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Preface

This thesis is the culmination of the past two years of my life which I have dedicated, for
the most part, to studying the general theory of relativity and doing research in black hole
thermodynamics. While I have worked on two other small research projects in GR during
that time, I consider the research presented here as the most valuable of this period.

One of the most challenging parts of conducting my first research project in theoretical
physics was finding good resources to learn about certain topics that I needed to understand.
Many of the references I had to go through were – as you can imagine – quite challenging
to follow. Nevertheless, I have come across several theses that were extremely helpful and
aided me in understanding certain topics that I was trying to learn. Some were useful in
explaining certain concepts and others were helpful in explaining the detailed procedure of
certain calculations.

My aim in this thesis is to simultaneously present to a defense committee my own research
along with my understanding of the theoretical concepts that underlie it, and to offer as
clear and detailed an explanation as possible of the topics that I discuss. In doing the
latter I hope that maybe someday I could benefit someone in the way that many others
have benefited myself. With that in mind, I have made a few decisions which I hope will
improve the readability of this thesis. First, I have tried to do two things that can be at
odd with each other: give a complete discussion of the elements that I am presenting, while
keeping each discussion very compact. In order to do this I have moved many parts of
the discussion to appendices. This helps make the discussions of the core chapters concise,
while also presenting the information in the appendices in stand-alone discussions for anyone
interested only in reading these parts.

I have also attempted to give detailed proofs and derivations in all my discussions. Some of
the proofs that I found for certain formulae were too complicated and I have attempted to
come up with shorter proofs myself to present them here. Because reading a long proof can
make the reader feel disconnected from the big picture, many proofs are placed in individual
subsections. The uninterested reader can simply jump to the end of any proof (denoted by
the conventional end-of-proof symbol “�”).

Aside from proofs, I have tried, to the best of my judgement, to present the details of every
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relevant calculation in ways to help anyone who is trying to reproduce these calculations.
Here I include both previously-available calculations as well as my own calculations in
Chapter 4.
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Conventions and Notations

Units

We work in the Plank natural units system. In this system we have:

• Speed of light c = 1,

• Gravitational constant G = 1,

• Reduced Planck constant ~ = 1,

• The Boltzmann constant kB = 1,

• The Coulomb constant 1
4πε0

= 1.

Relativity and Tensors

Unless otherwise stated, all metrics are assumed to have Lorentzian signatures (−,+,+, ...+).
All mathematical results will be expressed in light of this assumption.

We mostly use the abstract index notation of Roger Penrose wherein indices denoted by
Latin letters {a, b, c...g} indicate a tensors type rather than its components in a particular
basis. Nevertheless, Greek letters are occasionally used to emphasize the fact that we are
referring to a specific basis. On a D-dimensional manifold, Greek indices run from 0 to
D − 1. The specific Latin letters {i, j, k} denote only spatial components in a particular
basis and hence run from 1 to D − 1.

The Einstein summation convention is used by default whenever an index of any of the
above types is raised an lowered.

When the coordinates are given by xa = (x0, ...xD−1), the partial derivative operator nota-
tion that follows is
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∂µ ≡
∂

∂xµ
.

We also sometimes do deal with spatial vectors in 3 dimensions. These vectors are denoted
by upper arrows,

~x = (x1, x2, x3).

General Symbols in Mathematics

∀ For all
∃ There exists
� End of proof
| Such that

:= Equal by definition
† Complex conjugate

Sets and Topology

∅ Empty set
∈ x ∈ A, x is an element of A
∪ A ∪B, union of A and B
∩ A ∩B, intersection of A and B
⊂ A ⊂ B, A is contained in B
\ A\B, B subtracted from A
Ā Closure of A

Ȧ Boundary of A
f : A→ B f maps x ∈ A to an element f(x) ∈ B⋃
t∈S

⋃
t∈S

At, the union of all elements At with t taking all values in S
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Differential Geometry

∇ Covariant derivative
� ≡ ∇a∇a D’Almbert operator
d Exterior derivative
∧ Exterior/wedge product
? Hodge star operator

( ) T(ab), symmetrization of Tab

[ ] T[ab], anti-symmetrization of Tab
LV Lie derivative along the vector field V
Rabcd Riemann curvature tensor
Rab Ricci tensor
R Ricci scalar
Cabcd Weyl tensor

Causal Structure

J+(S) Causal future of S, definition 1.7
I+(S) Chronological future of S, definition 1.8
I ± Future/past null infinity, definition 1.9
D±(S) Future/past domain of dependence, definition B.4

Symbols Commonly Used in Text

M Manifold
Tp(M) Tangent space at a point p ∈M
∂M Spatial boundary of M at infinity
B Black hole region
H Black hole event horizon hypersurface
Sn n-sphere
gab Metric tensor
g Determinant of gab
hab Induced metric tensor at infinity
σab Foliation metric at fixed time and radial coordinates
na Spacelike outward-pointing unit normal vector
ua Timelike future-pointing normal vector
Tab Energy-momentum tensor
Kab Extrinsic curvature tensor
δab Kronecker delta
ε Levi-Civita tensor
ε̃ Levi-Civita symbol
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Introduction

Despite the success of General Relativity in the past century, a quantum description of
gravity remains one of the most active areas of research in theoretical physics today. While
gravity becomes dominant at large scales where classical physics is an appropriate effective
theory, the study of very massive systems on a very small scale would require a quantum
theory of gravity. A quantum description of gravity is also needed to have a grand unified
theory of all the fundamental forces. The most prominent candidate for a theory of quantum
gravity is currently String Theory [1].

The discovery of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence in
[2] shows a duality between gravity solutions from String Theory in anti-de Sitter (AdS)
spacetime and conformal field theories (CFT) that reside on its boundary. The announce-
ment of this conjecture was an important step for String Theory as it presents a connection
between the latter and Quantum Field Theory, while also enabling a non-perturbative ap-
proach to Quantum Field Theory calculations with some boundary conditions. Particularly,
in a certain limit which we will discuss, the duality means that the study of certain classes of
Quantum Field Theory in flat spacetime can be mapped to classical black hole solutions in
five-dimensional anti-de Sitter spacetimes, the latter being considered an approximation to
solutions from String Theory. A strong interest in the study of five-dimensional black hole
solutions in anti-de Sitter spacetimes then follows naturally from the AdS/CFT correspon-
dence, even though these solutions lack strong astrophysical or cosmological interest. In
fact, the study of black hole solutions in five-dimensional AdS spacetimes reveals important
information about strongly coupled SU(N) gauge theories.

Conformal field theories are quantum field theories that are invariant under conformal
transformations. The latter are transformations that preserve the angles but not necessarily
the lengths [3]. Renormalization of these theories can break this conformal symmetry,
leading to a quantum anomaly known as conformal anomaly. This anomaly is characterized
by the value of the trace of the energy momentum tensor. One of the predictions of the
AdS/CFT correspondence is a relation between the latter and the energy-momentum tensor
of the gravitational theory. Using this, the conformal anomaly of the boundary CFT can
be computed from the gravitational theory.
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Another interesting relation between the two theories is an equivalence between the AdS
background energy of black hole solutions and the vacuum energy of the dual CFT on the
boundary.

Black holes are curious objects: they are regions which no object can escape from, regard-
less of the object’s speed. This type of behavior only comes from the general relativistic
description of gravity and cannot be predicted from classical physics. While in classical
physics we can have massive bodies with gravitational fields strong enough that their es-
cape velocities are larger than the speed of light, this is different from a body curving
spacetime in a way that does not allow for any timelike or null objects to escape from it.
Moreover, black holes can become massive and complex bodies, with many other particles
and formations lying beyond their event horizons. Nevertheless, these presumably complex
objects often can be completely described by the simple laws of thermodynamics, so long as
we make the appropriate attributions between the quantities in the first law and the black
hole parameters.

The study of black hole thermodynamics in anti-de Sitter spacetimes presents certain chal-
lenges that do not exist in flat spacetimes. Particularly, certain isometric charges as well as
the action become divergent on the boundary. While a number of regularization schemes
exist [4, 5], none of them is the sole “canonical” choice that everyone agrees on. Partic-
ularly popular solutions are the “background subtraction method” and the “counterterms
subtraction method”. The latter has several advantages which we will discuss in the thesis.
Furthermore, different expressions exist in the literature for some thermodynamical quan-
tities like the energy and angular velocity in higher-dimensions AdS spacetimes [6]. The
choice between these expressions has a direct effect on the validity of the first law of black
hole thermodynamics, which becomes more elusive in five dimensional AdS spacetimes than
it is in four dimensions. Different solutions have been proposed for this issue, for example
in [6], [7] and [8].

A black hole in five dimensions can have up to two independent angular momenta. It can
also have an electric or a magnetic charge. Our present goal is to study a general solution
of electrically charged black holes in five-dimensional AdS space with two different rotation
parameters. Simpler cases like neutral black holes with only one non-vanishing rotation
parameter [9] and black holes with two non-vanishing and different rotation parameters [9,
7] have been studied extensively.

The metric under consideration here was presented in [10] where the energy of the black
hole was calculated by integration of the first law of thermodynamics. This is based on
arguments presented in [6] which claim that other ways of calculating the energy in five-
dimensional and higher anti-de Sitter spacetimes will violate the first law. However, we find
this method of deriving an expression for the mass to be particularly unfavorable since it
does not relate the definition of the energy to a Killing vector and hence to an isometry.
By assuming the validity of the first law and getting a mass by integrating its right-hand
side we also can no longer check if the first law is actually valid for a particular solution.
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Finally, this method for calculating the energy does not lead to any data which can be used
to verify the duality between the gravitational theory in the bulk and a conformal field
theory residing on the conformal boundary.

Conversely, it was argued in [7] that the first law does in fact hold if we calculate the energy
using the counterterms subtraction method. However, the first law in this case, as suggested
in [7], needs to be altered to account for variations in the boundary metric. The general
form of the first law was derived in [7] for an action which did not include a Chern-Simons
term, and was applied to a neutral rotating black hole. It will be interesting to check if
this claim holds for the case of the solution in [10], which was derived from an action that
contains Maxwell and Chern-Simons terms.

When presenting our work in Chapter 4, we will start by checking the validity of a set of
thermodynamical relations for the solution in [10]. We will then derive a regularized expres-
sion for the action using the counterterms subtraction technique. From this action, one can
derive the quasi-local energy-momentum tensor, and from that, a regularized expression for
the energy of the black hole as well. With this counterterms energy, one can then check
the validity of the modified first law of black hole thermodynamics that was proposed by
Skenderis and Papadimitriou. We expect that it will be possible to satisfy this relation for
the Einstein-Maxwell-Chern-Simons case that we are interested in.

Furthermore, we will calculate the conformal anomaly and Casimir energy of the bulk
gravitational action as well as using the conformal field theory on the boundary and compare
the results. We expect of course that the AdS/CFT conjecture will imply the equivalence
of both sets of calculations in the aforementioned limit.
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Chapter 1

Black Holes

1.1 Preliminaries

Before presenting the core topic of the chapter we will set some ground rules for the rest of
the thesis. Aside from certain basic information, the thesis is self contained. Furthermore,
many elementary concepts (e.g. Killing vector fields and hypersurfaces) are thoroughly dis-
cussed where they are needed. Additionally, Appendix A gives a review of the mathematical
operations from Differential Geometry that will be used in the thesis. In general it might
be a good idea that the reader starts by reading Appendices A-C before going to the core
chapters since the latter make many references to equations in those appendices.

Throughout the thesis we will be using the Levi-Civita connection and will denote the
covariant derivative by ∇. This means that the connection coefficients Γabc are always the
Christoffel coefficients given by

Γcab =
1

2
gcd (∂agbd + ∂bgda − ∂dgab) , (1.1)

where gab is the metric tensor of the manifold. Specifying the Levi-Civita connection directly
implies metric compatibility,

∇cgab = 0, (1.2)

and torsion-freedom,

Γc[ab] = 0. (1.3)

4



The ordering of the Riemann tensor indices follows [11], so that the Riemann (1,3) tensor
is given by

Rdcab = ∂aΓ
d
bc − ∂bΓdac + ΓdalΓ

l
bc − ΓdblΓ

l
ac. (1.4)

It follows that the Ricci tensor is defined by

Rab = Rl alb, (1.5)

and the Weyl tensor by

Cdcab =Rdcab −
2

D − 2

(
gd[aRb]c − gc[aRb]d

)
+

2

(D − 1)(D − 2)
gd[agb]cR, (1.6)

where D is the dimension of the manifold, and R is the Ricci scalar,

R = Raa. (1.7)

Finally, the Einstein tensor is defined as

Gab := Rab −
1

2
gabR. (1.8)

Following these notations, we have the first Bianchi identity given by

∇eRdcab +∇bRdcea +∇aRdcbe = 0. (1.9)

Proof: Let us consider the Riemann tensor in local inertial coordinates. In these
coordinates the Christoffel symbols of course vanish (although their derivatives do not
necessarily vanish). Then using equation (1.1) in (1.4) gives

5



Rdcab =̂ gdl

(
∂aΓ

l
bc − ∂bΓlac

)
=

1

2
gdlg

lm
(
∂a∂bgcm + ∂a∂cgmb − ∂a∂mgbc − ∂b∂agcm

− ∂b∂cgma + ∂b∂mgac
)

=
1

2
(∂a∂cgdb − ∂a∂dgbc − ∂b∂cgda + ∂b∂dgac) . (1.10)

The symbol “=̂” signifies “equal in a particular coordinate system”. Taking the covari-
ant derivative,

∇eRdcab =̂ ∂eRdcab

=
1

2
(∂e∂c∂agbd + ∂e∂d∂bgca − ∂e∂c∂bgda − ∂e∂d∂agcb) . (1.11)

Taking permutations of the above equation leads to

∇bRdcea =̂
1

2
(∂b∂c∂egad + ∂b∂d∂agce − ∂b∂c∂agde − ∂b∂d∂egca) , (1.12)

and

∇aRdcbe =̂
1

2
[∂a∂c∂bged + ∂a∂d∂egcb − ∂a∂c∂egdb − ∂a∂d∂bgce) . (1.13)

Given that regular partial derivatives commute, it is easy to see that the sum of the
previous three equations cancels out,

∇eRdcab +∇bRdcea +∇aRdcbe = 0. (1.14)

Since this is a tensorial equation, it is true in any coordinate frame.

�

We also give the second Bianchi identity:

∇aRab =
1

2
∇bR. (1.15)

Proof: Contracting both sides of the first Bianchi identity:

6



0 = gcegda (∇bRdcae +∇eRdcba +∇aRdceb)
= gce(∇lRacae −∇eRacal +∇aRaceb)
= gce(∇bRce −∇eRcb −∇aRcaeb)
= ∇lRee −∇eReb −∇aReaeb = 0

= ∇bR−∇eReb −∇aRab. (1.16)

Changing the dummy index e to a in the second term allows us to recast this as

0 = ∇bR− 2∇aRab, (1.17)

which gives us the desired results

∇aRab =
1

2
∇bR. (1.18)

�

1.2 Schwarzschild Solution

1.2.1 The Schwarzschild Metric

The Schwarzschild metric is a (relatively) simple solution to the Einstein equation. It will
serve as a nice introduction to the concept of black holes as well as playground for showing
certain properties related to them (for instance, why they are “black”).

What makes the Schwarzschild solution a simple one compared to other solutions in four-
dimensional spacetime, is the fact that it is static and spherically symmetric. We proceed
to define what these terms mean. Let us start by defining stationary spacetimes.

Definition 1.1. A (four-dimensional) spacetime is said to be stationary if it admits a
time-oriented Killing vector1 χ = ∂/∂t.

Recall from §C.3 that the existence of such a Killing vector implies that the spacetime is
invariant under time translation. This gives sense to the definition above. Of course this is
not always the case. For instance, an expanding universe does not have the aforementioned

1See §C.3
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timelike Killing vector. It is hence not stationary in the sense that it does not look the
same at every instance in time; it grows in size.

A rotating spacetime is stationary if it has a constant angular velocity vector at each point
in space and time. This obviously means that the spacetime looks the same at every moment
in time; it is therefore time-independent. A non-rotating stationary spacetime is static.

Definition 1.2. A spacetime is said to be static if it admits a timelike Killing vector field
that is orthogonal to a hypersurface of that spacetime [12].

It is easy to that if the spacetime is rotating, then the timelike Killing vector field will not
be perpendicular to spatial hypersurfaces. Note also that definition 1.2 by its own implies
that the spacetime is stationary.

Definition 1.3. A spacetime is said to be spherically symmetric if it is invariant under
the isometries2 group SO(3)3 operating on the two-sphere4

t = constant, r = constant.

Without any further suspense, let us announce the Schwarzschild metric.

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ2 (1.19)

where dΩ2 is the metric on the unit two-sphere and is given by

dΩ2 = dθ2 + sin2 θdφ2 (1.20)

The metric being static and spherically symmetric has an isometry group R × SO(3). Ev-
idently, the first factor represents the symmetry with respect to time-translation, and (as
we mentioned in §C.1.2) the second factor represents invariance under rotation in R3. Note
that if m = 0 then the metric reduces to that of the Minkowski spacetime. If m 6= 0 but
r � |m|, the metric is almost Minkowskian. We call this asymptotically flat. We give proper
definition of this term below. The definition uses several terms which were defined defined
in Appendix B:

Definition 1.4. A hypersurface Σ with induced metric hab and extrinsic curvature Kab is
called asymptotically flat if:
1. There exists a smooth invertible and bijective map between Σ and R3\BR, where BR is

2See §C.3.
3See §C.1.2.
4See §B.1
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a closed ball centered on the origin in R3.
2. If (xi)i are the cartesian coordinates on Σ then hij = δij +O(x−1) and Kij = O(x−2) as

x :=
√
xixi →∞. δij is the Kroncker-Delta.

It is worth noting that we know from Birkhoff’s theorem that the Schwarzschild metric is
the unique spherically symmetric solution to the Einstein field equation in vacuum5[11].

Having presented the final solution, let us see how it can actually be derived from the
Einstein field equations. The simplest spherically symmetric spacetime we know is the
Minkowski metric

ds2
Minkowski = −dt2 + dr2 + r2dΩ2. (1.21)

We will generalize this to a more general metric where each term is multiplied by a func-
tion of spacetime which is yet to be determined. In a mathematical language we call these
functions, which we assume to exist and give the sought-after solution, ansatz functions. In
order to maintain spherical symmetry, the ansatz function multiplied by dθ2 and sin2 θdφ2

must be the same. Furthermore, all ansatz should not depend on either θ or φ. An edu-
cated guess, which will turn out to be helpful, is to write the ansatz functions in terms of
exponentials,

ds2 = −e2α(r)dt2 + e2β(r)dr2 + e2γ(r)r2dΩ2. (1.22)

It can also be shown that, without loss of generality, the function γ(r) can be taken equal
to 0.

Proof: We are free to make a change of coordinate

r → r̃eγ , (1.23)

with corresponding one-form

dr̃ = eγdr + eγrdγ

=

(
1 + r

dγ

dr

)
eγdr. (1.24)

The metric can then be expressed in terms of the new coordinate as

5To be more accurate, the Schwarzschild solution is the unique solution outside the black hole region.
We will shortly discuss what we mean by “black hole” and “black hole region”.
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ds2 = −e2αdt2 +

(
1 + r

dγ

dr

)−2

e2(β−γ)dr̃2 + r̃2dΩ2. (1.25)

We could now define new functions α̃(r̃) and β̃(r̃) such that

α̃(r̃) = α(r),

β̃(r̃) = β(r)− γ(r).
(1.26)

This allows us to re-write the metric as

ds2 = −e2α̃(r̃)dt2 + e2β̃(r̃)dr̃2 + r̃2dΩ2. (1.27)

Forgetting our original no-tilde functions and coordinate r, we can drop the tildes from
the notation of the new ansatz and coordinate, and re-write the metric as

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2. (1.28)

�

To solve the Einstein field equation, we start by giving the values of all independent and
non-null Christoffel symbols:

Γttr = ∂rα, Γrtt = e2(α−β)∂rα, Γrrr = ∂rβ,

Γrθθ = −re−2β, Γrφφ = −re−2β sin2 θ, Γθrθ = r−1,

Γθφφ = − sin θ cos θ, Γφrφ = r−1, Γφθφ =
cos θ

sin θ
.

(1.29)

The components of the Ricci tensor can then be found via a direct but tedious calculation.
Luckily we can use the Maple software to automatically get those:

Rtt = e2(α−β)
[
∂2
rα+ (∂rα)2 − ∂rα∂rβ + (2/r)∂rα

]
,

Rrr = −(∂rα)2 − ∂2
rα+ ∂rα∂rβ + (2/r)∂rβ,

Rθθ = 1− e−2β [r(∂rα− ∂rβ)] ,

Rφφ = sin2 θRθθ.
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The Ricci scalar is given by

R = −2e−2β

[
∂2
rα+ (∂rα)2 − ∂rα∂rβ +

2(∂rα− ∂rβ)

r
+

1− e2β

r2

]
. (1.30)

The Einstein equation in vacuum comes down to equating the Einstein tensor

Gab = Rab −
1

2
gabR,

to 0. Of course each component of Gab cancels by itself. We can also add the tt and rr
components and multiply by e−2β, leading to

0 = e2(β−α)Rtt +Rrr

=
2

r
(∂rα+ ∂rβ). (1.31)

This implies that

α(r) = −β(r) + c, (1.32)

with c some constant. We can easily set c equal to 0 by rescaling our time coordinate as

t→ te−c,

leading to

α(r) = −β(r). (1.33)

Using the Gθθ component, we can arrive at

e2α(2r∂rα+ 1) = 1, (1.34)

which implies that

∂r(re
2α) = 1, (1.35)
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allowing us to write

e2α = 1− C

r
, (1.36)

where C is some constant. The Schwarzschild metric is then given by

ds2 = −
(

1− C

r

)
dt2 +

(
1− C

r

)−1

dr2 + r2dΩ2. (1.37)

Identifying C with 2m we recover the metric in (1.19).

We express the constant C as 2m because of convenience since it will turn out to be
proportional to the black hole mass, as we will see later in this chapter. In the same
manner, in the charged black hole solution we express another constant as q because it will
turn out to be proportional to the black hole charge. It is very important to note that m
and q are constants that we get by solving the Einstein field equations; their relations to
the mass and charge of the black hole respectively are not explicit. So whenever we have
parameters in a solution labeled m and q (or M and Q), we can not simply assume that
these are exactly the mass and charge of the black hole respectively. In fact, we will see that
the relation between the black hole mass and m, and that between the black hole charge
and q will change depending on the dimension and asymptotic topology of the spacetime.6

To make this distinction clear and to not confuse symbols, throughout this thesis we will
denote all metric constants that come out of solving the Einstein equation by small letters,
and the black hole conserved quantities like mass and charge by capital letters.

1.2.2 The Schwarzschild Black Hole

The metric in equation (1.19) posses two singularities, one for r = 2m and another for
r = 0. The second turns out to be a curvature singularity and cannot be eliminated by a
change of coordinates. Strictly speaking, this means that the point r = 0 does not belong
to the manifold. The first singularity is in fact what we call a coordinates singularity ; it can
be eliminated by a change of coordinates. To see this, we first define the tortoise coordinate

r∗ = r + 2m ln
∣∣∣ r
2m
− 1
∣∣∣. (1.38)

The Eddington-Finkelstein coordinates are then found by simply replacing t by

6The asymptotic topology of the spacetime is the topology of the spacetime manifold when the radial
coordinate goes to infinity.
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v = t+ r∗ (1.39)

The metric in the new Eddington-Finkelstein coordinates is

ds2 = −
(

1− 2m

r

)
dv2 + 2dvdr + r2dΩ2 (1.40)

We see that the point r = 2m is no longer a singularity. The point r = 0 remains however
a singularity as we have claimed.

We now wish to look at the light cone in these coordinates. First note that, since the
solution is spherically symmetric, we can always fix θ and φ without loss of generality. If
we do this, our metric simply becomes

ds2 = −
(

1− 2m

r

)
dv2 + 2dvdr (1.41)

The conditions for null curves are

dv

dr
= 0,

dv

dr
= 2

(
1− 2m

r

)−1

.

(1.42)

Figure 1.1 shows the evolution of the light cones for the Schwarzschild solution as a function
of the position r. Here we see a striking result: future-directed causal curves can only move
further away from the point r = 2m. To put it differently, nothing inside the surface r = 2m
can escape outside of it. When we say “nothing” we obviously mean both objects (which
form timelike curves) and light (which forms null curves). The surface r = 2m is called the
event horizon. Since light cannot escape the even horizon, we cannot see anything inside it
and the object appears to be black. That is why we refer to these objects as black holes.

1.3 Event Horizons

1.3.1 The Causal Structure

Having laid out the foundations for the concept of black holes, we now wish to formulate a
definition for the black hole region. First let us start by recalling some important definitions
which will be used in this as well as other sections in the thesis.
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Figure 1.1: The tiling of the light-cones before, at and after the event horizon at r = 2m.
Credit: [13]

Definition 1.5. Let E and F be two normed vector spaces 7, and U ⊂ E, V ⊂ F two open
sets. A map f : U → V is called a diffeomorphism if and only if f is differentiable on U ,
bijective, and f−1 is differentiable on V [14].

In this thesis, we are specifically interested in diffeomorphisms between manifolds. Now,
recall that a causal curve is simply a curve whose tangent vector to the spacetime manifold
is everywhere timelike or null.

Definition 1.6. A spacetime manifold M is time-orientable if it admits a smooth,
nowhere vanishing timelike vector field t̂a. A causal vector xa is future-directed if
xat̂a < 0. A causal curve is a future-directed causal curve onM if its tangent vector is
future-directed everywhere on M [15].

Definition 1.7. Given any subset S of a spacetime (M, g), the causal future of S, denoted
J+(S), is the set of points that can be reached from S by following a future-directed causal
curve [11].

Definition 1.8. The chronological future of S, denoted I+(S), is the set of points that
can be reached from S by following a future-directed timelike curve [11].

Analogous definitions hold for the causal and chronological pasts J−(S) and I−(S) [11].

Definition 1.9. The future (respectively past) null infinity, denoted I + (respectively
I −) is the set of points which are approached asymptotically by future-directed (respec-
tively past-directed) null rays that can escape to infinity [11].

7On which a norm is defined.
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To define the black hole region we will need to use the hypersurface of I+, which is not
actually contained in the physical spacetime (M, g). We therefore define the “unphysical”
manifold (M̃, g̃) which, amongst other properties, contains J±(I ∓). Whenever we mention
J±(I ∓) we mean this set as defined in (M̃, g̃).

Definition 1.10. Let (M, g) be a spacetime. The black hole region is defined as [16]

B :=M\[M∩ J−(I +)]. (1.43)

1.3.2 Event Horizons

Following on from the previous definition, we can easily find a definition for event horizons
[16].

