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1 Introduction

Integral equations appear in many applications in describing numerous real world problems (see, for instance,

([30], [31], [5], [18]), and references therein).

Also many useful applications in describing problems of the real world and numerous events, which appear in physics,
engineering, mechanics, biology, etc. See for example [1, 4, 8, 13, 15] can be depicted and demonstrated by methods of
non-linear functional integral equations (for example, we refer to [25, 26, 28]). Apart from that, integral equations are
often investigated in research papers and monographs (cf. [6, 12, 16, 18, 29, 32]) and the references cited therein.

2 Preliminaries

We will collect in this section some definitions and basic results which will be used further on throughout the paper.
First, we denote Lp(U) (U ∈ RN ) as the space of Lebesgue integrable functions on U with the standard norm
‖ x ‖Lp(U)=

(∫
U

| x(t) |p dt
1
p .

Theorem 2.1 [1, 8, 9]

Let F be a bounded set in Lp(RN ) with 1 ≤ p <∞. The closure of F in Lp(RN ) is compact if and only if

lim
h→0
‖ τhf − f ‖Lp(RN )= 0 uniformly in f ∈ F,

where τhf(x) = f(x+ h) for all x, h ∈ RN . Also for ε > 0 there is a bounded and measurable subset Ω ⊂ (RN ) such
that

‖ f ‖(RN\Ω)< ε forall f ∈ F.

Next, we recall the concept of measure of noncompactness, let E be an infinite dimensional Banach space with norm
‖.‖ and zero element θ. Denote byME the family of all nonempty and bounded subsets of E , NE and NW

E

the family of all nonempty relatively compact

and weakly relatively compact sets, respectively. The symbols X̄ and ConvX stand for the closure and closed convex
hull of a subset X of E, respectively. We use the standard notation X + Y and λX for algebraic operations on sets,

while,

we denote Br = B(θ, r) the closed ball centered at θ and with radius r.

Definition 2.1 (Measure of noncompactness)

[12]

A mapping µ :ME → [0,∞) is said to be a measure of noncompactness in E if it satisfies the following

conditions:
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(1) the family kerµ = {X ∈ME : µ(X) = 0} is nonempty and

kerµ ⊂ NE, where kerµ is called the kernel of the

measure µ.

(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

(3) µ(ConvX) = µ(X) = µ(X).

(4) µ[λX + (1− λ)Y ] ≤ λµ(X) + (1− λ)µ(Y ), λ ∈ [0, 1].

(5) If Xn ∈ME , Xn = X̄n and

Xn+1 ⊂ Xn for n = 1, 2, . . . and if

limn→∞ µ(Xn) = 0, then

X∞ =
⋂∞
n=1Xn 6= φ.

Theorem 2.2 [1]

Suppose 1 ≤ p <∞ and X is
a bounded subset of (RN ). For x ∈ X and ε > 0

wT (x, ε) = sup{‖ τhx− x ‖Lp(BT ): ‖h‖RN < ε},

wT (X, ε) = sup{wT (x, ε) : x ∈ X},

wT (X) = limε→0 w
T (X, ε),

w(X)= limT→∞ wT (X),

d(X)= limT→∞ sup{‖x‖Lp(RN\BT ) : x ∈ X},

where BT = {a ∈ RN : ‖a‖RN ≤ T}. Then
µ(X) = w(X) + d(X)

is a measure of non compactness on Lp(RN ).

At the end of this section, we recall the fixed point theorem due to Darbo which enables us to prove the existence
theorem for solutions of a several integral equations considered in nonlinear analysis. To quote this theorem we need
the following definitions.

76



Journal of Advances in Mathematics Vol 19 (2020) ISSN: 2347-1921 https://rajpub.com/index.php/jam

Definition 2.2 [12]

The function f : I × R→ R satisfies Carathéodory condition if it satisfies the following two conditions:

(1) f is measurable in t ∈ I for any x ∈ R.

(2) f is continuous in x ∈ R for almost all t ∈ I.

Definition 2.3 (Darbo condition)[11]

Let Ω be a nonempty subset of a Banach space E and let A : Ω→ E be a continuous operator which transforms bounded
sets onto bounded ones. We say that A satisfies the Darbo condition (with a constant k ≥ 0) with respect to a measure
of noncompactness µ if for any bounded subset X of

Ω, we have µ(AX) ≤ kµ(X).

