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Abstract: The objective of this work is to evaluate the capacity of the C-band Synthetic Aperture 
Radar (SAR) time series imagery, acquired by the European satellite Sentinel-1 (S1), for the 
agriculture crop classification and its reliability to differentiate onion from sunflower, among others. 
The work then focused on classifying land cover in intensively cultivated agricultural regions. The 
study was developed in the Bonaerense Valley of the Colorado River (BVCR), Buenos Aires 
Province in Argentina, backed up by the field truth of 1634 field samples. In addition to the onion 
and sunflower crops, there are other crops present in the study area such as cereals, alfalfa, potatoes 
and maize, which are considered as the image background in the classification process. The field 
samples database was used for training and supporting a supervised classification with two 
machine learning algorithms—Random Forest (RF) and Support Vector Machine (SVM)—obtaining 
high levels of accuracy in each case. Different S1 SAR time-series features were used to assess the 
performance of S1 crop classification in terms of polarization VH+VV, Grey Level Co-occurrence 
Matrix (GLCM) image texture and a combination of both. The analysis of SAR data and their 
features was carried out at OBIA lot level (Object Based Image Analysis) showing an optimal 
strategy to counteract the effect of the residual and inherent speckle noise of the radar signal. In the 
process of differentiating onion and sunflower crops, the analysis of the VH+VV stack with the SVM 
algorithm delivered the best statistical classification results in terms of Overall Accuracy (OA) and 
Kappa Index, (Kp) when other crops (image background) were not considered (OA = 95.35%, Kp = 
0.89). Certainly, the GLCM texture analysis derived from the S1 SAR images is a valuable source of 
information for obtaining very good classification results. When differentiating sunflower from 
onion considering also other crops present in the BVCR, the GLCM stack proved to be the most 
suitable dataset analyzed in this work (OA = 89.98%, Kp = 0.66 for SVM algorithm). This working 
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methodology is applicable to other irrigated valleys in Argentina dedicated to intensive crops. There 
are also variables inherent to each lot, soil, crop and agricultural producer that differ according to 
the study area and that should be considered for each case in the future. 

Keywords: Sentinel-1; time-series; supervised classification; land cover; onion crop; sunflower crop 
 

1. Introduction 

Irrigated valleys represent only 20% of the world’s cropland, but on the other hand, they produce 
40% of the global crop harvest. In intensively cultivated areas where the soil is dry, irrigation improves 
economic returns and can boost food production by up to 400%. Efficient irrigation systems and water 
management practices show an alternative to deal with soil conditions in arid and semi-arid cropland 
surfaces [1]. Good agronomic practices are also needed to manage the natural resources around the 
world. The amount of water for irrigation purposes as well as for the crops yield and the size of the 
cultivated areas must be determined in order to estimate the available food for all humankind [2]. 

The Bonaerense Valley of Colorado River (BVCR) is an irrigated cultivated area located in the 
south of Buenos Aires Province, Argentina. Among different crops present in the area, onion and 
sunflower have a high regional economy impact with thousands of cultivated hectares. Due to this 
economic significance and also the objective of maximizing the efficiency of agriculture activities using 
good agronomic practices, it is crucial to know—as precisely as possible—the cultivated area size and 
the spatial distribution in order to manage the natural resources properly. Thus, in the context of SDG 
2030 (Sustainable Development Goals), reliable procedures to estimate the land use expanse at local and 
regional scales are necessary for a sustainable management of onion and sunflower crops [3]. 

The BVCR is the main onion crop production area in the country (65% of the planted hectares in 
the country) with a large participation in the regional economy, supplying not only the Argentinian 
domestic market, but also meeting the international demand. Due to the international market 
regulations, the BVCR’s onion crop complies with high quality standards. According to the sowing 
estimations, between 8000 to 9000 hectares are sown every year in the region. The sunflower crop has 
great yield levels in the Colorado River valley intensively cultivated area. The sunflower hybrid seeds 
have high fat matter content very suitable for high quality oil production. This crop characteristic is 
very attractive for the national and international seed companies [4]. 

Crop yield in the BVCR is extremely related to soil moisture and nutrients. Water availability 
and suitable soil conditions are crucial factors in plant growth, which enable a high-quality product 
[5]; the possibility of implementing technologies that improve productivity drives the achievement 
of a substantially lower cost per kilogram than other areas in Argentina. Given this panorama, it is 
important to carefully manage the natural resources, soil and water, but also to optimize the 
producers’ economic resources. 

Determining the location of crops and their spatial coverage dynamics, as well as estimating 
their area before harvest, has a strategic value for the commercialization of BVCR products in the 
domestic market and in MERCOSUR [6]. 

Earth Observation Systems (EOS) provide unprecedented opportunities for a reliable 
monitoring of cropland activities, especially in inaccessible areas and intensively cultivated 
agricultural fields. In recent years, the possibility to access multiple classification algorithms and 
sensor images with a higher spatial (SPOT) and spectral (Sentinel-2, S2) resolution have encouraged 
the increase of new lines of research. 

Land cover maps derived from optical images in an irrigated valley have been assessed 
employing S2A images [7]. To select the optimum vegetation index (VI) in order to build crop masks, 
field radiometry and SPOT 6 and 7 high spatial resolution images were employed to quantify the 
onion crop surface in an intensively cultivated area [8]. The classification statistical results, overall 
accuracy (OA) and Kappa index (Kp) are strongly related to the optical satellite image date. To 
mitigate this optical satellite image date dependency, temporal series have been used to classify 
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different crops [9]. A plant’s phenological state depends on the crop environment and season date 
[10]. The use of optical satellite imagery is limited by the availability of cloud-free images. When the 
wet season takes place during a warm season, or summer, rain falls mainly during the late afternoon 
and early evening, affecting mostly the optical sensors on board remote sensing satellites. Thus, the 
optical time series imagery is limited by the crop dry season and the classification methods must deal 
with short image datasets and uncompleted crop phenological cycles, making it difficult to train the 
supervised algorithms efficiently. 

Sentinel-1 (S1), as the first satellite constellation of the European Space Agency’s (ESA) 
Copernicus programme, provides cloud and season independent data about land surface features. 
S1 is a C-band Synthetic Aperture Radar on board the satellites S1A and S1B, offering 6 to 12-day 
revisit-time images. The ESA S1 observation strategy defines the Interferometric Wide swath (IW) 
mode as the pre-defined mode over land. This mode provides dual-polarization (VV and VH) 
imagery, at a resolution of 10 m, with a swath of 250 km [11]. Copernicus offers free access products 
and a fast delivery system. 

Synthetic Aperture Radar (SAR) time series imagery enhances day and night crop development stage 
monitoring, even in rain or dust weather conditions, for all seasons of the year. This condition makes S1 
SAR data suitable for vegetation biophysical parameters retrieval. Land cover maps can be derived also 
from SAR imagery, favoring the benefits of the machine learning algorithms during the training stage. 

SAR data have been widely used for different applications, from mapping cropland cover to 
retrieval of vegetation parameters such as height and biomass [12]. The C-band SAR VV polarization 
signal is often dependent on soil moisture, which is related to its dielectric constant and surface 
roughness. The SAR VH polarization signal interacts primarily with the vegetation structure and 
canopy layer only to a limited extent. S1 SAR time series have been used for monitoring the complete 
summer (maize, soybean and sunflower) and winter (rapeseed, wheat and barley) crop phenological 
cycles. The correlation between the NDVI derived from S2 optical imagery and the ratio VH/VV 
obtained from S1 was shown by Veloso et al. [13]. S1 and S2 temporal series synergy presents a strategy 
to reconstruct wheat and tomato Leaf Area Index (LAI) values over the agricultural fields region of 
Foggia, Italy, where optical S2 cloud-free image availability is constrained by weather conditions [14]. 
For land cover classification purposes, texture measures from a Grey Level Co-occurrence Matrix 
(GLCM) provide reliable information on the spatial relationship of the image pixels feature and their 
spatial and structural distribution in the landscape [15]. The specular pattern and texture information 
extraction from SAR images are essential metrics for cropland cover classification tasks, having a direct 
influence on the reliability of the statistical results of SAR image classification. 

