DOI: https://doi.org/10.24297/jam.v19i.8891

Ranks, Subdegrees and Suborbital graphs of the product action of Affine Groups

Siahi Maxwell Agwanda ${ }^{1}$, Patrick Kimani, ${ }^{2}$ Ireri Kamuti ${ }^{3}$
${ }^{1,3}$ Department of Mathematics, Kenyatta University, P.O. Box 43844-00100, Nairobi
${ }^{2}$ Department of Mathematics and Computer Science, University of Kabianga, P.O. Box 2030-20200, Kericho

Abstract

The action of affine groups on Galois field has been studied. For instance, [3] studied the action of Aff (q) on Galois field $G F(q)$ for q a power of prime p. In this paper, the rank and subdegree of the direct product of affine groups over Galois field acting on the cartesian product of Galois field is determined. The application of the definition of the product action is used to achieve this. The ranks and subdegrees are used in determination of suborbital graph, the non-trivial suborbital graphs that correspond to this action have been constructed using Sims procedure and were found to have a girth of $0,3,4$ and 6.

Keywords: Ranks, Subdegrees, Transitivity and Suborbital graphs

1. Introduction

Affine group $\operatorname{Aff}(q)$ over Galois field $G F(q)$ is a group of all transformations of the form $a x+b$, where $a, b \in$ $G F(q)$ and $a \neq 0$, these elements can be viewed as $\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right)$. Let a group G act transitively on a set Ω and G_{a} the stabilizer of a in G for $a \in \Omega$, then $\operatorname{Orb}_{G}(a)$ is the Orbit of a in G. The G_{a}-orbits are called suborbits of G denoted by Δ_{i} and the number of them is the rank while the length of the suborbits is called the subdegrees of G on Ω.

The concept of suborbital graphs of non-trivial suborbits of a permutation group G was introduced by Sims. [2] Investigated some properties of the action of the stabilizer of ∞ in Γ (modulargroup) acting on the set of integers is transitive and imprimitive. Moreover, if $x, y \in Z$ with $x \neq y$ then the suborbital $O(0, x)$ and $O(0, y)$ are disjoint. The suborbital graph $\Gamma(0, x)$ has $|x|$ components and it is paired with $\Gamma(x, 0)$. [4] studied the action of $\operatorname{PSL}(2, q)$ on the cosets of its cyclic subgroup $C_{\frac{(q-1)}{k}}$, where $k=(q-1,2)$. The action was found to be imprimitive and the number of the self-paired suborbital is $q+2, q+3$ and $q+1$, for $p=2, q \cong 1 \bmod 4$ and $q \cong 1 \bmod 4$ respectively.

2. Preliminary Notes

Definitions 2.1 A group G is said to be transitive on a set Ω if for each pair of points $a, b \in \Omega$, there correspond $g \in G$ such that $g a=b$. In other words the action is transitive if it has only one orbit.
Definition 2.2 Let G act transitively on Ω. Then G also acts on $\Omega \times \Omega$ by, $g(\alpha, \gamma)=(g \alpha, g \gamma), g \in G_{\alpha}, \gamma \in$ Ω. The G_{a} - orbits resulting from this action are referred to as suborbital of G on Ω denoted by $O(\alpha, \gamma)$.
Definition 2.3 A graph $\Gamma(V, E)$ is said to be bipartite if V can be partitioned into two subsets V_{1} and V_{2} such that the edges join the two vertices from different subsets and no edge joining vertices in the same subsets.

