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Abstract

Objective: To determine using amyloid Positron Emission Tomographic (PET) imaging,

whether amyloid burden indicated by Florbetaben (FBB) radiotracer, could predict cog-

nitive decline in the Parkinson’s disease individuals with Mild cognitive impairment

(PD-MCI).

Methods: In study, movement disorder society (MDS) criteria were used to classify

50 participant with PD-MCI. All subjects underwent clinical evaluation, Structural 3T

Magnetic resonance imaging and FBB PET imaging, along with cognitive assessments.

The PET images were assessed clinically and the Standard uptake value ratio (SUVRs)

were obtained for Region of interest (ROI) analysis, linear regression and multivariate

analysis to asses association with cognitive and clinical measure.

Results: At baseline, among the 50 scans, 22 % clinically FBB-positive. The Group-by-

Cognition showed an association between amyloid deposition in regions: neocortical,

frontal and temporal cortex, anterior and posterior cingulate, precuneus and putamen

with the global cognitive Z score, MoCa and Parkinson’s disease dementia "risk" score

(PDDRS). We also the pattern of amyloid accumulation in PD-MCI using multivari-

ate analysis ( principal Component analysis). We showed an association between our

principal components with the clinical classification of positivity and the neuropsy-

chological score. PCs showed worsening of cognitive impairment in the clinically FBB

positive group. In the context of FBB negative group there was no association with the

cognitive decline.

Conclusions: FBB-PET imaging allows in vivo visualization of amyloid deposition in

PD-MCI. At baseline measurements, our study show that amyloid accumulation could

potential contribute to cognitive deterioration in PD-MCI.





Acknowledgements
Firstly, I would like to express my sincere gratitude to Dr.Tracy R Melzer for the con-

tinuous support and guidance through out the course of my project and thesis, for his

patience, motivation and immense knowledge. His guidance helped me through out

the course of my project and writing of this thesis.

I would also like to thank Dr. Steven Marsh, for his insightful comments, encourage-

ment and support throughout the course of my masters degree.

My sincere thanks goes to Dr.Ross J Keenan for providing me with the clinical Amyloid

diagnosis report for all fifty participant in short period of time.

I would also like to thank the Southern cross radiology team for working on providing

us with PET Scans weekly. In particular, I would like to thank Clare Steven, for guiding

me through image reconstruction process.

I would also like to thank the New Zealand Brain Research Institute team for their ad-

vice, feedback and awesome lunch time stories. Also would like to thank the team for

their work on recruiting and assessing participants. I would like to thank Kyla Wood,

for explaining the neuropsycological assessment process, which made understanding

the diagnostics criteria much more clearer. I would like to thank Sam, for proof reading

my thesis and being support during my writing process.

Lastly, I would like to thank my family and friends, for there support, encouragement

and love.

iii





Contents

Abstract i

Acknowledgements iii

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1

1.1 Parkinson’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Cognitive Impairment in Parkinson’s Disease . . . . . . . . . . . 4

1.1.2 Mild Cognitive Impairment . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.4 Amyloid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Medical Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Positron Emission Tomography (PET) . . . . . . . . . . . . . . . . 9

Fundamental Principles of operation . . . . . . . . . . . . . . . . . 9

Data Acquisition and image formation in PET imaging . . . . . . 12

Amyloid PET Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.2 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . 22

MRI principle of operation . . . . . . . . . . . . . . . . . . . . . . 22

Data Acquisition and Image Formation in MRI system . . . . . . 26

1.3 Image Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Methodology 31

2.1 General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



2.2 Neuropsychological Assessments . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Scanning protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Positron Emission Tomography . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Image Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Magnetic Resonance Image Preprocessing . . . . . . . . . . . . . 35

2.5.2 Positron Emission Image Preprocessing . . . . . . . . . . . . . . . 36

2.6 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.1 Clinical Amyloid Diagnosis . . . . . . . . . . . . . . . . . . . . . . 41

2.6.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 43

Independent Component Analysis . . . . . . . . . . . . . . . . . 45

Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Results 49

3.1 Clinical Amyloid Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Regional FBB Retention in PD patients . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Association of Global Amyloid Burden with Clinical and Neu-

ropsychological scores. . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Principal Component association with Clinical classification and

Neuropsychological score . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Clinically Classified Amyloid-related Network . . . . . . . . . . 62

3.3.3 Network Image correlation with the cognitive parameters . . . . 63

3.4 Independent Component Analysis . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Discussion 67

5 Summary 73

A Matlab code for attenuation correction and Image reconstruction 75

vi



B Matlab code for Standard uptake value ratio calculation 81

C Copyright Agreement 83

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vii





List of Figures

1.1 Schematic Diagram of Production of A-beta peptides . . . . . . . . . . . 8

1.2 General principle of PET imaging . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Schematic of a Scintillator block detector . . . . . . . . . . . . . . . . . . . 13

1.4 Schematic of PET Data Acquisition . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Schematic representation of Iterative Reconstruction . . . . . . . . . . . . 18

1.6 Orienation of atoms in the absence and presence of external Magnetic field 23

1.7 Schematic representation of MRI system . . . . . . . . . . . . . . . . . . 25

1.8 Basic events in a pulse sequence for MR imaging . . . . . . . . . . . . . . 28

1.9 Statistical Parametric Mapping 12 . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Motion Correction of PET images . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Realignment and reslicing Plots . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 PET image from an Radon transformation process . . . . . . . . . . . . . 39

2.5 Dartal Normalised Images . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Bootstapping overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Example Of Amyloid- PET Brain Scan . . . . . . . . . . . . . . . . . . . . 50

3.2 Reginal SUVR change between clinical assessment . . . . . . . . . . . . . 52

3.3 Cortical correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Precuneus correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Putamen correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Caudate Nucleus correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Principal components FBB uptake pattern images . . . . . . . . . . . . . 58

3.8 Principle Component association with FBB-group . . . . . . . . . . . . . 59

ix



3.9 Principal Component 1 correlation with Leaning Domain and MoCA score 60

3.10 Principal Component 2 correlation with Executive Domains . . . . . . . 61

3.11 Principal Component 4 correlation with white matter hyperintensity lesion 62

3.12 Network Image for amyloid accumulation . . . . . . . . . . . . . . . . . . 63

3.13 Network Score correlation with Global cognitive Z score and MoCa Score 64

3.14 Bootstrapped Z score image. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

x



List of Tables

2.1 Summary of demographic and clinical characteristic . . . . . . . . . . . . 31

3.1 Summary of regional FBB SUVRs . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Quantitative PET data analysis by brain region . . . . . . . . . . . . . . . 51

3.3 Regional SUVR group-by-cog score interaction correlation for Clinically

classified Amyloid-positive participants with Parkinson’s Disease De-

mentia conversion score and Global cognitive Z Score . . . . . . . . . . . 56

3.4 Association between the FBB group and the PC scores . . . . . . . . . . . 60

xi





List of Abbreviations

FBB Florbetaben

PD Parkinson’s Disease

PD-N Parkinson’s Disease Normal Cognition

PD-MCI Parkinson’s Disease Mild Cognition Impairment

PD-MCI Parkinson’s Disease Dementia

PDDRS Parkinson’s Disease Dementia Risk Score

PET Positron Emission Tomography

PCA Principal Component Analysis

PC Principal Component

PIB 11C Pittsburg Compound B

ROI Region Of Interest

RF Radio Frequency

SPM Statistical Parametric Mapping

SPGR Spoiled Gradient Recalled Echo

MNI Montreal Neurological Institue

MoCA Montreal Cognitive Assessment

TOF Time Of Flight

TOFAC Time Of Flight Attenuation Correction

TOFNAC Time Of Flight No Attenuation Correction

ICA Independent Componenet Analysis

SUVR Standard Uptake Value Ratio

WMH White Matter Hyperintensity

UPDRS UnifiedParkinson’sDiseaseRatingScale

TE Echo Time

TR Repetition Time

xiii



TI Time of Inversion

FLAIR Flluid Attenuation Inversion Recovery

xiv



Chapter 1

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disease. It is the second

most common neurodegenrative disorder after Alzheimer’s disease (AD)(Aarsland,

Brønnick, & Fladby, 2011). It is defined by the loss of neurons in the brain, specif-

ically the dopamine neurons in the substantia nigra par compacta which lies above

the brain stem (Samii, Nutt, & Ransom, 2004)(Braak et al., 2003). Dopamine is a neu-

rotransmitter that plays an important role in allowing normal movements (Braak et

al., 2003)(Aarsland et al., 2011). PD is traditionally defined by its motor symptoms,

which were initially defined by James Parkinson, and include resting tremors, rigidity,

bradykinesia, hypokinesia, akinesia and postural abnormalities (Thomas & Beal, 2007).

However, PD is also associated with non-motor related symptoms such as cognitive im-

pairment, dementia, mood disorder, psychosis, sleep disturbance, autonomic dysfunc-

tion and alterations in reward, motivation and mood (Chaudhuri, Tolosa, Schapira, &

Poewe, 2014). Historically, the survival rate of PD individuals was very low (due to

the motor symptoms); hence, the non-motor symptoms were not immediately appar-

ent. Over time, with improvements in treatment and general medical care, non-motor

features became more apparent, especially in elderly PD patients.

PD is expected to impose social and economic hindrance on society as the population

ages (Pringsheim, Jette, Frolkis, & Steeves, 2014). The prevalence of PD is about 160

per 100,000 and the incidence of PD is about 20 per 100,000 populations (Alves, Forsaa,

Pedersen, Gjerstad, & Larsen, 2008). In New Zealand and other developed countries,

PD affects about 1% of the population over 65 years of age (Aarsland et al., 2011)(de Lau

1



2 Chapter 1. Introduction

& Breteler, 2006). It is more common in those over the age of 65 years. The demographic

trend projects that the current estimated prevalence of PD in New Zealand is 10,000

New Zealanders, will increase two-fold by 2035 and four-fold by 2050 (Bach, Ziegler,

Deuschl, Dodel, & Doblhammer-Reiter, 2011). PD prevalence varies across-cultures

due to difference in environmental exposure and genetic factors. Studies have shown

prevalence of PD is higher in males than in females and is also associated with the

aging process (Alves et al., 2008)(Pringsheim et al., 2014). More importantly, PD can

reduce life expectancy and lead to significant disability and impaired quality of life.

Dementia is 1.7 – 5.9 times more likely in PD patients than in healthy individuals

(Factor & Weiner, 2007). The cumulative prevalence of dementia in PD is approxi-

mately 75-90 % (Aarsland & Kurz, 2010). Dementia develops due to the progression

of degeneration and the deposition of Lewy bodies in the cerebral cortex and limbic

structures (Madhavi, 2014). Many demographic and clinical features have been associ-

ated with dementia in Parkinson’s patients such as older age and motor impairment.

These features are Parkinsonism, age, mild cognitive impairment (MCI), neuropsychi-

atric symptoms and genetic factors. However, studies have been unable to predict the

onset of dementia after PD diagnosis, since it is highly variable and can occur anywhere

from 2-20 years (Aarsland & Kurz, 2010). After diagnosis, this variability provides a

therapeutic window. The ability to identify patients with a higher risk of developing

dementia will lead to more effective treatment choice, timing and development.

β-Amyloid is most commonly known as a pathological hallmark for AD (discussed in

detail in section 1.1.4) (Gertz & Rajkumar, 2010). However, it has now been recognized

as a significant contributor to cognitive impairment in PD. Amyloid deposition in AD

is a robust finding and predictive of individuals that will go on to developing dementia.

This shows that quantification of the amyloid plaque burden may play a critical role

in predicting which individuals are at a ’higher risk’ of developing dementia and this

could eventually help in the treatment and disease management of PD. Neuroimaging

with Positron Emission Tomography (PET) and advanced Magnetic Resonance Imag-

ing (MRI) has shown to be a useful biomarker for providing pathological information in
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cases of AD. Recent studies have demonstrated the importance and usefulness of amy-

loid PET imaging as a tool for diagnosis and understanding the progression of MCI in

AD and PD (Gomperts, Locascio, & Rentz, 2013). The first PET ligand to be used as a

biomarker for amyloid-beta in AD was 11C-Pittsburgh Compound B (PIB) (Potecorvo

& Mintun, 2011). Along with PIB, many other studies have looked at other radiophar-

maceuticals as a potential amyloid label, such as Florine-18 radiotracers (Potecorvo &

Mintun, 2011). In AD these radiotracers have been a useful tool in diagnosing the early

stages of disease in patients that are cognitively normal or have mild cognitive im-

pairment. Clinical trials of anti-amyloid therapeutic intervention are ongoing therefore

adequate quantification and location of β-amyloid is essential.

This thesis, will investigate the potential of FBB-PET imaging in PD-MCI subject in or-

der to identify individuals with a higher risk of developing dementia in the near future.

In order to do so, it will look at amyloid burden in PD-MCI patients using the FBB-PET

imaging. It will further look at understanding the pathophysiology of cognitive de-

cline and dementia. In particular look at how amyloid burden effects the progression

of cognitive decline. It determining the association of amyloid accumulation with the

cognitive decline in PD-MCI subjects.