S1 imagery for classification purposes has been applied in different places in the world such as 
India, Africa, France and Spain [16]. These investigations have shown that crop growth can be 
monitored, with improved results from radar backscatter, in different environmental conditions [17], 
especially with cloud cover [18], obtaining good results using a Support Vector Machine (SVM) and 
Random Forest (RF). S1 SAR data has been also assessed in winter crop classification [19], in 
horticulture [20] and in water and soil management [21]. 

The capacity of high resolution C-band S1 SAR (VH+VV polarizations) time series data for land 
cover classification in the BVCR’s crop campaign was assessed considering different crops present in 
the study area, and onion and sunflower showed a high reliable discrimination performance based 
on classification statistical results for OA and Kp [22]. For image classification objectives, GLCM 
texture features derived from SAR time series imagery provide reliable information regarding the 
cropland structure in the landscape [15]. 

This research aimed at assessing the potentiality of C-band high resolution SAR data, 
polarization and GLCM texture features from multi-date S1 images, to differentiate onion from 
sunflower crops, among others, in the BVCR valley. Based on GLCM, we used four texture measures, 
contrast, correlation, entropy and variance, to capture the pixel spatial relationships in a SAR image. 
The speckle inherent effect was eliminated by calculating the median value at the crop lot level. We 
evaluated two machine learning algorithms, RF and SVM, for discriminating land cover types. As a 
complement, the results obtained from the combination between SVM and RF, using the logic of the 
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maximum vote and the contribution of the principal component analysis (PCA) in reducing the S1 
SAR features database dimension, were analyzed. 

The proposed classification method presents an alternative to pixel-based approaches, improving 
the crop class integrity at lot level and reducing the SAR speckle noise over the whole mapped area. 

2. Materials and Methods 

2.1. Theoretical Background 

2.1.1. SAR C-Band for Crop Monitoring 

Synthetic aperture radar has great potential for monitoring vegetation biophysics parameters 
[23–25]. It allows day and night image acquisition of all-weather conditions. Yet, in tropical and 
similar rainforest regions elsewhere, the use of optical satellite imagery is often limited to cloud-free 
images collected in a dry season. 

The C-band SAR penetrates the vegetation canopy only to a limited extent and interacts also 
with the soil [26]. The radar backscatter signal is affected by factors related to crop biomass and the 
three-dimensional vegetation structure [27] as well as by the ground conditions and the radar 
configurations used for the observations [28]. Previous studies [29–31] have shown that the 
backscatter’s coefficient value in C-band is a combination of the soil backscatter attenuated by the 
canopy layer and the backscatter from canopy, which includes simple and multiple scattering, and 
finally the vegetation-soil interaction [32]. Other factors that contribute to the soil backscatter value 
are soil moisture, the surface roughness and terrain topography [7], which is the reason why SAR 
data sensitivity to soil moisture could be useful to detect irrigated crops. 

In terms of incidence angle, those between 35° and 40° increase the path length of the radar 
signal through the vegetation and maximize the scattering contribution produced by the vegetation 
structure [33], while incidence angles lower than 30° increase the ground scattering distribution, 
which contributes to assessing the soil moisture [34]. 

At the beginning of the crop season, the radar signal interacts only with bare soil surfaces, and 
the radar backscatter is affected mainly by the moisture and roughness of the soil. The VV 
polarization, more sensitive to superficial scattering, is appropriate to determine the bare soil 
properties in this crop phenological cycle stage [35]. When the vegetation starts growing, the radar 
signal interacts with the emergent plants, which produces a backscatter increase. In the crop growing 
stage the VH polarization, more sensitive to volumetric scattering, is optimum to follow the 
vegetation phenological cycle. When the harvest takes place, the VH signal remarkably decreases due 
to the bare soil condition. In this stage, the backscattered superficial energy increases, which can be 
detected by the VH polarization [36]. So far, few studies have used dense time series SAR data for 
crop monitoring. Only recently, S1 data have been used [37,38]. 

The performance of a supervised crop classification approach based on crop temporal signatures 
obtained from Sentinel-1 time series imagery in the Spanish province of Navarre was studied by Arias 
et al. [39]. They considered 14 crop classes including winter and summer crops. In those cases where 
the three S1 SAR features (VH, VV and the ratio VH/VV) were used, the OA values obtained were 
higher than 70%. In-season soybean crop mapping over Ujjain district, Madhya Pradesh, was 
addressed by Kumari et al. [40]. They found a correlation between the temporal characteristics of 
soybean crop and the smooth VH backscatter profiles. The SVM algorithm was used to classify the 
S1 data into soybean and other crops, reaching OA values of more than 80%. 

In the Hebei Province of China, corn crop was mapped using multitemporal S1 SAR data and S2 
optical images in the Google Earth Engine (GEE) cloud platform. A total of 1712 scenes of S2 data and 
206 scenes of S1 data were processed to composite image metrics as input to a RF classifier. To avoid 
speckle noise in the classification results, the pixel-based classification result was integrated with the 
object segmentation boundary to generate an object-based corn map according to crop intensity [41]. 
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2.1.2. Grey Level Co-Occurrence Matrix 

SAR texture information features can be extremely useful for image classification. Considering 
the spatial information present in the SAR image, new texture images can be reconstructed. Texture 
shows the intensity variations in an image and can contribute to improved land cover classification 
accuracy. Texture features involve information from neighboring pixels, which is important to 
characterize the identified different crop types in agricultural fields. 

The Gray Level Co-occurrence Matrix (GLCM) proposed by [42] is one of the most widely used 
methods to compute second order texture measures. Several texture features can be computed from the 
GLCM matrix. Each feature model produces different properties of the statistical relation of the co-
occurrence of pixels estimated within a given moving window and along predefined directions and inter-
pixel distances. The GLCM is a measure of the probability of occurrence of two grey levels separated by 
a given distance in a given direction, θ. Each element value of the GLCM is calculated as follows: 𝑃ሺ௜,௝ሻ = 𝑃ሺ𝑖, 𝑗, 𝑑, 𝜃ሻ∑ ∑ 𝑃ሺ𝑖, 𝑗, 𝑑, 𝜃ሻ௝ୀଵ௜ୀଵ  (1) 

where P (i, j, d, θ) is the frequency of the double element point, one of which is the pixel grayscale 
value i, another pixel grayscale value of j, and the adjacent distance to d in θ direction. 

For SAR image classification, the following four parameters are taken for quantitative 
description of the image texture condition based on the GLCM [43–45]. 

Variance 

The variance texture parameter is focused on the partial characteristics of the SAR image. 

Variance = ෍ ෍ሺ𝑖 − 𝜇ሻଶே೒
௝ୀଵ

ே೒
௜ୀଵ 𝑝ሺ𝑖, 𝑗ሻ (2) 

where p(i, j) is the (i, j)th entry in a normalized gray-tone spatial dependency matrix p(i, j) = P(i, j)/R 
and R is a normalizing constant; µ is the mean value of the p matrix. Ng is the number of the distinct 
grey levels in the quantized image. 

Contrast 

The contrast feature is a difference moment of the P matrix and is a measure of the number of 
local variations present in an image [42]. Contrast shows the change total quantity of partial gray 
graduation in the image. For instance, the contrast feature for a grassland image has consistently 
higher values compared to a water body image. 