Note that, if A satisfies the Darbo condition with k < 1, then it is called a contraction operator with respect to µ.

Theorem 2.3 (Darbo fixed point theorem)[7]

Let Ω be a nonempty, bounded, closed and convex subset of E and let f : Ω→ Ω be a continuous transformation which
is a contraction with respect to the measure of noncompactness µ, i.e. there exists a constant k ∈ [0, 1) such that

µ(fX) ≤ kµ(X),

for any nonempty subset X of Ω. Then f has at least one fixed point in the set Ω.

3 Main result

This section is devoted to discuss the solvability of the following nonlinear functional integral equation

u(x) = f(x) + g1(x, u(x)) + h1

(
x, g2(x, u(x)),

∫
RN

h2(x, y, (Qu)(y))dy
)
. (1)

Now, we will try to assume some assumptions under which we can prove our existence theorem.
Assume the following conditions are satisfied:

(i) f ∈ Lp(RN );

(ii) gi : RN × R→ R satisfy Carathéodory condition

(i.e. measurable in t for all x ∈ RN , and continuous in

x for all t ∈ R ) and there exists a constant l ∈ [0, 1) and ai ∈ Lp(RN )

such that
| gi(x, u)− gi(y, v) |≤ |ai(x)− ai(y) |+ l |u− v|,

for any u, v ∈ R and almost all x, y ∈ RN where i = 1, 2.
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(iii) h1 : RN × R× R→ R such that
| h1(x, y, z) |≤ a(x, y) + b1|z|,

for all x, y ∈ RN , a ∈ Lq(RN ), where | a(x, y) |≤ a3(x) + b2 | y | where b1, b2 ≥ 0 are constant and a3 ∈ Lq(RN ).

(iv) | h2(x, y, u) |≤ k(x, y){a4(y) + b | u |}, where h2 : RN × RN × R→ R, b > 0, a4 ∈ Lp(RN ) and k(x, y) satisfies
Carathéodory condition k : RN × RN → R and there exist f

1, f2 ∈ Lp(RN ) and f∗ ∈ Lq(RN ) ( 1
p + 1

q = 1) such that | k(x, y) |≤ f∗(y)f1(x), for all x, y ∈ RN and

| k(x1, y)− k(x2, y) |≤ f∗(y)|f2(x1)− f2(x2)|.

(v) The operator Q is bounded linear operator and continuously maps the space Lp(RN ) into itself. Moreover, there exists
a nondecreasing function ψ : R+ → R+ such that

‖ Qu ‖Lp(RN )≤ ψ(‖ u ‖Lp(RN ))

for any u ∈ Lp(RN ).

(vi) there exists a positive constant r0 such that

‖ f ‖Lp(RN ) +lr0+ ‖ g1(x, 0) ‖Lp(RN ) + ‖ a3 ‖Lp(RN ) +b2lr0

+ b2 ‖ g2(x, 0) ‖Lp(RN ) +b1 ‖ K ‖1‖ a4 ‖Lp(RN ) +bb1 ‖ K ‖1 ψ(r0)

≤ r0,where
(Ku)(t) =

∫
RN

k(x, y)u(y)dy

and
‖ K ‖1= {Sup ‖ Ku ‖Lp(RN ) :‖ u ‖≤ r

0}.

Remark 3.1 The linear fredholm integral operator K : Lp(RN )→ Lp(RN ) is a continuous operator and ‖ K ‖1≤ ∞.

Theorem 3.1 If the above assumptions (i)-(vi) are satisfied then the functional integral equation 1 has at least one
solution in Lp(RN ).

