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Incremental least action principle in the framework of thermodynamics of irreversible processes
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In this paper, an incremental least action principle is proposed using the framework of the thermodynamics of
irreversible processes. First, we establish that an extensive thermodynamic potential defined over an infinitesimal
volume satisfies a differential conservation law with close similarities to the Liouville theorem but extended
to irreversible processes. This property is applied to a generalized thermodynamic potential depending on
equilibrium variables and nonequilibrium flows. It allows the formulation of an absolute integral invariant
(AII) that is shown to have a broader field of application than the Poincaré-Cartan integral invariant of
dynamic systems. Once integrated over a finite volume, it naturally defines an integral functional that fulfills
an incremental least action principle. The Fréchet derivative of the Euler-Lagrange equations associated with the
functional is calculated, and its self-adjointness is shown to be equivalent to the symmetry of the classical Tisza
and Onsager matrices which link respectively extensive variables to intensive variables and nonequilibrium flows
to generalized forces. Finally, the proposed AII and least action principle are formulated for the case of a simple
physical process (heat conduction), to illustrate (i) its link with the extended irreversible thermodynamics and
(ii) its applications to numerical simulations.
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I. INTRODUCTION

Despite the warning of the French mathematician Henri
Poincaré, who stated in 1908 that “irreversible phenomena
cannot be explained by means of Lagrange equations” [1],
it has been the dream of many physicists to reconcile the
thermodynamics of irreversible processes with the least action
principle. Beyond its philosophical foundation, the use of
an integral functional—whose extremals coincide with the
governing equations of a physical system—turns out to have
important practical interests like the method developed by
the Swiss mathematician Walther Ritz and known as the
“Ritz method” [2], valid when the second variation of the
functional is positive definite. In the mechanics of elastic
bodies, this method consists of minimizing the elastic energy
for which a simplified guess of the displacement field has been
introduced. It leads to the identification of an approximate
displacement field with good precision and avoids the calcu-
lation of the true solution to the equilibrium equation (see,
e.g., [3]). In the mechanics of punctual masses, calculating
the Lagrangian (as the difference between kinetic energy and
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potential energy), and writing the associated Euler-Lagrange
equations have proven to be very useful in efficiently obtain-
ing the equations governing the motion of these masses [4].
Unfortunately, not all systems of partial differential equations
(P) correspond to a system of Euler-Lagrange equations
associated with a Lagrangian L. This possibility actually
relies on the self-adjointness of the system (P). Classically,
we observe that the differential operator appearing in the
equations governing the evolution of a system having an
irreversible evolution is not self-adjoint. More precisely, the
theorem presented in [5] and given in a more general form
in [6] states that a Lagrangian L exists for a system (P)
if and only if its Fréchet derivative DP is self-adjoint, i.e.,
equal to its adjoint D∗

P. We recall that the adjoint D∗
P of a

linear differential operator DP having constant coefficients is
obtained by switching the sign of odd-order derivative opera-
tors and by transposing all the coefficients appearing before
derivative operators. For instance, when equations contain
first-order derivatives in time, irreversibility of time breaks the
symmetry t → −t and the Fréchet derivative DP cannot be
self-adjoint. As an illustrative example, we consider here the
simple case of an oscillator of mass m with only one degree of
freedom q(t ), linked to a spring of stiffness k and put inside
a fluid bath involving a viscous friction λ. The differential
equations satisfied by q(t ) and its Fréchet derivatives are given
in the first, second, and third rows of Table I, respectively
(“irreversible case”). It can be seen that a Lagrangian cannot
exist for this problem since DP �= D∗

P, unless λ = 0, which
corresponds to the reversible case with no friction. Many
approaches have been proposed in the literature to formulate
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TABLE I. Comparison of the three main equivalent Lagrangian approaches found in the literature, for a linear damped (λ �= 0) oscillator
having only one degree of freedom. For comparison, the nondissipative reversible case (λ = 0) is introduced. The descriptions of the three
approaches are as follows. (a) Integrating factor (IF) strategy: Create an explicit time dependence. (b) Adjoint system (AS) strategy: Introduce
a new variable u(t ) such that u(τ − t ) = q(t ). (c) Rayleigh function (RF) strategy: Reversible Lagrangian supplemented by a Rayleigh function
R(q̇) (not a true variational principle).

Reversible Case (λ = 0) Irreversible Case (λ �= 0) Comment

Governing equation P = mq̈ + kq = 0 P = mq̈ + λq̇ + kq = 0 Dtt , Dt : Total time derivative operators
Fréchet derivative DP = mDtt + k DP = mDtt + λDt + k
Adjoint of Fréchet derivative D∗

P = mDtt + k = DP D∗
P = mDtt − λDt + k �= DP

Does a Lagrangian exist? Yes No (needs an equivalent formulation)

(a) LIF = e
λt
m

2 (mq̇2 − kq2) Integrating factor (IF) strategy
q(t )

Eq(LIF ) = e
λt
m (mq̈ + λq̇ + kq) = 0

Lagrangian L = 1
2 (mq̇2 − kq2) (b) LAS = mq̇u̇ + λ

2 (qu̇ − uq̇) − kqu Adjoint system (AS) strategy
Degree(s) of freedom q(t ) q(t ), u(t )
Euler-Lagrange equation(s) Eq(L) = mq̈ + kq = 0 Eq(LAS) = (mü − λu̇ + ku) = 0
(Ex (L) = Dt [ ∂L

∂ ẋ ] − ∂L
∂x ) Eu(LAS) = (mq̈ + λq̇ + kq) = 0

(c) LRF = 1
2 (mq̇2 − kq2), R = − λ

2 q̇2 Rayleigh function (RF) strategy
q(t )

