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Cell-Autonomous Sex Determination
Outside of the Gonad
Arthur P. Arnold,1* Xuqi Chen,1 Jenny C. Link,2 Yuichiro Itoh,1 and Karen Reue2,3

Background: The classic model of sex determination in mammals states that the sex of the individual is
determined by the type of gonad that develops, which in turn determines the gonadal hormonal milieu
that creates sex differences outside of the gonads. However, XX and XY cells are intrinsically different
because of the cell-autonomous sex-biasing action of X and Y genes. Results: Recent studies of mice, in
which sex chromosome complement is independent of gonadal sex, reveal that sex chromosome comple-
ment has strong effects contributing to sex differences in phenotypes such as metabolism. Adult mice
with two X chromosomes (relative to mice with one X chromosome) show dramatically greater increases
in body weight and adiposity after gonadectomy, irrespective of their gonadal sex. When fed a high-fat
diet, XX mice develop striking hyperinsulinemia and fatty liver, relative to XY mice. The sex chromosome
effects are modulated by the presence of gonadal hormones, indicating an interaction of the sex-biasing
effects of gonadal hormones and sex chromosome genes. Conclusions: Other cell-autonomous sex chromo-
some effects are detected in mice in many phenotypes. Birds (relative to eutherian mammals) are
expected to show more widespread cell-autonomous sex determination in non-gonadal tissues, because of
ineffective sex chromosome dosage compensation mechanisms. Developmental Dynamics 242:371–379,
2013. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

The current dominant model of mam-

malian sex determination was recently

summarized as follows: “In mammals,

biological differences between males

and females are determined geneti-

cally during embryonic development.

These differences have a significant

impact on the physical, reproductive,

psychological, and social life of an indi-

vidual. Sex development can be di-

vided into two processes, ‘sex

determination,’ which is the develop-

mental decision that directs the undif-

ferentiated gonad to develop as a testis
or ovary and ‘sex differentiation,’
which occurs once the gonad has
developed and is induced by the prod-
ucts of the gonad to establish the phe-
notypic sex. In mammals, sex
determination equates to gonad devel-
opment” (Eggers and Sinclair, 2012).

Based on the present evidence, this
classical model of sex determination
adequately accounts for the forces

that cause sex differences in the
gonads, external genitalia, internal
genitalia (structures derived from
M€ullerian and Wolffian ducts), and
much of sexual differentiation of the
mammalian brain that has been
investigated. These sexual character-
istics have a large impact in deter-
mining whether the individual will
reproduce as male or female, and are
considered by many scientists and lay
persons as the characteristics that
define the sex of the individual.
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Moreover, the gender (social implica-
tions of sex) of the individual is often
affected by and concordant with these
characteristics, so that these factors
indirectly impact the social environ-
ment of the individual.

The problem with the classical
model is that it is unable to account
for an increasing number of sex differ-
ences in important mammalian phe-
notypes because these sex differences
are not downstream of the develop-
mental decision to form testes or ova-
ries. The sex differences that are
thereby defined as “outside” of sex
determination are nevertheless quite
important. At the top of the list is X
inactivation, a process that is ubiqui-
tous in all XX cells outside of the
germline. The process profoundly
affects the transcriptional landscape
of the cell, involves significant epige-
netic changes and differential nuclear
compartmentalization of chromo-
somes, and is tightly regulated and
requires significant investment of the
cell’s resources (Heard and Disteche,
2006). X inactivation is fundamen-
tally female, never found in normal
XY male cells. As such, it belongs
within the framework of a general
theory of sex determination, not out-
side of such a theory. Other sex differ-
ences are found prior to sexual
differentiation of the gonads, indicat-
ing that the sex chromosomes encode
factors that act within and outside of
the gonads (O et al., 1988; Burgoyne
et al., 1995; Bermejo-Alvarez et al.,
2011a,b; Silversides et al., 2012; Nef
et al., 2005; Dewing et al., 2003). As is
discussed below, even after the
gonads differentiate, the number of X
chromosomes influences sex differen-
ces in the phenotype of cells and indi-
viduals, independent of the gonadal
sex of the individual. The Y chromo-
some has effects outside of the gonad,
and harbors genes that impact sexual
phenotype, not just by determining
the differentiation of the male’s
gonad. Thus, XX and XY individuals
with testes are not equivalent, and
XX and XY individuals with ovaries
are not equivalent.

