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Removal of methylene blue (MB) by Bimetallic-Metal 
organic Framework 

ABST�CT: In this study, three improved versions of UiO-66 were synthesised successfully: Different ratios of Ca+2/Zr+4 
were used to synthesize UiO-66, UiO-66-10%Ca and UiO-66-30%Ca. �ese MOFs were used in batch adsorption experiments 
to remove different concentration of methylene blue (MB) from wastewater. When the concentration of MB was 50 ppm, UiO-
66-10%Ca had the highest affinity toward MB therefore it exhibited adsorption capacity of 50.25 mg.g–1. Furthermore, the MB 
adsorption capacity was 22.75 mg.g–1 and 14.84 mg.g–1 in UiO-66-30%Ca and UiO-66 respectively. For equilibrium study, 
Langmuir and Freundlich models were used to �t the experimental data. Freundlich model was the best to describe the adsorp-
tion equilibrium of MO.  A kinetics study was described by pseudo �rst-order, pseudo second-order and intraparticle diffusion 
models. Pseudo second-order model demonstrated the best ��ing to the experimental data. �e MOFs used in this study are 
suggested to be a�ractive adsorbents to remove dyes from wastewater. 
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1. INTRODUCTION 

Dyes exist where there is civilisation. �ey are used to 
colour products, and employed in various industries, such as 
the food, paper, carpet, rubber, plastic, cosmetic, acrylic, 
wool, nylon, silk and textile industry [1-3]. 

Cationic methylene blue MB (tetramethylthionine 
chloride) is a basic thiazine dye as shown in Figure 1 [4]. As 
a basic dye, MB is not strongly hazardous, but may cause 
some harmful effects on humans and aquatic lives. It is also 
resistant to biological degradation [5].  

Fig. 1. Chemical structure of MB [1].  

Water is a precious resource for all living creatures on 
earth. A signi�cant environmental challenge is the removal 
of dye pollutants from fabric and textile wastewater [6]. Use 
of dyes to colour products consumes signi�cant volumes of 
water; consequently, a substantial amount of coloured 
wastewater can be generated [7]. Many approaches to dye 
removal have been proposed to treat the industrial 
wastewater [8, 9]. �e techniques are classi�ed into three 

main types: physical, chemical and biological treatments. 
�ese techniques include coagulation, membrane,            
separation process, adsorption process, �ltration, so�ening , 
reverse osmosis, electrochemical processes, chemical       
oxidation, and aerobic and anaerobic microbial degradation 
[10]. 

�e adsorption process is the simplest technique for 
dye removal due to its low cost, easy availability, simplicity of 
design, high efficiency, ease of operation [11, 12]. While 
activated carbon is presently believed to be the most        
operative adsorbent, its high cost means its production and 
regeneration remain uneconomical [13, 14]. �is limitations 
of using activated carbons have led researchers to seek       
low-priced dye sorbents, such as coal, �y-ash, silica gel, wool 
waste, agricultural waste, wood waste, and clay materials [11, 
15]. In recent years, research and development in the �eld of 
design and synthesis of MOFs has led to a rapid growth in 
practical and conceptual developments [16-21]. An          
extensive class of crystalline materials has become available 
because of metal organic framework (MOF) chemistry, 
which has superior characteristics such as high stability, 
tuneable metrics, organic functionality and porosity [16]. 

Its exceptional porousness means that MOFs have  
potentially numerous applications; their demonstrated   
applications in gas storage, separations, catalysis, energy 
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technology fuel cells, supercapacitors and catalytic            
conversions has made them objects of intensive study,     
industrial-scale production and application [22-25]. 

�e unique characteristics of MOF-type substances 
that make them the focus of much worldwide research are 
their pore geometry and high porosity [26, 27], their central 
metals [28, 29], open metal sites [30, 31], functionalised 
linkers [32, 33] and their loading of active species [34, 35]. 
All these characteristics have been scienti�cally employed to 
successfully improve interactions between the sorbates and 
MOFs. Speci�cally, these characteristics distinguish MOFs 
from other porous material in the �eld of adsorption         
processes for the effective removal of hazardous compounds 
[36]. Accordingly, MOFs are superior adsorbents because of 
their various host–guest interactions, acid-base [37, 38],       
π-complexation [39], H-bonding [40, 41] and coordination 
with open metal sites [31, 36]. �e pore size has a prime 
effect on the adsorption capacity of MOFs therefore         
exceptionally high dye uptake was demonstrated by           
mesoporous MOFs [42]. Very few studies was made based 
on bimetallic MOF [43]. UiO-66 has a�ractive                     
characteristics as an adsorbent to toxic chemicals from 
wastewater because it has a higher hydrothermal stability 
among other MOFs [44]. Bimetallic-UiO-66 was recently 
used to signi�cantly adsorb anionic dyes [45].  