Contrast = ෍ 𝑛ଶ ⎩⎨
⎧෍ ෍ 𝑝ሺ𝑖, 𝑗ሻே೒

௝ୀଵ
ே೒
௜ୀଵ|𝑖 − 𝑗| = 1 ⎭⎬

⎫ே೒ିଵ
௡ୀ଴  (3) 

Correlation 

The correlation feature is a measure of gray-tone linear dependencies in the image and it 
describes the similarity among the elements of columns or rows in the GLCM. The px(i) and py(i) are 
the (i)th and the (j)th entries in the marginal-probability matrix and can be obtained by summing the 
rows or columns of p(i, j) respectively. 

𝑝௫ሺ𝑖ሻ = ෍ 𝑝ሺ𝑖, 𝑗ሻே೒
௝ୀଵ  (4) 
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𝑝௬ሺ𝑖ሻ = ෍ 𝑝ሺ𝑖, 𝑗ሻே೒
௜ୀଵ  (5) 

The expression of the GLCM correlation feauture can be shown as follows: 

Correlation =  ∑ ∑ [ሺ𝑖𝑗ሻ𝑝ሺ𝑖, 𝑗ሻ] − 𝜇௫𝜇௬ே೒௝ୀଵே೒௜ୀଵ 𝜎௫𝜎௬  
(6) 

where µx, µy, σx and σy are the means and standard deviations of px and py given by Equations (4) and (5). 

Entropy 

The entropy feature determines the abundancy degree of image information. The size of the 
entropy represents the average image information. 

Entropy = − ෍ ෍ 𝑝ሺ𝑖, 𝑗ሻ log[𝑝ሺ𝑖, 𝑗ሻ]ே೒
௝ୀଵ

ே೒
௜ୀଵ  (7) 

2.2. Study Site 

At the coastal land of the Colorado River in Buenos Aires Province, Argentina, in the sixties, 
significant transformations began in the natural landscape. The BVCR is located between the 39° and 
40° south latitude parallels and the 62° and 63° west longitude meridians. The area has a surface of 
500,000 ha, of which 140,000 ha are irrigated by an extensive irrigation network and an uncoated 
drainage channel [34]. The studied area corresponds to a 50,000 ha area located in BVCR in the 
Villarino district in the south of Buenos Aires Province (see Figure 1). 

Gravity irrigation has made most of the agricultural activities in the area possible. The 
horticulture specialized in onion (Allium cepa), squash (Cucurbita pepo) and potato (Solanum 
tuberosum) stands out. Other crop types present in the BVCR are alfalfa for seed and haymaking, 
maize (Zea mays) for seed and silage, sunflower (Helianthus annuus) for seed [46], winter cereals 
such as oats (Avena sativa) and wheat (Triticum durum), as well as forage pastures. The implanted 
crops under irrigation condition occupy 91,163 hectares in the BVCR, including horticulture, pastures 
and cereals. Among other vegetables that can be found in the BVCR, onion is the main crop with an 
average cultivated area from 10,000 to 13,000 hectares per year [3], with an average yield from 40 to 
50 tons [47]. Currently, this microregion is the main hybrid sunflower seed producing area in the 
country, with a sown surface size ranging from 8,000 to 10,000 hectares per year, approximately 90% 
of national production. 
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Figure 1. Study site geographic location: Bonaerense valley of Colorado river in the Villarino district 
of Buenos Aires Province, Argentina. True color Sentinel-2 image (R = B4, G = B3, B = B2) of 13 March 
2018, EPSG: 4326-WGS84. 

2.3. Characteristics and Environment of Onion and Sunflower Crops in the BVCR  

In the BVCR, onion crop represents 58% of the regional agricultural gross product, between 32% 
and 48% is exported, and the remainder is delivered to the internal market [48]. The Valenciana 
variety has a long phenological cycle, it is sown from July to August and the harvest takes place in 
February [49,50]. Between November, December and January, a higher irrigation frequency is 
required by the different crops present in the valley, mainly by the onion crop, with an average of 19 
to 22 irrigations reaching 100 mm/ha of irrigation water in all the vegetative cycle [51]. Traditionally, 
irrigation through a pumping canal system has been used in the region. In recent years, different 
methods like sown flat area and irrigation terraces have considerably increased [8]. Due to the 
superficiality of the root system, the onion roots do not explore the soil profile beyond a depth of 30–
60 cm, and it is necessary to increase the irrigation frequency [52,53]. Furthermore, there are other 
crops under irrigation such as alfalfa, sunflower, maize and winter cereals with a lower irrigation 
request, between 3 and 5 irrigations per cycle. From August, the long day onion sowing begins. In 
mid-October or during the first days of November, it is possible to find emerging seedlings. The 
harvest is made from the end of January until the end of March. The highest vigor of the vegetation 
is produced at the end of December, and later, the senescence and maturity begin. In March, the great 
onion percentage is harvested. 

Sunflower cultivation was introduced in 1995 as an industrial crop and nowadays production 
has been almost completely converted to hybrid seed production. The BVCR environment is very 
suitable for sunflower production. It is a semi-arid climate, with long days in summer and high sun 
radiation. Soils are deep, irrigated and poor in fertility. These conditions allow an optimal sanitary 
sunflower condition. The sunflower’s photosynthetically active leaf area is exposed to sun radiation 
for long periods of time, encouraging grain yields greater than 5 t/ha and high seed fat matter content 
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(about 59%) [54]. The production modality is made through contracts between the seed companies and 
the farmers of the valley [55]. High quality seed production stands out for yields that vary between 
1,200 kg/ha and 2,400 kg/ha. Regarding crop profitability, normally the seed value is 4 to 5 times greater 
than the common price [56]. The hybrid sunflower seed is produced from male lines (pollen producers) 
and female lines (male sterile), and fertilization necessarily requires bee pollination services, which are 
present in the area, adding one more activity to the local economy (see Figure 2). From the use of water 
and nitrogen resources point of view, it is important to highlight the sunflower crop as an excellent 
successor to the onion crop. Onion crop has shallow roots and requires a lot of nitrogen and water, 
approximately 20 gravitational irrigations, and water and nitrogen surplus percolates to the deepest 
profiles of the soil where the sunflower crop can take advantage of it. 

 
(a) (b) 

Figure 2. Onion and sunflower crops in the BVCR: (a) irrigated onion crop; (b) sunflower crop for 
hybrid seed production. 

For sunflower cultivation success, the pre-sowing and irrigation in the V12 (12 green leaves per 
plant) vegetative state are considered essential. Then, depending on the depth of the water table and 
the amount of precipitation during the growing stage of the sunflower buds, it may require 1 or 2 
additional irrigations, at the beginning of the first phase of seed fill. In the valley region, the rotation 
sequence, pasture-onion-sunflower-wheat-pasture, is considered sustainable in the context of good 
management of agronomic practices. 

For sunflower, the tilling labours begin in July. The optimum sunflower sowing date in the 
BVCR is in October, considering its expected yield performances [56]. While seeding may occur in 
the third week of September, it is not advisable, not only because of the eventual freeze the crops 
might suffer but also because a significant delay in the seeding itself is registered (by three weeks), 
which exposes it to a higher grade of damage produced by pigeons and insects and because of 
competition with weeds. From the middle of October to the end of February, the sunflower growing 
is ongoing, and plants reach a height of 2 m in the study area. From the middle of February to the 
middle of April, the sunflower harvest is done in the BVCR (see Figure 3). 

 

Figure 3. Growth stages of sunflower and onion crops in the region of the BVCR. 
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2.4. Irrigated Valley of Colorado River Soil Taxonomy Classification 

In the BVCR area where the irrigation is gravitational, the soil experiences two issues that are 
directly related to the crop productivity. The first is soil salinity, which is associated with poor 
irrigation water drainage. The second is soil cutting, which originates from beheading the first 
centimeters of the soil (performing the labour of matching the surface to obtain an optimal drainage) 
where the most favourable nutrients for the crops are present. 

