
applied
sciences

Article

Automatic Supervisory Controller for Deadlock
Control in Reconfigurable Manufacturing Systems
with Dynamic Changes

Husam Kaid 1,* , Abdulrahman Al-Ahmari 1, Zhiwu Li 2,3 and Reggie Davidrajuh 4

1 Department of Industrial Engineering, College of Engineering, King Saud University,
Riyadh 11421, Saudi Arabia; alahmari@ksu.edu.sa

2 Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China;
systemscontrol@gmail.com

3 School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China
4 Department of Electrical Engineering and Computer Science, Faculty of Science and Technology,

University of Stavanger, 4036 Stavanger, Norway; reggie.davidrajuh@uis.no
* Correspondence: yemenhussam@yahoo.com

Received: 10 July 2020; Accepted: 27 July 2020; Published: 30 July 2020
����������
�������

Abstract: In reconfigurable manufacturing systems (RMSs), the architecture of a system can be
modified during its operation. This reconfiguration can be caused by many motivations: processing
rework and failures, adding new products, adding new machines, etc. In RMSs, sharing of resources
may lead to deadlocks, and some operations can therefore remain incomplete. The objective of this
article is to develop a novel two-step solution for quick and accurate reconfiguration of supervisory
controllers for deadlock control in RMSs with dynamic changes. In the first step, the net rewriting
system (NRS) is used to design a reconfigurable Petri net model under dynamic configurations.
The obtained model guarantees boundedness behavioral property but may lose the other properties
of a Petri net model (i.e., liveness and reversibility). The second step develops an automatic deadlock
prevention policy for the reconfigurable Petri net using the siphon control method based on a place
invariant to solve the deadlock problem with dynamic structure changes in RMSs and achieve
liveness and reversibility behavioral properties for the system. The proposed approach is tested using
examples in the literature and the results highlight the ability of the automatic deadlock prevention
policy to adapt to RMSs configuration changes.

Keywords: reconfigurable manufacturing system; Petri net; deadlock; siphon; supervisory controller

1. Introduction

A typical example of discrete event systems is an automated manufacturing system (AMS) [1,2].
It enables various product types to be entered at discrete times by sharing resources like machines,
automatic controlled vehicles, automated tools, robots, and buffers at asynchronous or simultaneous
operations. AMSs have to cope with unexpected and rapid market changes on a competitive global
market. They must make rapid modifications to their software and hardware to meet these dynamic
changes. This requirement cannot, however, be satisfied successfully with traditional automated
manufacturing systems, which require large capital investments. Reconfigurable manufacturing
systems have now been developed to deal with those drawbacks in traditional automated manufacturing
systems [3–5]. Reconfigurable manufacturing systems are a new kind of production systems that are
randomly and dynamically configured in real time. Such configurations involve processing rework
and failures, adding new products and machines, and adding new handling device. In RMSs, a set
of system resources can be used to process each component according to a specific process sequence.

Appl. Sci. 2020, 10, 5270; doi:10.3390/app10155270 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3608-013X
https://orcid.org/0000-0003-1547-5503
https://orcid.org/0000-0003-0013-5274
http://dx.doi.org/10.3390/app10155270
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/15/5270?type=check_update&version=3

Appl. Sci. 2020, 10, 5270 2 of 34

This sharing of resources, however, may lead to deadlocks, and some operations can therefore remain
incomplete. Therefore, dealing with deadlock problem is critical for RMSs.

Petri nets (PNs) are widely used for the scheduling, deadlock analysis and control in AMSs as
graphical and mathematical modelling tools [6–14]. They can be used to describe characteristics and
behaviors of AMSs such as synchronization, concurrency, conflict, causal dependence, and sequencing.
Petri nets can be used for behavioral features, for example boundedness and liveness [15,16]. From a
technical point of view, several policies based on Petri nets have been proposed. These policies
are based on three strategies: (i) deadlock detection and recovery, (ii) deadlock avoidance, and (iii)
deadlock prevention [15,17]. Most of these policies have proposed deadlock control in Petri nets
through structural analysis [6,18] and reachability graph analysis [19–21]. In addition, three criteria to
evaluate and construct an AMS supervisor have been proposed, namely behavioral permissiveness,
computational complexity, and structural complexity [15,22].

Recently, several approaches have been adapted to deal with dynamic changes in manufacturing
systems [7,23–36]. They primarily concentrate in two directions: direct and indirect. Direct approaches
provide modification mechanisms or particular rules for system structure configurations, while
indirect approaches typically import additional mechanisms for system reconfiguration specifications.
The event–condition–action (ECA) paradigm is developed by Almeida et al. [30] for the design of
reconfigurable logic controllers. Their research has demonstrated that the reconfiguration process is
highly dependent on the modularity level of the logical control system and that not all “modular”
structures can be reconfigured. For a class of discrete event systems (DESs), Sampath et al. [26]
presented a reconfiguration approach for their control specifications, subject to linear constraint.
This approach is suited to systems such as hospital management systems and can be reconfigured in
non-real time. In order to evaluate and improve the performance of the control architecture, Dumitrache
et al. [27] developed a real-time reconfigurable supervised control architecture for large manufacturing
systems. A model-based control design for reconfigurable manufacturing systems is developed by
Ohashi and Shin [28] through state transition diagrams and general graph representation taking into
account configuration and reuse of design data. Kalita and Khargonekar [29] introduced a hierarchical
structure and a framework for modeling, analysis, specification, and design of logic controllers for
RMSs, which allows rapid reconfigurability and reusability of the controller during reconfiguration.
In [23], reconfigurable manufacturing systems were used to replace the existing manufacturing systems
to offer higher convertibility and flexibility such as dedicated production systems. Serial and parallel
configurations, a rules-based matrix approach has been developed and implemented. In addition, a
higher-level deadlock control method is presented for the serial and parallel configurations.

Net Rewriting Systems (NRS) are another graph-based reconfiguration mechanism [34]. In terms
of pattern matching and dynamic structure replacements, the reconfiguration occurs. By the
implementation of a Turing machine the expressive power was shown to be Turing equivalent.
A subset of net rewriting systems, called reconfigurable nets, have also been provided with an
algorithm to flatten a Petri net to standard. This subset only restricts NRS to those transformations that
remain unchanged in the number of places and transitions, that is, only the flow relation can be changed.
Flattening significantly increases the size of transitions by multiplying the number of reconfigurations
by the amount of transitions. The NRS is used in logic controllers with improved net rewriting
systems [35]. The improved NRS version restricts the rewriting rules to ensure important structural
characteristics such as boundedness, liveness, and reversibility are not invalidated. In addition, in [24],
an improved net rewriting system (INRS) was developed with the aim of reconfiguring an RMS
supervisory controller based on PNs. Changes to an RMS modification were made to rewrite rules
that were then applied in the initial PN controller. The INRS is first proposed as a reconfiguration
basis. The structure of a Petri net model can be changed dynamically. Then, the study provided three
representations of the RMS modification and suggested an INRS-based method to the design of the
Petri net controller of an RMS. In this approach, the properties of behavioral, i.e., the boundedness,
reversibility, and liveness of a modified system, were not verified or validated.

Appl. Sci. 2020, 10, 5270 3 of 34

In [31], colored timed PNs (CTPN) were used in the modelling of RMSs and a mechanism to
describe reconfigurability in the CTPN architecture was introduced that leads to a new architecture
supporting the reconfiguration. This mechanism includes reconfigurable transitions, specific places,
and inhibitor arcs. Wu and Zhou introduced intelligent token Petri net (ITPN) [25]. In their model,
tokens representing job instances carry real-time knowledge about system states and changes, just like
intelligent cards in practice such that dynamical changes of a system can be easily modeled. These
formalisms can describe the reconfiguration behavior of the system. However, some of dynamic
changes do not clearly define the modularity, which brings confusion to engineers in designing,
understanding, and future redevelopment. Correctness of the system such as coherence of states
before and after system reconfigurations is not considered. In addition, temporal constraints, which
are of great significance in real-time systems are not mentioned. In [32], reconfigurable object nets
(RONs) are used to model, simulate, and analyze RMSs. A formal method was proposed for fulfilling
a new production requirement. The configuration consists of new extrusion and cutting machines.
The reconfiguration is represented as graph transformations, RON tool was used to simulate the
reconfigured systems and TINA [37] and PIPE [38] software tools were used to carry out the analysis.

The work of Silva et al. [36] explored the principles of the different approaches and takes from
them the best practices. Configuration mechanisms were proposed using Holonic and multiagent
system methods to allow a reconfigurable distributed production control system to systematically
detect faults. To describe communication interfaces, the principle of service-oriented architecture was
used. Hybrid top-down and bottom-up approaches were presented using Petri net models. In [33],
object-oriented Petri nets (ORPNs) and π-calculus were used as two complementary formalisms. Initial
RMSs structure and system behavior were modeled by ORPN while the π-calculus was used to describe
RMSs’ reconfiguration. To evaluate, check, and validate RMSs, Petri nets and π-calculus supporting
tools were used. The reconfigurability mechanism and consistency of RMSs could be analyzed by
π-calculus. In [7], a new model is proposed, namely the intelligent colored token Petri net (ICTPN),
which simulated dynamic configurations of systems such as adding new machines, processing failures
and rework, machine failures, processing routes changes, removing old machines, and adding new
products. The primary idea is that smart colored tokens were part types which represented real-time
knowledge of system status and configurations. This allowed for the effective modeling of dynamic
system configurations. The proposed ICTPN could modularly model dynamic system changes to
generate a very compact model. Moreover, when configurations appear, only the colored token of the
part type, which is changed from the current model was changed. The resulting ICTPN model ensures
that the behavioral properties such as deadlock-free, conservative, and reversible were guaranteed.

All of the above methods with PNs attempted to deal with dynamic configuration issues in
manufacturing systems. However, most of them do not include an algorithm or mechanism for
reconfiguration, could not guarantee the properties of behavioral Petri net (i.e., boundedness (or
safeness), liveness, and reversibility), or could not ensure that the results of the reconfiguration are
correct, accurate or valid. In addition, few techniques for rapid and valid reconfiguration of literature
deadlock control supervisors were presented.

The objective of this article is to develop a novel two-step solution for quick and accurate
reconfiguration of supervisory controllers for deadlock control in RMSs with dynamic changes. In the
first step, the net rewriting system used in [34,39] was adapted to design a reconfigurable Petri
net model under dynamic configurations. The obtained model guarantees boundedness behavioral
property but may lose the other properties of a Petri net model (i.e., liveness and reversibility). This
means that the reconfigured Petri net model has finite states, deadlocks, and does not behave cyclically.
For this issue, the second step develops an automatic deadlock prevention policy for reconfigurable
Petri net using the siphon control method based on place invariant to solve the deadlock problem with
dynamic structure changes in RMSs and achieve liveness and reversibility behavioral properties for
the system. Thus, the developed approach has the ability of adapting to RMS configuration changes.

The major applications of the developed approach are as follows:

Appl. Sci. 2020, 10, 5270 4 of 34

1. Mass customization manufacturing can use the proposed approach to address its difficulties.
For example, by trying to make products available rapidly to consumers, a high quality
production of a wide variety of products can be maintained and achieve low costs in line
with standard products.

2. Lean productivity concept can also use the proposed approach to enable a company to implement
an RMS in order to improve the exploitation of the part of the resources for various family
products and to minimize waste from the idle resource of an RMS.

3. Agile manufacturing can use the proposed approach to facilitate rapid products changeovers,
rapid introduction of new products and unattended operation.

4. Flexible manufacturing systems can use the proposed approach to increase response to a variety of
customers and markets. Moreover, scalability to the desired volume of products and convertibility
to current systems, machines, robots, and controls are increased in accordance with the new
production requirements.

This paper is organized as follows. Section 2 describes basic concepts of Petri nets, reconfigurable
Petri nets. Section 3 presents the deadlock prevention policy for reconfigurable Petri net based on
the concept of minimal siphons and place invariants. The behavioral and quantitative analysis of the
proposed reconfigurable Petri net are presented in Section 4. A real-world case study is presented in
Section 5 to demonstrate the application of the proposed approach. Conclusions and future research
are presented in Section 6.

2. Preliminaries

2.1. S3PR NET

Definition 1. A simple sequential process (S2P) is a Petri net model with N = ({p0} ∪ PA, T, F) if (1) N is
a strongly connected state machine and (2) each circuit N contains place p0, where p0 is a process idle place,
PA = {p1, p2, . . . , pm} is a set of operation places, T = {t1, t2, . . . , tn} is a set of transitions, PB = PA ∪ {p0}, PB
∩ T = ∅, PB ∪ T , ∅, and F: (PB × T) ∪ (T × PB)→ IN is a set of weighted arcs called flow relations, where IN
= {0, 1, 2, . . . }.

Definition 2. A simple sequential process with resources (S2PR) is a Petri net model with N = ({p0} ∪ PA ∪

PR, T, F) if

1. the subnet created by Y = PA ∪ {p0} ∪ T is an S2P;
2. PR , ∅ and (PA ∪ {p0}) ∩ PR = ∅, where PR is called a set of resource places;
3. PC = PA ∪ {p0} ∪ PR, F ⊆ (PC × T) ∪ (T × PC) is flow relations;
4. ••(p0) ∩ PR = (p0)•• ∩ PR , ∅;
5. ∀p ∈ PA, ∀t ∈ •p, ∀t′ ∈ p•, ∃rp ∈ PR, •t ∩ PR = t′• ∩ PR = {rp};
6. ∀r ∈ PR, ••r ∩ PA = r•• ∩ PA , ∅ and •r ∩ r• , ∅;

Definition 3. Let N = ({p0} ∪ PA ∪ PR, T, F) be an S2PR with Mo being an initial marking of net N. An S2PR
is called acceptably marked if (1) Mo(p0) ≥ 1, (2) Mo(p) = 0, ∀p ∈ PA, and (3) Mo(r) ≥ 1, ∀r ∈ PR.

Recursively, a system of S2PR is called an S3PR.

Definition 4. A system of S2PR, S3PR, is defined recursively as follows:

1. An S2PR is an S3PR;
1. Let Ni = ({p0

i} ∪ PAi ∪ PRi, Ti, Fi), i = {1, 2}, be two S3PRs such that ({p0
1} ∪ PA1) ∩ ({p0

2} ∪ PA2) = ∅,
PR1 ∩ PR2 = PD, PA1 ∩ PA2 , PD, and T1 ∩ T2 , ∅; then, the net N = ({p0} ∪ PA ∪ PR, T, F) is an S3PR
resulting from the integration of N1 and N2 by the set of common PD (denoted as N1◦N2) and expressed as:
(1) p0 = {p0

1} ∪ {p0
2}, (2) PA = PA1 ∪ PA2, (3) PR = PR1 ∪ PR2, (4) T = T1 ∪ T2, and (5) F = F1 ∪ F2.

Appl. Sci. 2020, 10, 5270 5 of 34

The integration of n S2PR N1-Nn via PD is expressed by ⊗n
i=1Ni. Ni is used to indicate the S2P from which

the S2PR Ni is built.

Definition 5. Let Ni = ({p0
i} ∪ PAi ∪ PRi, Ti, Fi), i = {1, 2}, be two S3PRs. Mo is an initial marking of N. (N,

Mo) is called acceptably marked if (1) (N, Mo) is an acceptably marked S2PR, and (2) N = N1 ◦ N2, where (Ni,
Mio) is called an acceptably marked S3PR and

1. ∀i ∈ {1,2}, ∀p ∈ PAi ∪ {p0
i}, Mo(p) = Mio (p).

2. ∀i ∈ {1,2}, ∀r ∈PRi\PD, Mo(r) = Mio (r).
3. ∀i ∈ {1,2}, ∀r ∈ PD, Mo(p) = max {M1o (r), M2o (r)}.

Definition 6. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR, where W: (PC × T) ∪ (T × PC)→ IN is a
mapping that assigns a weight to an arc and Mo: PC→ IN is the initial marking.

Definition 7. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR. N is said to be an ordinary net if p ∈ PC, t ∈
T, ∀(p, t) ∈ F, and W(p, t) = 1.

Definition 8. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR. N is said to be a weighted net if ∃p ∈ PC, ∃t
∈ T, (p, t) ∈ F, and W(p, t) > 1.

Definition 9. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR, where p and t are a place and a transition in
N, respectively. The preset (postset) of p is the set of all input (output) transitions of p, i.e., •p = {t ∈ T | (t, p) ∈
F}(p• = {t ∈ T | (p, t) ∈ F}). The preset (postset) of t is the set of all input (output) places of t, i.e., •t = {p ∈ PC |

(p, t) ∈ F}(t• = {p ∈ PC | (t, p) ∈ F}).