Proof: First of all, we define the operator F : Lp(RN )→ Lp(RN ) by

(Fu)(x) = f(x) + g1(x, u(x)) + h1

(
x, g2(x, u(x)),

∫
RN

h2(x, y, (Qu)(y))dy
)
,

and (GU)(x) = h1
(
x, g2(x, u(x)),

∫
RN h2(x, y, (Qu)(y))dy

)
. Now Fu is measurable for anyu ∈ Lp(RN ), we will prove

that Fu ∈ Lp(RN ) for any u ∈ Lp(RN ) as G : Lp(RN )→ Lp(RN ) using the above conditions, we have the following
inequality

| (Gu)(x) |=
∣∣h1
(
x, g2(x, u(x)),

∫
RN h2(x, y, (Qu)(y))dy

)∣∣

78



Journal of Advances in Mathematics Vol 19 (2020) ISSN: 2347-1921 https://rajpub.com/index.php/jam

≤ a(x, g2(x, u(x))) + b1
∣∣∫

RN h2(x, y, (Qu)(y))dy
∣∣

≤ a3(x) + b2 | g2(x, u(x)) | +b1
∫
RN | h2(x, y, (Qu)(y)) | dy

≤ a3(x) + b2 | g2(x, u(x))− g2(x, 0) | +b2 | g2(x, 0) |

+b1
∫
RN k(x, y)[a4(y) + b | (Qu)(y) |]dy

≤ a3(x) + b2 | a2(x)− a2(x) | +b2l | u | +b2 | g2(x, 0) |

+b1
∫
RN k(x, y)a4(y)dy + bb1

∫
RN k(x, y) | (Qu)(y) | dy

≤ a3(x) + b2l | u | +b2 | g2(x, 0) | +b1
∫
RN k(x, y)a4(y)dy

+ b b1
∫
RN k(x, y) | (Qu)(y) | dy,

‖ Gu ‖Lp(RN )≤‖ a3 ‖Lp(RN ) +b2l ‖ u ‖Lp(RN ) +b2 ‖ g2(x, 0) ‖Lp(RN )

+b1 ‖ K ‖1‖ a4 ‖Lp(RN ) +bb1 ‖ K ‖1‖ Qu ‖Lp(RN )

< ∞,

then from assumptions(i), (ii), F (u) ∈ Lp(RN ) and F is will defined

| (Fu)(x) |≤| f(x) | +

| g1(x, u(x)) | + | Gx |

≤| f(x) | +l | u | + | g1(x, 0) | + | Gx |

‖ Fu ‖Lp(RN )≤‖ f ‖Lp(RN ) +l ‖ u ‖Lp(RN ) + ‖ g1(x, 0) ‖Lp(RN ) + ‖ G ‖Lp(RN )

≤‖ f ‖Lp(RN ) +l ‖ u ‖Lp(RN ) + ‖ g1(x, 0) ‖Lp(RN ) + ‖ a3 ‖Lp(RN )

+ b2l ‖ u ‖Lp(RN ) +b2 ‖ g2(x, 0) ‖Lp(RN )

+b1 ‖ K ‖1‖ a4 ‖Lp(RN ) +bb1 ‖ K ‖1‖ Qu ‖Lp(RN )

< ∞.

Next, we show that

F : Br0 → Br0 where
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Br0 is closed ball of radius r0 is constant, let u ∈ Br0 where (‖ u ‖≤ r0)

‖ Fu ‖Lp(RN ) ≤ ‖ f ‖Lp(RN ) +lr0+ ‖ g1(x, 0) ‖Lp(RN ) + ‖ a3 ‖Lp(RN ) +b2lr0

+ b2 ‖ g2(x, 0) ‖Lp(RN ) +b1 ‖ K ‖1‖ a4 ‖Lp(RN )

+ bb1 ‖ K ‖1 ψ(r0)

≤ r0.

Now, we show that w0(FX) ≤ l(b2 + 1)w0(X) for any nonempty set X ⊂ Br0 . To do this, we fix arbitrary T > 0 and
ε > 0, let us choose u ∈ X and for x, h ∈ BT with ‖ h ‖RN≤ ε, we have

|(Gu)(x+h)-(Gu)(x)|

=

∣∣∣∣∣ h1
(
x+ h, g2(x+ h, u(x+ h)),

∫
RN h2(x+ h, y, (Qu)(y))dy

)

- h1
(
x, g2(x, u(x)),

∫
RN h2(x, y, (Qu)(y))dy

) ∣∣∣∣∣
≤| a3(x+ h) + b2 | g2(x+ h, u(x+ h)) | −a3(x)− b2 | g2(x, u(x)) ||

+b1(|
∫
RN h2(x+ h, y, (Qu)(y))dy | − |

∫
RN h2(x, y, (Qu)(y))dy |)