The thesis of this article is that a
more accurate model of sex determi-
nation recognizes multiple factors
encoded by the sex chromosomes, not
just those that determine gonadal
sex, which act in parallel to determine

sexual bias in tissues throughout the
body (Arnold, 2011). Accordingly, in
this article we define “sex determi-
nation” to include any factors that
cause sex differences in cells, tissues,
and individuals. The discrimination
of separate processes of “sex determi-
nation”” and “sexual differentiation”
is unnecessary and counterproduc-
tive. Factors that determine the sex of
cells and individuals can be primary
(encoded by the sex chromosomes of
the zygote) or secondary factors down-
stream of the primary X and Y factors
(Arnold, 2011). In this view, Sry is a
primary sex-determining factor, and
testicular hormones secreted because
of the differentiation of testes are sec-
ondary sex determinants.

SEX CHROMOSOME

EFFECTS ON METABOLISM

AND OBESITY

We focus first on recent evidence con-
cerning sex differences in body
weight, adiposity, and metabolic dis-
ease, because this example is particu-
larly instructive. In mice, adult males
weigh more than females. Sex differ-
ences in body size have long been
known to begin before implantation of
the blastocyst, well before the embryo
has gonads, and continue into early
post-natal life (Burgoyne et al., 1995,
2002). Sex chromosome effects on
body weight are also found in adult
mice (Budefeld et al., 2008). These
findings establish the existence of sex
determinants not acknowledged by
the classical dogma. The sex determi-
nants can be further demonstrated
using a mouse model—the four core
genotypes (FCG)—in which gonadal
sex and chromosomal sex are
decoupled. FCG mice include XX and
XY mice with testes and XY and XX
mice with ovaries (De Vries et al.,
2002; Arnold and Chen, 2009). Analy-
sis of FCG mice revealed that both go-
nadal secretions and sex chromosome
complement influence sex differences
in body weight and adiposity (Chen
et al., 2012). Thus, at 3 weeks after
birth, no difference in body weight is
evident in these mice (day 21, Fig.
1A). However, following the onset of
puberty, sex differences in gonadal
secretions cause sex differences in
body size, with gonadal males being

larger than females (at day 45, Fig.
1A). Adult gonadal males are about
25% heavier than gonadal females,
whether they are XX or XY, confirm-
ing the importance of gonadal secre-
tions (at 75 days, or week 0 in Fig.
1B). However, gonadally intact XX
mice are about 7% heavier than XY
mice, independent of their gonadal
sex, indicating that the sexual pheno-
type also depends on the sex chromo-
somes (at 75 days, or week 0 in Fig.
1B).

The role of sex chromosome comple-
ment is revealed more dramatically
when the gonads are removed in
adulthood (Fig. 1B). At first, the body
weights of the four groups of FCG
mice converge, as mice that previ-
ously had ovaries increase body
weight and mice that previously had
testes plateau in their weight. Four
weeks after gonadectomy, there is no
difference in body weight among the
four groups. After this point, the body
weight of XX mice increases faster
than that of XY mice, so that at 10
months after gonadectomy, XX mice
are 24% heavier than XY mice. The
XX versus XY difference at this point
is as great as the effect of gonadal
hormones prior to gonadectomy. The
greater weight of XX mice is attrib-
uted mostly to 88% greater fat mass
in XX than XY (50% greater relative
to body weight), although lean mass
is also greater in XX than XY. These
large differences in adiposity are sur-
prising, considering that the mice are
eating a low fat (5% by weight) chow
diet. Although XX and XY mice have
about the same level of physical activ-
ity, XX mice eat more than XY mice
during the daytime (their inactive
phase), independent of their gonadal
sex, which could contribute to their
greater adiposity.