Definition 1.11. The event horizon of a black hole region is the boundary of the black
hole region

H := Ḃ. (1.44)

In the original Schwarzschild metric there was a coordinate singularity at the horizon as we
have seen; the component grr goes to infinity. Conversely, the component grr given by

grr = 1− 2m

r
, (1.45)

goes to 0 at the event horizon. Beyond the event horizon it is easy to see that this component
changes sign, and hence the the radial coordinate r changes signature and becomes timelike.
In such convenient coordinate systems then, the location of the event horizon can be found
by equating grr to 0 and solving for r. Furthermore, you can easily see that, since the gtt
component is simply −1/grr, the time coordinate too changes sign beyond the horizon and
becomes spacelike. Subsequently, in the Schwarzschild solution, the timelike Killing vector
∂t also changes sign and becomes spacelike beyond the event horizon [11].

We have cheated a little whenever we used the term “event horizon.” The truth is we mean
the “future event horizon” as there is another event horizon called (as you might have
guessed) the “past event horizon.” The latter is not really related to black holes but rather
to another phenomenon called white holes. We are not going to discuss white holes here
since they do not help much in our ultimate goal of tackling black hole thermodynamics.
In conclusion, whenever we say “event horizon” we could be a little more rigorous and say
“future event horizon.” This “abbreviation” however remains widely used in the literature.

1.3.3 Killing Horizons

We now look at a related concept, that of Killing horizons.
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Definition 1.12. Let Σ be some hypersurface embedded in a manifold M, and ξa(x) a
Killing vector in M. Σ is a Killing horizon if ∀x ∈ Σ, ξa(x)ξa(x) = 0.

Generally speaking, there is no connection between Killing horizons and event horizons.
But in spacetimes with time-translation symmetry they are related. Carter has shown that,
for static black holes, the event horizon is a Killing horizon for the Killing vector χa = (∂t)

a

[11]. If the spacetime is stationary with some rotational Killing vector ηa, Hawking has
shown that, under certain energy conditions, the event horizon must be a Killing horizon
for some vector field. Often, the latter is a linear combination of χa and ηa = (∂φ)a. This
linear combination depends on the angular velocity of the horizon, ΩH , and is given by
([11])

ξ = ∂t + ΩH∂φ. (1.46)

We now suppose that we have an event horizon H that is also a Killing horizon with respect
to a Killing vector field ξa. From Definition 1.12, it follows that the gradient of ξaξa is
normal to H. Since ξa is also normal to H, then there exists a function κ on H such that

∇a(ξbξb)
∣∣∣
H

= −2κξa (1.47)

The main reason for our interest in κ is that it will turn out to be related to the Hawking
temperature of the black hole (see §2.3). The name “surface gravity”, however, comes from
a classical interpretation of this quantity, particularly in static spacetimes. Using the fact
that ξa is normal on the horizon and Killing’s equation, it is easy to find a useful formula
for κ,

κ2 = −1

2
(∇aξb)(∇bξa)

∣∣∣
H
. (1.48)

Now, consider a test particle orbiting some gravitational source. This particle experiences
a force proportional to its acceleration. Recall that, for a normalized velocity vector, the
four-acceleration aa = U b∇bUa is related to the redshift factor V at infinity by

aa = ∇a ln(V ) (1.49)

The magnitude of this acceleration is therefore 8

a =
√
aaaa = V −1

√
∇aV∇aV (1.50)

8The author admits that this choice combination of variables and indices is not very well chosen.
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Hence, V represents the “redshifted” acceleration of a test particle at the surface of the black
hole as seen by an observer at infinity. This is why we call it the surface gravity. You might
feel that the fact that this seemingly arbitrary quantity is assigned a name – particularly
one which only makes sense in the specific case of asymptotically flat, static spacetimes –
does not seem to be very well motivated. But this quantity will turn out to be extremely
important because of its aforementioned relation to the black hole temperature. Therefore,
it is worth giving a specific name since it is constantly referred to in the literature.

1.4 Charged, Rotating Black Holes

We now direct our attention to charged, rotating black holes. To find a charged black hole
solution we can proceed similarly to the way we found the Schwarzschild metric, only now
we are not looking for a vacuum solution of the Einstein equation, but rather one for which
there is a non-null electromagnetic energy-momentum tensor,

Tab = FacFb
c − 1

4
gabFcdF

cd. (1.51)

Another addition to the recipe is that the equations of motion are Einstein’s and Maxwell’s
equations [11]. Both previous points mean that we also have ansatz functions as the com-
ponents of the electromagnetic four-potential A.

A rotating black hole solution on the other hand is rather tricky to derive, and it took
physicists and mathematicians a few decades to find one. The difficulty stems from the fact
that a rotating black hole (or any rotating object for that matter) does not have spherical
symmetry but only axial symmetry [11].

In four-dimensional asymptotically flat spacetime, the general charged, rotating black hole
solution is called the Kerr-Newman solution. It is given by

ds2 =−
(

dr2

∆
+ dθ2

)
ρ2 + (dt− a sin2 θdφ)2 ∆

ρ2

−
(
(r2 + a2)dφ− adt

)2 sin2 θ

ρ

(1.52)

where

ρ2 = r2 + a2 cos2 θ (1.53)

∆ = r2 − 2mr + a2 + q2. (1.54)
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In this coordinate system the black hole is rotating in the φ-direction. The parameters m,
a and q will turn out to be the mass, angular momentum per unit mass and electric charge
of the black hole, respectively. We will discuss the generic procedure for calculating such
quantities in §1.5. For now, we just want to note that we can have a solution for a rotating,
non-charged black hole simply by setting q = 0. This is called the Kerr metric. We can
also have a solution for a non-rotating, charged black hole by setting a = 0. This is called
the Reissner-Nordström metric.

Let us look at the Kerr black hole. First, notice that this is not a static solution to the
Einstein field equation: the black hole is rotating. The event horizon will then not be the
Killing horizon of the timelike Killing vector ∂t. To find the event horizon we can equate
grr to 0. This comes down to solving

∆|H = (r2 − 2mr + a2)|H = 0, (1.55)

since grr = ∆/ρ. The discriminant of the above quadratic equation can be easily found to
be

Discm(∆) = m±
√
m2 − a2. (1.56)

We have three possibilities when looking for solutions: m < a, a = m and m > a. The first
possibility presents no real solutions. The second possibility m = a is an unstable solution
since adding any randomly small amount of matter will turn it to the third case. The third
case m > a has two solutions,

r± = m±
√
m2 − a2, (1.57)

which correspond to an inner event horizon (at r−) and an outer event horizon (at r+). As
an outside observer, only the latter seems relevant. As we mentioned, neither of these radii
will be the null surface of the timelike Killing vector χ = ∂t. The norm of this vector field
is found to be

χaχa = − 1

ρ2

(
∆− a2 sin2 θ

)
. (1.58)

At r = r+ this norm is positive,

χaχa =
a2 sin2 θ

ρ2
≥ 0. (1.59)
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Hence, the timelike Killing vector switches signature even before the event horizon, except
at the two points (r+, 0) and (r+, π) where the term sin2 θ obviously vanishes [11].

The surface on which the timelike Killing vector becomes null is called the stationary
limit surface. The region between it and the outer event horizon is called the ergosphere.
Figure 1.2 shows a depiction of this structure. Inside the ergosphere the timelike Killing
vector changes sign but you can still escape from it before hitting the event horizon [11].
Evidently, the ergosphere is an interesting region and we will talk more about it in the next
chapter.

In the following section we will discuss how we can calculate the angular momentum of the
Kerr black hole, along with other conserved black hole quantities. But for now, we simply
would like to see how we can define the black hole’s angular velocity. This of course can be
done for the complete Kerr-Newman solution but we will only do it for the Kerr metric for
simplicity. Imagine a photon emitted in the φ-direction at some radius r and on the plane
θ = π/2. Since the trajectory is null, we have

ds2 = gttdt
2 + gtφ(dtdφ+ dφdt) + gφφdφ2

= 0, (1.60)

which leads to

Figure 1.2: The ergosphere is the grey region between the stationary limit surface – where
the timelike Killing vector becomes null – and the black hole’s event horizon. Credit: Ref.
[15]
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dφ

dt
= −

gtφ
gφφ
±

√(
gtφ
gφφ

)2

− gtt
gφφ

. (1.61)

We can define the angular velocity as the minimum solution to the above equation at the
outer horizon:

ΩH :=
dφ

dt

∣∣∣
r+

=
a

a2 + r2
+

. (1.62)

Another interesting place to evaluate the expression in (1.61) is at the spacetime boundary,
and in some cases we define the “angular velocity of the black hole” as the one at the outer
horizon minus that at the boundary,

Ω :=
dφ

dt

∣∣∣
r+
− dφ

dt

∣∣∣
r→∞

(1.63)

However, in our case, both equations (1.62) and (1.63) are equivalent because the last term
in (1.63) vanishes.

The last relevant quantity that we will discuss in this section is the electric potential Φ.
Like the temperature and the angular velocity, this quantity will depend on the radial
coordinate r in general, and by convention we define it at the outer horizon. The derivation
of a formula for the electric potential turns out to be a very laborious task which was
accomplished by Carter [17]. It was done by requiring that the black hole be in equilibrium
(i.e. vanishing Lorentz force) and that the electric potential be constant on the horizon (at
least for axisymmetric black holes). It is given by ([7])

ΦH = −ξaAa|H,

where ξa is the horizon Killing vector. This potential can present divergences for certain
black hole solutions. Fortunately, since this is a potential, we can define it with respect to
a reference that cancels these divergences. We therefore define the potential with respect
to the boundary at infinity by ([18])

Φ = ΦH − Φ(r)|r→∞
= −ξaAa|H + ξaAa|r→∞ (1.64)
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1.5 Conserved Charges

As we discuss in Appendix C, conserved quantities play a major role in any physical theory.
We have discussed several aspects of black holes, but so far we have not discuss any conserved
quantities related to them. In this section we will present how conserved quantities of
black holes – namely the electric charge, mass and angular momentum – can be defined
and calculated. These quantities gain extra importance from what is called the “no-hair
theorem”, originally stated by Werner Israel in 1967. The theorem says that black holes
can be completely characterized by these parameters: mass, charge and angular momentum.
Furthermore, we will see in the next chapter that the thermodynamics of black holes can be
completely described by these quantities along with the quantities described in the previous
sections (i.e. the even horizon, angular velocity and electric potential).

1.5.1 Electric Charge

Appendix C discusses how charges are defined and calculated in curved spacetimes. We
have already seen how the classical Coulomb charge can be calculated using this recipe.
Let us see how this can be applied to a charged black hole. Since we do not care about
rotation at this point, we will use the Reissner-Nordström solution, which can be recovered
by setting a = 0 in the Kerr-Newman metric (1.52), giving

ds2 = −f(r)dt2 + f−1(r)dr2 + r2
(
dθ2 + sin2 θφ

)
, (1.65)

where

f(r) = 1− 2m

r
+
q2

r2
. (1.66)

Recall that the electromagnetic current is given by

∇bF ab = Ja. (1.67)

Using the result in (C.34) with the above current, we have

Q =

∫
Σ

d3x
√
−hnaJa

=

∫
Σ

d3x
√
−h∇bF ab. (1.68)
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Using Stokes’ theorem (particularly result (C.31)), we have

Q =

∫
∂Σ

√
−γnaubF ab

=

∫
∂Σ

√
−γF rt

=

∫
S2

dθ dφ r2 sin2 θ
q

4πr2

= q. (1.69)

As before, γab is the induced metric on ∂Σ and ua is the outward-pointing normal vector
to ∂Σ. You can see that this is a virtually effortless calculation thanks to the effort that we
have made in defining the procedure in §C.2.

1.5.2 Komar Integrals

Mass

The next (and perhaps even first) obvious quantity to look at is the black hole mass (or
energy). The concept of black hole mass is rather tricky, and there are many ways to define
what is the “mass” of the black hole. The mass calculation is actually an important part of
the original work done in this thesis so we will spend some time to discuss different aspects
of this concept.

Several parts in this section rely heavily on results developed in Appendix C. It is recom-
mended that the reader reviews this Appendix before proceeding with this section.

From our classical mechanics intuition, the energy is a conserved quantity which is related
to time-translation symmetry. We can always find a time-translation Killing vector χa for
stationary solutions, and we have seen in §C.3 that we can construct a conserved current
from this Killing vector,

JaT = χbT
ab. (1.70)

From the conservation of T ab and Killing’s equation, we can easily show that this current
is divergenceless (see §C.3 for detailed calculations). Therefore, we can find a conserved
quantity by integrating it over a spacelike hypersurface Σ,

ET =

∫
Σ

d(D−1)x
√
−hnaJaT , (1.71)

22



where D is the spacetime dimension and h the determinant of the induced metric on Σ.

There is, however, a number of problems with this definition. The first one is that this
energy goes to zero for vacuum solutions, where T ab = 0. You can easily check that this is
the case for example in the Schwarzschild solution. But there are several reasons that make
us want to define a non-zero energy. For example, the black hole may form as the result
of the collapse of a star. The matter of the star is now contained beyond the horizon and
so, outside the black hole’s horizon, T ab = 0. However, it would still make sense to have a
value for the mass since 1) we would like the original energy of the star to be conserved, and
2) the black hole still provides a gravitational field which should have some sort of energy
associated with it.

We now consider a new current

JK = χbR
ab. (1.72)

Its divergence is given by

∇aJaK = (∇aχb)Rab + χb(∇aRab). (1.73)

We use the fact that (∇aχb) is antisymmetric while Rab is symmetric to eliminate the first
term on the right-hand side. We recall that

∇aRab =
1

2
∇bR,

which leads to

∇aJaK =
1

2
χa∇aR = 0. (1.74)

The last equality is due to the fact that the directional derivative of R vanishes along a
Killing vector as we have seen in §C.3. We also know from §C.1.1 that this implies that

d ? JK = 0, (1.75)

and that we can associate a conserved charge with this this current,

M =
1

4π

∫
Σ
?JK . (1.76)
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The 1/4π factor is a normalization factor, added for convenience. We may now chose this
charge to be our definition for the black hole mass. The mass in equation (1.76) is called
the Komar mass.

To get a sense of this formula, let us turn our attention to the Schwarzschild solution. In
a move that feels like we are diverting from the main topic, let us recall some results from
Newtonian mechanics. The reasons for this will become obvious shortly. The acceleration
of a unit-mass body in a gravitational potential Φ (~r) is given by

~a = −~∇Φ(~r). (1.77)

The Poisson differential equation for Newtonian gravity is [11]

∇2Φ = 4πρ (1.78)

where ρ is the matter density. We would like to see how the Schwarzschild solution compares
to this picture in a “Newtonian limit”. We follow the definition of [11] for Newtonian limit
as: (1) particles are moving with respect to the speed of light, (2) the gravitational field
is weak, and (3) the field is static. In relativistic theories, a slowly moving particle means
that

dxi

dτ
� dt

dτ
, (1.79)

so the geodesic equation becomes

d2xµ

dτ2
+ Γµ00

(
dt

dτ

)2
∼= 0. (1.80)

The weak field condition means that the metric gab can be perturbed around the flat-space
metric ηab,

gab = ηab + hab, |hab| � 1. (1.81)

The static field condition simply means that ∂0gµν = 0, which leads to

Γµ00 = −1

2
gµλ∂λg00. (1.82)

To first order in hµν this leads to
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Γµ00 = −1

2
ηµλ∂λh00. (1.83)

Plugging that into the geodesic equation, we have

d2xµ

dτ2
=

1

2
ηµλ∂λh00

(
dt

dτ

)2

. (1.84)

The µ = 0 component is

(
dx0

dτ

)2

=

(
dt

dτ

)2

= 0, (1.85)

since ∂0h00 = 0. This means that dt/dτ is constant. In non-relativistic mechanics this is
of course true since time is regarded as an absolute quantity which is measured the same
in all reference frames. This is a good check that we are on the right track. The spatial
components of (1.84) are

d2xi

dτ2
=

1

2
∂ih00. (1.86)

If we compare (1.86) to (1.77), we identify

h00 = −2Φ, (1.87)

leading to

g00 = −(1 + 2Φ). (1.88)

In the Schwarzschild solution this leads to the usual Newtonian potential

Φ = −m
r
, (1.89)

where we recall that Newton’s constant in normal units is set to 1. This allows us to identify
the geometric parameter m in the Schwarzschild solution with the mass in the Newtonian
limit.

We now calculate the mass of the Schwarzschild black hole using the Komar integral. Ex-
pressing the Komar mass in the Schwarzschild coordinates, we get
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M =
1

4π

∫
∂Σ=S2

d2x
√
−γ ua nb∇aχb. (1.90)

The one-forms associated with the normal unit vectors are

ua =
(
−
√
−gtt 0 0 0

)
,

na = (0
√
grr 0 0) .

(1.91)

Given these forms, the only surviving components of the term uanb∇aχb is the u0n1∇0χ0

term. It can be easily seen that it gives

u0n1∇0χ0 = −∇0χ1 = −m
r2
. (1.92)

Finally, we have

M =
1

4π

∫ π

0
dθ

∫ 2π

0
dφ r2 sin θ

(m
r2

)
(1.93)

= m, (1.94)

which is the result that we were hoping to get. When developing a new theory, it is always
important to show that it reduces to the results of previous well-established theories under
the correct assumptions or approximations. Luckily, this turns out to be the case here: the
Komar mass yields the same result as Newtonian mechanics in the Newtonian limit.

Angular Momentum and Komar Integrals

Our procedure for arriving at (1.76) did not rely on the fact that χa is the stationary
Killing vector. In fact, we can generate conserved currents for any Killing vector ξa in our
spacetime. It is therefore useful to have a formula for conserved charges, like the one in
equation (1.76), which is expressed in terms of a generic Killing vector ξa.

We define the generic current

Ja[ξ] := ξbR
ab, (1.95)

to which is associated a conserved charge
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Q[ξ] ∝
∫

Σ
?J [ξ]. (1.96)

We would then like to express ?J [ξ] solely in terms of ξ. In §C.3 we showed that

∇a∇cKa = RcbK
b. (C.65)

This allows us to write the current as

J [ξ] = ∇b∇aξb. (1.97)

Multiplying by the right-hand side by gabgbc = 1 gives

J = ∇b(∇bξc)
= 2∇b(dξ)bc. (1.98)

Using equation (A.13) with Abc = (dξ)bc, it is easy to re-write this as

J = −(−1)2(4−2) × 2 ? d ? dξ

= −2 ? d ? dξ. (1.99)

Then, using (A.6), we have the equality

?J = −1×−1× (−1)3(4−1) × 2d ? dξ

= −2d ? dξ. (1.100)

Identifying the above with equation (1.96), we have

Q[ξ] ∝
∫

Σ
d ? dξ. (1.101)

Finally, using Stokes’ theorem, we have the important result
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Q[ξ] ∝
∫
∂Σ
?dξ. (1.102)

This formula is called the Komar integral. The reason we have used the proportionality
sign instead of an equality followed by a normalization factor like the previous section
is because we use different normalization factors depending on the spacetime dimensions.
For the case four dimensions case, the formula for the mass of the black hole is found by
re-instating the 1/4π factor and dividing by the −2 factor in equation (1.100),

M = − 1

8π

∫
∂Σ
?dχ. (1.103)

The expression for the angular momentum is found by using the Killing vector that cor-
responds to rotational invariance. For the metric in (1.52) the rotation invariance is seen
by noting that the metric is independent of φ (while no longer independent of θ in this
non-spherically symmetric case), and the corresponding Killing vector is thus η := ∂φ. The
Komar integral for the angular momentum in this case is

Jφ = − 1

8π

∫
∂Σ
?dη. (1.104)

In the presence of a non-vanishing cosmological constant, it was discussed in [19] that these
formulae can be generalized (in four dimensions) to include an extra term as follows:

Q[ξ] = − 1

8π

∫
∂Σ
?dξ − Λ

4π

∫
Σ
ξ (1.105)

1.5.3 Brown-York Quasi-local Charges

By now it should be clear that the definition of energy in General Relativity is not unique.
We have already seen two different ways of defining the energy of a black hole and have
expressed a general preference for one of them (the so-called Komar energy) out of pure
convenience. But nothing stops us from finding other definitions for the energy. Whether
or not a new definition is more convenient than the previous one is of course a different
story.

In 1992 David Brown and James York presented an expression for calculating the energy
[20] which is based on the Hamilton-Jacobi formalism. The resulting definition of energy
will be used in our calculations in Chapter 4.
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Before proceeding, we should note that this section makes reference to several concepts
developed in §B.3. It also makes reference to the equations for the gravitational action and
energy-momentum tensor which were developed in Appendix D.

Motivation for the Idea

The principal idea is to consider a classical mechanical system with configuration space Q,
and Lagrangian L : Q × R → R, meaning the Lagrangian is assumed to be first-order in
the canonical variables, and may depend explicitly on time. We consider initial and final
configurations (qa1 , t1) and (qa2 , t2). The action is thus written as

S1[qa(t)] =

∫ t2

t1

L(qa, q̇a, t)dt. (1.106)

If we now vary the endpoint to (qa2 +δq, t2 +δt), the variation of the action can be written as
the sum of two parts, the first due to the variation of q which we denote δq and the second
due to the variation of t which we denote δt.

δS1 =
∂S1

∂q
δq +

∂S1

∂q̇
δq̇ +

∂S1

∂t
δt, (1.107)

where the suppressed indices of the vectors q and q̇ are implied. The first term gives

∂S1

∂q
δq =

∫ t2

t1

∂L

∂q
δqdt. (1.108)

The second term gives

∂S1

∂q̇
δq̇ =

∫
∂S

∂q̇
δ

d

dt
qdt

=
∂L

∂q̇
δq
∣∣∣t2
t1
−
∫

d

dt

∂L

∂q̇
δqdt. (1.109)

To get to the last line we have used integration by parts. The third terms can be written
as
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∂S1

∂t
δt =

∫ t2

t1

Ldtδt

= Lδt|t2t1
= (paq̇a − E) δt|t2t1 . (1.110)

The combination of the three terms leads to

δS1 =

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
(δq + q̇δt) +

∂L

∂q̇
δq
∣∣∣t2
t1

+ (E + L)δt|t2t1 (1.111)

= (terms giving the equations of motion) +
∂L

∂q̇
δq
∣∣∣t2
t1

+ (E + L)δt|t2t1 . (1.112)

Obviously, the variation of the penultimate term with respect to t2 will identically give the
energy.

Of course, the action is not unique. For an arbitrary smooth function φ : Q→ R, the action

S[qa] := S1[qa]−
∫ t2

t1

dφ

dt
dt (1.113)

is an equally good choice for the same problem: it affects the value of the integral but not
the equations of motion. The energy in this formalism is therefore not unique as this change
in the action shifts the latter it by a factor of (∂φ/∂t) [21].

Formulating the Idea

We would now like to generalize the above procedure to a general relativistic spacetime,
with the restriction that matter should be minimally coupled to gravity. While the following
discussion will apply to arbitrary spacetime dimensions (actually, arbitrary n+ 1 spacetime
dimensions where n > 3), it will be easier to imagine the foliations and boundaries in
question if we specify the dimensions of the spacetime to be 3 + 1.

We consider a compact region D of a spacetime (M, g), foliated by spacelike hypersurfaces
(Σt)t∈R between times t1 and t2. The two-dimensional boundary ∂Σt (of the leaf Σt)
times the line time interval is denoted 3B. I.e. 3B is a timelike boundary with topology
∂Σt × [t1, t2], and is defined by ([22])

3B :=
⋃
t

∂Σt. (1.114)
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Figure 1.3: The foliation of the spacetime. Credit: ref. [22]

We denote the metric and extrinsic curvature on 3B by hab and Kab, and those on Σt by
γab and Θab respectively.

Consider an action functional S1 in hab. Here the metric hab sets the proper times between
the initial and final configurations in Σt1 and Σt2 , respectively. It therefore has a role
analogous to the time interval in classical mechanics. The generalization of the energy
term in this case will be an energy-momentum tensor. It will be defined analogously as
the variation of a term that can be identified by varying S1 with respect to a unit increase
in proper time separation between ∂Σt and its neighboring two-surface. This increase is
measured orthogonally to ∂Σt. This means that the metrics of 3B, Σt1 and Σt2 are not kept
fixed.

Formalising the Idea

The vector na will be the spacelike unit normal vector to 3B and ua the timelike unit normal
vector to Σt (see Figure 1.3). We would like the leaf Σt to be “orthogonal” to 3B, meaning
that

(u · n)|3B = 0, (1.115)

where, for the dot product to make sense, the vectors na and ua are defined as four-
dimensional vectors on the domain D.
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The metric can be written under the usual metric decomposition:

ds2 = −N2dt2 + γij(dx
i + βidt)(dxj + βjdt). (1.116)

The idea behind Brown and York’s method is to calculate the variation of an appropriate
action in GR and isolate the analogous term corresponding to the energy. The action
proposed by Brown and York [20] is

S1 =
1

16π

∫
D

d4x
√
−gR+

1

8π

∫
Σt2

d3x
√
−γΘ− 1

8π

∫
Σt1

d3x
√
−γΘ

− 1

8π

∫
3B

d3x
√
−hK + SM (1.117)

where SM is the matter action, which might also account for the cosmological constant
action term. Now consider the evolution of the system from the hypersurface Σt1 at t1 to the
hypersurface Σt2 at t2. The variation of the principal functional yields terms proportional
to the variation of gab, which lead to the equations of motion as derived in Appendix D.
Since now we allow the boundary metrics to vary, we have additional terms proportional to
the δhab and others proportional to δγab. The variation of the principal action thus takes
the form

δS1 =(terms giving the equations of motions)

+ (boundary terms coming from the matter action)

+

∫ Σt2

Σt1

d3x(terms proportional to δγab)

+

∫
3B

d3x(terms proportional to δhab).