Eq(LRF ) = ∂R
∂ q̇

“equivalent Lagrangian formulations” of this problem using
the property that a Lagrangian L′ associated with equations
(P′) is said to be equivalent to a Lagrangian L associated with
(P) if the solutions to the initial problem (P) are equivalent
to those of (P′) or included in them. In the literature, one can
distinguish three main strategies for obtaining an equivalent
Lagrangian formulation. The first one consists of multiplying
the initial system (P) by a nondegenerate matrix such that the
new system is self-adjoint. An example of this strategy has
been proposed in [7] for the oscillator previously presented
[see Table I, irreversible case (a)], but also in thermics for the
Cattanéo-Vernotte equation and for an electrical circuit con-
taining resistors [8]. In the latter case, the integrating factor
introduced for the multiplication can be expressed as a matrix
exponential. The main disadvantage of this strategy is that it
is limited to regular systems of partial differential equations
[5], and it cannot be applied to diffusion processes which are
associated with a differential operator having only a first-order
derivative in time. The second strategy consists of introducing
new variables called “dual variables” and satisfying an adjoint
system (Q) such that the entire system (P, Q) is self-adjoint.
Methods can be found in the literature to calculate the adjoint
system [9,10]. This approach has been used in thermody-
namics through the work of Anthony [11] who introduced a
thermion field χ and a phase field ξ such that φ = √

T eiξ ,
where T is temperature. Concerning our oscillator example, a
“bi-Lagrangian” has been proposed in [12] and is presented
in Table I, as the irreversible case (b). The main concern
that arises from this strategy is the physical meaning of the
dual variables, which have an evolution inverse to time. In
the case of the present oscillator example, introducing t =
τ − t ′ in u(τ − t ) = q(t ) leads to u(t ′) = q(τ − t ′) and clearly
highlights this reverse time evolution. Since the oscillator
is damped by the fluid, q(t ) exponentially decays toward
zero and the quantity u(t ) exponentially increases with time,
which has no trivial physical meaning. The last strategy that
can be found in the literature relies on dissipation potentials

(sometimes called Rayleigh functions). It consists of identi-
fying the first variation of the action integral S = ∫

L dt with
the increment of energy dissipated by the system integrated
over dt . It thus introduces the missing irreversible term in
the Euler-Lagrange equations. To illustrate this approach, we
have presented the Rayleigh function of our oscillator in
Table I, as irreversible case (c). This strategy has also been
used in continuum mechanics [13–16], and has an incremental
formulation in terms of differential geometry [17]. However,
we point out that despite its great efficiency in practice, this
formulation is not a true variational principle in the sense that
the Euler-Lagrange equation supplemented by the irreversible
term derived from the Rayleigh function does not correspond
(a priori) to the first variation of any integral functional.

If we look at these three equivalent Lagrangian formu-
lations, we observe that the self-adjointness condition has
always been circumvented by mathematical tricks with non-
physical characteristics or away from the initial idea of having
a variational problem. In our opinion, this is mainly due to
the fact that the physical meaning of self-adjointness remains
not fully understood yet. One of the aims of this paper is to
shed some light on this property. To achieve this objective,
four main steps are identified. At first, we establish that every
thermodynamic potential defined over an infinitesimal volume
satisfies a differential conservation law as soon as it fulfills the
axioms of Callen’s approach [18]. It is shown that this step
requires a new definition of extensivity, which is valid when
extensive variables become differential forms. Second, we ap-
ply this differential conservation law to a generalized potential
in the sense of extended irreversible thermodynamics, and
formulate a general absolute integral invariant (AII) in the
framework of the thermodynamics of irreversible processes.
This AII is shown to have a broader field of application than
the Poincaré-Cartan AII (formulated for reversible dynamics)
since it is valid for irreversible processes. In a third step,
it is demonstrated that our AII can be integrated over a
finite volume to obtain an incremental least action principle
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formulated as an integral functional T . The Fréchet derivative
of the Euler-Lagrange equations associated with the station-
arity of T is calculated to propose a physical meaning of
self-adjointness. Finally, a detailed example corresponding to
a simple physical process (heat conduction) is considered to
illustrate the approach, clarify technical aspects, and discuss
the link of the present approach with the extended irreversible
thermodynamics [19].

II. DIFFERENTIAL CONSERVATION LAW FOR
EXTENSIVE THERMODYNAMIC POTENTIALS

A. A differential form of extensivity

We consider here a thermodynamic system � occupying
a material elementary volume associated with the differential
3-form 	 = dx ∧ dy ∧ dz and remaining at equilibrium. In
the definition of 	, d denotes the exterior differential and ∧
the exterior product of the differential forms. In accordance
with Callen’s axiomatic approach of thermodynamics [18], �

can be described by a set of n independent extensive variables,

E = {Ek, k ∈ [1, . . . , n]}, (1)

and a thermodynamic potential S(E ) (entropy or energy)
containing all the information on the system and satisfying
the extensivity property, i.e., the proportionality to the amount
of matter involved:

S(λE ) = λS(E ), ∀ λ ∈ R+∗. (2)

If we introduce the specific potential s and the specific coun-
terpart e = {ek, k ∈ [1, . . . , n]} of E such that

S = s(e)	, Ek = ek	, (3)

each of the extensive variables S or Ek becomes a differential
3-form and relation (2) needs to be rewritten properly to have a
precise mathematical meaning. Classically, the mathematical
issue of having a potential depending on infinitesimal quan-
tities is circumvented by dividing relation (2) by the volume
and making this volume tend toward zero. We do not adopt
this strategy here and we propose a definition of extensivity
compatible with the differential nature of variables appearing
in (2) and (3). Mathematically, the differential 3-form S is here
said to be extensive with respect to the 3-forms Ek = ek	,
k ∈ [1, . . . , n], if and only if (i) there exists n 0-forms Ik (e j )
satisfying

dS = Ik dEk, (4)

and (ii) if the following property is satisfied:

∀α ∈ R, L[Xα]S = αS, with Xα = αek∂ek , (5)

in which L[Xα]S stands for the Lie derivative of the differen-
tial form S with respect to the vector field Xα . Throughout this
paper, if not otherwise stated and as in Eq. (4), the Einstein
summation convention on repeated indexes is adopted. In
Eq. (4), Ik are the dual intensive variables of Ek in a thermo-
dynamic sense and will be defined more precisely in the next
section. Equation (5) is simply a differential formulation of
the Euler extensivity property:

S(eμαek ) = eμαS(ek ) (6)

equivalent to (2) with λ = eμα , since Xα is the generator of the
Lie group corresponding to multiplication by some factor eμα ,
μ being the parameter of the group. The writing of (5) only
assumes that the extensivity is defined by multiplying ek by
eμα at constant volume 	, which is equivalent to multiplying
Ek by the same factor.