According to soil taxonomy classification [57], the soil groups present in the study area are the 
following: Typic Haplustolls, Entic Haplustolls, Molic Flucolic, Aquic Hapludolls, Cumulic 
Hapludolls, Mollic Ustifluvents, Haplargids and Natrargids. These are generally coarse soils, mostly 
sand to sandy loam, with low organic matter content (around 1%), medium to high phosphorus 
supply (between 10 and 30 ppm) and high potassium content (between 200 and 1000 ppm). 

The soils in the BVCR are also very susceptible to wind erosion [58–60]. The soils of the irrigated 
area have been modified by the practice of gravity irrigation. Below the first loose layers are horizons 
with fine deposited material such as silt and clay, sometimes overlapping. The presence of 
consolidated calcium carbonate does not generate a problem for the roots. There are mainly three 
representative soil series in the study region (see Table 1 and Figure 4). 

Table 1. Representative soil series from the BVCR. 

 Ea. La Selva Serie Buratovich Serie Colonia Serie 
Taxonomic 

classification 
Molic Fluvacuent, thin sloam Aquic Hapludol, coarse loam 

Cumulic Hapludol, 
Sandy 

Parent 
material 

Fluvial sands, silts and clays Sands, silts and fluvial clays 
Sands, silts and 

fluvial clays 

Vegetation 
Plowed fields, prepared 

intensive cultivation 
Pastures, natural vegetation 

Natural pastures, 
grasses, halophytic 

vegetation 

Landscape Systematized lands for irrigation 
Systematized lands for 

irrigation 
Gently undulating 

plains 
Slope (%) 1% 1 (0–1%) 1 (0–1%) 

Phases Shallow  Insufficiently drained 
Main 

limitations of 
use 

Probable salinity and greater 
presence of exchangeable 

sodium, according to drainage 

High percentage of 
exchangeable sodium and 
possible growth of salinity 

Deficit drainage 

The soil series involve the most common soil component having a unique combination of 
properties that distinguish it from neighboring series. It is the lowest categorical level of soil 
taxonomy. Secondary soil series derived from the three main soil series present in the area can be 
found in the irrigated valley of the Colorado River study site. The secondary series are the following: 
Ascasubi, Buratovich, Cappanini, El Alba, La Julia, La Merced, La Selva, Pedro Luro, San Alfonso, 
San Ignacio and El Retiro. In the study site, 11 soil associations can be distinguished. Soil association 
is a map unit consisting of two or more dissimilar soil major components occurring in a regular and 
repeating pattern on the landscape [57]. In the BVCR the soil associations are composed mainly of 
two secondary soil series. The soil associations composition is shown in Table 2. 

Table 2. Study site soil associations composition. 

 Soil Association Composition 
Soil Association Soil Type 1 Soil Type 2  
Ascasubi-La Julia Ascasubi 30% La Julia 70% 

Buratovich-Cappanini Buratovich 60% Cappanini 40% 
Cappanini-El Sostén Cappanini 40% El Sostén 60% 

El Alba-El Fortín El Alba 80% El Fortín 20% 
La Julia-Ascasubi La Julia 60% Ascasubi 40% 

La Merced-Ascasubi La Merced 50% Ascasubi 50% 
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La Selva-El Sostén La Selva 70% El Sostén 30% 
Pedro Luro-El Fortín Pedro Luro 20% El Fortín 80% 
San Adolfo-La Julia San Adolfo 70% La Julia 30% 

San Ignacio-Ascasubi San Ignacio 70% Ascasubi 30% 
El Retiro-La Selva El Retiro 60% La Selva 40% 

The soil map of the study site thus consists of soil associations map units meeting the criteria for 
the taxonomic class (see Figure 4). 

 

 

Figure 4. Irrigated valley of Colorado River soil associations map. 

Slopes in the region range from 0 to 1%. The slope in this region descends from the west towards 
the east. The maximum ground height difference (above sea level) is roughly 20 m in eighty kilometers 
(see Figure 5). The extremely soft slopes in the irrigated area produce low surface runoff capacity in the 
drainage channels. The depth level of the water table is about 1.2–1.4 m in the irrigated cropland and 
relatively deeper in the dry area, which degrades the soil through salinization processes. 
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Figure 5. BVCR intensively cultivated area Digital Elevation Model (DEM) based on ALOS PALSAR-
1 L-Band SAR data at 12.5 m of spatial resolution. The main drainage network is represented by the 
black continuous line. 

2.5. Field Data for Training and Validation 

During the 2017–2018 crop campaign, expert professionals and technicians of INTA (Agricultural 
Technology National Institute), Argentina, performed a ground field measurement campaign to 
register the different land cover types in the irrigated valley of the Colorado River intensively cultivated 
area. Four field observation transects were scheduled between August and November 2017. The GT 
(Ground Truth) database has 1634 registers, each one corresponding to a measurement point. Two 
different methods were used in collecting data. Firstly, direct observation of land coverage and, 
secondly, optical analysis based on satellite image texture and historical databases. A total of 916 
ground truth direct observations were taken in the study zone, the land cover types were registered in 
a database, as well as other parameters related to the 2017-2018 crop campaign. The GT points positions 
were determined with GPS equipment. Photographs were taken, and the most relevant crop aspects 
were registered on a database. The optical analysis was done on a set of SPOT 5, 6 and 7 images 
provided by the CoNAE (National Committee of Spatial Activities) using different products: 
panchromatic band, RGB composition and a fusion (pan sharpening) of both. A high spatial resolution 
of 1.5 m was used to distinguish the different land cover types. Based on a high resolution SPOT 5 image 
from October 2016, the parceling of lots, the irrigation-drainage infrastructure and the communication 
channels in the prioritized area of 50,000 ha were digitized. Thirteen thousand polygons were added to 
a vector type layer. It was possible to discriminate a new 620 land cover points by using a set of SPOT 
6 and 7 images. Once the onion crop cycle is finished, it is gathered manually or mechanically, and it 
differs from the rest of the crops because of its texture and shape. These aspects can be clearly visualized 
in the optical images of SPOT 6 and 7 (see Figure 6). Furthermore, there is a historical database with 
land cover not suffering modification such as the hills, resting and neutralized fields that are added to 
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(b) 

(a) 

comments from the owners of different lots of the BVCR that provided information. Thus, 98 additional 
points of land coverage were obtained [61,62]. 

 

 

Figure 6. Study site, 2017–2018 BVCR crop campaign. Digitalized polygons based on high resolution 
SPOT 5 image. Ground truth filtered database for training and testing the machine learning 
algorithms. Colored polygons correspond to the observed different land cover types during the 2017–
2018 field data campaign. Harvested onion image texture: (a) onion crop texture for manual harvest; 
(b) onion crop texture for mechanical harvest. 