Theorem 2.3 [2] Let $G_{1}, G_{2}, \ldots, G_{n}$ be groups with respect to the binary operations $\left(\star_{1,} \star_{2}, \ldots, \star_{n}\right)$. Then the external direct product $G_{1} \times G_{2} \times \ldots \times G_{n}$ is defined as:
$G_{1} \times G_{2} \times \ldots \times G_{n}=\left\{\left(g_{1}, g_{2}, g_{3}, \ldots, g_{n}\right): g_{i} \in G_{i}\right\}$ and $\left(g_{1}, g_{2}, \ldots, g_{n}\right) \star\left(h_{1}, h_{2}, \ldots, h_{n}\right)=$
$\left(g_{1} \star_{1} h_{1}, g_{2} \star_{2} h_{2}, \ldots, g_{n} \star_{n} h_{n}\right)$. The order of the group $G_{1} \times G_{2} \times G_{3}, \ldots, \times G_{n}$ is given by $\left|G_{1}\right|\left|G_{2}\right|\left|G_{3}\right| \ldots\left|G_{n}\right|$. Suppose G_{1} acts on Ω_{1}, G_{2} acts on Ω_{2} and G_{3} acts on Ω_{3}. Then the product action of $G_{1} \times G_{2} \times G_{3}$ on $\Omega_{1} \times \Omega_{2} \times \Omega_{3}$ is given by the rule,
$\left\{\left(g_{1}, g_{2}, g_{3}\right)(a, b, c)=\left(g_{1}(a), g_{2}(b), g_{2}(c)\right).\right\}$
Theorem 2.4 [1] The $G_{1} \times G_{2} \times G_{3}$ - orbit containing $(a, b, c,) \in \Omega_{1} \times \Omega_{2} \times \Omega_{3}$ is given by $\operatorname{Orb}_{G_{1}}(a) \times$ $\operatorname{Orb}_{\mathrm{G}_{2}}(\mathrm{~b}) \times \operatorname{Orb}_{\mathrm{G}_{3}}(\mathrm{c})$ and the stabilizer of $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ in $\mathrm{G}_{1} \times \mathrm{G}_{2} \times \mathrm{G}_{3}$ is given by $\operatorname{Stab}_{\mathrm{G}_{1}}(\mathrm{a}) \times \operatorname{Stab}_{\mathrm{G}_{2}}(\mathrm{~b}) \times \operatorname{Stab}_{\mathrm{G}_{3}}(\mathrm{c})$.

Theorem 2.5

Let G be group acting on set Ω. Then,
$\left|\operatorname{Orb}_{G}(a)\right|=\frac{|G|}{\left|G_{a}\right|}$, for all $a \in \Omega$
Theorem 2.6 [3] The suborbits of G are of the form $\Delta_{0}=\{0\}, \Delta_{1}=\{a \in \Omega \mid a \neq 0\}$.
Corollary 2.7 [3] Let G act on Ω. The subdegrees are of the form 1 and $(q-1)$; thus the rank of G is two.
Theorem 2.8 Let G act transitively on Ω and let suborbit $\Delta_{i},(i=0,1, \ldots, s-1)$ correspond to suborbital O_{i}. Then the suborbital graph Γ_{i} is undirected if Δ_{i} is self-paired and directed if Δ_{i} is not self-paired.

Theorem 2.9 A transitive action is said to be primitive if and only if each of the non-trivial suborbital graph is connected.

Theorem 2.10 The chromatic number of a bipartite graph is 2.
Theorem 2.11
even degree.
Theorem 2.12 [5] Let Γ be a suborbital graph of a transitive action. Then all disconnected components of Γ are isomorphic.

3. Main Results

Lemma 3.1 Let the group $G=\operatorname{Aff}(q)$ act on the set $\Omega=\left(0, \alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{\left(q_{1}-1\right)}\right)$. Then, $\operatorname{Stab}_{G}(0)$ is a cyclic group $C_{(q-1)}$.

Proof.

$$
\text { Let } \begin{align*}
\operatorname{Stab}_{G}(0) & =\{a x+b: a(0)+b=0, a \neq 0, a, b \in G(q)\} \\
& =\{(a x+b: b=0, a \neq 0), \forall a, b \in G(q)\} \\
& =\left\{\left(a x: a \in G F(q)^{*}\right)\right\}=C_{(q-1)} . \tag{2.1}
\end{align*}
$$

This can also be proved by a method applied by [3].
Proposition 3.2 Let $\operatorname{Aff}\left(q_{1}\right) \times \operatorname{Aff}\left(q_{2}\right)$ acts on $\Omega=\Omega_{1} \times \Omega_{2}=G F\left(q_{1}\right) \times G F\left(q_{2}\right)$. Then, $\operatorname{Stab}_{G}(0,0)$ is isomorphic to $C_{\left(q_{1}-1\right)} \times C_{\left(q_{2}-1\right)}$.