Definition 10. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR. N is self-loop free if for all p, t ∈ PC ∪ T;
W(p, t) > 0 implies W(t, p) = 0 and has a self-loop if W(t, p) > 0.

Definition 11. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR and M be a marking of N, where M is a
mapping M: PC→ IN and the pth element of M, expressed by M(p), is the number of tokens in place p.

Definition 12. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR. A transition t ∈ T is enabled if ∀p ∈ •t,
M(p) ≥W(p, t).

Definition 13. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR. The marking M′ resulting from the firing of
an enabled transition t ∈ T at marking M is denoted by M[t〉M′ and expressed as follows:

M′(p) =


M(p) + W(p, t) if p ∈ •t\t•

M(p) −W(t, p) if p ∈ t•\•t
M(p) + W(t, p) −W(p, t) if p ∈ t• ∩ •t
M(p) otherwise

 (1)

Definition 14. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR. R(N, M) is a set of reachable markings
from M in N, which is expressed by nodes and arcs; nodes represent markings that are labeled with Mi and arcs
represent transition firings that are labeled with t. If t fires, then there is an arc from marking Mi to marking Mj
and Mj is reached.

Definition 15. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR. A transition t ∈ T is live at Mo if ∀M ∈
R(N, Mo), ∃M′ ∈ R(N, M) such that M′[t〉 holds. (N, M0) is dead at Mo if there does not exist t ∈ T such that
Mo[t〉 holds. (N, M0) is weakly live or live-locked if ∀M ∈ R(N, Mo), ∃t ∈ T, M [t〉 holds. (N, M0) is quasi-live if
∀t ∈ T, ∃M ∈ R(N, Mo) such that M [t〉 holds.

Appl. Sci. 2020, 10, 5270 6 of 34

Definition 16. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR. [N] is said to be the incidence matrix of
net N, where [N] is a |P|×|T| integer matrix with [N](p, t) = W(t, p) −W(p, t). For a place p (transition t), its
incidence vector, a row (column) in [N], is expressed as [N](p, .) ([N](., t).

Definition 17. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR. A marking M′ is called reachable from
M if there exists a sequence of transitions δ = t1 t2 t3 . . . tn that can be fired, and markings M1, M2, M3, . . . ,
and Mn−1 are such that M[to〉M1[t1〉M2[t2〉M3 . . . Mn [tn〉M′ holds, expressed as M[δ〉M′, satisfies the state

equation M′ = M + [N]
→

δ .
→

δ : T→ IN is called a firing count vector or a Parikh vector that maps t in T to the
number of occurrences of t in δ.

Definition 18. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR. N is said to be bounded if there exists
q ∈ IN, ∀M ∈ R(N, M0), ∀p ∈ PC, M(p) ≤ q. (N, M0) is structurally bounded if it is bounded for any Mo.

Definition 19. LLet N = ({p0} ∪ PA ∪ PR, T, F, W, Mo) be an S3PR. N is called safe if ∀M ∈ R(N, M0), ∀p ∈
PC, M(p) ≤ 1. (N, M0) is q -safe if it is q-bounded.L

Consider the example of AMS illustrated in Figure 1a. The system has one robot R1 and one
machine M1. Machine M1 processes one part at a time and robot R1 holds one part at a time. There
are buffers for loading/unloading. Furthermore, one part type is considered to be processed in the
system. The part operation sequence is illustrated in Figure 1b. Figure 2 shows the S3PR net of the
AMS example. It has six places and four transitions. The following sets of places can be used: P0 = {p1},
PR = {p5, p6}, and PA = {p2, p3, p4}. There are five reachable markings on the Petri model. The initial
marking is Mo = (5, 0, 0, 0, 1, 1)T, which represents the different raw parts that are to be processed
synchronously within the system, including preconditions, input signals, buffers and resource status,
such as machines and robot. Places are generally used to represent the resource status, operations,
and activities. The transitions are used to express control changes from one state to another. Directed
arcs correspond to the material, resource, information flow, and control flow direction between states.
Material, information, and resources are represented by tokens.

Appl. Sci. 2020, 10, x 6 of 31

are buffers for loading/unloading. Furthermore, one part type is considered to be processed in the
system. The part operation sequence is illustrated in Figure 1b. Figure 2 shows the S3PR net of the
AMS example. It has six places and four transitions. The following sets of places can be used: P0 =
{p1}, PR = {p5, p6}, and PA = {p2, p3, p4}. There are five reachable markings on the Petri model. The initial
marking is Mo = (5, 0, 0, 0, 1, 1)T, which represents the different raw parts that are to be processed
synchronously within the system, including preconditions, input signals, buffers and resource status,
such as machines and robot. Places are generally used to represent the resource status, operations,
and activities. The transitions are used to express control changes from one state to another. Directed
arcs correspond to the material, resource, information flow, and control flow direction between states.
Material, information, and resources are represented by tokens.

Figure 1. (a) Automated manufacturing system (AMS) example and (b) operation sequence.

5

t1

t2

t3

t4

p2

p3

p4

p1

M

p5

R

p6I1/O1

Figure 2. A system of (S2P) (simple sequential process) (S3PR) net of the AMS.

2.2. Reconfigurable S3PR Net

This section presents definitions and theorems in the reconfigurable S3PR nets, which are
originally proposed by [34, 35, 39].

Definition 20: Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo, K) be a finite-capacity S3PR, where p0, PA, PR, T,
F, W, and Mo are defined in Definitions 1–6. K: PC → IN is the function of capacity that assigns to each
place p the maximal number of tokens K(p).

Definition 21: Let (Ni, Mi) be two S3PR nets with Ni = (PCi, Ti, Fi, Wi, Mi, Ki), i= 1, 2. N1 and N2 are
called morphism nets if there exists a bijection Ψ: N1 → N2, Ψ = (ΨPC: PC1 → PC2, ΨT: T1 → T2) such that
for all a, b ∈ PC1 ∪ T1, F1(a, b) ∈ N1 = F2(Ψ(a), Ψ(b)) ∈ N2, and for all p ∈ PC1, M1(p) ≤ M2(ΨPC(p)).

Definition 22: Let (Ni, Mi) be two S3PR nets with Ni = (PCi, Ti, Fi, Wi, Mi, Ki), i = 1, 2. N1 is called the
full subnet of N2 if there exists an injection function that maps places to places and transitions to

Figure 1. (a) Automated manufacturing system (AMS) example and (b) operation sequence.

Appl. Sci. 2020, 10, 5270 7 of 34

Appl. Sci. 2020, 10, x 6 of 31

are buffers for loading/unloading. Furthermore, one part type is considered to be processed in the
system. The part operation sequence is illustrated in Figure 1b. Figure 2 shows the S3PR net of the
AMS example. It has six places and four transitions. The following sets of places can be used: P0 =
{p1}, PR = {p5, p6}, and PA = {p2, p3, p4}. There are five reachable markings on the Petri model. The initial
marking is Mo = (5, 0, 0, 0, 1, 1)T, which represents the different raw parts that are to be processed
synchronously within the system, including preconditions, input signals, buffers and resource status,
such as machines and robot. Places are generally used to represent the resource status, operations,
and activities. The transitions are used to express control changes from one state to another. Directed
arcs correspond to the material, resource, information flow, and control flow direction between states.
Material, information, and resources are represented by tokens.

Figure 1. (a) Automated manufacturing system (AMS) example and (b) operation sequence.

5

t1

t2

t3

t4

p2

p3

p4

p1

M

p5

R

p6I1/O1

Figure 2. A system of (S2P) (simple sequential process) (S3PR) net of the AMS.

2.2. Reconfigurable S3PR Net

This section presents definitions and theorems in the reconfigurable S3PR nets, which are
originally proposed by [34, 35, 39].

Definition 20: Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo, K) be a finite-capacity S3PR, where p0, PA, PR, T,
F, W, and Mo are defined in Definitions 1–6. K: PC → IN is the function of capacity that assigns to each
place p the maximal number of tokens K(p).

Definition 21: Let (Ni, Mi) be two S3PR nets with Ni = (PCi, Ti, Fi, Wi, Mi, Ki), i= 1, 2. N1 and N2 are
called morphism nets if there exists a bijection Ψ: N1 → N2, Ψ = (ΨPC: PC1 → PC2, ΨT: T1 → T2) such that
for all a, b ∈ PC1 ∪ T1, F1(a, b) ∈ N1 = F2(Ψ(a), Ψ(b)) ∈ N2, and for all p ∈ PC1, M1(p) ≤ M2(ΨPC(p)).

Definition 22: Let (Ni, Mi) be two S3PR nets with Ni = (PCi, Ti, Fi, Wi, Mi, Ki), i = 1, 2. N1 is called the
full subnet of N2 if there exists an injection function that maps places to places and transitions to

Figure 2. A system of (S2P) (simple sequential process) (S3PR) net of the AMS.

2.2. Reconfigurable S3PR Net

This section presents definitions and theorems in the reconfigurable S3PR nets, which are originally
proposed by [34,35,39].

Definition 20. Let N = ({p0} ∪ PA ∪ PR, T, F, W, Mo, K) be a finite-capacity S3PR, where p0, PA, PR, T, F, W,
and Mo are defined in Definitions 1–6. K: PC→ IN is the function of capacity that assigns to each place p the
maximal number of tokens K(p).

Definition 21. Let (Ni, Mi) be two S3PR nets with Ni = (PCi, Ti, Fi, Wi, Mi, Ki), i= 1, 2. N1 and N2 are called
morphism nets if there exists a bijection Ψ: N1→ N2, Ψ = (ΨPC: PC1→ PC2, ΨT: T1→ T2) such that for all a,
b ∈ PC1 ∪ T1, F1(a, b) ∈ N1 = F2(Ψ(a), Ψ(b)) ∈ N2, and for all p ∈ PC1, M1(p) ≤M2(ΨPC(p)).

Definition 22. Let (Ni, Mi) be two S3PR nets with Ni = (PCi, Ti, Fi, Wi, Mi, Ki), i = 1, 2. N1 is called the full
subnet of N2 if there exists an injection function that maps places to places and transitions to transitions, denoted
by ξ: N1→ N2, ξ (PC1) ⊆ PC2, and ξ (T1) ⊆ T2 such that for all a, b ∈ PC1 ∪ T1, F1(a, b) = F2(ξ (a), ξ (b)).

In the algebraic, a rewriting rule is a transformation approach that can change and combine the Petri nets
dynamically. The main idea is to define and change the system configurations as a graph rewriting rule.

Definition 23. Let NR be a reconfigurable S3PR with NR = ((N, Mo), R), where(N, Mo) is an S3PR net
with N = (PC, T, F, W, Mo, K) and R = {rr1, rr2, rr3, . . . , rrm} is called a set of rewriting rules or dynamic
configurations if

1. For all rr ∈ R, rr = {L, R, ϕ, •ϕ, ϕ•};
2. L = (PCL, TL, FL, WL, MoL, KL) is called the left-hand side;
3. R = (PCR, TR, FR, WR, MoR, KR) is called the right-hand side;
4. ϕ ⊆ (PCL × PCR) ∪ (TL × TR) is said to be an interface transfer relation of r that relates places of L to places

of R and transitions of L to transitions of R, PCL ϕ ⊆ PCR, ϕPCR ⊆ PCL, TLϕ ⊆ TR, and ϕTR ⊆ PL;
5. •ϕ ⊆ ϕ is said to be an input interface transfer relation, expressed as •ϕ = {({L.pi}, {R.pi})} or {({L.ti}, {R.

ti})}, and L.* or R.* means to input nodes “*” in L or R;
6. ϕ• ⊆ ϕ is named output interface transfer relation, ϕ• = {({L.pj}, {R.pj})} or {({L.tj}, {R.tj})}, and L.* or R.*

means to output nodes “*” in L or R;
7. for all rri, rrj ∈ R (i , j), ξ (Li) ∩ ξ (Lj) , ∅, a rewriting must be guaranteed without overlap; moreover,

the order of rri, rrj does not impact the result of the rewriting.

Appl. Sci. 2020, 10, 5270 8 of 34

Definition 24. Let NR be a reconfigurable S3PR with NR = ((N, Mo), R). A new rewriting reconfigurable net
NR is an S3PR net (NR, MR) with NR = (PC, T, F, W, MR, K), and a net (N, Mo) is called the initial state of the
rewriting net model.

Definition 25. Let NR be a reconfigurable S3PR with NR = ((N, Mo), R). A state graph in NR is a labeled
directed graph whose nodes are the marking of NR, expressed as:

1. Transition firing: If Arcs labeled with t can fire in the net (N1, M1), leading to (N2, M2): (N1, M1) t
→ (N2,

M2)⇔ (N1 = N2 and M1[t2〉M2 in N1).
2. Configuration changing: Arcs labeled with r = {L, R, ϕ, •ϕ, ϕ•} from state (N1, M1) to state (N2, M2) if

there is ξ: L→ N1 so that, ∀a < ξ(L) and b ∈ L if

2.1. a ∈ •ξ(b)⇒ b ∈ •ϕ and a ∈ ξ(b)•⇒ b ∈ ϕ•.
2.2. N1 = (PC1, T1, F1, W1, M1, K1) and N2 = (PC2, T2, F2, W2, M2, K2) holds the

following: PC2 = PC1 − ξ(PC1L) + PC1R and T2 = T1 − ξ(T1L) + T1R. Note that −(+) means
deleting(inserting) places or transitions from (to) N1 and the places name of PC1R and T1R inserted
into N1 must be different to prevent clashes.

Definition 26. Let NR be a reconfigurable S3PR with NR = ((N, Mo), R). Let N1 and N2 be two states in NR
with N1 = (PC1, T1, F1, W1, M1o, K1) and N2 = (PC2, T2, F2, W2, M2o, K2). A net N1 is the restriction of a net
N2 if PC1 ⊆ PC2, T1 ⊆ T2, and F1 = F2 ∩ ((PC1 × T1) ∪ (T1 × PC1)) and expressed by N1 ⊆ N2.

Definition 27. Let NR be a reconfigurable S3PR with NR = ((N, Mo), R). Let N1 and N2 be two states in NR
with N1 = (PC1, T1, F1, W1, M1o, K1) and N2 = (PC2, T2, F2, W2, M2o, K2). The set of weighted arcs (flow
relation) F2 is expressed as:

F2(a, b) =



F1(a, b) if a < R∧ b < R
FR(a, b) if a ∈ R∧ b ∈ R∑
bi∈•ϕb

F1(a, ξ(yi)) if a < R∧ b ∈ R∑
ai∈ϕ•a

F1(ξ(ai), b) if a ∈ R∧ b < R


(2)

Definition 28. Let NR be a reconfigurable S3PR with NR = ((N, Mo), R). Let N1 and N2 be two states in NR
with N1 = (PC1, T1, F1, W1, M1o, K1) and N2 = (PC2, T2, F2, W2, M2o, K2). The marking of M′(p), p ∈ PC2,
is expressed as:

M′(p) =

 M(p) if p < R∑
p′∈ϕp

M(ξ(p′)) if p ∈ R

 (3)

Theorem 1. Let NR be a reconfigurable S3PR with NR = ((N, Mo), R). Let N1 and N2 be two states in NR with
N1 = (PC1, T1, F1, W1, M1o, K1) and N2 = (PC2, T2, F2, W2, M2o, K2), PC1, T1 , ∅ and R = {rr}, rr = {L, R, ϕ,
•ϕ, ϕ•}. If L and R are a single place or single transition, then the obtained N2 by rr is equal to N1.

Proof. Straightforward. �

Theorem 2. Let NR be a reconfigurable S3PR with NR = ((N, Mo), R). Let N1 and N2 be two states in NR with
N1 = (PC1, T1, F1, W1, M1o, K1) and N2 = (PC2, T2, F2, W2, M2o, K2), PC1, T1 , ∅ and R = {rr}, rr = {L, R, ϕ,
•ϕ, ϕ•}. If (N1, M1) is bounded, L is a single place or single transition and R is an S3PR net, then the resulting
(N2, M2o) net by rr is bounded.