2.6. Sentinel-1 C-Band High Resolution SAR Data 

A S1 image automatic-processing chain was implemented in SNAP (Sentinel Application 
Platform) version 7.0, using the Sentinel-1 Toolbox and the GPT module (Graph Processing Tool). A 
processing script in Bash (Bourne-again shell) language was developed in a Linux environment. 
Sentinel-1A GRD (Ground Range Detected) products in IWS (Interferometric Wide Swath) mode, 
available in dual polarization VV+VH, were selected for the analysis providing a 12-day revisit time 
over the study site. A total of 30 S1A images between April 14, 2017, and May 15, 2018, were 
downloaded from the Copernicus Open Access Hub web site (https://scihub.copernicus.eu/). The 
selected relative descending orbit number is 141. The acquisition time of S1 over the study area is 
around 9:20 h local time. The incidence angle over the monitored cropland region varies from 
approximately 38° to 41°. The GRD Level-1 products consist of focused SAR images averaged by 
multi-looked methods and ground projected using the WGS84 reference system. First, the data were 
calibrated to obtain the normalized backscatter coefficient γ0 (Gamma Naught). No additional multi-
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looked processes were performed, whereby the spatial resolution for the S1 IWS-GRD product is 10 
m. Therefore, the range doppler terrain correction was applied to geocode the images precisely using 
the SRTM (Shuttle Radar Topography Mission) digital elevation model. Finally, the images were 
overlapped without an additional co-registering process in order to create a time series stack. A multi-
temporal speckle filtering process was applied to the VH+VV polarizations stacks. An IDAN filter 
(Intensity-Driven-Adaptive-Neighborhood) was used [63]. We selected the following filter 
configuration parameters: Adaptive Neighbor Size = 15, Windows Size = 7 × 7, Number of Looks = 1. 
Finally, the GLCM texture analysis was performed on the time series stacks in both polarizations 
VV+VH. In order to discriminate between the S1 SAR images pixel spatial relationships, four GLCM 
texture measurements were obtained: correlation, contrast, entropy and variance. The employed 
GLCM module configuration parameters were the following: Windows Size = 9x9, Angle = All, 
Quantizer = Probabilistic Quantizer, Quantization Level = 32, Displacement = 4. We obtained eight S1 
SAR texture time series stacks, four for VH polarization and four for VV polarization (see Figure 7). 

2.7. Sentinel-1 Object-Based Image Analysis Approach 

To perform the onion and sunflower classification at object level (Object Based Image Analysis, 
OBIA), the pixel median value of the crop parcels was calculated. The image batch processing was 
done using the graphical modeler of the QGIS version 3.8.1 “Zanzibar”. The QGIS zonal statistics 
plugin allows the median value for each polygon of a vector-type layer to be calculated, taking a 
raster-type base layer as a reference. A new attribute corresponding to the median value of the SAR 
image pixels is added to each register of the field database (see Figure 8). The process was repeated 
automatically for each SAR time series S1 processed image. A total of 300 new features were added 
to the GT database parcel registers: 60 for VH+VV polarizations and 240 for GLCM texture 
(correlation, contrast, entropy and variance). The temporal variation of the features allows onion crop 
parcels to be distinguished from sunflower ones. The 300 SAR processed features were used for 
training and testing the machine learning algorithms selected to perform the classification. 

 
(a) (b) 
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(c) (d) 

Figure 7. Study site Grey Level Co-occurrence Matrix (GLCM) Synthetic Aperture Radar (SAR) 
texture features derived from S1 image of 27 January 2018: (a) S1 SAR GLCM Contrast; (b) S1 SAR 
GLCM Correlation; (c) S1 SAR GLCM Entropy; (d) S1 SAR GLCM Variance. 

  

(a) (b) 

Figure 8. Study site S1 SAR image in VH polarization of 15 January 2018: (a) S1 pixel level processed 
image, the inherent SAR speckle noise is present; (b) S1 parcel level processed image, the inherent 
SAR speckle noise is filtered. 

2.8. Classification Algorithms: RF and SVM 

Once the object level classification database was created, two machine learning algorithms were 
evaluated, random forest and support vector machine, in order to carry out the supervised crop 
classification. RF is a classification binary tree based on the S1 SAR features (input) returning a classes 
label vector (output), where each branching node is split based on the values of an input column. The 
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selected split criterion used to perform all the tests was GDI (Gini’s Diversity Index). The SVM 
configuration parameters are shown in Table 3. 

Table 3. Support vector machine algorithm configuration parameters. 

Kernel Function Box Constraint Kernel Scale Optimization Routine Standardize 

RBF (Radial Basis Function) 1.2 Auto 
SMO (Sequential Minimal 

Optimization) 
True 

The box constraint configuration parameter aids in preventing overfitting (regularization); 
increasing the box constraint can lead to longer training times. The kernel scale ‘auto’ mode allows 
the software to use a heuristic procedure to select the scale value. Therefore, to reproduce the 
classification statistical results a random number seed was set before training the classifier. 
Standardize was set as ‘true’ indicating the software to center and scale each column of the predictor 
data (S1 SAR features) by the column mean and standard deviation, respectively. Different sets of 
SAR features were used to train the classification algorithms, each time obtaining different RF and 
SVM classification models and hyperparameter sets. As a complement, the combination (COMB) 
between SVM and RF using the maximum vote logic was assessed. A processing script was 
developed in MATLAB® framework version R2015a. After the script execution an automatic test 
report was generated. A total of 15 tests was done using the S1 SAR dataset; the statistical OA and 
Kp values for the training and testing stages and the processing time for each machine learning 
algorithm were registered. The test reports also provide the classification confusion matrixes in the 
training and testing stages and the covariance matrix of the analyzed SAR features dataset. Regarding 
the test configuration parameters, it is also possible to consider or not the different crop classes 
present in the study site. The other crops are considered ‘image background’ and can be taken into 
account or not by modifying a Boolean variable value in the processing script. Likewise, it is possible 
to analyze the contribution of the principal components analysis to evaluate the effects of reducing 
the S1 SAR feature dataset size. The dataset was randomly split in two sets: 70% for the training 
dataset and 30% for the testing dataset. A summary of the processing chain implemented in this study 
is shown in Figure 9. Table 4 shows the configuration parameters of the 15 tests. 

Table 4. Summary of the configuration parameters for the fifteen tests performed to assess the SAR 
polarization and GLCM texture features potential in onion and sunflower classification. 

Test Id Background  PCA S1 SAR Features Stack Size Crop Classes 
#1 False False VH + VV  2 bands Onion, Sunflower 
#2 False False VH + VV  2 bands Onion, Sunflower 
#3 False False VH + VV  2 bands Onion, Sunflower 
#4 False False TS(VH &VV)1 60 bands Onion, Sunflower 
#5 True False TS(VH &VV) 60 bands Onion, Sunflower, others 
#6 False True PCA(TS(VH & VV))2 28 bands Onion, Sunflower 
#7 True True PCA(TS(VH & VV)) 29 bands Onion, Sunflower, others 
#8 False False TS(GLCM)3 240 bands Onion, Sunflower 
#9 True False TS(GLCM) 240 bands Onion, Sunflower, others 

#10 False True PCA(TS(GLCM))4 75 bands Onion, Sunflower 
#11 True True PCA(TS(GLCM)) 91 bands Onion, Sunflower, others 
#12 False False TS(VH & VV + GLCM)5 300 bands Onion, Sunflower 
#13 True False TS(VH & VV + GLCM) 300 bands Onion, Sunflower, others 
#14 False True PCA(TS(VH & VV + GLCM))6 72 bands Onion, Sunflower 
#15 True True PCA(TS(VH & VV + GLCM)) 87 bands Onion, Sunflower, others 
1 S1 VH&VV polarization temporal series. 2 S1 VH&VV polarization temporal series principal 
component analysis. 3 S1 GLCM texture features temporal series. 4 S1 GLCM texture features temporal 
series principal component analysis. 5 S1 VH&VV+GLCM temporal series.6 S1 VH&VV+GLCM 
temporal series principal component analysis. 
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Tests can be grouped into four blocks according to the following description: 

• 1st block: an analysis based on one date of the temporal series considering only VH+VV 
polarization features. Three onion crop representative cases were analyzed: the start of season, 
vegetation highest vigor and harvest. S1 SAR dataset dimension = 2 features. 

• 2nd block: an analysis based on VH+VV temporal series, considering or not image background 
and PCA, four tests in total. S1 SAR dataset dimension = 60 features. 