To express the latter terms, we now consider variations due to an arbitrary change in
boundary metrics hab and γab. To keep track of this, we will denote those variations by δh
and δγ

9 respectively. The variation of the term
√
−hK gives

δh(
√
−hK) = (δh

√
−h)K +

√
−h δhK. (1.118)

9Evidently, instead of using the notation δhx we could have used the less compact expression
(δx/δhab) δhab.
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From equation (D.8), the first term is given by

(δh
√
−h)K = −1

2

√
−hhabKδhab. (1.119)

The variation of the extrinsic curvature K due to an arbitrary variation of the metric hab
is simply

δhK = δh(habK
ab)

= Kabδhhab + habδhK
ab. (1.120)

We are then left with

δh(
√
−hK) = −1

2

(
Kab −Khab

)
δhhab. (1.121)

Likewise, we have have

δγ(
√
−γΘ) = −1

2

(
Θab −Θγab

)
δγγab. (1.122)

The variation of the principal functional can thus be expressed as

δS1 =(terms giving the equations of motions, including possible matter fields)

+
1

16π

∫
Σt2

√
−γ
(

Θab −Θγab
)
δγab d3x

− 1

16π

∫
Σt1

√
−γ
(

Θab −Θγab
)
δγab d3x

+
1

16π

∫
3B

d3x
√
−h
(
Kab −Khab

)
δhab. (1.123)

As we have mentioned, the action and its corresponding functional are not unique, and the
general functional can be expressed as

S := S1 − S0, (1.124)

where S0 is some arbitrary function on the boundary ∂D = Σt2 ∪B ∪ Σt1. In the classical
mechanics case we derived the energy from by differentiating the action with respect to
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the dynamical variable t. To generalize this, we look to define an energy-momentum tensor
instead of an energy. To relate the energy-momentum tensor to the differentiation of our
principal functional with respect to dynamical variable hab, recall that in General Relativity,
given a matter action SM , we define the associated energy-momentum tensor by

T abM := − 2√
|g|
δSM
δgab

. (1.125)

In analogy with the above expression, we define the energy-momentum tensor as

τab := − 2√
−h

δS

δhab

=
1

8π

(
Kab −Khab

)
+

2√
−h

δS0

δhab
. (1.126)

While the tensor in (1.125) represents just the matter fields, τab represents both the grav-
itational and matter fields. Note that because of the restriction (u · n)|3B = 0, the metric
on 3B can be written as

ds2
3B = −Ñ2dt2 + σij(dx

i + β̃idt)(dxj + β̃jdt). (1.127)

Having τab in hand, we can use equation (C.81) to define a conserved current J [ξ] associated
with any Killing vector ξ in the spacetime by

Ja[ξ] := τabξ
b. (1.128)

To define a conserved charge we should integrate the charge density component of the cur-
rent over our spatial boundary. This means that the integral starts at the spatial boundary
at t1 and ends on the spatial boundary at t2.

Q[ξ] =

∫
[t1,t2]∩ 3B

d2x
√
σuaτabξ

b. (1.129)

The above quantity is known as the “Brown-York quasi-local charge”. To understand what
quasi-local means and why this quantity is quasi-local, first let us recall what we mean by
local and non-local quantities. A local quantity at a particular point in spacetime can only
depend on the values of other quantities at that particular spacetime point. By contrast, a
non-local quantity at a particular point in spacetime can depend on the values of quantities
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at other points in spacetime. In fact, a non-local quantity can depend on the values of
other quantities at every point in spacetime. A quasi-local quantity depends on the values
of other quantities in a finite region in spacetime. For instance, the quantity Q in the
integral (1.129) depends on the values of the different quantities in the integrand at t1∩ 3B
and t2 ∩ 3B. It is therefore a quasi-local quantity.

Quasi-local charges are charges associated with closed D− 2 surfaces. They are coordinate
independent and do not depend on the choice of time slicing of the containing surface, but
depend on the boundary conditions [21].

We are particularly interested in calculating the quasi-local energy and angular momentum
in n+1 dimensions. Following the above discussion, the Brown-York quasi-local energy
is given by

EBY =

∫
dn−1x

√
σuaτabχ

b, (1.130)

Likewise, the angular momentum in the φ-direction is given by

JBY =

∫
dn−1x

√
σuaτabη

b, (1.131)

where again η = ∂φ. The time slices are usually taken at the horizon and the boundary
when r goes to infinity since we would like to integrate over the spacetime region outside
the black hole.

Calculations for the Kerr Black Hole

As a quick application to the Brown-York formula, we will calculate the mass and angular
momentum of the Kerr black hole solution given given by setting q = 0 in(1.52). The
resulting metric is

ds2 =−
(

1− 2mr

ρ2

)
dt2 − 2mar sin2 θ

ρ2
(dtdφ+ dφdt) +

ρ2

∆
dr2 + ρ2dθ2

+
sin2 θ

ρ2

[(
r2 + a2

)2 − a2∆ sin2 θ
]

dφ2, (1.132)

where
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∆(r) = r2 − 2mr + a2, (1.133)

ρ2(r, θ) = r2 + a2 cos2 θ. (1.134)

Note that the outer horizon of this metric is found as the largest root of ∆(r) = 0. This
gives

r+ = m+
√
m2 − a2. (1.135)

To divide our spacetime into spacelike hypersurfaces, we chose a time flow vector

t̂ a = (1, 0, 0, 0). (1.136)

This leads to the lapse function

N =

√
(r2 + a2 cos2 θ) (a2 − 2mr + r2)

cos2 θa4 − 2 cos2 θa2mr + cos2 θa2r2 + 2a2mr + a2r2 + r4
.

Recall that the unit normal vector is given by

u = −Ndt, (B.19)

The foliation metric given by

σab = gab + uaub (B.29)

has a determinant given by

σ =
(
r2 + a2 cos2 θ

)
sin2 θ

(
a2 + r2

)
. (1.137)

We can use a software like Maple to evaluate the expressions in (1.130) and (1.131). These
expressions are the be evaluated at a surface of constant radial coordinate going to infinity.
Direct evaluations on Maple give

MKerr = m, (1.138)
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and

JKerr = am. (1.139)

You can easily note that the Kerr metric reduces to the Schwarzschild metric for a = 0.
This is logical since the Schwarzschild solution, as we have mentioned, is the unique static
spherically symmetric solution to the Einstein equation in asymptotically-flat spacetimes.
Making the rotation parameter a vanish will hence yield the Schwarzschild solution. Since
the expression for the mass in (1.138) does not depend on a, the Brown-York energy gives
the same result as the Komar integral in this case. As a matter of fact, we could show that
the angular momentum obtained using the Komar integral will also yield the same result
in (1.139). You might then wonder we spent some time to introduce two methods that are
completely equivalent. In fact, they are not. As we will later see, in different spacetimes
with different asymptotic topologies, the two methods can yield different expressions for
the charges.
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Chapter 2

Black Hole Thermodynamics

“The law that entropy always increases — the second law of thermodynamics — holds, I
think, a supreme position among the laws of Nature. If someone points out to you that

your pet theory of the universe is in disagreement with Maxwell’s equations, then so much
the worse for Maxwell’s equations. If it is found to be contradicted by observations — well,

these experimentalists do bungle sometimes. But if your theory is found to be against the
second law of thermodynamics I can give you no hope; there is nothing for it but to

collapse in humiliation.” — Sir Arthur Eddington

2.1 Cosmic Censorship Conjecture

One nice feature of classical (non-relativistic) physics is its power of predictability. Given
the equations of motion, and any particular state, we can trace back the full history of the
system. In general relativity, if a spacetime admits a Cauchy surface, we could predict the
state of the universe at any time in the past or the future given relevant data on that surface
[23].

We have seen in the case of the Schwarzschild solution that GR does present singularities
(i.e. the singularity at the center of the Schwarzschild black hole). Furthermore, Penrose
and Hawking have presented a set of theorems in the 1960’s assuring that singularities are
inevitable in GR [23]. These theorems predict singularities in two situations. The first one
is in the future; the future singularities form by the gravitational collapse of stars and other
massive bodies. The other situation is in the past, at the beginning of the current expansion
of the universe [24]. This is conventionally thought of as what we call “the Big Bang”. So
the important thing is that singularities are not just a problem with the Schwarzschild
solution, time-dependent solutions in GR will often end in singularities [11]. One cannot
define the field equations where these singularities are and hence, as we have previously
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mentioned, these singularities do not belong to our manifold. General relativity then does
not deal with these singularities and, given a past singularity, it cannot predict what will
come out of it [24].

It might then seem that GR does not present the level of predictability that one would hope
for. We can take solace however in a result formulated by Roger Penrose, which gives us a
way around this.

Strong Cosmic Censorship Conjecture. In all physically reasonable spacetimes, aside
from an initial singularity (such as the Big Bang), all singularities are hidden behind event
horizons. Equivalently, this means that the spacetime is globally hyperbolic (cf. §A.3) [16].

Since we do not have access to information behind event horizons anyway, it seems that
General Relativity presents a sufficient level of predictability for the “accessible” part of our
universe. Of course, in a quantum theory of gravity there will be a level of unpredictability
resulting from the quantum description, but that is another story, and one with which we
shall not concern ourselves in this thesis.

The Cosmic Censorship Conjecture (CCC) is a conjecture because a precise proof of it
remains elusive. It continues to be one of the most prominent issues in GR [11].

An important consequence of CCC was proposed by Hawking [23]. It states that, under
the weak energy condition, the size of a black hole, as measured by the area of its event
horizon, never shrinks, it only grows. First let us recall the weak energy condition. It
signifies that for all timelike vectors ξa, the energy-momentum tensor satisfies [11]

Tab ξ
aξb ≥ 0. (2.1)

Physically this means that the energy density measured by an observer with velocity ξa is
positive.

The area theorem, as we will see, plays an important role in the laws of black hole physics.
The reader can probably see an analogy between a property of the area dictated by the
above theorem and entropy: both quantities cannot decrease. Of course, this is nothing but
a coincidence so far. As we will discuss below, our discussion of black holes until now does
not qualify them to be considered “thermodynamical systems”.

2.2 The Penrose Process and Black Hole Mechanics

From our discussion on black holes so far, it appears that no objects can be extracted from
the black hole past the event horizon. We will see however that energy can be extracted
from a black hole via what is called “the Penrose process”.
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Imagine a Kerr black hole and a person holding a ball hovering over it. The spacetime will
have the usual Killing vectors χ = ∂t and η = ∂φ, and the horizon Killing vector ξ = χ+Ωη.
We associate to the the system of (the person+the ball) energy and angular momentum
given by the quantities:

E = −paχa, (2.2)

and

L = paηa. (2.3)

The negative sign in expression (2.2) is there because, at infinity, both pa and χa are
timelike, and we would like to have a positive total energy there. Inside the ergosphere
however, χa is spacelike, and we could imagine a situation where

E = −paχa < 0. (2.4)

Of course, the person’s total energy would become positive once she is out of the ergosphere.
Let us denote the energies of the person and the ball by E1 and E2 respectively (such that
E = E1 + E2). The person can arrange to throw the ball into the black hole with energy

E2 < 0. (2.5)

Penrose has shown that it is possible to do so and then follow a geodesic trajectory outside
the stationary limit surface, where the person’s energy will necessarily be positive. In this
particular situation, the ball must be thrown in such a way that it has a negative angular
momentum L2. This just means that its angular momentum is in the opposite direction to
that of the black hole’s. Ultimately, after the person crosses the stationary limit surface,
she will have energy

E1|outside > E0. (2.6)

This means that she left the ergosphere with more energy than she had inside. Since the
Kerr spacetime is stationary, and energy is conserved, the person must have received energy
from somewhere. In our example we only have three entities: the black hole, the person
and the ball. That extra energy must then have come from the black hole.

After the ball is thrown into the black hole, the total mass and angular momentum of the
black hole must then change by amounts of
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δM = E2, (2.7)

and

δJ = L2. (2.8)

δM is the energy extracted from the black hole, and δJ is the change imposed on the black
hole’s angular momentum by throwing inside it a ball with a negative angular momentum.

It is insightful to show that this process does not violate the area theorem. To do so, we
start by writing the induced metric on the outer horizon H (dr = 0, r = r+):

hij = (r2
+ + a2 cos2 θ)dθ2 +

[
(r2

+ + a2)2 sin2 θ

r2
+ + a2 cos2 θ

]
dφ2. (2.9)

The area of the horizon is given by

A =

∫
H

√
|h|dθdφ

=

∫
H

(r2
+ + a2)dθdφ

= 4π(r2
+ + a2).

(2.10)

Plugging equation (1.135) into this, we have

A = 4π

[(
m+

√
m2 − a2

)2
+ a2

]
= 4π

(
m2 +m2 − a2 + 2m

√
m2 − a2 + a2

)
= 8π

(
m2 +

√
m4 −m2a2

)
. (2.11)

Identifying this with equation (1.139), we get

A = 8π
(
m2 +

√
m4 − J2

)
. (2.12)

We can hence write the change in A as a function of the aforementioned δM and δJ :
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δA = 8π

[(
2m3

√
m4 − J2

+ 2m

)
δM − J√

m4 − J2
δJ

]
. (2.13)

Using the explicit form of ΩH in equation (1.62), along with some straightforward but messy
calculations, we arrive at

δA = 8π
a

ΩH

√
m2 − a2

(δM − ΩHδJ). (2.14)

It is not yet obvious that this expression is strictly positive (i.e. that the area can not
decrease). To see this, recall that outside the black hole pa and the horizon Killing vector
ξa are both timelike, thus

ξap
a
2 < 0. (2.15)

By expanding ξa and sticking to the definition in (2.3) for L2, we find that

E2 > ΩHL2, (2.16)

which can be recast as

δM > ΩHδJ. (2.17)

This directly shows that the expression (2.14) is strictly positive. While we have not given
a proof for the area theorem before, we can now see what happens when energy is either
added to or extracted from the black hole. Equation (2.12) implies that any increase in the
black hole’s energy will result in an increase in the area, while equation (2.14) shows that
any energy extracted from the black hole will also result in a positive change in the area.

In deriving equation (2.14), we have arrived at the key equation of this thesis! To see what
exactly is so striking about this equation, let us rearrange it into

δM =
κ

8π
δA+ ΩHδJ, (2.18)

where we used the fact that the (outer) surface gravity of the Kerr black hole is given by
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κ =

√
m2 − a2

2m
(
m+

√
m2 − a2

) . (2.19)

Equation (2.18) made people first start thinking about a possible correspondence between
black holes and thermodynamics due to its resemblance to the first law of thermodynamics
[11]

dE = TdS − PdV, (2.20)

where PdV represents the work done by the system. It is reasonable to think of the term
ΩHδJ as the work we do on the black hole by throwing the ball into it. Since M = m is
already the black hole energy, there is an analogy between the following terms [11]:

S → A/4
T → κ/2π.

(2.21)

Aside from the analogy between black holes and the first law of thermodynamics, we can
note that the area theorem looks quite similar to the fact that the entropy of a closed
thermodynamical system cannot decrease – i.e. the second law of thermodynamics. This
also goes well with the analogy given above between the entropy and the black hole area
(divided by 4).

If we wanted to be a little more generous (or pushy) we could also claim a resemblance
with the zeroth law. The zeroth law states that the temperature is constant throughout a
system in thermal equilibrium. A black hole in thermal equilibrium will have settled into
a stationary state, having constant surface gravity across the horizon. This goes well with
the second analogy in (2.21).

Analogy between laws of black holes and the third law of thermodynamics is a bit more
complex, mainly because there are several versions of the third law of thermodynamics. The
weaker (Nernst) form of the third law is that the temperature of a system cannot be reduced
to 0 by a finite number of operations [25]. Werner Israel showed [26] that the surface gravity
of a black hole cannot be reduced to 0 by a finite sequence of operations. In this sense, there
is an analogy between black hole laws and the third law of thermodynamics. However, there
is no such analogy with the stronger (Planck) form of the third law of thermodynamics that
the entropy of a system becomes 0 when the temperature goes to 0 [25]. But in the end,
the third law is not really a law in the sense that other certain systems actually violate it
as well [11].
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While we have discussed the first law of black hole mechanics for a Kerr black hole, it can
obviously be reduced to the case of a Schwarzschild black hole by setting a = 0, J = 0. This
is of course very easy to check. It is also worth noting that the first law does apply to a
charged, rotating Kerr-Newman black hole. Accounting for charges and an electric potential
turns out to be analogous to accounting for the number of particles N and chemical potential
µ of a thermodynamic system, where the first law becomes

dE = TdS − PdV + µdN (2.22)

It is straightforward (but very tedious) to check that the more general form of (2.18) which
accounts for electric charge and potential (i.e. the first law for the Kerr-Newman solution
for example) is simply

δM =
κ

8π
δA+ ΩHδJ + ΦdQ. (2.23)

Here the electric potential is Φ = −Q/r as usual, but evaluated at the horizon like the
rest of the other intensive quantities. Equation (2.23) is the generic form of this formula in
four dimensions. Note that in extra dimensions there are additional axes which the black
hole may have an angular momentum about. The first law then incorporates the sum of
quantities ΩidJi around all these axes,

δM =
κ

8π
δA+

∑
i

ΩiδJi + ΦdQ. (2.24)

While everything looks so easy and straightforward in 4-dimensional, asymptotically flat
spacetimes, we will see that the arrival at an equivalent formula in spacetimes with different
topologies and dimensions can be more challenging (cf. §3.3).

Having pointed out the striking similarities between certain laws in black hole physics and
the laws of thermodynamics, it is worth noting that so far, these are merely similarities.
To see this more clearly, recall that temperature is defined as a quantity which two systems
have different values of if they are exchanging heat. So far we have claimed that black holes
can only absorb but not emit energy, hence it cannot “exchange” energy (or heat) with
another system. It is therefore paradoxical to claim that the quantity κ/2π is equivalent
to a black hole temperature. In retrospect, the laws on the black holes side have nothing
thermal about them (yet), and we could refer to them as the laws of black hole mechanics.
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2.3 Black Hole Thermodynamics

A huge step forward was taken when Stephen Hawking discovered that black holes are not
really black, but rather emit radiations [27]. This was done by applying quantum field
theory in curved spacetimes to the neighborhood of the event horizon. It was the first
indication that a black hole does have a temperature, one which is associated with these
Hawking radiations, and which it turned out to be given by

T =
κ

2π
. (2.25)

A different derivation of the black hole radiation effect was also presented by Maulik Parikh
and Frank Wilczek in [28], wherein particles escape from the event horizon via quantum
tunneling. This makes sense; our understanding of the outside region being forbidden for a
particle inside the black hole is completely classical. It is natural to assume that it may be
overcome via quantum tunneling.

Not only does equation (2.25) allow us to think of black holes as thermodynamical systems,
but when plugged into (2.18) along with the analogy S → A/4, we magically retrieve the
exact usual form of the first law of thermodynamics

dE = TdS + work done on the (black hole) system, (2.26)

where the black hole mass (or energy) is now denoted E for dramatic effect.

We have now argued that the resemblance between (2.18) and (2.20) is not merely in terms
of how “similar” they look, but that the terms in both equations have the same physical
meaning, except for the entropy which is the last piece of the puzzle. Since we have already
agreed that black holes have temperatures, it makes sense to think about what entropy a
black hole system may possess. In the following few paragraphs, we will give a qualitative
explanation of how this was done.

We start by recalling that on the macroscopic level, a black hole can be solely described
by its mass, angular momentum and electric charge, without the need for knowledge about
any internal parameters. A black hole with given values for M , J and Q has a number of
different possible internal configurations. If we neglect quantum effects, then the number of
these configurations would become infinite since a black hole may be formed by an infinite
number of infinitely small particles [29]. However, Bekenstein noted that one would have to
restrict the Compton wavelength of these particles to be less than the radius of the black
hole, rendering the number of possible internal configurations finite [29].

Let σdM dQd3J be the number of internal configurations of a black hole in the range of M

45



to M+dM , Q to Q+dQ and angular momentum in the element d3J about a given angular
momentum ~J . Since by the “no-hair” theorem one has no knowledge of the internal state
of the system, all configurations are equiprobable, and the entropy is given by ([29])

S = −Σipi ln pi = lnσ. (2.27)

The entropy can also be described in terms of the initial states that give rise to a black hole
in the aforementioned ranges. Let {|αi〉}i be a complete orthonormal basis of initial states.
Let fiV d3V dM dQd3J be the probability that the state |αi〉 gives rise to the black hole.
Here V is a normalization volume and the black hole is in the element d3P about ~0. Then
the probability for a certain sate |αi〉 to give rise to the black hole is

qi =
fi

Σifi
. (2.28)

The total entropy is also given by

S = Σiqi ln qi. (2.29)

The entropy has to be a function of only M , J , Q, and the following properties [29]:

1. It always increases when matter or radiation goes into the black hole.

2. When two (or subsequently more) black holes collide together, the resulting entropy
of the new black hole is bigger than the sum of the entropies of the original holes.

It turns out that this needs to be a monotonic function S(A), with

d2S

dA2
≥ 0. (2.30)

The simplest such function is

cA, (2.31)

with c some constant. The black hole temperature can be defined in an analogous manner
to the classical thermodynamics temperature via

T−1 =

(
∂S

∂E

)
J,Q

. (2.32)
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With this formula, Hawking was able to verify that the correct value for c is in fact 1/4.

So in conclusion, black holes are not really black, they emit radiations. This radiation
allows us to define the temperature and calculate the entropy of black holes. This leads to
black holes having exact versions of the first and second laws of thermodynamics. Having
identified the temperature with a constant times the surface gravity and the entropy with
a constant times the surface area of the horizon, we can now boldly write the first law of
black hole thermodynamics (for the Kerr-Newman case) as

dM = TdS + ΩdJ + ΦdQ . (2.33)

From this, we get the following equations of state which are analogous to those for intensive
quantities in conventional thermodynamics:

T =
∂M

∂S
,

Ω =
∂M

∂J
,

Φ =
∂M

∂Q
.

(2.34)

It was shown my Smarr [30] that for Kerr-Newman black holes there is another equation
worth noting:

M2 =
1

4π
S + 16πS

(
J2 +

1

4
Q2

)
+

1

2
Q2. (2.35)

This, along with Euler’s theorem for homogeneous functions, leads to another set of funda-
mental equations. To see this, first let us recall what we mean by “homogeneous function”.

Definition 2.1. Let S ⊂ Rn. Then a function of n variables f : S → R is said to be
homogeneous of degree k if ∀ (x1, x2...xn) ∈ S, ∀λ ∈ R∗, we have (λx1, λx2, ...λxn) ∈ S
and

f(λx1, λx2, ...λxn) = λkf(x1, x2...xn). (2.36)

We can now state Euler’s theorem as follows:

Theorem 2.1. (Euler’s Theorem for Homogeneous Functions) Given the above
assumptions, then f is homogeneous of degree k if and only if

n∑
i=1

xi∂if (x1, . . . , xn) = kf (x1, . . . , xn) , ∀ (x1, . . . , xn) ∈ S. (2.37)
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Now, from equation (2.35), we see that M is a function of S, J and Q. We will actually use
a trick here and assume that M is actually function of 1

2Q. This works fine with (2.35) since
Q4 is multiplied by 1

4 . We did not really show if M(S, J,Q/2) is homogeneous. However,
we can make use of Euler’s theorem and suppose that it is homogeneous of degree k, then
check if our assumption works out. Thus, using the set of equations (2.47) we write

kM
?
= S

∂M

∂S
+ J

∂M

∂J
+

1

2

∂M

∂Q
(2.38)

?
= TS + ΩJ +

1

2
ΦQ. (2.39)

It is straightforward to show that this is in fact true for k = 1
2 , leading to

1

2
M = TS + ΩJ +

1

2
ΦQ. (2.40)

Differentiating the above equation and using the first law (2.33),

1

2
dM = TdS + SdT + ΩdJ + JdΩ +

1

2
ΦdQ+

1

2
QdΦ

=
1

2
dM − 1

2
ΦdQ+ SdT + JdΩ +

1

2
QdΦ (2.41)

From this, we get the following relations for the extensive quantities of the first law:

(
∂M

∂T

)
Ω,Φ

= −2S (2.42)(
∂M

∂Ω

)
T,Φ

= −2J (2.43)(
∂M

∂Φ

)
Ω,T

= −Q. (2.44)

In continuing the analogy with classical thermodynamics, we may define the Gibbs energy
of the black hole. Recall that in classical thermodynamics the Gibbs energy is defined by

G = E − TS − (−PV ). (2.45)

For the charged rotating black hole this becomes
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G = M − TS − ΩJ − ΦQ. (2.46)

Then we have another set of important thermodynamical relations for the intensive quan-
tities in the first law,

S = −
(
∂G

∂T

)
Ω,Φ

,

J = −
(
∂G

∂Ω

)
T,Φ

,

Q = −
(
∂G

∂Φ

)
T,Ω

.

(2.47)

Having laid out the first law of thermodynamics and the above relations for intensive and
extensive quantities that appear in it, it is astonishing that complex entities like black holes
that emerge from General Relativity can be described via these simple thermodynamical
relations, which only rely on their external parameters. Black hole thermodynamics are
an important tool for understanding and developing a theory for quantum gravity [31]. Its
study has lead to the development of one of the most active areas of theoretical physics
research today: the AdS/CFT correspondence [2] which we will discuss in the following
chapter.
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Chapter 3

Anti-de Sitter Spacetime

3.1 The Anti-de Sitter Spacetime

All the metrics that we have presented in the previous chapters have been asymptotically
flat. This is due to these metrics being solutions of the Einstein equation with no cosmo-
logical constant,

Rab −
1

2
gabR = 8πTab. (3.1)

Of course, there is nothing to stop us from deriving solutions for the complete Einstein
equation with cosmological constant

Rab −
1

2
gabR+ Λgab = 8πTab. (3.2)

In vacuum, this gives

Rab −
1

2
gabR = −Λgab, (3.3)

which you can easily verify leads to

R =
DΛ
D
2 − 1

, (3.4)

where D is the dimension of the spacetime manifold. We will mostly be concerned with the
cases where D ≥ 4, for which the curvature scalar’s signature is determined by Λ.
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A spacetime for which Λ is positive is called a de Sitter spacetime. It is named after Dutch
mathematician Willem de Sitter who, in 1917, found a solution to the Einstein equation
with a positive cosmological constant [32]. The de Sitter spacetime is a significant solution
because it describes an expanding universe - which happens to be the case of the one we
live in. The existence of a positive cosmological constant is the simplest representation of
dark energy in the so-called Standard Model of Cosmology [33].

In contrast, a spacetime for which Λ is negative is called an anti-de Sitter spacetime
(AdS). This class of spacetimes is the one with which we will concern ourselves for the rest
of the thesis. The question of why we are concerned with spacetimes that do not describe
our universe is of course an important one – one which we will address soon enough.