Proof. By Lemma 3.1, $\operatorname{Stab}_{G_{1}}(0)$ and $\operatorname{Stab}_{G_{2}}(0)$ are cyclic groups $C_{\left(q_{1}-1\right)}$ and $C_{\left(q_{2}-1\right)}$. It follows from theorem [1] that,
$\operatorname{Stab}_{G}(0)=\operatorname{Stab}_{G_{1}}(0) \times \operatorname{Stab}_{G_{2}}(0)=C_{\left(q_{1}-1\right)} \times C_{\left(q_{2}-1\right)}$.
Theorem 3.3 Suppose that $G=G_{1} \times G_{2}=\operatorname{Aff}\left(q_{1}\right) \times \operatorname{Aff}\left(q_{2}\right)$ acts on $\Omega=\Omega_{1} \times \Omega_{2}=\operatorname{GF}\left(q_{1}\right) \times G F\left(q_{2}\right)$. Then the rank is 4 and subdegree are $1,\left(q_{1}-1\right),\left(q_{2}-1\right)$ and $\left(q_{1}-1\right)\left(q_{2}-1\right)$.

Proof. Using Theorem[1] we have $\operatorname{Stab}_{G}(0,0)=\operatorname{Stab}_{G_{1}}(0) \times \operatorname{Stab}_{G_{2}}(0)=\left(q_{1}-1\right) \times\left(q_{2}-1\right)$. By Theorem 2.5, we have,
$\left|\operatorname{Orb}_{G}(0,0)\right|=\frac{|G|}{\left|\operatorname{Stab}_{G}(0,0)\right|}=\frac{q_{1}\left(q_{1}-1\right) \times q_{2}\left(q_{2}-1\right) .}{=\left(q_{1}-1\right) \times\left(q_{2}-1\right) .}=q_{1} \times q_{2} .=\Omega$. Thus transitive.
Suppose that $\mathrm{A}=\operatorname{Stab}_{G_{7}}(0), B=\operatorname{Stab}_{G_{2}}(0), \alpha$ be a primitive element in Ω_{7} and β be a primitive element in Ω_{2}. Then A-orbits in Ω_{1} are $\{0\}$ and $\{\alpha\}$ while B-orbits in Ω_{2} are $\{0\}$ and $\{\beta\}$, using Theorem [5] the suborbits of G on Ω are:
$\Delta_{0}=\operatorname{Orb}_{G}(0,0)=\{0\} \times\{0\}=\{(0,0)\}$.
Therefore, $\left|\Delta_{0}\right|=1$.
$\left.\Delta_{1}=\operatorname{Orb}_{G}(0, \beta)=\{0\} \times\left\{\beta, \beta^{2}, \beta^{3}, \ldots, \beta^{\left(q_{2}-1\right)}\right)\right\}$

$$
\begin{equation*}
=\left\{(0, \beta),\left(0, \beta^{2}\right),\left(0, \beta^{3}\right), \ldots,\left(0, \beta^{\left(q_{2}-1\right)}\right\} .\right. \tag{3.2}
\end{equation*}
$$

Therefore, $\quad\left|\Delta_{1}\right|=\left(q_{2}-1\right)$.

$$
\begin{align*}
\Delta_{2}=\operatorname{Orb}_{G}(\alpha, 0) & \left.=\left\{\alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{\left(q_{1}-1\right)}\right)\right\} \times\{0\} \\
& =\left\{(\alpha, 0),\left(\alpha^{2}, 0\right),\left(\alpha^{3}, 0\right), \ldots,\left(\alpha^{\left(q_{1}-1\right)}, 0\right)\right\} \tag{3.3}
\end{align*}
$$

