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 Abstract  

Time series is one of the forms of data presentation that is used in many 

studies. It is convenient, easy and informative. Clustering is one of the 

tasks of data processing. Thus, the most relevant currently are methods 

for clustering time series. Clustering time series data aims to create 

clusters with high similarity within a cluster and low similarity between 

clusters. This work is devoted to clustering time series. Various methods 

of time series clustering are considered. Examples are given for real 

data. 

Introduction 

Primary data is the base that allows you to understand and predict the processes that are studied 

and analyzed. Therefore, data processing and analysis is the basis for any research (Matarneh, 

Maksymova, Lyashenko & Belova, 2017; Lyashenko et al., 2016). The amount of such data 

can be very large. This makes it necessary to use various methods for the analysis and 

interpretation of primary data (Khan, Joshi, Ahmad  & Lyashenko, 2015; Baranova, Sergienko, 

Stepurina & Lyashenko, 2020; Kang, 2019). Among these methods, data clustering should be 

distinguished. This approach allows you to split the general data set into separate groups, where 

each group has some common characteristics. 

Thus, clustering is a way of preprocessing data for more convenient subsequent analysis. 

Having received the necessary groups, as well as their centroids, you can continue to work with 

specific representatives, and not with the entire data set. This reduces the processing time and 

the time to obtain results. This approach also allows for a better understanding of the data; to 

carry out their compression in conditions of unprofitable data. It should also be noted that raw 

data can be presented in different ways. Time series is one of the forms of data presentation. A 

time series is a time-oriented sequence of data on a certain subject area that is of interest. It is 

a way of presenting statistics. Time series data is used in various spheres of human activity 

(Baranova, Sergienko, Stepurina & Lyashenko, 2020; Baranova et al., 2020). Therefore, this 

form of data presentation is of particular interest. Some issues of processing such data are 

considered in our work. 

Some Features of Time Series Processing 

When processing a time series, you can encounter typical difficulties: large dimension of input 

data, presence of noise and missing data. Considering clustering of time series, one should also 

pay attention to the fact that rows can contain a different number of samples; there are more 
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degrees of freedom to determine the similarity of one object to another; when choosing metrics 

and statistics, you should pay attention to the local dependence of the data. 

An important task when processing a time series is also to determine the proximity of data. It 

can be closeness in time, closeness in form, closeness in structure (Maharaj, D'Urso & Caiado, 

2019; Ali, Alqahtani, Jones & Xie, 2019). Time series can also contain anomalous values, 

which requires pre-processing and series smoothing. If this is not done, abnormal data may 

distort the results to be obtained. 

Irwin's criterion is used to analyze anomalous data; methods such as moving average, 

exponential smoothing are used to smooth data (Zou et al., 2019; Walker, Curtis & Goldacre, 

2019). All this must be taken into account when clustering data that is presented in the form of 

time series. 

K-Means Based Time Series Clustering Methods 

Let's consider the most common time series clustering methods that use the k-means algorithm. 

These methods include: Euclidean k-means, DBA k-means and Soft-DTW k-means. One of 

the common method for clustering time series is the k-means approach, where Euclidean 

distance is used as a measure of proximity (Steinley, 2006; Khachumov, 2012): 

𝑑𝛦1(𝑋𝑖, 𝑋𝑗) = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑚

𝑘=1   

where  𝑋𝑖 and  𝑋𝑗 are two time series of length 𝑚. 

The k-means algorithm is that 𝑘 arbitrary centers are selected first. Then the rest of the elements 

are grouped around these centers, which must be divided into classes. At the next step, new 

centers are calculated for the resulting clusters so that the square of the Euclidean distance from 

the cluster element to its centroid is less than the distance to the centroids of the remaining 

clusters. 

At the same time, the algorithm places the centers of the clusters (centroids) so that the average 

values for the lists of elements within the constructed clusters differ as much as possible. Thus, 

the Euclidean k-means method divides time series of sample length 𝑚 into 𝑘 groups (clusters). 

This separation occurs by minimizing the total squared deviation of cluster points from the 

centroids of these clusters: 

min [∑ ∑ ‖𝑥(𝑗) − 𝜇𝑖‖
2

𝑥(𝑗)𝑚𝑆𝑖

𝑘

𝑖=1

] 

where  𝑥(𝑗) ∈ 𝑅𝑛, 𝜇𝑖 ∈  𝑅𝑛; 𝜇𝑖 – cluster centroid 𝑆𝑖. 

Using the Euclidean k-means method has several disadvantages: it is necessary to determine in 

advance the number of resulting clusters, which may not always be advisable; the method is 

sensitive to the choice of the initial cluster centers – this leads to an increase in the probability 

of error and the possibility of obtaining results that differ from each other when the algorithm 

is restarted. 

There are also cases when an object can belong to different clusters. Despite the shortcomings, 

Euclidean k-means is a simple algorithm, well suited for understanding the general clustering 

processes and a good basis for building extended new algorithms on its basis. When clustering 

time series, it is essential to take into account the fact that some series can be almost the same, 

but at the same time these series can be shifted in time (along the time axis). Therefore, it is 

advisable to use a metric that is implemented in the dynamic timeline transformation (DTW) 

algorithm. 
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Consider two time series  𝑋𝑖  with length  𝑛𝑖 and  𝑋𝑗  with length  𝑛𝑗  : 

𝑋𝑖 = {𝑥𝑖}
𝑖=1
𝑛𝑖 ,  

𝑋𝑗 = {𝑥𝑗}
𝑗=1

𝑛𝑗
.  