The constant curvature property in equation (3.3) leads to the following form of the Riemann
tensor ([34]):

Rabcd = − 1

`2
(gacgbd − gadgbc) , (3.5)

where ` is called the AdS radius. Contracting equation (3.5) leads to

Rab = −D − 1

`2
gab, (3.6)

and

R = −D(D − 1)

`2
. (3.7)

Combining this with (3.3) leads to the important formula

Λ = −(D − 1)(D − 2)

2`2
. (3.8)

The solution to equation (3.3) with negative cosmological constant turns out to be the
metric describing a hyperboloid sheet. A (D−1)-dimensional hyperboloid sheet is given by
the quadratic equation

−(X0)2 − (XD)2 +
D−1∑
i=1

X2
i = −`2. (3.9)

This is a hyperboloid surface with outer radius `, explaining the name “AdS radius”. The
AdS spacetime here has topology R× SD−1.
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To find a solution for the Einstein equation in 4 dimensions with a negative cosmological
constant, we assume that the metric takes a similar form to those in Chapter 1 with an
undetermined ansatz function f(r) ([35]):

ds2 = −f(r)2dt2 + f(r)−2dr2 + r2(dθ2 + sin2 θdφ2), (3.10)

The resulting Ricci tensor is diagonal, with components

Rtt = −f4Rrr = f3

(
f ′′ +

2f ′

r
+
f ′2

f

)
, (3.11)

and

Rφφ = sin2 θRθθ = (1− f2 − 2ff ′r) sin2 θ. (3.12)

The Einstein equation in vacuum in four dimensions obviously reduces to

Rab = Λgab. (3.13)

The tt and rr components lead to the following constraint for f(r):

f ′′ +
2f ′

r
+
f ′2

f
=
−Λ

f
. (3.14)

The θθ and φφ components lead to a second constraint,

1− 2ff ′r − f2 = Λr2. (3.15)

We can use Mathematica to determine the ansatz given the above constraints, which yields

f(r) = 1 +
r2

`2
, (3.16)

with

`2 =
−3

Λ
. (3.17)

The generic anti-de Sitter vacuum metric in D dimensions is given by ([35])
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−
(

1 +
r2

`2

)
dt2 +

1

1 + r2

`2

dr2 + r2dΩ2
D−2, (3.18)

where dΩ2
D−2 is the metric on the unit (D − 2)-sphere.

An important notion of asymptotically AdS spacetimes is that of conformal flatness. Let
us start by defining what this is.

Definition 3.1. A Riemannian or pseudo-Riemannian manifoldM is conformally flat if
and only if ∀x ∈M∃ a neighbourhood V of x and a smooth function Ω(x) :M→ R∗ such
that the conformal metric g̃ab = Ω2(x)gab has a vanishing Riemann curvature tensor on V.

Given the previous definition, we have the important following theorem.

Theorem 3.1. (The Weyl–Schouten Theorem) A Riemannian or pseudo-Riemannian
manifold of dimension D ≥ 4 is conformally flat if and only if its Weyl tensor vanishes.

If we multiply the metric in (3.18) by a factor of (1 − r2/`2)2/(1 + r2/`2)2, the resulting
metric is

−dt2 +

(
2

1 + r2/`2

)2

(dr2 + r2dΩ2
D−2). (3.19)

Specifically at r = ` we recover the flat Minkowski metric in D dimensions. We can thus
see that the metric is conformally flat.

The final notion that we will discuss in this section is that of an asymptotically anti-de
Sitter spacetime.

Definition 3.2. AD-dimensional spacetime (M, gab) is said to be weakly asymptotically
anti-de Sitter if there exists a spacetime (M̃, g̃ab) with boundary ∂M̃ and a diffeomor-
phism from M onto M− ∂M̃ such that
1. there exists a function Ω : M̃ → R such that g̃ab = Ω2gab on M,
2. ∂M̃ is topologically R× SD−2, and on Ω(x) = 0, ∀x ∈ ∂M̃, and
3. gab satisfies the Einstein equation with negative cosmological constant and energy-
momentum tensor Tab, where Ω−3T b

a admits a smooth limit to ∂M̃ [19].

Definition 3.3. A spacetime is said to be asymptotically anti-de Sitter if, in addition
to Definition 3.2, the boundary ∂M̃ is conformally flat.
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3.2 The AdS/CFT Correspondence

3.2.1 Background

We will divert our focus from classical General Relativity for a short while to discuss Quan-
tum Field Theory and String Theory before we present the AdS/CFT correspondence in
the following section. Our aims is to give a self-contained discussion, with only prelimi-
nary knowledge of Quantum Mechanics (and not Quantum Field Theory) required from
the reader. Moreover, this section is not meant to give a formal introduction to the topics
that will be discussed. Our goal here is to give a non-mathematical (as much as possible)
description to the reader of certain concepts that will be used in following parts of the
thesis.

A field is a tensor (including scalars and vectors) having a value at each point in spacetime.
A field theory is a theory whose dynamical variables are fields and not point particles.
General Relativity for example is of course a field theory, since the dynamics are represented
by the metric tensor field. It is however a classical field theory. A Quantum Field Theory
is a field theory whose fields are quantized.

Conventional Quantum Mechanics, as the reader may know, is non-relativistic. To study
interactions at very high energies and very small scales we then require a relativistic descrip-
tion of quantum physics. The natural thing to do is to attempt to formulate a relativistic
theory of Quantum Mechanics itself. Relativistic Quantum Mechanics does in fact exist
but it has several inconsistencies rendering it impractical for use in the study of Particle
Physics. For instance, consider the amplitude of a particle traveling from a point ~x0 to
another point ~x1. Using the relativistic formula for energy

E =
√
p2 +m2, (3.20)

this amplitude is given by

U(t) = 〈~x1|e−it
√
pipi+m2 |~x0〉

=
1

(2π)3

∫
d3pe−it

√
pipi+m2 · ei~p·(~x1−~x0)

=
1

2π2|~x1 − ~x0|
=

∫ +∞

0
dp p sin (p| ~x1 − ~x0|) e−it

√
pipi+m2

. (3.21)

If we look at the asymptotic behavior of this integral well outside the light-cone for xixi � t2,
we can show that ([36])
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U(t) ∼ e−m
√
x2−t2 . (3.22)

The probability that a particle exists outside the light-cone is hence non-zero, which breaks
causality. The use of Quantum Field Theory solves this and other inconsistencies in rela-
tivistic Quantum Mechanics [36].

The calculation of interaction and scattering amplitudes in Quantum Field Theory is non-
exactly solvable. It would then be useful to express these amplitudes in terms of a per-
turbation series. Particularly, these perturbation series are expressed as expansions in the
coupling coefficient of the theory. Coupling coefficients are constants of the theory that
describe the strength of the force. In this manner, the nth term in the series is proportional
to the nth power of the coupling coefficient.

For quantum electrodynamics this coefficient is the fine-structure constant α ≈ 1/137.
Since αn decreases with each term in the series, the perturbation series may converge.
More importantly, we can take a cut-off of the first few terms and neglect the following
terms since, if finite, they will be of less significant value.

For quantum chromodynamics however the story is different. The coupling coefficient is
not constant. It becomes very large at very low energies, and perturbation theory can no
longer be used in QCD calculations.

So far, Quantum Field Theory (QFT) gives very good description of three of the four
fundamental forces of nature: the strong force, the electromagnetic force and the weak
force. However, it has failed in providing a full quantum description of gravity. By this
we mean that there are ways of quantizing General Relativity and using the resulting QFT
as an effective low-energy theory. However, at high energies this gives rise to divergences
which cannot be eliminated by known regularization techniques.

In comes String Theory. String Theory takes another approach at quantizing physics.
Instead of point-like fundamental particles, it considers string-like particles and quantizes
those. So in essence, String Theory is a theory of how strings propagate and interact with
each other. Those strings can vibrate in different ways and one of those vibrational states
gives rise to the graviton: the elementary gauge boson that would be the force carrier for
gravity. Thus String Theory provides a quantum description of gravity. In fact, currently
it is the prime candidate for a quantum theory of gravity [1]. Like Quantum Field Theory,
String Theory may incorporate perturbation theory as well. When the coupling coefficient
is weak enough, a solution may be approximated by the first order of the perturbation
theory, which is simply a classical description of gravity. In this sense, studies of certain
black hole solutions in General Relativity is related to studies of solutions in String Theory
in a certain limit.
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3.2.2 Presentation of the Conjecture

We have seen in the previous section that, although we live in a de Sitter universe, we
can construct well defined anti-de Sitter spacetimes which represent solutions to the Ein-
stein field equation in various dimensions. It is now time to talk about why anti-de Sitter
spacetimes are important.

The importance of AdS spacetimes lies in what is called the AdS/CFT correspondence.
“CFT” stands for conformal field theory. This is a class of quantum field theories which are
invariant under conformal transformation of the metric [37]. The AdS/CFT correspondence
is a duality between String Theory in anti-de Sitter spacetime and Quantum Field Theory
in a conformally flat spacetime [1]. The quantum field theory may be thought of as being
defined on the boundary of the anti-de Sitter spacetime, which we already saw is conformally
flat. In a particular limit, if the field theory is strongly coupled, the gravity formulation on
the String Theory side is weakly curved and can be approximated by a classical solution
[1]. This leads to a map between a type of strongly-coupled conformal field theory in four
dimensions having gauge symmetry group SU(N) and classical black hole solutions in five-
dimensional anti-de Sitter spacetime. In this case the aforementioned limit is when N →∞.
We will see in following sections how this translates into the calculations in more details.

For now, the important result is that the AdS/CFT correspondence, roughly speaking,
claims that

Strongly-coupled gauge theory at finite temperature =
gravitational theory in AdS black hole [32].

For instance, the Brown-York energy momentum given by (1.126), when calculated in an
anti-de Sitter bulk spacetime, can be interpreted as the expectation value of the energy-
momentum tensor resulting from a quantum effective action in the conformal field theory
defined on the anti-de Sitter boundary [38]:

〈T̂ ab〉 = − 2√
−h

δSeff

δγab
, (3.23)

where γab is the metric of the conformal field theory.

The original paper [2] that proposed the AdS/CFT correspondence is a 1997 paper by Juan
Mart́ın Maldacena. As of the writing of this section, it is the most highly cited paper in
the field of theoretical high energy physics [39].

The duality is a powerful tool in studying quantum gravity. Since we understand conformal
field theories much better than we understand quantum gravity, we can use our knowledge
of a conformal field theory and the AdS/CFT duality to gain insight into quantum gravity

56



[40]. Likewise, we can use the equivalence to perform calculations in the anti-de Sitter
spacetime that would be more complicated to perform in the realm of Conformal Field
Theory [40].

One of the important applications of the AdS/CFT correspondence is its use to perform
certain calculations related to color confinement in quantum chromodynamics [40]. Color
confinement is the phenomenon that particles carrying color charge cannot be isolated and
thus cannot be observed individually in nature. The AdS/CT correspondence leads to a
duality between phase transitions in black hole solutions and confinement-deconfinement
phase transitions [41]. The theory is also important in studying other strongly-coupled
systems in condensed matter physics [40]. There is a particular interest in understanding
strongly-correlated systems at finite temperature. This turns out to be very difficult with
presently-known condensed matter computation techniques [40]. This gives the AdS/CFT
correspondence a place in the world of applied physics as well. The bulk studies will
naturally concern a black hole in AdS spacetime. We usually would like to keep the system
at a finite chemical potential, which turns out to correspond to using charged black hole
models with electrical potential.

In our work, we will be interested in using the AdS/CFT correspondence to study two
particular phenomena: the conformal anomaly and the Casimir energy. The first will be
discussed in §3.2.3 and the latter in §3.4. In Chapter 4 we will then use data from the bulk
gravity theory to calculate the conformal anomaly and Casimir energy of the corresponding
CFT and compare them to calculations of anomaly and Casimir energy calculated in the
CFT itself.

3.2.3 Conformal Anomaly

In section §3.2 we mentioned that conformal field theories are a class of quantum field
theories that remain invariant under conformal transformation of the metric. When we say
“the theory remains invariant” we particularly mean that its action, which generates the
equations of motion, stays invariant under said transformations.

Like any QFT, CFT’s sometimes present divergent observable quantities which need to
be regularized in order to obtain a finite value. A classical example of a regularization is
calculating the mass of a point-charge like the electron by taking into account its energy in
the electrostatic field (i.e. the electromagnetic mass). The calculation takes the form

mEM =

∫
1

2
E2d3x =

Q2

8πre
, (3.24)

with re being the electron’s radius. By taking the classical limit re → 0, mEM obviously
diverges, which contradicts the electron having an experimental finite mass. Regularizing
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the value of mEM consists of admitting that the classical theory breaks down at the funda-
mental microscopic level where the value of the electron’s radius becomes significant, and
hence accepting that re could have a very small non-zero value. This is called the classical
electron radius.

Regularization techniques can lead to what we call anomalies. An anomaly in Quantum
Field Theory is when a certain symmetry exists in the classical action of a theory but is
broken on the quantum level when the theory is regularized. This could be because the
terms that regularize the divergent action do not obey a certain symmetry which the original
action preserved.

Here we are specifically interested in the anomaly arising from the break-down of the con-
formal symmetry of CFT’s. Because the variation of the action is proportional to the
energy-momentum tensor, the conformal re-scaling is subsequently related to the trace of
the energy-momentum tensor. The conformal anomaly then exists when the expectation
value of the CFT energy-momentum tensor does not vanish,

γab〈T̂ab〉 6= 0. (3.25)

The AdS/CFT duality provides a tool for calculating the conformal anomaly of a CFT
using data from the gravitational theory, namely contractions of the Riemann tensor and
their derivatives.

Conformal anomalies only arise for even-dimensional CFT’s. The reasons for this are purely
mathematical; studies of conformal structures lead to different results in odd and even
dimensions. In the latter, the theory leads to logarithmic divergences that break conformal
symmetry [42]. The theorems behind this are discussed in details in [43].

Talk of conformal invariance will probably remind the reader of a particular quantity in
GR that we know to also be conformally-invariant: the Weyl tensor Cabcd. Because the
Weyl tensor is conformally invariant, it is sometimes referred to as the conformal tensor ;
subsequently, conformal anomaly is sometimes referred to as the Weyl anomaly.

3.3 Divergences in AdS Spacetimes

3.3.1 Introduction

The general black hole solution in an asymptotically AdSn+1 spacetime admitting spherical
symmetry is given by [44]:
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ds2 = −
(

1− 2m

rn−2
+
r2

`2

)
dt2 +

(
1− 2m

rn−2
+
r2

`2

)−1

dr2 + r2dΩn−1, (3.26)

where n ≥ 2, and m is some real constant.

Notice an extra factor of r2/l2 in the ansatz function in comparison to the asymptotically
flat case. The different form of the metric in AdS spacetimes often leads to divergences, par-
ticularly in the calculation of the action and the mass. Since we expect solutions with only
cylindrical symmetry to reduce to the spherically-symmetric case when certain parameters
are set to specific values, we can expect divergences in solutions admitting only cylindrical
symmetry as well.

The full action in D = n+ 1 dimensions is the sum of the Einstein-Hilbert action and the
Gibbons-Hawking action ([4]):

I = − 1

16π

∫
M

dn+1x
√
−g
(
R+

n(n− 1)

`2

)
− 1

8π

∫
∂M

dn
√
−hK, (3.27)

where hab and Kab are again the induced metric on and extrinsic curvature of the boundary
respectively.

β = 1/T. (3.28)

As an example, let us look at the solution for a rotating black hole in AdS4. This solution is
often referred to as Kerr-AdS4. All quantities calculated below will reduce to the spherically-
symmetric Schwarzschild-AdS4 solution if we set a = 0. The metric is given by ([9]):

ds2 =− ∆r

ρ2

(
dt− a sin2 θ

Ξ
dφ

)2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2

+
∆θ sin2 θ

ρ2

(
adt− (r2 + a2)

Ξ
dφ

)2

, (3.29)

where

Ξ = 1− a2

`2
, (3.30)

ρ2 = r2 + a2 cos2 θ, (3.31)
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∆r = (r2 + a2)

(
1 +

r2

`2

)
− 2mr, (3.32)

∆θ = 1−
(
a2

l2

)
cos2 θ. (3.33)

In the following parts of this section, our discussion will be based on results in [18].

As discussed in Appendix D, we make the coordinate transformation t→ iτ and and impose
a period β = 1/T on the imaginary time coordinate [5]. The inverse temperature can be
found by direct computation to be

β =
4π(r2

+ + a2)

r+(1 + 3r2
+/`

2 + a2/`2 − a2/r+2)
. (3.34)

We find the Einstein-Hilbert action to be given by

IEH/β =
r3

2`2Ξ

∣∣∣
r→+∞

+
a2r

2`2Ξ

∣∣∣
r→+∞

−
r+

(
a2 + r2

+

)
2`2Ξ

+O
(
r−1
)
. (3.35)

Evidently, the first two terms are divergent.

Next, we give the Gibbons-Hawking action:

IGH/β = − 3r3

2`2Ξ

∣∣∣
r→+∞

+

(
− 5a2

6`2Ξ
− 1

Ξ

)
r
∣∣∣
r→+∞

+
3m

2Ξ
+O

(
r−1
)
. (3.36)

The total action, which also diverges, is thus given by

IKAdS4 = −βr
3

`2

∣∣∣
r→+∞

−
(

1 +
a2

3`2

)
βr
∣∣∣
r→+∞

+
3`2m− r+

(
a2 + r2

+

)
2`2

β. (3.37)

In discussing the above results, we have omitted a series of tedious calculations. The reason
we are not very concerned with showing the details at this point is that we will be discussing
in great detail the exact calculations for the more involved case of a charged, rotating black
hole in AdS5. Here we are simply interested in showing the above result, which obviously
diverges as r goes to infinity. Higher dimension solutions will include divergent terms in
higher powers of r as well (see ref. [45]).

As we mentioned, the energy also diverges. In Chapter 1 we saw two reasonable ways of
defining the energy of the solution. The first is the Komar integral. It can be easily verified
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from Killing’s equation that the timelike Killing vector for the solution in (3.29) can still
be expressed by

ξ = ∂t. (3.38)

Using equation (1.103), we find the Komar mass to be

MK =
r3 + a2r +m

(
l2 − 2a2/Ξ

)
`2Ξ

∣∣∣
r→+∞

, (3.39)

which also diverges.

The second way we saw to define the energy is the Brown-York method in equation (1.130).
Using the metric in (3.29), we get

MBY =
r3
(
3a2 − 3`2

)
3`4Ξ

∣∣∣
r→+∞

+
r
(
a4 + 2a2l2 − 3`4

)
3`4Ξ

∣∣∣
r→+∞

+
6`4m− 4a2`2m

3`4Ξ
. (3.40)

Again, this method also leads to a divergent mass.

Reference [46] shows that these action and mass divergences also occur in 3, 5 and 6 dimen-
sional AdS spacetimes.

Discovering that a certain definition in physics diverges is nothing new. We encounter this
in several cases in classical and quantum physics. This simply means that we need to alter
our definitions in order to “regularize” these divergences. Ideally, we would like to find
ways to regularize these AdS divergences which leave our asymptotically flat definitions
unchanged. The reason is that the latter seem to work fine; they satisfy a first law of
black hole thermodynamics, and under certain assumptions, reduce to familiar results from
Newtonian mechanics, as we have seen for the mass and angular momentum in Chapter 1.

There are two regularization methods which are widely used methods in the literature: the
background subtraction method and the counterterms subtraction method. In the next
two subsections we will discuss these methods in detail, and will show how they solve the
divergences in the Kerr-AdS4 case. We will then use both methods to study the main metric
of the thesis in the following chapters.
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3.3.2 The Background Subtraction Method

The background subtraction method, as the name suggests, resolves the divergence problems
by defining the action and isometric charges with respect to a background spacetime. For
this to work, the original metric and the background metric must have the same boundary
at infinity. In the asymptotically AdS four-dimensional Kerr solution (3.29) for example, it
is convenient to chose the background as a rotating pure AdS spacetime. This can be done
by setting m = 0 in the metric.

Applying this to the action in (3.37), we find the regularized action below

ĨKAdS4 = IKAdS4 − IKAdS4

∣∣∣
m=0

=
3m

2Ξ
β. (3.41)

The Komar mass can also be regularized using background subtraction. This leads to

M = MK −MK

∣∣∣
m=0

=
m

Ξ
.

This result was found by Hawking, Hunter and Taylor-Robinson [47]. However, it was noted
in [6] that this mass does not satisfy the first law of thermodynamics. The reason is that
the timelike Killing vector in the AdS4 case should actually be re-scaled to ([18])

χ = ∂t/Ξ. (3.42)

We can calculate the mass again using this re-scaled Killing vector. This gives us

M =
m

Ξ2
. (3.43)

The background subtraction method, while widely used in the literature (especially before
the rise in popularity of the counterterms subtraction method), has certain problems. First,
by subtracting the values of the pure AdS spacetime from the spacetime containing the black
hole, we eliminate any physics common between the two spacetimes. For instance, we will
see in §3.4 that odd-dimensional AdS spacetimes have a finite vacuum energy. Evidently
this cannot be calculated using the background subtraction method. This is also the case
for the physical quantity corresponding to the conformal anomaly discussed in §3.2.3 [8].
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Furthermore, while the background subtraction method requires a reference background,
there are certain solutions where an appropriate background spacetime is ambiguous or
unknown (for example the Taub-NUT-AdS and Taub-Bolt-AdS) [4].

3.3.3 The Counterterms Subtraction Method

A different regularization scheme can be found in [42], where it was shown that the action
divergences in AdS spacetimes can be written in terms of local integrals of the metric of
the boundary CFT γab. This was inspired by the AdS/CFT correspondence. It was further
elaborated on by Vijay Balasubramanian and Per Kraus in [38] to give these divergences in
terms of the induced boundary metric hab.

The counterterms subtraction technique is based on the fact that one can then construct
counterterms from these local integrals which can be added to the action to render it finite.
The final non-divergent action is given by

I = IEH + IGH + Ict, (3.44)

with the latter taking the form

Ict =
1

8π

∫
∂M

dn
√
−hf(`,R[hab],DR[hab]), (3.45)

and depending only on the Ricci scalar of the boundary R and its derivative DaR [4].1

Particularly, the first couple of counterterms are given by ([4])

Ict =
1

8π

∫
∂M

dnx
√
−h
[
n− 1

`
+

`R
2(n− 2)

+ ...

]
, (3.46)

where the dots indicate the appearance of more terms in higher dimensions. The above
terms are enough to cancel divergences for n ≤ 4, which is what we will be interested in.

We will now apply the counterterms subtraction technique to the Kerr-AdS4 metric (3.29)
to illustrate the use of this technique. The divergent parts of the action are still given by
(3.35) and (3.36). Let us call α the integrand of the integral (3.46). It is given by

1Here Da is the covariant derivative defined on the boundary manifold.
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α =− β

4
√

2l2Ξ

(
a2 cos(2θ) + a2 + 2r2

)5/2

(
sin θ×

√
a2 (l2 + r2) + r (l2(r − 2m) + r3)

(
a6 cos(6θ) + 10a6 + 8a4r2

+ 32a2l2mr − 16a2l2r2 − 48a2r4 +
(
6a6 + 8a4r2

)
cos(4θ) + a2 cos(2θ)(

15a4 + 16a2r2 − 16r
(
l2(r − 2m) + r3

))
− 32l2r4 − 64r6

))
.

(3.47)

Series-expanding around infinity, we get

α/β =
2r sin θ

(
l2 − a2 cos(2θ)

)
l2Ξ

+
2r3 sin θ

l2Ξ
− 2(m sin θ)

Ξ
+O(r−1). (3.48)

The counterterms action is then found by integration:

Ict/β =

[
r3

l2Ξ
+

(
a2

3l2Ξ
+

1

Ξ

)
r − m

Ξ

] ∣∣∣∣
r→+∞

. (3.49)

Combining (3.35), (3.36) and (3.49), the final action is given by

IKAdS4 =
2πr+

(
a2 + r2

+

) (
a2r+ −m`2 + r3

+

)[
a2
(
l2 − r2

+

)
− r2

+

(
l2 + 3r2

+

)]
Ξ

, (3.50)

This results matches the one found in [9]. We see that the final action is in fact finite. We
can now use it in equation (1.130) to calculate the Brow-York energy. The quasi-local energy
momentum tensor will now include two additional terms coming from the new counterterm
action in (3.46),

T abct = − 2√
−h

δIct

δhab
. (3.51)

We have already seen in Appendix D that

δ
√
−h

δhab
= −1

2

√
−hhab, (3.52)

so the first additional term in the stress tensor is
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(n− 1)

`
hab.

We have also seen the variation of the Ricci scalar will yield the Einstein tensor. We denote
the Einstein tensor of the boundary by Gab. The full quasi-local stress tensor is therefore
given by

T ab =
1

8π

[
Kab − habK +

(n− 1)

`
hab − `Gab

(n− 2)

]
. (3.53)

The Killing vector will be that in (3.42). The stress tensor now has four terms and the mass
can thus be divided into four terms as well. The contribution of the first term gives

M1 =

[
m
(
5a2 − 3`2

)
6Ξ2 (a2 − `2)

+
a2r

2`2Ξ2
+

r3

2`2Ξ2

] ∣∣∣∣∣
r→+∞

. (3.54)

The second term gives

M2 =

[
a2m− 3`2m

2Ξ2 (a2 − `2)
+
r
(
−5a2 − 6`2

)
6`2Ξ2

− 3r3

2`2Ξ2

] ∣∣∣∣∣
r→+∞

. (3.55)

Lastly, the contribution of the counterterms action gives

Mct =

[
−
m
(
a2 − 3`2

)
3Ξ2 (a2 − `2)

+ r

(
a2

3`2Ξ2
+

1

Ξ2

)
+

r3

`2Ξ2

] ∣∣∣∣∣
r→+∞

. (3.56)

By careful inspection, it is easy to see that the divergences in the three terms cancel perfectly.
Combining the above equations, we arrive at the following expression for the energy:

M =
m

Ξ2
. (3.57)

Notice that when applying the counterterms subtraction technique, we did not specify a
particular background, contrary to the previous technique. This allows us for example to
calculate a finite non-zero energy for the pure AdS space, which would not be possible using
the background subtraction method since this energy would depend on the choice of the
background. Particularly, since it makes most sense to take the background to be the AdS
spacetime itself, then the energy would always be zero. We will calculate the energy of the
pure AdS spacetime using the counterterms subtraction technique in §3.4.
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3.3.4 Discussion of the Thermodynamics in Asymptotically AdS4 Space-
times

Having discussed how the divergence in energy can be cancelled, it is logical to ask what
impact the regularization schemes we discussed have on the first law. In fact, it is logical
to wonder whether the first law even holds in AdS spacetimes. This turns out not to be
somewhat of a complicated issue.

Let us start by looking at the first law in Kerr-AdS4. Conveniently, the masses calculated
in (3.43) and (3.57) are the same. We now need to calculate the angular momentum. The
Komar integral in (1.104) directly evaluates to

Jφ =
am

Ξ2
, (3.58)

which does not diverge. The same result is found if we instead use the Brown-York formula
in (1.131). These results match those in [47] and [6]. So in conclusion, there is no ambiguity
with the definition of the angular momentum either. Obviously, there is no ambiguity with
the temperature and entropy as well, which are given by ([47])

T =
r+(1 + a2`−2 + 3r2

+`
−2 − a2r−2

+ )

2(r2
+ + a2)

, (3.59)

and

S =
π(r2

+ + a2)

Ξ
. (3.60)

The only quantity which seems a little ambiguous is the angular velocity. Recall that in
Chapter 1 we discussed that the angular velocity can be chosen as ΩH or ΩH −Ω∞. In the
asymptotically-flat case this was not an issue since Ω∞ vanished. However, direct evaluation
of (1.61) at r →∞ gives a non-vanishing expression,

Ω∞ =
a

`2
. (3.61)

It was shown in [6] that only the quantity ΩH −Ω∞ satisfies the first law when the correct
timelike Killing vector (3.42) is used. It is given explicitly by

Ω =
a(1 + r2

+l
−2)

r2
+ + a2

. (3.62)
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Furthermore, it was shown in [18] that the same outcome holds for charged rotating black
holes in AdS4 as well. So from now on, we never say angular velocity we mean the quantity
Ω = ΩH − Ω∞.