Therefore, $\quad\left|\Delta_{2}\right|=\left(q_{1}-1\right)$.
$\left.\left.\Delta_{3}=\operatorname{Orb}_{G}(\alpha, \beta)=\left\{\alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{\left(q_{1}-1\right)}\right)\right\} \times\left\{\beta, \beta^{2}, \beta^{3}, \ldots, \beta^{\left(q_{2}-1\right)}\right)\right\}$
Therefore, $\left|\Delta_{3}\right|=\left(q_{1}-1\right)\left(q_{2}-1\right)$.
Hence rank is 4 and subdegree are $1,\left(q_{1}-1\right),\left(q_{2}-1\right)$ and $\left(q_{1}-1\right)\left(q_{2}-1\right)$.
Suppose that $\operatorname{Stab}_{G_{1 \times G_{2} \times G 3}}(a, b, c)$ acts on $\Omega_{1} \times \Omega_{2} \times \Omega_{3}$ and Δ is an orbit of $\operatorname{Stab}_{G_{1 \times G_{2} \times G 3}}(a, b, c)$ on
$\Omega_{1} \times \Omega_{2} \times \Omega_{3}$. The suborbital O corresponding to Δ is given by,

$$
\begin{align*}
O & =\left\{(g 1, g 2, g 3)(a, b, c),(g 1, g 2, g 3)(\alpha, \beta, \gamma):(\alpha, \beta, \gamma) \in \Delta,(g 1, g 2, g 3) \in G_{1} \times G_{2} \times G_{3}\right\} \\
& =\left\{(g 1(a), g 2(b), g 3(c)),(g 1(\alpha), g 2(\beta), g 3(\gamma)):(\alpha, \beta, \gamma) \in \Delta,(g 1, g 2, g 3) \in G_{1} \times G_{2} \times G_{3}\right\} . \tag{3.5}
\end{align*}
$$

The suborbital graph Γ corresponding to suborbital O is formed by taking $\Omega_{1} \times \Omega_{2} \times \Omega_{3}$ as the vertex set and directed edges from (p, q, r) to (s, t, u), if and only if $((p, q, r),(s, t, u)) \in O$. The suborbital graph corresponding to Δ_{0} is the null graph.

The construction of suborbital graphs corresponding to the action of $\operatorname{Aff}\left(q_{1}\right) \times \operatorname{Aff}\left(q_{2}\right)$ on $\operatorname{GF}\left(q_{1}\right) \times \operatorname{GF}\left(q_{2}\right)$ is as follows:

By Equations (3.1), (3.2), (3.3) and (3.4), it follows that $(0,0) \in \Delta_{0},(0, \beta) \in \Delta_{1},(\alpha, 0) \in \Delta_{2}$ and $(\alpha, \beta) \in \Delta_{3}$. By application of Equation (3.5), we obtain,

$$
\begin{align*}
O_{1} & =\{((g 1, g 2)(0,0),(g 1, g 2)(0, \beta): g 1, g 2 \in G \times G)\}=\{((g 1(0), g 2(0)),(g 1(0), g 2(\beta))\} \\
& =\{((p, q),(s, t)): p=s, q 6=t\} . \tag{3.6}\\
O_{2} & =\{((g 1, g 2)(0,0),(g 1, g 2)(\alpha, 0))\}=\{((g 1(0), g 2(0)),(g 1(\alpha), g 2(0)))\} \\
& =\{((p, q),(s, t)): p 6=s, q=t\} . \tag{3.7}\\
O_{3} & =\{((g 1, g 2)(0,0),(g 1, g 2)(\alpha, \beta))\}=\{((g 1(0), g 2(0)),(g 1(\alpha), g 2(\beta)))\} \\
& =\{((p, q),(s, t)): p 6=s, q 6=t\} . \tag{3.8}
\end{align*}
$$

Theorem 3.4 All the non-trivial graphs corresponding to this action are undirected.