B. Differential conservation law

The aim of this section is to show that the previous re-
definition of extensivity [Eq. (5)] preserves the main results
of thermodynamics defined for finite volumes. However it
also shows an interesting local invariance property. First we
demonstrate that S satisfies the fundamental Euler equation:

S = IkEk, with Ik = ∂s

∂ek
. (7)

The proof of this result is given in Appendix A. It shows that
the classical expression of Ik as derivatives of s with respect to
ek [18] is preserved.

Second, from Eqs. (4) and (7), one obtains

dS = d (IkEk ) = dIk ∧ Ek + Ik dEk = dIk ∧ Ek + dS. (8)

Subtracting dS from both sides of the equation completes the
proof of the Gibbs-Duhem relation in differential form:

dIk ∧ Ek = 0. (9)

Note that introducing Ek = ek	 in (9) and collecting terms
in 	 leads to the classical Gibbs-Duhem equation ek dIk = 0
as formulated in [18]. The present Eq. (9) is a more general
formulation since it accounts for the fact that Ek is defined
over the infinitesimal volume 	.

Third, taking the exterior differential of (4) leads to

d2S = dIk ∧ dEk = dIk ∧ dek ∧ 	. (10)

We qualify this last relation as the “Maxwell-Liouville” rela-
tion. Indeed, its physical meaning reveals that as long as S re-
mains a thermodynamic potential (with extensive arguments)
and satisfies the Maxwell relations (d2S = 0; see Appendix
B), then the 5-form dIk ∧ dEk (interpreted as the elementary
volume of the space {Ek, Ik}) is preserved and remains equal to
zero. We emphasize that Eq. (10) is valid for any infinitesimal
volume 	, and will be further integrated over a finite volume
to define a functional satisfying an incremental least action
principle. In that sense, the quantity dIk ∧ dek appearing
before 	 in (10) can be viewed as a specific Lagrangian as
introduced in classical variational calculus [6]. One notes the
high similarity with the Liouville theorem which states that
the volume of the phase space d p ∧ dq is preserved for any
frictionless movement associated with the position q and the
momentum p of a punctual mass [17]. Finally, we see that the
extensivity of S seems to be unnecessary to obtain Eq. (10),
but is, in fact, essential to the formulation of Eq. (10) for
any Legendre transform of S (see Sec. III C). For the sake of
clarity, Fig. 1 gives a geometrical interpretation of Eq. (10)
when the potential S depends only on two extensive variables
E1 and E2. The evolution of the potential S(E1, E2) = I1E1 +
I2E2 is sketched in two plane sections (I1, E1) and (I2, E2)
during a differential step, i.e., from (E1, I1) [resp. (E2, I2)] to
(E1 + dE1, I1 + dI1) [resp. (E2 + dE2, I2 + dI2)]. The Euler
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FIG. 1. Geometrical interpretation of Eq. (10): dI1 ∧ dE1 + dI2 ∧ dE2 = 0, when the potential S depends only on two extensive variables:
S(E1, E2) = S1 + S2. Note that due to the antisymmetry of the exterior product, surfaces may be understood in an algebraic sense.
Consequently, in the present graphs I1 vs E1 and I2 vs E2, blue angled hatching surfaces (resp. pink filled surfaces) must be equal, following
the Gibbs-Duhem Eq. (9) [resp. Eq. (10)].

equation, Eq. (7), is represented as the contributions to the
potential S from the red areas: S1 and S2. The Gibbs-Duhem
equation [Eq. (9)] is shown as the property that the sum of the
blue areas has to be equal to zero when considering surfaces in
the algebraic sense: dI1 ∧ E1 + dI2 ∧ E2 = 0. Equation (10)
is illustrated as the balance of the purple areas: dI1 ∧ dE1 +
dI2 ∧ dE2 = 0.

III. APPLICATION TO THE THERMODYNAMICS OF
IRREVERSIBLE PROCESSES

A. Extended thermodynamic potentials

The results of the previous section are now applied to
the thermodynamics of irreversible processes. The term “ex-
tended thermodynamic potentials” in the title of the section
is borrowed from the “extended irreversible thermodynamic”
approach of Jou et al. [19]. As previously introduced, we con-
sider the thermodynamic system � occupying the infinites-
imal volume 	. We temporarily assume that the system is at
equilibrium, or near equilibrium. We have seen previously that
this system can be described by the variables {Ek, k ∈ [[1; n]]}
and the potential S(E ). Despite the generality of the Callen ax-
iomatic approach, the thermodynamic potential S(E ) cannot
describe dissipative changes of �. Indeed, S(E ) does not con-
tain any information about timescales for which the system
would return back to equilibrium if it were driven away from
it. It is thus necessary to introduce m supplementary variables
X = {Xα, α ∈ [[1; m]]} called “nonequilibrium forces” and m
“nonequilibrium flows” J = {Jα, α ∈ [[1; m]]} to describe the
irreversible evolution of � [20]. In their foundation of ex-
tended irreversible thermodynamics (EIT), Jou et al. [19]
generalize the notion of entropy outside of equilibrium. To
achieve this, they introduce an entropy term SEIT that depends
on a new set of variables (E, J) (thus extending the initial set
E) as follows:

SEIT = SEIT(E, J). (11)

In the present study, this idea is retained but in a slightly
different manner. Indeed, in the same spirit as Jou et al., the
set of extensive variables used as arguments of the generalized

potential S is split into two sets of variables (E,�):

S = S(E,�). (12)

However, here, the new variables � = {�α, α ∈ [[1; m]]} are
defined as cumulated flows with respect to time (see their
specific definition below). These kinds of variables have ac-
tually already been used in [21] to transpose a thermoelastic
problem in variational form. Interestingly, some Tonti charts
[22] exhibit unnamed variables which could coincide with
our cumulated flows �. This is the case for the integral of
the temperature gradient with respect to time in the case of
thermal conduction (see Table 13.4 in [22]). We introduce
the specific cumulated flows ψ (defined by �α = ψα	) and
the specific flows (defined by Jα = jα	), linked through the
differential equation

dψα = jα dt . (13)

Using the set of variables of Eq. (12), and introducing the
specific generalized potential s defined by S = s(e,ψ)	, it is
possible to develop the second exterior differential of S as