The thesis is composed of five chapters, each of them dealing with different aspects of

this study.

Chapter 1 introduces and defines basic terminology and reviews literature useful in the

context for this thesis. It is subdivided into three parts. Part one describes Parkinson’s

disease and explains the pathology and problems associated with the disease. Part two

describes the neuroimaging used in imaging amyloid deposition in neurodegenrative

disorders and it explains the basic concepts of these imaging techniques and discusses

previous literature on amyloid imaging using these techniques. Chapter 2 describes

and justifies the study design and data gathering method used. It also outlines the

method of analyses used i this study. Chapter 3 addresses the results from the data

analysis. Chapter 4 discusses the results we acquired, limitations and future work.

Chapter 5 summaries the findings of this thesis.
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1.1 Parkinson’s Disease

1.1.1 Cognitive Impairment in Parkinson’s Disease

Cognition is defined as the brain’s ability to acquire knowledge and understand through

thought, experience and the senses. This unique ability of the brain is affected by many

factors such as normal aging and mental health. However, it is severely affected in indi-

viduals who are suffering from a neurodegenerative disorder. The degree of cognitive

impairment ranges from being mild (mild cognitive impairment) to highly severe (de-

mentia) and varies with the progression of disease generally worsening as the disease

progresses (Yarnall, Rochester, & Burn, 2013). At the onset of the disease even non-

demented patients are found to have some degree of cognitive impairment (Yarnall et

al., 2013). Many studies have shown that the global disability level between PD-normal

cognition (PD-N), PD-mild cognitive impairment (PD-MCI) and PD Dementia (PDD)

increases in a step-wise manner (Yarnall et al., 2013).

Following the Movement Disorder Task Force Criteria, cognition is divided into five

domains (Litvan, Goldman, I.Troster, et al., 2012). The five cognitive domains that

could potentially be affected are: learning and memory (ability to learn, remember

and acquire new information), attention and speed of processing (ability to focus and

understand the task at hand in a timely manner), executive function (problem solv-

ing, planning and performing), visuospatial functions (manipulate and understand

non-verbal information) and language (ability to understand, use and manipulate lan-

guage) (Fernandez, Crucian, Okun, Price, & Bowers, 2005a)

Cognitive impairment is one of the defining features of AD. However, it is now also

seen as a major issue in other neurodegenerative disorders including PD. In the past 30

years, studies have analysed and investigated in detail the epidemiology of cognitive

decline and dementia in PD. It is clear that cognitive deterioration is a common, pro-

gressive and disabling factor in PD. Although the majority of PD patients are affected

by cognitive decline, the specific deficits can vary between individuals.
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1.1.2 Mild Cognitive Impairment

Mild Cognitive Impairment (MCI) was initially seen as a symptom of AD. However,

it is now well-established that individuals with PD also exhibit PD-MCI prior to the

development of dementia and that cognitive decline is also one of the main symp-

toms of PD. The frequency of MCI in PD ranges anywhere from 21-62%, with an av-

erage prevalence of around 15-18 % for individuals aged 70 years (Goldman & Litvan,

2011)(Madhavi, 2014).

PD-MCI is now recognized as an appropriate stage to address the underlying pathogenic

process leading to dementia. It is known as the intermediate stage of impairment from

normal cognition to dementia; defined as two impairments at -1.5 standard deviation

below the normative data in any of the five task force cognitive domains (discussed

in detail in section 2.2) (Palavra, Naismith, & Lewis, 2013) (Dalrymple-Alford et al.,

2011a). In PD-MCI, daily life activities are generally unaffected or are only slightly

affected. Neuropathology of PD-MCI is heterogeneous, showing deposition of neocor-

tical Lewy bodies, cortical amyloid, Tau, tissue loss and neurotransmitter dysfunction

(Compta et al., 2011) (Jellinger, 2010a).

PD-MCI is diagnosed on the basis of neuropsychological testing. These neuropsycho-

logical batteries asses individuals and allocate them into certain groups: PD-N, PD-

MCI and PDD. For example Litvan et.al., Diagnosis criteria for MCI in PD; movement

disorder society task force guidelines, allow characterization of the clinical syndrome

and diagnostic methods (Litvan, Goldman, I.Troster, et al., 2012). It is designed using

the MDS task force criteria addressing the specific issue of PD. It is divided into four cri-

teria for the diagnosis of PD-MCI: Inclusion criteria, Exclusion criteria, Specific guide-

lines for PD-MCI level 1 and level 11 categories and Subtype classification for PD-MCI.

The inclusion criteria is an initial diagnosis for PD using the UK PD brain bank criteria

and PD-MCI is characterized as an informative decline in cognition abilities. The ex-

clusion criteria is used to assess for PDD using the MDS task force (Dalrymple-Alford

et al., 2011b). The specific guidelines for PD-MCI level 1 and level 2 are the abbreviated

assessment and comprehensive assessment respectively, for the specific diagnosis for
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PD-MCI. Lastly, the subtype classification for PD-MCI is important in exploring the im-

pairments in specific cognitive domains. It also classifies PD-MCI into two categories :

single and multiple domain. The single domain is defined by the presence of two ab-

normal test in a single cognitive domain with other domains unimpaired. The multiple

domain is defined as one abnormal test in at least two or more cognitive domains. Even

with the criteria and guidelines for diagnosis of MCI, it is still challenging because it

can not be generalized to all patients, since an individual’s mental level of function-

ing can have a huge influence on their performance on neuropsychological measures

(Litvan, Goldman, I.Troster, et al., 2012).

1.1.3 Dementia

Dementia is defined as a syndrome resulting in multiple-domain cognitive impairment

severe enough to impair daily life (Quinn, 2014). The general difference between de-

mentia and MCI is the impact of the syndrome on an individual’s daily functioning.

Dementia has a significant effect on an individual’s everyday functions (Fernandez et

al., 2005a). It was first introduced by Alois Alzheimer, while describing what came

to be known as AD. According to the epidemiological reports since 2010, about 35.7

million people worldwide have been affected by dementia (Quinn, 2014). For many

years, AD has been seen as the main cause of dementia. However, many other neuro-

logical disorders and medical conditions can lead to dementia over time, for example

PD, Lewy Body disease, vascular insult, human immunodeficiency virus, Huntington’s

disease, Pick disease, depression, hypothyroidism and vitamin B12 deficiency (Quinn,

2014) (Mendez & Cummings, 2003).

In PD, recent studies have shown that the cumulative prevalence of dementia is around

75-90% (MA.Hely, Reid, Adena, Halliday, & Morris, 2008). The incidence of dementia

is fourfold higher in PD cases in comparison to the general normal aging population.

The effects of dementia on individual daily activities have a huge impact on the quality

of life of an individual, public health services and cost of care. The pathological associ-

ation of dementia in PD is classified into three main categories : subcortical pathology,
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limbic or cortical Lewy bodies type degeneration and AD type pathology (Emre, 2003)

(Quinn, 2014).

Recently, much effort has been placed on diagnosis criteria designed to distinguish dif-

ferent types of dementia (Emre et al., 2013). Clinical diagnostic criteria used for PDD

is similar to PD-MCI. However, in the case of dementia there must be impairment in

2 cognitive domains, along with decline in an individual’s everyday activities not in-

cluding the motor impairments (Dalrymple-Alford et al., 2011b) (Fernandez, Crucian,

Okun, Price, & Bowers, 2005b). Many individuals with PD-MCI will develop PDD,

but the time of dementia onset varies wildly from patient to patient, ranging anywhere

from 2-20 years after diagnosis. Previous longitudinal studies investigating the conver-

sion of PD-MCI transition to dementia have found that about 62% of PD-MCI patients

converted to dementia in comparison to 20% of PD patient with normal cognition (PD-

N) (Palavra et al., 2013). Therefore, it is important to understand PD-MCI and the

pathology driving transition to dementia. This could provide greater prognostic accu-

racy and more targeted intervention.

1.1.4 Amyloid

Amyloid accumulation has been associated with pathology of many neurodegenera-

tive disorders such as AD, PD, Lewy body disease and Huntington’s disease. In PD,

amyloid accumulation is a likely contributor to development of Dementia.

β-Amyloid is generated from sequential amyloid precursor protein (APP) proteolysis.

APP is a type 1 transmembrane glycoprotein, present at high levels in the brain. It

belongs to a family of amyloid precursor-like proteins (APLP-1 and APLP-2). The fun-

damental role of APP is unknown and is a topic of intense research (Pearson & Peers,

2006). Many studies suggest that APP poses neurotropic properties. The high level of

APP plays an important role in neuronal growth, cellular survival and neuronal migra-

tion, shown by Oh et al. who looked at the effect of wild-type APP in transgenic mice

and found enlargement of neurons and epitomized effects in these mice. Additionally,

in a recent study, Young-Pearse et al. demonstrated that APP favors cognitive function

and synaptic density improvement (del C. Cárdenas-Aguayo et al., 2014).
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In APP processing, there is two pathways. In the non-amyloidogenic pathway, solu-

ble extracellular fragments sAPP- α, are released by cleavage of APP by α -secretase.

In the presence of γ-secretase at the plasma membrane, sAPP- α is further cleaved

to form APP intracellular C-terminal domains. The second pathway is the amyloido-

genic pathway in which the N-Terminal soluble extracellular fragments, sAPP- β and

CT99 are released by cleavage of APP by β -secretase. These fragments are further

cleaved by γ-secretase to form amyloid-beta (Aβ) fragments (as shown in figure 1.1)

(del C. Cárdenas-Aguayo et al., 2014)(Selkoe, 2004) (Vallabhajosula, 2011). The Aβ

fragments aggregate to form the amyloid-beta plaque that accumulates in the brain

during neurodegeneration.

FIGURE 1.1: Schematic diagram of β-Amyloid peptide formation from
cleavage of APP by β- secretase and γ-secretase. (Vallabhajosula, 2011)
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In the healthy brain, amyloid-beta aggregates are presented in low levels during synap-

tic activity. Studies have shown the capability of amyloid-beta to function as a chelator

and antioxidant when presented at low levels (del C. Cárdenas-Aguayo et al., 2014),

with the ability to capture redox metals such as Cu, Fe and Zn. Furthermore, low phys-

iological levels of Aβ favours learning and memory processes and regulates synaptic

plasticity (del C. Cárdenas-Aguayo et al., 2014). However, mutation in APP can lead to

enhanced levels of generation of the Aβ aggregates which have been linked to neurode-

generative disorders, neurotoxicity and cell death. In the case of PD, amyloid plaque

accumulation is linked to potential decline in cognitive function and ultimately to PDD

pathology. Studies have demonstrated the contribution of accumulation of β-Amyloid

in the progression of cognitive decline in individuals with PD and other neurodegen-

rative disorders (Gomperts et al., 2013). It has been shown that 50% of PDD patients

undergo secondary diagnosis of AD. Neuroimaging of β-Amyloid in case of AD has

shown to be a useful tool in providing pathological information. However, in the case

of PD and PDD, previous imaging data has generally shown no difference. Few studies,

in previous years have shown association between amyloid deposition and cognition

or future dementia in PD (Gomperts et al., 2013). We want to see whether β-Amyloid

deposition adds an additional ’hit’ to PD-MCI, which pushes them to convert to PDD.

We also want ti investigate whether we can see an association between β-amyloid and

cognition in PD.

1.2 Medical Imaging

1.2.1 Positron Emission Tomography (PET)

Fundamental Principles of operation

Positron emission was first discovered in 1933 by Thibaud and Joliot. The objective

of PET scanning is to measure the concentration of distribution of radionuclide in the

living body. The radionuclides used in PET imaging have one principle property beta
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plus (positron) decay . It is this positron decay that is employed in PET imaging in or-

der to acquire PET images. The most common positron-emitting isotopes used in PET

imaging are carbon-11, Oxygen-15, Nitrogen-13 and Fluorine-18 (Ziegler, 2005). These

isotopes are produced using a Cyclotron (charged particle accelerator) (Bushberg, Seib-

ert, Leidholdt, & Boone, 2002). It bombards stable nuclei with high energy to generate

radioactive isotopes. These isotopes have two things in common. Firstly, their nuclei

are rich in protons which means that in order to stabilize themselves, they convert the

excess proton into a neutron and release a positron and neutrino. Secondly, they have

relatively short half-lives, enabling an adequate trade-off between image quality and

minimal radiation dose. These isotopes are distributed in the subject with the help of

carrier molecules (biological substrate). The biological substrate used and tagged to the

isotope depends on there specific function in the body. The most common biological

substrates used in PET imaging are glucose, H2O, CO2 and O2 (E.Schmitz, Alessio, &

Kinaham, 2003). The isotopes are tagged to a specific carrier molecule chemically to

create a specific radionuclide that will bind to a specific target (Bushberg et al., 2002).

These radionuclides are then injected into the bloodstream and undergo positron decay.

During positron decay of the radionuclide, a proton converts into a neutron, resulting

in the release of a positron with specific kinetic energy Q, as shown in equation 1.1

(Basu, Kwee, Surti, Akin, & Yoo, 2011).