Two more definitions [48, 49] for the mass were also considered in [6], which yield the
same expression as (3.43), and hence they also satisfy the first law in four-dimensional AdS
spacetimes. However, it was shown that neither of the four expressions satisfy the first law
in dimensions higher than 4. It was hence suggested in [6] that to have an expression for
the mass that satisfies the first law, one should integrate the right-hand side of the first
law. We find this method of defining the mass to be unfavourable for reasons that we will
discuss in the next chapter. We will also see in the next chapter that the mass calculated
using the counterterms subtraction method can be made to satisfy a more rigorous version
of the first law.

3.4 Casimir Energy and the AdS/CFT Correspondence

You should recall that in Quantum Mechanics the value of the vacuum energy is non-
zero due to the Uncertainty Principle which allows for particle-antiparticle pairs to be
created and annihilated. This energy is not some fictitious theoretical concept without
evidence. It can actually leads to measurable quantities, most famously the Casimir effect.
In Quantum Field Theory, the vacuum expectation value of the electromagnetic energy
operator is modified by the presence of two conductive plates separated by a dielectric. The
modification of this expectation value leads to a force between the two plates known as the
Casimir force.

This Casimir effect can be visualized as follows: in vacuum, particle-antiparticle pairs are
constantly created and annihilated. Consequently, the vacuum at any one time is filled with
a number of particles (and antiparticles). If we bring in two plates separated by a certain
distance, then the number of particles in the region between the two plates is (much) smaller
than the number of particles surrounding the two plates. This creates a pressure on the two
plates which tries to push them closer. Due to this effect, the vacuum energy in Quantum
Field Theory is often referred to as the Casimir energy.

An AdS5 × S5 gravitational theory resulting from String Theory is expected to be dual to
a class of conformal field theories called SU(N) super-Yang-Mills. Without getting into too
much details that are beyond our scope, we can simply say that Yang-Mills theories are a
special class of gauge theories which have non-Abelian gauge symmetry groups. The prefix
“super” means that these theories have an additional type of symmetry called supersym-
metry. As the reader may know, supersymmetry is a presumed symmetry between bosons
and fermions. This means that for each fermion there is a corresponding boson which has
the same intrinsic charges as the fermion and only differs in spin. Likewise, for every boson
there is also a corresponding fermion with equivalent charges but different spin. As we
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know from the AdS/CFT correspondence, the super-Yang-Mills theory is of course defined
on the AdS5 boundary and has topology S3 × R. When such theory is defined on a sphere
of radius R, it has a Casimir energy given by ([38]):

ECasimir =
3(N2 − 1)

16R
. (3.63)

Since we are interested in the large-N limit, this can be approximated to

ECasimir =
3N2

16R
. (3.64)

The radius of the sphere on which the theory resides is of course the AdS radius `. We
would now like to see if this quantity corresponds to some quantity in the bulk gravitational
theory. To do so, let us write the Schwarzschild-AdS5 [38]:

ds2 = −

[
1−

(
2mG

r

)2

+
r2

`2

]
dt2 +

dr2[
1−

(
2mG
r

)2
+ r2

`2

] + r2dΩ2
3. (3.65)

We have reinstated the gravitational coefficient G because it has a connection to the
AdS/CFT correspondence which we will make use of. Since we are looking for some quan-
tity that would be dual to an energy, let us use the counterterms method to calculate the
energy of the black hole solution. The contribution to mass arising from the first term of
the surface action gives

M1 =
1

4G
π
(
g2r4 + 2m

)
. (3.66)

That of the second term is

M2 =
πm

G
− 1

4G
πr2

(
4g2r2 + 3

)
. (3.67)

Finally, the contributions from the counterterms give

Mct =
3π
(
8g4r4 − 8g2

(
m− r2

)
+ 1
)

32Gg2
. (3.68)

Putting those together, we find the final value of the mass to be
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M =
3π

32Gg2
+

3πm

4G
, (3.69)

in complete agreement with [38]. The energy calculated in (3.69) is the energy of the com-
plete Schwarzschild-AdS5 solution. We should be able to retrieve the pure AdS5 spacetime
by setting m = 0, since this would transform the metric in (3.65) to the pure AdS5 metric.
Interestingly, this leaves us with a non-null energy in (3.69), given by

MBG =
3π

32Gg2
. (3.70)

The quantity MBG is hence the background energy of the AdS5 spacetime. It is understood
in the framework of the AdS/CFT correspondence that the quantity π/(2Gg3) in the gauge
theory corresponds to the quantity N2 in the dual field theory [38]. Plugging this into
the Casimir energy, we can see that the Casimir energy of the dual field theory equals the
background energy of the bulk theory in the large-N limit,

MCasimir = MBG. (3.71)

This relation was shown to hold in rotating AdS5 solutions as well in [9]. In the following
chapter we will investigate this relation in the case of charged rotating black holes.

You might notice that in equation (3.57) there was no background energy for the 4-
dimensional rotating black hole. In fact, like conformal anomalies, Casimir energies only in
even dimensional conformal field theories, and hence background energies only appear in
odd dimensional gravitational solutions.

Explicit calculations for the Casimir energy for neutral black holes in 3 dimensions can be
found in [38], and in 5 and 7 dimensions in [45].
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Chapter 4

Thermodynamics of Charged
Rotating Black Holes in AdS5

4.1 Presentation and Discussion of the Solution

We are now ready to tackle a generic solution for charged rotating black holes in five-
dimensional anti-de Sitter spacetime. The solution was provided in [10] by

ds2 =− ∆θ[(1 + g2r2)ρ2dt+ 2qν]dt

ΞaΞbρ2
+

2qνω

ρ2
+
f

ρ4

(
∆θdt

ΞaΞb
− ω

)2

+
ρ2dr2

∆r
+
ρ2dθ2

∆θ
+
r2 + a2

Ξa
sin2 θ dφ2 +

r2 + b2

Ξb
cos2 θ dψ2,

(4.1)

where

g = 1/`, (4.2)

ν = b sin2 θ dφ+ a cos2 θ dψ, (4.3)

ω = a sin2 θ
dφ

Ξa
+ b cos2 θ

dψ

Ξb
, (4.4)

∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ, (4.5)

∆r =
(r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq

r2
− 2m, (4.6)

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, (4.7)

70



Ξa = 1− a2g2, (4.8)

Ξb = 1− b2g2, (4.9)

f = 2mρ2 − q2 + 2abqg2ρ2. (4.10)

Note that the constant g = 1/` is not the determinant of the metric. Another important
remark is that in four spatial dimensions, the black hole has two possible rotation axes. To
see this, first start with a point in one spatial dimension. We obviously have no rotation axes
in one dimension since we cannot define a rotation plane. In two dimensions the space itself
can be a rotation plane, so we can define one rotation axis. Likewise, in three dimensions
we can always project any rotation on a single plane (this is in fact due to Euler’s rotation
theorem). In four spatial dimensions it is obvious that we can have two orthogonal rotation
planes and hence we have two possible independent rotation axes.

The coordinate system in (4.1) is evidently (t, r, θ, φ, ψ). It is easy to understand that the
range of the last three coordinates is set so they can cover a three-sphere. This is similar
to a hyperspherical coordinate system and we know that the corresponding range for θ is
between 0 and π/2, while that for φ and ψ is between 0 and 2π. The two rotation directions
are specified using the φ and ψ coordinates. The angular velocities are denoted Ωa (in the
φ-direction) and Ωb (in the ψ-direction). They are given in [10] by

Ωa =
a
(
r2

+ + b2
) (

1 + g2r2
+

)
+ bq(

r2
+ + a2

) (
r2

+ + b2
)

+ abq
,

Ωb =
b
(
r2

+ + a2
) (

1 + g2r2
+

)
+ aq(

r2
+ + a2

) (
r2

+ + b2
)

+ abq
.

(4.11)

The electromagnetic four-potential is also given in [10] by

A =

√
3q

ρ2

(
∆θdt

ΞaΞb
− ω

)
. (4.12)

The horizon Killing vector is

ξ = ∂t + Ωa∂φ + Ωb∂ψ. (4.13)

The temperature, surface gravity and electric charge are given by
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T =
r4

+

[
g2
(
a2 + b2 + 2r2

+

)
+ 1
]
− (ab+ q)2

2πr+

[(
a2 + r2

+

) (
b2 + r2

+

)
+ abq

] , (4.14)

S =
π2
[(
r2

+ + a2
) (
r2

+ + b2
)

+ abq
]

2ΞaΞbr+
, (4.15)

Q =

√
3πq

4ΞaΞb
. (4.16)

Note that we have an axial symmetry in φ and ψ. The Killing vectors are obviously given
by ηa := ∂φ and ηb := ∂ψ. The angular momenta were subsequently calculated in [10] using
the Komar integral, which in five dimensions takes the form

Ja/b =
1

16π

∫
S3

?dηa/b, (4.17)

yielding

Ja =
π
[
2am+ qb

(
1 + a2g2

)]
4Ξ2

aΞb
, (4.18)

Jb =
π
[
2bm+ qa

(
1 + b2g2

)]
4Ξ2

bΞa
. (4.19)

We see that the angular momenta remain finite just as in the Kerr-AdS4 case.

Finally, an expression for the mass was proposed in [10] by integration of the first law. This
mass is given by

M0 =
πm (2Ξa + 2Ξb − ΞaΞb) + 2πabg2q (Ξa + Ξb)

4Ξ2
aΞ

2
b

. (4.20)

The mass was denoted in [10] by M but we will use here the notation M0 to distinguish
this quantity from the mass expression that we have calculated. Note that if we reduce
this solution to a Schwarzschild black hole (i.e. we set q = 0, a = b = 0), the mass is
proportional to m,

M0

∣∣∣
q=0,a=b=0

=
3πm

4
.
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This means that the constant quantity m can be interpreted as our usual “mass parameter”.
It is a peculiar feature of this solution that when the mass parameter goes to 0, the black
hole’s mass does not vanish due to contributions from the charge given by

M0

∣∣∣
m=0

=
πabg2q(Ξa + Ξb)

2Ξ2
aΞ

2
b

.

For instance, the charged black hole solution in five-dimensional anti-de Sitter spacetime
was given in [50] by

M =
(n− 1)Ωn−1

16π
m,

where Ωn−1 is the volume of the unit (n − 1)-sphere. Here not only does the mass vanish
when m goes to 0, but it is also totally independent of the parameter q, just as in the
Kerr-Newman case. It is worth noting that this interesting feature will remain the same
when we calculate a different expression for the mass using the counterterms subtraction
methods.

The rest of the chapter is organized as follows: in §4.2 we will check to see if the solu-
tion satisfies the usual thermodynamical relations: the first law and the relations between
the Gibbs potential and the extensive quantities of the first law. In §4.3 we will use the
counterterms subtraction method to calculate the action, mass and angular momenta of the
solution. We will then look at features from the AdS/CFT correspondence: we will calcu-
late the conformal anomaly from the gravitational theory and the conformal field theory
and check if the two expressions match. We will further calculate the background energy of
the gravitational theory then calculate the vacuum energy of the dual field theory on the
AdS boundary and compare the two expressions as well. Lastly, we will also address the
fate of the first law in this solution.

4.2 Verification of the Thermodynamical Relations of the
Original Solution

We start by verifying the first law, which in this case is given by

dM = TdS + ΩadJa + ΩbdJb + ΦdQ. (4.21)

Since the electric potential was not given in [10], we will calculate it using the expression in
(1.64). To perform the calculation we need to evaluate the expression ξaAa at infinity and
then subtracted from its value evaluated at the horizon. Direct evaluation of the first gives
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lim
r→∞

ξaAa = 0. (4.22)

Direct evaluation of the second part gives

ξaAa|r+ = −
√

3q
(
cos2 θΩbΞab+ sin2 θΩaΞba−∆θ

)(
a2 cos2 θ − b2 cos2 θ + b2 + r2

+

)
ΞaΞb

. (4.23)

We can now use the values of Ωa and Ωb, and simplify the above expression using Maple.
This yields

Φ =

√
3qr2

+(
a2 + r2

+

) (
b2 + r2

+

)
+ abq

. (4.24)

To verify the first law, we need to verify four equations of the form

∂M

∂α
dα = T

∂S

∂α
dα+ Φ

∂Q

∂α
dα+ Ωa

∂Ja
∂α

dα+ Ωb
∂Jb
∂α

dα, (4.25)

with α ∈ {r+, q, a, b} since the mass is a function of these variables.

Differentiations with respect to r+:

Direct evaluation of the mass differentiation gives

∂M

∂r+
=
π(Ξa(Ξb − 2)− 2Ξb)

(
a2
(
b2 − g2r4

+

)
+ 2abq + r4

+

(
−
(
b2g2 + 2g2r2

+ + 1
))

+ q2
)

4r3
+Ξ2

aΞ
2
b

.

(4.26)

And the other differentiations are given by
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∂S

∂r+
=
π2
(
a2
(
r2

+ − b2
)
− abq + r2

+

(
b2 + 3r2

+

))
2r2

+ΞaΞb
, (4.27)

∂Ja
∂r+

=
πa
(
a2
(
g2r4

+ − b2
)
− 2abq + r4

+

(
b2g2 + 2g2r2

+ + 1
)
− q2

)
2r3

+Ξ2
aΞb

, (4.28)

∂Jb
∂r+

=
πb
(
a2
(
g2r4

+ − b2
)
− 2abq + r4

+

(
b2g2 + 2g2r2

+ + 1
)
− q2

)
2r3

+ΞaΞ2
b

, (4.29)

∂Q

∂r+
= 0. (4.30)

Using these expressions to evaluate the right-hand side of the first law directly yields

π(Ξa(Ξb − 2)− 2Ξb)
(
a2
(
b2 − g2r4

)
+ 2abq + r4

(
−
(
b2g2 + 2g2r2 + 1

))
+ q2

)
4r3Ξ2

aΞ
2
b

,

which we verify, using Mathematica, is the same value as that given in (4.26). In general,
the expressions of the left-hand and right-hand sides in this section are quite complicated
and we simply use Mathematica to verify that they do equate to each other.

Differentiations with respect to q

The differentiation on the left-hand side gives

∂M

∂q
=
π
(
2Ξb

(
a
(
bg2r2

+ + b
)

+ q
)

+ Ξa
(
2
(
abg2r2

+ + ab+ q
)
− Ξb(ab+ q)

))
4r2

+Ξ2
aΞ

2
b

. (4.31)

The right-hand side differentiations are given by

∂S

∂q
=

π2ab

2r+ΞaΞb
, (4.32)

∂Ja
∂q

=
π
(
a2bg2 + 2a(ab+q)

r2+
+ b
)

4Ξ2
aΞb

, (4.33)

∂Jb
∂q

=
π
(
ab2g2 + 2b(ab+q)

r2+
+ a
)

4ΞaΞ2
b

, (4.34)

∂Q

∂q
=

√
3π

4ΞaΞb
. (4.35)
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These expressions also lead to a right-hand side that cancels the left-hand side.

Differentiations with respect to a

Since all equations are symmetric in a and b, we will only discuss results for the differenti-
ation with respect to a.

The left-hand side gives

∂M

∂a
=

1

4r2
+ (a2g2 − 1)3 (b2g2 − 1)2π

(
a4bg4q

(
b2g2 + 2g2r2

+ + 1
)

+ a3g2
(
b4g2

(
g4r4

+ + 4g2r2
+ + 3

)
+ b2

(
g6r6

+ + g4
(
q2 + 5r4

+

)
+ 3g2r2

+ − 1
)

+ g4r6
+ + g2q2 − r2

+

)
+ 6a2bg2q

(
b2g2 − 1

) (
g2r2

+ + 1
)

+ a
(
b4
(
3g6r4

+ + 4g4r2
+ + g2

)
+ b2

(
3g6r6

+ + g4
(
3q2 − r4

+

)
− 7g2r2

+ − 3
)
− 5g4r6

+ − g2
(
5q2 + 8r4

+

)
− 3r2

+

)
+ bq

(
b2
(
2g4r2

+ + g2
)
− 4g2r2

+ − 3
))

.

(4.36)

And the right-hand side differentiations are given by

∂Ja
∂a

=
π

4Ξ3
aΞbr

2
+

(
a4g2

(
b2 + r2

+

) (
g2r2

+ + 1
)

+ 2a3bg2q
(
g2r2

+ + 2
)

+ 3a2
((
bg2r2

+ + b
)2

+ g4r6
+ + g2

(
q2 + 2r4

+

)
+ r2

+

)
+ 2abq

(
3g2r2

+ + 2
)

+ r2
+

(
b2 + r2

+

) (
g2r2

+ + 1
)

+ q2

)
, (4.37)

∂Jb
∂a

=
π

4r2
+Ξ2

aΞ
2
b

(
a2g2q

(
b2
(
g2r2

+ + 2
)

+ r2
+

)
+ 2ab

( (
bg2r2

+ + b
)

2 + g4r6
+ + g2

(
q2 + 2r4

+

)
+ r2

+

)
+ q

(
b2
(
g2r2

+ + 2
)

+ r2
+

))
, (4.38)

∂S

∂a
=−

π2
(
a2bg2q + 2a

(
b2 + r2

+

) (
g2r2

+ + 1
)

+ bq
)

2r+Ξ2
aΞb

, (4.39)

∂Q

∂a
=

√
3πag2q

2Ξ2
aΞb

. (4.40)
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The right-hand side here automatically equates to the left-hand side. We conclude that the
first law (4.21) is indeed verified.

We would now like to verify the thermodynamic relations (2.42) using the Gibbs potential

G(T,Ωa,Ωb,Φ) = M − TS − ΩaJa − ΩbJb − ΦQ. (4.41)

Looking at the first relation,

S = −
(
∂G

∂T

)
Ωa,Ωb,Φ

,

we can see that it is difficult to evaluate the variations explicitly with respect to the tem-
perature. Instead, we will make use of the chain rule. Given a multivariable function
f : Rn 3 (x1, x2, ...xn)→ R and a functional g[f ], we have the relation

∂g

∂xi
=
∂g

∂f

∂f

∂xi
, ∀ i ∈ {1, 2, ...n}. (4.42)

So the variation of g with respect to f can simply be written as

∂g

∂f
=

∂g

∂xi
·
(
∂f

∂xi

)−1

. (4.43)

We may now choose f = T, g = G and xi = r+. The variation with respect to T can be
expressed as

∂G

∂T
=

∂G

∂r+

(
∂T

∂r+

)−1

. (4.44)

With this, we directly verify that

−
(
∂G

∂T

)
Ωa,Ωb,Φ

=
π2
[(
a2 + r2

+

) (
b2 + r2

+

)
+ abq

]
2r+ΞaΞb

(4.45)

= S. (4.46)

Continuing with the rest of the relations, we have
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−
(
∂G

∂Ωa

)
T,Φ,Ωb

= − ∂G
∂r+

(
∂Ωa

∂r+

)−1

T,Φ,Ωb

=
π
(
a3
(
b2 + r2

+

) (
g2r2

+ + 1
)

+ a2bq
(
g2r2

+ + 2
))

4r2
+Ξ2

aΞb

+
π
(
a
(
r2

+

(
b2 + r2

+

) (
g2r2

+ + 1
)

+ q2
)

+ bqr2
+

)
4r2

+Ξ2
aΞb

= Ja. (4.47)

Likewise, we get

−
(
∂G

∂Ωb

)
T,Φ,Ωa

= − ∂G
∂r+

(
∂Ωb

∂r+

)−1

T,Φ,Ωa

=
π
(
a2b
(
b2 + r2

+

) (
g2r2

+ + 1
)

+ aq
(
b2
(
g2r2

+ + 2
)

+ r2
+

))
4r2

+ΞaΞ2
b

(4.48)

+
π
(
b
(
r2

+

(
b2 + r2

+

) (
g2r2

+ + 1
)

+ q2
))

4r2
+ΞaΞ2

b

(4.49)

= Jb. (4.50)

And lastly,

−
(
∂G

∂Φ

)
T,Ωa,Ωb

= − ∂G
∂r+

(
∂Φ

∂r+

)−1

T,Ωa,Ωb

(4.51)

=

√
3πq

4ΞaΞb
(4.52)

= Q. (4.53)

4.3 Calculations with the Counterterms Method

4.3.1 Motivation, Action and Mass Calculations

Recall that in reference [6], it is discussed that for black holes in anti-de Sitter spacetimes
in more than 4 dimensions, the energy calculated using the counterterms method does not
satisfy the first law in the form of (2.23). It is argued that, in order to obtain an expression
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for the black hole energy which satisfies (2.23) in D ≥ 5 dimensions, one should integrate
the right-hand side of (2.23). Based on this, the authors presented the expression for the
mass in (4.20).

Admittedly, this action does satisfy the first law in the form (4.21). However, we believe
that there is a number of problems with this procedure. First, in any solution, the validity
of the first law should be studied and, hopefully, proven, whereas this procedure starts by
assuming this validity exists. By doing so, it prevents us from verifying if a first law does
exist for a particular black hole solution. Second, we would like our definition for energy to
be related with the time-translational isometry of the metric. This is done by relating our
definition for energy with a timelike Killing vector. However, there is no apparent procedure
for relating the energy in equation (4.20) to a timelike Killing vector. Third, by not using
the counterterms method, we are unable to recover a vacuum energy that we can compare
to the Casimir energy of the dual conformal field theory on the boundary. By not using the
counterterms method to regularize the action (and therefore the quasi-local stress tensor),
we are also unable to calculate the conformal anomaly of the CFT from the gravity side.

An alternative approach to the problem of the first law was presented by Skenderis and
Papadimitriou in reference [7] for a neutral rotating black hole. Here the authors find the
first law by using a variational approach. This of course is a more rigorous direction than
simply assuming that the form of the first law in (2.23), which was derived in a different
solution and dimension, should remain the same in all cases. The authors find a modified
first law from this variational approach given by

dM = δσM + TdS + ΩadJa + ΩbdJb + ΦdQ, (4.54)

where the first term on the left-hand side was found to be equal to the differentiation of the
Casimir energy,

δσM = δMCasimir. (4.55)

Therefore, the form (2.24) of the first law holds well if the Casimir energy vanishes. This is
why in the Kerr-AdS4 case our counterterms mass did verify this form of the first law: in
four dimensions there is no dual Casimir energy.

The results in reference [7] were derived for theories with no Chern-Simons terms, and it is
interesting to see if they hold in such cases. The result (4.54) was also checked only for the
non-charged case and we will aim to verify it in the charged black hole solution that we are
interested in.

We start by calculating the action. Evidently, unless the action is regularized correctly, there
is no sense in building an energy-momentum tensor from it and using it in the Brown-York
quasi-local energy expression to calculate the mass of the black hole.
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The first part we will look at in the action is the Maxwell term. Recall that in §3.3.3
we claimed that all action divergences can be written in terms of the Ricci scalar at the
boundary and its covariant derivative. We therefore expect a term like the Maxwell action
not to present any divergences at all. In fact, we verify right away that the integrand of
the Maxwell action is of the order O(r−3) as r goes to infinity. However, we were not
able to evaluate the Maxwell action since the integrand

√
−g F abFab turned out to be very

complicated. In fact, several trials over Maple and Mathematica, using different coordinate
systems, were all fruitless. While having the full action has its uses, we will not be needing
an explicit expression for the Maxwell action in the following discussion.

Direct evaluation of the Chern-Simons action yields 0,

ICS = − 1

16π

1

3
√

3

∫
M
F ∧ F ∧A

= 0. (4.56)

This is also the case for the Einstein-Maxwell-Chern-Simons solution without rotation in
[50].

The Einstein-Hilbert action is found to be

IEH = β

[
πg2r4

4ΞaΞb
+
πg2r2

(
a2 + b2

)
4ΞaΞb

−
πg2r2

+

(
a2 + b2 + r2

+

)
4ΞaΞb

] ∣∣∣∣∣
r→+∞

. (4.57)

The Gibbons-Hawking action is found to be

IGH = β

[
− πg2r4

ΞaΞb
+

15πr2 (Ξa + Ξb + 3/4)

24ΞaΞb
(4.58)

+
π
(
a4g2 − 8a2b2g2 − 9a2 + b4g2 − 9b2 + 24m

)
24ΞaΞb

]∣∣∣∣
r→+∞

. (4.59)

We can see that the non-regularized action is divergent and given by

Inon-reg/β =(IEH + IGH)/β

=− 3πg2r4

4ΞaΞb
+ r2

[
πg2

(
a2 + b2

)
4ΞaΞb

+
π
(
−15a2g2 − 15b2g2 − 18

)
24ΞaΞb

]
+ finite terms. (4.60)
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We now calculate the counterterms action and verify that they cancel these divergences.
Evaluation of the counterterms in (3.46) yields

Ict = β

[
3πr2

(
a2g2 + b2g2 + 2

)
8ΞaΞb

+
3πg2r4

4ΞaΞb

]
+ Ict0, (4.61)

where Ict0 is a complicated finite term. The final action using the counterterms method is
found by adding this term to the Einstein-Hilbert and Gibbons-Hawking terms in (4.60)
and the electromagnetic action IEM,

I =
πβ

96g2ΞaΞb

[
a4g4 + b4g4 − 24g4r4

+ + 24g2m+ 9

− 3b2g2(3 + 8g2r2
+)− a2g2

(
17b2g2 + 24g2r2

+ + 9
) ]

+ IEM.