 = d2S = [d2s(e,ψ)] ∧ 	

= d[Ik dek + Xα dψα] ∧ 	 (14)

with

Ik = ∂s(e,ψ)

∂ek
and Xα = ∂s(e,ψ)

∂ψα

. (15)

Further development of Eq. (14) leads to


 = [dIk ∧ dek + dXα ∧ dψα] ∧ 	

= [dIk ∧ dek + dXα ∧ ( jα dt )] ∧ 	

= [dIk ∧ dek + jα dXα ∧ dt] ∧ 	 (16)

since dψα = jα dt . In accordance with the Maxwell-Liouville
equation [Eq. (10)] reconsidered here with the extended set of
variables (Ik, ek ) ≡ (Ik, ek, Xα, ψα ), the quantity 
 vanishes
as long as S satisfies the Maxwell relations d2S = 0. A
particular formulation of this property involving the Tisza and
Onsager matrices is presented in the next section.

033282-4



INCREMENTAL LEAST ACTION PRINCIPLE IN THE … PHYSICAL REVIEW RESEARCH 2, 033282 (2020)

B. An absolute integral invariant

In this section, we analyze the particular but frequent case
for which the specific potential s is split into an equilibrium
potential seq that depends only on e, and an irreversible term
sirr that depends only on ψ:

s(e,ψ) = seq(e) + sirr (ψ). (17)

The time evolution of the dual variables I is given by the
differentiation of the first equation of (15) accounting for
Eq. (17) and multiplied by 	:

dIk ∧ 	 = ∂2seq(e)

∂e j∂ek
de j ∧ 	, (18)

which, using (B2), is strictly equivalent to

İk = Tk j ė j with Tk j = ∂2seq(e)

∂e j∂ek
. (19)

In Eq. (19), the generalized stiffness matrix T = [Tk j] as
defined by Tisza is introduced [23]. This matrix is necessarily
(i) symmetric while the equilibrium potential seq(e) satisfies
the Maxwell relations and (ii) positive definite as long as
the equilibrium around which the system � is considered is
stable. It is commonly accepted in the thermodynamics of
irreversible processes (see, e.g., [20]) that the nonequilibrium
forces Xα and the nonequilibrium flows jα are linked via a
coupling matrix L = [Lαβ]. As for T , L has to be symmetric
to fulfill Onsager reciprocity relations and positive definite to
ensure the validity of the second law of thermodynamics. We
consider here the incremental writing

d jα ∧ 	 = Lαβ dXβ ∧ 	 ⇔
˙︷︸︸︷
jα = Lαβ Ẋβ. (20)

Based on Eqs. (19) and (20), it is possible to describe the
thermodynamic evolution of the system � by introducing a
vector field ζ defined by

ζ = ∂t + ėk ∂ek + Tkl ėl ∂Ik + Ẋη ∂Xη
+ Lην Ẋν ∂ jη . (21)

Indeed, the exponential of this vector field is given by the
integration of the differential system [24]:

dt

dμ
= 1,

dek

dμ
= ėk,

dIk

dμ
= Tkl ėl ,

dXη

dμ
= Ẋη,

d jη
dμ

= Lην Ẋν, (22)

which contains Eqs. (19) and (20) but accounts for any
evolution of e and X . The main benefit of introducing ζ is
that the 5-form 
 defined by Eq. (16) and rewritten here for
convenience,


 = [
dIk ∧ dek + jα dXα ∧ dt

] ∧ 	, (23)

is an AII for the vector field (21), i.e., L[ζ ]
 = 0, if and
only if T and L are symmetric. The proof of this theorem is
given in Appendix C. It gives a more straightforward physical
meaning of the Maxwell-Liouville relation (10) in the case of
Eq. (17) since the symmetry of T and L are directly linked to
the Callen axiomatic approach and the Onsager relations.

C. Invariance by Legendre transform

One could object that the previous result is only valid
for thermodynamic potentials that depend solely on extensive
variables. In fact, the formulation of 
 is independent of the
state variables and the nature of the chosen thermodynamic
potential (Legendre transforms of energy, or Legendre trans-
forms of entropy, also called Massieu functions). Indeed, 


can be viewed as the second exterior differential of the gener-
alized potential S = s(e,ψ)	 but also as the second exterior
differential of its full Legendre transform F = f (I, X )	. The
relations defining e and ψ are then given by

ek = −∂ f (I, X )

∂Ik
, ψα = −∂ f (I, X )

∂Xα

, (24)

from which one can obtain

d2F = d (−ek dIk − ψα dXα ) ∧ 	

= (−dek ∧ dIk − dψα ∧ dXα ) ∧ 	

= (dIk ∧ dek + dXα ∧ dψα ) ∧ 	 = 
. (25)

This result remains actually true for any partial Legendre
transform of S. In practice, this invariance property widely
extends the field of application of the Maxwell-Liouville
theorem. In particular, the integral of the differential 5-form 


over the volume 	 has important implications for the formu-
lation of convex integral functionals since a thermodynamic
potential is convex with respect to its extensive parameters
and concave with respect to its intensive parameters (see
Sec. III D).

D. An incremental least action principle

There is a very close link between the Maxwell-Liouville
theorem and variational calculus. To briefly discuss this point
and for the sake of clarity, it is assumed in this section (but
without loss of generality) that the specific flows j and the
generalized thermodynamic forces X are vectorial quantities
and that the number of extensive variables Ek equals the
number of flows, i.e., n = m. The index notations will thus
be changed since the same indexes can be used to loop
over the variables (I, e) and (X , j). We also assume that the
system � is now occupying a finite volume 	 associated
with the infinitesimal volume dω, and subsequently that each
thermodynamic variable becomes a field depending on the
space variables x, y, z. Starting from Eq. (23), it is possible
to associate an integral functional T with 
, defined by

T =
∫

	

(
δIi δei + ji · δX i δt

)
dω. (26)

Another form of T can also be introduced using flows calcu-
lated at the end of the time increment δt as

T =
∫

	

[
δIiδei + ( ji + δ ji ) · δX iδt

]
dω. (27)