Proof

By Equations (3.6) to (3.8), if $((p, q),(s, t)) \in O_{i},(i=1,2,3)$ then $\left.(s, t),(p, q)\right) \in O_{i}$.
Theorem 3.5 The suborbital graph Γ_{3} is Eulerian if q is odd.

Proof.

If q is odd, $\left|\Delta_{3}\right|=q-1$ and therefore by Theorem 2.11, Γ_{3} is Eulerian.
Lemma 3.6 Let $\operatorname{Comp}_{\Gamma_{i}}(0,0),(i=1,2,3)$ be the set of all vertices in the component containing $(0,0)$ in the suborbital graph Γ_{i}. Then,
$\operatorname{Comp}_{\Gamma_{1}}(0,0)=\left\{(0, x): x \in G F\left(q_{2}\right)\right\}$,
$\operatorname{Comp}_{\Gamma_{2}}(0,0)=\left\{(x, 0): x \in G F\left(q_{1}\right)\right\}$ and
$\operatorname{Comp}_{\Gamma_{3}}(0,0)=\left\{G F\left(q_{1}\right) \times G F\left(q_{2}\right)\right\}$.

Proof

Let $(a, b) \in \operatorname{Comp} \Gamma_{1}(0,0)$. Then there exist a path $(0,0) \rightarrow\left(a_{1}, b_{1}\right) \rightarrow \ldots \rightarrow\left(a_{i}-1, b_{i}-1\right)=(a, b)$. It follows from Equation (3.6) that, $0=a_{1}=a_{2}=\ldots=a$. Therefore,
$(a, b) \in\left\{(0, x): x \in G F\left(q_{2}\right)\right\}$. This implies that,
$\left\{\operatorname{Comp}_{\Gamma 1}(0,0) \subseteq(0, x): x \in G F\left(q_{2}\right)\right\}$
Let $(0, b) \in\left\{(0, x): x \in G F\left(q_{2}\right)\right\}$. If $b=0$, then $(0, b)=(0,0) \in \operatorname{Comp}_{\Gamma_{1}}(0,0)$. If $b \neq 0$, then by Equation (3.6) there exist an edge $(0,0) \rightarrow(0, b) \in \Gamma_{1}$. Therefore, $(0, b) \in \operatorname{Comp}_{\Gamma_{1}}(0,0)$. This implies that, $\{(0, x): x \in$ $\left.G F\left(q_{2}\right) \subseteq \operatorname{Comp}_{\Gamma_{1}}(0,0)\right\}$.
From Equations (3.12) and (3.13) we get Equation(3.9). Equation (3.10) is proved in a similar way as Equation(3.9).

Let $(x, y) \in G F\left(q_{1}\right) \times G F\left(q_{2}\right)$. Consider the vertex (a, b), where $x \neq a \in G F(q)^{\star} \backslash\{a\}$ and $y \neq b \in$ $G F(q)^{\star} \backslash\{b\}$. By Equation (3.8), (a, b) is adjacent to both $(0,0)$ and (x, y). It follows that $(x, y) \in \operatorname{Comp}_{\Gamma_{3}}(0,0)$, hence $G F\left(q_{1}\right) \times G F\left(q_{2}\right) \subseteq \operatorname{Comp}_{\Gamma_{3}}(0,0)$. But $G F\left(q_{1}\right) \times G F\left(q_{2}\right)$ is the set of all the vertices in Γ_{3}, thus $\operatorname{Comp}_{\Gamma_{3}}(0,0) \subseteq G F\left(q_{1}\right) \times G F\left(q_{2}\right)$. Thus we get Equation (3.12).

Theorem 3.7 The graphs Γ_{1}, Γ_{2} and Γ_{3} has q_{1}, q_{2}, and 1 components respectively, where $q_{1}, q_{2}>2$.

Proof.