ZAX→ Z − 1AY + β + ν +Q (1.1)

A positron is an antimatter equivalent of an electron and it annihilates with an elec-

tron. So when a positron is released, it travels a certain distance and then annihilates

with a nearby electron, losing its kinetic energy (Basu et al., 2011). The range that the

positron travels depends on the positron’s energy and the characteristics of the tissue

(density and the atomic number). The annihilation leads to the conversion of electron

and positron into collinear emission of two 511 KeV photons (Bushberg et al., 2002).

Due to the collinear emission of the photons, the photons emitted travel in opposite

directions to one another in a straight line (known as the Line of Response (LOR)),
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shown in figure 1.3. The emission of two photons ensures the conservation of linear

momentum and energy (Basu et al., 2011).

FIGURE 1.2: General principle of PET imaging : Release of positron,
annihilation with electron and production of two 511 KeV annihilation

photons.(Phelps, 2006)

The two annihilated photons in the opposite direction are detected simultaneously by

the detectors surrounding the patient, allowing localization of the origin of these pho-

tons. This mechanism is known as the annihilation coincidence detection. The detec-

tors are arranged in an array surrounding the patient in a circular fashion (Bushberg

et al., 2002) (Basu et al., 2011). There are three possible annihilation coincidence event

types detected by PET detectors. These events are: true coincidence (two photons from

a single annihilation event are recorded within a specific coincidence time window of

6 - 15 nanosecond (Cherry, Sorenson, & Phelps, 2003)), Accidental coincidence (ran-

dom coincidence-two single photons from two unrelated annihilation events reach the
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detector in the coincidence time window and the event is registered as a single coinci-

dence event) and Scattered coincidence (event due to Compton scattering in the patient

body).

Both the scattering and accidental coincidence detection lead to incorrect LOR and re-

sults in incorrect positional information, loss of contrast, hazy background and noise

in the PET image. These coincidences are the main source of inaccuracy in clinical

PET scanning and so correction for these is important, to acquire fine detail and useful

information from PET scans(Cherry et al., 2003).

Data Acquisition and image formation in PET imaging

Photon detection and scintillator detector

For coincidence detection, the detectors in the PET scanner are arranged in a circular

fashion. They are made up of a scintillator crystal such as sodium iodide doped with

thallium (NaI (TI)) and bismuth germinate (BGO), Lutetium oxyorthisilicate (LSO),

coupled with a photomultiplier tube (PMT) in a block design (Cherry et al., 2003). A

matrix of scintillator crystals is attached to 4 PMTs arranged in 2X2 matrix. The matrix

is achieved by segmenting the crystal into smaller elements. The block detector allows

the small scintillator crystal to be used to improve spatial resolution while keeping the

number of PMT as low as possible to control the cost. The scintillator crystal uses the

concept of light distribution and centroid calculation in four PMT to identify in which

element the gamma ray was detected from. The choice of scintillator used in the de-

tector depends on the stopping power of the detector for 511KeV photon, the effective

atomic number of the scintillator crystal, the scintillator decay time, the light output

per KeV of photon energy, and the energy resolution of the detector (E.Schmitz et al.,

2003). These parameters are important as they determine the spatial, energy and timing

resolution of the system and the efficiency of the detector in detecting true coincidences

(Farncombe & Iniewski, 2013).
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FIGURE 1.3: Scheme of a Scintillator Block Detector. Fundamental prin-
ciple of scintillator block detector.(Phelps, 2006)

In principle, the scintillator crystal interacts with the gamma rays and the energy from

the gamma rays is converted to light. 511 KeV annihilation photons create tens of

thousands of visible wavelength photons in the scintillation process. The light energy

from the crystal is passed on to the PMT, which produces pulses of electrical signal. A

PMT tube is a vacuum glass tube which consists of a photocathode that converts the

light energy into photoelectrons, which are then passed on to dynodes. The dynodes

multiply the photoelectrons depending on the voltage difference between the dynodes

and the photocathode. The amplified photoelectrons are passed onto the anode which

in turn convert the photoelectrons into an electrical pulse signal (Casey & Nutt, 2007).

Data processing and correction

One of the most important techniques performed to correct and eliminate detection of

unwanted coincidences, and also determine the origin of true coincidence is Time of

Flight (TOF). Time of Flight is applied to improve the single to noise ratio (SNR) in the

image and also helps reduce the random coincidence detection (Basu et al., 2011). The

concept of Time of Flight (TOF) in PET image reconstruction is based on measuring the

precise time that each of the coincident photons are detected at, for each of the anni-

hilation coincidence events. The majority of PET scanners acquire coincidence event

pairs which lie in the time window of 6-15 nanoseconds (Cherry et al., 2003). However,

these scanner do not record the time of arrival of these photons. As mentioned earlier,
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a scattering coincidence can be detected if it lies between this time window. This could

result in the wrong location of the coincidence event and leads to noise in the recon-

structed image. To acquire images with Time of Flight correction, the detector must

have a short light decay times which is accomplished by using LSO or LYSO scintilla-

tor crystals (Basu et al., 2011). In the TOF technique, the arrival time of every event is

recorded . If the event is detected between the time window of 0.5 nanoseconds then

the time difference ∆τ is calculated and computed (Cherry et al., 2003) (Farncombe

& Iniewski, 2013). Using the time difference, the location of the annihilation event is

calculated (equation 1.2).

d =
∆τc

2
(1.2)

Where d is the location of annihilation event and with the center of the gantry as the

midpoint, c is the velocity of the light (3 x 10-9 cm/sec). To acquire information about

the events and the image, the probability of line of response (LOR) is recorded, which

represents the location of the annihilation event. This allows the LOR to be shorter than

the LOR from detector to detector. Due to the shorter time window of 0.5 nanoseconds,

the detection of random and scattered coincidences is minimized (Rich & Christian,

2013).

Once all the lines of coincidence are observed and recorded by the detector as shown

in figure 1.4, they are organized in a sinogram (raw data format). In the sinogram,

each sinusoidal curve represents all the lines of coincidence passing through a single

point in the subject. The sinogram is further modified to acquire only information in the

form of true coincidence events and eliminates attenuated information and information

obtained by the scattered and random coincidence events (E.Schmitz et al., 2003).
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FIGURE 1.4: Schematic representation of the Image Acquisition and Re-
construction in CT/PET imaging System. (Striet, 2010)

Another important correction done in PET imaging is attenuation correction (Kinahan,

Hasegawa, & Beyer, 2003). The emission of radiation from the radionuclide inside the

body is not always observed by the detector due to two factors: absorption of radiation

within the body and the scattering of photons away from the detector. This loss of

detection of true coincidence is known as attenuation. In PET brain imaging, half of

the true coincidence is lost due to attenuation.

In PET imaging, attenuation of photons is characterized by the linear attenuation co-

efficient (µ). The linear attenuation coefficient is the transmission probability of the

photon through any material. Attenuation depends upon the thickness of the body,

atomic number and density (Ay & Sarkar, 2003). It can affect the visual quality of the

PET images (image noise, image artifacts and image distortion) and in turn affect the

quantitative information of PET data (Ay & Sarkar, 2003). The probability of the the co-

incidence acquired by the detector depends on the linear attenuation coefficient of the

tissue at 511 KeV and the total length of intersection within the body (T), as illustrated

below in equation (1.3).
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P (det) = e−µT (1.3)

Where P(det) is the probability of detection (Cherry et al., 2003).

The probability of detection is independent of the location of the source, and only de-

pends on the length of the LOR. Attenuation correction is performed by generating

attenuation maps, which represent the spatial distribution of the linear attenuation co-

efficient of 511 KeV photon. There are two ways the attenuation map can be gener-

ated in PET imaging: by the transmission method and the transmission-based method

(E.Schmitz et al., 2003).

In clinical application, the most common and effective method used is the transmission-

based method. In transmission-based method, an external source is used, such as a CT

scan. In our study, we have used this CT-based attenuation correction method in ac-

quiring PET images corrected for attenuation. Here CT information is used to generate

attenuation maps (E.Schmitz et al., 2003). A tomographic reconstruction algorithm is

used to calculate the attenuation coefficient at the applied voltage energy. The attenu-

ation coefficient is further converted to an attenuation coefficient at 511 KeV energy, to

allow correction for the 511 KeV photon emission in the PET scan. Using CT-based at-

tenuation correction allows higher photon fluence rates, faster transmission scan along

with a true anatomical structural image and true capability of locating the radionuclide,

which is not achieved in a normal transmission scan (E.Schmitz et al., 2003).

Applying the CT image to the PET image also overcomes a limitation of PET imaging

namely, the lack of an anatomical reference frame; thereby providing the specificity of

the examination in neuroimaging. For example, in most clinical cases, the PET (func-

tional) image will be co-registered to the CT (structural) image (E.Schmitz et al., 2003).

Clinical PET scanners now routinely use the Iterative Reconstruction method (Iniewski,

2009). This reconstruction method, along with attenuation correction, allows for three

dimensional image representing the distribution of the radionuclide in the body. Itera-

tive reconstruction methods solve the system of linear equations to acquire projection
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data from an initial image, by converting the image into pixels or voxels (volume el-

ements or pixels) (Iniewski, 2009) (Cherry et al., 2003). It relates the image pixel and

projections using a linear equation system which can be represented as below:

P = AX (1.4)

where P is the array of projections, X is array of image pixels and A is the coefficient

matrix of the system. The matrix A, consists of the weighted factor contribution from

the image pixel to the projections (Zeng, 2010).

Iterative Reconstruction initially estimates a uniform distribution of activity (image).

Using forward projection, it sums all the intensities in the projection data of the esti-

mated image. The summed estimated projection data is then compared with the actu-

ally recorded projection data, in order to acquire a close approximation to the recorded

projection data. This is achieved by finding the difference between the estimated and

the recorded projection data and back projecting the error projection on to the esti-

mated image. This process is repeated until the difference between the actual data and

the projected data is minimized as shown in figure 1.5. Lastly, the images are smoothed

to eliminate noise (Iniewski, 2009) (Cherry et al., 2003).
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FIGURE 1.5: Basic schematic representation of principle of Iterative Re-
construction Algorithm (Iniewski, 2009)

The high sensitivity, specificity and accuracy of these reconstructed images make PET

images a useful tool for the clinical diagnosis of certain disease. Due to this unique

quality of PET imaging, it makes it an ideal tool to employ to understand amyloid

accumulation in PD-MCI.

In order to evaluate the PET images, abnormal tissue radiotracer uptake relative to the

normal tissue is determined (Standard Uptake Value Ratio). Standard Uptake Value

Ratio (SUVR) is a method of acquiring the concentration of radioactivity in the PET

imaging. It is sometime referred to a the differential uptake ratio (DUR). In this thesis

we will refer to it as SUVR. It is obtained by measuring the concentration of radioactiv-

ity in the region of interest on a PET image, normalised for the injected dose and body

weight of an individual (Saha, 2015).
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Amyloid PET Imaging

Amyloid has been a hot topic in neurological research for the past ten years, particu-

larly in AD. The development of in-vivo amyloid PET imaging has provided a break-

through in clinical neuroscience. The amount of amyloid accumulation can now be

measured before autopsy. In AD, Amyloid PET imaging has been used to show in-

crease deposition relative to healthy aging, and is one of the most robust findings.

Presence of amyloid is even predictive of future development of dementia in those

with MCI (Gomperts et al., 2013). It has been used in PD studies to evaluate the as-

sociation of amyloid aggregation with PD symptoms and its pathology in PD. Many

studies using amyloid imaging have shown amyloid accumulation in PD with signif-

icant spatial distribution in comparison to AD (Campbell et al., 2013). Pathological

studies, say that up to 50% of PDD cases have amyloid accumulation that results in a

secondary diagnosis of AD (at autopsy) (Jellinger, 2010b) (Compta et al., 2011). In the

field of PD, one of the interesting questions many researchers are interested in is the

story of amyloid in PD and how it is associated with cognition in PD (Gomperts et al.,

2013).

The first attempt at imaging amyloid in-vivo was performed by Friedland and col-

leagues (Friedland et al., 1997). They used the radiotracer technetium-99 linked to an

amyloid antibody fragment in AD patients using single-photon emission tomography

(SPECT). This was an unsuccessful attempt since the fragment was unable to effec-

tively cross the blood brain barrier (Friedland et al., 1997). However, it started the

interest in developing and investigating the potential of amyloid binding radiotracers

which will efficiently allow amyloid imaging. Since then, the possibility of imaging

amyloid has increased due to the development of specific tracers for PET that bind

efficiently to amyloid plaques (Potecorvo & Mintun, 2011). The tracers belong to a va-

riety of chemical classes such as thioflavin T, stilbenes, benzoxazoles and benzofurans.

These tracers are 18-fluoro-labelled 1,1 dicyano-2-[6-(dimethylamino)-2-naphthalenyl]

propene (FDDNP), 11 C-labelled [N-methyl]-2-[4- methylaminophenyl-6 hydroxyben-

zothiazole](Pittsburgh Compound-B, PIB), 18F-florbetapir ((E)-4-2(6(2(2(2[18F] fluoroethoxy)
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ethoxy) ethoxy) pyridin-3-yl) vinyl)-N-methylbenzenamine) and 18F-florbetaben [trans-

4-(N-methyl-amino)-4 (2(2(2[18-F]fluoro-ethoxy) ethoxy) ethoxy) stilbene](FBB) and many

more (Richards & Sabbagh, 2014).