The differential role of the sex chro-
mosomes is illustrated further when
the mice are fed a high-fat diet. Diets
such as this are often used by investi-
gators studying metabolic diseases,
because they roughly mimic the high
caloric diets consumed by people in
developed countries. The high caloric
content provides a dietary stress that
uncovers important pathophysiologi-
cal effects in mice with varying me-
tabolism. On this diet, XX mice
gonadectomized as adults gain weight
at an accelerated rate compared to XY
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mice (Chen et al., 2012), and the liv-
ers of gonadectomized XX mice accu-
mulate dramatically higher levels of
triglycerides, relative to XY mice, and
independent of gonadal sex (Fig. 1C).
Fatty liver is a major component of
metabolic syndrome, and a major risk
factor for liver cancer (Sun and Karin,
2012). XX mice on a high-fat diet, rel-
ative to XY, also showed signs of insu-
lin resistance (a twofold elevation in
fasting insulin in plasma, despite sim-
ilar blood levels of glucose) (Chen
et al., 2012). Insulin resistance is
commonly associated with obesity in
humans, and a key feature of the met-
abolic syndrome.

The role of sex chromosome comple-
ment as a determinant of metabolism
and obesity was demonstrated further
using the XY* model, which varies
the number of X and Y chromosomes

independently of each other (see Chen
et al., 2008, for description of the XY*
model). The analysis of the XY* model
shows that mice with two X chromo-
somes have greater body weight and
adiposity than mice with one X chro-
mosome, whereas the presence or ab-
sence of a Y chromosome has little
effect (Fig. 1D). Taken together with
data from the FCG model, the results
indicate that under hypogonadal con-
ditions, the number of X chromosomes
in mice has dramatic effects on criti-
cal variables that model human obe-
sity and metabolic disease.

Classic sex determination theory,
although seductive in its simplicity, is
silent concerning the sexually differ-
entiating role of the number of X chro-
mosomes, and of other possible cell-
autonomous effects of sex chromo-
some complement (e.g., known male-

specific non-gonadal effects of Sry or
other Y genes; Dewing et al., 2006). A
more adequate theory recognizes sev-
eral classes of factors on the sex chro-
mosomes that make males and
females different (Arnold, 2009b,
2011). These include Y genes, such as
Sry, that act outside of the gonads,
and X genes that escape inactivation
or that receive a parental imprint.
Candidate X genes include about 3%
of X genes that escape inactivation in
mice (Yang et al., 2010). Among these
are genes that are consistently
expressed at higher levels in mice
with two X chromosomes compared to
mice with one X chromosome (Lopes
et al., 2010; Werler et al., 2011; Chen
et al., 2012). A second group of X
genes that are candidates for the X
chromosome effect includes those that
receive different parental imprints in
XX and XY mice. XY mice experience
only a maternal imprint on X genes,
but XX mice receive imprints from
both parents. These factors all act
cell-autonomously in the gonads and
throughout the body, to cause sex dif-
ferences in cell function. In addition,
cells are also sexually differentiated
by hormonal factors from the gonads,
which are the dominant factors caus-
ing sex differences in phenotype
throughout the body. Thus, multiple
parallel-acting factors encoded by the
sex chromosomes have sex-determin-
ing effects.

Once several parallel pathways of
sex determinants are recognized, it
becomes possible to appreciate that
the sexually differentiating role of one
factor is conditioned by the effects of
others, and that sex-biasing factors
may counteract or reduce the effects
of each other (De Vries, 2004). Neither
of these important conclusions derives
from classic sex-determination theory.
For example, the effect of X chromo-
some number on mouse body weight
is present more at some phases of life
than at others. In the weanling mouse
when gonadal hormones are expected
to be low, the effect of X chromosome
number on body weight is not appa-
rent, for unknown reasons (day 21,
Fig. 1A). It becomes obvious by adult-
hood, when gonads are fully active,
when it accounts for a 7% difference
in body weight at 75 days of age
(week 0, Fig. 1B). When the gonads
are removed, the effects of X