In this study, based on batch adsorption experiments, 
UiO-66 and UiO-66-Ca samples were used as sorbents to 
remove MB from an aqueous solution. Equilibrium and   
kinetic adsorption models were used to represent the        
experimental data. �e equilibrium study was undertaken 
using Langmuir and Freundlich isotherms. �e kinetics 
study was conducted using pseudo �rst-order and pseudo 
second-order models as well as intraparticle diffusion.  

2. MATERIALS AND METHODS 

2.1 Synthesis and Activation 
All chemicals were supplied by Sigma-Aldrich 

(Australia) without further puri�cations. 
UiO-66 was synthesised successfully using a scaled-up 

procedure of a previously reported method [46].                
Speci�cally, 2.27 mmol of ZrCl4 and 2.27 mmol                      
1,4-benzenedicarboxylic acid (BDC) were mixed with 
405.38 mmol of N, N-dimethylformamide (DMF) in an 
autoclave and heated in a preheating oven at 393 K for 24 h. 
�e produced UiO-66 was immersed in chloroform for 5 
days to remove unreacted precursors. �en, the crystalline 
product was �ltered and dried under vacuum at 463 K for 
48 h. 

UiO-66-10%Ca was synthesised by mixing ZrCl4 (1.5 
g) with BDC (1.1 g) in 73 mL of DMF. A�er mixing for 
15 min, 0.15 g of Ca (NO3)2.4H2O was added and followed 
by the addition of 2 mL of H2O to the mixture. �e solution 
is mixed for approximately 30 min; then transferred into a 
125-mL Te�on-lined autoclave, which is tightly sealed and 
placed in a preheated oven at 132 °C for 1 d. 

UiO-66-30%Ca was synthesised by mixing ZrCl4 (1.5 g, 
6.44 mmol) with BDC (1.3 g, 7.82 mmol) in 70 mL of DMF. 
�e solution was mixed for 30 min, then Ca (NO3)2.4H2O 
(0.45 g, 2.86 mmol, 99%; Sigma-Aldrich) was added to the 

mixture. A�er that, 5 mL of deionised water was added into 
the mixture. Eventually, the mixture was transferred to a 
Te�on-lined autoclave which was tightly sealed and moved 
into a preheating oven at 430 K. �e products were then 
�ltered, dried and immersed in absolute methanol (100%, 
Sigma-Aldrich) for 5 d, a�er that it was dried and heated 
under vacuum at 473 K overnight before use as adsorbents. 

 2.2 Characterisation 
�e thermal stability of UiO-66, UiO66-10%Ca and 

UiO66-30%Ca were assessed by a thermogravimetric      
analysis (TGA) instrument (TGA/DSC1 STARe system; 
Me�ler-Toledo). �e samples were loaded into a pan and 
heated to 1173 K at a rate of 5 K/min. �e air �ow rate was 
maintained at 50 mL/min. FTIR spectra (Spectrum 100    
FT-IR spectrometer, PerkinElmer, Waltham, USA) were 
obtained to assess the stability of the functional groups on 
the organic ligands. �e spectra were scanned from 600 to 
4000 cm–1 with a resolution of 4 cm–1 using an a�enuated 
total re�ectance technique. X-ray powder diffraction and 
pa�erns were obtained with an X-ray diffractometer (D8 
Advance, Bruker AXS) using Cu Kα radiation 
(λ = 1.5406 Å) with accelerating voltage and current of 
40 kV and 40 mA respectively. Autosorb-1(Quantachrome, 
instruments) was used to determine N2 adsorption/
desorption isotherms as well as the pore size and surface area 
of the MOFs. �e samples were initially evacuated at 473 K 
for 24 h. �en, the sample was analysed to determine surface 
area, pore size and pore volume. 

2.3  Adsorption Study 
An aqueous stock solution of MB (1000 ppm) was 

prepared by dissolving MB (C16H18ClN3S, ≥95%,               
Sigma-Aldrich) in deionised water. Aqueous solutions with 
different concentrations of MB (5–100 ppm) were prepared 
by successive dilution of the stock solution with water. A�er 
obtaining the UV spectra of the solutions with a                  
spectrophotometer (UV spectrophotometer), the MB      
concentrations were determined using absorbance at 
668 nm wavelength of the solutions. A calibration curve was 
obtained from the spectra of the standard solutions                
(5–100 ppm). 

Prior to adsorption, the adsorbents were dried           
overnight under vacuum at 373 K. Several glass containers 
were cleaned, dried and �lled to 20 mL with MB of different 
concentrations ranging from 5 to 50 ppm. An exact amount 
of the MOF adsorbent (20 mg) was then put in each         
container. 

�e dye solutions containing the adsorbents were 
mixed well with a magnetic stirrer and maintained for a     
period from 5 min to 24 h at 298 K. Samples for analysis 
were collected by a syringe �lter at different sampling       
intervals. UV spectrometer was used to investigate the dye 
content in the supernatant. 