• 3rd block: an analysis based on SAR GLCM texture temporal series, considering or not image 
background and PCA, four tests in total. S1 SAR dataset dimension = 240 features. 

• 4th block: an analysis based on the VH+VV+GLCM texture temporal series, considering or not 
image background and PCA, four tests in total. S1 SAR dataset dimension = 300 features. 

 
Figure 9. Summary of the processing chain carried out in this study. 

3. Results 

In this section the results of the 15 tests done for the evaluation of the capabilities of the temporal 
data series from S1 are presented. Two machine learning algorithms were evaluated: RF and SVM. 
As a complement, the results obtained from the combination between RF and SVM using the logic of 
the maximum vote are analyzed. In remote sensing mapping, the validity and reliability of classified 
maps are often decided on the basis of estimated OA and Kp [64]. First, the values of OA and Kp 
obtained during the training and testing stages for the executed tests with only one scene of the 
temporal series are presented. In the next stage, the potential of the stack combination in both 
polarizations (VH+VV) and the GLCM of the texture products (contrast, correlation, entropy and 
variance) are analyzed. 
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3.1. BVCR Intensively Cultivated Parcels Identification Based on S1 SAR Time Series 

Once the S1 SAR images have been processed it is possible to build a raster map to identify the 
intensively cultivated crop parcels location in the study region of the irrigated valley of the Colorado 
River. Three new bands were obtained from the S1 VH polarization temporal series data. With the aid 
of GRASS version 7.6.1 and the “r.series” tool the temporal series maximum, minimun and the 
difference (maximun–minumum) was calculated. The “r.series” makes each map output pixel value a 
function of the several values assigned to the corresponding pixel in the temporal series raster map 
layers. The “min_raster” and “max_raster” methods generate new raster maps that hold the 
minimum/maximum value of the S1 VH polarization temporal series. There are different land cover 
types in the study site. While the VH backscattering coefficient remains constant throughout the time 
for scattering surfaces like asphalt, house roofs, water reservoirs and fields at rest, it varies widely for 
the surfaces of cultivated parcels. The difference between the S1 temporal series maximum and 
minimum products in VH polarization highlights the croplands in the BVCR raster map (see Figure 10). 

 
Figure 10. False color composition based on SAR time series imagery of the study site, R= S1 VH 
temporal series maximum; G = S1 VH temporal series difference (maximum–minimum); B = S1 VH 
temporal series minimum. 

3.2. SAR OBIA Classification Based on One Date of the Temporal Series: VH+VV 

In order to execute the tests, three scenes from the temporal series of the S1 SAR images on 
different dates were selected: October 11, 2017; January 15, 2018 and March 4, 2018. The dates 
correspond to the beginning of the planting season, the maximum vegetation vigor and the onion 
crop harvest for the 2017–2018 BVRC crop campaign. To perform the tests, the other crops (image 
background) in the study area were not taken into account. From the results registered in Table 5, it 
can be seen that the highest OA (88.37%) and Kp (0.75) values during the validation stages are 
obtained when both polarizations of the S1 SAR image are used, corresponding to the maximum 
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vigor of the vegetation for the onion crops (Test #2). When the classification is done with SAR images 
corresponding to the planting and harvest stages, the resulting Kp values obtained are low and the 
classification is poor according to the Monserud scale [65], (Test #1 and #3). 

Table 5. Summary of the results obtained with the classification based on one date of the temporal 
series: VH+VV. 

  RF SVM COMB 
  Train Test Train Test Train Test 

Test 
Id 

S1 
Feature 

OA Kp OA Kp OA Kp OA Kp OA Kp OA Kp 

#1 VH+VV 86.50 0.72 63.95 0.17 84.50 0.68 61.63 0.12 86.00 0.70 65.12 0.11 
#2  VH+VV 95.00 0.90 87.21 0.73 91.50 0.82 88.37 0.75 93.00 0.85 88.37 0.75 
#3  VH+VV 86.00 0.71 61.63 0.20 79.50 0.56 77.91 0.50 80.00 0.57 80.23 0.53 

3.3. SAR OBIA Classification Based on the Temporal Series: VH+VV 

In this section, the results of the four tests performed on the stack VH+VV are presented. The 
temporal series of S1 SAR images has 30 scenes, which creates a 60-band stack when both 
polarizations are used. The influence of considering or not the different valley crops (image 
background) in the classification results and the contribution of narrowing the space of analysis with 
PCA was analyzed. Generally speaking, it can be seen in Table 6 that the highest OA (95.35%) and 
Kp (0.89) values are obtained for the SVM algorithm using the stack VH+VV for the classification not 
considering other crops (Test #4). When other crops existing in the study area are taken into account, 
the statistical values of the classification are lower: OA (89.75%) and Kp (0.89) for SVM (Test #5). 
According to the Monserud scale, if the classification result implies that 0.55 < Kp < 0.70 then the 
classification is considered a good one. When the contribution of the PCA is considered, it can be 
concluded that the dimension of the space of analysis of the classification algorithms remains reduced 
by more than the 50% (Test #6 and #7). The stack reduction from 60 to 28 and 29 bands, respectively, 
implies that the processing times needed to train the classification algorithms are smaller, and 
conversely, the statistical values obtained are very good—OA (94.19%) and Kp (0.86)—when other 
crops are not considered during the process of differentiating onion from sunflower in the BVCR. 
When the PCA is applied and other crops in the study area are considered, the OA value is acceptable, 
but the Kp value (0.39) drives the classification to be considered as regular. 

Table 6. Summary of the results obtained with the classification based on the temporal series: VH+VV. 

  RF SVM COMB 
  Train Test Train Test Train Test 

Test 
Id 

S1 Feature OA Kp OA Kp OA Kp OA Kp OA Kp OA Kp 

#4 TS(VH &VV) 99.50 0.99 86.05 0.70 98.00 0.96 95.35 0.89 98.00 0.96 94.19 0.86 
#5 TS(VH &VV) 97.76 0.93 85.12 0.55 95.32 0.85 89.75 0.63 95.02 0.83 87.24 0.50 

#6 
PCA(TS(VH 

& VV)) 
99.00 0.98 82.56 0.62 98.00 0.96 94.19 0.86 98.50 0.97 91.86 0.80 

#7 
PCA(TS(VH 

& VV)) 
96.68 0.90 86.10 0.59 94.15 0.80 85.42 0.39 92.59 0.74 85.42 0.37 

3.4. SAR OBIA Classification Based on the Temporal Series: GLCM 

In this section, the results of the four tests performed on the stack of the GLCM texture (contrast, 
correlation, entropy and variance in both polarizations VH+VV) are presented. The temporal series 
of the S1 SAR images has 30 scenes, and 4 texture products for each polarization were obtained, which 
creates a 240-band stack. The influence of considering or not the different valley crops (image 
background) in the classification results and the contribution of narrowing the space of analysis with 
PCA was analyzed. It is possible to see in Table 7 that the highest OA (93.02%) and Kp (0.86) were 
obtained for both SVM and RF algorithms, using the stack GLCM of the SAR texture for the 
classification without taking into account other crops (Test #8). When other crops existing in the study 
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area are considered, the statistical values of the classification are slightly lower, OA (89.98%) and Kp 
(0.66) for SVM and OA (85.42%) and Kp (0.57) for RF in the validation stages (Test #9), which results 
in a good classification between onion and sunflower. The dimension of the space of analysis of the 
classification algorithms will be reduced by more than 62% when the principal components analysis 
is considered (Test #10 and #11). When other crops existing in the study area are not considered, very 
good statistical values are obtained: OA (88.37%) and Kp (0.76) for SVM. According to the Monserud 
scale, the classification is considered as very good when 0.70 < Kp < 0.85 (Test #10). When PCA is 
applied to the GLCM stack of SAR texture and other crops from the valley are considered, the Kp is 
0.41 for RF and 0.29 for SVM, which means a regular or poor classification respectively (Test #11). 