Appl. Sci. 2020, 10, 5270 9 of 34

Proof. The rewriting of N2 using rr is similar to replacing a place/transition by the S3PR net. Therefore,
the boundedness can be established by checking if the S3PR net is well constructed and behaved.
The resulting net (N2, M2o) maintains the boundedness because the S3PR net is well constructed and
behaved. �

Corollary 1. Let NR be a reconfigurable S3PR with NR = ((N, Mo), R). Let N1 and N2 be two states in NR
with N1 = (PC1, T1, F1, W1, M1o, K1) and N2 = (PC2, T2, F2, W2, M2o, K2), PC1, T1 , ∅ and R = {rr}, rr = {L,
R, ϕ, •ϕ, ϕ•}. If (N1, M1o) is bounded, L is an S3PR Petri net and R is a single place or single transition, then
the resulting net (N2, M2o) by rr is bounded.

Corollary 2. An S3PR net (N2, M2o) can be a bounded net and a full subnet of (N1, M1o).

Theorem 3. Let NR be a reconfigurable S3PR with NR = ((N, Mo), R). Let N1 and N2 be two states in NR with
N1 = (PC1, T1, F1, W1, M1o, K1) and N2 = (PC2, T2, F2, W2, M2o, K2), PC1, T1 , ∅ and R = {rr}, rr = {L, R, ϕ,
•ϕ, ϕ•}. If (N1, M1o) is bounded, L is an S3PR net and R is an S3PR net, then the resulting net (N2, M2o) by rr
is bounded.

Proof. The rewriting of N2 using rr is similar to replacing an S3PR net by another S3PR net. Therefore,
the boundedness can be established by checking if the S3PR net is well constructed and behaved.
The resulting net (N2, M2o) maintains the boundedness because the S3PR net is well constructed and
behaved. �

Based on Definitions 20–28 and Theorems 1–3, the developed reconfiguration procedures for S3PR
net algorithm are constructed as follows:

Algorithm 1: Reconfiguration procedures for S3PR net

Input: An S3PR net (No, Mo)
Output: A reconfigurable S3PR net (NR, MRo)
Initialization: Generate dynamic configurations R = {rr1, rr2, rr3, . . . , rrm} k=0.
Step 1: while R , ∅ do

k = k+1
1.1. Build rrk = {Lk, Rk, ϕk, •ϕk, ϕk

•}.
1.2. Build Lk = (PCLk, TLk, FLk, WLk, MLko, KLk).
1.3. Build Rk = (PCRk, TRk, FRk, WRk, MRko, KRk).
1.4. Build •ϕk and ϕk

•.
1.5. Build ξk: Nk-1 → Nk.
1.6. Apply rewriting rule rrk: Nk

rrk
→ Nk−1.

1.7. Update the flow relation Fk as follows:

Fk(a, b) =



Fk−1(a, b) if a < Rk ∧ b < Rk
F(k−1)R(a, b) if a ∈ Rk ∧ b ∈ Rk∑
bi∈•ϕb

Fk−1(a, ξ(yi)) if a < Rk ∧ b ∈ Rk∑
ai∈ϕ•a

Fk−1(ξ(ai), b) if a ∈ Rk ∧ b < Rk


1.8. Calculate the initial marking of Nk

Mko(p) =
[

M(k−1)o(p) if p ∈ PR, PR ∈ Rk
0 if p ∈ PA, PA ∈ Rk

]
1.9. R = R\CR. /* CR is covered rrk*/

end while
Step 2: Output a reconfigurable S3PR net (NR, MRo)
Step 3: End

Appl. Sci. 2020, 10, 5270 10 of 34

To illustrate the proposed Algorithm 1, reconsider the initial S3PR net (No, Mo) illustrated in
Figure 2. Suppose that the first system configuration includes adding new machine. In this scenario,
a new machine M2 is assigned to the system (No, Mo) to process a part after M, a robot is needed
to load/unload a part to/from M2. To model the addition of new machine by using the synthesis
procedure of Algorithm 1, we construct a configuration as a rewriting rule R = {rr1} with rr1 = {L1, R1,
ϕ1, •ϕ1, ϕ1

•}, where L1 and R1 are illustrated in Figures 3a and 3b, respectively. We have ξ1: N1 →

No, ϕ1 = ({p1, p6, p7, p8, p9},{t4, t5, t6}), •ϕ1 = ({L1.t4},{R1.t4}), and ϕ1
• = ({L1.p1, L1.p6},{R1.p1}). Then the

obtained reconfigurable S3PR net (N1, M1o) is illustrated in Figure 3c.

Appl. Sci. 2020, 10, x 9 of 31

Step 2: Output a reconfigurable S3PR net (NR, MRo)

Step 3: End
To illustrate the proposed Algorithm 1, reconsider the initial S3PR net (No, Mo) illustrated in

Figure 2. Suppose that the first system configuration includes adding new machine. In this scenario,
a new machine M2 is assigned to the system (No, Mo) to process a part after M, a robot is needed to
load/unload a part to/from M2. To model the addition of new machine by using the synthesis
procedure of Algorithm 1, we construct a configuration as a rewriting rule ℛ = {rr1} with rr1 = {L1, R1,
φ1, •φ1, φ1•}, where L1 and R1 are illustrated in Figure 3a and Figure 3b, respectively. We have ξ1: N1

→ No, φ1 = ({p1, p6, p7, p8, p9},{ t4, t5, t6}), •φ1 = ({L1.t4},{ R1.t4}), and φ1• = ({L1.p1, L1.p6 },{ R1.p1}). Then the
obtained reconfigurable S3PR net (N1, M1o) is illustrated in Figure 3c.

Figure 3. A reconfigured S3PR net by addition of new machine. (a) Left hand side net L. (b) Right hand
side net R. (c) A reconfigurable S3PR net (N1, M1o).

The second configuration includes adding a new product. In this scenario, a new product (part
B) is assigned to a system, which indicates that a new operation sequence is assigned and the system
requires an adjustment to its Petri net model structure. To model the addition of new product by
using the synthesis procedure of Algorithm 1, we constructed a configuration as a rewriting rule ℛ =
{rr2} with rr2 = {L2, R1, φ2, •φ2, φ2•}, where L2 and R2 are illustrated in Figure 4a and Figure 4b,
respectively. We have ξ2: N2 → N1, φ2 = ({p5, p6, p10, p11, p12, p13},{ t7, t8, t9, t10}), •φ2 = ({L2.p5, L2.p6 },{ R2.t7}),
and φ2• = ({L2.p5, L2.p6},{ R2.t10}). Then the obtained reconfigurable S3PR net (N2, M2o) is illustrated in
Figure 4c.

The third system configuration involves rework. In this scenario, a part can be inspected after
all operations have been completed. The system can proceed on the basis of the original sequence of
operation if the configuration is carried out properly. Otherwise, rework is needed. By using
Algorithm 1, the production operations of the reworked part can be exactly and easily modeled by
considering rework operations as alternative sequences. Reconsider the reconfigurable S3PR net (N2,
M2) illustrated in Figure 4c. Suppose that an inspection machine M3 is added to a system and that
part B is processed in M1. Then, part B is moved to M3 by Robot 1 to check if there are defects in part
B. If part B performed properly, then it will leave the system by Robot 1. Otherwise, if part B has
defects, rework is needed, and part B is moved to M1 by Robot 1. To model the rework operation by
using the synthesis procedure of Algorithm 1, we construct a configuration as a rewriting rule ℛ =

Figure 3. A reconfigured S3PR net by addition of new machine. (a) Left hand side net L. (b) Right hand
side net R. (c) A reconfigurable S3PR net (N1, M1o).

The second configuration includes adding a new product. In this scenario, a new product (part B)
is assigned to a system, which indicates that a new operation sequence is assigned and the system
requires an adjustment to its Petri net model structure. To model the addition of new product by using
the synthesis procedure of Algorithm 1, we constructed a configuration as a rewriting rule R = {rr2}
with rr2 = {L2, R1, ϕ2, •ϕ2, ϕ2

•}, where L2 and R2 are illustrated in Figures 4a and 4b, respectively. We
have ξ2: N2→ N1, ϕ2 = ({p5, p6, p10, p11, p12, p13},{t7, t8, t9, t10}), •ϕ2 = ({L2.p5, L2.p6},{R2.t7}), and ϕ2

• =

({L2.p5, L2.p6},{R2.t10}). Then the obtained reconfigurable S3PR net (N2, M2o) is illustrated in Figure 4c.
The third system configuration involves rework. In this scenario, a part can be inspected after

all operations have been completed. The system can proceed on the basis of the original sequence
of operation if the configuration is carried out properly. Otherwise, rework is needed. By using
Algorithm 1, the production operations of the reworked part can be exactly and easily modeled by
considering rework operations as alternative sequences. Reconsider the reconfigurable S3PR net (N2,
M2) illustrated in Figure 4c. Suppose that an inspection machine M3 is added to a system and that
part B is processed in M1. Then, part B is moved to M3 by Robot 1 to check if there are defects in
part B. If part B performed properly, then it will leave the system by Robot 1. Otherwise, if part B has
defects, rework is needed, and part B is moved to M1 by Robot 1. To model the rework operation by
using the synthesis procedure of Algorithm 1, we construct a configuration as a rewriting rule R = {rr3}
with rr3 = {L3, R3, ϕ3, •ϕ3, ϕ3

•}, where L3 and R3 are illustrated in Figure 5a,b, respectively. We have

Appl. Sci. 2020, 10, 5270 11 of 34

ξ3: N3 → N2, ϕ3 = ({p5, p6, p10, p11, p12, p13, p14, p15, p16, p17},{t7, t8, t9, t10, t11, t12, t13, t14, t15}), •ϕ3 =

({L3.t7},{R3.t7}), and ϕ3
• = ({L3.t10},{R3.t14}). Then the obtained reconfigurable S3PR net (N3, M3o) is

illustrated in Figure 5c.

Appl. Sci. 2020, 10, x 10 of 31

{rr3} with rr3 = {L3, R3, φ3, •φ3, φ3•}, where L3 and R3 are illustrated in Figure 5a and 5b, respectively.
We have ξ3: N3 → N2, φ3 = ({p5, p6, p10, p11, p12, p13, p14, p15, p16, p17},{ t7, t8, t9, t10, t11, t12, t13, t14, t15}), •φ3 =
({L3.t7},{ R3.t7}), and φ3• = ({L3.t10},{R3.t14}). Then the obtained reconfigurable S3PR net (N3, M3o) is
illustrated in Figure 5c.

Figure 4. A reconfigured S3PR net by addition of new product. (a) Left hand side net L. (b) Right hand
side net R. (c) A reconfigurable S3PR net (N2, M2o).

Figure 5. A reconfigured S3PR net by rework. (a) Left hand side net L. (b) Right hand side net R. (c) A
reconfigurable S3PR net (N3, M3o).

Figure 4. A reconfigured S3PR net by addition of new product. (a) Left hand side net L. (b) Right hand
side net R. (c) A reconfigurable S3PR net (N2, M2o).

Appl. Sci. 2020, 10, x 10 of 31

{rr3} with rr3 = {L3, R3, φ3, •φ3, φ3•}, where L3 and R3 are illustrated in Figure 5a and 5b, respectively.
We have ξ3: N3 → N2, φ3 = ({p5, p6, p10, p11, p12, p13, p14, p15, p16, p17},{ t7, t8, t9, t10, t11, t12, t13, t14, t15}), •φ3 =
({L3.t7},{ R3.t7}), and φ3• = ({L3.t10},{R3.t14}). Then the obtained reconfigurable S3PR net (N3, M3o) is
illustrated in Figure 5c.

Figure 4. A reconfigured S3PR net by addition of new product. (a) Left hand side net L. (b) Right hand
side net R. (c) A reconfigurable S3PR net (N2, M2o).

Figure 5. A reconfigured S3PR net by rework. (a) Left hand side net L. (b) Right hand side net R. (c) A
reconfigurable S3PR net (N3, M3o).
Figure 5. A reconfigured S3PR net by rework. (a) Left hand side net L. (b) Right hand side net R. (c) A
reconfigurable S3PR net (N3, M3o).

Appl. Sci. 2020, 10, 5270 12 of 34

Finally, a configuration includes adding a new robot. In this scenario, a new robot R2 is assigned
to the system (N3, M3o) to load/unload a part A to/from M1 and M2. To model the addition of the new
robot by using the synthesis procedure of Algorithm 1, we construct a configuration as a rewriting rule
R = {rr4} with rr4 = {L4, R4, ϕ4, •ϕ4, ϕ4

•}, where L4 and R4 are illustrated in Figure 6a,b, respectively.
We have ξ4: N4→ N3, ϕ4 = ({p1, p2, p3, p4, p6_1, p6_2, p7, p8, p10, p11, p12, p14, p15, p16},{t1, t2, t3, t4, t5, t6,
t7, t8, t9, t10, t11, t12, t13, t14, t15}), •ϕ4 = ({L4.t1, L4.t7},{R4. t1, R4. t7}), and ϕ4

• = ({L4. t6, L4. t14}, {R4.t6,
R4.t14}). Then the obtained reconfigurable S3PR net (N4, M4o) is illustrated in Figure 6c.

Appl. Sci. 2020, 10, x 11 of 31

Finally, a configuration includes adding a new robot. In this scenario, a new robot R2 is assigned
to the system (N3, M3o) to load/unload a part A to/from M1 and M2. To model the addition of the new
robot by using the synthesis procedure of Algorithm 1, we construct a configuration as a rewriting
rule ℛ = {rr4} with rr4 = {L4, R4, φ4, •φ4, φ4•}, where L4 and R4 are illustrated in Figure 6a and b,
respectively. We have ξ4: N4 → N3, φ4 = ({p1, p2, p3, p4, p6_1, p6_2, p7, p8, p10, p11, p12, p14, p15, p16},{ t1, t2, t3, t4,
t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15}),, •φ4 = ({L4.t1, L4.t7},{ R4. t1, R4. t7}), and φ4• = ({L4. t6, L4. t14}, {R4.t6, R4.t14}).
Then the obtained reconfigurable S3PR net (N4, M4o) is illustrated in Figure 6c.

Figure 6. A reconfigured S3PR net by addition of a new robot. (a) Left hand side net L. (b) Right hand
side net R. (c) A reconfigurable S3PR net (N4, M4o).

3. Deadlock Prevention Policy for Reconfigurable S3PR Net Based on Siphons

This section presents definitions on siphons in reconfigurable S3PR nets. Next, the siphon control
method based on place invariants is introduced. Finally, a deadlock prevention algorithm is proposed
to solve the deadlock problems in reconfigurable S3PR nets.

Definition 29: Let NR be a reconfigurable S3PR net with NR = ((N, Mo), ℛ). Let N1 be a state of NR
with N1 = (PC1, T1, F1, W1, M1o, K1). A place vector of N1 is expressed as a column vector I: PC1→ Z
indexed by PC1, and a transition vector of N1 is defined as a column vector J: T1 → Z indexed by T1,
where Z = {…, -2, -1, 0, 1, 2, ...}.

Definition 30: Let NR be a reconfigurable S3PR net with NR = ((N, Mo), ℛ). Let N1 be a state of NR
with N1 = (PC1, T1, F1, W1, M1o, K1). A place vector I of N1 is expressed as a place invariant (PI) if IT. [N1]
= 0T and I ≠ 0, and a transition vector of N1 is defined as a transition invariant (TI) if [N1]. J = 0 and J ≠
0.

Definition 31: Let NR be a reconfigurable S3PR net with NR = ((N, Mo), ℛ). Let N1 be a state of NR
with N1 = (PC1, T1, F1, W1, M1o, K1). A place invariant I of N1 is expressed as a place semi-flow if each
element of I is non-negative. ||I|| = {p |I(p) ≠ 0}is said to be the support of place invariant of I. ||I||+

= {p|I(p) > 0} is said to be the positive support of place invariant I. ||I||− = {p |I(p) < 0} is said to be the
negative support of place invariant I. I is a minimal place invariant if ||I|| is not a superset of the
support of any other one and its components are mutually prime.

Figure 6. A reconfigured S3PR net by addition of a new robot. (a) Left hand side net L. (b) Right hand
side net R. (c) A reconfigurable S3PR net (N4, M4o).

3. Deadlock Prevention Policy for Reconfigurable S3PR Net Based on Siphons

This section presents definitions on siphons in reconfigurable S3PR nets. Next, the siphon control
method based on place invariants is introduced. Finally, a deadlock prevention algorithm is proposed
to solve the deadlock problems in reconfigurable S3PR nets.

Definition 29. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let N1 be a state of NR with N1
= (PC1, T1, F1, W1, M1o, K1). A place vector of N1 is expressed as a column vector I: PC1→ Z indexed by PC1,
and a transition vector of N1 is defined as a column vector J: T1→ Z indexed by T1, where Z = { . . . , −2, −1, 0,
1, 2, . . . }.