Adsorbed amounts of MB by the Zr-MOFs at each 
time interval of time, the equilibrium and percentage       
removal of MB were computed according to the following 
equations:  
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Where: 
qt :  the amount of MB adsorbed per unit weight of MOF at 

 any time t (mg/g) 
qe :  the amount of MB adsorbed per unit weight of MOF at 

 equilibrium (mg/g) 
C0 :  the initial concentration of the MB solution at time 

 zero (mg/L) 
Ct :  the concentration of the MB solution at time t (mg/L) 
Ce : the concentration of the MB solution at equilibrium 

 (mg/L) 
V :  volume of the MB solution in batch adsorption process 

 (L) 
R% :  percentage removal of MB [5] 
m :  Zr-MOF mass used in adsorption batch process (g)   

 [1, 5, 47]. 

 Adsorption mechanism and rate of diffusion were  
estimated using three kinetic models: pseudo �rst-order, 
pseudo second-order [48-50] and intraparticle diffusion 
model [51, 52]. �e adsorbents’ adsorption behaviours were 
simulated using the Freundlich and Langmuir adsorption 
isotherms [48-50, 53]. 

Kinetics study:  Adsorption mechanism and rate of        
diffusion were estimated using three kinetic models: pseudo 
�rst-order, pseudo second-order [48-50] and intraparticle 
diffusion model [51, 52].  

�e nonlinear form of the Lagergren pseudo first-order 
kinetic equation can be wri�en as follows [54, 55]:  

 
 
 

�e linear form of the pseudo first-order kinetic equation 
can be expressed as follows: 

 

�e nonlinear form of the pseudo second-order kinetic 
equation can be wri�en as follows [56]: 

 

 
�e linear form of the pseudo second-order kinetic equation 
can be wri�en as follows: 

 

 

Where: 
qe :  the amount of MB adsorbed per unit weight of MOF 

 at equilibrium (mg/g) 
qt :  the amount of MB adsorbed per unit weight of MOF 

 at any time t (mg/g) 
k1 :  pseudo first-order rate constant (min–1) 

t : time (min) 
k2  : pseudo second-order rate constant (g/mg min). 

A linear plot of the pseudo �rst-order model (ln        
[qe – qt]) against time provides the values for the kinetics 
sorption parameters, such as rate constant (k1), equilibrium 
adsorption capacity (qe) and the linear regression coefficient 
(R2). Likewise, a linear plot of the pseudo second-order 
model (t/qt) against time also provides the rate constant 
(k2), equilibrium adsorption capacity (qe) and the linear 
regression coefficient (R2). 

As a result of the limitations of the pseudo first-order 
and pseudo second-order kinetic equations, the lack of an 
identi�ed adsorption mechanism and the rate-limiting steps 
in the adsorption process, Weber and Morris established 
intraparticle diffusion model [117]. In general, the migration 
of sorbate molecules in bulk to the surface of a solid sorbent 
by intraparticle diffusion process is what controls the rate of 
most liquid/solid sorption systems. �e analysis using     
Weber and Morris’s intraparticle diffusion model is as     
follows [51, 52]: 

 
 

Where: 
qt :  the amount of MB adsorbed per unit weight of MOF at 

 any time t (mg/g) 
kp :  intraparticle diffusion rate constant (mg/g min0.5) 
t :  time (min) 
C :  constant represents the surface adsorption [57-59]. 

Equilibrium study: �e adsorbents’ adsorption behaviours 
were simulated using the Freundlich and Langmuir           
adsorption isotherms [48-50, 53]. 
�e nonlinear form of the Langmuir isotherm can be       
expressed as: 

 

 
while the linear form can be wri�en as [60]: 

 

Where: 
qm :  Langmuir maximum loading capacity (mg/g) 
kL  : Langmuir constant related to the energy of adsorp

 tion and affinity of binding sites (L/mg)[61] 
Ce : Equilibrium concentration of dye in solution         

 (mg/L) 
qe :  Amount of dye adsorbed at equilibrium per unit mass 

 of sorbent (mg/g). 

�e equilibrium experimental data were ��ed using the 
linear form of the Langmuir isotherm equation (Equation 
9). Speci�cally, the Langmuir parameters qm, KL, and R2 
were obtained from the plot of (Ce/qe) against Ce. 

�e dimensionless constant separation factor, RL, is 
vital to the Langmuir isotherm, and can be found in the    
following equation [62-65]: 
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Where C0 is the initial concentration of adsorbate (mg/L) 
and KL (L/mg) is the Langmuir constant. 
�e shape of the isotherm depends on RL, because this factor 
indicates the adsorption process as: 

Unfavourable (RL > 1) 
Linear (RL = 1) 
Favourable (0 < RL < 1) 
Irreversible (RL = 0). 