Florbetaben (FBB) is one of a handful of new 18-F-Labeled tracers produce for β-Amyloid

imaging in humans. It is synthesized in a similar fashion to other F-18 tracers. A non-

radioactive precursor is labelled to 18-F, which undergoes acid hydrolysis and chro-

matography for purification. In terms of toxicity, FBB is found to be under the tolerance

limit with no mutagenic properties. It was demonstrated that a quantitative measure-

ment and a visual interpretation can be made with a 20min PET scan, following a 90

minutes post-injection period (Richards & Sabbagh, 2014).

Preclinical and post-mortem AD studies have shown that the binding affinity and den-

sity of FBB to Aβ aggregates is in the range required for bioimaging. On average, the

binding affinity for Fluorine-18 tracers is around 6.7 nM and does not show any bind-

ing to Lewy bodies, Pick bodies or glial cytoplasmic inclusions (Richards & Sabbagh,

2014). As a diagnosis tool for early AD, it has been proven to be cost effective and pro-

vides improved quality of life to the patient. This finding was provided by Guo and

colleagues, who investigated the impact of FBB on diagnostic confidence and economic

implications (Guo et al., 2012). They designed a model which allowed exploratory

analysis using payer and society perspectives, along with the course of disease and the

time of diagnosis. They showed that using FBB PET as a diagnosis tool in AD improves

quality of life for a patient by providing faster diagnosis compared to other diagnosis

tools and has a positive impact on economic output (Guo et al., 2012).

PIB was the first amyloid PET tracer and is the most studied amyloid-binding radio-

tracer. It was first used in 2003 in AD mice models to show amyloid deposition as a

hallmark of AD. It showed rapid entry in the brain and efficient binding to amyloid

aggregates; specifically to extracellular and intravascular fibrillar amyloid-beta deposi-

tion, without binding to neurofibrillary tangles or Lewy bodies. Correlations between

PIB and amyloid aggregates have been well documented in AD cases. AD PET studies

have shown association between PIB binding and the cognitive decline, in the early

stages of AD. Edison and colleagues showed that uptake of C-11 PIB in AD revealed
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an increase in β-amyloid in the areas associated with cognition deterioration (cingulate,

frontal, temporal, parietal and occipital cortical area) (Gomperts et al., 2013). Another

C-11-PIB PET study associated with amyloid deposition in AD reported a two-fold in-

crease in PIB uptake in the cortical area in cases of AD, in compared controls. Amyloid

PET is also informative in early AD and even MCI, where by amyloid positive MCI

individuals are at higher risk of developing dementia than those with a negative amy-

loid PET scan. PIB has been used in many other studies to investigate the amyloid

deposition association with PD, PDD and other neurological disorders. Recently, PIB

amyloid deposition has been associated with the rate of cognitive decline in PD. Gom-

pert et.al reported an increase in cognitive decline in PD individuals with low levels

of cortical amyloid deposition in comparison to individuals with amyloid free cortical

area (Gomperts et al., 2012). This finding has given us the push to further look into

understanding the amyloid association in PD .

These studies have shown the high efficiency and accuracy for indicating amyloid ac-

cumulation in the brain and have shown the high sensitivity of PIB as a diagnostic

marker in AD. However, PIB-C11 radiotracer has its limitations as it is unable to be

used as a clinical application, due to its short half-life of 20 minutes. To overcome

this limitation, other PET ligands have been developed and investigated, such as F-18

labelled tracers. Since F-18 tracers have a longer half-life of 110 minutes, they allow

regional distribution and clinical applications.

Villemagne et.al and others have shown the high accuracy and efficiency of FBB for

indicating amyloid accumulation in the brain and that it provides robust separation

between AD and healthy controls (Villemagne et al., 2012).

Degree of retention of FBB is lower than PIB. This means the dynamic standard uptake

value ratio of FBB is narrower. However, in the same study it was observed that both

tracers had high retention in the cortical grey matter and lower uptake in white matter

in those with AD. The ratio of frontal cortex to white matter ratio for PIB was 1.45 for

AD subjects (Villemagne et al., 2012).

Barthel and colleagues showed that the sensitivity and specificity of FBB is 80% and

91% respectively to distinguish AD subjects from a healthy control group (Barthel et
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al., 2011).

1.2.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive technique which provides high

quality anatomical and functional images for a range of tissue types in the human body.

The MR system consists of: the superconducting magnet, radiofrequency coils and gra-

dient coils. Generally, the magnet used in MRI is a superconducting magnet (1.5 Tesla

or higher) and is used to generate a strong constant magnetic field. The radiofrequency

coil is made up of a transmit coil and a receiver coil. The transmit coil produces the

radiofrequency pulses (discussed in detail later in this section) and the receiver coil de-

tects the MR signals. The gradient coils produce small variations in the magnetic field

and allow localization of the image slice (Bushberg et al., 2002).

MRI principle of operation

The basic principles of MRI are based on the magnetic properties of the nucleus of the

hydrogen atom. Every atom has a property known as spin (Bushberg et al., 2002). The

hydrogen atom is the most abundant nucleus in the human body, due to water and

fat content. MRI uses these hydrogen atoms and its property of spin (Bushberg et al.,

2002). Due to spin, the hydrogen atoms produce a magnetic moment vector µ and act

as little magnets with weak magnetic fields (Mikla & Mikla, 2013). In nature, these

magnetic moment vectors are orientated at random.



Chapter 1. Introduction 23

FIGURE 1.6: Orientation of hydrogen atom in nature (absence of external
Magnetic Field) and in the presence of an external Magnetic field. In the
absence of magnetic field the hydrogen atoms are orientated at random
and the net magnetization is zero. In the presence of external Magnetic
field, the atom orientate in two direction: parallel to the magnetic field
or anti-parallel to the magnetic field (as depicted by the direction of the

small arrows portraying the atom axis of spin) (Mikla & Mikla, 2013)

MRI manipulates these hydrogen atoms and their magnetic moment vector by using

an external magnetic field, in order to produce a net magnetization as shown in figure

1.6 (Mikla & Mikla, 2013). More precisely, when a magnetic field is applied in the MRI

system, the protons experience torque which causes the magnetic moment vector to

align with the magnetic field (Brown & Semelka, 2011). This also results in precession

of these vectors around the external magnetic field. There are two orientations in which

the protons align themselves in the presence of an external magnetic field: parallel

(spin-up) or anti-parallel (spin-down). The spin-up orientation is a low energy state

whereas the spin-down orientation is a higher energy state and so the majority of the

proton nuclei prefer to align themselves in the parallel orientation. More protons in the

spin-up orientation result in a net difference in the orientation of proton alignment and

this difference creates a net magnetization vector, parallel to the external magnetic field

(Brown & Semelka, 2011) (Mikla & Mikla, 2013).
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The frequency of proton precession around the magnetic field is governed by the Lar-

mor frequency w. The Larmor frequency depends on the strength of the external mag-

netic field (B) and the gyromagetic ratio γ of the tissue (equation 1.5) (Bushberg et al.,

2002).

w = γB (1.5)

In MRI, in order to acquire MR signals, the net magnetization (M) is manipulated by

applying a pulse of radio-frequency energy (RF pulse) at the resonant frequency of the

proton, perpendicular to the external magnetic field. The RF pulse is known as the

excitation pulse. This pulse allows the protons to absorb energy at a given frequency

and then re-emit energy at the same frequency. For an efficient MRI system, this pulse

is tuned to the Larmor frequency (processional frequency of the protons), resulting in

changing the energy levels of protons (Brown & Semelka, 2010). The proton absorbs

the RF energy and move from a lower energy state (parallel to the magnetic field) to

a higher energy state (anti-parallel to the magnetic field). The number of protons that

undergo this change depends on the RF pulse amplitude and duration, which ulti-

mately determines the net magnetization orientation (Weishaupt, Köchli, & Marincek,

2006)(Brown & Semelka, 2010).

In terms of macro-level, the net magnetization can be described on Cartesian coordi-

nate axis system (xyz plane). Initially the net magnetization is in the z axis which is

parallel to the applied magnetic field (B). This is due to a greater number of protons in

the lower energy state than the higher energy state. As the RF pulse is applied, with the

right amplitude, duration and resonant frequency, the net magnetization can be excited

and rotated to any desired angle (flip angle). For example, by applying the RF pulse

perpendicular to the external magnetic field, with a high enough amplitude and certain

duration, it will result in the net magnetization (initially in the direction of the external

magnetic field) rotating to the transverse plane (x-y plane). Initially, immediately after

the RF pulse is applied, all the nuclei spins are in phase in the transverse plane. When

the RF pulse is removed, three processes take place simultaneously. Firstly, the RF en-

ergy absorbed by the proton is re-emitted at the resonance frequency. Secondly, the
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excited protons return to their original equilibrium position (z-plane orientation) by

the process known as T1 relaxation (spin-lattice or longitudinal relaxation). Thirdly, in

the x-y plane, the in-phase net magnetization (exited proton) begin to dephase, by the

process of T2 relaxation (spin-spin or transverse relaxation). The emission of the elec-

tromagnetic energy during the relaxation processes is eventually detected by a detector

in a MR scanner (Bushberg et al., 2002).

FIGURE 1.7: Manipulation of net Magnetization by applying a RF pulse.
The intensity of the MR signal received depends on the amplitude of the
RF pulse, the duration of the RF pulse and the Larmor frequency.(Harms

et al., 1984)

The T2 relaxation measures the energy transferred from one excited proton to another

nearby proton. During T2 relaxation, dephasing of the xy magnetization takes place.

This change in the magnetization induces an electromotive signal in the RF receiver

coil. This sinusoidal electrical signal is known as the free induction decay (FID) signal.

The FID signal depends on the amplitude of the net magnetization before the RF pulse
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is applied and the relaxation time. The amplitude of the FID signal decreases over time

in an exponential manner (eq. 1.6) (Bushberg et al., 2002).

M(t) = Mo(e−t/T2) (1.6)

As mentioned earlier, T1 relaxation process takes place simultaneously with T2 relax-

ation. During this process, the z magnetization return to the equilibrium in an expo-

nential manner (eq: 1.7) (Bushberg et al., 2002). T1 relaxation time measures the rate of

energy transferred from the excited nuclei to the environment (lattice), hence the name

spin-lattice relaxation (Bushberg et al., 2002) (Brown & Semelka, 2011).

M(t) = Mo(1− e−t/T1) (1.7)

The relaxation times T1 and T2 are different for different tissues; this allows the MR

system to identify different tissue based on their magnetic properties. In other words,

these relaxation mechanisms determine image contrast (Bitar, Leung, Perng, & Roberts,

2006). Tissues with longer relaxation times appear different to those with shorter relax-

ation time. For example, fat has a shorter T1 recovery time (recovery faster) and a

shorter T2 decay time (decays faster) in comparison to water, which has a longer T1

recovery time and T2 decay time. It is this recovery rate of signal that enables MRI

to differentiate between different tissue types and acquire clinical images (Bitar et al.,

2006) (Bushberg et al., 2002).

Data Acquisition and Image Formation in MRI system

To acquire an MR image, a pulse sequence is used, which is the timing and strength

of radiofrequency and gradient pulses used to determine the contrast of the image.

The FID signal is acquired indirectly by creating "echoes", or when a decaying signal is

refocused. In MRI, echoes can be generated in two ways, either by using a 180◦ (spin

echo) or by reversing the gradient polarity (gradient echo). In order to create echoes,

both of these methods rephase the spins which were initially dephasing after the net
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magnetization was rotated into the transverse plane. Once all the spins are in phase in

the transverse plane, an echo signal is generated. This echo signal is collected by the

detector in the MR scanner and is used to form an MR image.

A pulse sequence is basically a wave form with various magnetic gradients and RF

pulses. There are two fundamental types of pulse sequence: Spin echo (SE) and gra-

dient echo (GE). The other various pulse sequences are derived from these pulse se-

quences by adding different parameters to these pulse sequences to create images such

as T1 weighted image, T2 weighted, proton density and Fluid attenuation inversion

recovery (FLAIR) images. Different applications require different anatomical or func-

tional information and image contrast. To achieve this, certain parameters are ma-

nipulated in a pulse sequence. These parameters include: repetition time (TR), Echo

time (TE), Time of inversion (TI), RF pulse flip angle and gradients (Bitar et al., 2006)

(McRobbie, Moore, Groves, & Prince, 2007).

A basic pulse sequence requires a certain sequence of events in order to acquire signals.

In a basic pulse sequence, there are four sets of events which take place in order to

acquire an MR image. Firstly, a RF pulse is applied as shown by the top line in figure

1.9. At the same time, a slice selection gradient is applied in the z plane (second line in

figure 1.9). This is followed by a phase encoding gradient in the direction orthogonal

(y axis) to the slice selection gradient. The phase encoding allows encoding of the

phase of the MRI signal. Lastly, a frequency encoding gradient is applied in the x axis

during the decay of the echo; acquiring all the frequency information in the MR signal.