Definition 30. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let N1 be a state of NR with N1
= (PC1, T1, F1, W1, M1o, K1). A place vector I of N1 is expressed as a place invariant (PI) if IT. [N1] = 0T and I
, 0, and a transition vector of N1 is defined as a transition invariant (TI) if [N1]. J = 0 and J , 0.

Appl. Sci. 2020, 10, 5270 13 of 34

Definition 31. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let N1 be a state of NR with N1
= (PC1, T1, F1, W1, M1o, K1). A place invariant I of N1 is expressed as a place semi-flow if each element of I is
non-negative. ||I|| = {p |I(p) , 0} is said to be the support of place invariant of I. ||I||+ = {p|I(p) > 0} is said to be
the positive support of place invariant I. ||I||− = {p |I(p) < 0} is said to be the negative support of place invariant
I. I is a minimal place invariant if ||I|| is not a superset of the support of any other one and its components are
mutually prime.

Definition 32. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let N1 be a state of NR with
N1 = (PC1, T1, F1, W1, M1o, K1). A transition invariant J of N1 is expressed as a transition semi-flow if each
element of J is non-negative. ||J|| = {t |J(t) , 0} is said to be the support of transition invariant of J. ||J||+ = {t|J(t) >

0} is said to be the positive support of transition invariant J. ||J||− = {t |J(t) < 0} is said to be the negative support
of transition invariant J. J is a minimal transition invariant, if ||J|| is not a superset of the support of any other
one, and its components are mutually prime.

Definition 33. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let N1 be a state of NR with N1
= (PC1, T1, F1, W1, M1o, K1). li is said to be the coefficients of place invariant I if for all pi ∈ PC1, li = I(pi).

Definition 34. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let N1 be a state of NR with N1
= (PC1, T1, F1, W1, M1o, K1). A non-empty set S ⊆ PC1 is called a siphon in N1 if •S ⊆ S•. S ⊆ PC1 is called a
trap in N1 if S•⊆ •S. S⊆ PC1 is called a minimal siphon (trap) if a siphon (trap) contains no other siphons. A
minimal siphon S is called a strict minimal siphon if S• (•S. Let Π = {S1, S2, S3, . . . , Sk} be a set of strict
minimal siphons of N1. We have S= SA ∪ SR, SR = S ∩ PR, and SA = S\SR, where SA and SR are sets of
operations and resources places, respectively.

Definition 35. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let N1 be a state of NR with N1 =

(PC1, T1, F1, W1, M1o, K1). A siphon S in N1 is called marked at marking M if
∑

p∈S M(p) ≥ 1, and otherwise
is called unmarked at marking M.

Definition 36. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let N1 be a state of NR with N1
= (PC1, T1, F1, W1, M1o, K1). A siphon S in N1 is called an emptiable siphon if there exists M ∈ R(N1, M1o)
such that

∑
p∈S M(p) = 0, and otherwise is called non-emptiable siphon.

Theorem 4. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let N1 be a state of NR with N1 =

(PC1, T1, F1, W1, M1o, K1) and Π the set of N1 siphons. The net N1 is deadlock-free if for all S ∈ Π, for all M ∈
R(N1, M1o),

∑
p∈S M(p) ≥ 1.

Proof. Let S be a siphon in N1 and p ∈ S. p is marked at marking M and satisfies
∑

p∈S M(p) ≥ 1. The
net N1 has at least one transition t enabled at any marking reachable from M and S is never be an
unmarked, and it is therefore deadlock-free. �

Theorem 5. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let N1 be a state of NR with N1 =

(PC1, T1, F1, W1, M1o, K1) and Π the set of N1 siphons. The net (N1, M1o) is in a deadlock state, i.e., M is a
dead marking of N1. Then, {p ∈ PC1|M(p) = 0} is a siphon S.

Proof. Since M is a dead marking, each t has an empty input place p at M, ∀p ∈ •t, M(p) < W(p, t), and
thus S• includes each transition of N1. In fact, we have •S ⊆ S•. Therefore, S is a siphon. Since the net
has at least one transition t ∈ T1, S is not an empty set. �

Corollary 3. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let N1 be a state of NR with N1 =

(PC1, T1, F1, W1, M1o, K1), a deadlocked N1 net includes at least one unmarked siphon S.

Appl. Sci. 2020, 10, 5270 14 of 34

Corollary 4. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let N1 be a state of NR with N1 =

(PC1, T1, F1, W1, M1o, K1), N1 is a deadlocked net at marking M. Then, N1 has at least one unmarked siphon S
such that for all p ∈ S, there exists t ∈ p• such that W1(p, t) > M(p).

To develop a deadlock prevention policy for reconfigurable S3PR net, we reviewed the approach
of designing a control place (monitor) for a place invariant developed by Yamalidou et al. [40]. Then
we develop a deadlock prevention policy for reconfigurable S3PR net to achieve an optimal place
invariant. Yamalidou et al. propose a computationally efficient method based on place invariants that
enforces algebraic constraints on the elements of a marking of a net system by constructing control
places. The control purpose is to ensure a siphon to be a marked siphon, i.e., ensure a siphon be
non-emptiable at all elements of a marking.

Assume that a reconfigurable S3PR net with NR = ((N, Mo), R) and Nk (state of NR) with Nk =

(PCk, Tk, Fk, Wk, Mko, Kk), k = 1, 2, . . . , |R| is a net to be controlled, which includes n places and m
transitions. Let [Nk] be the incidence matrix of a plant reconfigurable S3PR net. The control places
can be represented by [Nc] a matrix that shows the connection relationship between control places to
transitions of the net Nk. The controlled net with incidence matrix [N] comprises both the original
reconfigurable S3PR net and the monitors, i.e.,

[N] =

[
Nk
Nc

]
(4)

The control purpose is to impose a set of linear constraints to prevent unwanted markings being
reached. The constraints are formulated in a matrix form:

L.M ≥ B (5)

where M denotes the marking vector of net Nk, L is an integer nc x n matrix (nc - the number of
constraints), and B is an integer column vector. After the introduction of a non-negative slack variable
that corresponds to the initial marking Mko of Nk, constraint (5) can be reformulated as:

Mco = B−L.Mko. (6)

where Mco represents the initial marking of monitor c.

If [Nk] is the incidence matrix, we have: Mk = Mko + [Nk].
→

δ . Therefore, Mc = B−L.(Mko + [Nk].
→

δ),
which also can be reformulated as:

Mc = Mco + (−L.[Nk].
→

δ) (7)

The place invariant computed by (5) must meet the place invariant equation IT[N] = 0T. Therefore,
the monitor [Nc] can be formulated as:

[Nc] = −L.[Nk] (8)

Consequently, Mc may be considered as a marking of some additional monitors, where the

supervised reconfigurable S3PR net has an incidence matrix [N] =

[
Nk
Nc

]
, and a marking vector

M =

[
Mk
Mc

]
.

Appl. Sci. 2020, 10, 5270 15 of 34

Theorem 6. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let Nk be a state of NR with
Nk = (PCk, Tk, Fk, Wk, Mko, Kk), incidence matrix [Nk] and initial marking Mko be given. A set of nc linear
constraints L.Mk ≥ B are to be imposed. If B−L.Mk ≥ 0 then a Petri net controller with incidence matrix
[Nc] = −L.[Nk] and initial marking Mco = B−L.Mko enforces the constraint L.Mk ≥ B when included in the

closed loop system [N] =

[
Nk
Nc

]
. In addition, the controller is maximally permissive.

Proof. See [40,41]. �

Now, we consider the place invariant approach to control the siphon. Let S be an unmarked
siphon. The control purpose is to ensure that S is never unmarked through the system evolution (N,
Mo) and eliminate markings that break the linear constraint (5) from the reachable markings.

Let VS\S ∈ Π be the monitor resulting from controlling the siphon S. There are siphons S such
that if

∑
p∈S Mo(p) ≥ 1 for the initial marking Mo, then

∑
p∈S M(p) ≥ 1 for all reachable markings M.

Therefore, a siphon S does not require control. In order to reduce the supervisor’s complexity, these
siphons are identified and no monitors are added. Thus, we have two sets of constraints: L.M ≥ B
and Lo.M ≥ Bo rather than a single set of constraints L.M ≥ B. The deadlock prevention supervision
of the original net needs enforcing L.M ≥ B and selecting an initial marking Mo such that Lo.Mo ≥ Bo

and L.Mo ≥ B. The constraints Lo.M ≥ Bo are the constraints that all reachable markings satisfy when
the initial markings satisfy them. Therefore, there are two cases to control a siphon:

If VS
•
⊆
•S, then S does not require monitor and VS is not assigned to a net N. Furthermore, VS

•
⊆

•S if and only if S is a trap. Thus, when S is also a siphon, it is (trap) controlled for all initial markings
Mo that satisfy

∑
p∈S Mo(p) ≥ 1. Therefore, a siphon S is assigned to (Lo; Bo).

A. If VS
• (•S, then S needs a monitor and VS is assigned to N. Therefore, the S is assigned to

(L; B).

Definition 37. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let Nk be a state in NR with Nk
= (PCk, Tk, Fk, Wk, Mko, Kk). A siphon S in Nk is called controlled if for all M ∈R(Nk, Mko),

∑
p∈S M(p) ≥ 1

and satisfy L.M ≥ B and Lo.M ≥ Bo.

Definition 38. Let NR be a reconfigurable S3PR net with NR = ((N, Mo), R). Let Nk be a state in NR with Nk
= (PCk, Tk, Fk, Wk, Mko, Kk). The deadlock controller for (Nk, Mok) is expressed as (V, MVo) = (PV, TV, FV,
MVo), where (1) PV = {VS\S ∈ Π} is set of monitors. (2) TV = {t\t ∈ •VS ∪VS

•}. (3) FV ⊆ (PV × TV) ∪ (TV ×

PV) is called a flow relation of V. (4) for all VS ∈ PV, MVo(Vs) = B−L.Mko(Vs), where MVo(VS) is called an
initial marking of a monitor. (NRC, MRCo) is said to be a controlled reconfigurable S3PR net resulting from the
integration of (Nk, Mko) and (V, MVo), expressed as (Nk, Mko) ‖ (V, MVo), where NRC = (PRC, TRC, FRC, WRC,
MRCo, KRC), PRC = PCk ∪ PV, TRC = Tk ∪ TV, FRC: (PRC × TRC) ∪ (TRC × PRC)→ IN is called flow relations,
WRC: (PRC × TRC) ∪ (TRC × PRC)→ IN is a mapping that assigns a weight to an arc, MRCo: PRC→ IN is the
initial marking, and KRC: PRC→ IN is the function of capacity that assigns to each place p the maximal number
of tokens KRC(p).

Based on the concept of place invariant and siphon control, the deadlock prevention algorithm for
reconfigurable S3PR net is developed as follows:

Appl. Sci. 2020, 10, 5270 16 of 34

Algorithm 2: Deadlock prevention algorithm for reconfigurable S3PR net based on siphon control

Input: An S3PR net (No, Mo)
Output: A controlled reconfigurable S3PR net (NRC, MRCo).
Initialization: Generate dynamic configurations R = {rr1, rr2, rr3, . . . , rrm} k=0, PV = ∅, TV = ∅, FV = ∅, (NRC,
MRCo) = ∅.
Step 1: while R , ∅ do
k=k+1
1.1. Build (Nk, Mko) by using Algorithm 1.
1.2. Compute minimal siphons Π for (Nk, Mko).
1.3. for each S ∈ Π do
if VS

• (•S, then
a. Add S to (L; B).
b.
[
NVS

]
= −L.[Nk]

c. MVo(Vs) = B−L.Mko.
d. PV := PV ∪ {Vs}
e. TV := TV ∪ {t\t ∈ •VS ∪ VS

•}.
f. FV := FV ∪ ((PV × TV) ∪ (TV × PV))
elseIf VS

•
⊆
•S and

∑
p∈S Mo(p) ≥ 1, then

Add S to (Lo; Bo).
end if
end for
1.4. (NRC, MRCo) := (Nk, Mko) ‖ (Vk, MVko)
1.5. R = R\CR. /* CR is covered rrk*/
end while
Step 2: Output a controlled reconfigurable S3PR net (NRC, MRCo).
Step 3: End

To illustrate the proposed Algorithm 2, reconsider the initial S3PR net (No, Mo) illustrated in
Figure 2. The initial net has four minimal siphons S1 = {p1, p2, p3, p4}, S2 = {p3, p5}, S3 = {p2, p4, p6}, and
S4 = {p4, p5, p6}. The No incidence matrix is

[No] =



−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1
0 −1 1 0
−1 1 −1 1


(9)

while its initial marking is:

Mo =
[

5 0 0 0 1 1
]T

(10)

S4 creates monitor VS1, therefore one monitor VS1 is added, which enforces:

M(p4) + M(p5) + M(p6) ≥ 1 (11)

The following place invariant is generated:

M(VS1) = M(p4) + M(p5) + M(p6) − 1 (12)

The current matrices L and B represent the Equation (12).

L =
[

0 0 0 1 1 1
]
, B = [1] (13)

Appl. Sci. 2020, 10, 5270 17 of 34

while the others minimal siphons create constraints in (Lo; Bo).

Lo =


1 1 1 1 0 0
0 0 1 0 1 0
0 1 0 0 0 1

, Bo =


1
1
1

 (14)

The controller net incidence matrix is calculated by Equation (8):[
NVS

]
= −L.[No] =

[
−1 0 1 0

]
(15)

The controller‘s initial place marking is calculated as:

Mo(VS1) = Mo(p4) + Mo(p5) + Mo(p6) − 1 = 1

The controlled net of (No, Mo) is illustrated in Figure 7. The place and arcs of the controller are
shown with blue lines.

Now, reconsider the reconfigured S3PR net by addition of new machine (N1, M1o) illustrated in
Figure 3c. The reconfigured net has seven minimal siphons S1 = {p3, p5}, S2 = {p7, p9}, S3 = {p2, p4, p6,
p8}, S4 = {p4, p5, p6, p8}, S5 = {p2, p6, p8, p9}, S6 = {p5, p6, p8, p9}, and S7 = {p1, p2, p3, p4, p7, p8}.

Appl. Sci. 2020, 10, x 15 of 31

while the others minimal siphons create constraints in (ℒ௢; ℬ௢).

ℒ௢ = ൥
1 1 1 1 0 0
0 0 1 0 1 0
0 1 0 0 0 1

൩, ℬ௢ = ൥
1
1
1

൩ (14)

The controller net incidence matrix is calculated by Equation (8):

ൣ ௏ܰೄ൧ = −ℒ. ሾ ௢ܰሿ = ሾ−1 0 1 0ሿ (15)

The controller‘s initial place marking is calculated as:

Mo(VS1) = Mo(p4) + Mo(p5) + Mo(p6) −1=1
The controlled net of (No, Mo) is illustrated in Figure 7. The place and arcs of the controller are

shown with blue lines.
Now, reconsider the reconfigured S3PR net by addition of new machine (N1, M1o) illustrated in

Figure 3c. The reconfigured net has seven minimal siphons S1 = {p3, p5}, S2 = {p7, p9}, S3 = {p2, p4, p6, p8},
S4 = {p4, p5, p6, p8}, S5 = {p2, p6, p8, p9}, S6 = {p5, p6, p8, p9}, and S7 = {p1, p2, p3, p4, p7, p8}.

Figure 7. Controlled S3PR net by Algorithm 2.

The N1 incidence matrix is:

ሾ ଵܰሿ =

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
−1 0 0 0 0 1
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 −1 1 0 0 0

−1 1 −1 1 −1 1
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 −1 1 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (16)

while its initial marking is:

ଵைܯ = ሾ5 0 0 0 1 1 0 0 1ሿ୘ (17)

S4, S5, and S6 create monitor VS1, VS2, and VS3, respectively. Thus, three monitors are added, VS1,
VS2, and VS3, which enforce:

M(p4) + M(p5) + M(p6) + M(p8) ≥ 1 (18)

M(p2) + M(p6) + M(p8) + M(p9) ≥ 1 (19)

M(p5) + M(p6) + M(p8) + M(p9) ≥ 1 (20)

The following place invariants are accordingly generated:

Figure 7. Controlled S3PR net by Algorithm 2.