�e nonlinear form of the Freundlich isotherm is wri�en as: 
 
 

Whereas the linear form of the Freundlich isotherm         
equation can be wri�en as [60, 66]: 

 

 
Where KF is the calculated Freundlich equilibrium constant 
([mg/g] [L/mg] 1/n) and is an indicator of adsorption      
capacity, and n is a measure of the deviation from linearity of 
adsorption (g/L). 

3. RESULTS AND DISCUSSION 

3.1 Characterisation 
Figure 2 shows the N2 adsorption/desorption           

isotherms for UiO-66-Ca samples and UiO-66. Hysteresis in 
the desorption isotherm was distinguishably demonstrated 
by UiO-66-10%Ca which had a sharp increase in               
adsorption at relative pressures close to 0.999. �is           
observation is strong evidence that the mesopore and 
macropore sizes were enhanced [67].  

Table  1 Textural properties of the adsorbents based on N2 
adsorption/isotherm. 

In addition, Table 1 presents the textural properties of 
all adsorbents, according to the calculations of the N2       
adsorption isotherm. �e speci�c surface area (SBET)         
decreased with increasing content of a second metal. BET 
surface area in UiO-66 was 1585.50 m2.g–1 and then           
decreased to 918.115 and 557.68 m2.g–1 in UiO-66-10%Ca 
and UiO-66(Zr)-30%Ca respectively due to increasing the 
content of Ca in the synthesis process. �e current BET 
values are acceptable when they compared with that in      
previous studies [68] . 

However, the pore volume and average pore size were 
enhanced in the MOFs with the lowest content of the       
second metal. �e highest pore volume and pore size were 
seen in UiO-66-10%Ca, which were 1.10 cc.g–1 and 2.39 nm, 
respectively. �e results indicate that the addition of low 

concentrations of the second metal in the single-pot          
synthesis, followed by the activation process using the       
solvent exchange method, enhanced the pore volume and 
pore size replacing the second metal by methanol molecules 
which were discarded by the heating in the second stage of 
the activation process [69]. 

Fig. 2. N2 adsorption/Desorption Isotherm of UiO-66 and 
UiO-66(Zr)-Ca. 

Figure 3(a) compares the XRD pa�erns of UiO-66-Ca 
with that of UiO-66. �e results demonstrate that the       
integrity of the structure was maintained in activated        
samples, which indicates that the synthesis and activation 
procedures succeeded reliably without suspected impurities 
of a metal oxide inside the pores. �e XRD pa�erns of      
activated samples are similar to the XRD pa�ern of UiO-66 
in previous studies [46, 70, 71]. �e pa�erns of the samples 
a�er using in the adsorption experiments in Figure 3a shows 
that UiO-66-30% Ca demonstrated higher stability than 
other samples because the pa�ern of this sample displayed 
all peaks as same as those of activated samples. However, 
other samples were distinguished by the main characteristic 
peak in 2 theta of 7° while other peaks were signi�cantly   
reduced. 

Figure 3(b) shows that the spectra of all samples,    
including that of UiO-66, exhibit the same vibration bands 
with slight deviations in the position of some peaks with 
increases in the content of a second metal. In addition, the 
peaks in the mixed-metal samples were broader than the 
peaks in the single-metal (Zr) sample, which indicates a 
difference in the dipole between ground state and excited 
state in the mixed-metal UiO-66 as a result of incorporating 
a second metal in the metal centre [72, 73]. �e vibration 
band of 1615–1580 cm–1 was a�ributed to C=C-C stretching 
in the aromatic ring of terephthalate salts; however, this 
band extended from 1590 to 1525 cm–1 in the mixed-metal 
UiO-66 [74]. Further, the bands at 1500 and 1390 cm–1 
were a�ributed to the stretching vibrations of symmetric 
COO– and asymmetric COO– in coordinated organic       
linkers, as shown in the spectrum of UiO-66. 

Moreover, the weak bands at 881, 812 and 785 cm–1 

were assigned to Zr-O whereas the peak at 730 cm–1 in the 
UiO-66 spectrum was assigned to the stretching vibration of 
C-H and out-of-plane bending of aromatic ring in the main 
skeleton of UiO-66; this peak was shi�ed to 744 cm–1 in the 
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(12) 

(13) 

Adsorbents SBET 
(m2g–1) 

Pore volume 
(cc g–1) 

Pore  
diameter 

(nm) 

UiO-66 1585.5 0.82 1.04 

UiO-66-10%Ca 918.115 1.10 2.39 

UiO-66-30%Ca 557.681 0.25 0.91 
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spectra of bimetal UiO-66 [73, 75]. In addition, the band at 
1017 cm–1 belonged to C-H stretching in the MOF. 