Fig. 1. Cell-autonomous effects of sex chromosomes contribute to sex differences in body
weight and metabolism in mice. A: Four core genotypes (FCG) mice show little sex difference in
body weight at 21 days (weaning). After puberty at day 45, gonadal males weigh more than
females. Ten months after gonadectomy (GDX, performed at 75 days of age), XX mice are 24%
heavier than XY mice, and an interaction (Int) between sex chromosome complement and go-
nadal sex is apparent because XX gonadal females are heavier than gonadal males, but XY go-
nadal males and females are not different. yP< 0.0001, zP< 0.000001. B: Body weight in
gonadally intact mice at day 75 and after GDX at day 75. The sex difference caused by gonadal
secretions disappears in the first month after GDX, after which XX mice gain more weight than
XY mice. XXM, XX gonadal males; XYM, XY gonadal males; XXF, XX gonadal females; XYF, XY
gonadal females. C: Liver histology after eating a high-fat diet (beginning 4 weeks after gonad-
ectomy for a total of 16 weeks) shows that XX mice have dramatically greater accumulation of
triglycerides in the liver, relative to XY mice, irrespective of gonadal sex. D: Four types of prog-
eny of XY* fathers were compared to assess the effects of one versus two X chromosomes, or
of the Y chromosome. After GDX at 75 days, mice with the equivalent of two X chromosomes
gain more weight and fat than mice with one X chromosome, and the presence of the Y chro-
mosome has no apparent effect. From Chen et al. (2012).
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chromosome number slowly emerge
over a period of months as a major
factor, causing up to 24% difference in
body weight and metabolic dysregula-
tion (Fig. 1AB), especially when mice
are eating a high-fat diet (Chen et al.,
2012). Because the sex chromosome
effect is larger in the absence of
gonads than in their presence, it
would appear that gonadal secretions
blunt or obscure the effects of sex
chromosome complement. Inherent in
that idea is that the effects of gonadal
hormones differ in XX and XY cells.
These ideas need further testing. The
data already suggest that the XX ver-
sus XY difference is in the “opposite”
direction of the hormone effects, at
least for body weight, because female
XX chromosome complement
increases body weight, but male go-
nadal hormones produce greater body
weight than female gonadal hormones
(Fig. 1A).

The data in Figure 1 suggest other
important conclusions about the
interaction of gonadal hormones and
sex chromosome complement. At 10
months after gonadectomy, XX mice
that had ovaries have greater body
weight than XX mice that had testes
(Fig. 1B). The phenotypic differences
(in body weight and adiposity)
between these two groups is caused
by the presence or absence of Sry, and
is a gonadal hormonal effect that lasts
long after the gonads are removed,
and/or an effect of Sry outside of the
gonads. Interestingly, this effect
depends on sex chromosome comple-
ment, because XY gonadal male and
female mice are not much different in
body weight. Because the two groups
of factors (hormones and sex chromo-
some complement) each condition the
effects of the other, the various factors
(or their downstream effector path-
ways) must interact directly. The na-
ture of this interaction is completely
unexplored at present.

In gonadally intact young adult
mice, when all sex-biasing factors are
present, gonadal hormones rank first
as important determinants of the sex
differences in body weight and compo-
sition, because the gonadal hormone
effect is larger (25%) than the sex
chromosome effect (7%). More inter-
esting, perhaps, to aging, post-meno-
pausal, and other hypogonadal
humans, is that body weight and

adiposity of mice are profoundly influ-
enced by the number of X chromosomes
in the absence of gonads. An important
goal of research investigating physio-
logical sex differences in disease is to
identify sex-biasing factors that protect
one sex from disease, as part of a strat-
egy to uncover protective mechanisms
that might be targeted by novel thera-
pies. For example, mice with one X
chromosome are protected relative to
mice with two X chromosomes from
obesity and related metabolic dysregu-
lation, including fatty liver and insulin
resistance. An improved model of sex
determination has the advantage that
it focuses attention on multiple new
areas for research into such protective
mechanisms.