By Theorem [5], all the components in a suborbital graph are isomorphic. Applying Lemma 3.6, $\left|\operatorname{Comp}_{\Gamma_{1}}(0,0)\right|=q_{1},\left|\operatorname{Comp}_{\Gamma_{2}}(0,0)\right|=q_{2},\left|\operatorname{Comp}_{\Gamma_{3}}(0,0)\right|=q_{7} q_{2}$. Since each of the graphs has $q_{1} q_{2}$ vertices, there are q_{1} components for Γ_{1}, q_{2} components for Γ_{2} and 1 component for Γ_{3}.
Lemma 3.8 For the action of $\operatorname{Aff}(2) \times \operatorname{Aff}\left(q_{2}\right)$ on $\operatorname{GF}(2) \times G F\left(q_{2}\right)$, where $q_{2}>3, \Gamma_{3}$ is bipartite.

Proof.

Let $V\left(\Gamma_{3}\right)$ be the vertices corresponding to Γ_{3}, then the vertices of G can be partitioned into two subsets V_{1} and V_{2} such that, $V_{1}=\left\{(0, b): b \in G F\left(q_{2}\right)\right\}$ and $V_{2}=\left\{(1, b): b \in G F\left(q_{2}\right)\right\}$. Thus from Equation (3.8), the edges move from a vertex in V_{1} to a vertex in V_{2} and no edge in Γ_{3} joining vertices in the same subset. Hence from Definition 2.3, Γ_{3} is bipartite.

Corollary 3.9 The chromatic number of a connected suborbital graph Γ_{3} of $\operatorname{Aff}(2) \times \operatorname{Aff}\left(q_{2}\right)$ acting on $G F(2) \times G F\left(q_{2}\right)$, where $q_{2} \geq 3$ is 2 .

Proof.

By Lemma 3.8, Γ_{3} is bipartite and using Theorem 2.10, chromatic number of a bipartite graph is 2.
Theorem 3.10 The suborbital graph Γ_{3} corresponding to the action of $\operatorname{Aff}(2) \times \operatorname{Aff}\left(q_{2}\right)$ on $G F(2) \times$ $G F\left(q_{2}\right)$, where $q_{2}>3$, has a girth of either 4 or 6 .

Proof.

Let Γ_{3} be bipartite and a be a primitive element in $G F(2)$, If $q_{2}>3,(0,0) \rightarrow(1, a) \rightarrow\left(0, a^{2}\right) \rightarrow\left(1, a^{3}\right) \rightarrow(0,0)$ and $(0,0) \rightarrow\left(1, a^{2}\right) \rightarrow\left(0, a^{2}\right) \rightarrow\left(1, a^{3}\right) \rightarrow\left(0, a^{3}\right) \rightarrow\left(1, a^{4}\right) \rightarrow(0,0)$, are all circuits of even length by Equation(3.8). Thus the girth is 4 and 6 respectively since 4 and 6 are the smallest length of a cycle respectively. Note that if $q_{2}=3$, the results is as shown in Fig 3.6

Theorem 3.11 The suborbital graph Γ_{1} and Γ_{2} corresponding to the action of $\operatorname{Aff}\left(q_{1}\right) \times \operatorname{Aff}\left(q_{2}\right)$ on $G F\left(q_{1}\right) \times G F\left(q_{2}\right)$, has a girth of 0 when $q_{1}=q_{2}=2$ and a girth of 3 when $q_{1}=q_{2}>2$.

Proof.

Note that when $q_{1}=q_{2}=2$,the results follows from Fig.1, Fig 2 and Fig 3. If $q_{1}=q_{2}>2$,

$$
(0,0) \rightarrow(0, b) \rightarrow\left(0, b^{2}\right) \rightarrow(0,0) \in \Gamma_{7}
$$

$(0,0) \rightarrow(a, 0) \rightarrow\left(a^{2}, 0\right) \rightarrow(0,0) \in \Gamma_{2}$,
$(0,0) \rightarrow(\alpha, \beta) \rightarrow\left(\alpha^{2}, \beta^{2}\right) \rightarrow(0,0) \in \Gamma_{3}$, by Equation (3.6) to (3.8). Thus the girth is 3 since 3 is the smallest length of a cycle.