Figure 3(c) presents the results of thermogravimetric 
analysis for all adsorbents in this study. All samples appear to 
have the same thermal stability, with structural stability at 
increasing temperatures up to 725 K. 

Fig. 3. Characterisation of UiO-66 samples. (a) PXRD 
pa�erns, (b) FTIR spectra and (c) TGA pro�les of the UiO-
66 samples. 

3.2  Kinetic modelling study 
Figure 4a-f describes the adsorption kinetics of MB by 

single-metal UiO-66 and bimetal UiO-66(Zr)-Ca. �is   
Figure shows the amount of dye adsorbed (mg/g) on the 
adsorbents during different time periods (min) for various 
initial concentrations of MB. For all MB concentrations, MB 

uptake at the commencement of the adsorption process is 
very rapid; a�er an initial period of time, it proceeds at a 
slower rate until the saturation is a�ained [76-78]. 

�is phenomenon can be explained thus: the first     
available MB molecules are favourably adsorbed onto the 
most active sites of the single-metal and bimetal Zr-MOF, 
and the high initial MB uptake is possible because of the 
accessibility of many active sites. A longer contact time     
between the MOFs and MB results allows to increase the 
removal of MB until equilibrium adsorption capacity is 
reached [78]. Another explanation is that a higher initial 
concentration of MB provides more MB molecules and 
greater driving force of the aqueous phase (MB) against the 
solid phase (MOFs) to overcome mass-transfer resistance. 
�is fact gives rise to increase collisions between MB        
molecules and active sites on the adsorbent [79, 80]. For 
instance, the adsorption capacity for MB onto UiO-66 at 
equilibrium increased from 2.151 to 14.837 mg.g–1 with  
increase in MB concentration from 5 to 50 mg. L–1. Also, the 
adsorption capacity in UiO-66-Ca 10% and UiO-66-30%Ca 
was higher than that of UiO-66. It was reported that vacant 
metal sites in bimetallic MOFs are enhanced a�er removing 
the second metal by the solvent exchange activation[81]. 
�erefore, removing of Ca from UiO-66-Ca increased the 
active sites and consequently enhanced the adsorption     
capacity of MB [81]. 

�e pseudo �rst-order and pseudo second-order model 
were employed for the adsorption of MB onto UiO-66, UiO-
66-10%Ca and UiO-66-30%Ca. �e linear regression      
correlation, R2, was calculated to identify the model of best 
�t; higher R2 values mean a be�er �t for the experimental 
data. �e results of the correlational analysis of the amount 
of adsorbed dye (mg/g) against contact time, for the various 
initial concentrations of MB (5, 15, 30 and 50 ppm) are 
shown in Figure 4. �e results indicate that the amount of 
dye loading (qt [mg/g]) increases with contact time at each 
level of MB concentration. In addition, the amount of MB 
adsorbed increased with increasing in the initial MB          
concentration [47].  

�e kinetics of the adsorption process in the laboratory
-based on batch experiments enables the prediction of the 
rate at which a pollutant is removed from bulk solutions, 
which informs the design of adsorption treatment plant    
columns [82]. However, the physical and chemical          
properties of the adsorbent signi�cantly affect its adsorption 
kinetics, which in turn, affects the sorption mechanism.     
Statistics from kinetics studies of pseudo first-order and 
pseudo second-order kinetics model equations have been 
investigated for �t with contact time data [76]. Tables 2 and 
3 below present their main characteristics as calculated    
kinetic constants (k1, k2) and correlation coefficients (R2) for 
Ci = 5, 15, 30 and 50 ppm.  

According to the R2 values obtained, they have been 
consistent and closer to unity for the pseudo second-order 
kinetic equation than for the pseudo first-order kinetic     
equation. �erefore, based on R2 values, the sorption        
kinetics of MB removal using single-metal and bimetal Zr-
MOF were well described by the pseudo second-order     
kinetic equation. Further, the calculated equilibrium         
adsorption capacity agreed with the experimental                 
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equilibrium adsorption capacity, further indicating that the 
sorption of aqueous MB onto single-metal and bimetal        
Zr-MOF perfectly obeyed pseudo second-order kinetics that 
indicates strong interactions happened between MB and 
active sites in UiO-66 [83]. Speci�cally, the sorption of MB 
by single and bimetal Zr-MOFs occurred through            
chemisorption (the exchange or sharing of electrons         
between the sorbate and sorbent via covalent forces and ion 
exchange) [56, 83]. 