Both functionals may be supplemented by boundary terms∫
∂	

· · · da not written in Eqs. (26) and (27), for readability.
For many dissipative processes, the thermodynamic forces are
defined as the gradient of intensive variables. Accordingly, we
assumed here that indexes i ∈ [[1; n]] are chosen such that δX i
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can be rewritten as

δX i = −∇(δIi ). (28)

If T is now considered as a functional of δI only, one obtains

T (δI) =
∫

	

[
T −1

i j

2
δIiδI j

−
(

ji − Li j∇(δI j )

2

)
· ∇(δIi)δt

]
dω. (29)

If δI is split into two parts,

δI = δI∞ + δI∗, (30)

with δI∞ satisfying the Euler-Lagrange equations associated
with the Lagrangian of T ,

�i = T −1
i j δI∞

j + δt∇ · [ ji − Li j∇(δI∞
j )] = 0, (31)

it can be shown by integration by parts that

T (δI) = T (δI∞) + W (δI∗) +
∫

∂	

· · · da (32)

in which W (δI∗) is the new functional defined by

W (δI∗) =
∫

	

[
T −1

i j

2
δI∗

i δI∗
j

+Li j

2
∇(δI∗

i ) · ∇(δI∗
j )δt

]
dω. (33)

If the equilibrium around which the system � evolves is
stable, the Tisza matrix T and its inverse are positive definite.
The coupling matrix L is also positive definite to account for
the second law of thermodynamics, and we have W (δI∗) �
0,∀δI∗. If the increments δI are chosen in a set U such that
the boundary terms of (32) vanish, it can be concluded that

T (δI∞) � T (δI) ∀δI ∈ U (34)

and that T is minimal when δI = δI∞. Interestingly, Eq. (31)
is simply an implicit (in a numerical sense) writing of the bal-
ance equation associated with the specific quantity ei during
δt and can be rewritten

δe∞
i

δt
+ ∇ · ( ji + δ j∞i ) = 0 (35)

with δe∞
i = T −1

i j δI∞
j and δ j∞i = −Li j∇(δI∞

j ). Consequently,
the variational principle defined by Eq. (29) can be viewed as
an incremental least action principle. It has a practical interest
if each field δIi, as for the Ritz method, is developed as a linear
combination of some functions Nik (x, y, z):

δIi(x, y, z) = γkNik (x, y, z), (36)

γk being unknown coefficients. Inserting (36) into (29) and
minimizing the result with respect to γk lead to a linear
system in γk . Putting back the values of γk in (36) gives an
approximation of δI∞

i . This strategy, repeated for each time
increment δt and by updating I with δI, will be qualified as
the “incremental Ritz method” (IRM) hereafter. The complete
study of the functionals (26) and (27) and its possible link
with the extremal problems developed in the work of Sewell
[25] goes beyond the scope of this paper. However, a detailed

formulation of T and its subsequent minimum incremental
principle will be proposed for the heat equation in Secs. IV B
and IV C, as a detailed example.

E. The physical meaning of self-adjointness

A direct calculation of the Fréchet derivative of Eq. (31)
using the formula given in [6] leads to

[D�]i j =
∑

J

[
∂�i

∂ (δI∞
j,J )

]
DJ

= T −1
i j − δtLi j,kDk − δtLi jDkk, (37)

in which (i) Dk denotes the total derivative operator with
respect to the space variable xk (using the new notation x1 = x,
x2 = y, x3 = z), and (ii) DJ denotes the total derivative oper-
ator with respect to a multi-index J (e.g., D(1,2) = D1D2 and
δI∞

j,(1,2) = δI∞
j,12). We also recall that for any vector component

fi, Dx( fi ) is not equal to fi,x but to fi,x + fiDx. The adjoint of
D� can be calculated applying the direct formula of the same
author [6]:

[D�]∗i j =
∑

J

(−D)J

[
∂� j

∂
(
δI∞

i,J

)
]

= T −1
ji + δtDk

(
Lji,k

)− δtDkk (Lji )

= T −1
ji + δtDk

(
Lji,k

)− δtDk (Lji,k + LjiDk )

= T −1
ji − δtDk (LjiDk )

= T −1
ji − δtL ji,kDk − δtL jiDkk, (38)

with (−D)J = (−1)sDJ , s being the number of indexes in J .
The comparison between Eqs. (37) and (38) shows that the
Fréchet derivative of � = {�i, i ∈ [[1; n]]} [given by Eq. (31)]
is self-adjoint if and only if

T −1
i j = T −1

ji
Li j = Lji

⇔ Ti j = Tji

Li j = Lji
(39)

which corresponds to the symmetry of the Tisza and coupling
Onsager matrices. This result may appear trivial since �i

corresponds to the Euler-Lagrange equation of the functional
T with respect to the intensive variable δIi. However, it
lends an interesting physical meaning to the self-adjointness
property.

F. Link with the Poincaré-Cartan invariant

The 5-form 
 may be rewritten in terms of dissipation if
a linear relation between flows and forces is considered, as
in [19]. Indeed, if Eq. (23) is rewritten accounting for jα =
LαβXβ (with L a constant, symmetric, and positive-definite
matrix), one obtains


 = [dIk ∧ dek + LαβXβ dXα ∧ dt] ∧ 	. (40)

Introducing the specific dissipation � as follows,

2� = LαβXβXα ⇒ d� = LαβXβdXα, (41)

yields


 = [dIk ∧ dek + d� ∧ dt] ∧ 	 (42)
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TABLE II. Comparison between the absolute integral invariant 
 formulated as if it were a Massieu function and its EIT counterpart in
the case of thermal diffusion [19]. In this table, u denotes the internal specific energy, v the specific volume, q the conductive thermal flow, T
the temperature, κ the thermal conductivity, τ1 some time constant, S the entropy, and t the time. The relation q = −κ∇T has been used in the
formulation of 
.