Corollary 3.12 The action of $\operatorname{Aff}\left(q_{1}\right) \times \operatorname{Aff}\left(q_{2}\right)$ on $\operatorname{GF}\left(q_{1}\right) \times G F\left(q_{2}\right)$ is imprimitive.

Proof.

From the Theorem 3.7, there are some non-trivial suborbital graphs which are disconnected. Thus from Theorem 2.9 the action is imprimitive.

Example 3.1 Let $G=\operatorname{Aff(2)\times \operatorname {Aff}(2)\text {acton}\Omega =GF(2)\times GF(2)\text {.Thesuborbital}O_{1},O_{2}\text {and}O_{3},~(2)}$ corresponding to the suborbit Δ_{1}, Δ_{2} and Δ_{3} is,

$$
\begin{align*}
O_{1} & =\left\{\left(\left(g_{1}, g_{2}\right)(0,0),\left(g_{1}, g_{2}\right)(0,1)\right):\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}\right\} \\
& =\left\{\left(\left(g_{1}(0), g_{2}(0)\right),\left(g_{1}(0), g_{2}(1)\right):\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}\right\}\right. \\
& =(p, q),(s, t): p=s, q \neq t) . \tag{3.13}\\
O_{2} & =\left\{\left(\left(g_{1}, g_{2}\right)(0,0),\left(g_{1}, g_{2}\right)(1,0)\right):\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}\right\} \\
& =\left\{\left(\left(g_{1}(0), g_{2}(0)\right),\left(g_{1}(1), g_{2}(0)\right):\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}\right\}\right. \\
& =(p, q),(s, t): p \neq s, q=t) . \tag{3.14}\\
O_{3} & =\left\{\left(\left(g_{1}, g_{2}\right)(0,0),\left(g_{1}, g_{2}\right)(1,1)\right):\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}\right\} \\
& =\left\{\left(\left(g_{1}(0), g_{2}(0)\right),\left(g_{1}(1), g_{2}(1)\right):\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}\right\}\right. \\
& =(p, q),(s, t): p \neq s, q \neq t) . \tag{3.15}
\end{align*}
$$

Using Equations (3.13), (3.14) and (3.15), the suborbital graphs Γ_{1}, Γ_{2} and Γ_{3} will be constructed as in Fig. 1, Fig. 2 and Fig. 3 respectively.

Figure 3.1: Suborbital graph Γ_{1} corresponding to the action of $\operatorname{Aff}(2) \times \operatorname{Aff}(2)$ on $G F(2) \times G F(2)$

Figure 3.2: Suborbital graph Γ_{2} corresponding to the action of $\operatorname{Aff}(2) \times \operatorname{Aff}(2)$ on $G F(2) \times G F(2)$

Figure 3.3: Suborbital graph Γ_{3} corresponding to the action of $\operatorname{Aff}(2) \times \operatorname{Aff}(2)$ on $G F(2) \times G F(2)$
The suborbital graph Γ_{1}, Γ_{2} and Γ_{3} are all undirected, regular of degree 1 , has a girth of 0 and they are disconnected each with 2 components and each component has diameter 1

Example 3.2 Let $G=\operatorname{Aff(2)} \times \operatorname{Aff}(3)$ act on $\Omega=G F(2) \times G F(3)$. The suborbital O_{1}, O_{2} and O_{3} corresponding to the suborbit Δ_{1}, Δ_{2} and Δ_{3} is,