≤| a3(x+ h)− a3(x) | +b2 | g2(x+ h, u(x+ h))− g2(x, u(x)) |

+b1

(∫
RN k(x+ h, y)[a4(y) + b | (Qu)(y) |]dy

-
∫
RN k(x, y)

×[a4(y) + b | (Qu)(y) |]dy
)

≤| a3(x+ h)− a3(x) | +b2 | g2(x+ h, u(x+ h))− g2(x, u(x)) |

+b1
(∫

RN | k(x+ h, y)− k(x, y) | [a4(y) + b | (Qu)(y) |]dy
)

≤| a3(x+ h)− a3(x) | +b2 | g2(x+ h, u(x+ h))− g2(x+ h, u(x)) |

+b2 | g2(x+ h, u(x))− g2(x, u(x)) | +b1
∫
RN f∗(y)(| f2(x+ h)− f2(x) |)

×[a4(y) + b | (Qu)(y) |]dy

≤| a3(x+ h)− a3(x) | +b2l | u(x+ h)− u(x) | +b2(| a2(x+ h)− a2(x) |

+ b2l | u(x)− u(x) |) + b1
∫
RN f∗(y) | f2(x+ h)− f2(x) | a4(y)dy

+ b b1
∫
RN f∗(y) | f2(x+ h)− f2(x) || (Qu)(y) | dy.
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‖τhGu − Gu‖Lp =
(∫

BT

|(Gu)(x+ h)− (Gu)(x)|pdx
) 1

p

≤
(∫
BT | a3(x+ h)− a3(x) |p dx

) 1
p + lb2

(∫
BT |u(x+ h)− u(x)|pdx

) 1
p

+
(∫
BT b2 | a2(x+ h)− a2(x) |p dx

) 1
p

+b1[∫
BT

(∫
RN | f∗(y) |q a4(y)|f2(x+ h)− f2(x)|q)|a2(y)|qdy

) p
q

dx

] 1
p

+ bb1

[∫
BT

(∫
RN

|f∗(y)|q|f2(x+ h)− f2(x)|q|(Qu)(y)|qdy
) p

q

dx

] 1
p

‖τhGu−Gu‖Lp

≤ ‖τha3 − a3‖Lp(BT ) + lb2‖τhu− u‖Lp(BT ) + b2‖τha2 − a2‖Lp(BT )

+b1‖f∗‖Lq(RN )

×‖τhf2 − f2‖Lp(BT )‖a4‖Lp(RN )

+b b1‖f∗‖

LqRN )‖τhf2 − f2‖Lp(BT )‖Qu‖Lp(RN )

≤ wT (a3, ε) + lb2w
T (u, ε) + b2w

T (a2, ε)

+b1w
T (f2, ε)‖f∗‖Lq(RN )‖a4‖Lp(RN ) + bb1‖f∗‖Lq(RN )

wT (f2, ε)ψ(‖u‖)Lp(RN ).

| (Fu)(x+ h)− (Fu)(x) |
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≤| f(x+ h)− f(x) | + | g1(x+ h, u(x+ h))− g1(x, u(x)) |

+| (Gu)(x+ h)− (Gu)(x) |

≤| f(x+ h)− f(x) | + | g1(x+ h, u(x+ h))− g1(x+ h, u(x)) |

+| g1(x+ h, u(x))− g(x, u(x)) | + | (Gu)(x+ h)− (Gu)(x) |

≤| f(x+ h)− f(x) | + | a1(x+ h)− a1(x) | +l | u(x+ h)− u(x) |

+ | (Gu)(x+ h)− (Gu)(x) |

‖τhFu− Fu‖Lp ≤ (
∫
BT | f(x+ h)− f(x) |p dx)

1
p + l(

∫
BT |u(x+ h)− u(x)|pdx)

1
p

+

(
∫
BT | a1(x+ h)− a1(x) |p dx)

1
p + ‖τhGu−Gu‖Lp(BT ))

≤ ‖τhf − f‖Lp(BT ) + l‖τhu− u‖Lp(BT ) + |τha1 − a1‖Lp(BT )

+‖τhG−G‖Lp(BT ),

wT (Fx, ε) ≤ wT (f, ε) + lwT (u, ε) + wT (a1, ε) + wT (a3, ε) + lb2w
T (u, ε)

+ wT (a2, ε) + b1w
T (f2, ε)‖f∗‖Lq(RN )‖a4‖Lp(RN )

+ bb1‖f∗‖Lq(RN )

wT (f2, ε)ψ(‖u‖)Lp(RN ).