Simultaneous to the frequency encoding, data sampling and acquisition of the complex

signal take place (Bitar et al., 2006) (McRobbie et al., 2007).
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FIGURE 1.8: schematic of basic events in a SE pulse sequence. Initially,
an excitation pulse is applied, followed by switching on and off gradi-
ents (slice selection, phase encoding and frequency encoding); followed
by an inversion pulse to produce an echo (blue pulse) and finally signal

readout.(Hahn, 1950)

This data sampling and acquisition takes place using a one-dimensional Fourier trans-

form. The Fourier transform converts the signal into discrete frequency values and

corresponding amplitudes. It stores this information in a k-space matrix. The k-space

matrix is a two-dimensional matrix with positive and negative spatial frequency val-

ues. In the matrix, the x-direction represents the frequency encoded variables and the

y direction represents the phase encoded variables. Once the entire k space matrix is

filled, inverse Fourier transform in applied. It decodes the frequency domain variation

into a spatial domain (image) (Bushberg et al., 2002) (McRobbie et al., 2007).

Spoiled Gradient Recalled Echo Imaging

In this study, anatomical MR imaging was only used as the base for processing prior to

the statistical analysis. In this section we will focus on the gradient echo pulse sequence

as we used a T1- weighted spoiled gradient recalled echo (SPGR) image (Bushberg et
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al., 2002). A SPGR image provides a high resolution anatomical image which is in close

proximity to the tissue macroscopic image. It uses a gradient echo pulse sequence in

order to eliminate the transverse magnetization before applying the second RF pulse

(Hashemi, Bradley, & Lisanti, 2012). Since it eliminates the transverse magnetization by

using a shorter TE, it minimizes the T2 characteristics of the tissue. So SPGR obtain im-

age contrast by manipulating the TR and the flip angle. It uses shorter TR to minimize

the recovery of the longitudinal magnetization, thereby enhancing the T1 relaxation

characteristic of different tissues. Also, shorter TR allows faster image acquisition and

maximizes signal to noise ratio in the image (Hendrick, 2007).

T2 Weighted F luid Attenuation Inversion Recovery

T2 weighted Fluid attenuation inversion recovery (FLAIR) imaging is a unique imaging

pulse sequence which produce a strong T2 weighted image with suppressed fluid sig-

nal (Bushberg et al., 2002). This pulse sequence is most commonly used in neurological

imaging to exclude non-disease related pathology and to enhance signals from periven-

tricular lesions (Brant-Zawadzki, Atkinson, Detrick, Bradley, & Scidmore, 1996). It uses

conventional Spin Echo pulse sequence with a 180◦ inversion pulse and a prolonged

T1 recovery time. The longitudinal magnetization recovery time is set to the time it

takes for the cerebrospinal fluid (CSF) longitudinal magnetization to reach zero cross-

ing point. This will allow removing of the signal from CSF from the resultant image

(Brant-Zawadzki et al., 1996).

1.3 Image Preprocessing

Image preprocessing is a vital step in any medical imaging application. It is impor-

tant to minimize noise and sampling errors. The steps performed in image prepro-

cessing (discussed in detail in chapter 2) aim to process the data so that it is suitable

to be analysed statistically. In this study, image preprocessing was performed us-

ing statistical parametric mapping (SPM, University College London) software (http :

//www.fil.ion.ucl.ac.uk/spm/).
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FIGURE 1.9: Statistical Parametric Mapping 12

SPM is designed to facilitate image preprocessing and voxel-based analysis of struc-

ture, function and disease-related changes in the brain (Friston, Ashburner, Kiebel,

E.Nichols, & Penny, 2011). Image preprocessing using SPM is discussed in detail in

chapter2.
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Methodology

2.1 General Information

Fifty subjects with PD-MCI were either recruited from a local specialist movement dis-

order clinic or were volunteers from an ongoing longitudinal PD study at the New

Zealand Brain Research Institute. The demographic and clinical characteristics of the

participants are described in Table 2.1.

TABLE 2.1: Summary of demographic and clinical characteristic

Mean(SD) Range
Age(years) 73(6) 59-86
FBB dose (MBq) 300(17) 240-346
Clinical Characteristic
Hoehn and Yahr stage 2.56(0.56) 1.5-4
PD duration (years) 6.9(4.9) 1-20
UPDRS motor score 40.92(13.54) 13-68
Cognitive indices
MoCa score 21.78(3.67) 12-28
Attenuation Z score -1.02(0.76) (-3)-(0.53)
Executive Function score -1.14(0.74) (-2.64)-(0.72)
Learning Z Score -0.93(0.90) (-2.42)-(1.54)
Language Z score -0.52(0.68) (-2.56)-(0.64)
Visuospatial functional Z score -0.80(0.84) (-2.54)-(1.02)
Global Cognitive function Z score -0.98(0.64) (-2.44)-(0.62)
WAIS-III information subtest score 107(10) 86-125
PD dementia Risk Score 0.65(0.3) 0.04-0.99

The diagnosis of PD was performed using the UK Parkinson’s society criteria. Re-

cruited individuals had motor symptoms at least a year prior to study entry, to exclude

dementia with Lewy body cases. All subjects received a clinical evaluation, structural

31
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MR imaging and FBB PET imaging, along with cognitive assessments. Exclusion cri-

teria included prior neurosurgery for PD and medical conditions such as stroke, head

injury and learning disabilities. All subjects gave written consent. The study was also

approved by the Upper South Regional Ethics Committee of the New Zealand Ministry

of Health.

2.2 Neuropsychological Assessments

The neuropsychological assessment employed in this study was designed and per-

formed by members of the New Zealand Brain Research Institute (NZBRI). The as-

sessment, which takes anywhere from 2.5 - 5 hours to complete, is routinely used in

the assessment of patients cognition at the NZBRI. In this study, the NP battery was

performed to ensure that the subjects fulfilled the diagnostic criteria for PD-MCI; with

the different neuropsychological test scores also being obtained for statistical analysis.

The neuropsychological assessment was conducted in two sessions and it examines

five cognitive domains posed by the Motor Disorder Society-Task Force Level-II re-

quirement for PD-MCI (Litvan, Goldman, Tröster, et al., 2012). These four domains

were: executive function, attention/working memory, learning memory, language and

visuospatial/visuoperceptual skills. These domains were individually assessed using

different assessments. Executive function was assessed by examining the Stroop inter-

ference, letter fluency, category fluency, category switching, action fluency and trails.

Attention and working memory were examined by testing everyday attention, Stroop

colour reading, Stroop word reading, digits forwards/backwards and digit ordering.

The learning and memory domain were assessed using California verbal language test-

II short form (short and long delays) and the Rey complex figure test (short and long

delay). The visuoperceptual performance was measured using judgment of line ori-

entation, fragmented letters, the picture completion test and Rey complex figure copy.

Lastly, language was assessed using the Boston naming test, dementia rating scale-2

similarities sub-test and the Alzheimer’s Dementia assessment cognitive scale (Wood

et al., 2016).
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The scores obtained for these sessions were used in categorizing the participants ac-

cording to their cognitive statues (PD-N, PD-MCI and PDD) and to acquire a summary

of global cognitive ability,’Global cognitive Z score’ (discussed in more detail later in

this section). The categorizing was done using the MDS Task force criteria for MCI

(Litvan, Goldman, Tröster, et al., 2012)(-1.5 standard deviation (SD) below the norma-

tive data on at least two tests within one of the four domains) (Dalrymple-Alford et al.,

2011b) and PDD dementia assessment which incorporates an evaluation of everyday

function. MCI criteria required the individual had unimpaired daily functional activ-

ities but met the operationalized criterion of impairment of 1.5 standard deviation or

below the normative data in at least two of the five MDS cognitive domain assessments.

From these scores a global cognitive Z score was obtained by averaging the score from

the MDS cognitive domains excluding the language domain scores (Litvan, Goldman,

Tröster, et al., 2012).

2.3 Magnetic Resonance Imaging

All subjects underwent an MRI scan. The scan was conducted using a 3T GE HDxt

MR scanner with an eight channel head coil, at Hagley Radiology. The 3T Magnetic

field scanner provides stronger signals, enables high quality images to be acquired at a

faster rate, with high resolution and good contrast. The structural T1-weighted images

were obtained for image preprocessing of the PET images and T2 Flair images were

obtained to quantify white matter hypertensity volumes.

2.3.1 Scanning protocol

The structural MR images were acquired using a T1-weighted, three dimensional spoiled

gradient echo (SPGR) acquisition with following parameters: TE = 2.8ms,TR = 6.6ms,

TI = 400ms, flip angle = 15◦, acquisition matrix = 256 x 256 x 170, Field of View (FOV)

= 250mm, slice thickness = 1mm, voxel size = 0.98 X 0.98 X 1.0mm3, scan time = 5 min

and 6 sec.
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T2 Flair images were acquired with the following parameters: TE = 104.5 msec, TR =

9000 msec,TI = 2250 ms, Flip angle = 90◦, reconstruction matrix = 512 x 512 x 32, FoV =

220 mm, slice thickness = 3 mm, and scan time = 2 min 56 sec.

2.4 Positron Emission Tomography

All the subjects were scanned using a GE discovery 690 PET scanner at Southern Cross

hospital. Subjects were injected with 300 MBq of F18- Flurobetaban (FBB), prepared

at Cyclotek Ply Ltd (the major supplier of PET radio-pharmaceuticals) in Melbourne,

Australia. It was ensured that the radioactive exposure of FBB to the patient was un-

der the recommended radiation exposure of 300 ± 20% MBq and the tracer dose was

under 55 µg per injection. Prior to the PET scan, a computer tomography transmis-

sion scan was obtained for each individual to perform attenuation correction by the

PET/CT scanner. Time of flight and attenuation correction was applied by the scan-

ner during image reconstruction at the time of scanning. Time of flight was obtained

using the iterative Time of Flight plus the SharpIR algorithm. SharpIR is an iterative

reconstruction method employed by general electric (GE) company to reconstruct PET

images (Ross & Stearnsr, 2016).

During image reconstruction, two types of images were obtained: Time of Flight with

Attenuation Correction image (TOFAC) and Time of Flight with No Attenuation Cor-

rection (TOFNAC). The purpose of obtaining these images is discussed in detail in

section 2.5.2.

All the subjects were placed in the scanner with head pads and neck support to ensure

that the patients would be comfortable and that their head would be kept still for 20

minutes (duration of the scan). The CT was acquired first (to facilitate attenuation

correction). The PET acquisition was obtained 90 minutes post injection of FBB, with

an acquisition time of 20 min. For the CT, the direction of the scan was caudocranial

with 120 kV and 30 mA. The PET and CT images were reconstructed with the following

parameters: Slice thickness of 3.75 mm; Slice interval of 3.27mm; Field of View (FoV)

of 50cm; Pitch of 0.969:1 and Rotation time of 0.5 second. In order to acquire TOFAC
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images during the reconstruction process, the SharpIR algorithm was applied, with a

reconstruction resolution of 3 mm full width half maximum (FWHM); 16 subsets and

4 iterations. For TOFNAC images all the parameters were kept the same except no

attenuation correction was applied.

2.5 Image Preprocessing

Image preprocessing is a vital step in any medical imaging application, prior to any

statistical analysis. It enhances the visual appearance of images and transforms the

raw data into a version which is easier to work with and perform statistical analysis

on.

In this study, it was used to remove noise, correct for artefacts and eliminate patient

motion. It also ensured that the brains of all participants were registered, i.e. each

voxel in the image corresponds to the same region in the brain of each individual.

This allows accurate group analyses by normalising each individual brain image into a

standard space.

In this study, image preprocessing was performed by using Statistical Parametric Map-

ping (SPM12) (Welcome Department of Cognitive Neurology, University College Lon-

don,UK) in MATLAB versions 7.4 (R2014a, Mathworks, Massachusetts, USA).

Initially, all the images (MR and PET) were converted from their original file format

Digital Imaging and Communications in Medicine (DICOM) into single Neuroimag-

ing Informatics Technology Initiative (NifTI) format files, since SPM operates on NifTI

format files (Friston et al., 2011).

2.5.1 Magnetic Resonance Image Preprocessing

The preprocessing of structural images included bias correction, normalisation of the

structural images, tissue classification and removal of non-brain tissue. Using SPM 12

allowed us to perform these steps using a single model, developed in 2005 by Ash-

burner and Friston, known as the Unified segmentation (AshburnerT & Friston, 2005).
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Using this model, T1-weighed SPGR images were tissue classified. This partitions the

structural image into voxels containing grey matter, white matter, cerebrospinal fluid

(CSF) and skull using tissue probability maps (TPM), as shown in Figure 2.1.. Then

combines dartal normalisation and bias correction with tissue classification.