The N1 incidence matrix is:

[N1] =



−1 0 0 0 0 1
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 −1 1 0 0 0
−1 1 −1 1 −1 1
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 −1 1 0


(16)

while its initial marking is:

M1O =
[

5 0 0 0 1 1 0 0 1
]T

(17)

Appl. Sci. 2020, 10, 5270 18 of 34

S4, S5, and S6 create monitor VS1, VS2, and VS3, respectively. Thus, three monitors are added, VS1,
VS2, and VS3, which enforce:

M(p4) + M(p5) + M(p6) + M(p8) ≥ 1 (18)

M(p2) + M(p6) + M(p8) + M(p9) ≥ 1 (19)

M(p5) + M(p6) + M(p8) + M(p9) ≥ 1 (20)

The following place invariants are accordingly generated:

M(VS1) = M(p4) + M(p5) + M(p6) + M(p8) − 1 (21)

M(VS2) = M(p2) + M(p6) + M(p8) + M(p9) − 1 (22)

M(VS3) = M(p5) + M(p6) + M(p8) + M(p9) − 1 (23)

The current matrices L and B represent the Equations (18)–(20).

L =


0 0 0 1 1 1 0 1 0
0 1 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1 1

, B =


1
1
1

 (24)

while the other minimal siphons create constraints in (Lo; Bo).

Lo =


0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1
0 1 0 1 0 1 0 1 0
1 1 1 1 0 0 1 1 0

, Bo =


1
1
1
1

 (25)

The controller’s net incidence matrix is calculated by Equation (12);

[
NVS

]
= −L.[N1] =


−1 0 1 0 0 0
0 0 −1 0 1 0
−1 0 0 0 1 0

 (26)

The initial marking controllers are calculated as:

Mo(VS1) = Mo(p4) + Mo(p5) + Mo(p6) + Mo(p8) − 1 = 1

Mo(VS2) = Mo(p2) + Mo(p6) + Mo(p8) + Mo(p9) − 1 = 1

Mo(VS3) = Mo(p5) + Mo(p6) + Mo(p8) + Mo(p9) − 1 = 2

The controlled reconfigurable net of (N1, M1o) is illustrated in Figure 8. The place and arcs of the
controllers are shown with blue lines.

Appl. Sci. 2020, 10, 5270 19 of 34

Appl. Sci. 2020, 10, x 16 of 31

M(VS1) = M(p4) + M(p5) + M(p6) + M(p8) -1 (21)

M(VS2) = M(p2) + M(p6) + M(p8) + M(p9) −1
(221

0)

M(VS3) = M(p5) + M(p6) + M(p8) + M(p9) −1 (23)

The current matrices ℒ and ℬ represent the Equations (18–20).

ℒ = ൥
0 0 0 1 1 1 0 1 0
0 1 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1 1

൩, ℬ = ൥
1
1
1

൩ (24)

while the other minimal siphons create constraints in (ℒ௢; ℬ௢).

ℒ௢ = ൦

0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1
0 1 0 1 0 1 0 1 0
1 1 1 1 0 0 1 1 0

൪, ℬ௢ = ൦

1
1
1
1

൪ (25)

The controller’s net incidence matrix is calculated by Equation (12);

ൣ ௏ܰೄ൧ = −ℒ. ሾ ଵܰሿ = ൥
−1 0 1 0 0 0
0 0 −1 0 1 0

−1 0 0 0 1 0
൩ (26)

The initial marking controllers are calculated as:

Mo(VS1) = Mo(p4) + Mo(p5) + Mo(p6) + Mo(p8) -1 =1

Mo(VS2) = Mo(p2) + Mo(p6) + Mo(p8) + Mo(p9) -1 =1

Mo(VS3) = Mo(p5) + Mo(p6) + Mo(p8) + Mo(p9) -1 =2
The controlled reconfigurable net of (N1, M1o) is illustrated in Figure 8. The place and arcs of the

controllers are shown with blue lines.

Figure 8. Controlled reconfigurable S3PR net by addition of new machine.

Then, reconsider the reconfigured S3PR net by addition of new product (N2, M2o) illustrated in
Figure 4c. The reconfigured net has 11 minimal siphons S1 = {p7, p9}, S2 = {p3, p5, p11}, S3 = {p10, p11, p12,
p13}, S4 = {p4, p5, p6, p8, p12}, S5 = {p5, p6, p8, p9, p12}, S6 = { p1, p2, p3, p4, p7, p8}, S7 = {p2, p4, p6, p8, p10, p12}, S8 =

Figure 8. Controlled reconfigurable S3PR net by addition of new machine.

Then, reconsider the reconfigured S3PR net by addition of new product (N2, M2o) illustrated in
Figure 4c. The reconfigured net has 11 minimal siphons S1 = {p7, p9}, S2 = {p3, p5, p11}, S3 = {p10, p11,
p12, p13}, S4 = {p4, p5, p6, p8, p12}, S5 = {p5, p6, p8, p9, p12}, S6 = {p1, p2, p3, p4, p7, p8}, S7 = {p2, p4, p6, p8,
p10, p12}, S8 = {p2, p6, p8, p9, p10, p12}, S9 = {p4, p5, p6, p8, p12}, S10 = {p5, p6, p8, p9, p12}, and S11 = {p2, p6,
p8, p9, p10, p12}. The N2 incidence matrix is

[N2] =



−1 0 0 0 0 1 0 0 0 0
1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 −1 1 0 0 0 0 −1 1 0
−1 1 −1 1 −1 1 −1 1 −1 1
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 −1 0 0 1



(27)

while its initial marking is:

M2O =
[

5 0 0 0 1 1 0 0 1 0 0 0 5
]T

(28)

S4, S5, and S8 create monitors VS1, VS2, and VS3, respectively. Thus, three monitors are added,
VS1, VS2, and VS3, which enforce:

M(p4) + M(p5) + M(p6) + M(p8) + M(p12) ≥ 1 (29)

M(p5) + M(p6) + M(p8) + M(p9) + M(p12) ≥ 1 (30)

M(p2) + M(p6) + M(p8) + M(p9) + M(p10) + M(p12) ≥ 1 (31)

Appl. Sci. 2020, 10, 5270 20 of 34

The following place invariants are accordingly generated:

M(VS1) = M(p4) + M(p5) + M(p6) + M(p8) + M(p12) − 1 (32)

M(VS2) = M(p5) + M(p6) + M(p8) + M(p9) + M(p12) − 1 (33)

M(VS3) = M(p2) + M(p6) + M(p8) + M(p9) + M(p10) + M(p12) − 1 (34)

The current matrices L and B represent the Equations (29)–(31).

L =


0 0 0 1 1 1 0 1 0 0 0 1 0
0 0 0 0 1 1 0 1 1 0 0 1 0
0 1 0 0 0 1 0 1 1 1 0 1 0

, B =


1
1
1

 (35)

while the other minimal siphons create constraints in (Lo; Bo).

Lo =



0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 1 1 1 0 1 0 0 0 1 0
0 0 0 0 1 1 0 1 1 0 0 1 0
0 1 0 0 0 1 0 1 1 1 0 1 0


, Bo =



1
1
1
1
1
1
1
1


(36)

The controller’s net incidence matrix is calculated by Equation (12);

[
NVS

]
= −L.[N2o] =


−1 0 1 0 0 0 −1 0 1 0
−1 0 0 0 1 0 −1 0 1 0
0 0 −1 0 1 0 0 0 0 0

 (37)

The initial marking controllers are calculated as:

Mo(VS1) = Mo(p4) + Mo(p5) + Mo(p6) + Mo(p8) + Mo(p12) − 1 = 1

Mo(VS2) = Mo(p5) + Mo(p6) + Mo(p8) + Mo(p9) +Mo(p12) − 1 = 2

Mo(VS3) = Mo(p2) + Mo(p6) + Mo(p8) + Mo(p9) + Mo(p10) + Mo(p12) − 1 = 1

The controlled reconfigurable net of (N2, M2o) is illustrated in Figure 9. The place and arcs of the
controllers are shown with blue lines.

Then, reconsider the reconfigured S3PR net by rework (N3, M3o) illustrated in Figure 5c.
The reconfigured net has 13 minimal siphons S1 = {p4, p5, p6, p8, p12, p16}, S2 = {p5, p6, p8, p9,
p12, p16}, S3 = {p4, p5, p6, p8, p16, p17}, S4 = {p5, p6, p8, p9, p16, p17}, S5 = {p2, p6, p8, p9, p10, p12, p15, p16},
S6 = {p2, p4, p6, p8 p10, p15, p16, p17}, S7 = {p2, p6, p8, p9, p10, p15, p16, p17}, S8 = {p2, p4, p6, p8, p10, p12,
p15, p16}, S9 = {p7, p9}, S10 = {p1, p2, p3, p4, p7, p8}, S11 = {p3, p5, p11}, S12 = {p14, p17}, and S13 = {p10, p11,
p12, p13, p14, p15, p16}. Siphons S1–S7, create monitors VS1- VS7, respectively. Thus, seven monitors are
added, VS1- VS7, which enforce:

M(p4) + M(p5) + M(p6) + M(p8) + M(p12) + M(p16) ≥ 1 (38)

M(p5) + M(p6) + M(p8) + M(p9) + M(p12) + M(p16) ≥ 1 (39)

M(p4) + M(p5) + M(p6) + M(p8) + M(p16) + M(p17) ≥ 1 (40)

M(p5) + M(p6) + M(p8) + M(p9) + M(p16) + M(p17) ≥ 1 (41)

Appl. Sci. 2020, 10, 5270 21 of 34

M(p2) + M(p6) + M(p8) + M(p9) + M(p10) + M(p12) + M(p15) + M(p16) ≥ 1 (42)

M(p2) + M(p4) + M(p6) + M(p8) + M(p10) + M(p15) + M(p16) + M(p17) ≥ 1 (43)

M(p2) + M(p6) + M(p8) + M(p9) + M(p10) + M(p15) + M(p16) + M(p17) ≥ 1 (44)

Appl. Sci. 2020, 10, x 18 of 31

The controlled reconfigurable net of (N2, M2o) is illustrated in Figure 9. The place and arcs of the
controllers are shown with blue lines.

Then, reconsider the reconfigured S3PR net by rework (N3, M3o) illustrated in Figure 5c. The
reconfigured net has 13 minimal siphons S1 = { p4, p5, p6, p8, p12, p16}, S2 = { p5, p6, p8, p9, p12, p16}, S3 = { p4,
p5, p6, p8, p16, p17}, S4 = {p5, p6, p8, p9, p16, p17}, S5 = {p2, p6, p8, p9, p10, p12, p15, p16}, S6 = {p2, p4, p6, p8 p10, p15, p16,
p17}, S7 = {p2, p6, p8, p9, p10, p15, p16, p17}, S8 = {p2, p4, p6, p8, p10, p12, p15, p16}, S9 = {p7, p9}, S10 = {p1, p2, p3, p4, p7,
p8}, S11 = {p3, p5, p11}, S12 = {p14, p17}, and S13 = {p10, p11, p12, p13, p14, p15, p16}. Siphons S1–S7, create monitors
VS1- VS7, respectively. Thus, seven monitors are added, VS1- VS7, which enforce:

M(p4) + M(p5) + M(p6) + M(p8) + M(p12) + M(p16) ≥ 1 (38)

M(p5) + M(p6) + M(p8) + M(p9) + M(p12) + M(p16) ≥ 1 (39)

M(p4) + M(p5) + M(p6) + M(p8) + M(p16) + M(p17) ≥ 1 (40)

M(p5) + M(p6) + M(p8) + M(p9) + M(p16) + M(p17) ≥ 1 (41)

M(p2) + M(p6) + M(p8) + M(p9) + M(p10) + M(p12) + M(p15) + M(p16) ≥ 1 (42)

M(p2) + M(p4) + M(p6) + M(p8) + M(p10) + M(p15) + M(p16) + M(p17) ≥ 1 (43)

M(p2) + M(p6) + M(p8) + M(p9) + M(p10) + M(p15) + M(p16) + M(p17) ≥ 1 (44)

Figure 9. Controlled reconfigurable S3PR net by addition of new product.

The following place invariants are accordingly generated:

M(VS1) = M(p4) + M(p5) + M(p6) + M(p8) + M(p12) + M(p16) - 1 (45)

M(VS2) = M(p5) + M(p6) + M(p8) + M(p9) + M(p12) + M(p16) - 1 (46)

M(VS3) = M(p4) + M(p5) + M(p6) + M(p8) + M(p16) + M(p17) - 1 (47)

M(VS4) = M(p5) + M(p6) + M(p8) + M(p9) + M(p16) + M(p17) - 1 (48)

M(VS5) = M(p2) + M(p6) + M(p8) + M(p9) + M(p10) + M(p12) + M(p15) + M(p16) - 1 (49)

M(VS6) = M(p2) + M(p4) + M(p6) + M(p8) + M(p10) + M(p15) + M(p16) + M(p17) - 1 (50)

M(VS7) = M(p2) + M(p6) + M(p8) + M(p9) + M(p10) + M(p15) + M(p16) + M(p17) - 1 (51)

The current matrices ℒ and ℬ represent the Equations (38–44).

Figure 9. Controlled reconfigurable S3PR net by addition of new product.

The following place invariants are accordingly generated:

M(VS1) = M(p4) + M(p5) + M(p6) + M(p8) + M(p12) + M(p16) − 1 (45)

M(VS2) = M(p5) + M(p6) + M(p8) + M(p9) + M(p12) + M(p16) − 1 (46)

M(VS3) = M(p4) + M(p5) + M(p6) + M(p8) + M(p16) + M(p17) − 1 (47)

M(VS4) = M(p5) + M(p6) + M(p8) + M(p9) + M(p16) + M(p17) − 1 (48)

M(VS5) = M(p2) + M(p6) + M(p8) + M(p9) + M(p10) + M(p12) + M(p15) + M(p16) − 1 (49)

M(VS6) = M(p2) + M(p4) + M(p6) + M(p8) + M(p10) + M(p15) + M(p16) + M(p17) − 1 (50)

M(VS7) = M(p2) + M(p6) + M(p8) + M(p9) + M(p10) + M(p15) + M(p16) + M(p17) − 1 (51)

The current matrices L and B represent the Equations (38)–(44).

L =



0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0
0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1
0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1


, B =



1
1
1
1
1
1
1


(52)

Appl. Sci. 2020, 10, 5270 22 of 34

The controller’s net incidence matrix is calculated by Equation (12);

[
NVS

]
=



−1 0 1 0 0 0 −1 0 1 0 −1 0 0 0
−1 0 0 0 1 0 −1 0 1 0 −1 0 0 0
−1 0 1 0 0 0 −1 0 0 0 0 1 0 0
−1 0 0 0 1 0 −1 0 0 0 0 1 0 0
0 0 −1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 1 1 0 0
0 0 −1 0 1 0 0 0 −1 0 1 1 0 0


(53)

The initial marking controllers are calculated as:
Mo(VS1) = 1, Mo(VS2) = 2, Mo(VS3) = 2, Mo(VS4) = 3, Mo(VS5) = 1, Mo(VS6) = 1, and Mo(VS7) = 2.
The controlled reconfigurable net of (N3, M3o) is illustrated in Figure 10. The place and arcs of the

controller are shown with blue lines.

Appl. Sci. 2020, 10, x 19 of 31

ℒ =

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0
0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1
0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 ے1

ۑ
ۑ
ۑ
ۑ
ۑ
ې

, ℬ =

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
1
1
1
1
1
1
ے1

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (52)

The controller’s net incidence matrix is calculated by Equation (12);

ℒൣ ௏ܰೄ൧ =

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
−1 0 1 0 0 0 −1 0 1 0 −1 0 0 0
−1 0 0 0 1 0 −1 0 1 0 −1 0 0 0
−1 0 1 0 0 0 −1 0 0 0 0 1 0 0
−1 0 0 0 1 0 −1 0 0 0 0 1 0 0
0 0 −1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 1 1 0 0
0 0 −1 0 1 0 0 0 −1 0 1 1 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (53)

The initial marking controllers are calculated as:
Mo(VS1) = 1, Mo(VS2) = 2, Mo(VS3) = 2, Mo(VS4) = 3, Mo(VS5) = 1, Mo(VS6) = 1, and Mo(VS7) = 2.

The controlled reconfigurable net of (N3, M3o) is illustrated in Figure 10. The place and arcs of the

controller are shown with blue lines.

Figure 10. Controlled reconfigurable S3PR net by rework.