Thus, we obtain

wT (FX, ε) ≤ wT (f, ε) + lwT (X, ε) + wT (a1, ε) + wT (a3, ε) + lb2w
T (u, ε)

+ wT (a2, ε) + b1w
T (f2, ε)‖f∗‖Lq(RN )‖a4‖Lp(RN )

+ bb1‖f∗‖Lq(RN )

wT (f2, ε)ψ(r0).

Also, we have wT (f2, ε) ,wT (f, ε), and wT (ai, ε)→ 0 as ε→∞ where i = 1, 2, 3

then, we obtain
w(FX) ≤ l(b2 + 1)w(X), where l(b2 + 1) ≤ 1. (-13)
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Next, let us fix an arbitrary number T > 0, then taking into account our assumptions,

for an arbitrary function u ∈ X. We have

(
∫
RN

\BT |(Fu)(x)|pdx)
1
p ≤

(∫
RN\BT |f(x)|pdx

) 1
p +

(∫
RN\BT |g1(x, u(x))|pdx

) 1
p

+
(∫

RN\BT

∣∣∣∣∣h1
(
x, g2(x, u(x)),

∫
RN h2(x, y, (Qu)(y))dy

) ∣∣∣∣∣
p

dx

) 1
p

≤
(∫

RN\BT |f(x)|pdx
) 1

p +
(∫

RN\BT |g1(x, u(x))− g1(x, 0)|pdx
) 1

p

+
(∫

RN\BT |g1(x, 0)|pdx
) 1

p

+
(∫

RN\BT |a3(x) + b2 | g2(x, u(x)) | +b1
∫
RN | h2(x, y, (Qu)(y))dy | |pdx

) 1
p

≤
(∫

RN\BT |f(x)|pdx
) 1

p + l
(∫

RN\BT |u(x)|pdx
) 1

p +
(∫

RN\BT |g1(x, 0)|pdx
) 1

p

+
(∫

RN\BT |a3(x)|pdx
) 1

p + b2l
(∫

RN\BT |u(x)|pdx
) 1

p + b2

(∫
RN\BT |g2(x, 0)|pdx

) 1
p

+

b1

(∫
RN\BT |(

∫
RN |k(x, y)| × [a4(y) + b|(Qu)(y)|]dy)|pdx

) 1
p

≤
(∫

RN\BT |f(x)|pdx
) 1

p + l
(∫

RN\BT |u(x)|pdx
) 1

p +
(∫

RN\BT |g1(x, 0)|pdx
) 1

p

+
(∫

RN\BT |a3(x)|pdx
) 1

p + b2l
(∫

RN\BT |u(x)|pdx
) 1

p

+ b2

(∫
RN\BT |g2(x, 0)|pdx

) 1
p + b1

(∫
RN\BT (

∫
RN |k(x, y)|q|a4(y)|qdy

) p
q

dx)
1
p
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+ bb1(
∫
RN\BT

(
∫
RN

|k(x, y)|q|(Qu)(y)|qdy)
p
q dx)

1
p

≤ ‖f‖Lp(RN\BT ) + l ‖ u ‖Lp(RN\BT ) + ‖ g1(., 0) ‖Lp(RN\BT )

+ ‖a3‖Lp(RN\BT ) + b2l‖u‖Lp(RN\BT ) + b2‖g2(., 0)‖Lp(RN\BT )

+b1

‖ f∗ ‖Lq(RN ) . ‖ f1 ‖Lp(RN\BT ) .(‖ a4 ‖Lp(RN\BT ) +bψ(‖u‖)Lp(RN )).

Also we have ‖f‖Lp(RN\BT ), ‖ gi(., 0) ‖Lp(RN\BT ),

‖ f1 ‖Lp(RN\BT ), ‖a3‖Lp(RN\BT ) → 0

as T →∞ where i = 1, 2
and hence we obtain that

d(FX) ≤ l(b2 + 1)d(X). (-16)

Consequentially we infer from equation -13, -16

w0(FX) ≤ l(b2 + 1)w0(X),

so, the operator F satisfies all conditions of Darbo fixed point theorem, which enables us to deduce that F has at least
one solution inLp(RN ) . Thus the proof is finished.