FIGURE 2.1: Segmentation of structural image into A. Grey matter; B.
White matter and C. Cerebrospinal fluid

Before using these prepossessed structural images for further image preprocessing,

segmented volumes were visually inspected to ensure that they were accurate and

contain no gross errors. In order to acquire, white matter hyperintensity (WMH) le-

sion volumes, the lesion segmentation toolbox, 20 was employed. This toolbox looks

for T2 hyperintensities in the T2 FLAIR images and T1-weighted image. This derived

a WMH lesion volume for our fifty participants. This WMH lesion volume was used

to see an association or interaction of amyloid accumulation with WMH.

2.5.2 Positron Emission Image Preprocessing

The initial step of PET image preprocessing was to eliminate motion effects. Motion

artefact in brain imaging is a serious problem in terms of image quality. It is important

to minimize motion from the scans for analysis, especially in the case of brain study.

From previous studies (associated with amyloid accumulation in PDD and AD), it has

been understood that the abnormal amyloid accumulation in PD is in the cortical grey

matter of the brain. Any motion present in the scan can cause inaccurate analysis, as

the area of interest (cortical grey matter) is only 4 millimetres thick. Furthermore, due
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to motion, the signal from the white matter could be mistakenly taken as the signal

from the cerebral cortical area.

Even though we try to ensure that there is no head motion during the scans, it is im-

possible to eliminate head motion from the scan during scanning. This is because our

participants have PD with motor symptoms such as tremor at rest. Therefore, in order

to acquire a high image quality and accurate analysis of amyloid accumulation in the

cortex, motion is eliminated from the images during the image preprocessing step.

In this study, two approaches were taken for motion correction, from which the most

effective method was chosen. For both approaches, it was important to reconstruct

the single frame of 20 minute dynamic scan into four frames of 5 minute scans. Dur-

ing PET scanning two types of images were taken as discussed in the PET scanning

protocol TOFAC and TOFNAC. In the first method, the motion correction was applied

prior to attenuation correction, so TOFNAC images were used. In the second method,

motion correction was applied after attenuation correction, so TOFAC images for pre-

processing were used.

FIGURE 2.2: Motion correction. A. a single frame of 20 minute dynamic
scan. B. Realigned and summed image of four frame of 5 minute scans.
Note: B has minimised motion which provide much ore clear regional

uptake in comparison to A.

We used SPM 12 Realignment and Reslice processing to eliminate motion. The step

realigns the volumes to a reference image. Generally, the reference image is the first

volume imported in the time series. For example, in our case it took the first 5 minute

frame image as the reference image and realigned the remaining three 5 minute frames
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to the first frame using a least squares approach and a six parameter rigid body trans-

formation. This reduces motion and increases signal to noise ratio (SNR). During the

realignment process, a text file and plots were generated which provide an estimate of

the transitional, x-, y- and z- direction ("right", "forward", "up"), and estimated rotation

("pitch","roll","yaw") as in Figure 2.3. For each individual, the plots were examined to

make sure that the estimate transition in all three directions was less than 4 millimetres.

This method of motion correction can only correct for motion of about 4 millimetres. In

this study, any individual with motion greater than 6 millimetres translation or 5 ◦ was

excluded from the study (Friston et al., 2011).

FIGURE 2.3: Realignment and reslicing

Once all four frames were realigned, the images were summed to generate a single

frame (Figure 2.2). Once the summation process was over, in the case of the second

method, the TOFAC image was ready to be used for further preprocessing. However,

in the case of the first method, the TOFNAC images underwent attenuation correc-

tion using a MATLAB 7.4 script file (Appendix A). The script file applied attenuation

correction to the motion corrected TOFNAC images, by using attenuation coefficient

maps and reconstructed an image using the radon transform. Radon transform is a
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tomographic reconstruction method that calculates the sum of pixel intensity in each

direction (line integral). It maps an image from the Cartesian coordinates to polar co-

ordinates (x’, θ) (MathWorks, 2015). One drawback with this method was that by us-

ing radon transform, the image quality was reduced (Figure2.4). Due to this reason,

the second method was used throughout the study for motion correction. The second

method provided excellent image quality and also the desired information for statisti-

cal analysis.

FIGURE 2.4: Attenuation correction of PET motion corrected image us-
ing Radon transform.

Once the images had undergone motion correction, they were co-registered to the

downsampled structural SPGR images. Since the positioning of the subject during an

MR scan and PET scan is slightly different, it is important to co-register the structural

image (SPGR MR Image) to the summed functional image (PET image).

Once all the volumes were in the same origin as the structural volumes, all the images

underwent Normalisation. Normalisation is a non-linear registration process which

spatially transforms the data into a standard space for future analysis. This allows us to

reduce variation in brain images from each individual (while maintaining difference of

interest) allowing meaningful group comparisons to be performed successfully. Here,
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normalisation was conducted in two sets: DARTEL Normalisation and warping the

images into standard space.

Diffeomorphic Anatomical Registration through Exponentiated Lie Algebra (DARTEL)

Normalisation is a non-linear image registration process which matches individual im-

ages to the Montreal Neurological Institute (MNI) template. Templates are pre-existing

images to which our individual images are aligned. These templates contain informa-

tion about the location of the anatomical features in the MNI coordinate space(Friston

et al., 2011). DARTEL normalisation creates a template by warping the segmented

structural grey matter and white matter images together for each individual (Figure

2.5). This template is used as a deformation field for warping other images which are

not in the MNI space but images must be aligned with structure MRI, hence the coreg-

istration of the summed PET image to the structural MRI.

FIGURE 2.5: DARTAL Normalisation from fields, i.e. how a voxel must
be warped to align with standard space(defined here as MNI-SPACE).

The second part of normalisation (applying the deformation fields), allows generation

of spatially normalised images by warping the non-structural images and segmented

images. In this study, the segmented grey matter images and PET images for each in-

dividual were normalised using the deformation fields (generated in the first step of

normalisation) for each individual. In this step, we modulated the grey matter seg-

mented images and left the PET images unmodulated. The reason the grey matter im-

ages were modulated was to compensate for the effect of spatial normalisation. During

spatial normalisation, volumetric differences are introduced and this can alter the to-

tal amount of signal in the voxel. Modulation to the grey matter images, preserve the
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total amount of signal in the normalised segmented images. On the other hand, in the

case of the PET images, unmodulation helps preserve the concentration of signal in

the volume. Before data analysis was performed, all normalised images were visually

examined to ensure that they were accurate and were not grossly mis-aligned.

2.6 Data Analysis

To evaluate the PET images and compare the FBB retention across individuals, a Stan-

dard Uptake Value (SUV) was calculated for all voxels. SUV is defined by the concen-

tration of radioactivity in the Region of Interest (ROI) in the PET image, normalised for

the injected dose and body weight of an individual (Equation 2.1).

SUV =
Concentration

Injecteddose
(bodyweight) (2.1)

In this study, the SUV was calculated using the preprocessed FBB-PET images in stan-

dard space (MNI-space). Standard Uptake Value Ratio (SUVR) were acquired using

the cerebellar cortex as the reference region. In each individual the cerebellum cortex

was defined as the union of the Harvard-oxford cerebellar atlas and the segmented

grey matter map (in each individual; Appendix B). The SUV at each voxel was divided

by the mean FBB signal in the cerebellar cortex, producing SUVR values at each voxel.

These SUVR images were the images analysed in this thesis. They represent the rela-

tive accumulation of amyloid in each individual, normalised to uptake in the cerebellar

cortex.

2.6.1 Clinical Amyloid Diagnosis

FBB PET images of all the subjects were clinically assessed by a specialist neuroradiol-

ogist from Christchurch Radiology Group (Ross J Keenan). The assessment was con-

ducted using the Standard GE healthcare clinical inspection reporting form designed

for [18-F]-Flutemetamol PET image. This was performed using COMRAD Radiology
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Information System (RIS) which is a comprehensive workflow software. FBB positiv-

ity was evaluated in five cortical regions: frontal lobes, posterior cingulate/precuneus,

temporal lobes, parietal lobes and striatum. The scans were considered either positive

(FBB(+)), equivocal or negative (FBB(-)).

Positivity was based on the amount of signal in the five cortical regions and also the

visibility of gyrus, midline (bleeding of signal), precuneus and striatum gap in these

regions. A positive FBB image was defined as high accumulation of amyloid in the

cortical region of the brain in comparison to the white matter. Whereas, a negative FBB

image was defined by no amyloid accumulation in the cortical regions of the brain.

2.6.2 Statistical Analysis

Statistical analysis was performed using the smoothed SUVR images obtained from

each subject. The SUVR images were smoothed using an isotropic Gaussian kernel

with FWHM of 8 mm. Smoothing suppresses noise and reduces the effects due to

residual misalignment. Using the smoothed SUVR images, the uptake ratio for 5 corti-

cal regions of interest (whole cortex, frontal lobes, posterior cingulate/precuneus, tem-

poral lobes, and parietal lobes) and three subcortical regions (striatum, putamen and

thalamus) was calculated. These 8 regions were defined by the Harvard-oxford cor-

tical and subcortical probabilistic atlases. In addition, we employed a multivariate

analysis of FBB-PET data set to identify a pattern of uptake associated with amyloid

deposition. We used linear regression (lm in R studio version 3.0.2) to investigate the

association between ROI SUVR and Cog Z (averaging the score from the MDS cog-

nitive domains excluding the language domain scores)/PDDRS (Parkinson’s disease

dementia "risk" score, predicted the probability of risk that an individual has of con-

verting to dementia in the next 4 years); with age, sex and UPDRS (motor impairment

scale) as co-variates. We also checked for a significant group-by-Cog Z/PDDRS inter-

action, to investigate whether the FBB(+) group behaves similarly to the FBB(-) group.

The comparisons were considered significant if p<0.05. The two multivariate methods

I employed were principal component analysis (PCA) and independent component
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analysis (ICA). Lastly, I applied bootstrapping to provide an estimate of the reliability

of the identified network.

Principal Component Analysis

Principal Component Analysis (PCA) is a multivariate data analysis technique that has

been used in many applications such as face recognition, image compression and find-

ing pattern in large data sets (Rencher & Christensen, 2012). It uses an orthogonal

linear transformation technique which transforms the original correlated data set into

a new coordinate system which provides information about the variance in the data

set (Rencher & Christensen, 2012). It does this by extracting main source of variation

in the data set. These variations are expressed as vectors (known as Principal Com-

ponents or PCs)(Figure 2.6). These projections (PCs) are orthogonal to each other and

uncorrelated. These projections highlight the similarities and differences in the high di-

mension data set. In order to acquire the variance projection data using PCA, initially

the mean of the data set is subtracted from the data set (between and within subjects).

For example, our data set is represented by Matrix A(m, n) where m is the number of

participant and n is the number of voxels (the ID representation of the 3D image). I

firstly, subtracted m̄ from the m values and n̄ from the n values. This results in a matrix

of values with a mean of zero (Rencher & Christensen, 2012). This is further used to

calculate the covariance matrix as shown in Equation 2.2. The covariance determines

how much variation is present in each dimension with respect to the mean of the data

set.

cov(X,Y ) =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

n− 1
(2.2)

Once the covariance matrix was calculated, the eigenvalues and eigenvectors were de-

termined. The eigenvectors and eigenvalues provide useful information about our

data. The eigenvectors corresponds to the principal components and the eigenvalues

associated with each eigenvector, yield the fraction of variability explained by each

principal component (Rencher & Christensen, 2012).
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In matrix form these principal components are expressed as:

P = SV (2.3)

Where P is the principal components of the original data set (V ) and S is the eigenvec-

tor matrix, which rotates and stretches the V matrix into P matrix (Stühler & Merhof,

n.d.) . Using the scaled eigenvectors (that represent the expression of each principal

components in each participant), principal component images were generated. Fur-

thermore, the eigenvectors were transposed to acquire principal components score for

each participant (Stühler & Merhof, n.d.).

FIGURE 2.6: principal Component Analysis: A. 3D representation of a
brain image for a person ; B. Representation of data after transformation
of X subject by Y voxels, where each 3D image has been converted into a
1D vector ; C. Example plots of expression of the first 3 PCs i.e. the eigen-
values in each individual associated with each of the eigenvectors,PCs

(Stühler & Merhof, n.d.)

One of the advantages of PCA is that it provides the information of the maximum vari-

ance in the data set in the first few principal components. So for a large data set such

as our where the dimension depends on the number of participants and the number of

pixels, PCA makes it easier to interpret and analyse the data. More specifically, the first

principal component contains the maximum variance followed by the second compo-

nent and so on.

PCA has been previously used as a statistical tool in a number of studies associated

with neurological disorders, including both PET and MRI studies of PD and AD. In this
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study, I employed voxel-based PCA to identify the pattern of variance in FBB deposi-

tion, to highlight regions with high amyloid accumulation. Using the PC score, we also

looked at the correlations between amyloid accumulation and global cognitive score

and neurological test score, along with the visual assessment. After performing PCA, I

investigated the first N components that explained more than 66% of the variance. This

was done using logistic regression; identifying PCs that were associated with amyloid

positivity (as defined by the clinical diagnosis). These PCs were then used to create

an amyloid positive network, formed as a linear combination of PCs that significantly

contributes to the prediction of amyloid positivity. We then calculated the expression

of this amyloid network, the network score and investigated whether this score was as-

sociated with global cognitive score, motor impairment(UPDRS3), WM hyperintensity

volume, age or sex.