(4.62)

We can simplify the numerator further. Let Ngrav be the numerator of (4.62) without the
factor πβ and IEM. With some re-arrangement of the terms, we re-write this as

Ngrav = 9Ξa9Ξb − 26a2b2g4 + a4g4 + b4g4 + 24g2m− 24g4r2
+(r2

+ + b2 + a2). (4.63)

Now, using

(Ξa − Ξb)
2 = a4g4 − 2a2b2g4 + b4g4, (4.64)

we get

Ngrav = 9Ξa9Ξb + (Ξa − Ξb)
2 − 24a2b2g4 + 24g2m− 24g4r2

+(r2
+ + b2 + a2)

= 9Ξa9Ξb + (Ξa − Ξb)
2 + 24g2

[
m− a2b2g2 − g2r2

+(r2
+ + b2 + a2)

]
= 9Ξa9Ξb + (Ξa − Ξb)

2 + 24g2
[
m− g2(r2

+ + a2)(r2
+ + b2)

]
. (4.65)

The final gravitational action is then given by

Igrav =
πβ
[
9Ξa9Ξb + (Ξa − Ξb)

2
]

96g2ΞaΞb
+
πβ
[
m− g2(r2

+ + a2)(r2
+ + b2)

]
4ΞaΞb

= βMCasimir +
πβ
[
m− g2(r2

+ + a2)(r2
+ + b2)

]
4ΞaΞb

. (4.66)
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Our result takes the exact same form as the one calculated by Skenderis and Papadimitriou
[7] for a non-charged rotating black hole. The difference here of course is that the charge
does make an appearance in the β term. Nevertheless, it is interesting that the gravitational
action maintains the same expression in terms of β. This also automatically shows that our
result does reduce to that in [7] since, in the absence of an electric charge, the temperature
takes the same form as that in [7] and the Maxwell action vanishes.

Having shown that the counterterms subtraction method leads to a finite action, we can
now calculate the mass and angular momenta using the counterterms method. The lapse
function N and foliation metric σab are defined in §B.3. The latter can be written as

σabdx
adxb =

ρ2d2θ

∆θ

+
2 sin2 θ

ρ4Ξ2
a

(
aρ2 sin2 θ

(
a2bg2q + bqΞa + am

)
− 1

2
a2q2 sin2 θ

+
1

2
ρ4Ξa

(
a2 + r2

) )
d2φ

+
2 cos2 θ

ρ4Ξ2
b

(
bρ2 cos2(θ)

(
ab2g2q + aqΞb + bm

)
− 1

2
b2q2 cos2 θ

+
1

2
ρ4Ξb

(
b2 + r2

) )
d2ψ

+
4 sin2 θ cos2 θ

ρ4ΞaΞb

(
ρ2
(
a2q

(
b2g2 + Ξb/2

)
+ b2qΞa/2 + abm

)
− 1

2
abq2

)
dφdψ,

(4.67)

leading to the determinant

σ =
1

ρ2Ξ2
aΞ

2
b∆θ

(
sin2 θ cos2 θ

(
Ξa
(
b2
(
a2 + r2

)
cos2 θ

(
2abg2ρ2q + 2mρ2 − q2

)
+ Ξb

(
− 2a2b2q2 cos4 θ + 2abq cos2 θ

(
a2ρ2 + abq − b2ρ2

)
+ ρ2

(
b2 + r2

)
(
a2ρ2 + 2abq + ρ2r2

) ))
− 1

2
a2Ξb sin2 θ

(
2a2q2Ξb cos2 θ − 2

(
b2 + r2

)
(
2abg2ρ2q + 2mρ2 − q2

) )
− b4q2Ξ2

a sin2 θ cos2 θ
))

.

(4.68)

The mass is calculated using equation (1.130). To simplify the discussion we will write the
mass as the sum of four terms:

M = Mnr1 +Mnr2 +Mct1 +Mct2. (4.69)
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The first two terms are divergent; they result from the original non-regularized components
of the Brown-York quasi-local stress tensor. Evidently, the last two terms are those arising
from the counterterms action. The first of those four terms is given by

Mnr1 =
πm

(
−3g2

(
a2 + b2

)
+ a2g2Ξb + b2g2Ξa − 2ΞaΞb + 6

)
8GΞ2

aΞ
2
b

+
πq
(
abg2

(
−3g2

(
a2 + b2

)
+ a2g2Ξb + 6

)
+ ab3g4Ξa + 2abg2ΞaΞb

)
8GΞ2

aΞ
2
b

+
π
(
2a2b2g2ΞaΞb + 2g2r2

(
a2 + b2

)
ΞaΞb + 2g2r4ΞaΞb

)
8GΞ2

aΞ
2
b

. (4.70)

The second is given by

Mnr2 =
−π

24GΞaΞb

[
a4 − g2 + 3r2

(
5g2

(
a2 + b2

)
+ 6
)

+ 8a2b2g2 + 9a2 − b4g2 + 9b2

+ 24g2r4 − 24m
]
. (4.71)

The first part of the counterterms contribution is

Mct1 =
π

32g2GΞ2
aΞ

2
b

[
12g2

(
a2g2Ξb + a2g2 + b2g2 − 2

) (
abg2q +m

)
+ Ξa

(
Ξb
(
− a4g4 + a2g2

(
11b2g2 + 18g2r2 + 9

)
+ 24abg4q − b4g4 + 9b2

(
2g4r2 + g2

)
+ 3
(
8g4r4 + 4g2r2

− 1
))

+ 12b2g4
(
abg2q +m

) )]
. (4.72)

And lastly, the second contribution from the counterterms gives

Mct2 = −
3π
[
a2g4

(
b2 + r2

)
+ g2r2

(
b2g2 − 2

)
− 1
]

16g2GΞaΞb
. (4.73)

The addition of all these terms gives the mass via the counterterms subtraction method,
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M = −
π
(
−a4g2 + 3r2

(
5g2

(
a2 + b2

)
+ 6
)

+ 8a2b2g2 + 9a2 − b4g2
)

24ΞaΞb

−
π
(
9b2 + 24g2r4 − 24m

)
24ΞaΞb

+
π

8Ξ2
aΞ

2
b

((
− 3g2

(
a2 + b2

)
+ a2g2Ξb + 6

) (
abg2q +m

)
+ Ξa

(
2Ξb

(
g2
(
r2
(
a2 + b2

)
+ ab(ab+ q) + r4

)
−m

)
+ b2g2

(
abg2q +m

) ))
+

π

32g2Ξ2
aΞ

2
b

(
12g2

(
g2
(
a2 + b2

)
+ a2g2Ξb − 2

) (
abg2q +m

)
+ Ξa

(
Ξb

(
g2
(
a4
(
−g2

)
+ 6r2

(
3g2

(
a2 + b2

)
+ 2
)

+ 11a2b2g2 + 9a2 + 24abg2q − b4g2 + 9b2 + 24g2r4
)
− 3
)

+ 12b2g4
(
abg2q +m

) ))
. (4.74)

This expression, which is the first that we got by adding the different contributions to the
mass, is evidently very messy. We can use the definitions of Ξa and Ξb to simplify it further,
first arriving at

M =
π

96g2Ξ2
aΞ

2
b

(
48a2g4Ξb

(
abg2q +m

)
+ Ξa

(
Ξb
(
a4g4 + a2g2

(
7b2g2 − 9

)
+ 96abg4q + b4g4 − 9b2g2 + 72g2m+ 9

)
+ 48b2g4

(
abg2q +m

) ))
. (4.75)

Expression (4.75) is already a huge improvement over (4.74) and we are encouraged to keep
going with our simplification efforts. We will begin by dividing the mass into three terms:
Mm, which contains the polynomial in m, Mq, which contains the polynomial in q, and Mc

which contains the rest of the terms. These quantities are given by

Mm = πm
(
48a2g4Ξb + 48b2g4Ξa + 72g2ΞaΞb

)
/96g2Ξ2

aΞ
2
b ,

Mq = πq
(
48a3bg6Ξb + 48ab3g6Ξa + 96abg4ΞaΞb

)
/96g2Ξ2

aΞ
2
b ,

Mc =
(
9− 9a2g2 − 18b2g2 + a4g4 + 16a2b2g4 + 10b4g4

− a4b2g6 − 7a2b4g6 − b6g6
)
/96g2Ξ2

aΞ
2
b .

(4.76)
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The first two terms combine to give

Mm +Mq =
πm (2Ξa + 2Ξb − ΞaΞb) + 2πabg2q (Ξa + Ξb)

4Ξ2
aΞ

2
b

= M0.

(4.77)

Amazingly, this quantity corresponds to the black hole mass calculated in [10] by integrating
the first law.

Let N be the numerator of Mc. Let us see if we can simplify it further. First we expand
the expression to

N = πΞaΞb
(
9− 9b2g2 + a4g4 + b4g4 − 9a2g2 + 7a2b2g4

)
(4.78)

We can use the fact that

a4g4 + b4g4 = (Ξa − Ξb)
2 + 2a2b2g4, (4.79)

to re-write N as

N = πΞaΞb
[
9
(
1− a2g2 − b2g2 + a2b2g4

)
+ (Ξa − Ξb)

2
]

= πΞaΞb
[
9ΞaΞb + (Ξa − Ξb)

2
]
.

(4.80)

Finally, the term Mc can be written as

Mc =
π
[
9ΞaΞb + (Ξa − Ξb)

2
]

96Gg2ΞaΞb
, (4.81)

where we have reinstated the gravitational constantG (originally a factor in the denominator
of (3.53)). The full expression for the mass calculated via the counterterms method can
now we written as

M =
πm (2Ξa + 2Ξb − ΞaΞb) + 2πabg2q (Ξa + Ξb)

4GΞ2
aΞ

2
b

+
π
[
9ΞaΞb + (Ξa − Ξb)

2
]

96Gg2ΞaΞb
. (4.82)
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Note that the quantity Mc is the background energy of the spacetime: it is the value which
the total energy (4.82) reduces to in the absence of the black hole when m = 0, q = 0. When
the two rotation parameters are set to 0, this background energy reduces to the background
energy of the pure non-rotating AdS5 spacetime given in [38] by

MBY

∣∣∣
a=b=0

=
3π

32g2G
. (4.83)

Note also that the expression of the vacuum energy (4.81) does not depend on q. This of
course makes sense since the vacuum energy should be oblivious to the black hole charge.
This also means that we should expect our expression for the background energy to match
that of a rotating, non-charged black hole in AdS5. The latter is given in reference [7] and
is in complete agreement with our finding.

4.3.2 Conformal Anomaly Calculations

As predicted by the AdS/CFT correspondence, the conformal anomaly calculated from
the conformal field theory on the boundary should match the analogous calculation in the
gravitational theory. In this section we will aim the verify this prediction.

The CFT metric is found by taking our boundary metric and removing a divergent conformal
factor g2r2 [9]. The boundary metric is given by

ds2
Boundary = g2r2

[
∆θ(θ)

ΞaΞb
dt2 +

1

g2∆θ(θ)
dθ2 +

sin2 θ

g2Ξa
dφ2 +

cos2 θ

g2Ξb
dψ2

]
. (4.84)

The CFT metric can therefore be written as

ds2
CFT =

∆θ(θ)

ΞaΞb
dt2 +

1

g2∆θ(θ)
dθ2 +

sin2 θ

g2Ξa
dφ2 +

cos2 θ

g2Ξb
dψ2. (4.85)

We are mainly interested in calculating the expectation value of the renormalized CFT
stress tensor, and from it the conformal anomaly and Casimir energy of that theory. Since
this thesis is related to General Relativity and not Conformal Field Theory, we will not go
into the details of how the expectation value of stress tensors are defined and renormalized
in quantum field theories. These details are outlined in Chapter 6 of reference [51]. Here
we will directly use the formula given in [51] for the renormalized stress tensor:

〈T̂ab〉 = −
∑
s

βsH
(3)
ab , (4.86)
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where the summation is over the possible fields of the theory, with s = 0, 1
2 , 1 standing for

scalar, fermion and gauge fields respectively. The values of the coefficients βs are given in
[52] by

β0 = − 1

2880π2
N0, (4.87)

β
1
2 = − 1

2880π2
N

1
2 , (4.88)

β1 = − 1

2880π2
N1, (4.89)

where N i is the number of fields of spin i. It turns out that these numbers are [9] N0 = 6N2,

N
1
2 = 4N2 and N1 = N2. The tensor H

(3)
ab is given in [51] by

H
(3)
ab =

1

12
R2γab −RcdRcadb. (4.90)

As before, γab is the CFT metric tensor and Rabcd, Rab and R are the Riemann tensor, Ricci
tensor and Ricci scalar of the CFT. Evaluation of this stress tensor yields the conformal
anomaly

〈T̂ aa〉 = −3N2(a− b)g4(a+ b)

8π2

[
2g4(a− b)(a+ b) cos(θ)4 +

((8b2

3
− 4a2

3

)
g4 − 4g2

3

)
cos(θ)2

− 2g2(bg − 1)(bg + 1)

3

]
+O

(
r−2
)

= −
N2
(
a2 − b2

) (
3 cos4 θa2 − 3 cos4 θb2 − 2a2 cos2 θ + 4b2 cos2 θ − 2 cos2 θ

g2
− b2

)
g8

4π2

+
g6

4π2

= −
(
a2 − b2

)
N2g6

4π2

[
a2g2 cos2 θ

(
3 cos2 θ − 2

)
+ b2g2

(
cos2 θ

(
−3 cos2 θ + 4

)
− 1
)

− cos 2θ
]

(4.91)

= −

(
a2 − b2

)
N2g6

[
3g2

(
a2 − b2

)
cos4 θ − 2 cos2 θ

(
a2g2 − 2b2g2 + 1

)
− b2g2 + 1

]
4π2

.

(4.92)

Our result (particularly the penultimate expression) matches that found in [45] for a neutral
rotating black hole in AdS5.
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The gravitational quasi-local stress tensor is evidently related to the CFT stress tensor by
([9])

√
−γ γab〈T̂ bc〉 = lim

r→∞

√
−hhabT bc. (4.93)

We therefore expect the trace of the gravitational tensor to be related to that of the CFT
stress tensor by a factor limr→∞

√
h/γ. This factor is found to be

lim
r→∞

√
h/γ = g4r4. (4.94)

So terms up to order O(r−4) will survive when multiplied by this factor. Evaluation of the
gravitational quasi-local tensor gives

T aa =
1

8πgGr4Ξa

[
− Ξb

(
a4g2 + b2

)
+ a2

(
1− b4g4

)
+ 3g2

(
a2 − b2

)2
Ξa cos4 θ + 2

(
a2 − b2

)
(
a2g2 − 1

)
cos2 θ

(
a2g2 − 2b2g2 + 1

)]
+O(r−6)

= −

(
a2 − b2

) [
3g2

(
a2 − b2

)
cos4 θ − 2 cos2 θ

(
a2g2 − 2b2g2 + 1

)
− b2g2 + 1

]
8πgGr4

.

Multiplying by the conformal factor g4r4,

g4r4T aa = −
g3
(
a2 − b2

) [
3g2

(
a2 − b2

)
cos4 θ − 2 cos2 θ

(
a2g2 − 2b2g2 + 1

)
− b2g2 + 1

]
8πG

.

(4.95)

We have mentioned that in the framework of the AdS/CFT Correspondence, N2 is the
quantity dual to the gravity-side quantity π/2g3G. Using this we can easily see that this
yields the same expression as in (4.91). We have therefore shown that the conformal anomaly
calculated from the gravity theory is exactly equivalent to that calculated in the dual
conformal field theory defined on the boundary of the spacetime.

4.3.3 Casimir Energy Calculations

We have shown that the background energy of the gravitational theory is given by Mc.
We would now like to see if it does in fact correspond to the vacuum energy of the dual
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conformal field theory on the boundary. The vacuum energy is found using the formula
([9])

ECasimir =
∑

s=0, 1
2
,1

N s

∫
S3

d3x
√
σ χa〈T̂ sab〉ub. (4.96)

Here the summation is again over the possible fields of the theory. χa and ua are still the
timelike Killing vector and unit normal vector as before. σ is also the conformal foliation
metric of the boundary. The conformal foliation metric is now found using

σab = g2r2 (gab + uaub) , (4.97)

leading to the line element

σijdx
idxj =

(
a2 cos2 θ + b2 sin2 θ + r2

)
dθ2

g2r2∆θ
+

sin2 θdφ2

g2Ξa
+

cos2 θdψ2

g2Ξb
, (4.98)

and the determinant

σ =

(
a2 cos2 θ + b2 sin2 θ + r2

)
sin2 θ cos2 θ

g6r2∆θΞaΞb
. (4.99)

Direct evaluation of the integral in (4.96) yields

ECasimir =

(
g4a4 + 7g4b2a2 + b4g4 − 9a2g2 − 9b2g2 + 9

)
N2
√

1
Ξb
g2r

48Ξa
√

Ξb
. (4.100)

We can simplify this by hand to arrive at

ECasimir =

(
g4a4 + 7g4b2a2 + b4g4 − 9a2g2 − 9b2g2 + 9

)
N2g

48ΞaΞb
. (4.101)

Then, combining the second, fourth and fifth terms, we can re-write this as

ECasimir =
N2g

(
a4g4 + b4g4 − 2a2b2g4 + 9ΞaΞb

)
48ΞaΞb

.
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Using equation (4.64), we get a final expression for the Casimir energy given by

ECasimir =
N2g

[
9ΞaΞb + (Ξa − Ξb)

2
]

48ΞaΞb
. (4.102)

Making the identification π/(2Gg3)↔ N2, it is easy to see that the Casimir energy in (4.102)
is identical to that in (4.81). We conclude that the background energy of the gravitational
theory is identical to the vacuum energy of the dual conformal field theory residing on its
boundary.

4.3.4 Angular Momenta Calculation and First Law Verification

The final quantities to calculate are the angular momenta. Calculation of the angular
momentum using the Komar integral in this case yields no divergences [10]. Nevertheless,
for consistency, we will calculate it using the counterterms method to check if this gives
the same value as the Komar integral. The angular momentum is given by the Brown-York
formalism in (1.131), where to get Ja we set η = ηa and to get Jb we set η = ηb. Like we
did for the mass, we divide Ja into four parts associated with each of the four parts of the
full stress tensor (3.53),

Ja = Jnr1 + Jnr2 + Jct1 + Jct2. (4.103)

The last three terms yield 0. Since we expect the angular momentum to be finite, it is
not surprising that the counterterms’ contribution vanishes, since there is no divergence to
regularize. Before integration, the first part gives an integrand

ja =
sin3 θ cos θ

[
am+ b

(
a2g2q + 1

2qΞa
)]

2Ξ2
aΞb

. (4.104)

Calculating the integration and simplifying the expression by hand, we get

Ja =

∫
S3

sin3 θ cos θ
[
am+ b

(
a2g2q + 1

2qΞa
)]

2πΞ2
aΞb

dθdφdψ

=
π2
(
a2bg2q + 2am+ bq

)
4πΞ2

aΞ
2
b

=
π
[
2am+ qb

(
1 + a2g2

)]
4Ξ2

aΞb
.
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This is equal to the angular momentum calculated in [10] using the Komar integral. We
find a similar result for Jb,

Jb =

∫
S3

sin3 θ cos θ
[
bm+ a

(
b2g2q + 1

2qΞb
)]

2πΞaΞ2
b

dθdφdψ

=
π2
(
b2ag2q + 2bm+ aq

)
4πΞaΞ2

b

=
π
[
2bm+ qa

(
1 + b2g2

)]
4ΞaΞ2

b

.

This is also equal to the expression given in [10] by (4.18).

We will now redirect our attention back to the first law. Since we have shown that the
term Mc is in fact the Casimir energy, we have all the terms in the modified first law (4.54)
presented by Skenderis and Papadimitriou.

Normally we should verify four equations of the form (4.25). However we can be smart
about our approach and save some effort. Note that Mc does not depend on r+ or q. Hence
it will not contribute is any variations with respect to these parameters. Now, since our
expression for the mass in (4.82) is identical to that of M0 (for which we have verified the
first law) plus Mc, the variations with respect to r+ and q will yield the same result as those
for M0.

For the variations with respect to a and b the Casimir energy does contribute on the left-
hand side. However, here the right-hand side has a corresponding term δMCasimir, so this
effect is cancelled. We are hence left with the variation of M0 on the right-hand side and
the old right-hand side of the first TdS + ΩadJa + ΩbdJb + ΦdQ. Therefore, the first law
proposed by Skenderis and Papadimitriou does hold for the general charged rotating AdS5

black hole presented in [10].
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Conclusion

We have studied the thermodynamics of the solution for charged black holes with Chern-
Simons term and two independent rotation parameters presented in [10]. We have computed
the electric potential for this solution and shown that the thermodynamical quantities do
satisfy the traditional form of the first law of black hole thermodynamics as well as the rela-
tions between the Gibbs potential and the extensive quantities of the first law. Nevertheless,
the mass presented in [10] does present several disadvantages. Since the counterterms sub-
traction method was not used, we cannot retrieve the background energy of the solution to
compare it to the dual field theory residing on the AdS boundary. We also cannot calculate
the conformal anomaly of the conformal field theory using the gravitational theory’s energy
momentum tensor, since the latter was not regularized. Furthermore, in calculating the
mass by integrating the first law, we cannot use it to check if the first law does in fact hold
for this solution. Finally, we noted that this method prevents us from relating our energy
to a time-translational Killing vector.

We have studied the thermodynamics of the solution for charged black holes with Chern-
Simons term and two independent rotation parameters presented in [10]. We have computed
the electric potential for this solution and shown that the thermodynamical quantities do
satisfy the traditional form of the first law of black hole thermodynamics as well as the rela-
tions between the Gibbs potential and the extensive quantities of the first law. Nevertheless,
the mass presented in [10] does present several disadvantages. First, in calculating the mass
by integrating the first law, we cannot use the resulting expression for the mass to check if
the first law does in fact hold for this solution. Another issue with the mass expression in
[10] that we have discussed is that this method prevents us from relating our energy to a
time-translational Killing vector. In addition, since the counterterms subtraction technique
was not used, we cannot retrieve the background energy of the solution to compare it to
the dual field theory residing on the AdS boundary. We also cannot calculate the conformal
anomaly of the conformal field theory using the gravitational theory’s energy momentum
tensor, since the latter was not regularized.

Inspired by the results of Skenderis and Papadimitriou in [7], we have proceeded with the
counterterms subtraction method and found an expression for the mass which does satisfy
the modified first law of thermodynamics presented in [7]. The general form of the first
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law in [7] was derived for an action without a Chern-Simons term, and the procedure was
applied to a neutral black hole. Our findings show that the general form of the first law
obtained in [7] still holds for a charged black hole with Maxwell and Chern-Simons actions.

The expression found for the energy using the counterterms method leads to a finite value
for the background energy of the AdS spacetime. Unsurprisingly, it was found that this
energy does not depend on the electric charge of the black hole. In fact, it is exactly equal to
the background energy of the neutral rotating solution [7]. With this expression in hand, we
have calculated the vacuum energy of the conformal field theory on the spacetime boundary
and verified that it is exactly equal to the background energy of the gravitational theory,
as predicted by the AdS/CFT correspondence. We have also shown that calculation of the
conformal anomaly from the gravitational side exactly matches that obtained by performing
the calculation in the conformal field theory. The gravity calculations were done using the
finite quasi-local stress tensor obtained from the action regularized by the counterterms
subtraction method.

Interestingly, we have also found that the gravitational part of the action regularized us-
ing the counterterms subtraction method takes the exact form as the complete action of
the non-charged solution [7], with the charge only appearing in the explicit expression of
the temperature. We have also shown that the Brown-York formula for the angular mo-
menta does yield finite quantities that do not need regularization and that, accordingly, the
counterterms do vanish. The angular momenta calculated using the Brown-York method
were found to be exactly equal to those calculated using the Komar integral in [10] for this
solution.
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Appendix A

Mathematical Operations

Wedge Product: The wedge product of a p-form A and a q-form B is a (p+q)-form given
by ([11])

(A ∧B)a1a2...ap+q :=
(p+ q)!

p!q!
A[a1...apBap+1...ap+q ]. (A.1)

From this definition it is easy to see that the wedge product is associative:

(A ∧B) ∧ C = A ∧ (B ∧ C). (A.2)

Exterior Derivative: The exterior derivative of a p-form A is a (p+ 1)-form dA. This is
given in a specific coordinate basis by ([15])

(dA)µ1µ2...µp+1
:= (p+ 1)∇[µ1Aµ2...µp+1]. (A.3)

A differential form A is said to be closed if dA = 0. A p-form B is said to be exact if
there exists a (p− 1)-form C |B = dC.

Hodge Star Operator: Given a p-form A on a D−dimensional manifold, we define the
Hodge dual as the (D − p)-form given by

(?A)a1...aD−p
:=

1

p!
ε
b1...bp

a1...aD−pAb1...bp , (A.4)

where ε is the Levi-Civita tensor given by
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εa1...an =
1√
|g|
ε̃ a1...an . (A.5)

Here ε̃a1...an stands for the Levi-Civita alternating symbol, and g is the determinant of the
metric. It follows that

? ? A = (−1)p(D−p)+1A (A.6)

Proof: Direct application of a second Hodge star operator yields

?(?A) =
1

p!(D − p)!
ε
a1..aD−p

c1...cpε
b1...bp

a1...aD−pAb1...bp . (A.7)

We can then use a useful formula relating the contraction of Levi-Civita tensors [11]:

εa1..aD−pc1...cpεb1...bpa1...aD−p
= −p!(D − p)!δc1...cp[b1...bp]. (A.8)

To convert (A.7) to something like (A.8) we can raise all the cn indices as upper dn
indices and multiply by gc1d1 ....gcpdp . Likewise we can lower all the bn indices in the
second Levi-Civita tensor.

? ? A =
1

p!(D − p)!
εa1..aD−pd1...dpεe1...epa1...aD−p gc1d1 ...gcpdpg

b1e1 ....gbpepAb1...bp .