Based on the mechanism underlying pseudo              
second-order kinetics, the effects of the initial concentration 
on the adsorption kinetics of MB onto the three MOFs (i.e., 
all the sorbent systems) were similar over time. UiO-66-10% 

Ca was taken to be a representative adsorbent and was used 
to explain the effects of the initial concentration on the rate 
of adsorption. Precisely, Table 2 shows that the adsorption 
rate  constants (k2) of  Pseudo second-order model on UiO-
66-10% Ca were higher than those on other adsorbents. 
Speci�cally, k2 on UiO-66-10% Ca was 0.86348, 0.07616, 
0.04628 and 0.02259 g mg–1.min–1 at initial MB                   
concentrations of 5, 15, 30 and 50 mg.L–1, respectively,      
signifying a decrease in adsorption rate at higher initial     
concentrations of MB. Reductions in the amount adsorbed 
at higher initial concentrations may be due to MB molecules 
having to enter the pores through a longer diffusion path. On 
the other hand, with less amounts of MB adsorbed, MB   

Applied Materials and Technology 

Fig. 4. Fi�ing of experimental data by �rst-order and second-order kinetic models of MB adsorption onto UiO-66 (a, b), UiO-
66-30%Ca (c, d) and UiO-66-10%Ca (e, f). 
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molecules tend to be rapidly adsorbed into the open pores of 
MOFs, which eventually increases the adsorption rate (K2). 
Table 3 shows the kinetic constant of Pseudo �rst- order 
model (K2) and R2. K1 of UiO-66-10% Ca was also higher 
than that of UiO-66 and UiO-66-30% Ca. For instance, it 

was 0.0101, 0.2669 and 0.0105 respectively at initial           
concentration of 5 ppm. �e lower rate constant for MB 
adsorption onto the UiO-66-30% was tentatively ascribed to 
MB diffusion into the micropores of the MOF [84]. 

Applied Materials and Technology 

Table 2 Calculated kinetics constant (k2) and correlation coefficient (R2) for Ci = 5, 15, 30 and 50 ppm. 

Adsorbent Adsorbate 
Pseudo second-order kinetics constant k2 (g/(mg.min))   

5 ppm 15 ppm 30 ppm 50 ppm 
k2 R2 k2 R2 k2 R2 k2 R2 

UiO-66 MB 0.01050 0.9989 0.00546 0.9992 0.00273 0.9992 0.00147 0.999 
UiO-66-10% Ca MB 0.86348 0.9999 0.07616 0.9963 0.04628 0.9999 0.02259 0.9998 
UiO-66-30% Ca MB 0.00498 0.9991 0.00212 0.9984 0.00167 0.9992 0.00217 0.9996 

Table  3 Calculated kinetics constant (k1) and correlation coefficient (R2) for Ci = 5, 15, 30 and 50 ppm. 

Adsorbent Adsorbate 
Pseudo �rst-order kinetics constant k1 (min–1) 

5 ppm 15 ppm 30 ppm 50 ppm 
k1 R2 k1 R2 k1 R2 k1 R2 

UiO-66 MB 0.0101 0.9888 0.0119 0.9920 0.0120 0.9925 0.0113 0.9813 
UiO-66-10% Ca MB 0.2669 0.9716 0.0913 0.9731 0.0395 0.9886 0.0370 0.9920 
UiO-66-30% Ca MB 0.0105 0.9930 0.0161 0.9636 0.0118 0.9927 0.0144 0.9960 

3.3  Intraparticle diffusion modelling study 
A multistep adsorption process consists of the mass 

transfer of MB from the solution to the surface of               
single-metal and bimetal UiO-66; this transfer determines 
the extent of reaction throughout the whole adsorption     
process [85]. Adsorption process mechanism of MB onto 
MOFs can be arranged into the following three stages: 
1. Film diffusion: the initial stage of rapid adsorption 
2. Successive intraparticle diffusion: the second stage of 

the process during which the adsorption rate slows 
3.  �e �nal stage: the adsorption a�ains equilibrium and 

lasting constant. 

Film diffusion is very fast because of the rapid sorption 
of MB to the surface of the MOF. �is stage is featured by 
quick surface mass transfer caused by a large differential 
which acts as a driving force. �is stage is when the most is 
adsorbed by adsorbents, according to Weng et al. [86]. Such 
a �nding establishes MOF-MB systems as entailing a fast 
adsorption process. Consequently, these adsorbent systems 
are favourable alternatives for removing cationic dyes from 
wastewater effluent. �e second stage, intraparticle diffusion, 
is slower because the occupation of MB molecules on many 
of the available external sites in the �rst step slows the       
diffusion of MB molecules into the pore spaces of the MOF 
[85]. 
�e mechanism of MB sorption on the surface of MOF was 
investigated using contact time data. Speci�cally,                
experimental data were ��ed to the intraparticle diffusion 
model (Equation 13) and the outcomes interpreted by 
plo�ing qt versus t1/2 in Figure 5. �e most important aspects 
of the intraparticle diffusion plot are �rst, the linear portion 