Finally, reconsider the reconfigured S3PR net by addition of a new robot (N4, M4o) illustrated in
Figure 6c. The reconfigured net has 17 minimal siphons, ten of which S1–S10 that create monitors VS1-
VS10, respectively, which are siphons S1 = { p2, p6, p6-1, p8, p9}, S2 = { p4, p5, p6-1, p8, p11}, S3 = { p5, p6-1, p8, p9,
p11}, S4 = {p4, p5, p6-1, p6-2, p8, p12, p16}, S5 = {p4, p5, p6-1, p6-2, p8, p16, p17}, S6 = {p5, p6-1, p6-2, p8 p9, p12, p16}, S7 = {p5,
p6-1, p6-2, p8, p9, p16, p17}, S8 = {p3, p5, p6-2, p12, p16}, S9 = {p3, p5, p6-2, p16, p17,}, and S10 = {p6-2, p10, p15, p16, p17}. The
current matrices ℒ and ℬ are expressed as:

Figure 10. Controlled reconfigurable S3PR net by rework.

Finally, reconsider the reconfigured S3PR net by addition of a new robot (N4, M4o) illustrated in
Figure 6c. The reconfigured net has 17 minimal siphons, ten of which S1–S10 that create monitors VS1-
VS10, respectively, which are siphons S1 = {p2, p6, p6-1, p8, p9}, S2 = {p4, p5, p6-1, p8, p11}, S3 = {p5, p6-1, p8,
p9, p11}, S4 = {p4, p5, p6-1, p6-2, p8, p12, p16}, S5 = {p4, p5, p6-1, p6-2, p8, p16, p17}, S6 = {p5, p6-1, p6-2, p8 p9,
p12, p16}, S7 = {p5, p6-1, p6-2, p8, p9, p16, p17}, S8 = {p3, p5, p6-2, p12, p16}, S9 = {p3, p5, p6-2, p16, p17,}, and S10
= {p6-2, p10, p15, p16, p17}. The current matrices L and B are expressed as:

L =



0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 0
0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1
0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1



, B =



1
1
1
1
1
1
1
1
1
1



(54)

Appl. Sci. 2020, 10, 5270 23 of 34

The controller’s net incidence matrix is calculated by Equation (12);

[
NVS

]
=



0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 −1 0 1 0 −1 0 0 0 0
−1 0 1 0 0 0 −1 0 0 0 0 1 1 0 0
−1 0 0 0 1 0 −1 0 1 0 −1 0 0 0 0
−1 0 0 0 1 0 −1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 −1 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 −1 0 1 1 1 0 0



(55)

The initial marking controllers are calculated as Mo(VS1) = 1, Mo(VS2) = 1, Mo(VS3) = 2, Mo(VS4) =

2, Mo(VS5) = 3, Mo(VS6) = 3, Mo(VS7) = 4, Mo(VS8) = 1, Mo(VS9) = 2, and Mo(VS10) = 1.
The controlled reconfigurable net of (N4, M4o) is illustrated in Figure 11. The place and arcs of the

controller are shown with blue lines.

Appl. Sci. 2020, 10, x 20 of 31

ℒ =

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 0
0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1
0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 ے1

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

, ℬ =

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1
1
1
1
1
1
1
1
1
ے1

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (54)

The controller’s net incidence matrix is calculated by Equation (12);

ൣ ௏ܰೄ൧ =

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 −1 0 1 0 −1 0 0 0 0
−1 0 1 0 0 0 −1 0 0 0 0 1 1 0 0
−1 0 0 0 1 0 −1 0 1 0 −1 0 0 0 0
−1 0 0 0 1 0 −1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 −1 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 −1 0 1 1 1 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (55)

The initial marking controllers are calculated as Mo(VS1) = 1, Mo(VS2) = 1, Mo(VS3) = 2, Mo(VS4) = 2,
Mo(VS5) = 3, Mo(VS6) = 3, Mo(VS7) = 4, Mo(VS8) = 1, Mo(VS9) = 2, and Mo(VS10) = 1.

The controlled reconfigurable net of (N4, M4o) is illustrated in Figure 11. The place and arcs of the
controller are shown with blue lines.

Figure 11. Controlled reconfigurable S3PR net by rework.

4. Behavioral and Quantitative Analysis of Reconfigurable S3PR Net

Figure 11. Controlled reconfigurable S3PR net by rework.

4. Behavioral and Quantitative Analysis of Reconfigurable S3PR Net

4.1. Liveness

Liveness is one of the most important issues in reconfigurable manufacturing systems with
dynamic changes. Conversely, in these systems, deadlock is usually unwanted. When a system is not
live, tasks could never be performed because of local or global deadlocks. Liveness of a transition
means that, irrespective of the current state of the net, it can always eventually fire.

Appl. Sci. 2020, 10, 5270 24 of 34

Theorem 7. The controlled reconfigurable S3PR net (NRC, MRCo) with NRC = (PRC, TRC, FRC, WRC, MRCo,
KRC) is live.

Proof. All transitions TRC in (NRC, MRCo) must be proven to be live. There is no unmarked siphon,
p ∈ S. p is marked at marking M and satisfies

∑
p∈S M(p) ≥ 1, since all t ∈ TRC are live. For all t ∈ TRC, if

for all p ∈ •t, MRCo(p) > 0, then t can fire in any case. Therefore, the controlled reconfigurable S3PR net
(NRC, MRCo) is live. �

To demonstrate the liveness of a reconfigurable S3PR net, consider the model illustrated in Figure 9.
Its reachability graph with all model markings is illustrated in Figure 12 and it is apparent that all
transitions are live, which means that the system is live.

4.2. Boundedness

The boundedness is associated with a place, indicating that the number of tokens in a place never
exceeds a certain number. This means that there is no overflow in a place.

Theorem 8. Let a reconfigurable S3PR net (NRC, MRCo) with NRC = (PRC, TRC, FRC, WRC, MRCo, KRC) be a
controlled net. Then (NRC, MRCo) is bounded.

Proof. Theorem 7 proves that the net (NRC, MRCo) is live. Therefore, the boundedness can be established
by checking if the net (NRC, MRCo) is well constructed, behaved, and controlled. The resulting net
(NRC, MRCo) maintains the boundedness as the net is well constructed, behaved and has a finite
reachability set. �

To demonstrate the boundedness of a controlled reconfigurable S3PR net, consider the net
illustrated in Figure 9. Its reachability graph is illustrated in Figure 12. It is obvious that markings
reachable from initial marking are five-bounded, which indicates that the system is bounded.

Appl. Sci. 2020, 10, x 21 of 31

4.1. Liveness

Liveness is one of the most important issues in reconfigurable manufacturing systems with
dynamic changes. Conversely, in these systems, deadlock is usually unwanted. When a system is not
live, tasks could never be performed because of local or global deadlocks. Liveness of a transition
means that, irrespective of the current state of the net, it can always eventually fire.

Theorem 7: The controlled reconfigurable S3PR net (NRC, MRCo) with NRC = (PRC, TRC, FRC, WRC, MRCo,
KRC) is live.

Proof: All transitions TRC in (NRC, MRCo) must be proven to be live. There is no unmarked siphon,
p ∈ S. p is marked at marking M and satisfies ∑ (݌)ܯ ≥ 1௣∈ௌ , since all t ∈ TRC are live. For all t ∈ TRC,
if for all p ∈ •t, MRCo(p) > 0, then t can fire in any case. Therefore, the controlled reconfigurable S3PR
net (NRC, MRCo) is live. □

To demonstrate the liveness of a reconfigurable S3PR net, consider the model illustrated in Figure
9. Its reachability graph with all model markings is illustrated in Figure 12 and it is apparent that all
transitions are live, which means that the system is live.

4.2. Boundedness

The boundedness is associated with a place, indicating that the number of tokens in a place never
exceeds a certain number. This means that there is no overflow in a place.

Theorem 8: Let a reconfigurable S3PR net (NRC, MRCo) with NRC = (PRC, TRC, FRC, WRC, MRCo, KRC) be
a controlled net. Then (NRC, MRCo) is bounded.

Proof: Theorem 7 proves that the net (NRC, MRCo) is live. Therefore, the boundedness can be
established by checking if the net (NRC, MRCo) is well constructed, behaved, and controlled. The
resulting net (NRC, MRCo) maintains the boundedness as the net is well constructed, behaved and has
a finite reachability set. □

To demonstrate the boundedness of a controlled reconfigurable S3PR net, consider the net
illustrated in Figure 9. Its reachability graph is illustrated in Figure 12. It is obvious that markings
reachable from initial marking are five-bounded, which indicates that the system is bounded.

Figure 12. Reachable markings of a controlled reconfigurable S3PR net, as illustrated in Figure 8. Figure 12. Reachable markings of a controlled reconfigurable S3PR net, as illustrated in Figure 8.

Appl. Sci. 2020, 10, 5270 25 of 34

4.3. Reversibility
Reversibility means that a system can always return to its initial marking. A controlled

reconfigurable S3PR Petri net model (NRC, MRCo) is reversible if for each marking M ∈ R(NRC,
MRCo), initial marking MRCo is reachable from M.

Theorem 9. Let a reconfigurable S3PR net (NRC, MRCo) with NRC = (PRC, TRC, FRC, WRC, MRCo, KRC) be
a live and controlled net. NRC is reversible if for each marking M ∈ R(NRC, MRCo), initial marking MRCo is
reachable from M, M and MRCo satisfying all place invariants and M marks each trap of NRC.

Proof. Suppose that M is reachable. Then there exists a finite transition sequence δ = t1 t2 t3 . . . tn

that can be fired, and markings M1, M2, M3, . . . , and Mn−1 are such that MRCo[t1〉M1[t2〉M2[t3〉M3 . . .

Mn−1[tn〉M, expressed as MRCo[δ〉M, agrees with the state equation M = MRCo + [NRC]
→

δ . In addition,
M and MRCo satisfy all place invariants, IT.M = IT.MRCo. Therefore, we can say that MRCo is the

home marking of the net (NRC, MRCo), M is reachable from MRCo, and we get MRCo

→

δ
→M. Thus, the

reconfigurable S3PR net (NRC, MRCo) is reversible. �

To demonstrate the reversibility of a controlled reconfigurable S3PR net, consider the model
illustrated in Figure 8. Its reachability graph is illustrated in Figure 13. In the net shown in Figure 8,
there are seven minimal place invariants: I1 = p3 + p5, I2 = p2 +p3 + p10, I3 = p7 + p9, I4 = p4 +p7 + p11,
I5 = p2 +p3 + p4+ p7+ p12, I6 = p2 +p4 + p6+ p8, I7 = p1 +p2 + p3+ p4+ p7+ p8, since ∀i ∈ {1,2,3,4,5,6,7},
Ii

T. [NRC] = 0T. M6 ∈ R(NRC, MRCo), I1
T.M6=I1

T.MRCo= M6(p3)+ M6(p5)= MRCo(p3)+ MRCo(p5)=1. The
net has a unique T-invariant J = t1 + t2+ t3 + t4 + t5+ t6 and the transition sequence δ = t1t2t3t4t5t6
is firable. As a result, MRCo[t1〉M1[t2〉M2[t3〉M3[t4〉M4[t 5〉M6[t 6〉MRCo. Therefore, the reconfigurable
S3PR net (NRC, MRCo) is live, bounded, and reversible.

Appl. Sci. 2020, 10, x 22 of 31

4.3. Reversibility

Reversibility means that a system can always return to its initial marking. A controlled
reconfigurable S3PR Petri net model (NRC, MRCo) is reversible if for each marking M ∈ R(NRC, MRCo),
initial marking MRCo is reachable from M.

Theorem 9: Let a reconfigurable S3PR net (NRC, MRCo) with NRC = (PRC, TRC, FRC, WRC, MRCo, KRC) be
a live and controlled net. NRC is reversible if for each marking M ∈ R(NRC, MRCo), initial marking MRCo
is reachable from M, M and MRCo satisfying all place invariants and M marks each trap of NRC.

Proof: Suppose that M is reachable. Then there exists a finite transition sequence δ = t1 t2 t3 … tn
that can be fired, and markings M1, M2, M3, ..., and Mn−1 are such that MRCo[t1⟩M1[t2⟩M2[t3⟩M3 …
Mn−1[tn⟩M, expressed as MRCo[ߜ⟩M, agrees with the state equation M = MRCo + [NRC] ߜԦ. In addition, M
and MRCo satisfy all place invariants, IT.M = IT.MRCo. Therefore, we can say that MRCo is the home

marking of the net (NRC, MRCo), M is reachable from MRCo, and we get MRCo
ఋሬሬԦ
→ M. Thus, the

reconfigurable S3PR net (NRC, MRCo) is reversible.
To demonstrate the reversibility of a controlled reconfigurable S3PR net, consider the model

illustrated in Figure 8. Its reachability graph is illustrated in Figure 13. In the net shown in Figure 8,
there are seven minimal place invariants: I1 = p3 + p5, I2 = p2 +p3 + p10, I3 = p7 + p9, I4 = p4 +p7 + p11, I5 = p2 +p3
+ p4+ p7+ p12, I6 = p2 +p4 + p6+ p8, I7 = p1 +p2 + p3+ p4+ p7+ p8, since ∀i ∈ {1,2,3,4,5,6,7}, IiT. [NRC] = 0T. M6 ∈
R(NRC, MRCo), I1T.M6=I1T.MRCo= M6(p3)+ M6(p5)= MRCo(p3)+ MRCo(p5)=1. The net has a unique T-invariant J
= t1 + t2+ t3 + t4 + t5+ t6 and the transition sequence ߜ = t1t2t3t4t5t6 is firable. As a result,
MRCo[t1⟩M1[t2⟩M2[t3⟩M3[t4⟩M4[t5⟩M6[t6⟩MRCo. Therefore, the reconfigurable S3PR net (NRC, MRCo) is live,
bounded, and reversible.

Figure 13. Reachable markings of a controlled reconfigurable S3PR net, as illustrated in Figure 7.

4.4. Computational Complexity

Figure 13. Reachable markings of a controlled reconfigurable S3PR net, as illustrated in Figure 7.

Appl. Sci. 2020, 10, 5270 26 of 34

4.4. Computational Complexity
Algorithm 1 is used to design a reconfigurable S3PR net with NR = ((N, Mo), R). In addition,

Algorithm 2 computes the control places to a reconfigurable S3PR net with NR = ((N, Mo), R).

Theorem 10. Given a reconfigurable S3PR net with NR = ((N, Mo), R), where NR with Nk = (PCk, Tk, Fk, Wk,
Mko, Kk), the time complexity of Algorithm 1 is polynomial.

Proof. Let Nk be states in NR with Nk = (PCk, Tk, Fk, Wk, Mko, Kk), R = {rr1, rr2, rr3, . . . , rrk}, rrk = {Lk, Rk,
ϕk, •ϕk, ϕk

•}, and net (NR, MRo) be the obtained reconfigurable S3PR net. Let x be the cardinality of R,
i.e., |R| = x. The “While” loop is executed x times to design state Nk in a reconfigurable S3PR net (NR,
MRo). Therefore, in the worst case, the computational complexity of algorithm 1 is O(x). Thus, the
computational complexity of the Algorithm 1 has polynomial time complexity. �

Theorem 11. Given a reconfigurable S3PR net with NR = ((N, Mo), R), where NR with Nk = (PCk, Tk, Fk, Wk,
Mko, Kk), the time complexity of Algorithm 2 is polynomial.

Proof. Algorithm 2 is used to design a control place VS to each minimal siphon S, VS
• (•S in each

state Nk in a reconfigurable S3PR net (NR, MRo) to achieve the liveness of net (NR, MRo). Obviously,
each VS is associated with the minimal siphon S in net (Nk, Mko). Let x be the cardinality of R, i.e., |R| =

x. Let y be the number of minimal siphons S (denoted as S′) that requires VS i.e., |S′| = y. The “While”
loop is executed x times to design state Nk in reconfigurable S3PR net (NR, MRo). The “FOR loop” loop
is executed y times to design VS for the S′ in (Nk, Mko). Therefore, the computational complexity of
Algorithm 2 is O(xy). Thus, the computational complexity of the Algorithm 2 has polynomial time
complexity. �

4.5. GPENSIM Code and Validation
We coded the developed approach using the GPenSIM tool [6,42] to verify and validate it and

compared the developed code with the studies by Ezpeleta et al. [43], Li and Zhou [44], and Kaid
et al. [6]. There were three files generated: (1) the Petri net definition file (PDF) that represents
the static model by stating the sets of places, transitions, and arcs, (2) the common processor file
(COMMON_PRE file) that represents the conditions for activation of the enabling fire transitions,
and (3) the main simulation file (MSF) that calculates the results of the simulation. The developed
approach was implemented on MATLAB R2015a. A PC with Windows 10, 64-bit and Intel(R) Core
(TM) i7-4702MQ CPU @ 2.20 GHz, 16 GB RAM.