(A.9)

We now would like to swap all the cn and an indices in the second Levi-Civita tensor.
Evidently this gives a factor of (−1)p(D−p),
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? ? A =
(−1)p(D−p)+1

p!(D − p)!
εa1..aD−pd1...dpεa1...aD−pe1...epAb1...bp gc1d1 ...gcpdp

gb1e1 ....gbpep

=
(−1)p(D−p)+1p!(D − p)!

p!(D − p)!
δ
c1...cp
[b1...bp]gc1d1 ...gcpdp g

b1e1 ....gbpepAb1...bp

= (−1)p(D−p)+1δ
[e1...ep]
d1...dp

Ab1...bp

=
(−1)p(D−p)+1

p!
Ae1...ep(even permutations of δ

− odd permutations of δ). (A.10)

The presence of the term δ...en......bn...
will simply re-label A...bn.... to A...en.... Since A is a

differential form, all even permutations of any two indices of Ae1...ep will yield the same
tensor, while all odd permutations will yield the same tensor multiplied by −1. Since
the total number of permutations is p!, this simply gives

? ? A = (−1)p(D−p)+1Ae1...ep
p!

p!
(A.11)

= (−1)p(D−p)+1A. (A.12)

�

Another important identity related to the Hodge operator is

?d ? A = −(−1)p(D−p)∇bAa1...ap−1b. (A.13)

Proof: Direct application of the exterior derivative yields

d(?A) =
(D − p+ 1)

p!
∇[cε

b1...bp
a1...aD−p]Ab1...bp

=
(D − p+ 1)

p!
εb1...bp [a1...aD−p

∇c]Ab1...bp , (A.14)

where I have used the fact that ∇ε = 0. Applying another Hodge operator,
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?(d ? A) =
(D − p+ 1)

(D − p+ 1)!p!
εa1...aD−pc

d1...dp−1ε
b1...bp

[a1...aD−p∇c]Ab1...bp

=
1

(D − p)!p!
εa1...aD−pcd1...dp−1ε

b1...bp[a1...aD−p∇c]Ab1...bp (A.15)

The tensor εb1...bp[a1...aD−p∇c] is contracted with a Levi-Civita tensor, therefore only its
totally anti-symmetric part will survive and we can remove the anti-symmetrization
since it is now redundant.1

?d ? A =
1

(D − p)!p!
εa1...aD−pcd1...dp−1ε

b1...bpa1...aD−p∇cAb1...bp . (A.16)

Following the same alternation trick from the previous proof for the indices of the
second Levi-Civita tensor,

?d ? A =
(−1)p(D−p)

(D − p)!p!
εa1...aD−pcd1...dp−1ε

a1...aD−pb1...bp∇cAb1...bp . (A.17)

Then again we use equation (A.8) and re-write the previous expression as

?d ? A =
−(D − p)!p!(−1)p(D−p)

(D − p)!p!
δ
b1...bp
d1...dp−1c

∇cAb1...bp

= (−1)p(D−p)+1∇cδb1...bp[d1...dp−1c]
Ab1...bp

= (−1)p(D−p)+1∇cAb1...bp−1c. (A.18)

In the second line I have used the fact that the covariant derivative of the Kronecker
delta vanishes, and in the third line I have used the same permutations trick when

contracting δ
b1...bp
d1...dp−1c

with Ab1...bp that I have used in the previous proof.

�

Lie Derivative: If a vector V a(x) is defined on a manifold M, it can be used to relate
two infinitesimally close points P and P̄ in M. If the coordinates of P and P̄ are xa and
x̄a respectively, then we can write

1Special thanks to Ahmed Hemdan for pointing out that this trick would be helpful here.
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x̄a = xa − εV a(x), (A.19)

where ε is an infinitesimally small constant. Note that this is a change of points on the
manifoldM, not a change of coordinates. Given a vector field Xa inM, it can be expressed
using x̄ at P̄ by

X̄a(x̄) =
∂x̄a

∂xb
Xb(x)

= (δab − ε∂bV a)Xb(x)

= Xa(x)− ε∂bV aXb(x). (A.20)

In the last two lines all partial derivatives are with respect to x, i.e.

∂c ≡
∂

∂xc
. (A.21)

The careful reader will notice that the quantity X̄(x̄) −X(x) is not a vector because it is
the difference of two vectors at two different points [53]. We can expand X̄ (x̄):

X̄a (x̄) = X̄a(x) + (x̄− x)b ∂bX̄
a(x) + ...

= X̄a(x)− εV b(x)∂bX̄
a +O(ε2). (A.22)

Combining (A.20) with (A.22), we have

Xa(x)− X̄a(x) = −εV b∂bX̄(x) + ε∂bV
aXb(x) +O(ε2). (A.23)

and

lim
ε→0

(
Xa(x)− X̄a(x)

ε

)
= −V b∂bX

a(x) + ∂bV
aXb. (A.24)

This quantity is called the Lie derivative and is denoted LVX. It is clear that the Lie
derivative LVX quantifies the change of the vector field X along a flow defined by the vector
field V . We can extend this notion to incorporate covariant derivatives:

LVXa = −V b∇bXa(x) +∇V aXb. (A.25)
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We can also generalize it to include tensors of any rank as

LV T a1..apb1...bq = lim
ε→0

T a1..apb1...bq(x)− T̄ a1..apb1...bq(x)

ε
. (A.26)

In the general case this gives

(LV T )a1...apb1...bq =V c(∂cT
a1...ap

b1...bq)

− (∂cV
a1)T ca2...apb1...bq − . . .− (∂cV

ap)T a1...ap−1c
b1...bq

+ (∂b1V
c)T a1...apcb2...bq + . . .+ (∂bqV

c)T a1...apb1...bq−1c. (A.27)

For example, in the case of a second-rank tensor with two lower indices, this gives

LV Tab = Tab∂cV
c + Tcb∂aV

c + Tac∂bV
c. (A.28)

And for a tensor with two upper indices this gives

LV T ab = T ab∂cV
c − T cb∂cV a − T ac∂aV b. (A.29)
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Appendix B

Hypersurfaces, Extrinsic
Curvature and Foliation

B.1 Hypersurfaces

We will start by recalling the concept of tangent spaces. Given a manifoldM, we can define
at each point p ∈ M a vector space Tp(M) containing all vectors that pass through p and
which are tangent to the manifold M.

The hypersurface is a generalization of the concept of two-dimensional surfaces. A hyper-
surface Σ is a (D−1)-dimensions submanifold of an n-dimensional manifoldM [54]. Given
a function f :M→ R, a hypersurface Σ can be defined by constraining f(x) to a constant
value f0. Recall from multivariable calculus that the gradient of a function constraining a
surface is perpendicular to that surface. We have here a similar result. Let ζa = ∇af(x).
This vector will be perpendicular to Σ in the sense that,

∀V a ∈ Tp(Σ) ⊂ Tp(M), V aζa = 0. (B.1)

If ζa is timelike (respectively spacelike), then the hypersurface is said to be spacelike (re-
spectively timelike). Otherwise, if ζa is null then the hypersurface is said to be null. Here
we will mostly discuss the first two types. We can define a normalized orthogonal vector to
Σ by

na =
ζa

|ζbζb|
1
2

. (B.2)

To see how certain mathematical operations can be done on the hypersurface, we define the
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projection tensor for Σ by

Pab = gab − s nanb, (B.3)

where s = nana. It is easy to see that this metric projects any vector V a ∈ Tp(M) onto Σ.
To see this, note that the vector can be written as the sum of two vector V a

⊥ and V a
‖ given

by ([55])

V a
‖ = P abV

b, V a
⊥ = nanbV

b. (B.4)

To see that the first vector is indeed tangent to Σ, we show that it is perpendicular to na:

naV
a
‖ = na(g

a
b − s nanbV b)

= naV
a − s n2nbV

b

= naV
a − nbV b

= 0. (B.5)

And to see that V a
⊥ is indeed perpendicular to Σ we show that it is collinear to na:

naV
a
⊥ = s nan

aV b

= s2nbV
b

= nbV
b (B.6)

which is the projection of the total vector V on n. So the vector given by P abV
b = V a

‖ is in
fact the projection of V a on Σ.

The projection tensor actually plays the role of a metric tensor on Σ, i.e. it is the induced
metric on Σ. To see this, let us consider two vectors V a,W a ∈ Tp(Σ). The projection tensor
raises and lowers the indices:

P abVb = gabVb − s nanbVb. (B.7)

Since V b is normal to all vectors in Σ, the contraction nbVb vanishes, and we are left with

P abVb = V b. (B.8)
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Second, the projection tensor allows us to calculate the scalar product of two vectors in Σ:

PabV
aW b = gabV

aW b − snanbV aW b

= V aWa.
(B.9)

Finally, the projection tensor is idempotent, meaning that it produces the same result when
applied more than once:

P acP
c
b = (δac − snanc)(δcb − sncnb)

= δab − snanb − snanb + s2nanb

= P ab.

(B.10)

The projection tensor is sometimes called the first fundamental form of Σ.

Now that we have presented the concept of hypersurfaces, a particular type of hypersurface
that we will see throughout the thesis is the so-called n-sphere. It is the generalization
of the concept of a 2-dimensional spherical surface (a.k.a. a sphere) to n dimensions. An
n-sphere is hence a hypersurface defined as follows:

Definition B.1. Let d : Rn+1 × Rn+1 → R+ be the distance function on Rn+1. The
n-sphere of radius R and center c is defined by

Sn(c,R) := {x ∈ Rn+1 | d(c, x) = R}. (B.11)

We usually refer to an n-spheres in an abstract topological manner without specifying the
center and radius, and simply denote it by Sn.

It follows that we define the (n+ 1)-ball BR(c) as the space enclosed by an n-sphere. The
(n+ 1)-ball BR(p) is closed if it contains the n-sphere and open if it does not.

B.2 Extrinsic Curvature

The reader is probably familiar with the notion of curvature on a manifold. Take a vector
V a ∈ Tp0(Σ) and parallel-transport it around a small loop, ending back at the starting
point p. If the vector is the same then the manifold is flat. If not, then the manifold has
curvature. To actually quantify this notion we would pick two vectors Aa and Ba which
will define the rotation plane, then argue that the difference in V a must be proportional to
the original vector as well as the two vectors Aa and Ba. The proportionality “factor” of
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course turns out to be the Riemann tensor – which must be a function of the four variables
that are the old and the new vectors, Aa and Ba. It can hence be expressed as a 4-tensor.

The above procedure explains how the curvature is measured by someone on the manifold Σ
itself and is thus called the intrinsic curvature. If you embed Σ in a higher-dimensional
manifold M, and do the same procedure partly in M, you get what we call extrinsic
curvature.

As a clear example, think of a cylinder embedded in R3. The cylinder of course has zero
intrinsic curvature: it is simply a sheet with two of its ends identified. This is actually
a consequence of Gass’s theorema egregium which states that, given two surfaces that are
defined using maps having the same domain and codomain, if the two surfaces are isometric1

then they have the same intrinsic curvature [56]. Imagine starting again with a vector
V a ∈ Tp(Σ) and transporting the vector half-way through the cylinder. You can then “lift”
the vector off of the Σ plane, parallel-transport it all the way back “above” the point p then
“drop” it back on the cylinder at p. The resulting vector is actually −V a. The two vectors
are clearly different and the cylinder posses an extrinsic curvature when embedded in R3.

The extrinsic curvature is quantified using the extrinsic curvature tensor Kab, which is given
by ([11])

Kab =
1

2
LnPab, (B.12)

where n is the unit normal vector to Σ, Pab is the projection tensor and Ln is the Lie
derivative in the direction of n (c.f. Appendix A). The extrinsic curvature is hence the rate
of change of the projection tensor in the direction of the flow of the normal vector to the
hypersurface.

With some straightforward manipulations we can arrive at a useful formula for calculating
Kab:

Kab =
1

2
P caP

d
b Ln gab

= P caP
d
b∇(cnd)

= ∇(anb) (B.13)

The extrinsic curvature is sometimes called the second fundamental form of Σ.

1There exists a distance-preserving bijective function from one surface to the other.
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B.3 Geometry of Foliations and Metric Decomposition

In §B.1 we have discussed the concept of a hypersurface. We will discuss in the present
section how a spacetime can be covered by a continuous set of timelike hypersurfaces (Σt)t∈R.
This is possible for example for a class of spacetimes called globally hyperbolic spacetimes
which we discuss below.

We will start by developing some notions that we will be needing in following parts of this
section as well as other parts of the thesis. To warm up, let us recall the simple notion of
a neighborhood in topology.

Definition B.2. Let E be a topological space. A subset V ⊂ E is called a neighborhood
of x in E if there exists an open subset U ⊂ E such that x ∈ U ⊂ V [57].

Next, we turn to the notion of future-directed causal curves. Remember that a causal curve
is simply a timelike or null curve.

Definition B.3. A spacetime M is time-orientable if it admits a smooth, nowhere van-
ishing timelike vector field t̂a. Let x(λ) be a causal curve defined on M. For each point
on the curve p ∈ x(λ), there is a vector tangent to x(λ), defined in the tangent space
Tp(M) and given by x(p). Then x(λ) is said to be a future-directed causal curve if
∀ p ∈ x(λ), xa(p)t̂a(p) < 0 [15].

We can now discuss the definition for the future domain of dependence.

Definition B.4. Let (M, g) be a spacetime and S ⊂M such that no two points on S can
be connected by a timelike curve (we also say that S is achronal). The future domain of
dependence of S, denoted D+(S) (respectively the past domain of dependence of S,
denoted D−(S)), is the set of all points p ∈ M with the property that every past-directed
(respectively future-directed) inextendible (i.e. with no endpoints) timelike curve starting
at p intersects S [11].

Definition B.5. A Cauchy surface is a spacelike hypersurface Σ of a spacetime (M, g)
such that each inextendible causal curve intersects it once and only once. Equivalently, this
means that M = D+(Σ) ∪D−(Σ).

Not all spacetimes have Cauchy surfaces, though. For example, if we were to remove one
point from a Minkowski spacetime, there would not be any Cauchy surfaces in it. We hence
present the following classification:

Definition B.6. A spacetime is said to be globally hyperbolic if it admits a Cauchy
surface.

We could say that the region D+(S) is the region of spacetime in which solutions of hyper-
bolic partial differential equations are provided by initial values on Σ [15].
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Definition B.7. A partial Cauchy surface is a spacelike hypersurface such that each
causal curve with no endpoints intersects it at most once [15].

The topology of a globally hyperbolic spacetimes admitting a Cauchy surface Σ is necessarily
Σ × R. It is easy to imagine that any globally hyperbolic spacetime for example can be
foliated by a set of continuous hypersurfaces (or foliations) (Σt)t∈R, such that

M =
⋃
t∈R

Σt. (B.14)

Specifically, let us imagine such aD-dimensional spacetime (M, g), foliated by hypersurfaces
(Σt)t∈R. This means that there exists a regular (first covariant derivative does not vanish)
scalar field φ :M→ R such that each hypersurface Σt is a level of this field [58],

∀ t ∈ R, Σt := {p ∈M, φ(p) = t}. (B.15)

If φ is in fact regular, it is obvious that the hypersurfaces (Σt)t∈R are non-intersecting:

∀ t1, t2 ∈ R | t1 6= t2, Σt1 ∩ Σt2 = ∅. (B.16)

It is evident that a spatial point p on a slice is connected to its counterpart on the next
surface via a time flow vector, which we denote by t̂a. We have not specified what this
time flow vector is, but its meaning is obvious: it is a vector field that we construct to
measure the flow of time. An obvious choice is to simply let it be proportional to the time
coordinate:

t̂a = (1, 0, 0...0) , (B.17)

If the spacetime is static and all foliations are identical, then the time vector connecting
p(t) to its future p(t+ δt) is obviously orthogonal to each slice Σt, and intersects each point
on each slice once and only once.

If we now take a spacetime which is not static (but at least stationary like all GR solutions
that we are interested in), then the spacelike hypersurfaces (Σt)t∈R are no longer identical
(though they may remain topologically equivalent, but that is not relevant to our discus-
sion). In fact, even for static spacetimes we can foliate our manifold with non identical
timelike hypersurfaces given an appropriate φ(p). The time flow vector connecting each
point to its future is thus not, in general, orthogonal to each slice Σt. Furthermore, regard-
less of whether or not the spacetime is static, we are free to quantify the “time flow” using
any timelike vector field other than (B.17).
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In conclusion, there are different ways of defining t̂a and, in general, this vector field will
have normal and tangential components to each slice Σt. The tangential part, denoted βa,
is called the shift vector field. It represents how a spatial point is shifted between slices by
following the chosen vector t̂a.

As discussed in §A.1, the future-directed normal vector to each slice, denoted ua, will be
collinear to ∇at,

∃N :M→ R |u(x)a = −N(x)∇at, 2 (B.18)

which leads directly to the one-form

u = −Ndt. (B.19)

The scalar field N is called the lapse function. We chose the normal component of t̂ to be

t̂⊥ = Nu. (B.20)

On each hypersurface Σt, we introduce a coordinate system

(xi)i = (x1, ..., xD−1).

If this coordinate system varies smoothly between slices, then

(xµ)µ = (t, x1, ..., xD−1) (B.21)

forms a well-behaved coordinate system on M. We now pick

t̂ = ∂t. (B.22)

Since β is normal to Σt, let us introduce the spatial coordinates of β terms of the spatial
coordinates (xi):

β = βi∂i. (B.23)

We now turn our attention to the components of the complete spacetime metric. We start
by showing that

2N is real because in GR we are dealing with Lorentzian manifolds which, by definition, are real manifolds.
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g00 = g(∂t, ∂t)

≡ gµν(∂t)
µ(∂t)

ν

= −N2 + βiβi, (B.24)

where we used (B.22) in the last equality. The next set of components are those of the form

g0i = ∂t · ∂i
= β · ∂i
= βjdx

j∂i

= βjδ
j
i

= βi. (B.25)

The remaining components are of the form gij . Let us denote the spatial induced metric
on each slice by σij . It is the bilinear form defined by

∀ (v, w) ∈ Tp(Σt)× Tp(Σt), σ(v, w) := g(v, w). (B.26)

So the full metric tensor can be represented by

gab =

(
−N2 + βiβi βj

βi σij

)
. (B.27)

Or as a line element [58]:

gabdx
adxb = −N2dt2 + σij(dx

i + βidt)(dxj + βjdt). (B.28)

This means that the foliation metric can be expressed as

σab = gab + uaub. (B.29)
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Appendix C

Symmetries and Killing Vectors

C.1 Symmetry Transformations

C.1.1 Symmetries and Conservation Laws

A symmetry is a transformation on the dynamical variables of the system that leaves the
equations of motion unchanged. For instance, a perfect sphere remains exactly the same
under a rotation transformation around any of its axes with any angle. If we are studying
the dynamics of particles that resides on this sphere, the equations of motion would remain
identical if we would rotate the sphere, or, equivalently, if we would rotate the test object
around the sphere. Physicists have long been interested in symmetries because knowing the
symmetries of a problem can reduce its complexity greatly.

Another feature that is important to know in any physical problem is the underlying con-
servation laws. Conservation laws are fundamentally important because they tell us which
processes can occur and which cannot. They are usually expressed in terms of continuity
equations. For instance, in electromagnetism the continuity equation which expresses charge
conservation is given by

∂ρ

∂t
+ ~∇ · ~J = 0, (C.1)

where ρ is the volume charge density, and ~J is the current density (per unit time).

We can of course define a four-vector Ja by

Ja = (ρ, ~J), (C.2)
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and re-write the continuity equation as the conservation of the current Ja,

∇aJa = 0. (C.3)

The charge associated with this current, which is constant in time, is then [36]

Q :=

∫
all space

J0d3x. (C.4)

Conservation laws are related to underlying symmetries via Nöther’s theorem. Nöther’s
theorem states that every differentiable symmetry of the action of a theory has a corre-
sponding conservation law.

If we take φ to be a field, we can write an infinitesimal transformation as

φ→ φ′ = φ+ ∆φ, (C.5)

where ∆φ is some deformation of the field configuration. This transformation is hence a
symmetry if the action in invariant under it, which means that the equations of motion
remain unchanged. This means that the Lagrangian must be invariant under (C.5), up to a
surface term, since this term would not change the Euler-Lagrange equation. In other words,
the equations of motion are unchanged if the effect of equation (C.5) on the Lagrangian is
a transformation of the form

L → L(φ,∇aφ) +∇aJ a. (C.6)

Let us compute the change in L and see if this is the case.

∆L(φ,∇aφ) =
∂L
∂φ

∆φ+
∂L

∂(∇aφ)
∇a(∆φ)

= ∇a
(

∂L
∂(∇aφ)

∆φ

)
+

(
∂L
∂φ
− ∂L
∂(∇aφ)

)
∆φ

= ∇a
(

∂L
∂(∇aφ)

∆φ

)
. (C.7)

The second term in the last line vanishes by the Euler-Lagrange equation. Making the
identification
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Ja =

(
∂L

∂(∇aφ)
∆φ

)
, (C.8)

we see that if the Lagrangian density is invariant under the transformation (C.6), then the
current J must be divergenceless (we also say that this current is conserved) ,

∇aJa = 0. (C.9)

This divergenceless current leads to a conserved charge. By this we mean a physical quantity
that is invariant with time. To see this, we separate the time and space coordinates in the
previous equations, arriving at

∇0J
0 = ∇iJ i. (C.10)

In general, the left-hand side can be a function of time. However, integrating both sides
over a region Σ in space (where Σ can very well be the whole space), the resulting right
hand side is simply a surface term that does not depend on time. This means that the
left-hand side given by

∫
Σ

d3xJ0 =: Q, (C.11)

is constant in time.

So in conclusion, it is easy to see that the existence of a continuous symmetry in a theory
leads to the existence of a conserved charge in said theory.

One type of symmetry that we commonly refer to in physics is gauge symmetry. A the-
ory with a gauge symmetry is called a gauge theory. More fundamentally, a gauge is a
mathematical artifact used to regulate redundant degrees of freedom in a theory. A typ-
ical example is classical electrodynamics. The gauge of this theory is the four-potential
A = (Φ, ~A). The fields are given by

~E = −~∇A0 − ∂t ~A,
~B = ~∇× ~A.

(C.12)

It is easy to see that, given any twice-differentiable function f : R1,3 → C, the transformation

A→ A′ = A+
(
−∂tf, ~∇f

)
, (C.13)
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leaves the fields in (C.12) – and hence Maxwell’s equations of motion – unchanged. Classical
electrodynamics is therefore a gauge theory.

Proof: Re-writing the new electric field using the transformed four-potential gives

~E′ = −~∇A′0 − ∂t ~A′

= −~∇
(
A0 − ∂tf

)
− ∂t ~A− ∂t~∇f

= ~E. (C.14)

Likewise, for an abstract component Bi of the vector ~B (where the cyclic order (i, j, k)
is maintained), we have

B′i = ∂jAk − ∂kAj + ∂j∂kf − ∂k∂jf
= Bi.

�

Another type of symmetry that is often discussed is conformal symmetry. A conformal
transformation is a bijective transformation1 that locally preserves the angles. This means
that the infinitesimal neighborhood around any point is geometrically similar to its trans-
formed counterpart. It is essentially a local re-scaling of the system. Particularly in General
Relativity, it can be expressed using a non-vanishing function Ω :M→ R∗+ by the metric
transformation

gab(x)→ Ω(x)2gab, (C.15)

where gab is the metric on the manifold M.

C.1.2 Symmetry Groups

Let us consider the operator π defined by

πf(x) = f(−x),∀ f : R→ K, (C.16)

where K is some random set. We can see that

1Can be expressed in terms of a bijective function.
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ππ = 1, (C.17)

where 1 is the identity operator such that

1f(x) = f(x). (C.18)

You can see that any product we form from the two operators π and 1 belongs to the set
{1, π}. In this sense we say that the set {1, π} is closed with respect to the operators
product.

We can use a number of operators to form a mathematical group. Recall that a group is
any set G together with an operation ∗ that satisfy the group axioms below [59]:

1. Closure: ∀ a, b ∈ G, a ∗ b ∈ G.

2. Associativity: ∀ a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

3. Existence of identity element: ∃ Id ∈ G | ∀ a ∈ G, a ∗ Id = Id ∗ a = a.

4. Existence of inverse elements: ∀ a ∈ G ∃α ∈ G | a ∗ α = α ∗ a = Id. We commonly
denote α by a−1.

The number of elements g of G is called the order of the group. Of course, depending
on the group, g can be infinite.

It is easy to see that the set {1, π} forms a group, which we denote by G1. This group
obeys the multiplication table below:

1 π

π 1

This multiplication table is formed such that the product of any two elements is the inter-
section of the row of the first element with the column of the second element.

Now consider another set, that of the integers {1,−1}. Under ordinary scalar multiplication,
these form a group G2. This group has similar properties to the previous one. If we let a
be either −1 or π and Id be either 1 or 1, both groups obey the multiplication table given
by

Id a

a Id
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This table defines the abstract group Ci. This abstract group has many realizations or
representations. These representations are concrete groups that are isomorphic to each
other. By isomorphic we mean that there exists a one-to-one correspondence between the
distinct elements of the groups.

One interesting property to look at for the elements of a group is the commutativity of its
elements. Commutative groups are called Abelian and non-commutative groups are called
non-Abelian. In the previous example Ci was an Abelian group, and we were able to
find a representation of this group using numbers (i.e. G2). This is normal since ordinary
numbers commute. To find representations for non-Abelian groups on the other hand, we
need to use matrices which have non-commutative properties.

There is a number of interesting non-Abelian groups that we will very briefly discuss.
First, the orthogonal group of degree N , denoted O(N), is the group of orthogonal N ×N
matrices together with the matrix multiplication operation. An orthogonal matrix O is a
square matrix whose inverse is equal to its transpose,

OTO = O
(
OT
)

= 1. (C.19)

It has a subgroup denoted SO(N) and called the special orthogonal group. It is defined via
the subset of matrices with determinant equal to +1. It is useful to know that all possible
rotation transformations (as expressed using rotation matrices) in R3 form a representation
of the group SO(3).

Another group that we will mention quickly is the group of unitary N×N matrices denoted
U(N). A unitary matrix U is one whose conjugate transpose is equal to its inverse,

U † = U−1. (C.20)

U(N) has an interesting subgroup called the special unitary group of degree N and denoted
SU(N). It is formed by the matrix product and the set of unitary N ×N matrices in U(N)
with determinant +1.

When the symmetry transformations of a particular physical system form a group, we
call this a symmetry group. For instance, we mentioned above that the set of rotation
transformations in R3 form the group SO(3). Hence, SO(3) is the symmetry group of
a sphere in ordinary 3-dimensional space. I.e., the sphere remains unchanged under any
and all transformations of the group SO(3). A more advanced example is to consider the
quantum field theory that governs the strong interaction, quantum chromodynamics (QCD).
QCD turns out to have an SU(3) symmetry group [3].
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C.2 Stokes’ Theorem and Conserved Charges in Curved Space-
times

Stokes’ theorem is one of the most important results in Differential Geometry. It generalizes
an important result from calculus [11]:

∫ a

b
dx = a− b. (C.21)

Take a (D − 1)-form ω, defined on the boundary ∂M of a D-dimensional region M. Then
dω is a D-form and can be integrated over M. Stokes’ theorem says that

∫
M

dω =

∫
∂M

ω. (C.22)

This general form leads to several familiar theorems in 3-dimensions calculus, like the the-
orems of Ampère and Green-Ostrogradski.

To see how this theorem can be put to practical use in calculations, we consider a one-form
J defined by

ω = ?J. (C.23)

The exterior derivative of ω in terms of the components of J is then

(dω)ca1...aD−1 = (d ? J)ca1...aD−1

= D εb[a1...aD−1
∇c]Jb.

(C.24)

Now, recall that the Levi-Civita tensor is the volume element, i.e.

ε =
√
|g|dx1 ∧ ... ∧ dxD

≡
√
|g|dDx.