and the intercept of the plot (c), which indicates the effects 
of the boundary layer on the adsorption process. 
�e second linear portion of the plot can be used to interpret 
intraparticle diffusion. �e plot can be used to derive values 
for parameters, such as kp (the diffusion rate), C and R2, as 
presented in Table 4.  �e kp can be determined from the 
slope of the plot. �e slope can be used to estimate the      
driving force of diffusion, which plays a critical role in the 
adsorption reaction. Experimental data analysis              
demonstrated that the kp values increased from 0.0991 to 
0.638 mg.g–1min–(1/2) with increases in the initial MB        
concentration from 5 to 50 mg.L–1. �erefore, higher initial 
concentrations of MB increase the driving force and         
subsequently increase the MB diffusion rate. Further,       
increasing initial MB concentrations over a similar range led 
to increases in the intercept value (C) from 0.5017 to 
3.8144 mg.g–1, suggesting that an initial high concentration 
of basic dye is associated with a stronger boundary layer 
effect in the sorption process. In addition, an increase in the 
intercept value (C) can indicate the availability of MB on the 
boundary layer of UiO-66. 

3.4 Equilibrium modelling study 
Recent research has revealed that initial concentration 

of MB has a detrimental effect on adsorption process. Initial 
concentration of MB plays a role in determining removal 
efficiency of MB (R %) and equilibrium adsorption capacity 
(qe); indeed, the initial concentration of MB has profound 
consequences for R% and qe. �e initial concentration of MB 
positively affected qe and negatively affected R% [60, 78]. 
�e observed decrease in MB removal (R% values of 43.03% 
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to 29.67%) by UiO-66 samples was representative of the 
adsorption process in all systems and con�rmed the           
occupation of all accessible active sites on the UiO-66 above 
a certain concentration of MB. However, the increase in 
equilibrium adsorption capacity (qe) from 2.15 to 14.83 mg/
g can be a�ributed to the higher adsorption rate and the use 
of all available active sites on UiO-66 samples for sorption at 
higher concentrations of MB. 

Equilibrium isotherms were examined using the       
Langmuir and Freundlich isotherms. �e assumption of the 
Langmuir isotherm is monolayer coverage of sorbate over a 
sorbent with homogenous surface [5, 63]. It assumes that 
the adsorption process occurs at speci�c homogenous sites 
over the adsorbent; that is, when an MB molecule occupies a 
speci�c site, additional sorption cannot happen again at the 
same site. Successful implantation of the Langmuir            
adsorption isotherm has been undertaken to explain the 
adsorption of basic dyes such as MB from aqueous solutions 
[66]. 

According to Freundlich model, the favourability of 
adsorption can be estimated by the magnitude of the           
exponent (1/n), which predicts the feasibility of the          
adsorption process. �e values of n must be greater than one 
for conditions to be favourable for an adsorption process [5, 
87]. �e constant n values of UiO-66, UiO-66-10%Ca and 
UiO-66-30%Ca have been calculated to be 1.29, 5.01 and 
3.09, respectively. �ese values con�rm the favourability of 
adsorption of MB onto single-metal and bimetal Zr-MOF. 
�e results of the correlational analysis for KF, n and the 
linear regression coefficient (R2) for the plot of the linear 
form of the Freundlich model are presented in Table 5. 

Figure 6 illustrates the experimental equilibrium data 
and the predicted theoretical isotherms for the adsorption of 
MB onto single-metal and bimetal Zr-MOFs. It is apparent, 
from Figure 6 and the R2 values in Table 5, that there is     

closer �t between the experimental data and Freundlich 
isotherm compared to that with the Langmuir isotherm, at 
higher values of R2. 

Analyses and calculations of the Langmuir and       
Freundlich plots revealed that the values of the linear        
regression correlation coefficient (R2) for the Langmuir 
model are 0.9889, 0.9951 and 0.9821, and for the Freundlich 
model 0.9979, 0.9973 and 0.9926, for UiO-66, UiO-66-10%
Ca and UiO-66-30%Ca, respectively. 

Further, Freundlich constants (KF) related to the     
bonding energy of MB molecules with single-metal and    
bimetal Zr-MOFs were greater than Langmuir constants 
which were related to the affinity of MB molecules to        
single-metal and bimetal Zr-MOF in all cases. As a result, the 
adsorption of MB onto single-metal and bimetal Zr-MOF 
occurred as multilayer adsorption on a heterogeneous       
surface. �e calculated maximum monolayer adsorption 
capacity (qm) of Zr-MOF for MB is 50.25 mg/g for UiO-66-
10%Ca, a relatively satisfactory adsorption capacity (see 
Table 4). According to Langmuir isotherm, the calculated 
results for the separation factor (RL) are (0.89–0.44), (0.005
–0.0005) and (0.28–0.03) for UiO-66, UiO-66-10%Ca and 
UiO-66-30%Ca, respectively. RL values for the     sorption of 
MB onto single-metal and bimetal UiO-66 are in the range 
of 0 < RL < 1, indicating that the adsorption was favourable. 
Further, higher initial MB concentrations in the adsorption 
process can make it irreversible [88]. 