Simulation leads to a better time performance in the designed model including total throughput
time (total time in system), total throughput, and utilization of the robots and machines. Consider the
model illustrated in Figure 8. The simulation was undertaken for 480 min. The results summarized in
Table 1 were obtained after simulation in MATLAB. Table 1 shows the results for the time performance
criteria mentioned above. All methods achieve approximately the same values for the utilization of
resources as illustrated in Figure 14. In addition, the proposed method, as illustrated in Figure 14, can
achieve approximately the same values with other techniques for throughput. In term of throughput
time of Part A, the proposed method can achieve approximately the same values with other techniques
as illustrated in Figure 14. Therefore, the proposed method is valid, sufficiently accurate results can be
obtained and other cases can be applied.

Table 1. Time performance comparison with the existing methods.

Performance Ezpeleta et al. [43] Li and Zhou [44] Kaid et al. [6] The Proposed Method

M1 utilization (%) 29.05 29.05 29.60 29.05
M2 utilization (%) 29.61 29.61 30.50 29.61
R1 utilization (%) 48.04 48.04 47.56 48.04

Throughput (parts) 34 34 34 34
Throughput time (min/part) 14.12 14.12 14.12 14.12

Appl. Sci. 2020, 10, 5270 27 of 34

Appl. Sci. 2020, 10, x 24 of 31

Figure 14. Comparison of the proposed method with the existing methods.

5. Numerical Example

In this section, an example is used to present the application of the proposed approach. Consider
an AMS example illustrated in Figure 15a. Its Petri net model is given in [6,7,15,22,45,46]. The system
consists of four machines M1–M4 for processing parts; two robots R1 and R2 for loading and
unloading parts. Each machine (robot) can process (hold) one part at a time. There are two input
buffers I1 and I2 and two output buffers O1 and O2. Two raw part types, A and B, are considered to
be processed in the system. Figure 15b shows the operation sequences of the two raw part types. The
S3PR net of this AMS example is illustrated in Figure 16. It comprises 19 places and 14 transitions.
The places can be defined as the following set partitions: PA = {p2, p3, …, p12}, PR = {p13, p14, …, p18}, and
P0 = {p1, p19}. The S3PR net contains 282 reachable markings.

Figure 15. (a) An AMS example and (b) production sequence.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

M 1
utilization%

M 2
utilization%

R 1
utilization%

Throughput
(parts)

Throughput
time (min/

part)

Time performance comparison

Ezpeleta et al. [43]

Li and Zhou [44]

Kaid et al. [6]

The proposed method

Figure 14. Comparison of the proposed method with the existing methods.

5. Numerical Example

In this section, an example is used to present the application of the proposed approach. Consider
an AMS example illustrated in Figure 15a. Its Petri net model is given in [6,7,15,22,45,46]. The system
consists of four machines M1–M4 for processing parts; two robots R1 and R2 for loading and unloading
parts. Each machine (robot) can process (hold) one part at a time. There are two input buffers I1 and I2
and two output buffers O1 and O2. Two raw part types, A and B, are considered to be processed in the
system. Figure 15b shows the operation sequences of the two raw part types. The S3PR net of this
AMS example is illustrated in Figure 16. It comprises 19 places and 14 transitions. The places can be
defined as the following set partitions: PA = {p2, p3, . . . , p12}, PR = {p13, p14, . . . , p18}, and P0 = {p1, p19}.
The S3PR net contains 282 reachable markings.

Appl. Sci. 2020, 10, x 24 of 31

Figure 14. Comparison of the proposed method with the existing methods.

5. Numerical Example

In this section, an example is used to present the application of the proposed approach. Consider
an AMS example illustrated in Figure 15a. Its Petri net model is given in [6,7,15,22,45,46]. The system
consists of four machines M1–M4 for processing parts; two robots R1 and R2 for loading and
unloading parts. Each machine (robot) can process (hold) one part at a time. There are two input
buffers I1 and I2 and two output buffers O1 and O2. Two raw part types, A and B, are considered to
be processed in the system. Figure 15b shows the operation sequences of the two raw part types. The
S3PR net of this AMS example is illustrated in Figure 16. It comprises 19 places and 14 transitions.
The places can be defined as the following set partitions: PA = {p2, p3, …, p12}, PR = {p13, p14, …, p18}, and
P0 = {p1, p19}. The S3PR net contains 282 reachable markings.

Figure 15. (a) An AMS example and (b) production sequence.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

M 1
utilization%

M 2
utilization%

R 1
utilization%

Throughput
(parts)

Throughput
time (min/

part)

Time performance comparison

Ezpeleta et al. [43]

Li and Zhou [44]

Kaid et al. [6]

The proposed method

Figure 15. (a) An AMS example and (b) production sequence.

Appl. Sci. 2020, 10, 5270 28 of 34
Appl. Sci. 2020, 10, x 25 of 31

Figure 16. S3PR net (No, Mo) of the AMS illustrated in Figure 13a.

Suppose that the first configuration of the system involves removing old machine. In this case,
an old machine M1 is removed from the system (No, Mo). To model the removed machine by using
the synthesis procedure of Algorithm 1, we construct a configuration as a rewriting rule ℛ = {rr1} with
rr1 = {L1, R1, φ1, •φ1, φ1•}, where L1 and R1 are illustrated in Figure 17a and Figure 17b, respectively. In
addition, we have ξ1: N1 → No, φ1= ({p2, p3, p4, p5, p13, p16, p17},{ t1, t2, t3, t4, t5, t6}), •φ1= ({L1.t1},{ R1.t1}), and
φ1• = ({L1.t6 },{ R1.t6 }). The second configuration includes adding new product. If a new product (part
C) is assigned to a system, which indicates that a new operation sequence is assigned and the system
requires an adjustment to its Petri net model structure. To model the addition of new product by
using the synthesis procedure of Algorithm 1, we construct a configuration as a rewriting rule ℛ =
{rr2} with rr2 = {L2, R1, φ2, •φ2, φ2•}, where L2 and R2 are illustrated in Figure 18a and Figure 18b,
respectively. Moreover, we have ξ2: N2 → N1, φ2= ({p15, p17, p20, p21, p22, p23},{t15, t16, t17, t18}), •φ2= ({L2.p15,
L2.p17 },{ R2.t15}), and φ2• = ({L2.p15, L2.p17},{ R2.t18}).

The third system configuration involves rework. In this scenario, a part can be inspected after
all operations have been completed. By using the proposed Algorithm 1, the production operations
of the reworked part can be exactly and easily modeled by considering rework operations as
alternative sequences. Suppose that an inspection machine M5 is added to a system and that part A
is processed in M1 and M3. Then, part A is moved to an M5 by Robot 2 to check if there are defects
in part A. If part A performs properly, then it will leave the system by Robot 2. Otherwise, if part A
has defects, rework is needed, and part A is moved to M3 by Robot 2. To model the rework operation
by using the synthesis procedure of Algorithm 1, we construct a configuration as a rewriting rule ℛ =
{rr3} with rr3 = { L3, R3, φ3, •φ3, φ3•}, where L3 and R3 are illustrated in Figure 19a and Figure 19b,
respectively, ξ3: N3 → N2, φ3= ({p6, p7, p14, p18, p24, p25, p26, p27},{ t6, t7, t8, t19, t20, t21, t22}), •φ3= ({L3.t6},{ R3.t6}),
and φ3• = ({L3.t8},{R3.t21}). The Specifications of S3PR net illustrated in Figure 16 under changeable
control specifications are shown in Table 2. In addition, the required monitors using Algorithm 2 of
the system illustrated in Figure 16 under changeable control specifications are shown in Table 3.

Figure 16. S3PR net (No, Mo) of the AMS illustrated in Figure 13a.

Suppose that the first configuration of the system involves removing old machine. In this case, an
old machine M1 is removed from the system (No, Mo). To model the removed machine by using the
synthesis procedure of Algorithm 1, we construct a configuration as a rewriting rule R= {rr1} with
rr1 = {L1, R1, ϕ1, •ϕ1, ϕ1

•}, where L1 and R1 are illustrated in Figures 17a and 17b, respectively. In
addition, we have ξ1: N1→No, ϕ1= ({p2, p3, p4, p5, p13, p16, p17},{t1, t2, t3, t4, t5, t6}), •ϕ1= ({L1.t1},{R1.t1}),
and ϕ1

• = ({L1.t6},{R1.t6}). The second configuration includes adding new product. If a new product
(part C) is assigned to a system, which indicates that a new operation sequence is assigned and the
system requires an adjustment to its Petri net model structure. To model the addition of new product
by using the synthesis procedure of Algorithm 1, we construct a configuration as a rewriting rule
R = {rr2} with rr2 = {L2, R1, ϕ2, •ϕ2, ϕ2

•}, where L2 and R2 are illustrated in Figures 18a and 18b,
respectively. Moreover, we have ξ2: N2→ N1, ϕ2= ({p15, p17, p20, p21, p22, p23},{t15, t16, t17, t18}), •ϕ2=

({L2.p15, L2.p17},{R2.t15}), and ϕ2
• = ({L2.p15, L2.p17},{R2.t18}).

The third system configuration involves rework. In this scenario, a part can be inspected after all
operations have been completed. By using the proposed Algorithm 1, the production operations of
the reworked part can be exactly and easily modeled by considering rework operations as alternative
sequences. Suppose that an inspection machine M5 is added to a system and that part A is processed
in M1 and M3. Then, part A is moved to an M5 by Robot 2 to check if there are defects in part A. If
part A performs properly, then it will leave the system by Robot 2. Otherwise, if part A has defects,
rework is needed, and part A is moved to M3 by Robot 2. To model the rework operation by using the
synthesis procedure of Algorithm 1, we construct a configuration as a rewriting rule R = {rr3} with rr3
= {L3, R3, ϕ3, •ϕ3, ϕ3

•}, where L3 and R3 are illustrated in Figures 19a and 19b, respectively, ξ3: N3
→ N2, ϕ3= ({p6, p7, p14, p18, p24, p25, p26, p27},{t6, t7, t8, t19, t20, t21, t22}), •ϕ3= ({L3.t6},{R3.t6}), and ϕ3

•

= ({L3.t8},{R3.t21}). The Specifications of S3PR net illustrated in Figure 16 under changeable control
specifications are shown in Table 2. In addition, the required monitors using Algorithm 2 of the system
illustrated in Figure 16 under changeable control specifications are shown in Table 3.

Appl. Sci. 2020, 10, 5270 29 of 34

Appl. Sci. 2020, 10, x 26 of 31

Figure 17. A reconfigured S3PR net by removing a machine. (a) Left hand side net L. (b) Right hand
side net R.

Figure 18. A reconfigured S3PR net by adding a product. (a) Left hand side net L. (b) Right hand side
net R.

Figure 19. A reconfigured S3PR net by rework. (a) Left hand side net L. (b) Right hand side net R.

Figure 17. A reconfigured S3PR net by removing a machine. (a) Left hand side net L. (b) Right hand
side net R.

Appl. Sci. 2020, 10, x 26 of 31

Figure 17. A reconfigured S3PR net by removing a machine. (a) Left hand side net L. (b) Right hand
side net R.

Figure 18. A reconfigured S3PR net by adding a product. (a) Left hand side net L. (b) Right hand side
net R.

Figure 19. A reconfigured S3PR net by rework. (a) Left hand side net L. (b) Right hand side net R.

Figure 18. A reconfigured S3PR net by adding a product. (a) Left hand side net L. (b) Right hand side
net R.

Appl. Sci. 2020, 10, x 26 of 31

Figure 17. A reconfigured S3PR net by removing a machine. (a) Left hand side net L. (b) Right hand
side net R.

Figure 18. A reconfigured S3PR net by adding a product. (a) Left hand side net L. (b) Right hand side
net R.

Figure 19. A reconfigured S3PR net by rework. (a) Left hand side net L. (b) Right hand side net R.

Figure 19. A reconfigured S3PR net by rework. (a) Left hand side net L. (b) Right hand side net R.

Appl. Sci. 2020, 10, 5270 30 of 34

Table 2. The Specifications of S3PR net illustrated in Figure 16 under configurations.

Parameter

Configuration

An Initial S3PR
Net

Removal of an
Old Machine

Addition of a New
Product Rework

No. of monitors 5 3 5 10
No. of arcs 21 12 26 48
Liveness Live Live Live Live

Boundedness Bounded Bounded Bounded Bounded
Reversibility Reversible Reversible Reversible Reversible

Table 3. Required monitors using Algorithm 2 of the system illustrated in Figure 16 under configurations.

Configuration i Siphon •VSi VSi
• MRCo (Vsi)

An initial S3PR net

1 S1 t7,t13 t1,t9 5
2 S2 t4,t5,t13 t1,t11 2
3 S3 t7,t13 t1,t9 4
4 S4 t7,t11 t1,t9 3
5 S5 t4,t13 t2,t11 1

Removal of an old
machine

1 S1 t4,t13 t1,t9 1
2 S2 t7,t11 t4,t9 3
3 S3 t7,t13 t1,t9 4

Addition of a new
product

1 S1 t11,t17 t10,t15 1
2 S2 t4,t13,t17 t1,t10,t15 2
3 S3 t4,t13 t1,t9 1
4 S4 t7,t11,t17 t4,t9,t15 3
5 S5 t7,t13,t17 t1,t9,t15 4

Rework

1 S1 t7 t6,t19 1
2 S2 t20 t6 2
3 S3 t6,t20 t7 1
4 S4 t7,t11,t17 t4,t9,t15,t19 3
5 S5 t7,t13,t17 t1,t9,t15,t19 4
6 S6 t11,t17,t20 t4,t9,t15 4
7 S7 t13,t17,t20 t1,t9,t15 5
8 S8 t11,t17 t8,t15 1
9 S9 t4,t13,t17 t1,t10,t15 2

10 S10 t4,t13 t1,t9 1

The controlled net after adding above changeable control specifications is illustrated in Figure 20.
The place and arcs of the controller are illustrated with blue lines.

Appl. Sci. 2020, 10, 5270 31 of 34

Appl. Sci. 2020, 10, x 28 of 31

Figure 20. Controlled reconfigurable S3PR net after adding changeable control specifications.

6. Conclusions

This paper develops a novel two-step solution for quick and accurate reconfiguration of
supervisory controllers for deadlock control in RMSs with dynamic changes. In the first step, the net
rewriting system is used to design a reconfigurable PN model under dynamic configurations. The
obtained model guarantees boundedness behavioral property but may not guarantee the other
properties of a Petri net model (i.e., liveness and reversibility). The second step proposes an automatic
deadlock prevention policy for reconfigurable Petri net using the siphon control method based on a
place invariant to solve the deadlock problem with dynamic structure changes in RMSs and
guarantee the liveness and reversibility properties for the system. The proposed method is validated
using the GPenSIM tool and compared with existing methods in the literature to highlight its ability
of adapting to RMS configuration changes.

The major advantages of the developed approach are as follows: (1) It does not need to compute
reachability graphs as illustrated in Algorithm 2, Section 3, and has low-overhead computation as
proved in Theorems 10 and 11, Section 4.4. (2) It can automatically and dynamically modify the
structure of a Petri net model without affecting its behavioral properties, i.e., liveness, boundedness,
and reversibility as illustrated in Algorithm 2, Section 3. (3) It allows rapid reconfigurability and
reusability of the controller during reconfiguration as shown in Algorithm 2, Section 3. (4) It can easily
handle any dynamical changes in RMSs compared with the studies in Badouel et al. [39], Llorens and
Oliver [34], Wu and Zhou [25], and Kaid et al. [7] as shown in Algorithm 2, Section 3. (5) The GPenSIM
code is developed for designing, simulation, validation, and performance analysis of deadlock
problems with dynamic structure changes in RMSs and the correctness of the proposed approach is
proven and compared with the studies in Ezpeleta et al. [43], Li and Zhou [44], and Kaid et al. [6] as
shown in Section 4.5. (6) Based on Theorems 10 and 11, the computational complexity of the proposed

Figure 20. Controlled reconfigurable S3PR net after adding changeable control specifications.

