Therefore, it is hypothesized that: H1: 

Performance expectancy significantly affects intention to adopt mobile learning. 
 

Effort Expectancy  
 

Effort expectancy is "the degree of ease associated with the use of the system” (Venkatesh et al. 2012). 

In the context of mobile learning, effort expectancy is about an individual’s expectation of using mobile 

learning without much effort. The easier the mobile learning applications can be accessed by the user, 
the more is the intention to adopt it. This suggests that effort required will strengthen the intention to 

use a certain technology (Sivathanu, 2019). In fact, the performance and the effort expectancies are two 

major salient predictors of use technology behaviour (Davis, 1989; Casey and Wilson, 2012). Studies 

across different countries showed inconsistency findings of effort expectancy influence on intention to 

adopt mobile learning. While Botero et al. (2018); Kissi et al. (2018); Jambulingam (2013) did not find 

any support, others, such as Nawi et al. (2019); Norjanah et al. (2018); Hadi & Kishik (2014); Iqbal & 
Qureshi (2014); Momani & Abualkishik (2014) found a positive relationship between effort expectancy 

and intention to adopt mobile learning. In the case of this study, the researcher argued that effort 

expectancy is an influential factor for adopting mobile learning. Accordingly, this study posits that: H2: 

Effort expectancy significantly affects intention to adopt mobile learning. 
 

Social Influence 
 

According to Venkatesh et al. (2003), social influence is defined as ‘‘the degree to which an individual 

perceives that important others believe he or she should use the new system’’ . It is also defined as the 

internalization of the subjective culture of the reference groups by the individual and the specific 

interpersonal agreements that the individual has made with other in specific social situations (Botero et 

al. (2018). Besides that, current study identified social influence as the degree to which students perceive 
educational stakeholders (teachers, students, parents) believe that they should benefit mobile technology 

in their learning. There are interesting findings on the impact of social influence on mobile learning use 

behaviour. Van Schaik (2009) stated that the impact of social influence become stronger when there is 

limited experience with the technology. Durak (2019), Huang & Wu (2017) and Pedro et al. (2017) 

revealed the significant impact of this factor on intention and use behaviour.  However, the impact of 
social influence remains inconclusive in directly predicting the degree of usage behaviour. Other studies 
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suggested some inconsistencies such as Daktuk et al. (2018); Kissi et al. (2018) and Yakubu & Dasuki 
(2018). Accordingly, the following hypothesis is proposed: H3 Social influence (SI) is positively related 

to BI.  

 

Facilitating Condition 
 

Facilitating condition is defined as "the degree to which an individual believes that an organizational 

and technical infrastructure exists to support the use of the system"(Venkatesh et al. 2012). Acceptance 

of any new technology is highly dependent upon the supporting conditions or environment. In the 

context of mobile learning, these conditions of facilitation may appear in the form such as resources, 
knowledge, Internet speed, guidance, help and training (Sivathanu, 2019). Yet, in the learning context, 

resources are considered the most crucial determinant. In many mobile learning applications, the content 

does not fulfil the needs of the students or users (Masrek & Shahibi, 2019). Just like any form of 

computer-based information systems, the application should follow a rigorous process, to ensure the 

content are highly usable and meeting the needs of the users (Wong et al. 2019). A study reported by 

Kissi et al. (2018); Maita et al. (2018); Mosunmola et al. (2018); Iqbal & Qureshi, (2012) showed that 
facilitating condition was a significant predictor of mobile learning adoption. However, some 

researchers suggested that this factor could be given insignificant impact to usage behaviour because of 

some circumstances such as high of  computer self-efficacy and computer literacy, good infrastructures, 

family background (Durak, 2019; Yang et al. 2019; Pedro et al. 2017). Given this background, this study 

postulates that: H5: Facilitating conditions significantly affect intention to adopt ML. 

 
Perceived Playfulness 

 
Perceived playfulness is defined as the individual perceives that his or her attention is focused on the 

interaction with certain technologies, high curiosity during interaction and finds the interaction 
intrinsically enjoyable or interesting (Moon & Kim, 2001). They suggested that perceived playfulness 

will provide intrinsic motivation, which is shaped by individual’s experiences with the environment. 