SEX CHROMOSOME

EFFECTS ON DIVERSE

TISSUES

The sex chromosome effects on body
weight and metabolism, discussed
above, illustrate the fascinating inter-
play of parallel sex-determining
mechanisms that operate independ-
ently and interdependently. These
effects are among a growing list of XX
versus XY differences that are
reported to influence a wide variety of
phenotypes in numerous tissues. The
effects are found in mice in which spe-
cific Y genes are manipulated inde-
pendent of gonadal effects (Dewing
et al., 2006), in mice that never devel-
oped gonads (Majdic and Tobet, 2011),
or in mice in which the XX versus XY
comparison can be made in both go-
nadal sexes (Arnold, 2004,
2009a,b,2011; Arnold and Chen, 2009;
Abel and Rissman, 2011). XX versus
XY effects are found in expression of
important genes in the brain (De
Vries et al., 2002; Gatewood et al.,
2006; Chen et al., 2009; Abel et al.,
2011; Xu et al., 2002, 2008a,b; Dewing
et al., 2006), in brain development
(Carruth et al., 2002), and in behav-
iors such as parental and aggressive
behaviors (Gatewood et al., 2006),
response to noxious stimuli (Gioiosa
et al., 2008a,b), sexual behaviors
(Grgurevic et al., 2012; Bonthuis
et al., 2012), and social and investi-
gative behaviors (McPhie-Lalman-
singh et al., 2008; Cox and Rissman,
2011; Grgurevic et al., 2008). An

increasing number of mouse models
of disease show sex chromosome
effects, including studies of autoim-
mune diseases such as multiple scle-
rosis and lupus (Palaszynski et al.,
2005; Smith-Bouvier et al., 2008;
Sasidhar et al., 2012), hypertension
(Ji et al., 2010; Caeiro et al., 2011;
Ely et al., 2010), neural tube closure
defects (Chen et al., 2008), cocksackie
viral infection (Robinson et al., 2011),
and behavioral tendencies related to
addiction and alcohol abuse (Quinn
et al., 2007; Barker et al., 2010).
Except for direct Sry effects on the
brain (Dewing et al., 2006; Czech
et al., 2012) and possibly on the adre-
nal and kidney (Ely et al., 2010), it is
not known which X or Y genes cause
the sex chromosome effects. However,
some studies have implicated the X
chromosome as the origin of the sex-
biasing factor(s) (Chen et al., 2008,
2009, 2012; Bonthuis et al., 2012).

X INACTIVATION AS A

DEFINING EVENT OF SEX

DETERMINATION

Above we suggested that X inactiva-
tion, an event that happens in every
XX somatic (i.e., non-germline) cell,
but never in XY cells, is properly
viewed as a sex-determining event.
Certainly, it represents a fundamen-
tal phenotypic difference between
normal male and female cells, but
large questions remain concerning
the sex-biasing impact of this molecu-
lar phenotype. Several points are rele-
vant. Firstly, X inactivation has large
effects on gene expression, because it
effectively removes what would other-
wise be a large female bias in X gene
expression (i.e., greater expression of
X genes in females than in males, Fig.
2). In other animal groups lacking
similar chromosome-wide dosage com-
pensation, in birds (see below) and in
mammalian blastocysts before X inac-
tivation is ubiquitous, the expected
female bias of X gene expression is
present (Arnold et al., 2008; Bermejo-
Alvarez et al., 2010). Thus, X inacti-
vation is seen as a female-specific
mechanism to adjust X gene dose (rel-
ative to autosome dose) to a level sim-
ilar to that of the male. Although
calling a factor that reduces sex bias
“sex determining” might seem
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counterintuitive, X inactivation cer-
tainly ranks as one of the most pro-
found sex-specific forces in the
mammalian genome. Furthermore,
its role is predominantly to counteract
another female bias, in the number of
X chromosomes, which underscores
the idea that different sex-determin-
ing factors can oppose each other. In
the end, the process of shutting down
a large chromosome would reasonably
be thought to leave XX cells distinctly
different from XY cells, but at present
there is only a small amount of evi-
dence that the presence of a large het-
erochromatic chromosome has effects
elsewhere in the genome. For example,
mice with two X chromosomes, com-
pared to mice with one X chromosome,
show greater expression of an autoso-
mal transgene that is a barometer of
the status of nearby heterochromatin.
The results suggest that the presence
of a large heterochromatic inactive X
chromosome in XX cells may reduce
the availability of heterochromatizing
factors generally, affecting gene expres-
sion throughout the genome (Wijchers

and Festenstein 2011; Wijchers et al.,
2010). Moreover, the presence of an
inactive X chromosome correlates with
reduced methylation of the genome of
embryonic stem cells, and XX cells (rel-
ative to XY) show reduced expression
of the de novo DNA methyltransferases
Dnmt3a and Dnmt3b (Zvetkova et al.,
2005). The question of genome-wide
effects of the inactive X chromosome,
not mediated by dosage of the X genes,
is ripe for further analysis.

THE CONTRAST OF

MARSUPIAL (METATHER-

IAN) AND EUTHERIAN

MAMMALS

Like eutherian mammals, marsupials
have an XX-XY sex chromosome sys-
tem. The Y chromosome contains the
testis-determining gene Sry, and many
steps of gonadal differentiation are
comparable to those in eutherians.
However, three major reproductive tis-
sues, pouch, scrotum, and mammary
tissue, are sexually differentiated inde-
pendent of gonadal differentiation. In
the tammar wallaby, for example, the
anlage of the scrotum, pouch, and
mammary tissue begin to form prior to
gonadal differentiation, and sex-spe-
cific patterns of development are not
influenced by changes in gonadal hor-
mone levels. The sex-determining fac-
tors appear to be X-linked, because an
XXY marsupial (with testes and a
penis) also has a pouch and mammary
glands, whereas an XO marsupial
(with ovaries and uteri) has neither a
pouch nor a mammary gland (reviewed
by Renfree and Short 1988; Renfree
et al., 2002; Glickman et al., 2005).
Thus, marsupials represent an early
and iconic example of important sex-
determining factors that are not down-
stream of gonadal differentiation. To
develop a comprehensive understand-
ing of sex determination in marsupials,
it is important to discover the X-linked
sex determinants that operate in paral-
lel with sex determinants that control
sexual differentiation of the gonads.

BIRDS AS MODELS OF SEX

CHROMOSOME EFFECTS

Birds offer another important con-
trast to eutherian mammals. Their
sex chromosome complement is

reversed relative to mammals, with
the male being homogametic (ZZ) and
the female heterogametic (ZW). More
importantly in the present context,
birds appear to lack a chromosome-
wide mechanism of Z gene dosage
compensation comparable to X inacti-
vation (Arnold et al., 2008). In every
bird species studied to date, most Z
genes are expressed higher in males
than in females in numerous tissues
before and after gonadal differentia-
tion (Fig. 2) (Itoh et al., 2007, 2010;
Ellegren et al., 2007; Zhang et al.,
2010; Mank, 2009; Chue and Smith,
2011; Wolf and Bryk, 2011; Naurin
et al., 2011). Birds, more than euther-
ian mammals, may easily evolve
diverse cell-autonomous sex-determi-
nation mechanisms because of the
availability of many more sex-biased
(Z-linked) cell-autonomous signals
throughout their body, which can
evolve a role to control sex differences
in diverse phenotypes. In species with
effective dosage compensation such as
eutherian mammals, most sex chro-
mosome (in this case, X chromosome)
genes are expressed at similar levels
in the two sexes (Fig. 2), and thus are
not likely to evolve a primary role in
controlling different developmental
programs in the two sexes. Perhaps
because of the lack of effective Z chro-
mosome dosage compensation that
may have favored more cell-autono-
mous sex determination, the small
number of studies of birds has had a
major catalytic role in changing atti-
tudes about the gonad-first classic
model of sex determination.

In the last half of the 20th century,
many studies of birds showed that
sexual phenotype is controlled by go-
nadal hormones (e.g., Balthazart
et al., 2009; Balthazart and Adkins-
Regan, 2002). One informative model
system has been the neural circuit
controlling song in Passerine birds
(Wade and Arnold, 2004). Male zebra
finches sing a courtship song that
females do not sing, and the brain
regions controlling song are 5–6 times
larger in males (Nottebohm and
Arnold, 1976). At first, the search for
the sex-determining factors focused
on the classical model, and manipu-
lated gonadal hormone levels in
females and males. Females treated
with estradiol at hatching were per-
manently masculinized, both in their

Fig. 2. Effective sex chromosome dosage
compensation in the mouse compared with
ineffective dosage compensation in the chick
embryo. Microarray mRNA expression profil-
ing was conducted in adult mice and chick
embryos of both sexes. The graphs show the
distribution of M/F ratios of expression of
autosomal genes and X or Z chromosome
genes. Autosomal genes have modal M/F
ratios near 1 (log of zero), but some genes are
expressed higher in males or in females. Log2

M/F ratios are rarely greater that 1 (twofold
higher in males) or less than �1 (twofold
higher in females). In mammals such as the
mice, M/F ratios for X genes show a distribu-
tion closely matched to autosomal genes, de-
spite the presence of two X chromosomes in
females compared to one of males. In birds
such as the chick, the distribution of M/F
ratios for autosomal genes is similar to that in
mammals, but in the absence of chromo-
some-wide dosage compensation of the Z
chromosome, ZZ males have higher expres-
sion of Z genes compared to ZW females, for
most Z genes. From Itoh et al. (2007).
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brain and behavior (Gurney and
Konishi, 1980). The result was inter-
preted to support the idea that males
normally secrete testosterone, which
is converted to estradiol in the brain
where it has a permanent masculiniz-
ing effect, a finding similar to previ-
ous results in mammals. However,
several observations were at odds
with the hormonal theory. Manipula-
tions of gonadal hormones in males
(for example, blocking estradiol
action) did not block masculine brain
development (Arnold and Schlinger,
1993). When genetic females were
injected early in development with a
drug that caused differentiation of
testes, those females were not mascu-
linized by the presence of functional
testicular tissue (Wade and Arnold,
1996). When these studies raised sig-
nificant doubt about the gonadal hor-
monal origin of the sex differences, it
became reasonable to consider the
idea that cell-autonomous factors,
encoded by the sex chromosomes,
might be the primary cause of the sex
difference in brain circuits and the
reproductive behaviors that they con-
trol (Arnold, 1996).

Rare avian gynandromorphs are
dramatic intersex animals, sometimes
with a sharp line at the animal’s mid-
line separating male plumage on one
side from female plumage on the
other side. Other sexual characters
are also lateralized, such as type of
gonad and body size. As early as
1939, based on analysis of gynandro-
morphs, Witschi concluded that
“many of the secondary sex characters
of . . . birds are not under hormonal
but direct intracellular control”
(Witschi, 1939). The use of modern
molecular reagents to analyze gynan-
dromorphs has confirmed this conclu-
sion. In a gynandromorphic zebra
finch, the right side had male
plumage, masculine brain character-
istics, and a testis, whereas the left
side had female plumage, less mascu-
line brain, and an ovary (Agate et al.,
2003). The W chromosome, normally
only found in ZW females, was
enriched in the genomic DNA of the
animal’s left side (ruling out a ZO ge-
notype). Expression of W-linked genes
was very high on the entire left side
of the brain, but nearly absent (except
for a small number of cells) on the
right. Expression of Z genes was also

uniformly but modestly higher on the
right side compared to the left, com-
patible with ZZ genotype on the right
and a single Z on the left. Because go-
nadal hormones would be expected to
affect both sides of the brain and
body, the greater masculinization of
the brain on the right side suggested
that it was controlled in a cell-autono-
mous fashion by sex chromosome
complement of brain cells.

Analysis of several gynandromor-
phic chickens, using BAC probes to
determine the number of Z and W
chromosomes in specific cells, proved
that the birds had a mixture of ZZ
and ZW cells on the two sides of the
body, with ZZ predominating on one
side and ZW on the other (Zhao et al.,
2010). On the ZZ side, the phenotypes
of numerous tissues were more mas-
culine than on the ZW side, including
muscle, bone, leg, plumage, and wat-
tles. Moreover, when ZZ cells were
implanted into ZW embryos or vice
versa, the cells retained sexual pheno-
types consistent with their own sex
chromosome complement after the
cells took up residence within the so-
matic component of the recipient
gonads (Zhao et al., 2010), confirming
that the genetic sex of somatic go-
nadal cells plays a significant role in
determining their sexual phenotype.

Cell-autonomous sex determination
probably explains the development of
a larger number of sexually dimorphic
phenotypes in birds than in eutherian
mammals, because of the lack of Z-
chromosome-wide dosage compensa-
tion that results in male bias in
expression of most Z-gene expression
throughout the body. Nevertheless,
most of the phenotypes that show a
sex chromosome effect in birds (differ-
ent phenotype in ZZ versus ZW) are
often also influenced by gonadal hor-
mone levels. A salient example is the
chicken’s comb and wattle, large in
males and small in females. These
structures have long been known to
be sensitive to androgens, so that the
sex difference was thought to be
downstream of gonadal determina-
tion. Yet, the chicken gynandromorph
has a larger comb and wattle on the
male side, indicating that sex chromo-
some complement also contributes to
the sex difference (Zhao et al., 2010).
Similar roles for both factors (hormo-
nal and genetic) are proposed in the

zebra finch song system (Agate et al.,
2003; Kim et al., 2004; Chen et al.,
2005). Hormonal manipulations show
hormonal effects, and genetic manip-
ulations show genetic effects, and of-
ten both are important. That
conclusion would seem to apply to
both birds and mammals, although
the difficulty of performing the
genetic manipulations means that
there is much less information about
that type of sex-biasing factor.

Above we proposed a revised defini-
tion and framework for thinking
about sex determination. This frame-
work undermines the classic distinc-
tion between two distinct processes,
sex determination and sexual differ-
entiation, which was originally
rationalized based on the order of
events (sex determination preceding
and causing sexual differentiation),
and on different mechanisms (genetic
sex determination versus hormonal
sexual differentiation). In a revision
of the classic model (Fig. 3), it is
appropriate to recognize multiple sex
chromosome mechanisms, acting
along parallel mechanistic pathways,
that are inherently different in vari-
ous types of male versus female cells,
which lead to downstream sex differ-
ences. In many phenotypes, we can
expect an interaction of the parallel
pathways, so that both hormonal and
sex chromosome factors modify the
effect of the other. A new concept of
sex determination frees us from inac-
curate and misleading over-simplifi-
cations such as “in mammals, sex is
determined genetically,” or “in birds,
sex is cell-autonomous.” Instead, we
can recognize that even eutherian
mammals have significant cell-auton-
omous sex determinants, and in birds
hormonal and genetic factors interact.
We propose that taxonomic differen-
ces in the importance of cell-autono-
mous factors may be related to the
effectiveness of sex-chromosome dos-
age compensation, which affects the
number of inherently sexually dimor-
phic signals within each male and
female cell that can evolve a sex-
determining function.

FUTURE DIRECTIONS

Numerous mouse models are now
widely available for the routine mea-
surement of the importance of sex
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chromosome complement on sexual
phenotypes (Arnold 2009a; Chen
et al., 2012). These models will be
used in increasing numbers of experi-
ments to uncover differences in the
phenotype of cells and tissues
throughout the body. Three major
goals are to identify the phenotypic
effects of sex chromosome comple-
ment, to identify the X and Y genes
that cause these differences and their
downstream effectors, and to study
how those genes interact with the
effects of gonadal hormones. These
studies have a strong rationale within
the context of biomedical research,
because one sex is often protected
from important diseases such as car-
diovascular disease, metabolic syn-
drome and obesity, cancer, and so on.
Thus, discovering the sex-biased
mechanisms that protect from disease
should increase understanding of the
disease in both sexes, and could
uncover novel protective factors and
therapies. Because of the similarity of
gene content of X and Y chromosomes
of the mouse and human, discoveries
in mice could be relevant to under-
standing and treating human disease.

Although birds are not as easily
rationalized as a model system for
human disease, they offer huge
advantages for studying the operation
of the same gene networks in two
states, when the male and female

transcriptomes are fundamentally dif-
ferent. These studies will bear
strongly on the evolution of dosage
compensation mechanisms and sex
differences in development.
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