Independent Component Analysis

To see similar or different patterns of amyloid accumulation as seen in PCA, Indepen-

dent Component Analysis (ICA) is a linear transformation technique (Comon, 1994).

However, ICA allows non-Gaussian data analysis so that the components are statisti-

cally independent. It is most commonly applied for data compression, Bayesian detec-

tion, source localisation and deconvolution (Comon, 1994).

In ICA, the weighting matrix is determined slightly different to PCA, which is rep-

resented by the inverse of the matrix S in equation 2.3. Since the components are

statistically independent, one component doesn’t give any information about another

component. This is slightly different than PCA because PCA seeks for components

that best represent the data set whereas ICA seeks for components that are most in-

dependent from each other. ICA provides independence for non-Gaussian data sets.

I performed ICA using The FastICA package (free (GPL) MATLAB program)(http :

//www.cis.hut.fi/projects/ica/fastica/) that uses the Hyvarinen’s fixed point algo-

rithm (Hyvärinen & Oja, 2000).

ICA has been previously used in studies using functional MRI in AD, looking at al-

terations in memory networks in MCI (Celone et al., 2006). Similar to PCA, I applied
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ICA on our data set to acquire components associated with amyloid accumulation in

different regions of the brain. I then used linear regression to determine whether any

ICs were associated with Cog score, motor impairment, age or sex.

Bootstrapping

Bootstrapping is a statistical non-parametric technique (Han & Luos, 2014). The pur-

pose of bootstrapping is to estimate the accuracy of a sample statistic. It is virtually

impossible to analyse the whole population; instead, we have a sample of the popula-

tion which may not give a true distribution of the whole population. The validity of

our sample set is unknown and the sample set could be biased. To overcome this issue

of a biased sample set, we apply bootstrapping. It uses a Monte Carlo method and

resamples the data set (as shown by the overview of bootstrapping in figure 2.7)

FIGURE 2.7: Overview of Bootstrapping. a. bootstrapping creates speci-
fied number of resampled sets with the same size as the subsample from
the population while using replacement from the subsample. (Han &

Luos, 2014)

It resamples the data with replacement, for a specified number of times, while keep-

ing the sample size the same (in this case the sample size remains 50 participants).

Also, it computes the distribution of the estimates to the original sample set. One

of the differences between bootstrapping and other resampling methods is that it al-

lows duplication of a participant in a given resampled set. I created a bootstrapped

amyloid network for each of the 5000 resampling. This provided an estimate of the
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population mean and standard deviation. A z-scored mean was then approximated

by dividing the sample network (already determined) by the bootstrapped standard

deviation. This image was thresholded at Z = - 1.96 and + 1.96, corresponding to p <

0.05 for display purposes.
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Results

3.1 Clinical Amyloid Diagnosis

Of the 50 PD-MCI participants, 9 received a clinical classification of FBB positive, 2

equivocal, and the remaining 39 were clinically amyloid-negative (FBB(+)). These clin-

ical classifications were used in the quantitative analyses. In all further analyses, the 2

equivocal clinical cases were treated as amyloid-positive (FBB(-)).

Figure 3.1 shows an example of a clinically positive FBB scan (left) and a negative scan

(right). The negative amyloid scan characteristically showed FBB uptake in deep white

matter without any relevant FBB uptake in the cerebellar grey matter. The positive

amyloid scan had FBB retention in the neocortex region from the reference region (cere-

bellum cortex).

49
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FIGURE 3.1: Example of FBB PET axial, sagittal and coronal images over-
laid on the co-registered MR structural image, representing: A. Clinical
positive amyloid scan and B. Clinical negative amyloid scan. Colour Bar
represent the standard uptake value ratio (cerebellar cortex). The Posi-
tive amyloid scan clearly show higher FBB retention in the cortical area
of the brain in comparison to the negative amyloid scan. The colour
bar also displays the scaling of Standard uptake value ratio (red is high

uptake and blue/black is low uptake).

3.2 Regional FBB Retention in PD patients

The mean and range of FBB retention in each region of interest (ROI) is reported in

Table 3.1.

TABLE 3.1: Summary of regional FBB SUVRs

Mean(SD) Range
Neocortical (global) 1.16(0.19) 0.82 - 1.79

Frontal cortex 1.08(0.24) 0.65 - 1.82
Temporal cortex 1.24(0.25) 0.77-2.06

Posterior Cingulate and Precuneus 1.26(0.29) 0.933 - 2.4
Thalamus 1.10(0.16) 0.71-1.5
Putamen 1.45(0.20) 1.18-2.4

Caudate Nucleus 0.79(0.12) 0.54-1.10

SUVR values were significantly higher for the FBB(+) group relative to the FBB(-) group

across the entire cortex; especially in the frontal cortex, temporal cortex, anterior and

posterior cingulate gyri and subcortical regions; precuneus and putamen (Table3.2).
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However, there were no significant differences observed between the FBB(-) and FBB(+)

group in the caudate nucleus and thalamus (Table 3.2).

TABLE 3.2: Quantitative PET data analysis by brain region

FBB(+)group
Est.mean SUVR
( 95% CI)

FBB(-)group
Est.mean SUVR
(95 % CI)

Mean Difference
(95% CI)

T,p

Neocortex 1.44[1.37 - 1.5] 1.08[1.04 - 1.11] 0.36[0.28 - 0.44)] 9.67, p<0.00001
Frontal Cortex 1.37[1.25 - 148] 0.99[-0.94 1.06] 0.37[0.24 - 0.50] 5.76, p<0.00001

Temporal Cortex 1.62[1.52 - 1.72] 1.14[1.09 - 1.19] 0.48[0.37 - 0.59] 8.739, p<0.00001
Occipital Cortex 1.21[1.11 - 1.33] 1.1[1.05 1.17] 0.11[-0.015 - 0.24] 1.764, 0.0841

Anterior Cingulate 1.59[1.51 - 1.67] 1.19[1.15 - 1.23] 0.40[0.31 - 0.49] 8.882, p<0.00001
Posterior Cingulate 1.68[1.57 - 1.79] 1.19[1.14 - 1.26] 0.48[0.36 - 0.61] 7.90, p<0.00001

Precuneus 1.68[1.58 - 1.79] 1.13[1.08 - 1.19] 0.55[0.43 0.67] 9.27, p<0.00001
Caudate Nucleus 0.82[0.75 - 0.89] 0.78[0.75 - 0.83] 0.032[-0.05 - (0.12)] 0.79 , 0.44

Putamen 1.68[1.59 - 1.77] 1.39[1.34 1.44] 0.29[0.19 - 0.40] 5.63, p<0.00001
Thalamus 1.15[1.05 - 1.25] 1.07[1.02 - 1.13] 0.076 [-0.03 -(0.18)] 1.39, 0.17

The estimated means for each group [95% CI] are reported in Table 3.2, along with the

estimate of the differences in the means between the two groups which were derived

using the lm function in R studio (version 3.0.2) (https : //www.rstudio.com/). R stu-

dio is a statistical computing and graphic software employed in this study to perform

statistical analysis. The T and P values of the differences between the group means are

reported. Results from the ROI analyses are presented as Boxplots in Figure 3.2.
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3.2.1 Association of Global Amyloid Burden with Clinical and Neuropsy-

chological scores.

We further investigated the relation between the SUVRs (regional and global) and the

cognition parameters of the neuropsychological tests (i.e. global cognition Z score (a

measure of global cognitive ability derived from the entire neuropsychology battery),

MoCa score (cognitive assessment), individual cognition domain score (attention, ex-

ecutive, learning, language and visuospatial) and the Parkinson’s disease dementia

"risk" score (PDDRS) (Table 2.1). PDDRS is a Gaussian Process model used to acquire

the probability of conversion to dementia within the next four years. This model was

trained on an independent group of PD patients followed over four years and is based

on age, MoCa and the test from the neuropsychology battery. Based on this model,

the PDDRS was calculated in every PD-MCI patient. We chose the global cognitive Z

score because it provides the best summary measure of the 4-6 hours of neuropsychol-

ogy battery. To further understand the association between our data and cognition, we

chose to look at each individual cognitive domain scores separately.

In the case of cortical and subcortical regional SUVRs, there was no evidence of corre-

lation between sex (p-value = 0.56 and CI95: [-0.09 - (0.17)]), age (p-value = 0.17 and

CI95: [-0.003 - (0.01)]), MoCa (p-value = 0.31 and CI95:[1.012 - (2.00)]), global cognition

Z score (p-value = 0.94 , CI95:[-0.86 - (0.081)]) and PDDRS (p-value = 0.85 , CI95:[-0.13

- (0.64)]).

However, there was a group-by-Cog Z interaction, for the Amyloid-positive group,

some of the regions SUVRs were slightly, but significantly, correlated with Global cog-

nition Z score (CogZ) (Table 3.3). These regions were: Neocortical (Figure 3.3A), an-

terior cingulate, posterior cingulate and precuneus (Figure3.4A). These same regions,

except for the precuneus, also showed a significant interaction with PDDRS (Table 3.3).

For all these region, the correlation between SUVR and global cognition Z score was

negative; meaning that the higher the retention of FBB in a given region, the lower the

cognition Z score was in the FBB(+) group. No significant correlation between SUVRs

and global cognition Z score were found in the FBB(-) group (Figure(3.3a)). The corre-

lation between the SUVRs for the aforementioned regions and PDDRS were positive,
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which shows that with an increase of FBB retention in a given region, the probability of

a future dementia increases (Figure (3.3c)). Another observation made for only the clin-

ical amyloid-positive individuals, was that there was a significant correlation between

SUVRs in the composite cortical, posterior cingulate and anterior cingulate regions and

MoCa test score. For all three regions the association in the FBB(+) group was highly

significant: cortical region (p = 0.004, CI95:[-0.05 -(-0.011)](figure3.3B), posterior cin-

gulate (p = 0.02, CI95:[-0.083 -(-0.0075)]) and anterior cingulate(p = 0.01, CI95:[-0.065

-(-0.009)]). Similar to the global cognition Z score correlation for FBB(+) group, the cor-

relation between these regions and MoCa was negative. No significant correlation was

found in the FBB(-) group.

FIGURE 3.3: Plots of interaction between FBB group and (A.) Global
Cognitive Z score (B.) MoCA Score (C.) Parkinson’s Disease Dementia
Conversion Score. Across all 3 measures, there was a significant interac-
tion. The FBB(-) group showed no association with cortical SUVR, while
the FBB(+) group showed a significant association with CogZ, MoCa and

PDDRS.
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FIGURE 3.4: Association between the Precuneus FBB uptake (SUVRs)
with (a) the Global cognition Z score and (b) Parkinson’s Disease De-

mentia "conversion" score.

There were however, no significant association or interaction found between regional

SUVRs in the caudate nucleus (Figure 3.6), putamen Figure(3.5), or thalamus, and

PDDRS and Global cognitive Z score (Table 3.3).
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FIGURE 3.5: Non-significant association between the Putamen FBB up-
take (SUVRs) with CogZ and Parkinson’s disease dementia "conversion"

score.

TABLE 3.3: Regional SUVR group-by-cog score interaction correlation
for Clinically classified Amyloid-positive participants with Parkinson’s

Disease Dementia conversion score and Global cognitive Z Score

PDDRS Correlation
T(p-value)

Global Cognitive Z Score
T(p-value)

Neocortex 1.70(0.09) -2.42(0.020)
Anterior Cingulate 1.71(0.009) -1.71(0.084)
Posterior Cingulate 1.14(0.26) -1.95(0.057)

Precuneus 1.24(0.10) -2.09(0.043)
Caudate Nucleus 0.26(0.79) -0.24 (0.8)

Putamen 0.66(0.08) -1.23(0.22)
Thalamus -0.07(0.94) -0.48(0.63)
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FIGURE 3.6: Association ( not significant) between the Caudate Nucleus
FBB uptake (SUVRs) and (A) Global Cognitive Z Score and (B) Parkin-

son’s disease dementia "conversion" score.

3.3 Principal Component Analysis

PCA was applied to identify the pattern of regional FBB uptake (amyloid accumula-

tion) in PD-MCI. From the PC analysis, the first five components were investigation,

which cumulatively explained 68.9% of the variance in the data. Principal components

1, 2, 3 ,4 and 5 explained 30.3%, 16.9%, 11.8%, 6.2%, 3.8% of the variance, respectively.

Axial, sagittal and coronal slices of all five PCs are illustrated in Figure 3.7. The first

principal component showed a significant difference between the FBB(+) group and

FBB(-) group and was characterized by increased FBB retention in the cortex (Figure

3.7a). The second component showed the difference between the FBB(+) and FBB(-)

group through increased FBB retention in the preforntal cortex, anterior cingulate, pos-

terior cingulate and the temporal cortex (Figure3.7B). The third component was driven

from the variation within the white matter and FBB retention in the brainstem, thala-

mus, putamen and caudate nucleus (Figure 3.7C). The fourth component highlighted

the relative difference between the frontal cortex and the rest of the brain (Figure 3.7D).