 Table 6 lists the maximum adsorption capacity (qm) of 
the UiO-66 adsorbents in this study for MB, relative to those 
reported in the literature for different adsorbents of MB. �e 
performance of UiO-66 in MB removal is relatively effective 
by comparison. 
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Table 4 Calculated kinetics constant (kp), C and correlation coefficient (R2) for Ci = 5, 15, 30 and 50 ppm. 

  Adsorption mechanism 
  Intraparticle diffusion model 

Adsorbent Initial concentration of MB 
solution (mg.L–1) 

kp 
(mg.g–1min–(1/2)) C (mg.g–1) R2 

UiO-66 5 0.0991 0.5017 0.9999 
15 0.22 2.1455 0.9918 
30 0.3955 3.5763 0.9884 
50 0.638 3.8144 0.9959 

UiO-66-10%Ca 5 0.4851 3.4862 0.9981 
15 0.9352 9.927 0.9883 
30 0.7581 23.867 0.9655 
50 0.6585 39.364 0.9040 

UiO-66-30%Ca 5 0.218 1.3901 0.9983 
15 0.5641 2.4216 0.9951 
30 0.7423 6.186 0.9999 
50 0.727 11.013 0.9928 
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Fig. 5. Fi�ing of experimental data using intraparticle      
diffusion models of MB adsorption onto UiO-66 (a), UiO-66
-30%Ca (b) and UiO-66-10%Ca (c). 

Adsorbent Adsorption isotherm model Parameter Value R2 

UiO-66 
Langmuir qm (mg/g) 31.74 0.9889 

KL (L/mg) 0.02447 

Freundlich KF ([mg/g] [L/mg]1/n) 0.98157 0.9979 n (g/L) 1.2918 

UiO-66-10%Ca 
Langmuir qm (mg/g) 50.2512 0.9951 KL (L/mg) 39.8 

Freundlich KF ([mg/g] [L/mg]1/n) 47.9855 0.9973 n (g/L) 5.0150 

UiO-66-30%Ca 
Langmuir qm (mg/g) 23.7529 0.9821 KL (L/mg) 0.4982 

Freundlich KF ([mg/g] [L/mg]1/n) 8.0164 0.9926 n (g/L) 3.0911 

Fig.  6. Fi�ing of experimental data using Langmuir and 
Freundlich models of MB adsorption onto UiO-66 (a), UiO-
66-30%Ca (b) and UiO-66-10%Ca (c). 

Table 5 Calculated equilibrium constants (kL, kF, qm, n and correlation coefficient (R2)) of MB adsorption onto UiO-66, UiO-
66-30%Ca and UiO-66-10%Ca for Ci = 5, 15, 30 and 50 ppm. 
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4. CONCLUSION 

�e main goal of the current study was to assess the 
adsorption capacity of MB in UiO-66, UiO-66-10%Ca and 
UiO-66-30%Ca. �e Zr-MOFs were prepared according to a 
single pot solvothermal methods with a modi�cation using 
trace additives of Ca. Compared with the UiO-66 without 
the modi�cation; the textural properties of the modi�ed 
UiO-66 were enriched while their performances were       
enhanced to remove MB from wastewater. �e kinetics of 
MB sorption onto UiO-66, UiO-66-10% Ca and UiO-66-
30% Ca were ��ed by the pseudo �rst and second-order 
models. �e second model offered the best �t for the        
experimental data for all systems studied. �e mechanism of 
MB sorption onto the surface of MOFs was investigated 
using contact time data. Speci�cally, the ��ing of                 
experimental data to the intraparticle diffusion model       
identi�ed three stages in the sorption process. 

Langmuir and Freundlich plot analyses and                
calculations revealed that the values of the linear regression 
correlation coefficient (R2) for the Freundlich model were 
greater than those for the Langmuir model, for UiO-66, UiO
-66-10%Ca and UiO-66-30%Ca. As a result, the adsorption 
of MB onto single-metal and bimetal Zr-MOFs was           
considered to occur as multilayer adsorption on a               
heterogeneous surface.  

Langmuir maximum loading capacity (qm) was         
compared with other reported adsorbents in previous       
studies. �e values of the separation factor (RL) indicated 
that the adsorption was a favourable process. Using the 

Freundlich linear model, constant n values for UiO-66, UiO-
66-10%Ca, and UiO-66-30%Ca were found to be more than 
one (i.e., n > 1). �ese values con�rm the favourability of 
MB adsorption onto single-metal and bimetal Zr-MOF. �is 
study can suggest the bimetallic UiO-66 as an a�ractive   
adsorbent to remove dyes from wastewater.  
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