Framework Potential or Invariant Equilibrium Term Dissipative Term

EIT, Eq. (2.40) of [19] SEIT = Seq(u, v) − vτ1

2κT 2
q · q Seq(u, v) − vτ1

2κT 2
q · q

Present approach 
 =
[

d

(
1

T

)
∧ du + q · d

( q
κT 2

)
∧ dt

]
∧ 	 
eq = d

(
1

T

)
∧ du ∧ 	 q · d

( q
κT 2

)
∧ dt ∧ 	

or, equivalently,


 = dIk ∧ d (ek	) − d (�	) ∧ dt (43)

since d	 = 0. This last form exhibits a high similarity with
the Poincaré-Cartan AII [26]:


PC = d p ∧ dq − dH ∧ dt . (44)

One of the main differences between these two AIIs lies in
the fact that 
 is homogeneous to an energy measured in
J (since � is in J m−3 s−1) while 
PC is homogeneous to
an action measured in J s. However, a close similarity can
be emphasized in the case of mechanics for a punctual mass
submitted to potential forces only (no dissipation, i.e., dH = 0
and d� = 0). In that case, the only extensive quantity E1 =
e1	 is the momentum p in kg m s−1 and its thermodynamic
intensive dual is the velocity v in m s−1. The analogy between

PC and 
 is underlined by the equivalence

dq ∧ d p = constant︸ ︷︷ ︸
Liouville theorem

≡ dv ∧ d p = 0︸ ︷︷ ︸
present approach

. (45)

Since v = q̇ in this example, and since dH ≡ d (�	) by
comparing (43) and (44), it all happens as if 
 would be the
time derivative of 
PC. One notices that the Poincaré-Cartan
AII was initially written in the case of potential force fields,
i.e., without any dissipation. The major contribution of the
present approach is that the integral invariant 
 does not
require any assumption of reversibility. In that sense, its field
of application can be viewed as more general than that of 
PC.

IV. AN APPLICATION: HEAT CONDUCTION

A. Similarity to the extended irreversible thermodynamics

To discuss the similarity between the present approach
and extended irreversible thermodynamics [19], the absolute
integral invariant 
 is here written in the case of heat diffusion
as if it were a Massieu function. Below and in Table II, e1 = u
denotes the internal specific energy, v the specific volume,
j1 = q the conductive thermal flow, T the temperature, κ

the thermal conductivity, X 1 = ∇T −1 is the thermodynamic
force associated with q, and the thermodynamic dual of the
specific energy u is the quantity I1 = 1/T . The relation q =
−κ∇T has been used in the formulation of 
 (see Table II)
while it can have a more general form as discussed in [19].
Consequently, accounting for ∇T −1 = −∇T/T 2 = q/κT 2,
one can rewrite Eq. (23) as


 =
[

d

(
1

T

)
∧ du + q · d

( q
κT 2

)
∧ dt

]
∧ 	. (46)

Interestingly, a similarity between 
 and its EIT counterpart
d2SEIT (see Table II) can be highlighted. First, the equilibrium
term of 
 is simply given by


eq = d

(
1

T

)
∧ du ∧ 	 (47)

and coincides with the second exterior differential of entropy
Seq as it is classically defined at equilibrium

dSeq = 1

T
dU = 1

T
d (u	) = 1

T
du ∧ 	. (48)

As concerns the dissipative part of 
, shown in the last
column of Table II, other similarities emerge: τ1 ≡ dt , v ≡ 	,
and (q · q)/2 ≡ q · dq. The main difference between these
two dissipative terms is that in the present approach, no time
constant τ1 needs to be introduced. This intuitive comparison
between 
 and d2SEIT in the case of thermal conduction could
be more deeply analyzed and generalized to other physical
processes such as mass flow, or poromechanics.

B. An incremental minimum principle

In this section, we turn back to an energy description by
considering I1 = T , e1 = s (specific entropy), j1 = q, X 1 =
g/T with g = −∇T , and the specific heat cp such that

ds = cp dT

T
. (49)

One considers that the system � is submitted to a given flow
qd over a part ∂	q of its boundary ∂	 and a given temperature
T d over ∂	T with the conditions

∂	T ∪ ∂	q = ∂	, ∂	T ∩ ∂	q = ∅. (50)

One introduces a time discretization

tk = k δt, k = 1, . . . , nt , (51)

and the notation δ • will be used to denote the increment
of any quantity • over the time increment δt . In the same
manner, (•)k refers to any quantity evaluated at time tk . We
rewrite Eq. (46) in an energy form rather than in an entropy
form (
 ≡ d2S while 
′ ≡ d2U with U the internal energy
generalized as in [19]), i.e.,


′ =
[
dT ∧ ds + q · d

( g
T

)
∧ dt

]
∧ 	, (52)

or


′ =
[
dT ∧ ds + q

T
· dg ∧ dt

( q · q
κ T 2

)
dT ∧ dt

]
∧ 	. (53)
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Following from Eq. (29), it is possible to define the integral
functional for known Tk and qk (temperature field and thermal
flow at time tk):

T (δTk ) =
∫

	

[
cp

δTkδTk

2 Tk
− 1

Tk

(
qk + δqk

2

)
· ∇(δTk ) δt

−
(

qk · qk

κT 2
k

)
δTk δt

]
dω

+
∫

∂	q

[
qd

k+1 · n
δTk

Tk
δt

]
da, (54)

and the set of admissible temperature increment fields δTk

satisfying the boundary conditions over the time increment δt :

U ad
k = {

δTk, δTk = δT d
k over ∂	T

}
, (55)

where the superscript “ad” stands for “admissible”. As in
Sec. III D, it can be shown by integration by parts that for any
element of U ad

k , T can be rewritten as

T (δTk ) = T (δT ∞
k ) +

∫
	

[
cp

δT ∗
k δT ∗

k

2 Tk

]
dω

+
∫

	

[
κk

(∇(δT ∗
k ) · ∇(δT ∗

k )

2Tk

)
δt

]
dω, (56)

in which δT ∞
k = δTk − δT ∗

k is an element of U ad
k being the

solution of the semi-implicit problem (δT ∗
k vanishes on ∂	T )

cp
δT ∞

k

Tk︸ ︷︷ ︸
δs∞

k

+∇
(

qk + δq∞
k

Tk

)
δt =

(
qk · qk

κT 2
k

)
δt,

δT ∞
k = δT d

k over ∂	T ,

qk − κk∇(δT ∞
k ) = δqd

k+1 over ∂	q,

(57)

which is the entropy balance during the time increment δt .
Since Tk > 0 over 	, and since κk > 0 (second law of ther-
modynamics) and cp > 0 (stability of equilibrium), it can be
concluded from Eq. (56) that T (δTk ) − T (δT ∞

k ) is a positive-
definite 2-form with respect to δT ∗

k . Consequently, the min-
imum of T is reached when δTk = δT ∞

k , and the system �

satisfies an incremental least action principle defined by the
functional T .