Next, we will need the following theorem that help us in a coming example.

Theorem 3.2 [4]

Let Ω ⊆ RN be a measure space and suppose k : Ω × Ω → R is a measurable function for which there is constant
C > 0 such that

∫
I

|k(x, y)|dx ≤ C a.e. y ∈ Ω

and ∫
I

|k(x, y)|dy ≤ C a.e. x ∈ Ω.

If K : Lp(Ω)

→ Lp(Ω) is defined by

(Kf)(x) =
∫

Ω
f(y) dy,

then K is a bounded and continuous operator and ‖K‖1 ≤ C.
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Example: consider the integral equation

(y2 1+y2
1+2e−|u(x)|u(x))dx,

where
x = (x1, x2) ∈ R2,

and ‖ x ‖ is the Euclidean norm. We study the solvability of this integral equation in the space Lp(R2) for p, q > 2.
Letf(x) = e−x

2 , g1(x, u(x)) = sinu
‖x‖+4 ,

h2(x, y, (Qu)(y)) = e−(|x1|+|y1|)

(|x2|+3)2(|y2|+2)2 ( y2
1+y2

1
+ 2e−|u(x)|u(x)),

a(x, y) = e−x
2 + sinu

‖x‖+4 with b1 = 1
8 , a3(x) = e−x

2where a3 ∈ Lp(R2) such that b2 = 1, g2(x, u(x)) = sinu
‖x‖+4 .

Hence the norm
‖ f ‖Lp(R2)= (π

p
)

1
p .

Next the functions gi(x, u(x)), i = 1, 2 satisfy the assumption(ii) with ai(x) = 1
‖x‖+4 , l = 1

4 , indeed

|gi(x, u)− gi(y, v)| = | sin u
‖ x ‖ +4 −

sin v
‖ y ‖ +4 |

≤ | 1
‖ x ‖ +4 −

1
‖ y ‖ +4 || sin u | +

1
‖ y ‖ +4 | sin u− sin v |

≤ | 1
‖ x ‖ +4 −

1
‖ y ‖ +4 |+

1
4 | u− v |

= | ai(x)− ai(y) | +l | u− v |

where ai(x) ∈ Lp(R2) with norm

‖ ai ‖Lp(R2)=
(

4π(2)1−p

(p− 1)(p− 2)

) 1
p

,

where a4 = y2
1+y2

1
, with ‖a4‖Lp(R2) = 0, also

k(x, y) = e−(|x1|+|y1|)

(| x2 | +3)2(| y2 | +2)2 ,

f∗(x) = e−|x1|

(|x2|+3)2 , f1(x) = f2(x) = e−(|x1|)

(|x2|+2)2 we see that f1, f2 ∈ Lp(R2) , f∗ ∈ Lq(R2). Also we have∫
R2
| k(x, y) | dx =

∫ ∞
−∞

∫ ∞
−∞

e−(|x1|+|y1|)

(| x2 | +3)2(| y2 | +2)2 dx1dx2 ≤
1
3 ,

∫
R2
| k(x, y) | dy =

∫ ∞
−∞

∫ ∞
−∞

e−(|x1|+|y1|)

(| x2 | +3)2(| y2 | +2)2 dy1dy2 ≤
2
9 ,
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and thus from the theorem ‖ K ‖1≤ 1
3 furthermore b = 2, Q(u)(x) = e−|u(x)|u(x))satisfies the assumption withψ(t) = t.

Finally, the inequality from assumption (vi) has the form

‖ f ‖Lp(R2) +lr0+ ‖ g1(x, 0) ‖Lp(R2) + ‖ a3 ‖Lp(R2) +b2lr0

+ b2 ‖ g2(x, 0) ‖Lp(R2) +b1 ‖ K ‖1‖ a4 ‖Lp(R2) +bb1 ‖ K ‖1 ψ(r0)

≤ r0,

2(π
p

)
1
p + 1

2r0 + (1
4)(1

3)r0 ≤ r0.

Thus, for the number r0 = ( 24
5 )

×(πp )
1
p . Hence all the assumptions are satisfied and so, Eq.(3.4) has at least one solution in Lp(R2).
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