While, intrinsic motivator refers to the individual’s engagement in an activity due to his or her interest 

(Ryan & Deci, 2000). Because of that, researchers considered perceived playfulness as one of the critical 

factors that could potentially affect learning engagement with the utilization of new teaching innovations 
and technology (Chou, 2006; Chung & Tan, 2004). Previous studies have also shown that the use of 

information technology is influenced by perceived playfulness (Masrek et al. 2019; Nawi et al. 2019; 

Iqbal & Qureshi, 2012). The reason n is because individuals who experience pleasure or enjoyment from 

using an information technology or information systems are more likely to intend to use it extensively 

than those who do not (Schofield & Taylor, 2011). Taken the above together, the researcher argued that 

this situation would also be applicable to the context of mobile learning adoption. Hence, the study 
hypothesizes: H4 - Perceived playfulness significantly affects individual intention to adopt ML. 

 

Self-directed Learning 
 

Knowles (1975) defines self-directed learning as “a process in which individuals take the initiative, with 

or without the help from others, in diagnosing their learning needs, formulating goals, identifying 

human and material resources, choosing and implementing appropriate learning strategies, and 

evaluating learning outcomes.” In the context of learning, this implied that “learning should empower 
a student to become a free, mature, and authentic self” (Savin & Major, 2004). This suggest that mobile 

learning is largely self-directed and learners “find their own way to make a learning situation 

personalized and sensitized to them” (Park et al. 2010). Learners are active and central participants in 

this process. Therefore, learners take self- initiative, with or without the help from others, in doing their 

learning activities. Therefore, researchers stress the importance of enabling learners to have more control 

over their own learning. As a result, mobile learning offers learners the opportunity to be at the centre 
of the learning process, to play an active role from determining their goal to the assessment stage 

(Makoe, 2010). When they are actively engaged with the task, they are more likely to develop learning 

strategies to enhance their learning outcomes and thus increase their motivation. Unlike other digital 

media, a mobile device can be used all the time and allows great control to user on how and when to 
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access their devices (Karimi, 2016). Thus, previous studies suggested that self-directed learning should 
be taken into consideration while examine mobile learning readiness (Gu, 2016; Lin et al, 2016; 

Williams & Brown, 2013). On the other hand, Masrek et al. (2019) and Karimi (2016) tested this 

antecedent into mobile learning adoption and surprisingly found a significant influence. Due to its 

significant effect, self-directed learning has been included in the model and hypothesize as: H6 - Self-

Directed Learning significantly affects individual intention to adopt mobile learning. 

 
 

Methodology  
 
This study employed a quantitative approach with a survey as the research method. The instrument used 

for data collection was a questionnaire. The questionnaire was developed by referring to the instruments 

used by previous studies. In particular, the instruments used by Masrek & Shahibi (2019); Lin et al. 
(2016); Mazharuddin (2014); Williams & Brown (2013); Iqbal & Qureshi (2012); Wang et al. (2009) 

and Venkatesh et al. (2003) were adapted as these studies were also focusing on mobile learning and 

information technology adoption. Likert scale items (ranging from 1=Strongly Disagree to 5=Strongly 

Agree) were utilized. As shown in Table 1, a total of 21 items were used for measuring the variables. 

The questionnaire was validated by several experts before pre-tested data collection done by prospective 
respondents. Some items were revised based on expert suggestion.  

 

Table 1: Sources of Measurement 

 

 

The population of the study was Economics form six students in Sabah, Malaysia. Using the listing of 

registered students as the sampling frame, the simple random sampling technique was adopted to 

identify the targeted respondents. A total of 340 questionnaires was sent to the targeted students using 
printed (paper-based) and online surveyed. A total of 320 questionnaires was returned. However, 6 were 

found to be unusable for further analysis as they were incomplete. The remaining 314 were analysed 

using IBM SPSS Amos version 24. The structural equation modelling (SEM) analyses were carried out 

for assessing the constructs validity and reliability. The result and detail of constructs validity, reliability 

and hypotheses testing will discuss in the finding section. 
 

 
Result  
 
Demographic profiles  
 
Respondents’ demographic profiles were summarized in Table 1. As can be seen, majority of 

respondents were female (64%) compare to male (46%). In term of ethnicity, 69% respondents were 

Malay, followed by Chinese (27%) and others ethnic were only 4%. As for devices ownership, most 

respondents have their own hand phone (82%) whereby laptop (12%) and only 6% own a tablet. Majority 
of respondents reported have their own internet subscription (94%). 

 
 

 

Variable 
No of 

items 
Source of Instrument 

Performance Expectancy 3 Venkatesh et al. (2003)  

Effort expectancy 3 Venkatesh et al. (2003)  

Social influence 3 Venkatesh et al. (2003)  
Facilitating conditions 3 Venkatesh et al. (2003)  

Perceived playfulness 3 Wang et al. (2009), Masrek & Shahibi (2019)  

Self-Directed Learning 3 Lin et al. (2016), Williams & Brown (2013) 

Use Behaviour 3 Iqbal & Qureshi (2012), Mazharuddin (2014) 
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Table 2: Demographic Profiles 
 

Variables N (%) 

Gender 

      Male 

      Female 

 

38 

62 

Ethnicity 

      Malay 
      Chinese 

      Others 

 

69 
27 

4 

School category 

      City 

      Rural 

 

72 

28 
Type of Devices  

      Hand Phone 

      Tablet 

      Laptop 

 

84 

4 

12 

Internet subscription 

      Yes 
       No 

 

98 
2 

 

Construct Validity and Reliability Assessment 
 

The study adopted the two-steps approach of modelling and analysing the structural model namely, 

confirmatory Factor Analysis (CFA) and Structural Equation Modelling (SEM). Thus, prior to 

modelling the structural model and executing Structural Equation Modelling (SEM), the study needs to 
validate all measurement models of latent constructs for Unidimensional, Validity and Reliability 

(Awang, 2015; Awang et al., 2015 and Afthanorhan et al,, 2017, 2017a). This validation procedure is 

called Confirmatory Factor Analysis (CFA). According to Awang (2015) and Awang et al. (2015), the 

measurement model of latent constructs needs to pass three types of validity namely Construct Validity, 

Convergent Validity, and Discriminant Validity. The Construct Validity is assessed through the Fitness 
Indexes of the Measurement Model, the Convergent Validity is assessed through computing the Average 

Variance Extracted (AVE), and Discriminant Validity is assessed through developing the Discriminant 

Validity Index Summary. As for the reliability, it is adequate for the study to assess the Composite 

Reliability (CR) since it replaced the traditional method of computing the Cronbach Alpha for analysis 

using Structural Equation Modelling (SEM) (Aziz et al., 2016; Mohamad et al., 2017, 2018). The latent 

construct is considered valid if its fitness indexes achieved the three Model Fit categories namely 
Absolute Fit, Incremental Fit and Parsimonious Fit (Awang et al., 2015; Yusof et al., 2018) . The 

threshold and its respective index are given in Table 3. 

 

Table 3: Model Fit Categories and their level of acceptance 

 

Name of category Name of Index Leve of acceptance 

Absolute Fit Index   RMSEA   RMSEA < 0.08 

  GFI   GFI > 0.90 

Incremental Fit Index   AGFI   AGFI > 0.90 

CFI  
 

CFI > 0.90  
 

TLI  
 

TLI > 0.90  
 

NFI   
 

  NFI > 0.90 

Parsimonious Fit Index Chisq/df   
 

  Chi-Square/df < 3.0 

 

        ***The indexes in bold are recommended since they are frequently reported in literatures  

               Source: Awang (2015) 
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The model for this study has six exogenous constructs, and one endogenous construct. The results of the 
Pooled-CFA procedure for models shown in Figure 2. The output indicates the fitness indexes for all 

constructs in the model, the factor loading for every item measuring their respective construct, and the 

correlation between construct in the model. The fitness indexes should meet threshold values as shown 

in Table 1, the factor loading for every item should be a minimum of 0.5 (Hair et al. 2017) and the 

correlation coefficient any two constructs should not exceed 0.85 (Yusof et al., 2017; Aziz et al., 2016; 

Mohamad et al., 2016, 2017, 2018). The problem of multi-collinearity occurs if the correlation between 
any two constructs exceed 0.85. Looking at the correlation values (at the double-headed arrow), none of 

the value found to be greater than 0.85. Thus, the multi-collinearity problem does not arise. 

 

Figure 2: The Pooled-CFA results showing factor loading and correlation between constructs.  

 

 
   

The Assessment for Construct Validity 
 
The fitness Indexes in Figure4 have met the threshold values as stated in Table 2. The Absolute Fit 

category namely RMSEA is 0.051 (achieve the threshold of less than 0.08), the Incremental Fit category 

namely CFI is 0.971 (achieve the threshold of greater than 0.90), and the Parsimonious Fit category 

namely the ratio of Chisq/df is 1.812 (achieve the threshold of less than 3.0). Thus, the measurement 

model of all latent constructs in Figure 2 have achieved the requirement for Construct Validity (Awang, 
2015; Yusuf et al., 2017, 2018). 

 

The Assessment for Convergent Validity and Composite Reliability 
 
For the assessment of Convergent Validity, the study needs to compute Average Variance Extracted 

(AVE). The construct achieved Convergent Validity if its AVE exceeds the threshold value of 0.5 

(Awang, 2014; 2015). As for assessing the Composite Reliability, the study needs to compute the CR 

and its value should exceed the threshold value of 0.6 for this reliability to achieve (Aziz et al., 2016; 
Yusof et., 2017; Mohamad et al., 2016, 2017, 2018). 

 

The AVE and CR for all constructs are computed and presented in Table 3 for independent constructs 

and Table 4 for dependent construct. 
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Table 4: The Average Variance Extracted (AVE) and Composite Reliability (CR) 
 

Construct Items 
Factor 

Loading 

CR  

(above 0.60) 

AVE  

(above 0.50) 

Performance Expectancy 

PE2 1.00 

0.922 0.798 PE3 0.83 
PE4 0.84 

Effort Expectancy 

EE2 0.66 

0.637 0.514 EE3 0.56 

EE4 0.60 

Social Influence 
SC1 0.97 

0.946 0.854 SC4 0.91 

SC5 0.89 

Facilitating Conditions 

FC2 0.81 

0.893 0.737 FC3 0.83 

FC5 0.93 

Perceived Playful 

PP1 0.53 

0.810 0.667 PP4 0.87 

PP5 0.87 

Self-Directed Learning 

SD1 0.72 

0.874 0.701 SD2 0.90 

SD5 0.88 

Usage 

U1 0.91 

0.827 0.934 U3 0.99 

U5 0.82 

 

With reference to the Average Variance Extracted (AVE) and Composite Reliability (CR) values in 

Table 3, the study found all AVE and CR exceed their threshold values of 0.5 and 0.6 respectively 

(Yusof et., 2017, Aziz et al., 2016; Mohamad et al., 2016, 2017, 2018).Thus, the study can conclude that 

the Convergent Validity and Composite Reliability for all latent constructs in the model have been 
achieved. 

 

The Assessment of Discriminant Validity among Constructs  
 

The study needs to assess another type of validity for the model namely, discriminant validity. This 

validity assessment is to ensure that no redundant constructs occur in the model. Redundant construct 

occurs when any pair of constructs in the model are highly correlated. For assessing the discriminant 
validity, one needs to develop the discriminant validity index summary as shown in Table 5. The 

diagonal values in bold are the square root of the AVE of the respective constructs while other values 

are the correlation coefficient between the pair of the respective constructs.  

 

Table 5: The Discriminant Validity Index Summary for all Constructs 

 

Construct 
Performance 

Expectancy 

Effort 

Expectancy 

Social 

Influence 

Facilitating 

Condition 

Perceived 

Playful 

Self-

Directed 
Learning 

Usage 

Performance 
Expectancy 

0.89       

Effort 
Expectancy 

0.81 0.72      

Social 

Influence 
0.06 0.02 0.92     

Facilitating 
Condition 

0.04 0.05 -0.02 0.85    

Perceived 
Playful 

0.28 0.38 0.07 0.08 0.67   
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Self-

Directed 
Learning 

0.49 0.47 0.13 -0.19 0.29 0.83  

Usage 0.49 0.53 0.12 0.10 0.34 0.49 0.96 

 

Referring to Table 5, the Discriminant Validity of the respective construct is achieved if the square root 

of its AVE exceeds its correlation value with other constructs in the model. In other words, the 

Discriminant Validity is achieved if the diagonal values (in bold) are higher than any other values in its 
row and column. The tabulated values in Table 5 meet the threshold of Discriminant Validity. Thus, the 

study concludes that the Discriminant Validity for all constructs is achieved. 