C. An illustrative numerical example

We consider the following unidirectional and adimensional
diffusion problem:

∂T (t, x)

∂t
= ∂2T (t, x)

∂x2
, t > 0, x ∈ [0; 1], (58)

with the initial and boundary conditions

T (0, x) = Tini(x) = 4x(1 − x), (59)

T (t, 0) = T (t, 1) = 0. (60)

The solution of this problem can easily be obtained by sepa-
ration of variables and is given by

Tana(t, x) =
∞∑

k=1

Ck exp(−k2π2t ) sin(kπx) (61)

(the subscript “ana” meaning “analytic”) with

Ck = 16[1 − (−1)k]

π3k3
. (62)

This problem has been solved by three different numerical
methods. The first method is the finite-difference method
using an implicit time scheme, and is denoted as “FD” below.
The second and third methods (IRM1 and IRM2) correspond
to the incremental Ritz method (IRM) introduced at the end
of Sec. III D and applied to the following functional:

T ′(δT ) =
∫ 1

0

[
δT δT

2
−
(

q + δq

2

)
∂x(δT )δt

]
dx, (63)

in which

q = −∂xT, δq = −∂xδT . (64)

This functional is the analog of (54), with ∂	q = ∅, except
that its minimum satisfies the energy balance rather than the
entropy balance:

δT ∞ + ∂x(q + δq∞) = 0. (65)

It leads to a lighter implementation due to the absence
of temperature at denominator, and is defined over the set
of temperature increments δT (x) satisfying δT (0) = 0 and
δT (1) = 0. The first implementation of the incremental Ritz
method IRM1 has been carried out with a parabolic increment
reminiscent of the initial condition:

δT1(x) = a1x(1 − x), (66)

in which a1 is a scalar parameter. The implementation of the
second incremental Ritz method IRM2 is associated with the
same kind of increment but enriched by its proper square; the
temperature increment thus depends on two parameters b1 and
b2:

δT2(x) = b1x(1 − x) + b2x2(1 − x)2. (67)

For IRM1 and IRM2, the algorithm is started by initializing
the heat flux q appearing in (63) by −∂xTini(x). For each
time increment, the parameter a1 or the couple (b1, b2) are
calculated by evaluating the functional (63) on the increments
(66) and (67), and by solving

∂T ′(δT1)

∂a1
= 0,

{
∂T ′(δT2)

∂b1
= 0,

∂T ′(δT2)

∂b2
= 0

}
(68)

to localize the minimum value of T ′(δT1) and T ′(δT2). At
the end of each time increment, the heat flow is incremented
by −∂xδT• for the next evaluation of T ′(δT•) (• = 1, 2).
The resolution was made over 30 time increments δt = 0.01
starting from t = 0.00.

To compare the performance of the different numerical
methods, we counted the n degrees of freedom (DOFs) nec-
essary to achieve the simulations since in practical situations,
this parameter is known to have a great impact on the CPU
time of a simulation. For the finite-difference method (FD),
the number of DOFs is the number of nodes used to discretize
the interval [0; 1] minus 2, because the temperature is given at
the two extremal nodes x = 0 and x = 1. For the incremental
Ritz method, the number of DOFs is 1 (IRM1) or 2 (IRM2).
For each numerical method leading to a temperature field
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FIG. 2. Numerical solving of the problem given in Eqs. (58)–(60). (a), (b): Evolution of temperature and heat flux for the five different
times t1 = 0.00, t2 = 0.05, t3 = 0.10, t4 = 0.20, t5 = 0.30. (c), (d): Comparison with the analytic solution given in (61)–(62), using the two
indicators (69) and (70).

T (x), we introduce two error criteria measuring the discrep-
ancy between T (x) and Tana(x) and between their derivatives
with respect to x. The criteria compare T (x) and Tana(x) for
five arbitrary time values (t1 = 0.00, t2 = 0.05, t3 = 0.10,
t4 = 0.20, t5 = 0.30):

ET =
√∑5

k=1

∫ 1
0 [T (tk, x) − Tana(tk, x)]2dx

E0
T

, (69)

EQ =
√∑5

k=1

∫ 1
0 [∂xT (tk, x) − ∂xTana(tk, x)]2dx

E0
Q

. (70)

The two constants E0
T and E0

Q have been adjusted to have ET =
EQ = 1 for n = 1. To compare the two implementations of the
incremental Ritz method with the finite-difference method, we
varied n and calculated the corresponding values of ET and EQ

(see Fig. 2). On this example, a good performance of the two
implementations of the incremental Ritz method is observed.
Indeed, it is necessary to have approximately 6 and 10 times
more DOFs for the FD method to have a comparable value of
ET to the IRM method (about 10 and 50 times for EQ).

V. CONCLUDING REMARKS

In this paper, we have shown that any thermodynamic
potential satisfies a differential conservation law which, once
generalized in the sense of extended irreversible thermody-
namics and integrated over a finite volume, fulfills an incre-
mental least action principle in time. In addition, a physical
meaning of self-adjointness (a necessary and sufficient con-
dition for the Lagrangian to exist) has been proposed as the
symmetry of the Tisza and Onsager matrices (T and L). One
of the implications of our work is that, using the incremental
minimum principle presented in Sec. III D, it is possible to
update the values of the coefficients in T and L when time

is changed by an increment δt . Consequently, the minimum
principle could be used in practice as an incremental Ritz
method (IRM) to solve nonlinear problems for which T and
L may depend on the extensive and intensive variables e
and I as well as the generalized flows j and forces X . As
shown with the linear problem of Sec. IV C, this method is
efficient in considerably reducing the number of degrees of
freedom associated with the numerical simulation. However,
the formulation of a suitable increment δI to evaluate T [see
Eqs. (29) and (36)] can be a challenging task. Indeed, δI has
to satisfy boundary conditions, and can be much less intuitive
to formulate in the presence of couplings between several
different physical processes.