Table 7. Summary of the results obtained with the classification based on the temporal series: 
GLCM. 

  RF SVM COMB 
  Train Test Train Test Train Test 

Test 
Id 

S1 Feature OA Kp OA Kp OA Kp OA Kp OA Kp OA Kp 

#8 TS(GLCM) 99.00 0.98 93.02 0.86 97.50 0.95 93.02 0.86 96.50 0.92 93.02 0.86 
#9 TS(GLCM) 97.95 0.94 85.42 0.57 95.71 0.86 89.98 0.66 95.51 0.85 87.47 0.54 

#10 
PCA(TS(GL

CM)) 
100.00 1.00 84.88 0.69 96.00 0.91 88.37 0.76 96.00 0.91 81.40 0.61 

#11 
PCA(TS(GL

CM)) 
96.49 0.89 79.50 0.41 93.85 0.79 83.14 0.29 92.39 0.73 82.46 0.23 

3.5. SAR OBIA Classification Based on the Temporal Series: VH+VV+GLCM 

In this section the results of the four tests performed on the stack of the VH+VV polarizations 
and the texture GLCM stack are presented (Table 8). A total of 300 derived bands of S1 SAR features 
for each crop parcel of onion or sunflower were applied. The influence of considering or not the 
different valley crops (image background) in the classification results and the contribution of 
narrowing the space of analysis with PCA were analyzed. 

Table 8. Summary of the results obtained with the classification based on the temporal series: 
VH+VV+GLCM. 

  RF SVM COMB 
  Train Test Train Test Train Test 

Test 
Id 

S1 Feature OA Kp OA Kp OA Kp OA Kp OA Kp OA Kp 

#12 
TS(VH&VV 

+GLCM) 
99.00 0.98 86.05 0.71 96.50 0.93 94.19 0.88 96.50 0.92 90.70 0.80 

#13 
TS(VH&VV 

+GLCM) 
97.27 0.92 86.33 0.57 96.88 0.90 89.98 0.66 96.39 0.89 88.61 0.58 

#14 
PCA(TS(VH&
VV +GLCM)) 

98.00 0.96 84.88 0.69 96.00 0.91 89.53 0.78 96.00 0.91 84.88 0.67 

#15 
PCA(TS(VH 

& VV + 
GLCM)) 

97.27 0.92 79.50 0.36 95.32 0.85 86.33 0.44 94.44 0.81 85.42 0.36 

It is possible to see in Table 8 that the highest OA (94.19%) and Kp (0.88) were obtained for SVM 
using the stack VH+VV+GLCM for the classification not taking into account other crops (Test #12). 
When other crops existing in the study area are considered, the statistical values of the classification 
are slightly lower, OA (89.98%) and Kp (0.66) for SVM and OA (86.33%) and Kp (0.57) for RF in the 
validation stages (Test #13), which results in a good classification between onion and sunflower in 
the BVCR. The dimension of the space of analysis of the classification algorithms are reduced by more 
than 70% when the principal components analysis is considered (Test #14 and #15). When other crops 
are not considered for the classification, the statistical values obtained are OA (89.53%) and Kp (0.78) 
for SVM and OA (84.88%) and Kp (0.69) for RF. When PCA is applied to the VH+VV+ GLCM stack 
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of SAR texture and other crops from the valley are considered, the Kp is 0.36 for RF and 0.44 for SVM, 
which means a regular or poor classification respectively (Test #15). 

3.6. Test #4 Results: Analysis of the Temporal Series of Sentinel 1 SAR Data on the VH+VV Polarizations 

In this section, the confusion matrix in the training and testing stages for the RF (Figure 11) and 
SVM (Figure 12) are presented, as well as a summary of the statistics for OA and Kp (Figure 13), the 
covariance from the stack VH+VV and the processing times for each machine learning algorithm 
(Figure 14) obtained for the Test #4. 

  
(a) (b) 

Figure 11. Test #4 result subset. Random Forest (RF) algorithm confusion matrixes: (a) confusion 
matrix for training dataset; (b) confusion matrix for testing dataset. 

  
(a) (b) 

Figure 12. Test #4 result subset. Support Vector Machine (SVM) algorithm confusion matrixes: (a) 
confusion matrix for training dataset; (b) confusion matrix for testing dataset. 

(a) (b) 

Figure 13. Test #4 result subset. Classification machine learning algorithms assessment: (a) Random 
Forest (RF), Support Vector Machine (SVM) and combination (COMB) overall accuracy for both 
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training and testing datasets; (b) RF, SVM and COMB Kappa index for both training and testing 
datasets. 

(a) (b) 

Figure 14. Test #4 result subset. (a) Covariance matrix for Sentinel 1 VH+VV stack; (b) RF and SVM 
training processing time. 

4. Discussion 

When performing the supervised classification based on a single date of the time series of the 
VH+VV stack of SAR images of S1, it was noted that the result is strongly related to the phenological 
stage of the crops found in the BVCR. When using S1 scenes corresponding to the beginning or the 
end of the onion growing season, the classification results are poor, and it is not feasible to 
differentiate sunflowers from onions. When the selected date corresponds to the maximum vigor of 
the onion crop (January 15, 2018), the SAR image of S1 in VH+VV polarization provides a “very good” 
ranking according to the Monserud scale, for RF as well as for SVM. 

A crop classification on the BVCR considering the date of maximum vigor of vegetation based 
on S2 optical images was carried out in a previous study [66]. S2 optical data allowed good 
classification results for the following algorithms: Linear Discriminant Analysis (LDA), RF, decision 
trees, and K-Nearest Neighbor (K-NN). Spectral information is an optimal study area for machine 
learning sorting algorithms; however, in certain regions it is not possible to use optical images 
because they may be affected by the clouds and weather conditions such as rain, fog, snow and dust. 
Therefore, the use of SAR images for classifying land cover in intensively cultivated agricultural 
regions becomes relevant. 

Onion and sunflower crops phenological cycles are similar in the growing stage. When the onion 
is harvested, the sunflower remains standing; this condition can be noted in the VV backscatter 
coefficient temporal evolution. Due to the onion harvest, the bare soil produces a considerable 
contribution to the scattering superficial component, then the normalized gamma naught backscatter 
coefficient value in VV polarization increases. Meanwhile, the plant structure of the standing 
sunflower crops interacts with the SAR signal boosting the scattering volumetric contribution. This 
phenomenon can be noted in the VH polarization signal between the end of January and middle of 
February. In March, a large percentage of the onion crop has been harvested. Therefore, a significant 
predominance of the SAR backscattering signal in VV polarization can be found due to the bare soil 
scattering contribution. 

When using the VH+VV stack of the S1 SAR image time series, the best statistical data are 
obtained from the classification test set. When other crops are not considered in the classification 
process, the following data is obtained: OA = 95.35%, Kp = 0.89; this result is categorized as excellent 
according to the Monserud scale. Analyzing the contribution of PCA to the classification process, we 
can notice that the worst condition is obtained for SVM when other crops besides onion and 
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sunflower are considered. In general, the SVM results are better than those obtained from RF, except 
for the PCA with image background (considering other crops present in the study area). 

The potential of the S1 SAR data time series in VH+VV polarizations to classify crops in the 
BVCR was shown by [22]. The analyzed data correspond to the 2017-2018 BVCR crop campaign. 
Among other findings, it was highlighted that the onion and sunflower crops deserved special 
attention due to the particularities of their interaction with the SAR signal. 