Then the implementation of the DTW method can be described in the following steps (Kate, 

2016; Hu, Mashtalir, Tyshchenko & Stolbovyi, 2018). 

At the first step, we construct the distance matrix 𝐷 = {𝑑𝑖,𝑗}. 

At the second step, we construct a transformation matrix  𝐷𝐷𝑇𝑊 = {𝑟𝑖,𝑗}, where each element 

is determined using the formula: 

𝑟𝑖,𝑗 = 𝑑𝑖,𝑗 + min(𝐷𝑖−1,𝑗, 𝐷𝑖−1,𝑗−1, 𝐷𝑖,𝑗−1).  

After filling in the transformation matrix, we move on to the final stage. This stage consists in 

building the optimal transformation path and DTW distance. The transformation path  𝑊 is a 

set of contiguous elements of the  𝐷𝐷𝑇𝑊  matrix that matches the series  𝑋𝑖 and  𝑋𝑗 and 

minimizes the total distance between these time series. Thus, the last step is to build the optimal 

transformation path and DTW distance. 

The transformation path between  𝑋𝑖 and  𝑋𝑗  is determined by the formula (Kate, 2016): 

𝑊 = {𝑤𝑘}𝑘=1
𝐾 ,   𝑤𝑘 = (𝑖, 𝑗)𝑘, max (𝑛𝑖, 𝑛𝑗) ≤ 𝐾 ≤ (𝑛𝑖 + 𝑛𝑗) 

where  𝐾  – path length. 

Then DTW the distance between two time series is determined by the formula (Kate, 2016; 

Hu, Mashtalir, Tyshchenko & Stolbovyi, 2018): 

𝐷𝑇𝑊(𝑋𝑖, 𝑋𝑗) = min (
∑ 𝑑(𝑤𝑘)𝐾

𝑘=1

𝐾
) 

A modification of the DTW method is the soft-DTW k-means algorithm, in which the DTW 

distance is determined as (Montgomery, Jennings & Kulahci, 2015): 

𝐷𝑇𝑊𝛾(𝑋𝑖, 𝑋𝑗) = −𝛾 log ∑ 𝑒
(

𝑑(𝑤𝑘)
𝐾∙𝛾

)
𝐾

𝑘=1
 

for different values of the smoothing parameter (γ) of the time series. 

Also in the Euclidean k-means method, we can estimate the distance between the «centers of 

weight» of each group of time series (Okawa, 2019): 

𝑑𝑐𝑡(𝑥𝑖, 𝑥𝑗) = 𝑑(𝑥�̅�, 𝑥�̅�) 

Then the corresponding method for determining the distance between time series (clustering 

them) is called the DBA-k-means method (DTW Barycenter Averaging). Let's conduct a 

comparative analysis of clustering time series using the methods that we discussed above. 

Results and Discussion 

For the analysis, we will look at the time series that represent medical data. In particular, these 

are the data of the electrocardiogram of the heartbeat (ECG). Thus, the time series correspond 

to the forms of the electrocardiogram of heart contractions for the normal case and cases of 

lesions by various arrhythmias and myocardial infarction. These signals were preprocessed and 

segmented, with each segment corresponding to one heartbeat. 
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An example of such time series is shown in Figure 1. These time series are included in the 

database that is used for fundamental research and is described in (Moody & Mark, 2001). 

The main characteristics that are used for clustering time series (Figure 1) are: the number of 

series – 87554; the number of values in each row is at least 187; sampling rate – 125 Hz; the 

number of classes that we are considering is 4. To implement the methods discussed above, to 

carry out the clustering procedure, the Python environment was chosen. 

 

Figure 1. Time series used to cluster them 

Figure 2 - Figure 4 shows the results of clustering by different methods. The red line is the 

centroid of each cluster. 

 

Figure 2. Results of clustering by the Soft-DTW k-means method 
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Figure 3. Results of clustering by the DBA k-means method 

 

Figure 4. Results of clustering by the Euclidean k-means method 

From these figures (Figure 2 - Figure 4), it can be seen that the above methods of clustering 

time series for the presented sample (Figure 1) give approximately the same result. This is due 

to the fact that the time sequence was previously divided into segments in accordance with one 

heartbeat. This made it possible to level out minor deviations of readings along the time axis. 

Nevertheless, the presented results make it possible to build systems for automatic data 

analysis, which are presented in the form of time series. 
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Conclusion 

The paper provides an overview of the main clustering methods that are used to analyze time 

series. These methods include: Euclidean k-means, DBA k-means and Soft-DTW k-means. 

The advantages and disadvantages of each method are noted. Some features of data analysis 

are also considered, which are presented in the form of a time series. For experimental studies, 

a dataset was selected, formed from the ECG database of heart beats. The task of clustering 

and classifying this data assists in processing and identifying anomalies in humans to diagnose 

cardiovascular problems. The results of clustering are presented. 
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