 

The Structural Equation Model (SEM) and Hypothesis Testing 
 
In order to test the developed hypothesis, this study focus on the regression effects of all independent 

constructs into the dependent construct. In this study, the researcher is modelling the effects of 

Performance Expectancy, Effort Expectancy, Social Influence, Facilitating Conditions, Perceived 

Playful and Self-Directed Learning on Mobile Learning Adoption. The output resulted from executing 
SEM is given in Figure 3 for the Standardized Regression Weights. Apparently, all fit indices surpassed 

the fit criteria suggesting that the SEM model fits the data very well.  

 

The regression coefficient of the Job Satisfaction and its significance is tabulated in Table 6.  

Table 6: Regression Weights: (Default model) 

Construct Estimate Beta (β) S.E. C.R. P Result 

USAGE <--- PERF .347 0.06 .116 4.409 .024 Significant 

USAGE <--- EOU .224 0.22 .200 3.252 .015 Significant 

USAGE <--- SSI .050 0.05 .042 0.205 .228 Not Significant 

USAGE <--- FFC .272 0.17 .020 3.624 .020 Significant 

USAGE <--- PPLAY .291 0.09 .055 3.651 .019 Significant 

USAGE <--- SDL1 .470 0.48 .060 7.850 .009 Significant 

 

Figure 3: The Standardized Regression Path Coefficient among constructs in the model 
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The text output for every direct effect relationship in this study as shown by the model in Figure 3 is 
presented in Table 7. Based on table above, all independent variables are significantly influence the 

usage of mobile learning as the p-values for all paths are well below 0.05. Instead for social influence 

had no effect on mobile learning usage as p-value greater than 0.05. Further, for the hypothesis testing, 

result as shown in Table 7 below: 

 

Table 7: Hypothesis Testing 
 

Hypothesis P Result 

H1 - Performance Expectancy significantly effects on mobile 

learning adoption 
0.024 

Supported 

H2 - Effort Expectancy significantly effects on mobile learning 

adoption 
0.015 

Supported 

H3 - Social Influence significantly effects on mobile learning 

adoption 
0.228 

Not 

Supported 

H4 - Facilitating Conditions significantly effects on mobile learning 

adoption 
0.020 

Supported 

H5 - Perceived playfulness significantly effects on mobile learning 
adoption 

0.019 
Supported 

H6 - Self-Directed Learning significantly effects on mobile learning 

adoption  
0.009 

Supported 

 

The study found five independent constructs in this study namely, Performance Expectancy, Effort 

Expectancy, Facilitating Conditions, Perceived Playful and Self-Directed Learning provide significant 

effects on dependent construct Mobile Learning Adoption. However, one independent construct namely, 

Social Influence does not have significant effects on Mobile Learning Adoption.  

 
 

Discussion  
 
The purpose of the study was primarily to broaden the understanding of student’s m-learning adoption. 

Based on the extend UTAUT model, findings are statistically proven that exist significant influences by 

independent variable into mobile learning adoption among the students. The results generated from the 

path analysis indicate that the combination of the six independent variables accounts for 48% of the 

variance in mobile learning adoption. This result suggests that 48% of the variance in mobile learning 
adoption can be explained by performance expectancy, effort expectancy, social influence, facilitating 

conditions, perceived playful and self-directed learning. However, the prediction power is still 

considered slightly moderate (Hair et al. 2013) but for the social science, art and psychology context 

that value still acceptable (Frost, 2013). This could be because of humans and individuals are typically 

very heterogonous in their attitudes and behaviours (Kelvyn, 2013) and very hard to predict (Ramona, 
2016; Stone et al. 2013). In fact, this result in line with Hamidi & Chavoshi (2018); Abu-Al-Aish & 

Love (2013); Iqbal & Qureshi (2012) which are having lower R-square (below .50) in their result. The 

lower value explanation could be because of mobile learning is still in infancy for the form six students 

especially in Malaysia context. They are not fully expose in term of using mobile devices for learning 

purpose unlike students in higher institutions.  
 