6. Conclusions

This paper develops a novel two-step solution for quick and accurate reconfiguration of supervisory
controllers for deadlock control in RMSs with dynamic changes. In the first step, the net rewriting
system is used to design a reconfigurable PN model under dynamic configurations. The obtained
model guarantees boundedness behavioral property but may not guarantee the other properties of
a Petri net model (i.e., liveness and reversibility). The second step proposes an automatic deadlock
prevention policy for reconfigurable Petri net using the siphon control method based on a place
invariant to solve the deadlock problem with dynamic structure changes in RMSs and guarantee the
liveness and reversibility properties for the system. The proposed method is validated using the
GPenSIM tool and compared with existing methods in the literature to highlight its ability of adapting
to RMS configuration changes.

The major advantages of the developed approach are as follows: (1) It does not need to compute
reachability graphs as illustrated in Algorithm 2, Section 3, and has low-overhead computation as
proved in Theorems 10 and 11, Section 4.4. (2) It can automatically and dynamically modify the
structure of a Petri net model without affecting its behavioral properties, i.e., liveness, boundedness,
and reversibility as illustrated in Algorithm 2, Section 3. (3) It allows rapid reconfigurability and
reusability of the controller during reconfiguration as shown in Algorithm 2, Section 3. (4) It can
easily handle any dynamical changes in RMSs compared with the studies in Badouel et al. [39],
Llorens and Oliver [34], Wu and Zhou [25], and Kaid et al. [7] as shown in Algorithm 2, Section 3.
(5) The GPenSIM code is developed for designing, simulation, validation, and performance analysis
of deadlock problems with dynamic structure changes in RMSs and the correctness of the proposed

Appl. Sci. 2020, 10, 5270 32 of 34

approach is proven and compared with the studies in Ezpeleta et al. [43], Li and Zhou [44], and Kaid et
al. [6] as shown in Section 4.5. (6) Based on Theorems 10 and 11, the computational complexity of the
proposed approach has polynomial time complexity. Therefore, it has low computational complexity
and can be applicable to other types of complex systems such as mass customization manufacturing,
lean productivity, agile manufacturing, and flexible manufacturing systems. (7) It can consider systems
with sequential and complex resource requirements, meaning that a set of system resources can be
used and shared to process each component according to sequential processes that depend on the
step-by-step discrete execution and multiple processes that depend on the execution at the same time
as shown in numerical example.

The limitation of the developed approach is that the obtained models lack an appropriate
conversion approach from the PN model into control languages for application. Thus, our future
research will examine the developed approach to have an automatic method to examine the applicability
of the obtained models for real world manufacturing systems.

Author Contributions: Conceptualization, H.K. and A.A.-A.; software, H.K. and R.D.; resources, H.K., A.A.-A.
and R.D.; formal analysis, H.K. and A.A.-A.; investigation, H.K., A.A.-A. and Z.L.; validation, H.K., A.A.-A., Z.L.
and R.D.; writing—original draft preparation, H.K., A.A.-A. and Z.L.; writing—review and editing, H.K., A.A.-A.,
Z.L. and R.D.; visualization, H.K., A.A.-A. and Z.L.; supervision, A.A.-A., and Z.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by King Saud University through Researchers Supporting Project Number
(RSP-2020/62).

Acknowledgments: The authors would like to thank King Saud University for funding and supporting this
research through Researchers Supporting Project Number (RSP-2020/62).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hu, Y.; Ma, Z.; Li, Z. Design of Supervisors for Active Diagnosis in Discrete Event Systems. IEEE Trans.
Autom. Control 2020. [CrossRef]

2. Wang, D.; Wang, X.; Li, Z. Nonblocking Supervisory Control of State-Tree Structures with
Conditional-Preemption Matrices. IEEE Trans. Ind. Inform. 2019, 16, 3744–3766. [CrossRef]

3. Mehrabi, M.G.; Ulsoy, A.G.; Koren, Y. Reconfigurable manufacturing systems: Key to future manufacturing.
J. Intell. Manuf. 2000, 11, 403–419. [CrossRef]

4. Katz, R. Design principles of reconfigurable machines. Int. J. Adv. Manuf. Technol. 2007, 34, 430–439.
[CrossRef]

5. Patel, R.; Gojiya, A.; Deb, D. Failure Reconfiguration of Pumps in Two Reservoirs Connected to Overhead
Tank. In Innovations in Infrastructure; Springer: Berlin/Heidelberg, Germany, 2019; pp. 81–92.

6. Kaid, H.; Al-Ahmari, A.; Li, Z.; Davidrajuh, R. Single controller-based colored Petri nets for deadlock control
in automated manufacturing systems. Processes 2020, 8, 21. [CrossRef]

7. Kaid, H.; Al-Ahmari, A.; Li, Z.; Davidrajuh, R. Intelligent colored token Petri nets for modeling, control, and
validation of dynamic changes in reconfigurable manufacturing systems. Processes 2020, 8, 358. [CrossRef]

8. Li, Z.; Zhou, M. Deadlock Resolution in Automated Manufacturing Systems: A Novel Petri Net Approach; Springer
Science & Business Media: Berlin/Heidelberg, Germany, 2009.

9. Zan, X.; Wu, Z.; Guo, C.; Yu, Z. A Pareto-based genetic algorithm for multi-objective scheduling of automated
manufacturing systems. Adv. Mech. Eng. 2020, 12, 1687814019885294. [CrossRef]

10. Li, L.; Basile, F.; Li, Z. An approach to improve permissiveness of supervisors for GMECs in time Petri net
systems. IEEE Trans. Autom. Control 2019, 65, 237–251. [CrossRef]

11. Liu, Y.; Cai, K.; Li, Z. On scalable supervisory control of multi-agent discrete-event systems. Automatica 2019,
108, 108460. [CrossRef]

12. Chen, Q.; Yin, L.; Wu, N.; El-Meligy, M.A.; Sharaf, M.A.F.; Li, Z. Diagnosability of vector discrete-event
systems using predicates. IEEE Access 2019, 7, 147143–147155. [CrossRef]

http://dx.doi.org/10.1109/TAC.2020.2970011
http://dx.doi.org/10.1109/TII.2019.2939628
http://dx.doi.org/10.1023/A:1008930403506
http://dx.doi.org/10.1007/s00170-006-0615-2
http://dx.doi.org/10.3390/pr8010021
http://dx.doi.org/10.3390/pr8030358
http://dx.doi.org/10.1177/1687814019885294
http://dx.doi.org/10.1109/TAC.2019.2914895
http://dx.doi.org/10.1016/j.automatica.2019.06.012
http://dx.doi.org/10.1109/ACCESS.2019.2945132

Appl. Sci. 2020, 10, 5270 33 of 34

13. Kaid, H.; Al-Ahmari, A.; Nasr, E.A.; Al-Shayea, A.; Kamrani, A.K.; Noman, M.A.; Mahmoud, H.A. Petri Net
Model Based on Neural Network for Deadlock Control and Fault Detection and Treatment in Automated
Manufacturing Systems. IEEE Access 2020, 8, 103219–103235. [CrossRef]

14. Zhao, M. An integrated control method for designing non-blocking supervisors using Petri nets. Adv. Mech.
Eng. 2017, 9, 1687814017700829. [CrossRef]

15. Chen, Y.; Li, Z.; Khalgui, M.; Mosbahi, O. Design of a maximally permissive liveness-enforcing Petri net
supervisor for flexible manufacturing systems. Autom. Sci. Eng. IEEE Trans. 2011, 8, 374–393. [CrossRef]

16. Al-Ahmari, A.; Kaid, H.; Li, Z.; Davidrajuh, R. Strict Minimal Siphon-Based Colored Petri Net Supervisor
Synthesis for Automated Manufacturing Systems with Unreliable Resources. IEEE Access 2020. [CrossRef]

17. Kaid, H.; Al-Ahmari, A.; El-Tamimi, A.M.; Abouel Nasr, E.; Li, Z. Design and implementation of deadlock
control for automated manufacturing systems. South Afr. J. Ind. Eng. 2019, 30, 1–23. [CrossRef]

18. Chao, D.Y. Improvement of suboptimal siphon-and FBM-based control model of a well-known S3PR. IEEE
Trans. Autom. Sci. Eng. 2011, 8, 404–411. [CrossRef]

19. Ghaffari, A.; Rezg, N.; Xie, X. Design of a live and maximally permissive Petri net controller using the theory
of regions. IEEE Trans. Robot. Autom. 2003, 19, 137–141. [CrossRef]

20. Uzam, M. The use of the Petri net reduction approach for an optimal deadlock prevention policy for flexible
manufacturing systems. Int. J. Adv. Manuf. Technol. 2004, 23, 204–219. [CrossRef]

21. Sun, D.; Chen, Y.; El-Meligy, M.A.; Sharaf, M.A.F.; Wu, N.; Li, Z. On algebraic identification of critical states
for deadlock control in automated manufacturing systems modeled with Petri nets. IEEE Access 2019, 7,
121332–121349. [CrossRef]

22. Nasr, E.A.; El-Tamimi, A.M.; Al-Ahmari, A.; Kaid, H. Comparison and Evaluation of Deadlock Prevention
Methods for Different Size Automated Manufacturing Systems. Math. Probl. Eng. 2015, 501, 1–19. [CrossRef]

23. Lee, S.; Tilbury, D.M. Deadlock-free resource allocation control for a reconfigurable manufacturing system
with serial and parallel configuration. IEEE Trans. Syst. ManCybern. Part C (Appl. Rev.) 2007, 37, 1373–1381.
[CrossRef]

24. Li, J.; Dai, X.; Meng, Z. Automatic reconfiguration of petri net controllers for reconfigurable manufacturing
systems with an improved net rewriting system-based approach. IEEE Trans. Autom. Sci. Eng. 2009, 6,
156–167. [CrossRef]

25. Wu, N.; Zhou, M. Intelligent token Petri nets for modelling and control of reconfigurable automated
manufacturing systems with dynamical changes. Trans. Inst. Meas. Control 2011, 33, 9–29.

26. Sampath, R.; Darabi, H.; Buy, U.; Liu, J. Control reconfiguration of discrete event systems with dynamic
control specifications. IEEE Trans. Autom. Sci. Eng. 2008, 5, 84–100. [CrossRef]

27. Dumitrache, I.; Caramihai, S.; Stanescu, A. Intelligent agent-based control systems in manufacturing. In
Proceedings of the 2000 IEEE International Symposium on Intelligent Control. Held jointly with the 8th
IEEE Mediterranean Conference on Control and Automation (Cat. No. 00CH37147), Rio Patras, Greece,
19–19 July 2000; pp. 369–374.

28. Ohashi, K.; Shin, K.G. Model-based control for reconfigurable manufacturing systems. In Proceedings of the
2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), Seoul, Korea,
21–26 May 2001; pp. 553–558.

29. Kalita, D.; Khargonekar, P.P. Formal verification for analysis and design of logic controllers for reconfigurable
machining systems. IEEE Trans. Robot. Autom. 2002, 18, 463–474. [CrossRef]

30. Almeida, E.E.; Luntz, J.E.; Tilbury, D.M. Event-condition-action systems for reconfigurable logic control.
IEEE Trans. Autom. Sci. Eng. 2007, 4, 167–181. [CrossRef]

31. Zhang, L.; Rodrigues, B. Modelling reconfigurable manufacturing systems with coloured timed Petri nets.
Int. J. Prod. Res. 2009, 47, 4569–4591. [CrossRef]

32. Kahloul, L.; Bourekkache, S.; Djouani, K.; Chaoui, A.; Kazar, O. Using high level Petri nets in the modelling,
simulation and verification of reconfigurable manufacturing systems. Int. J. Softw. Eng. Knowl. Eng. 2014, 24,
419–443. [CrossRef]

33. Yu, Z.; Guo, F.; Ouyang, J.; Zhou, L. Object-oriented Petri nets and π-calculus-based modeling and analysis
of reconfigurable manufacturing systems. Adv. Mech. Eng. 2016, 8, 1687814016677698. [CrossRef]

34. Llorens, M.; Oliver, J. Structural and dynamic changes in concurrent systems: Reconfigurable Petri nets.
IEEE Trans. Comput. 2004, 53, 1147–1158. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.2999054
http://dx.doi.org/10.1177/1687814017700829
http://dx.doi.org/10.1109/TASE.2010.2060332
http://dx.doi.org/10.1109/ACCESS.2020.2968469
http://dx.doi.org/10.7166/30-1-1849
http://dx.doi.org/10.1109/TASE.2010.2088120
http://dx.doi.org/10.1109/TRA.2002.807555
http://dx.doi.org/10.1007/s00170-002-1526-5
http://dx.doi.org/10.1109/ACCESS.2019.2936052
http://dx.doi.org/10.1155/2015/537893
http://dx.doi.org/10.1109/TSMCC.2007.905843
http://dx.doi.org/10.1109/TASE.2008.2006857
http://dx.doi.org/10.1109/TASE.2007.911688
http://dx.doi.org/10.1109/TRA.2002.802206
http://dx.doi.org/10.1109/TASE.2006.880857
http://dx.doi.org/10.1080/00207540801946662
http://dx.doi.org/10.1142/S0218194014500168
http://dx.doi.org/10.1177/1687814016677698
http://dx.doi.org/10.1109/TC.2004.66

Appl. Sci. 2020, 10, 5270 34 of 34

35. Li, J.; Dai, X.; Meng, Z. Improved net rewriting systems-based rapid reconfiguration of Petri net logic
controllers. In Proceedings of the 31st Annual Conference of IEEE Industrial Electronics Society, Raleigh,
NC, USA, 6–10 November 2005.

36. da Silva, R.M.; Benítez-Pina, I.F.; Blos, M.F.; Santos Filho, D.J.; Miyagi, P.E. Modeling of reconfigurable
distributed manufacturing control systems. IFAC-Pap. 2015, 48, 1284–1289. [CrossRef]

37. Berthomieu, B.; Ribet, P.-O.; Vernadat, F. The tool TINA–construction of abstract state spaces for Petri nets
and time Petri nets. Int. J. Prod. Res. 2004, 42, 2741–2756. [CrossRef]

38. Bonet, P.; Catalina, M.L.; Puigjaner, R. A Petri Net tool for performance modeling. In Proceedings of the 23rd
Latin American Conference on Informatics (CLEI 2007), San Jose, Costa Rica, October 2007.

39. Badouel, E.; Llorens, M.; Oliver, J. Modeling concurrent systems: Reconfigurable nets. In Proceedings of the
PDPTA, Las Vegas, NV, USA, 23–26 June 2003; pp. 1568–1574.

40. Yamalidou, K.; Moody, J.; Lemmon, M.; Antsaklis, P. Feedback control of Petri nets based on place invariants.
Automatica 1996, 32, 15–28. [CrossRef]

41. Moody, J.O.; Antsaklis, P.J. Supervisory Control of Discrete Event Systems Using Petri Nets; Springer Science &
Business Media: Berlin/Heidelberg, Germany, 2012; Volume 8.

42. Davidrajuh, R. Modeling Discrete-Event Systems with GPenSIM: An Introduction; Springer: Berlin/Heidelberg,
Germany, 2018.

43. Ezpeleta, J.; Colom, J.M.; Martinez, J. A Petri net based deadlock prevention policy for flexible manufacturing
systems. IEEE Trans. Robot. Autom. 1995, 11, 173–184. [CrossRef]

44. Li, Z.; Zhou, M. Elementary siphons of Petri nets and their application to deadlock prevention in flexible
manufacturing systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2004, 34, 38–51. [CrossRef]

45. Piroddi, L.; Cordone, R.; Fumagalli, I. Selective siphon control for deadlock prevention in Petri nets. IEEE
Trans. Syst. Man Cybern. Part A: Syst. Hum. 2008, 38, 1337–1348. [CrossRef]

46. Chen, Y.; Li, Z.; Zhou, M. Behaviorally optimal and structurally simple liveness-enforcing supervisors
of flexible manufacturing systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2012, 42, 615–629.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ifacol.2015.06.262
http://dx.doi.org/10.1080/00207540412331312688
http://dx.doi.org/10.1016/0005-1098(95)00103-4
http://dx.doi.org/10.1109/70.370500
http://dx.doi.org/10.1109/TSMCA.2003.820576
http://dx.doi.org/10.1109/TSMCA.2008.2003535
http://dx.doi.org/10.1109/TSMCA.2011.2169956
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	S3PR NET
	Reconfigurable S3PR Net

	Deadlock Prevention Policy for Reconfigurable S3PR Net Based on Siphons
	Behavioral and Quantitative Analysis of Reconfigurable S3PR Net
	Liveness
	Boundedness
	Reversibility
	Computational Complexity
	GPENSIM Code and Validation

	Numerical Example
	Conclusions
	References