(C.25)

This leads to

dω = ∇aJa
√
|g| dDx. (C.26)
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Having found a practical expression for dω, we now look for one for ω. Expanding the
expression in (C.23), we have

ω = εba1...aD−1
Jb (C.27)

Evidently, the induced volume element on a hypersurface (in this case the boundary ∂M)
is

ε̂ =
√
hdD−1y. (C.28)

Here hab is the induced boundary metric in coordinates ya. The induced volume form in
terms of the volume form inM can be found my simply contracting the later with the unit
normal vector,

ε̂a1...aD−1 = ncεca1...aD−1 , (C.29)

where na is the unit normal vector to the boundary hypersurface, and ε̂ is the volume form
on the latter. Combining this with (C.23), we get

ω = naV
a
√
|h|dD−1y. (C.30)

Combining (C.26) with (C.30), we can re-write (C.22) as

∫
M

dDx
√
|g| ∇aJa =

∫
∂M

dD−1y
√
|h|naJa. (C.31)

That is it, we have arrived at a practical version of Stokes’ theorem which can easily be
used in our calculations.

Now let us recall that a current Ja is conserved if

∇aJa = 0. (C.9)

From equation (C.26), we see that d ? J is proportional to ∇µJµ, and hence the current
conservation condition can also be expressed as

d(?J) = 0⇒ J is a conserved current. (C.32)
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Equation (C.32) is an important result which will be referenced several times in this thesis.
In the spirit of the previous section, we can now define a conserved charge passing through
a hypersurface Σ using

QΣ =

∫
Σ
?J. (C.33)

From the previous calculations, we can rewrite QΣ as

QΣ =

∫
Σ

dD−1y
√
|h|naJa. (C.34)

Let us pause to recap what we have done so far. We have found that a current Ja is conserved
if d ? J = 0. We have also found a form of Stokes’ theorem which we claimed will be useful
in our calculations. To see how all this can be used in the real world, let us calculate the
electric charge resulting from the conserved electromagnetic current Jµ = ∇νFµν . Using
C.31 we can write

∫
Σt

dD−1y
√
|h|nb∇aF ab = −

∫
∂Σt

dD−2z
√
|γ|ua nbF ab, (C.35)

where Σt is a spatial hypersurface (at constant t), hab is the induced metric on Σt, u and
n are the unit normals to Σt and ∂Σt, respectively, and za and γab are the coordinates and
induced metric on ∂Σt. To compare this with the results from the previous section, we take
the 4-dimensions, flat spacetime case. Σt can then be taken as the 3-ball BR(p) = {x ∈
R3 | d(x, p) < R}, where d : R3×R3 → R+ is again the distance function on R. ∂BR will of
course be the familiar 2-sphere (denoted S2). Working in spherical coordinates, the metrics
are given by

hijdy
i dyj = dr2 + r2dθ2 + r2 sin2(θ) dφ2, (C.36)

and

γijdz
i dzj = r2dθ2 + r2 sin2(θ) dφ2. (C.37)

The electric field has one non-vanishing component

Er =
q

4πr2
, (C.38)
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and the field-strength tensor has the component

F tr = Er. (C.39)

The one-forms associated with the normal unit vectors are easily found to be

ua = (1 0 0 0), (C.40)

and

na = (0 1 0 0). (C.41)

Putting it all together, we have

Q = −
∫
S2

dθ dφR2 sin2 θ
(
− q

4πR2

)
= q. (C.42)

This is the familiar answer that we were expecting to retrieve. In Chapter 1 we will see
how this formalism can be used to calculate charges associated with black holes. While it
is obvious that here we could have done without all the complicated results derived in this
section, when we are talking about a black hole, we have to take into consideration the
curvature of the spacetime and these results become imperative.

C.3 Killing Vectors

A spacetime (M, g) has a symmetry if its geometry is invariant under a certain transfor-
mation. These symmetries of the metric are called isometries. A simple of example of an
isometry is the translation transformation in Minkowski space:

xa → xa + ba. (C.43)

Whenever a metric is independent of a specific fixed coordinate α, there will be an isometry
under translation in this coordinate:

∂αgab = 0⇒ xα → xα + ba is a symmetry. (C.44)
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Now, recall that the geodesic equation for timelike curves can be written in terms of the
four-momentum pa = mUa as

pb∇bpa = 0. (C.45)

Expanding the above expression, we arrive at

pb∂bpa − Γcbap
bpc = 0. (C.46)

The first is term simply

pb∂bpa = m
dxb

dτ
∂bpa

= m
dpa
dτ

. (C.47)

And with some straightforward calculations, we find the second term to be

Γcdap
dpc =

1

2
gcb (∂dgab + ∂agbd − ∂bgda) pdpc

=
1

2
(∂dgab + ∂agbd − ∂bgda) pdpb

=
1

2
(∂agbd) p

dpb. (C.48)

Which leads to the equation

m
dpa
dτ

=
1

2
(∂agbc)p

cpb. (C.49)

This means that if all metric components are independent of a coordinate α (meaning
∂αgab = 0), then the momentum component pα is a conserved quantity of motion, since
from (C.49) we will have

dpα
dτ

= 0. (C.50)

Although metric independence from a specific component implies an isometry, not all metric
isometries are related to coordinate independence. For example, the same Minkowski space
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is also invariant under Lorentz transformations (xa → Λab x
b). This set of isometries is

not manifest in the independence of the metric ηab on any coordinates. In fact, certain
coordinate transformations could lead us to write the Minkowskian metric in a such a way
that no coordinates independence exists. Since the geometry itself did not change, there is
still an isometry related to translation but we would not be able to identify it simply by
looking at the metric. It is obvious that a more ingrained practice needs to be developed
to find all the underlying symmetries.

Assuming the metric is independent of a coordinate α, let us consider the vector

Kb = (∂α)b. (C.51)

Kb is said to be a generator of the isometry. To see this, first note that the component pα
can be written as

pα = Kbp
b. (C.52)

Plugging this in the geodesic equation, we have the conclusion

dpα
dτ

= 0 ⇔ pa∇a(Kbp
b) = 0. (C.53)

Using the geodesic equation, the expression on the right can be expanded as

pa∇a(Kbp
b) = papb∇aKb

= papb∇(aKb). (C.54)

In the last line, we have used the fact that papb is symmetric in a and b, and thus, only the
symmetric part of the tensor ∇aKb survives. Consequently, if any vector K satisfies the
equation

∇(aKb) = 0 , (C.55)

then the quantity Kapa is conserved along a geodesic trajectory. Equation (C.55) is called
Killing’s equation and any vector that satisfies it is called a Killing vector. As we will
see, Killing vectors play a pivotal role in defining conserved charges associated with the
isometries of the spacetime.
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We would now like to look at some interesting Killing vector identities that we will be
making use of in the thesis. The first identity is

∇a∇cKd = RdcabK
b. (C.56)

Proof: Applying a covariant derivative to Killing’s equation gives

∇a∇bKc +∇a∇cKb = 0. (C.57)

Obviously this equation holds after re-labeling of the indices. We can hence do some
permutations and add four copies of the right-hand side to itself. If we are clever about
the signs of each copy, we can write

0 =[∇a∇bKc +∇a∇cKb]− [∇c∇aKb +∇c∇bKa] (C.58)

+ [∇b∇cKa +∇b∇aKc]− [∇a∇bKc +∇a∇cKb] . (C.59)

It is easy to see that several terms in this expression will cancel (for example the second
and third terms). We can then combine some terms as commutators,

0 = ∇a∇bKc −∇a∇cKb + [∇a,∇c]Kb − [∇c,∇b]Ka + [∇b,∇a]Kc. (C.60)

The commutator of two covariant derivatives applied to any vector V can, in general,
be expressed as

[∇a,∇b]V d = ∇a∇bV d −∇b∇aV d

= ∂a

(
∇bV d

)
− Γeab∇eV d + Γdae∇bV e − ∂b (∇aV c) + Γeba∇eV d − Γdbe∇aV e

= ∂a∂bV
d + ∂a

(
ΓdbeV

e
)

+ Γdae∂bV
e + ΓdaeΓ

e
bfV

f − ∂b∂aV d − ∂b (ΓcaeV
e)

− Γdbe∂aV
e − ΓdbeΓ

e
afV

f

=
(
∂aΓ

d
bf − ∂bΓdaf + ΓdaeΓ

e
bf − ΓdbeΓ

e
af

)
V f

= Rd
fabV f . (C.61)

Using this in equation (C.60), we get

∇a∇cKd =
1

2
([∇a,∇c]Kd[∇d,∇c]Ka + [∇d,∇a]Kc) . (C.62)

120



Using the fact that the sum of cyclic permutations of the form Rdbac + Rdacb + Rdcba
vanishes, we can combine the first and last Riemann tensor from above to get

∇a∇cKd =
1

2
(Rabdc −Rdcba)Kb

=
1

2
(Rabdc +Rabdc)K

b

= RdcabK
b. (C.63)

Multiplying by the inverse metric tensor leads to the final result

∇a∇cKd = RdcabK
b. (C.64)

�

Contracting relation (C.56), it is easy to arrive at another important result,

∇a∇cKa = RcbK
b. (C.65)

Equations (C.65) also leads to another important result, namely that the directional deriva-
tive of the Ricci scalar along any Killing vector vanishes,

Ka∇aR = 0. (C.66)

Proof: We apply ∇b to equation (C.65),

∇b∇a∇cKa = Kb∇bRcb +Rcb

(
∇bKb

)
. (C.67)

Then, raising the c index,

∇b∇a∇cKa = Kb∇bRcb +Rcb∇bKb. (C.68)

Setting c = b,

∇b∇a∇bKa = Kb∇bR+R∇bKb. (C.69)

Looking at the last term on the right, it is easy to see that it vanishes:

121



R∇bKb = R∇b(gbaKa)

= Rgba∇bKa

= 0. (C.70)

In the second line I have used metric compatibility, and in the last line I have used the
fact that a symmetric tensor (the metric) is contracted with an anti-symmetric tensor.
So we are left with

Kb∇bR = ∇b∇a∇bKa

= −∇b∇a∇aKb. (C.71)

In local inertial coordinates, the left-hand side can be written as:

Kb∇bR =̂ − ∂b�Kb (C.72)

= −�∂bKb (C.73)

= −�gba∂bKa, (C.74)

where again we use the symbol “=̂” to mean “equal in a specific frame”. The term
∂bKa is not (i.e. does not transform as) a tensor. However, we can always write it as
the sum of

∂(aKb) =
1

2
(∂aKb + ∂bKa) , (C.75)

and

∂[aKb] =
1

2
(∂aKb − ∂bKa) . (C.76)

And using Killing’s equation, we know that only the last term is non-zero, hence

Kb∇bR =̂−�gba∂[aKb]. (C.77)

The term ∂[aKb] does transform like a tensor. To see this, notice that
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∇aKb = ∂aKb − ΓλabKλ,

∇bKa = ∂bKa − ΓλbaKλ.
(C.78)

Using torsion freedom, we can see that

∇aKb −∇bKa = ∂aKb − ∂bKa. (C.79)

And hence, the quantity ∂[aKb] does transform like a tensor. Since it is anti-symmetric,

its contraction with gab leads to zero, and we arrive at

Kb∇bR = 0. (C.80)

Since this is a tensor equation, it is true in any coordinate frame.

�

While the existence of a Killing vector allows us to find a conserved quantity for the motion
of particles, it also allows us to define a conserved current by

JaT = KbT
ab. (C.81)

It is easy to show that this current is divergenceless:

∇aJaT = (∇aKb)T
ab −Kb∇aT ab. (C.82)

The first term vanishes because again we have a contraction between an antisymmetric
and a symmetric tensor. The second term of course vanishes because of energy-momentum
conservation.

We know from §C.2 that conserved currents of the form (C.81) lead to conserved charges
of the form (C.34). Therefore, the existence of a Killing vector K allows us to define an
associated conserved charge

QK =

∫
Σ

dD−1x
√
|h|JaTna. (C.83)

This underlying relation between Killing vectors and conserved charges will be used to
defined conserved quantities in the black hole solution that are otherwise very ambiguous
to define.
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Appendix D

Action Calculation and the
Energy-Momentum Tensor

Famous theoretical physicist Leonard Susskind once said that attempting to derive the
Einstein field equation from the action principle is something that he started several times
but never actually finished because it is “too tedious” [60]. In the next section we are going
to find out why.

D.1 Action and Energy-Momentum Tensor Definitions

The principle of least action is one of the most essential concepts in physics. All of the
systems that we know in classical mechanics, electrodynamics and quantum field theory
obey the principle of least action [60]. Meanwhile, the bedrock of general relativity is of
course the Einstein field equation, which relates the geometry of the spacetime to the matter
distribution in it [11]. The equation in vacuum is given by

Rab −
1

2
Rgab + Λgab = 0. (D.1)

As is the case in any sensible theory, we expect the above equation of motion of general
relativity to result from the principle of least action. This means that we expect to write
down an action that, when made stationary, leads to equation (D.1). The bare version of
this action turns out to be the sum of two parts. The first is called the Einstein-Hilbert
action and is given by
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IEH = − 1

16π

∫
M

dDx
√
−g(R− 2Λ) , (D.2)

where D is the dimension of our spacetime which we denote by (M, g), and the minus
sign comes form following the convention in [4]. The second part of the action is called
the York-Gibbons-Hawking action. It is common to refer to this part simply as the
Gibbons-Hawking action, which we will do throughout the thesis for simplicity. The
Gibbons-Hawking action is given by

IGH = − 1

8π

∫
∂M

dD−1x
√
−hK , (D.3)

where ∂M is the spatial boundary of M, h is the determinant of the induced boundary
metric, and K is the extrinsic curvature tensor of the boundary (c.f. §B.2). In asymptot-
ically flat spacetimes then, the action is simply given by the Einstein-Hilbert term, and
in many introductory textbooks it is common to neglect mentioning the Gibbons-Hawking
action term. Nevertheless, we will now show that the variation of the total action leads to
the field equation in (D.1).

Variation of the Einstein-Hilbert Action

We now consider variations in the action due to arbitrary variations in the metric gab.

δIEH = − 1

16π

∫
M

dD
[
(R− 2Λ)δ

√
−g +

√
−gδR

]
. (D.4)

It is easy to see that the variation of gab in terms of the inverse metric gcd is

δgab = −gacgbdδgcd. (D.5)

The reader may recall that for any square matrix M with a non-zero determinant, we have
the following identity [11]

ln(detM) = Tr(lnM). (D.6)

The variation of this identity then yields
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1

detM
δ(detM) = Tr(M−1δM). (D.7)

This allows us to find the variation of g:

δg = g gabδgab. (D.8)

It is sometimes convenient to vary with respect to the inverse metric gab, so we get

δg = −g gabδgab. (D.9)

Using equation (D.5),

δ
√
−g =

1

2
√
−g

δ(−g)

= −1

2

√
−g gabδgab. (D.10)

Next we turn our attention to the variation of the Ricci scalar. The Ricci scalar is defined
by (1.7). Its variation is then given by two terms:

δR = (δgab)Rab + gabδRab. (D.11)

We can now write the variation of the Einstein-Hilbert term as

δIEH = − 1

16π

[∫
M

dDx
√
−g
(
Rab −

1

2
gabR+ Λgab

)
δgab +

∫
M

dDx
√
−ggabδRab

]
= − 1

16π

[∫
M

dDx
√
−g (Gab + Λgab) δg

ab +

∫
M

dDx
√
−ggabδRab

]
. (D.12)

The term inside the parentheses seems to be on the right track to giving us the sought-after
Einstein equation.

For the variation of the Ricci scalar in the second term we refer to the Palatini identity:

δRab = ∇c(δΓcba)−∇b(δΓcca). (D.13)

126



Proof of the Palatini Identity: We start by looking at the variation of the Riemann
tensor:

δRdcab = δ∂aΓ
d
cb + (δΓebc)Γ

d
ae + Γebc(δΓ

d
ae)− (a↔ b). (D.14)

Next we make use of a helpful remark [11]. Imagine defining two covariant derivatives
∇ and ∇̂ with associated connection coefficients Γ and Γ̂. Then for an arbitrary vector
V ,

(∇a − ∇̂a)V b = ∂aV
b + ΓbacV

c − ∂aV b − Γ̂bacV
c

= (ΓbacV
c − Γ̂bac)V

c. (D.15)

Since the left-hand side is a tensor, so must be the right-hand side. The difference
between the two connection coefficients must then be a tensor. From this, we can infer
that the variation δΓdcb must also be a tensor. We can therefore write its covariant
derivative as

∇a(δΓdcb) = ∂a(δΓ
d
cb) + ΓdeaδΓ

e
cb − ΓeacδΓ

d
eb − ΓeabδΓ

d
ce. (D.16)

By inspection with (D.14), we have

δRdcab = ∇a(δΓdcb)−∇b(δΓdca). (D.17)

Contracting the above equation, we finally arrive at the Palatini identity,

δRcb = δRdcdb

= ∇d(δΓdcb)−∇b(δΓdcd). (D.18)

�

Using metric compatibility, the term gabδRab can be written as

gabδRab = ∇d(gabδΓdab − gadδΓdad)
=: ∇dV d. (D.19)
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So the second term in (D.12) can be written as

∫
M

dDx
√
−g∇dV d. (D.20)

Using Stokes’ theorem in the form (C.31), this can be recast as

∫
M

dDx
√
−g∇dV d =

∫
∂M

dD−1x
√
−hnaV a

=

∫
∂M

dD−1x
√
−hnd

(
gabδΓdab − gadδΓdad

)
, (D.21)

where na is the outward unit normal to the boundary ∂M. As in any variational procedure,
we demand that the dynamic variable (in this case gab) be fixed at the boundary. Then,
given the definition of the Christoffel symbol in (1.1), it is easy to show that

gadδΓbab
∣∣
∂M =

1

2
gadgbc(δ∂bgca + δ∂agcb − ∂cδgab)

=
1

2
gdcgab(δ∂bgca + δ∂cgab − δ∂agcb). (D.22)

Now we contract this with nd,

ndδV
d
∣∣
∂M = ncgab(δ∂agcb − δ∂cgab)

= nc(nanb + hab)(δ∂agcb − δ∂cgab)
= nchab(δ∂agcb − δ∂cgab). (D.23)

In the second line I have used the definition of the projection tensor in equation (B.3). The
projection tensor hab will “project” ∂g on the boundary, making it a tangential derivative.
Since we demand that the variation of the metric itself vanish on the boundary, the variation
of its tangential derivative must also vanish on the boundary. We are then left with

ndδV
d
∣∣
∂M = −nchabδ∂cgab. (D.24)

The total variation of the Einstein-Hilbert term is now given by

δIEH = − 1

16π

[∫
M

dDx
√
−g (Gab + Λgab) δg

ab −
∫
∂M

dD−1x
√
−hnchabδ∂cgab

]
. (D.25)
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Variation of the Gibbons-Hawking-York Action

The extrinsic curvature is given by (B.13), leading to the trace

K = ∇ana

= gab∇bna
= (hab + nanb)∇bna
= (hab + nbna)∇bna. (D.26)

The last term in the last line gives

nbna∇bna = nb
1

2
(na∇bna + na∇bna)

=
1

2
nb (na∇bna + na∇bna)

=
1

2
nb∇b (nana)

=
1

2
nb∇b(1)

= 0. (D.27)

So the trace of the extrinsic curvature can be written as

K = hab∇bna (D.28)

= hab(∂bna − Γlabnl). (D.29)

We now need to calculate δK. First, notice that the variation of hab is null since we demand
that the boundaries (which are analogous to the endpoints in the variational problem in
classical mechanics) be fixed. The variation of the trace of the extrinsic curvature can
therefore be simplified,
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δK = −habδΓlabnl

= −habnl
1

2
glc (δ∂bgca + δ∂agcb − δ∂cgab)

= −1

2
hab (δ∂bgda + δ∂agdb − δ∂dgab)nd

=
1

2
hab(δ∂dgab)n

d. (D.30)

This term exactly cancels the one in (D.24), when it is divided by 8π and the latter is
divided by 16π. So the variation of the total action I = IEH + IGH is given by

δI

δgab
= − 1

16π

[∫
M

dDx
√
−g (Gab + Λgab)

]
(D.31)

The metric is stationary for the values of the field making δI/δgab = 0, leading to the
Einstein equation in vacuum:

1√
−g

δI

δgab
= Gab + Λgab = 0.

The factor of −1
16π is of course irrelevant here since the rightmost side is 0. In the presence of

matter, the action gets an extra contribution from the matter fields which we denote −IM .
The above equation then becomes

1√
−g

δI

δgab
= − 1

16π
(Gab + Λgab)−

1
√
g

δIM
δgab

= 0. (D.32)

We now define the energy-momentum tensor of any matter fields with action IM by

Tab = 2
1√
−g

δIM
δgab

, (D.33)

which in turn allows us to recover the Einstein field equation in the presence of matter:

Rab −
1

2
+ Λgab = 8πTab. (D.34)
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D.2 Action Calculation

We now turn our attention to a particular problem that arises when we try to calculate the
action, particularly when we try to perform the integration in (D.2). The issue stems from
the fact that a black hole horizon constitutes a coordinates singularity.

Let us take the Schwarzschild metric with arbitrary cosmological constant. We can restrict
our discussion here to four- and five-dimensional cases since we will be interested in these.
The metric is given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

D−2, (D.35)

where the form of the ansatz function f(r) depends on Λ and the spacetime dimension D.
One can make a coordinate transformation to an imaginary time by t → iτ , which leaves
the metric looking like

ds2 = f(r)dτ2 +
dr2

f(r)
+ r2dΩ2

D−2, (D.36)

Because of the signature of (D.36), it is common to refer to such metrics as Euclidean even
though they may not be flat. Focusing on the region just outside the black hole, we can
expand the metric as

ds2 ≈ f ′(r+)(r − r+)dτ2 +
dr2

f ′(r+)(r − r+)
+ r2

+dΩ2
D−2. (D.37)

We then define a coordinate R by

R = 4
(r − r+)

f ′(r+)
, (D.38)

allowing us to write the metric as

f ′(r+)2

4
R2dτ2 + dR2 + r2

+dΩ2
D−2. (D.39)

Note that R approaches 0 as r approaches r+. The first two terms describe a conic metric
[41] (i.e. the surface of a cone)
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ds2 = dR2 +R2dφ2, (D.40)

with the angle given by

φ =
1

2
τf ′(r+). (D.41)

Like we said, this is the metric of a conical surface. It presents a singularity unless we
identify φ = 0 with φ = 2π . Otherwise the cone is not closed and has two non-connected
sides with a volume outside the manifold between them. To solve this we impose the
periodicity

φ ∈ [0, 2π]/ ∼ . (D.42)

The symbol “∼” here means that we identify the endpoints of the integral as one. The
above result leads to the coordinate τ being periodic with period 4π/f ′(r+).

A direct evaluation of the surface gravity yields

κ =
1

2
f ′(r+), (D.43)

so the inverse of the temperature is given by

β =
1

T
=

4π

f ′(r+)
. (D.44)

Hence, the coordinate τ has a period β,

τ ∈ [0, β] (D.45)

Obviously when the black hole is rotating the metric will have a extra term proportional
to (dtdφ + dφdt) and, in the five dimensions case, to dtdψ. However, the argument above
stands since the first two terms which present the conical singularity can still be handled
using the same technique. It is simply a question of re-defining dΩ2

D−2 to incorporate the
extra terms resulting from the reduction of the spherical symmetry to an axial symmetry.

There are actually more fundamental reasons – ones which are beyond the scope of this thesis
– why the period of the Euclidean time component is related to the temperature. This comes
from the path-integral formulation of quantum gravity and an underlying relation between
the action of the quantum theory and the partition function in Statistical Mechanics [24].
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Appendix E

Chern-Simons Term in
Electrodynamics

The classical electrodynamics Lagrangian density is given by ([11])

LMaxwell = −1

4
F abFb −AaJa, (E.1)

with the field strength tensor defined by

Fab = ∂aAb − ∂bAa. (E.2)

We could of course have used covariant derivatives in the above expression but we are not
worried about coupling our electromagnetic fields to gravity at the moment, so it does not
matter. The Euler-Lagrange equations of motion give

∂bF
ab = Ja. (E.3)

Combined with the anti-symmetry of Fab, this leads to the usual current conservation
discussed in §C.1.1:

∂aJ
a = 0. (E.4)

The theory given by (E.1) is a sensible theory in that it is gauge invariant, Lorentz invariant,
and local. The last property of course implies that the theory does not break causality. In
our usual 3+1 dimensions there is nothing much to add to the discussion. However, in 2+1
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dimensions we have an interesting feature: we can define another Lagrangian called the
Chern-Simons Lagrangian by ([61])

LCS =
κ

2
εabcAa∂bAc −AaJa. (E.5)

The theory given by the Chern-Simons Lagrangian is also gauge-invariant, Lorentz-invariant
and local [61]. In that sense it is a sensible theory. Now notice that the Lagrangian part
given by εabcAa∂bAc can only exist in 3 dimensions; in 4 dimensions the indices simply do
not work out.

The Chern-Simons action in 2+1 dimensions is of course simply the integration of that
Lagrangian

SCS =
κ

2

∫
d3xεabcAa∂bAc, (E.6)

which at first does not seem gauge-invariant since it depends explicitly on A. However,
under the gauge transformation Aa → Aa + ∂af , the variation of the Lagrangian is given
by

δLCS =
∂L
∂Aa

δAa +
∂L

∂ (∂bAa)
δ (∂bAa) . (E.7)

The first variation is given by

δAa = ∂af, (E.8)

and the second is given by

δ (∂bAa) = ∂b∂af. (E.9)

Since partial derivatives commute, the term εabc∂b∂af will vanish. So the variation of the
Lagrangian is given by

δLCS =
κ

2
εabc (∂af) ∂bAc + Ja∂af

=
κ

2
εabc∂af∂bAc − (∂af) Ja. (E.10)
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We now use the fact that current is conserved, i.e. that ∂aJ
a = 0, to re-write the above

expression as a total derivative

δLCS = δLCS =
κ

2
εabc∂af∂bAc − ∂a (fJa)

= ∂a

(κ
2
εabc∂af∂bAc − fJa

)
. (E.11)

So the variation of the action is evidently given by a surface term which, in many situations,
can be taken to 0 [62]. Direct application of Euler-Lagrange equation leads to the following
equation of motion ([61])

κ

2
εabcFbc = Ja. (E.12)

It is easy to see that equation (E.12) leads to a divergenceless current as well.

A similar theory can be defined in any odd dimensions of spacetime. For instance, in 5
dimensions we can define the Chern-Simons Lagrangian by

L = εabcdeAb∂bAc∂dAe. (E.13)

We conclude that the most general electrodynamics theory in odd dimensions then is formed
by the superposition of the Maxwell and Chern-Simons Lagrangians.

When we provided the solution for a charged black hole in four dimensions in §1.4 we said
that it was found by constraining the metric to satisfy Maxwell’s equations in addition to the
Einstein equation. For odd-dimensional spacetimes however, the most general solution for
a charged black hole should solve the Maxwell-Chern-Simons equations of motion resulting
from the variation of the sum LMaxwell + LCS.
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