Besides that, result also supported the extension of UTAUT model to expand the understanding of 

mobile learning adoption as an informal learning strategy. This research showed significant influence 

existed by adding certain determinants into UTUAT variables in term of understanding information 

technology acceptance. This result in line with Masrek & Shahibi, 2019; Mohd Ali et al.  (2019); Nawi 

et al. (2019); Botero et al. (2018); Kissi et al. (2018).These research were extended UTAUT model by 
including some determinants such as Perceived Playful, Self-Directed Learning, Perceived Risk, 

Perceived Trust, Attitude, Self-Management Learning and Self-Efficacy. The result verified that 

extended UTAUT were significantly influence mobile learning adoption yet increase the explanation 

power or the variance of mobile learning acceptance. 
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This study has significantly recognized the influence of performance expectancy on mobile learning 
adoption (β = 0.06, p < 0.05). The result is consistent with Nawi et al. (2019); Botero et al. (2018); Brata 

& Amalia, (2018); Kissi et al. (2018) and Huang & Wu (2017). The findings indicate that the more 

students believe that mobile learning is useful for learning and increases their performance, the more 

likely they are to become involved in mobile learning.  Theoretically, this result further strengthens 

UTAUT in predicting mobile learning adoption. Just as performance expectancy, effort expectancy 

which is derived from UTAUT was also found to be a significant predictor of ML adoption (β = 0.22, p 
< 0.05). The result is in line with Durak (2019); Yang et al. (2019); Botero et al. (2018) and Thongsri et 

al. (2017) which means that the more students perceive that mobile learning is easy to use for learning, 

the more likely they are to engage in mobile learning. Today, the use of mobile devices among form six 

students of Malaysian, especially smart phones and laptop is very common. Perhaps because the use of 

a mobile device appears to be routine for most of these students; therefore, they may feel that using it 
will not require much of their effort, as it is similar to using it for other tasks. Moreover, this determinant 

was the strongest predictor among the core variable of UTAUT (β = 0.22). It can be concluded that the 

effortless factor could be consider the strongest motivation to use mobile learning among the form six 

students.  

 
On the contrary, this study found out that social influence insignificantly impacts on student usage of 

mobile learning (β = 0.05, p > 0.05). In the context of   this research, student’s perception into the role 

of teachers, peers and family are investigated in term of influencing the use of mobile learning. The 

result showed inconsistent finding with Mosunmola et al. (2018); Nawi et al. (2019) and Huang & Wu 

(2017). However, the findings are in line with Yakubu & Dasuki (2019); Kissi et al. (2018) and Iqbal & 

Qureshi (2012). These studies done in the developing country such as Ghana, Nigeria and Pakistan and 
could be conclude that mobile learning is still in an embryonic stage where influence of peers, teacher 

dan family still insufficient. The main reason could be the high cost of mobile devices and unavailability 

of supporting technology (Iqbal & Qureshi, 2012). Instead, in Malaysia context the best probability due 

to over exposed into mobile devices, therefor the influence of peers, teachers and family become 

insignificant. Hence, the ownership and penetration rate of smartphone and internet is high, the using of 
mobile devices among students are usually common. As a result, the usage of mobile devices for learning 

are less influence by people surrounds.    

  

Consistent with Kissi et al. (2018) and Mosunmola et al. (2018), this study has also found that facilitating 

condition as an essential predictor of mobile learning adoption (β = 0.17, p < 0.05). This finding suggests 
that student will not be motivated to use mobile learning without proper facilitating conditions. In the 

context of Malaysia, school are provided with internet access and computer lab to facilitate students and 

teachers doing online activities to support formal and informal learning activities.  Even though certain 

places having unstable internet connection at school but they can access internet at home for sure. This 

relate to higher broadband and internet penetration rates among Malaysian. In year 2019, penetration 

rate for broadband and mobile-cellular among Malaysian are 127.1% and 131.4% each (MCMC, 2020). 
This figure verified that student in Malaysia having no problem in term of internet connectivity and 

ownership of mobile phone to proceed the mobile learning for the education purpose.  

 

The results of this study also recognized, perceived playfulness as a significant predictor to mobile 

learning adoption (β = 0.09, p < 0.05). This finding further supports previous studies done by Masrek & 
Shahibi (2019); Nawi et al. (2019); Iqbal & Qureshi (2012) and Chou (2006). The result suggest that the 

more students enjoy the mobile learning, the more they will be attracted to use mobile learning in their 

learning activities. Besides that, this finding justified the opinion of Bruner & Kumar (2005); Moon & 

Kim (2001) and Lin et al. (2005) that perceived ease of use have significant correlation to perceived 

playfulness. Their finding suggests an important way to increase fun or playful is to increase ease of use 
or effort expectancy. In the context of this study, students have significantly perceived that mobile 

learning are easy thus making the mobile learning system playful and enjoyable to interact with. As a 

result, perceived playfulness also has significant effect into mobile learning adoption. Therefore, mobile 

learning developers should react to this finding by enriching their applications, content and interaction 

with enjoyable and entertaining features.      
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The last hypothesis of this study is between self-directed learning and mobile learning adoption. 
Compared to the previous study of UTAUT, this variable is not very extensively studied in the context 

of mobile learning. The result of this study has shown that this variable is indeed applicable in 

determining the usage of mobile learning (β = 0.48, p < 0.05). Surprisingly, this variable become the 

most significant construct to explain the mobile learning adoption among the form six students (variance 

- 48%). This result is in line with the finding of Masrek & Shahibi (2019); Gu (2016); Karimi et al. 

(2016) and William & Brown (2013). This finding suggests that individual with a highly autonomous 
learning ability will be more likely to use mobile learning than an individual with a lower autonomous 

learning ability. In the context of learning, this implied that learning should empower a student to 

become a free, mature, and authentic self (Savin et al. 2004). Also, the result in line with Knowles (1975) 

definition of self-directed learning as a process in which individuals take the initiative in diagnosing 

their learning needs, formulating goals, identifying material resources, choosing and implementing 
appropriate learning strategies. Based on Knowles, form six students already classified as an adult 

learner and not surprising they can control and put their own initiative in term of determine their learning 

strategies. For these reasons, teacher, family and school administrator could play their role to groom 

their students to be more independent and adapt themselves to be more self-learning. 

 
 

Conclusion 
 
This study identifies factors that influence students to adopt mobile learning in their learning. It takes 

the current literature forward by providing a link between UTAUT variable and learners’ individual 

characteristics (Self-Directed Learning) to measures of mobile learning adoption. A model of mobile 

learning adoption is proposed and empirically tested. According to the finding, determinants of mobile 

learning adoption are different for form six students compare to students in higher institutions. For 

example, form six students more influence by Effort Expectancy rather than Performance Expectancy 
as usual among the university students (Mohd Azli et al. (2019); Nawi et al. (2019) and Thongsri et al. 

(2017). Thus, the practitioners and application developer should consider the level of difficulties of the 

program or app for the school purpose. This is to make sure the targeted group could benefit from online 

sources to increase the effectiveness of learning activities. On the other hand, finding suggested that 

Self-Directed Learning become the strongest predictor of mobile learning adoption. This is an abnormal 
scenario when UTAUT variable are having lower prediction power rather than the extension variable. 

Consequently, the researcher and practitioner should consider individual characteristic in term of 

predicting technology information system acceptance. Thus, to increase the prediction power, scholars 

could be considered to extend the existing technology acceptance model with others determinant based 

on the context of study.   
 

This research also contributes to mobile learning adoption literature by introducing the Perceived 

Playfulness and Self-Directed Learning as an indicator. Results suggest that effortless and enjoyable 

factors are inter-correlated and significantly influence the usage of mobile learning while the individual 

characteristic (Self-Directed Learning) became the most influential mobile learning adoption among the 
form six student. It expands on Kreber’s (1998) study, showing that Kolb’s learning style framework 

has interesting implications for explaining individual differences in this self-directed learning 

environment. Students with higher independent level of learning might be more inclined to adopt this 

platform. However, this result only applied  

 

The paper calls for further research on mobile learning adoption and its antecedents. It shows interesting 
results for the impact of student’s and mobile platform characteristics on mobile learning adoption. 

However, due to its cross-sectional nature, causality should not be readily inferred. Future research may 

adopt a longitudinal approach to validate these cause-effect relations. For example, researchers should 

explore whether the role of playfulness and individual characteristic changes over time as m-learning 

usage becomes habitual. Other than that, other predictors could be included in the proposal model. For 
examples, student attitude (Botero et al. (2019), self-efficacy (Wang & Xiao (2018) and Computer 

Literacy (Nistor et al. 2014). Besides that, researcher should take into consideration moderating effect 

such as gender, age and experiences. It is in this way that more intensive results could be achieved to 

explore possibilities of mobile learning and acceptance of learning in an online community. 
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