Most of the attempts to find a variational form of equa-
tions governing one or more dissipative processes classically
superimpose an equilibrium term and a dissipative term. The
equilibrium term is defined from a thermodynamic potential
[27–31] and the dissipative term from integrals over time. The
present approach is consistent with these approaches except
that the formulation is incremental in time. This approach
is closely related to the Lagrangian approach proposed by
Moroz [29] in the framework of nonequilibrium chemical
thermodynamics for which the Lagrangian is written as the
sum of a thermodynamic potential and a dissipative Rayleigh
function that is bilinear with respect to flows. Another very
close link seems also to exist with the incremental variational
principle proposed in [32].

An important application of the Lagrangian and Hamilto-
nian formalisms is the use of the Liouville theorem which
states that the volume of the phase space associated with a
set of massive points remains constant when time varies. For
the particular case of a single oscillator of momentum p and
position q, this volume is given by β = d p ∧ dq and is an
absolute integral invariant (AII) for the generator ∂t + q̇ ∂q +
ṗ ∂p. Such an AII has proven to be very useful in numerical
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simulations with the development of “symplectic numerical
schemes.” Indeed, these schemes are designed such that the
invariant β is exactly preserved along numerical iterations,
i.e., βν+1 = βν , with ν the index of time increment. Conse-
quently, they exhibit stability properties that are significantly
improved with respect to classical numerical schemes (such
as implicit or explicit Euler, Runge-Kutta). Our approach
proposed a new AII as a 5-form 
 defined in Eq. (23). It
will be of great interest to formulate numerical schemes for
which 
 is preserved in a numerical way, and to analyze their
numerical stability. Work is currently in progress to achieve
this goal.
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APPENDIX A: PROOF OF THE EULER FUNDAMENTAL
EQUATION FOR INFINITESIMAL VOLUMES

The exterior differential of S is given by

dS = Ik d (ek	) = Ik dek ∧ 	, (A1)

since the Ik are 0-forms and d	 = 0. We develop the exten-
sivity property (5) using the Cartan formula (⌟ denotes the
interior product):

L[Xα]S = L
[
αek

∂

∂ek

]
S

= d

⎡
⎢⎢⎢⎣
(

αek
∂

∂ek

)
⌟ S︸ ︷︷ ︸

=0

⎤
⎥⎥⎥⎦+

(
αek

∂

∂ek

)
⌟ dS

= αekIk	 = αIkEk = αS, ∀α. (A2)

The last equation being true ∀α, we conclude that

S = IkEk . (A3)

Moreover, by direct calculations,

L[Xα]S = L
[
αek

∂

∂ek

]
S = αL

[
ek

∂

∂ek

]
S

= α

⎛
⎜⎜⎜⎝dek ∧

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[

∂

∂ek

]
⌟ S︸ ︷︷ ︸

=0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭+ ekL

[
∂

∂ek

]
S

⎞
⎟⎟⎟⎠

= αekL
[

∂

∂ek

]
S. (A4)

Identifying this last result with (A2), we obtain

αekL
[

∂

∂ek

]
S = αekIk	

⇔ ek

(
L
[

∂

∂ek

]
S − Ik	

)
= 0. (A5)

Since the {ek} are independent 0-forms, we conclude that

Ik	 = L
[

∂

∂ek

]
S = L

[
∂

∂ek

]
(s	) = ∂s

∂ek
	 (A6)

and finally, identifying terms in 	, obtain

Ik = ∂s

∂ek
. (A7)

APPENDIX B: MATHEMATICAL RESULTS

We recall here the notations used in this paper: ∧ stands
for the exterior product, d for the exterior differential. If
not otherwise stated, the Einstein summation convention on
repeated indexes is adopted. We recall that for any smooth
function ξ (a) of p variables {ak, k ∈ [[1; p]]}, we have

d2ξ = 1

2

(
∂2ξ

∂ai∂a j
− ∂2ξ

∂a j∂ai

)
da j ∧ dai (B1)

and then d2ξ = 0 as soon as ξ satisfies the Maxwell relations
on its partial derivatives. Furthermore, for any smooth func-
tion f of time t and space variables (denoted x, y, z throughout
the paper), the following equality holds:

df ∧ 	 = ḟ dt ∧ 	, with ḟ = ∂ f

∂t
= ∂t f . (B2)

The proof of that result is straightforward:

df ∧ 	 = (∂t f dt + ∂x f dx + ∂y f dy + ∂z f dz) ∧ 	

= ∂t f dt ∧ dx ∧ dy ∧ dz = ∂t f dt ∧ 	 (B3)

since d • ∧ d • = 0 (with • = x, y, z).

APPENDIX C: PROOF OF THE THEOREM SATISFIED BY
THE 5-FORM DEFINED IN EQ. (23)

We recall that 
 is an absolute integral invariant for ζ if
and only if ζ ⌟
 and ζ ⌟ d
 vanish (see, e.g., [24]). We now
calculate these two interior products. We have

ζ ⌟
 = [− jα dXα − ėk dIk + Tkl ėl dek + jαẊαdt
] ∧ 	

= jα (−dXα + Ẋα dt ) ∧ 	︸ ︷︷ ︸
=0

+[−ėkTkl del + Tkl ėl dek] ∧ 	 (C1)

= [−ėkTkl del + Tlkėk del ] ∧ 	

= ėk (Tlk − Tkl ) del ∧ 	. (C2)

The only way to have ζ ⌟
 = 0 is then to fulfill the condition
Tlk = Tkl . For the second interior product, we first calculate
the exterior differential of 
:

d
 = d jα ∧ dXα ∧ dt ∧ 	. (C3)
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By direct calculation,

ζ ⌟ d
 = [d jα ∧ dXα − Ẋα d jα ∧ dt

+ Lαν Ẋν dXα ∧ dt] ∧ 	. (C4)

Accounting for (20) yields

ζ ⌟ d
 = [Lαβ dXβ ∧ dXα − ẊαLαβ dXβ ∧ dt

+ Lαν Ẋν dXα ∧ dt] ∧ 	. (C5)

Permuting indexes in the last term and factorizing gives

ζ ⌟ d
 = [Lαβ dXβ ∧ dXα

+ Ẋα (Lβα − Lαβ ) dXβ ∧ dt] ∧ 	. (C6)

Since the {Xα} are independent variables, the only way to have
ζ ⌟ d
 = 0 is to have Lβα = Lαβ .
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