Finally, the fifth component demonstrated specifically the FBB retention in the thala-

mus (Figure 3.7E).
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3.3.1 Principal Component association with Clinical classification and Neu-

ropsychological score

The association of the five principal components was with the clinical classification,

illustrated in Figure 3.8.

FIGURE 3.8: Association between the Principal Component and the clin-
ical classification

A stepwise logistic regression identified three components (PC 1, 2, 3) to be signifi-

cantly associated with the clinical FBB groups (Table 3.4).

We applied multiple regression using age, sex, disease duration, UPDRS-III, CogZ/PDDRS

to the first five principal components. In the case of principal component 1 (PC1): there

was no correlation with the global cognitive z score or the PDDRS.

However, there was a significant association with age (t = 3.605, p = 0.0007, CI95:[3.1

-(11.1)]), sex (t = 2.023,p = 0.05, CI95:[0.04 -(12.6)]) and UPDRS (t = 2.64, p = 0.011,
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TABLE 3.4: Association between the FBB group and the PC scores

Mean difference between
FBB_groups(SD)

T,p
95% confidence interval

[CI95]
Principal Component 1 14.70(2.30) 6.28(9.34e-8) [9.99-19.40]
Principal Component 2 5.65(2.21) 2.55(0.014) [1.20-10.09]
Principal Component 3 5.13(1.82) 2.81(0.007) [1.45-8.80]
Principal Component 4 -0.23(1.43) -0.16(0.87) [-3.10-2.64]
Principal Component 5 1.09(1.11) 0.99(0.33) [-1.13-3.33]

CI95:[0.05 -(0.42)]). Furthermore, when looking at the amyloid-positive group PC1

score, found a significant negative correlation with both the learning domain (t = -2.59,

p = 0.013, CI95:[-12.68- (-1.57)]) (Figure 3.9A) and the MoCa score (t = -2.18, p = 0.035,

CI95:[-2.87 - (-0.11)]) (Figure 3.9B).

FIGURE 3.9: Principal Component 1 score correlation with (A) Leaning
Domain score (r = 0.58, t = -2.59, p = 0.013, CI95:[-12.68-(-1.57)]) and

(B)MoCa Score (r = 56, t = -2.18, p = 0.035, CI95:[-2.87 - (-0.11)]).

In the case of principal component 2 (PC2), there was no correlation with age, sex , UP-

DRS, the global cognitive Z score or PDDRS. However, the amyloid positive group PC2

score showed a significant negative correlation with the executive domain (r = 0.45, t =

-2.86, p = 0.007, CI95:[-16.06 -(-2.77)]) (Figure 3.10).
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FIGURE 3.10: Principal Component 2 score correlation with Executive
Domain score (r = 0.45, t = -2.86, p = 0.007, CI95:[-16.06-(-2.77)])

In the case of principal component 3, there was a slight, but significant correlation with

sex (t = 1.98, p = 0.05, CI95:[-0.05-(7.84)]). For principal components 4 and 5, no corre-

lations were observed with any of the cognitive parameters. However, an interesting

correlation was observed in the case of principal component 4 (PC4). PC4 showed sig-

nificant negative correlation with white matter hyperintensity lesion volume (r = 0.16,

t = -2.73, p = 0.009, CI95:[-2.94 -(-0.44)]) (Figure 3.11).
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FIGURE 3.11: Principal Component 4 score correlation with White mat-
ter hyperintensity lesion (r = 0.16, t = -2.73, p = 0.009, CI95:[-2.94 -(-0.44)])

3.3.2 Clinically Classified Amyloid-related Network

Since the first three components were significantly associated with the clinical classi-

fication, a linear combination of these components was used to form a network. This

network, gives a better representation of amyloid deposition than a single PC in this

sample. To acquire this network score, linear regression was employed (equation3.1).

The β parameters ( β = 0.0307, -0.0212, 0.0275) were taken from the results of the step-

wise logistic regression (FBB group was taken as the dependent variable and the PC1,
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2, 3, 4 and 5 scores were the independent variables).

network(score) = β + β1PC1 + β2PC2 + β3PC3 (3.1)

The network image is illustrated in Figure 3.9. It is characterized by increase FBB reten-

tion in the cortical regions relative to the deep white matter. It showed high retention

in the temporal cortex region, frontal cortex region, putamen, precuneus, anterior and

posterior cingulate regions.

FIGURE 3.12: Clinical classified Amyloid-positive or negative group re-
lated PC Network Image. colour bar indicates the level of amyloid accu-
mulation, the Yellow/red regions are high amyloid accumulation (FBB

retention) and the blue regions are no FBB retention

3.3.3 Network Image correlation with the cognitive parameters

The association of the PC network score with the CogZ was investigated, which showed

a highly significant group-by-cognition interaction, where the amyloid-positive group

showed a negative correlation with the global cognitive Z score ( r= 0.75, t = -2.21, p =

0.033, CI95:[-0.52 -(-0.023)]) (figure 3.13A) and also with MoCa score ( r= 0.75, t = -2.56,
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p = 0.014, CI95:[-0.09 -(-0.011)]) (figure 3.13B), No such correlation for the FBB(-) group

was found.

FIGURE 3.13: Network score group-by-cognition interaction with Global
cognitive Z Score (t = -2.21, p = 0.033) and MoCa Score (t = -2.56, p =

0.014)

3.4 Independent Component Analysis

In ICA, the components are not orthogonal and are not ranked according to the rele-

vance of the component. So, in order to understand the pattern of variance and the

pattern in our data set, we need to look at all the components separately. In this study,

25 components were acquired , from which 17 components showed an association with

the clinical classification of the individuals. However, none of the components were

able to provide any association with the cognitive parameters. Since, it was unable to

provide any association with the neuropsycological test scores, I didn’t look further

into the ICA.
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3.5 Bootstrapping

In order to test the reliability of our PC-Network, SUVR PET images were randomly

sampled with replacement, to form a resampled data set of the population of 50 PET

images. Bootstrapping was applied 5000 times and each time a new network image

was generated with the new resampled data. The 5000 network images were averaged

and an approximate standard deviation of the resampled population was obtained.

Using the approximate standards deviation and the mean image we acquired Z-scores

for each voxel. A threshold value of 1.96 was set to obtain regions which significantly

contribute to PD pathology.

The Z-score image (Figure 3.14) provided much more clarity and provides robustness

in the association between these regions shown in red in Figure 3.14 with amyloid de-

position in PD-MCI. It showed that most of the amyloid accumulation was observed

in the temporal cortical region, precuneus region and the anterior cingulate. There was

no significant uptake in the putamen or caudate nucleus.
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Discussion

Patients with PD have an increased risk of advancing to dementia. Cognitive impair-

ment is now seen as a major feature of PD. It is most likely a result of a complex inter-

play of pathology including alpha synuclein pathology, AD pathology ( tau, β amyloid)

and neurotransmitter dysfunction (Silbert & Kaye, 2010). These pathologies may accel-

erate each other to worsen the state of the disease. In recent years, the role of β amyloid

has been a focus for research on cognitive impairment in PD.

Our study, showed that FBB-PET imaging allows invivo visualization of amyloid depo-

sition in PD. Specifically, 11 subjects (22%) from the PD-MCI group at baseline showed

AD-type neocortical FBB-binding, which may contribute to an increased risk of devel-

oping dementia. Our finding was slightly different than an earlier finding by Peder-

sen. et.al.; According to their study, 27% of PD-MCI cases exhibited amyloid positive

scans (Pedersen, Larsen, Tysnes, & Alves, 2013). However, a different group showed

only 15% of their population of 40 PD-MCI exhibited AD-type neocortical PiB binding

(Petroou, Bohnen, Muller, Albin, & Frey, 2012). On the other hand, our study was in

agreement with the previous studies, on the basis of the regions associated with AD-

type amyloid deposition in PD. These regions were neocortical, frontal and temporal

cortex, anterior and posterior cingulate, precuneus, caudate nucleus and thalamus as

seen in figure 3.14.

From our quantitative PET data analysis in section 3.2, we were able to show increased

uptake of FBB in a group clinically classified as amyloid-positive, relative to those clas-

sified as amyloid-negative (Table 3.2). A significant difference in the uptake of FBB

67
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between the two classes was observed in multiple regions: composite neocortical re-

gion, frontal cortical region, temporal cortical region, posterior cingulate, anterior cin-

gulate, putamen and precuneus. However, we found no significant difference in the

uptake of FBB between the two groups in the caudate nucleus and thalamus. The

finding of increased FBB in the putamen, but not the caudate is interesting. Goldstein

et.al. showed lower F-DOPA uptake in the putamen compared to the caudate nucleus

(Goldstein, Holmes, Sewell, & Kopin, 2009), indicating large deficit in the putamen.

The dopamine pathway appears to deteriorate earlier in the putamen in comparison

to the caudate nucleus. The increased FBB and decreased dopamine indicates that the

putamen is particularly hard hit in PD; showing the contribution of AD-pathology and

neurotransmitter deterioration "working together" in the progression of the disease.

Region of interest analysis and global analysis confirmed that there was a significant

group-by-cognition interaction, showing that the neocortical uptake of FBB was signifi-

cantly correlated with the global cognitive Z score only in the FBB(+) group (figure 3.3).

However, this relation did not exist in the amyloid-negative group. This suggests that

amyloid accumulation may contribute to cognitive impairment but only after a thresh-

old is reached. Or it could be that variation in low β-amyloid levels, i.e. sub-threshold,

have no effect on cognitive ability. However, as the presence of amyloid plaques begin

to accumulate, this could start to contribute to cognitive deterioration along with other

pathological processes. We observed a negative correlation between amyloid accumu-

lation and cognitive impairment, meaning with higher amyloid accumulation in the

neocortial region, worse global cognitive impairment was observed. This association

was also observed in previous studies, showing a higher PiB retention associated with

worse global cognitive impairment (Petroou et al., 2012) and (Gomperts et al., 2013).

Similar correlations between FBB uptake and global cognitive Z score were made in

the: anterior cingulate, posterior cingulate and precuneus. This shows the importance

of these region for cognition and the association of amyloid accumulation with cogni-

tive decline in PD-MCI.

We also showed significant association between amyloid accumulation and Parkin-

son’s disease dementia conversion score (probability of PD conversion to dementia
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within four years). This is a positive step towards showing the contribution of amyloid

accumulation to the development of future dementia in PD-MCI, indicating that amy-

loid deposition may be a contributing factor to the development of future dementia in

PD.

We used multivariate data analysis method (principal component analysis) to identify

the pattern of amyloid accumulation in PD that best separates the FBB(+) and FBB(-)

group. Prior to our study, only a few studies have used PCA to understand the distri-

bution of PiB in PD and AD (Campbell et al., 2013).

We analysed components that in total captured 66% of the variance within our data.

For this study, the principal components 1, 2, 3 ,4 and 5 collectively explained 68.9 %

of the variance in the data set. Each of the principal components encompassed a dif-

ferent pattern of amyloid accumulation. Principal components 1, 2 and 3 all showed

an association with the clinical classification of amyloid positivity. In order to under-

stand the PD-related pattern of amyloid accumulation, I employed linear combination

of principle components 1, 2, and 3 to derive a pattern of amyloid distribution that best

separated FBB(+) and FBB(-).

Principal component 1 showed an association with learning ability and acquiring new

information indicating that the pattern of FBB accumulation affected learning and mem-

ory. The pattern of uptake for principal component 1 was similar to the pattern of

uptake seen by Campbell et al. i.e. FBB retention in the cortical region (Campbell

et al., 2013). Furthermore, we also showed a positive correlation between principal

component 2 FBB uptake pattern and executive domain impairment for FBB(+) group.

Higher accumulation of amyloid in the temporal cortex, prefrontal cortex and anterior

and posterior cingulate was associated with the worsening of an individuals ability to

solve problems and plan for the future. This finding is consistent with the anatomy of

executive function, as the area of the brain that plays an important role in executive

function is the preforntal cortex (Katz, Zafonte, & Zasle, 2006). So an abnormality in

this region (e.g. excessive amyloid deposition) may result in executive dysfunction.

Principal component 3 and 5, driven from variation in white matter and FBB retention
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in the thalamus, respectively, showed no relation with the neuropsychological cogni-

tion test and other tests measured in our group. This is an interesting finding in that

the thalamus is an important structure for effective cognitive processing. ROI analy-

sis showed that the thalamus was relatively spared by amyloid deposition, suggesting

that structural (Melzer et al., 2012) and diffusion (Melzer et al., 2013) deficits under-

lying cognitive dysfunction are not influenced by amyloid pathology in the thalamus.

However, component 4 showed a very interesting relationship with the white matter

hyperintensity lesion volumes. A study conducted by Chao et.al, showed a similar

association in which individuals with WMH pathology were more vulnerable to the

effect of AD pathology and amyloid-β deposition in cortical regions (Chao et al., 2013).

β-amyloid is known to cause oxidative damage and results in the formation of free ra-

dials and damage to oligodendrocites. Furthermore, an initial elevation of amyloid-β

results in damage to the white matter which in turn causes increased level of β-amyloid

(Gordon, d Phillip Hsu, