
Automatically Granted Permissions in Android apps
An Empirical Study on their Prevalence and on the Potential Threats for Privacy

Paolo Calciati
IMDEA Software Institute

Spain

Konstantin Kuznetsov
CISPA Helmholtz Center for Information Security

Germany

Alessandra Gorla
IMDEA Software Institute

Spain

Andreas Zeller
CISPA Helmholtz Center for Information Security

Germany

ABSTRACT
Developers continuously update their Android apps to keep up with
competitors in the market. Such constant updates do not bother end
users, since by default the Android platform automatically pushes
the most recent compatible release on the device, unless there are
major changes in the list of requested permissions that users have
to explicitly grant. The lack of explicit user’s approval for each
application update, however, may lead to significant risks for the
end user, as the new release may include new subtle behaviors
which may be privacy-invasive. The introduction of permission
groups in the Android permission model makes this problem even
worse: if a user gives a single permission within a group, the ap-
plication can silently request further permissions in this group with
each update—without having to ask the user.

In this paper, we explain the threat that permission groups may
pose for the privacy of Android users. We run an empirical study
on 2,865,553 app releases, and we show that in a representative app
store more than ∼17% of apps request at least once in their lifetime
new dangerous permissions that the operating system grants with-
out any user’s approval. Our analyses show that apps actually use
over 56% of such automatically granted permissions, although most
of their descriptions do not explicitly explain for what purposes.
Finally, our manual inspection reveals clear abuses of apps that leak
sensitive data such as user’s accurate location, list of contacts, his-
tory of phone calls, and emails which are protected by permissions
that the user never explicitly acknowledges.

ACM Reference Format:
Paolo Calciati, Konstantin Kuznetsov, Alessandra Gorla, and Andreas Zeller.
2020. Automatically Granted Permissions in Android apps: An Empirical
Study on their Prevalence and on the Potential Threats for Privacy. In 17th
International Conference on Mining Software Repositories (MSR ’20), October
5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3379597.3387469

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387469

1 INTRODUCTION
In the early releases of the Android OS, users had to accept all per-
missions requested by an app upfront to install and use it. Moreover,
users had to approve every new app release before installing it on
their device if the update included any new dangerous permission
request. For years the research community heavily criticized this
permission model and pointed out its main flaws: app developers
could easily request more permissions, and users were willing to
grant them in order to use the app. Moreover, most users did not
understand the implications of granting dangerous permissions
to apps [23]. Thus, asking users to explicitly approve each release
which involved a change in the list of requested permissions had
two effects: either users approved the change without worrying
about the implications, or they did not approve it keeping an old
version of the app on the device, augmenting the challenges for app
developers who had to assume users could use different releases of
their product.

Given daily orweekly frequency of updates and potential changes
in the list of permission requests [17], most app developers had the
habit of asking for extra permissions in first releases. The rationale
was that even if early releases were not using some of the requested
permissions, the user had to grant them anyway to use the app, and
developers could use these permissions in later releases without
bothering the user for further approval. Several studies show that
this practice caused many apps to be overprivileged and left space
for potential security attacks [20].

With the release of Android 6, Google significantly revised the
permission model of Android apps. Apps now dynamically ask for
permissions, i.e., they ask for user’s consent when they use the
permission for the first time. This change has the positive effect
that users can now understand when and how an app needs to
access a protected resource and can decide to deny such permission.
Secondly, to simplify the permission model for user understanding,
Android now uses permission groups. With this change, users would
be asked to grant a permission only if the app asks for a permission
that does not belong to any permission group that has been already
approved before. This means that, for instance, if an app already
had the granted permission to access the coarse location of the user,
it may access in later releases the fine-grained location information
(obtained through GPS) without further consent.

While introducing permission groups clearly improves usability,
making them preferred by the majority of users [3] over the previ-
ous model, it introduces more threats for their privacy and security,
since behavior changes are more subtle to notice. Some empirical

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/354976554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3379597.3387469
https://doi.org/10.1145/3379597.3387469

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Paolo Calciati, Konstantin Kuznetsov, Alessandra Gorla, and Andreas Zeller

Figure 1: User interface of the BirthDayDroid app

studies show that apps tend to leak more information over time,
even when there is no change in the list of permissions [14, 34].
Other studies show that apps can leak sensitive information pro-
tected by dangerous permissions even without asking for that per-
mission [33]. We argue that, on top of the risks already highlighted
by other studies, permission groups pose a significant risk for the
security and privacy of users, since developers can push a new
release to the user’s device and may access resources that were not
explicitly granted.

To properly explain the threat scenario, we use a real open source
application as motivating example. The BirthDayDroid app from
F-droid1 looks as shown in Figure 1. This app helps users remember
birthdays of contacts. To this end, it scans the contact list on the
device to collect birthday dates. It uses this information to show
the age of each contact and the days left until the next birthday.
The app obviously requires the READ_CONTACTS permission in
order to work, which belongs to the contacts permission group.
To demonstrate the threat scenario, we update the app, simulating
a malicious developer, and include a payload that accesses the
list of all the accounts (i.e., Facebook, Twitter, Google, etc), writes
them to a log file, and finally sends them to one of our servers. To
do so, the new release of the app requires the GET_ACCOUNTS
permission. Although this permission appears in the new manifest,
as shown in Figure 2, the end user would likely not notice it, as
the Android framework grants this permission automatically given
that it belongs to the same permission group of the already present
READ_CONTACTS. With an automatic update on the user’s device,
the app can covertly collect sensitive data on the user’s accounts.

In this paper, we study how real Android apps evolve in their
permission requests, and we show the implications of permission
groups on the user’s privacy. We run an empirical study on a large
dataset of over 2 million Android apps. We show that many apps
initially ask for some permissions and later ask for more privacy-
invasive permissions that the underlying OS automatically grants.

1https://f-droid.org/en/packages/com.tmendes.birthdaydroid/

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.tmendes.birthdaydroid">

<uses-permission android:name="android.permission.GET_ACCOUNTS"/>

<uses-permission android:name="android.permission.READ_CONTACTS"/>

<uses-permission android:name="android.permission.READ_PHONE_STATE"/>

<uses-permission android:name="android.permission.VIBRATE"/>

<uses-permission android:name="android.permission.WAKE_LOCK"/>

<uses-permission android:name=

"android.permission.RECEIVE_BOOT_COMPLETED"/>

...

</manifest>

Figure 2: Excerpt of the AndroidManifest.xml file of the
modified BirthDayDroid app

We show that most apps actually use such automatically granted
permissions, and in many of the cases that we manually inspect
they leak new sensitive information without end-user could easily
notice. The paper has the following contributions:

• It reports for the first time a real threat for the privacy and
security of Android users due to permissions groups.

• It presents an empirical study on 2,865,553 Android binary
files and shows that in a representative app store over ∼17%
of the apps request dangerous permissions that the OS auto-
matically grants without explicit user’s approval.

• We manually inspect some of the most suspicious cases, and
we report clear abuses of apps that leak sensitive data such
as user’s accurate location, list of contacts, history of phone
calls, and emails.

The remainder of the paper is structured as follows: Section 2
explains the Android permission model and how it changed from
Android 6 up the current release. We thus clearly present the threats
of automatically granted permissions, from Android 6 up to the
upcoming release of the Android OS. Section 3 presents our empir-
ical study on the prevalence of automatically granted permissions
in two large datasets. Section 4 shows the results of our prelimi-
nary static analysis to understand if apps actually use automatically
granted permissions. Section 5 discusses in details the most interest-
ing cases of clear information leaks. Section 6 presents the related
work. Section 7 reports the limitations and threats to validity for
our study, and Section 8 concludes the paper summarizing the main
findings.

2 PERMISSION MODEL AND PERMISSION
GROUPS IN ANDROID

Android protects the access to sensitive user data and critical sys-
tem features by means of permissions: when an app wants to access
such data or wants to use such features, it must request the corre-
sponding permission first. Depending on the permission, the system
might grant it automatically, such as when an app wants to connect
to the Internet, or might ask the user to explicitly approve it. Dan-
gerous permissions require explicit user agreement, and the Android
system asks the user to grant them in different ways, depending on
the version of the system installed on the mobile device 2.

2https://developer.android.com/guide/topics/permissions/overview

https://f-droid.org/en/packages/com.tmendes.birthdaydroid/
https://developer.android.com/guide/topics/permissions/overview

Automatically Granted Permissions in Android apps MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Old Android permission model. If the device runs Android 5.1.1
or lower—corresponding to API level 22 or lower—the system asks
the user to grant all dangerous permissions to the application at
installation-time. If the user accepts, the system grants all requested
permissions. By declining, instead, the user cannot use nor install
the application. Moreover, the user has to explicitly accept every
new permission requested with following updates of the app. With-
out approval, the update process does not even start. Despite work-
ing only on quite obsolete versions of the Android system (i.e.,
pre Android 6.0), this permission model still runs on ∼25% of the
Android devices 3.

Applications targeting devices running Android 6.0 (API level
23) or higher, which accounts for ∼75% of Android devices, must
ask for user’s approval before using a permission for the first time
(or if the user has revoked it before), otherwise they would crash.
The Android system shows a system dialog specifying which per-
mission group the app wants to access and asks the user to grant
or deny such permission. Developers can optionally add a custom
explanation message to help users understand why the app needs
that specific permission.

Permission groups since Android 6.0. To help users make informed
choices about granting or not a permission without overwhelming
them with too many requests, the Android system organizes dan-
gerous permissions related to similar functionalities into groups.
Granting permission to a group implies that an app can include
in the manifest file any other permission of that group in future
releases, and the Android OS would grant it automatically.

Table 1 shows the dangerous permissions and their relative
groups in use in Android 6.0, which is the first release of Android
using this permission model. As the Table shows, these groups have
very broad functionalities.

For instance, both RECEIVE_SMS and SEND_SMS permissions
belong to the SMS group, as both permissions operate on SMSs.
When an app requests a new dangerous permission, the system
prompts the request dialog only if the app does not have any permis-
sion in the same permission group already granted. If an application
already has the RECEIVE_SMS permission granted, and in a new
release it requests the SEND_SMS permission, the latter permission
would be automatically granted by the system without the user
even noticing it.

This could allow malicious developers to exploit the permissions
already granted to an app to automatically gain access to sensitive
user data without them even noticing it, as we show in Section 1.

Android 7 (API level 24 and 25) does not add any new dangerous
permissions or permission groups. As of August 2019, Android 6.0
and 7.0 are the most prevalent releases among all Android devices,
accounting to over 36% of the market share.

Recent changes to permission groups. With the release of An-
droid 8 (API level 26), Google partially addresses the concerns
we raise in this paper by introducing two new dangerous per-
missions to the PHONE group: READ_PHONE_NUMBERS and
ANSWER_PHONE_CALLS. These two permissions allow an appli-
cation to answer incoming phone calls programmatically, via the
acceptRingingCall()API, and to access the phone numbers stored in

3https://developer.android.com/about/dashboards visited in August 2019

Table 1: Dangerous permissions and their related groups in
Android 6.0

Permission Group Permissions

CALENDAR READ_CALENDAR
WRITE_CALENDAR

CAMERA CAMERA
CONTACTS READ_CONTACTS

WRITE_CONTACTS
GET_ACCOUNTS

LOCATION ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION

MICROPHONE RECORD_AUDIO

PHONE READ_PHONE_STATE
CALL_PHONE
READ_CALL_LOG
WRITE_CALL_LOG
ADD_VOICEMAIL
USE_SIP
PROCESS_OUTGOING_CALLS

SENSORS BODY_SENSORS

SMS SEND_SMS
RECEIVE_SMS
READ_SMS
RECEIVE_WAP_PUSH
RECEIVE_MMS

STORAGE READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE

the device, respectively. Additionally, Android 8 introduces a num-
ber of changes on how some of the current permissions work. AWi-
Fi scan requires that the app has either the CHANGE_WIFI_STATE
permission, or any LOCATION permission. Moreover, applications
can no longer access user accounts unless either the authenticator
owns the account or the user explicitly grants the access.4 However,
our experiments show that on a device running Android 8.1 it is
still possible to access a list of available accounts without user’s
consent, if an app targets older version of the API.

Android 9 (API level 28) introduces further updates to protect
the user’s personal data. First and foremost, there is now a separate
CALL_LOG permission group, and all the permissions related to
calls belong to this group. Separating these permissions from others
related to the PHONE group partially reduces the risk that an app
with the READ_PHONE_STATE permission—used, for instance,
to read the unique ID of the device—could also make phone calls
without explicitly asking for this permission.

This Android release also introduces a new dangerous permis-
sion in the PHONE group: ACCEPT_HANDOVER. It allows a call-
ing app to continue a call which was started in another app.

Apps running on Android 9 can no longer read phone numbers
from the phone state data without having the READ_CALL_LOG
permission. Moreover, in order to access the SSID and BSSID values
4https://developer.android.com/about/versions/oreo/android-8.0-changes

https://developer.android.com/about/versions/oreo/android-8.0-changes

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Paolo Calciati, Konstantin Kuznetsov, Alessandra Gorla, and Andreas Zeller

Table 2: New or changed permission groups in Android 8
(marked with (*)) and 9.

Permission Group Permissions

CALL_LOG READ_CALL_LOG,
WRITE_CALL_LOG,
PROCESS_OUTGOING_CALLS

PHONE READ_PHONE_STATE
READ_PHONE_NUMBERS(*),
CALL_PHONE,
ANSWER_PHONE_CALLS(*),
ADD_VOICEMAIL,
USE_SIP,
ACCEPT_HANDOVER

returned from the Wi-Fi scan getConnectionInfo() method, an app
must now explicitly request i) any LOCATION permission, ii) AC-
CESS_WIFI_STATE permission, and iii) location services enabled
on the device.

In October 2018 the Google Play store announced5 a new policy
for applications which deal with sensitive data covered by the
SMS and CALL_LOG permission groups6. Apps can only use such
permission groups if they are actively registered as the default SMS,
Phone, or Assistant handler, and shall stop using them when they
are no longer the default handler. However, this restriction does
not affect other third-party stores or the way Android OS runs
apps. Table 2 lists the new permission groups and summarizes the
changes to existing ones introduced in Android 8 and 9 compared
to Table 1.

Threats of Permission Groups despite Recent Android Releases.
The recent changes in the permission model affecting Android 8
and 9 are an indicator that the previous model was too permissive.
Allowing apps with READ_PHONE_STATE to make phone calls,
or to read or write the call log, as still allowed in Android 6 and 7,
is extremely risky and very counter-intuitive for users.

Despite the changes introduced in recent Android versions, the
threats of granting permissions to groups rather than single permis-
sions is still present, as we will show in the remainder of the paper.
The assumption that permissions belonging to the same group have
similar functionalities or at least operate on the same critical data,
and therefore it is enough to ask user’s consent only once for all
permissions in the same group, opens up the possibility for mali-
cious developers to gather more sensitive information without the
user noticing it.

3 PREVALENCE OF AUTOMATICALLY
GRANTED PERMISSIONS

We aim to assess how Android applications use (or abuse) permis-
sion groups in the new permission model. Specifically, we aim to
assess if and how often apps request permissions that the Android
system would automatically grant, and we aim to analyze how they
5https://android-developers.googleblog.com/2018/10/providing-safe-and-secure-
experience.html
6https://play.google.com/about/privacy-security-deception/permissions/

Q (572+6,897)

0.3%
9 (40,042+444,678)

16.9%

8.1 (42,189+598,831) 22.4%

8.0 (47,608+578,745)

21.9%

7.1 (22,409+166,824)
6.6%

7.0 (7,571+101,040)
3.8%

6.0 (21,053+440,652)
16.1%

older than 6.0 (25,445+320,796)

12.1%

Figure 3: Android release distribution of our dataset
(ApkPure and AndroZoo)

use such permissions. For this study, we need multiple releases of
the same app, and we need to focus only on releases that target the
Android platform 6.0 or above, as explained in Section 2.

For each app binary, we check the list of requested permissions,
and we compare it with the closest previous release of the same
app in our dataset. For each newly requested permission, we verify
whether any permission in the same group is present in the previous
release, and we mark it as automatically granted by the underlying
system. This, essentially, simulates the scenario described with
the BirthDayDroid app in Section 1, where users first install a
release of the app, grant all the permissions it requires, and later
receive an update of the app with a new list of permissions that
the operating system grants without asking for any further user’s
approval. We then further analyze all releases that include at least
one automatically granted permission, and we assess if the app
indeed accesses the information protected by the such permission,
and if so whether it leaks this sensitive information.

We describe how we collect the dataset for our study in Sec-
tion 3.1, and we explain how we design the study to quantify the
risks of automatically granted permissions in Section 3.2. We finally
present the results in Section 3.3.

3.1 Dataset Selection
To quantify the prevalence of automatically granted permissions in
the Android ecosystem, we aim to find and analyze a substantial
number of Android applications. Our analysis requires at least two
releases of the same application to compare the list of permissions.

Since crawling the Google Play store for several releases would
take quite a long time, we excluded crawling the official store.
Although the authors of [7] report that the Google Play API can
be queried for lower version codes, we could not reproduce this
technique.

To obtain a representative dataset of the whole Android ecosys-
tem we resort to two sources: ApkPure and Androzoo.

ApkPure is a third-party store that constantly adds new releases
and removes outdated ones (it keeps at most 30 releases per app,
available to users). We consider all categories defined in the store,
excluding only games. (We exclude games since binaries of this

https://android-developers.googleblog.com/2018/10/providing-safe-and-secure-experience.html
https://android-developers.googleblog.com/2018/10/providing-safe-and-secure-experience.html
https://play.google.com/about/privacy-security-deception/permissions/

Automatically Granted Permissions in Android apps MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

category are usually very large, as they include a lot of graphics and
data files. Their size can be up to 2GB, and they significantly impact
the scalability of a large empirical study.) For each other category
we crawl apps with publication date later than the official Android
6 release (05 October 2015). This is how we retrieve 216,492 APKs
related to 13,109 different apps for later analysis.

The largest fraction of our dataset comes from Androzoo [2], a
repository of Android apps maintained by the University of Lux-
embourg containing over 9,6 million APKs. AndroZoo is the result
of many years of efforts of crawling the Google Play and similar
Android stores to download as many apps as possible for research
studies. For our purpose we consider only apps crawled from the
Google Play Store, with a release date subsequent to the Android 6
release, and with at least two releases available. Following this
process we retrieve 3,274,192 APKs, related to 794,795 apps.

ApkPure is a representative Android store of recent apps that
users can safely install on their device. Androzoo, instead, is not a
real app store that users can use, but on the other hand is represen-
tative of the Android ecosystem and its evolution.

3.2 Experiment Protocol
Android applications are distributed via APK package files, which
are essentially zip format-type archives. For our study, we need
to extract the list of automatically granted permissions of each re-
lease, stored in AndroidManifest.xml file along with other metadata.
Despite being a simple and efficient analysis, downloading each
APK, unpacking it and parsing the manifest of over 3 million apps
would have been extremely time consuming. Our preliminary study
showed that the Manifest file is usually located at the beginning
of the archive. Thus, instead of downloading the whole package
of each APK, which could be even hundreds of megabytes large,
we initially download only the first 100Kb of the package. Next we
parse the partially downloaded binary file using local file headers,
extract AndroidManifest.xml if available, and decode the manifest
file into a normal XML file with help of Androguard7. We then
parse the XML file and collect the target release of Android SDK,
version name and version code, the list of app components and the
list of requested permissions. We finally compare this list with the
permissions requested by the closest previous release. If the APK
requests any new permission that the Android OS would automati-
cally grant, based on the target Android release and the permission
group listed in Section 2, we download the whole binary for further
analyses. We discard it otherwise.

Downloading the first 100KB of the APK file does not guarantee
that we download the Android manifest. Indeed, out of the ∼3 mil-
lion APKs that we analyze with this heuristic, we could not analyze
∼12% of the APKs. We discard them for simplicity, obtaining a final
dataset of 2,865,553 APKs.

Figure 3 plots how our aggregated dataset is split into different
target Android releases. For each fraction we report the Android
release that apps target (according to the Android manifest data)
and the absolute number of APKs for the ApkPure and AndroZoo
datasets (first and second number in parenthesis). For our analysis
we discard APKs targeting releases prior to Android 6, since they
use the old permission model.

7https://github.com/androguard/androguard

3.3 Results
Our analysis reports that on Androzoo there are 55,442 applications
with at least one automatically granted permission. Specifically, we
flag 63,970 single APKs with at least one automatically granted per-
mission (our dataset includes more than one APK per application).
This amounts to ∼7% of apps of the whole dataset of Androzoo of
the apps targeting Android 6 or above.

These numbers are evenmoreworrisome for theApkPure dataset.
Our analysis reports that there are 2,135 applications, and 2,834
single APKs, with at least one automatically granted permission.
This amounts to ∼17% of apps of the whole dataset of ApkPure of
the apps targeting Android 6 or above.

On a representative Android store, over ∼17% of the apps request at least
once in their lifetime a dangerous permission that the OS can automatically

grant without any user’s approval.

Figures 4 and 5 give an insight into the results of our anal-
ysis on the two datasets. Each plot shows the amount of auto-
matically granted permissions on the right-hand side, and the en-
abler permissions (on the left-hand side) that appear in the pre-
vious release. For instance, the plot shows that for the ApkPure
dataset there are 148 applications that initially request the AC-
CESS_COARSE_LOCATION permission and later ask, and obtain
without further user’s approval, the ACCESS_FINE_LOCATION
permission, which gives more accurate localization. Some permis-
sions that are automatically granted may be enabled by different
permissions in the same group. This is the case, for instance, for
WRITE_CONTACTS, which is automatically granted in 104 apps
in ApkPure. Roughly half of these apps initially request access to
READ_CONTACTS and later request and automatically obtain the
permission to write the contacts list, while the remaining apps
initially requested the GET_ACCOUNTS permission from the same
group.

Looking into the results, we see that 1,322 apps in ApkPure and
39,737 apps in AndroZoo request permissions to READ_STORAGE
when they already have the WRITE_STORAGE permission. Sim-
ilarly, 293 apps in ApkPure and 3,748 apps in AndroZoo request
permissions to ACCESS_COARSE_LOCATION when they already
have the ACCESS_FINE_LOCATION permission. These requests do
not make much sense, as apps with permissions to write on the stor-
age can implicitly read as well. Similarly, apps with permissions to
access the GPS implicitly have the permission to access the coarser
location. We exclude these automatically granted permissions from
the plot, as they are implicitly granted for other reasons.

Though slightly different in terms of fractions, both plots show
a very worrisome reality of the currently used permission model
in Android apps: apps obtain without mandatory user’s approval
many dangerous permissions, such as the ability to make phone
calls, and even worse the ability to access sensitive data, such as
user accounts, contacts information, content of SMSs, and precise
user’s location. This sensitive information can be used for different
purposes, and above all it can be leaked to third-party servers for
advertisements.

https://github.com/androguard/androguard

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Paolo Calciati, Konstantin Kuznetsov, Alessandra Gorla, and Andreas Zeller

ACCESS_COARSE_LOCATION: 148 ACCESS_FINE_LOCATION: 148

READ_PHONE_STATE: 345

ADD_VOICEMAIL: 1

USE_SIP: 5

ANSWER_PHONE_CALLS: 120PROCESS_OUTGOING_CALLS: 49

READ_CALL_LOG: 52

WRITE_CALL_LOG: 29

CALL_PHONE: 215

CALL_PHONE: 197

READ_CONTACTS: 98 GET_ACCOUNTS: 58

WRITE_CONTACTS: 16

PROCESS_OUTGOING_CALLS: 71

ANSWER_PHONE_CALLS: 8

WRITE_CALENDAR_ S: 6 READ_CALENDAR: 6

READ_CALL_LOG: 147READ_PHONE_NUMBERS: 1

SEND_SMS: 28

READ_CELL_BROADCASTS: 3

READ_SMS: 47

RECEIVE_SMS: 97

GET_ACCOUNTS: 170 READ_CONTACTS: 122

READ_PHONE_NUMBERS: 20

READ_PHONE_STATE: 126

READ_CELL_BROADCASTS: 5

READ_SMS: 47

RECEIVE_WAP_PUSH: 6

RECEIVE_MMS: 27

RECEIVE_SMS: 11

RECEIVE_WAP_PUSH: 12

SEND_SMS: 89
RECEIVE_MMS: 6

USE_SIP: 4

READ_CALENDAR: 4 WRITE_CALENDAR: 4

WRITE_CALL_LOG: 18

WRITE_CONTACTS: 104

READ_EXTERNAL_STORAGE: 218 WRITE_EXTERNAL_STORAGE: 218

Enablers Autogranted

Figure 4: Automatically granted permissions in ApkPure

Over 50% of automatically granted permissions allow apps to access
sensitive data such as the list of contact, list of phone calls and the precise
user’s location. Over 40% of the automatically granted permissions allow
apps to make phone calls or allow write operations on protected resources.

Given the prevalence of automatically granted permission, the
next research question comes naturally. What do apps do with such
permissions?

4 ACTUAL USE OF AUTOMATICALLY
GRANTED PERMISSIONS

Given the prevalence of automatically granted permissions, as
shown in Section 3, we want to assess if apps actually use these
permissions and how. We thus statically analyze the bytecode of
the application to detect uses of an automatically granted permis-
sion. We now explain how we implement this analysis, and we later
present the results.

READ_PHONE_STATE: 5,194

ACCEPT_HANDOVER: 4

ACCESS_COARSE_LOCATION: 2,817 ACCESS_FINE_LOCATION: 2,817

ADD_VOICEMAIL: 25

PROCESS_OUTGOING_CALLS: 484

READ_CALL_LOG: 382
WRITE_CALL_LOG: 177

USE_SIP: 44

READ_PHONE_NUMBERS: 12

CALL_PHONE: 3,164

ANSWER_PHONE_CALLS: 866

CALL_PHONE: 3,510

ANSWER_PHONE_CALLS: 36

READ_CONTACTS: 1,366

GET_ACCOUNTS: 1,102WRITE_CONTACTS: 348

PROCESS_OUTGOING_CALLS: 713

WRITE_CALENDAR: 40 READ_CALENDAR: 40

READ_CALL_LOG: 1,075

READ_SMS: 451 READ_CELL_BROADCASTS: 1

GET_ACCOUNTS: 3,806

READ_CONTACTS: 3,065

READ_PHONE_NUMBERS: 674

READ_PHONE_STATE: 2,122

RECEIVE_SMS: 796

READ_SMS: 680

RECEIVE_WAP_PUSH: 24

SEND_SMS: 650

RECEIVE_MMS: 29
READ_CELL_BROADCASTS: 6

RECEIVE_MMS: 214

RECEIVE_SMS: 360
RECEIVE_WAP_PUSH: 149

SEND_SMS: 552

USE_SIP: 86

READ_CALENDAR: 30 WRITE_CALENDAR: 30

WRITE_CALL_LOG: 418

WRITE_CONTACTS: 1,353

READ_EXTERNAL_STORAGE: 3,789 WRITE_EXTERNAL_STORAGE: 3,789

Enablers Autogranted

Figure 5: Automatically granted permissions in AndroZoo

4.1 Static Bytecode Analysis
We resort to Soot [42] and FlowDroid [4] to statically analyze
the whole package at the bytecode level to assess if the app ac-
tually uses each automatically granted permission. Android apps
can access permission-protected resources in three different ways:
1) by calling specific Android API methods—e.g., access location
with getLastKnownLocation(); 2) by querying databases with
ContentResolver—e.g., retrieve the contact list using the
query("content://contacts") method; and 3) by sending or re-
ceiving Intents—e.g., send the android.intent.action.CALL in-
tent to make a phone call. Our analysis covers them all.

Specifically, we parse the bytecode and look for invocations of
methods of the Android API that are permission-protected. There
are a few permission-method mappings available from previous
studies, such as PScout [5], Axplorer [8], DPSPEC [10]. Unfortu-
nately, they all cover old Android versions (up to Android 7). We
thus combine the lists of Axplorer and DPSPEC as a basis and ex-
tend it with new entries, which we found by analyzing the official

Automatically Granted Permissions in Android apps MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Android documentation 8 and the AOSP source code 9. For each dan-
gerous permission we thus have a list of Android API calls, intents,
and content resolver URIs, protected with this permission. We then
use Soot to parse each instruction in the Dalvik bytecode, looking
for invocations related to the automatically granted permissions.

In order to understand whether these instructions can actually be
executed (i.e., some of them may belong to functionalities of third-
party components that apps do not use), we perform a reachability
analysis of such statements. Starting from the method containing
the statement of interest, we traverse the callgraph with a back-
ward analysis and collect all methods in the call chain. The main
Android components (activities, services, broadcast receivers, and
data providers), which are declared in the Android manifest, are
the only entry points of the app. If a call chain starts from any of
the life-cycle or callback methods of these entry points, we assume
that the permission protected statement is reachable and can be
used by the app. Broadcast receivers, which are responsible for
the interception of system broadcast messages, can be registered
both in the code and in the Android manifest. If a receiver declares
in the manifest an intent filter capturing a protected intent, we
assume that it is further used, and thus the app accesses protected
information bundled with it.

We thus analyze eachAPKwith at least one automatically granted
permission, and we label each permission as follows:

• If the app contains at least one statement protected by the
corresponding automatically granted permission, and our
analysis reports this code as reachable, we consider it con-
firmed.

• If the app contains a statement protected by the correspond-
ing automatically granted permission, but our analysis does
not consider it as reachable, we mark it as unconfirmed, as
we want to be conservative in identifying protected accesses.
Nevertheless, those statements might still be reachable, for
instance, via inter-component communication.

• If the analysis does not find any statement protected by
the permission under analysis, we mark the permission as
unused.

4.2 Results
The results of the static analysis are summarized in Figure 6, where
we report for each automatically granted permission the amount
of confirmed, unconfirmed and unused instances. Since we do not
see a significant difference in the two datasets for this analysis, we
present the aggregated information from the ApkPure and Andro-
zoo datasets.

The results clearly show that in more than half of the cases
(lighter color of the bars) permissions are actually used by the ap-
plication. Some permissions, such as reading SMS (75%) and phone
numbers (84%), or accessing the precise location (74%), have much
higher values. Additionally, write calendar (82%) and voicemail
(100%) permissions have a very high confirmed frequency, how-
ever their low number of occurrences—less than 0,2% of the total
combined—makes them less interesting for our analysis.

8https://developer.android.com/docs
9https://github.com/aosp-mirror

Figure 6: Automatically granted permissions in AndroZoo
and ApkPure combined

We want to stress that these numbers are conservative, as our
static analyses are not fully sound in the construction of the call
graph, may ignore relevant permission-protected invocations, and
ignore native code.

We verify if the application uses each of the automatically granted
permissions and then focus our attention on how the app exploits
it. More precisely, we want to understand whether apps access
sensitive information and leak it over the Internet without the user
noticing it.

We confirm that apps actually use at least 56% of the automatically granted
permissions. Accurate user’s location, phone numbers and SMS are the most

used, with a frequency of at least 70% of the cases.

5 MANUAL ANALYSIS AND MAIN FINDINGS
Static analyses show that most apps actually use the newly granted
permission at least once in the code. To conclude our study we
thus thoroughly analyze the behavior of some of the apps that use
automatically granted permissions.

To this end, we perform a dynamic analysis of a subset of these
apps, manually running the app and profiling it to understand its
behavior, and finally manually inspecting the bytecode if needed.
We discuss how we perform the analysis in Section 5.1, and we
present the most interesting findings in Section 5.2.

5.1 Dynamic Analyses and Manual Inspection
To understand the dynamic behavior of an app, we instrument it
before exploration. We use Soot to insert logging code before each
Android API invocation covered by permissions we aim to investi-
gate. Beside logging specific method invocations, we record specific
method arguments for ContentResolver.query(), insert() and
update() method invocations, so that we log the data source URI
and the query string that static analysis sometimes cannot resolve.

https://developer.android.com/docs
https://github.com/aosp-mirror

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Paolo Calciati, Konstantin Kuznetsov, Alessandra Gorla, and Andreas Zeller

We optionally log particular variable values (for instance, to spot
encrypted values) in order to identify a possible data leak.

We install the instrumented app on the device and manually
use it extensively—aiming to exercise as many activities/behavior
as possible. We do not resort to automated tools to explore the
behavior of the app because we want to achieve a high behavior
coverage, which is still a challenge for the state of the art tools [15].

To assess if an app leaks sensitive data protected by automati-
cally granted permissions, we intercept its network traffic through
a proxy. We resort to Charles, an HTTP proxy that allows analysts
to intercept HTTP and HTTPS traffic between a device and the
Internet10. Charles works out of the box for Android devices. Af-
ter obtaining the traffic dumps captured by Charles, we manually
analyze them, looking for the information protected by the auto-
matically granted permission (e.g., IMEI of the phone in case an
application has the READ_PHONE_STATE permission automat-
ically granted). We do this type of analysis for permissions that
read sensitive data from the phone, such as READ_CONTACTS or
READ_CALL_LOGS. This analysis is far from being sound. First
and foremost, we do not exhaustively explore all the app with our
manual interactions. Secondly, apps often implement checks (e.g.
SSL pinning) to avoid sending sensitive information through non-
trusted proxies. In these cases we would not detect any information
leak.

Many of the apps we consider in our analysis require valid cre-
dentials to work: we generate new accounts whenever possible.
For the remaining cases—for example, banking apps, which require
valid accounts we cannot generate—we only log behavior and net-
work traffic generated from the screen we have access to, such as
home and settings. Given the manual effort, we manually execute
only 400 binary files, and we manually inspect only tens of them,
selecting the most suspicious cases.

5.2 Confirmed Data Leaks
Due to space limitations we report the most interesting findings of
our thorough analysis.

We observe that at least 12% of the apps leak the exact location
of the user that they obtain through the automatically granted
ACCESS_FINE_LOCATION permission. One app leaks the IMEI
code of the phone, obtained thanks to the automatically granted
READ_PHONE_STATE permission. The network traffic shows that
these apps send exact location and IMEI mostly to what seem to
be their subdomains (64% of the domains), but they also send this
information to what seem to be third parties and mostly adver-
tisement companies (36% of the domains). Here are some of these
apps:

cn.xender Xender is a popular file andmusic sharing appwith over
100M installs. It leaks the device serial number to four different
urls: ac.mobileanapp, api.cloudmobi.new, aws.xenderbox.com,
and fb.xanderbox.com.

fi.iltalehti.iltalehti Iltalehti is a Finnish news application with
over 1M installs. It leaks the location to mediation.adnxs.com,
app.iltalehti.fi, and m.iltalehti.fi.

10https://www.charlesproxy.com/

air.com.interactech.moovz Moovz is a popular LGBT social net-
work. It has over 1M installs and leaks the precise location to
mobileapi.moovz.com.

cz.thran.flowerchecker FlowerChecker provides a plant identifi-
cation service. It has over 100k installs and leaks the location to
api2.flowerchecker.com.

me.nextplus.smsfreetext.phonecalls Nextplus is an app that pro-
vides free phone calls and messages. It has over 5M installs and
leaks the location to ces.app.nextplus.me.

pr.nip.cennoticias Central das Noticias is a Portuguese free news
app with over one million downloads. It leaks the location to
ads.cennoticias.com and logging.cennoticias.com.

uzsusd.dollaruz.dollaruzbekistan DollarUz is an Uzbekistan fi-
nance and currency exchange calculator. It has 50k installations
and leaks the location to onesignal.com.

vdm.activities VDM Officiel is a French comics app with 1M
downloads. It leaks the location to ads.mopub.com.
We further analyze the descriptions of these apps. The authors

of the paper agree that none of the apps that leak data would need
the information that they collect: the app that leaks the IMEI could
simply use the Android ID, which is not permission protected, to
uniquely identify the device. Moreover, none of the applications
leaking the location really needs access to the fine location of the
user. These apps, which range from currency exchange calculators
and social network to news applications or comics, could perfectly
work by just knowing the user’s coarse location.

Although the behavior of these apps may not look legitimate,
they all state in their privacy policies that they collect the data
being leaked, showing the intention/awareness of the developers,
but at the same time protecting themselves from explicit privacy
violations.

We now describe more in details the most suspicious apps we
analyzed thoroughly:
com.cootek.smartinputv5 This popular app, with over 100M in-

stalls, adds a new smart keyboard for users to efficiently pro-
vide inputs. Version 5051 requests the permission to access the
phone’s call logs, effectively gaining access to the phone call
history without any user’s approval, and sending call log infor-
mation to their company servers. The READ_CALL_LOG per-
mission is granted automatically since in previous releases the
app already requested the READ_PHONE_STATE permission,
which lets the app read the phone state to access information
such as the phone number of the device for unique identification,
or to perform an action (e.g. close the keyboard) when a call is
being received.
Profiling the execution, we confirm that the app accesses the list
of phone calls listed on the device and leaks this information
upon starting a new Activity to a server with a Chinese domain.
This Activity, however, has to be explicitly invoked with an
intent, since it is not reachable from the main Activity. Despite
being hard to trigger, this behavior is highly suspicious as it
effectively steals sensitive information that users did not grant
permissions to read.

net.devmain.callblock “Call Block — number blacklist”, accord-
ing to its description, blocks unwanted incoming or outgoing
calls with the support of a variety of filters. The app requests the

Automatically Granted Permissions in Android apps MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

READ_CONTACTS permission since its early releases, as this
information is intuitively necessary for the app to function. Re-
lease 62, however, requests in the manifest the GET_ACCOUNTS
permission, and the OS automatically grants it.
This release effectively collects e-mails of specific domains (filtered
by gmail and hotmail keywords) from the accounts data on the
device, ciphers them, and sends this information to their servers.
Almost all strings in the app (including URLs) are encrypted
with DES algorithm, which—along with obfuscation—hampers
the manual inspection.
The information sent in the JSON request could be an authentica-
tion request: it contains auth_key, auth_token fields, and the data
message with username and password keys. The value for user-
name is always ‘net.devmain.callblock’—the package name of
the app, while password contains the ciphered e-mail in Base64
format. The data is sent to http://zxc-atari.rhcloud.com/rest/
resource/zxcreg, which is no longer reachable.
The app does this operation as a background task, triggered
from the main screen, and continues until it gets a response
of successful data transmission. While this operation runs in
the background, there is NO exposed functionality of the app
that could justify this behavior (e.g., authentication). In the User
Consent data section of Terms and Conditions, published on
their web-site, the developers state they “use cookies and device
data to personalize content and ads”. E-mails may simply be used
as identifiers for further in-app purchases, though the manners
used for their collection and transmission make the activity quite
suspicious.

com.adstick.goodhabit1 “Good Habit” is a quiz game for children,
intended to teach good manners. Version 1.3, published on 9
August 2016, requests the GET_ACCOUNTS permission. Version
1.5, published only two days after (on 11 August), requests the
READ_CONTACTS permission. Right after booting, the app
retrieves all the entries in the contact list on the phone and
sends them to http://www.kotadiya.com:3004/. At the time of
the analysis this domain is no longer reachable.
The manual inspection of the bytecode confirms that in the
onCreate() life-cycle method of the main activity the app es-
tablishes a socket connection with the server, checks if the con-
tacts have been already uploaded, and then creates a separate
background thread which queries all contacts data using the
ContentResolver, storing it in a field. Afterwards, it bundles the
contact data together with the IMEI number and sends the pack-
age via socket connection to the remote server. Meanwhile, the
foreground Activity of the app suggests to log-in with a Facebook
account. The app’s description does not justify this behavior in
any way, and the binary code clearly shows that the app steals
user private data without any consent. This application has been
removed from the Google Play store.

com.siftr.whatsappcleaner “Magic Cleaner for WhatsApp” has
over 50K downloads. It uses deep learning to identify and delete
the photos to trash in the WhatsApp folder. Version v1.5.2 re-
quires the GET_ACCOUNTS permission, whereas release v1.6.1
also requests the READ_CONTACTS permission. With this latter
automatically granted permission, the app collects contacts and
sends them to the remote server, a behavior that cannot be justi-
fied for the application’s functionality. Our manual inspection

reveals that upon startup the app checks if the list of contacts has
been already uploaded. If this is not the case, it queries the con-
tact list and sends it along with the Android ID of the device to
the developer’s server https://siftr.co/whatsapp/60n2a62s/. Data
acquisition and dispatch are performed by separate objects; the
uploadContacts()method is invoked via a callback, which makes
it hard for static analysis to detect. In the most recent releases of
this app the leak no longer happens.
Despite showing some real cases where apps exploit permission

groups to gain access to the user’s sensitive information, we want
to stress the fact that our analysis might have missed other occur-
rences of this behavior. Our findings, though, prove that the risk of
granting permissions at group level is real and can be abused by
developers.

Our analysis shows that some applications actually abuse automatically
granted permission, leaking sensitive data without any user’s authorization.

6 RELATEDWORK
Many research papers study the evolution of Android applica-
tions [26, 29, 45]. Wei et al. [44] consider permission patterns and
their distribution and report that applications tend to request more
permissions over time and to become overprivileged. Calciati et
al. [13, 14] confirm their results on a much larger dataset of 14,000
APKs.Moreover, they show that applications tend to slowly increase
the number of sensitive information flows over time. Besides, apps
use more API methods protected by dangerous permissions that
were already granted. This insight motivated us to investigate the
problem of automatically granted permissions in general. Wang et
al. [43] perform a large-scale empirical study analyzing applications
removed from the Google Play store between two snapshots taken
in 2015 and 2017. It finds out that nearly half of them were removed,
and over 20% of removed apps belong to 1% of the developers.

Other papers focus on the evolution of Android libraries: Book
et al. [11] study the behavioral evolution of Android advertisement
libraries, discovering that they increasingly take advantage of the
app’s permissions to gain access to private user data. Derr et al. [16]
focus on libraries updatability and study the root causes of why
Android app developers do not adopt new library releases. He et
al. [25] perform an empirical study on evolution-induced compati-
bility issues in Android applications: consecutive Android releases
can add a high number of changes that apps have to take in con-
sideration. The study reports that three quarters of newly added
methods introduced with a new Android release are not supported
by the Android Support library, and that over 90% of the apps need
to address compatibility issues introduced by new Android releases.

The research community analyzed how app developers look for
alternative ways to gain access to permission-protected user data.
Reardon et al. [33] implement a test environment to instrument
and analyze apps behavior and network traffic, uncovering a num-
ber of side and covert channels currently in use by hundreds of
popular apps which allows them to gain unauthorized access to
permission-protected sensitive user data. Sadeghi et al. [36] build up
on previous research [9, 12, 18, 46] of permission-induced security
attacks—security breaches enabled by a permission misuse—and
propose a permission analysis and enforcement framework that

http://zxc-atari.rhcloud.com/rest/resource/zxcreg
http://zxc-atari.rhcloud.com/rest/resource/zxcreg
http://www.kotadiya.com:3004/
https://siftr.co/whatsapp/60n2a62s/

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Paolo Calciati, Konstantin Kuznetsov, Alessandra Gorla, and Andreas Zeller

considers the temporal aspects of permission-induced attacks for
their detection and prevention. These studies are similar to ours
in the sense that they study applications that leak sensitive user
data. Nevertheless, while these studies focus on bugs or limitations
in Android to circumvent the permission system, in our work we
focus our analysis on apps that use a problem in the design of the
permission model in Android.

More literature focuses on different aspects of the Android per-
mission system [20–22, 37, 41]. Taylor and Martinovic [40] analyze
the evolution of dangerous permissions by performing a broad
study on 1.6M applications with Google Play Store snapshots taken
quarterly over a year period. Stevens et al. [39] gathered insights
about the discussion of permissions in online fora and their misuse,
showing a direct relation between the misuse and popularity of
the permission. Finally, Smullen et al. [38] study the actual privacy
preferences of almost 1000 users toward three sensitive Android
app permissions (calendar, location, contacts) and train a model for
privacy preference recommendation combining both supervised
and unsupervised learning.

Other studies focus on analyzing user’s privacy. Feal et al. [19]
study privacy issues, and as well the behavior evolution, of parental
control apps. They identify several worrisome issues, such as per-
sonal information collection, lack of encryption in data transmis-
sion, and concerning privacy policies. Gamba et al [24], instead,
present a large scale study of pre-installed software on Android
devices from more than 200 vendors. They identify user tracking
activities by pre-installed Android software as well as by embedded
third-party libraries.

Ren et al. [34] perform a network traffic analysis on 7,665 ver-
sions of 512 apps to analyze what personally identifiable informa-
tion appears in the traffic generated by those apps. Their study
shows that privacy has worsened over time, and the information
gathered by an application can change with different releases, lim-
iting the validity of studies that focus on a single version of an
app. Similarly Razaghpanah et al. [32] focus on third-party ser-
vices whose main function relies on collecting tracking information
from users (advertising and tracking services). They analyze the
network traffic generated by apps to understand where sensitive
data ends up, both considering parent companies of ADS, which
can later combine and/or sell data to other companies, and how
data flows across borders, with the corresponding impact of pri-
vacy regulations. Nguyen et al. [31] present a study relating app
reviews with security and privacy related changes. They show that
apps with a runtime permission handling receive a higher number
of security and privacy reviews. The authors also could correlate
almost half of the privacy-related reviews to third-party library
code, showing that in most cases the reviews complained about
a behavior introduced by the third-party code. Finally, other re-
searchers analyze the user interface of Android apps to identify
covert behavior [6, 27, 28, 35]. These contributions are related to
our work, but do not specifically mention the issue of automatically
granted permissions.

7 LIMITATIONS AND THREATS TO VALIDITY
A threat to the validity of our work is that our datasets may not
be representative of the entire ecosystem: the majority of apps we

analyzed were taken from the Google Play Store, which has been
shown to be largely trustworthy [1, 30, 47]. We limit this risk by
having in our dataset all the apps listed in ApkPure, an alternative
app store for Android.

A limitation we have is that both our static and dynamic analyses
might produce false negatives by failing to detect uses of automati-
cally granted permissions. This is why we consider the number of
leaks found as a lower bound. Static analysis may suffer from false
negatives because the construction of the call graph is not sound,
we do not analyze the native code, and the permission mapping
we used may be incomplete. Dynamic analysis have false negatives
by definition. By manually exercising the app we cannot be sure
that we explore the whole behavior of the application. Moreover,
apps have non deterministic behavior that we may miss. Finally,
we used a proxy to intercept network traffic even when encrypted.
Our approach would not recognize most of the data leaks in case
they were encrypted or tampered by the application before being
sent to the server. Moreover, Android apps often use SSL pinning
to communicate sensitive information only to trusted servers (thus
not our proxy). In all these cases we miss the information.

Finally, even when we did find applications leaking sensitive
data, we did not further analyze the leaks from a network point of
view to answer questions such as: what are the servers to which
data is sent, and to which companies they belong to, which could
provide additional insights on the app behavior.

8 CONCLUSIONS
In this paper we present an empirical study on 2,865,553 Android
apps evaluating the threat posed by permission groups to the pri-
vacy and security of final users.

Our study shows that often apps request new dangerous permis-
sions, and the Android OS automatically grants them. Our analyses
show that apps actually use over 56% of the automatically granted
permissions.

Finally, our manual inspection reveals clear abuses of apps that
exploit automatically granted permissions to access sensitive user
data—such as the accurate location or the list of contacts—and leak
them either to servers belonging to the company developing the
app or to third parties.

Several studies report the many flaws of the permission model
implemented in Android. Our study highlights a concrete new
threat. We are aware that balancing usability and privacy in mobile
devices is a challenging task, and we acknowledge the effort that
Android engineers are putting in enhancing the permission model
by introducing new policies and fine grained permission groups, as
highlighted in Section 2. However, as our study shows, this is not
enough. User alerts, displayed only when the updated app uses the
automatically granted permission, could enforce the privacy.

Find more information on the project at:
https://github.com/gorla/appmining

ACKNOWLEDGMENTS
This work was supported by the Spanish Government through the
SCUM grant RTI2018-102043-B-I00 and the project DEDETIS, and
by the Madrid Regional projects N-Greens Software (n. S2013/ICE-
2731), BLOQUES and MadridFlightOnChip.

https://github.com/gorla/appmining

Automatically Granted Permissions in Android apps MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] Kevin Allix, Tegawendé F. Bissyandé, Quentin Jérome, Jacques Klein, Radu State,

and Yves Le Traon. 2016. Empirical assessment of machine learning-based
malware detectors for Android - Measuring the gap between in-the-lab and
in-the-wild validation scenarios. EMSE 21, 1 (2016), 183–211.

[2] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
MSR 2016: 13th Working Conference on Mining Software Repositories. 468–471.

[3] Panagiotis Andriotis, Angela Sasse, and Gianluca Stringhini. 2016. Permissions
Snapshots: Assessing Users’ Adaptation to the Android Runtime Permission
Model. InWIFS 2016: Proceedings of the 8th IEEEWorkshop on Information Forensics
and Security. 1–6.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In PLDI 2014: Proceedings of the ACM SIGPLAN 2014
Conference on Programming Language Design and Implementation. 259–269.

[5] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
analyzing the Android permission specification. In CCS 2012: Proceedings of the
19th ACM Conference on Computer and Communications Security. 217–228.

[6] Vitalii Avdiienko, Konstantin Kuznetsov, Isabelle Rommelfanger, Andreas Rau,
Alessandra Gorla, and Andreas Zeller. 2017. Detecting Behavior Anomalies in
Graphical User Interfaces. In ICSE 2017: Proceedings of the 39th International
Conference on Software Engineering Companion. 201–203. https://doi.org/10.
1109/ICSE-C.2017.130

[7] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable Third-Party Library
Detection in Android and Its Security Applications. In CCS 2016: Proceedings of
the 23rd ACM Conference on Computer and Communications Security. 356–367.

[8] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and
Sebastian Weisgerber. 2016. On Demystifying the Android Application Frame-
work: Re-Visiting Android Permission Specification Analysis. In USENIX Security:
25th USENIX Security Symposium. 1101–1118.

[9] Hamid Bagheri, Eunsuk Kang, SamMalek, and Daniel Jackson. 2015. Detection of
Design Flaws in the Android Permission Protocol Through Bounded Verification.
In FM 2015: 20th International Symposium on Formal Methods. 73–89.

[10] Denis Bogdanas. 2017. DPerm: Assisting the Migration of Android Apps to
Runtime Permissions. CoRR abs/1706.05042 (2017). http://arxiv.org/abs/1706.
05042

[11] Theodore Book, Adam Pridgen, and Dan S. Wallach. 2013. Longitudinal Analysis
of Android Ad Library Permissions. CoRR abs/1303.0857 (2013).

[12] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza
Sadeghi, and Bhargava Shastry. 2012. Towards Taming Privilege-Escalation
Attacks on Android. In NDSS 2012: 19th Annual Symposium on Network and
Distributed System Security.

[13] Paolo Calciati and Alessandra Gorla. 2017. How Do Apps Evolve in Their Permis-
sion Requests? A Preliminary Study. In MSR 2017: 14th International Conference
on Mining Software Repositories. 37–41.

[14] Paolo Calciati, Konstantin Kuznetsov, Bai Xue, and Alessandra Gorla. 2018. What
did Really Change with the new Release of the App?. In MSR 2018: 15th Interna-
tional Conference on Mining Software Repositories. 142–152.

[15] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Au-
tomated Test Input Generation for Android: Are We There Yet?. In ASE 2015:
Proceedings of the 30th Annual International Conference on Automated Software En-
gineering. IEEE Computer Society, 429–440. https://doi.org/10.1109/ASE.2015.89

[16] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.
Keep me Updated: An Empirical Study of Third-Party Library Updatability on
Android. In CCS 2017: Proceedings of the 24th ACM Conference on Computer and
Communications Security. 2187–2200.

[17] Daniel Domínguez-Álvarez and Alessandra Gorla. 2019. Release Practices for iOS
and Android Apps. InWAMA 2019: Proceedings of the 4nd International Workshop
on App Market Analytics. 15–18.

[18] Zheran Fang, Weili Han, and Yingjiu Li. 2014. Permission Based Android Security:
Issues and Countermeasures. Computers & Security 43 (06 2014), 205–218.

[19] Alvaro Feal, Paolo Calciati, Narseo Vallina-Rodriguez, Carmela Troncoso, and
Alessandra Gorla. 2020. Angel or Devil? A Privacy Study of Mobile Parental
Control Apps. In The 20th Privacy Enhancing Technologies Symposium (PoPETs
2020.2). 314—-335.

[20] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android permissions demystified. In CCS 2011: Proceedings of the 18th ACM
Conference on Computer and Communications Security. 627–638.

[21] Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Devdatta Akhawe, and
David Wagner. 2012. How to Ask for Permission. In USENIX HotSec 2012: Pro-
ceedings of the 7th USENIX Workshop on Hot Topics in Security.

[22] Adrienne Porter Felt, Serge Egelman, and David Wagner. 2012. I’ve Got 99
Problems, but Vibration Ain’T One: A Survey of Smartphone Users’ Concerns.
In SPSM 2012: Proceedings of the 2nd ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices. 33–44.

[23] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and
David Wagner. 2012. Android Permissions: User Attention, Comprehension, and
Behavior. In SOUPS 2012: Proceedings of the Eighth Symposium on Usable Privacy
and Security. 1–14.

[24] Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan Tapiador, and
Narseo Vallina-Rodriguez. 2020. An Analysis of Pre-installed Android Software.
In IEEE S&P: 2020 IEEE Symposium on Security and Privacy.

[25] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue.
2018. Understanding and Detecting Evolution-induced Compatibility Issues
in Android Apps. In ASE 2018: Proceedings of the 33rd IEEE/ACM International
Conference on Automated Software Engineering. 167–177.

[26] Geoffrey Hecht, Omar Benomar, Romain Rouvoy, Naouel Moha, and Laurence
Duchien. 2015. Tracking the Software Quality of Android Applications Along
Their Evolution. In ASE 2015: Proceedings of the 30th Annual International Confer-
ence on Automated Software Engineering. Washington, DC, USA, 236–247.

[27] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014. As-
Droid: Detecting Stealthy Behaviors in Android Applications by User Interface
and Program Behavior Contradiction. In ICSE 2014: Proceedings of the 36th Inter-
national Conference on Software Engineering. 1036–1046.

[28] Konstantin Kuznetsov, Vitalii Avdiienko, Alessandra Gorla, and Andreas Zeller.
2018. Analyzing the User Interface of Android Apps. In MobileSoft 2018: Proceed-
ings of the 5th IEEE/ACM International Conference on Mobile Software Engineering
and Systems. 84–87.

[29] Maleknaz Nayebi, Konstantin Kuznetsov, Paul Chen, Andreas Zeller, and Guen-
ther Ruhe. 2018. Anatomy of Functionality Deletion: An Exploratory Study
on Mobile Apps. In MSR 2018: 15th International Conference on Mining Software
Repositories. 243–253.

[30] Yi Ying Ng, Hucheng Zhou, Zhiyuan Ji, Huan Luo, and Yuan Dong. 2014. Which
Android App Store Can Be Trusted in China?. In COMPSAC 2014: Proceedings of
thehe 38th Annual International Computers, Software & Applications Conference.
509–518.

[31] Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven Bugiel. 2019. Short Text,
Large Effect: Measuring the Impact of User Reviews on Android App Security &
Privacy. In IEEE S&P: 2019 IEEE Symposium on Security and Privacy.

[32] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Mark Allman, Christian Kreibich, and Phillipa Gill. 2018. Apps,
Trackers, Privacy, and Regulators: A Global Study of the Mobile Tracking Ecosys-
tem. In NDSS 2018: 25th Annual Symposium on Network and Distributed System
Security.

[33] Joel Reardon, Álvaro Feal, PrimalWijesekera, Amit Elazari Bar On, Narseo Vallina-
Rodriguez, and Serge Egelman. 2019. 50 Ways to Leak Your Data: An Exploration
of Apps’ Circumvention of the Android Permissions System. In USENIX Security:
28th USENIX Security Symposium. 603–620.

[34] Jingjing Ren, Martina Lindorfer, Daniel J. Dubois, Ashwin Rao, David Choffnes,
and Narseo Vallina-Rodriguez. 2018. Bug Fixes, Improvements, ... and Privacy
Leaks. In NDSS 2018: 25th Annual Symposium on Network and Distributed System
Security.

[35] Julia Rubin, Michael I. Gordon, Nguyen Nguyen, andMartin Rinard. [n.d.]. Covert
Communication in Mobile Applications. In ASE2015. 647–657.

[36] Alireza Sadeghi, Reyhaneh Jabbarvand, Negar Ghorbani, Hamid Bagheri, and
Sam Malek. 2018. A Temporal Permission Analysis and Enforcement Framework
for Android. In ICSE 2018: Proceedings of the 40th International Conference on
Software Engineering. 846–857.

[37] Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek. 2017. PATDroid:
Permission-aware GUI Testing of Android. In ESEC/FSE 2017: The 25th joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering. 220–232.

[38] Daniel Smullen, Yuanyuan Feng, Shikun Aerin Zhang, and Norman Sadeh. 2020.
The Best of Both Worlds: Mitigating Trade-offs Between Accuracy and User
Burden in Capturing Mobile App Privacy Preferences. PETS 2020, 1 (2020),
195–215.

[39] Ryan Stevens, Jonathan Ganz, Vladimir Filkov, Premkumar Devanbu, and Hao
Chen. 2013. Asking for (and About) Permissions Used by Android Apps. In MSR
2013: 10th Working Conference on Mining Software Repositories. 31–40.

[40] Vincent F. Taylor and Ivan Martinovic. 2017. To Update or Not to Update: Insights
From a Two-Year Study of Android App Evolution. In ASIACCS 2017: Proceedings
of the ACM Asia Conference on Computer and Communications Security. 45–57.

[41] Guliz Seray Tuncay, Soteris Demetriou, Karan Ganju, and Carl A. Gunter. 2018.
Resolving the Predicamentof Android Custom Permissions. In NDSS 2018: 25th
Annual Symposium on Network and Distributed System Security.

[42] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot – a Java Bytecode Optimization Framework. In
CASCON ’99: Proceedings of the 1999 conference of the Centre for Advanced Studies
on Collaborative research. 13–23.

[43] Haoyu Wang, Hao Li, Li Li, Yao Guo, and Guoai Xu. 2018. Why Are Android
Apps Removed from Google Play?: A Large-scale Empirical Study. In MSR 2018:
15th International Conference on Mining Software Repositories. 231–242.

https://doi.org/10.1109/ICSE-C.2017.130
https://doi.org/10.1109/ICSE-C.2017.130
http://arxiv.org/abs/1706.05042
http://arxiv.org/abs/1706.05042
https://doi.org/10.1109/ASE.2015.89

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Paolo Calciati, Konstantin Kuznetsov, Alessandra Gorla, and Andreas Zeller

[44] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. 2012. Per-
mission Evolution in the Android Ecosystem. In ACSAC 2012: Proceedings of the
28th Annual Computer Security Applications Conference. 31–40.

[45] Jack Zhang, Shikhar Sagar, and Emad Shihab. 2013. The Evolution of Mobile
Apps: An Exploratory Study. In DeMobile 2013: 1st international Workshop on
Software Development Lifecycle for Mobile. 1–8.

[46] Yajin Zhou andXuxian Jiang. 2013. Detecting Passive Content Leaks and Pollution
in Android Applications. In NDSS 2013: 20th Annual Symposium on Network and
Distributed System Security.

[47] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, you, get off of my
market: Detecting malicious apps in official and alternative Android markets. In
NDSS 2012: 19th Annual Symposium on Network and Distributed System Security.

	Abstract
	1 Introduction
	2 Permission Model and Permission Groups in Android
	3 Prevalence of Automatically Granted Permissions
	3.1 Dataset Selection
	3.2 Experiment Protocol
	3.3 Results

	4 Actual Use of Automatically Granted Permissions
	4.1 Static Bytecode Analysis
	4.2 Results

	5 Manual Analysis and Main Findings
	5.1 Dynamic Analyses and Manual Inspection
	5.2 Confirmed Data Leaks

	6 Related Work
	7 Limitations and Threats to Validity
	8 Conclusions
	Acknowledgments
	References