Using the GLCM time series data of correlation, contrast, entropy and variance in both polarizations, 
an excellent classification was obtained (OA = 94.19% and Kp= 0.88), according to the Monserud scale. 
Moreover, when other crops (image background) are considered, there is an improvement with respect 
to the VH+VV stack, an OA of 89.98% and a Kp 0.66 are obtained, statistics that rank the classification as 
“good”. This means that the SAR GLCM texture stack is slightly more robust than the VH+VV stack when 
analyzing the background contributions (see statistics in Results section). 

For the first three test scenarios, the classification results are between good and excellent, 
whereas when PCA is applied and the image background is considered, the classification is regular. 
RF gets better classification results when using the GLCM stack instead of the VH+VV stack even 
when other crops are considered. 

When studying the contribution of the analysis of principal components for both stacks (GLCM 
and VH+VV), better results are obtained for RF when other crops are not considered, whereas for 
SVM, the performance is lower for GLCM compared to VH+VV. 

When applying PCA to the VH+VV stack and the image background is not considered, the stack 
dimension is reduced from 60 to 28 S1 SAR features, whereas when the image background is 
considered the S1 SAR stack dimension is reduced to 29 features. The PCA was performed by setting 
a total accumulated variance value of 95%. The software script allows modification of the variance 
value threshold, but sensitivity analysis of this parameter and its relationship with the S1 SAR stack 
size reduction is outside the scope of this investigation. 

The GLCM S1 SAR stack dimension was also reduced carrying out the PCA. Considering or not the 
image background has a significant and diverse impact on the S1 SAR stack size reduction. When other 
crops are taken into account to train the SVM and RF algorithms, the training S1 stack size is reduced from 
240 to 91 SAR features, whereas in those cases when only onion and sunflower are considered for the 
analysis, the final S1 SAR stack dimension after applying PCA is decreased to 75 features. 

When other crops are considered to classify onion and sunflower, the GLCM+VH+VV stack 
provides the best solution for RF (OA = 86.33% and Kp = 0.57), and for SVM the results are the same as 
those obtained using the GLCM stack (OA = 89.98% and Kp = 0.66). The RF algorithm benefits from the 
use of the GLCM+VH+VV stack compared to the GLCM, whether the contribution of other crops is 
considered or not. Compared to the VH+VV stack, the GLCM+VH+VV stack produces no substantial 
ranking improvements. The dimension of the SAR features stack expands, from 60 to 300 bands, and 
so do the processing times for RF and SVM. If the contribution of PCA including other crops in the 
classification is analyzed, then there is an improvement when using the GLCM+VH+VV stack instead 
of the VH+VV stack. After applying PCA to the GLCM+VH+VV stack, the 300 derived bands of S1 SAR 
features are reduced to 87 and 72 when considering or not the image background, respectively. 

The proposed classification method can be replicated in other large crop-dedicated regions of 
the world. Based on an S1 spatial resolution of 10 m, an object-based image analysis at lot level is 
appropriate to address the small size of crop parcels, especially in intensively cultivated areas of 
Europe, such as orchards in Valencia, Spain, Austria or Italy. Other challenges the method might face 
are the interclass crop adjacency and extreme weather conditions during the crop season, like snow, 
which can modify the dielectric constant of the scatter elements. 

The number of ground truth samples must be considered for further analysis. The greater the 
number of samples to train the machine learning algorithm, the better the results of the classification 
statistics. Access to ground data might signify a key factor for an effective deployment of the 
classification method in other regions of the world. 

Several radar signal incidence angles over the cropland regions might be analyzed in order to 
improve the robustness of the proposed classification method. The slope of the BVCR cultivated area 



Agronomy 2020, 10, 845 23 of 27 

 

was explained in Section 2.4. The extremely soft slope of the Colorado River valley has a significant 
impact on the soil structure and composition, making it suitable for onion and sunflower crops, 
among others. 

5. Conclusions 

In this research study, the capacity of S1 C-band SAR time series imagery, considering the four 
seasons, has been analyzed to differentiate onion crop from sunflower crop, among others, using four 
less correlated GLCM texture measures: contrast, entropy, correlation and variance, as well as VH+VV 
polarizations time series. We obtained the textures measure from a GLCM using a 9 × 9 moving 
window, an aggregate orientation (θ) of all directions and a four-pixel displacement (δ) distance. 

Among the crops present in the BVCR during the 2017-2018 BVCR crop campaign, the following 
classes are distinguished: onion, sunflower, squash, potato, alfalfa, winter cereals and forage 
pastures. Analysis of SAR data and their features at OBIA lot level shows an optimal strategy to 
counteract the effect of the residual and inherent speckle noise of the radar signal. The analysis carried 
out at polygon level was made possible through previous digitization and field data collection work 
(ground truth) performed in the BVCR during the 2017-2018 BVCR crop campaign. Within each lot 
it was possible to obtain the median value for each of the analyzed SAR characteristics: gamma 
naught VH, gamma naught VV, correlation, contrast, entropy and variance in both polarizations. 
Therefore, it was possible to reduce the speckle effect in each lot for each of the scenes of the time 
series analyzed. 

The use of S1 high resolution C-band SAR data time series showed great potential for the 
classification of onion and sunflower crops in the BVCR, Buenos Aires Province, Argentina. Analysis 
of the VH+VV stack with the SVM algorithm delivered the best statistical classification results when 
the image background is not considered. Certainly, the GLCM texture analysis derived from the S1 
SAR images is a valuable source of information for obtaining very good classification results. When 
differentiating sunflower from onion by considering other crops present in the BVCR, the GLCM 
stack represents the most robust dataset analyzed in this article. Considering that the GLCM+VH+VV 
stack does not provide significant advantages to the classification process when the image 
background is not considered and it produces increases in the size of the analysis space and in the 
processing times, then the improvement under certain test conditions can be considered as negligible. 

Considering one date analysis, it was anticipated that the differentiation of onion and sunflower 
crops using S1 C-Band SAR data would be suitable at the end of January for the BVCR cultivated 
area, since the phenological differences between crops were greatest at this time. For example, the 
onion crop was in senescence and ready for harvest. On the other hand, the sunflower crop was in 
the maximum development stage. 

The irrigation of the semi-arid region of the Colorado River valley has a significant impact on 
the nature of the soil scattering. The soil dielectric constant is strongly related to its moisture content 
and, to a lesser extent, the soil textural composition. The vegetation backscatter signal is also modified 
by the irrigation condition. 

In general terms, applying PCA means a significant size reduction of the S1 SAR features stack. 
This remarkable stack dimension decrease shows the potential of the S1 SAR derived features time 
series information and its capability for monitoring the vegetation development throughout the 
complete phenological cycle of the crops. 

We estimated the GLCM textures using a 9×9 moving window, considering the 10 m pixel 
resolution for S1 SAR images. However, different window sizes may influence both texture values and 
classification statistical results. The analysis of different window sizes, spatial orientations (θ) and 
displacement distances (δ) was not the focus of this study and may be a subject for further analyses. 

This working methodology is applicable to other irrigated valleys in Argentina dedicated to 
intensive crops. There are also variables inherent to each lot, crop and agricultural producer that 
differ according to the study area. A line of research with so much potential leaves a large number of 
paths open, including the study of the sensitivity of the C-band SAR signal to differentiate irrigated 
from non-irrigated crops and the analysis of classification methods based on the merging of high 
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resolution optical data and S1 radar data. Irrigation parameters, soil moisture, height of crops and 
phenological stage should be considered in future analyses. 

We studied a total of 30 S1A images between April 14, 2017 and May 15, 2018. Studying the 
influence of the number of S1 images or their temporal correlation with the phenological state of 
crops is a goal for future studies. Along the same investigation line, analyzing the minimum number 
of SAR S1 features without degrading classification precision is a remaining line of work that should 
be addressed in future research studies. Future studies should incorporate the dynamics of the field 
due to changing crop seasons as well as winter and summer crop rotations. 
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