$$
\begin{align*}
O_{1} & =\left\{\left(\left(g_{1}, g_{2}\right)(0,0),\left(g_{1}, g_{2}\right)(0,1)\right):\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}\right\} \\
& =\left\{\left(\left(g_{1}(0), g_{2}(0)\right),\left(g_{1}(0), g_{2}(1)\right):\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}\right\}\right. \\
& =(p, q),(s, t): p=s, q \neq t) . \tag{3.16}\\
O_{2} & =\left\{\left(\left(g_{1}, g_{2}\right)(0,0),\left(g_{1}, g_{2}\right)(1,0)\right):\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}\right\} \\
& =\left\{\left(\left(g_{1}(0), g_{2}(0)\right),\left(g_{1}(1), g_{2}(0)\right):\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}\right\}\right. \\
& =(p, q),(s, t): p \neq s, q=t) . \tag{3.17}\\
O_{3} & =\left\{\left(\left(g_{1}, g_{2}\right)(0,0),\left(g_{1}, g_{2}\right)(1,1)\right):\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}\right\} \\
& =\left\{\left(\left(g_{1}(0), g_{2}(0)\right),\left(g_{1}(1), g_{2}(1)\right):\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}\right\}\right. \\
& =(p, q),(s, t): p \neq s, q \neq t) . \tag{3.18}
\end{align*}
$$

Using Equations (3.16), (3.17) and (3.18), the suborbital graphs Γ_{1}, Γ_{2} and Γ_{3} will be constructed as in Fig. 4, Fig. 5 and Fig. 6 respectively.

Figure 3.4: Suborbital graph Γ_{1} corresponding to the action of $\operatorname{Aff}(2) \times \operatorname{Aff}(3)$ on $G F(2) \times G F(3)$
The suborbital graph Γ_{7} is undirected, regular of degree 2, has a girth of 3 and it is disconnected. It has 2 connected components each with a diameter of 1 .

Figure 3.5: Suborbital graph Γ_{2} corresponding to the action of $\operatorname{Aff}(2) \times \operatorname{Aff}(3)$ on $G F(2) \times G F(3)$
The suborbital graph Γ_{1} is undirected, regular of degree 2, has a girth of 3 and it is disconnected. It has 2 connected components each with a diameter of 1 .

Figure 3.6: Suborbital graph Γ_{3} corresponding to the action of $\operatorname{Aff}(2) \times \operatorname{Aff}(3)$ on $G F(2) \times G F(3)$
The suborbital graph Γ_{3} is undirected, connected, regular of degree 2 hence Eurelian, has a girth of 6 and a diameter of 2.

Conclusion

The subdegrees of the product action of affine groups $\operatorname{Aff}\left(q_{1}\right) \times \operatorname{Aff}\left(q_{2}\right)$ acting on $G F\left(q_{1}\right) \times G F\left(q_{2}\right)$. is $1,\left(q_{1}-1\right),\left(q_{2}-1\right)$ and $\left(q_{1}-1\right)\left(q_{2}-1\right)$. The number of elements in all the four G-orbit is,
$1+\left(q_{1}-1\right)+\left(q_{2}-1\right)+\left(q_{1}-1\right)\left(q_{2}-1\right)=q_{1} q_{2}=|\Omega|$. Thus the rank is 4.

Author Biographies

Siahi Maxwell Agwanda, Kenyatta University, Nairobi, Kenya

Department of Mathematics and Actuarial Science

Patrick Kimani, University of Kabianga, Kericho, Kenya

Department of Mathematics and Computer science, University of Kabianga, P.O. Box 2030-20200, Kericho
Ireri Kamuti, Kenyatta University, Nairobi, Kenya
Department of Mathematics and Actuarial Science

REFERNCES

[1] Armstrong, M. A. (2013). Groups and symmetry. Springer Science and Business Media.
[2] Kamuti, I. N., Inyangala, E. B., \& Rimberia, J. K. (2012). Action of on and the Corresponding Suborbital Graphs. In International Mathematical Forum 7(30), 1483-1490.
[3] Kangogo, M.R. (2015). Ranks and Subdegrees of the cyclic group of affine group and the associated suborbital graphs. Ph.D., Mathematical studies.
[4] Magero, F. B. (2015). Cycle indices, sub degrees and suborbital graphs of $P S L(2, q)$ acting on the cosets of some of its subgroups. Ph.d, Mathematical studies
[5] Mizzi, J. L. R., \& Scapellato, R. (2011). Two-fold automorphisms of graphs. Australasian Journal of Combinatorics, 49, 165-176.

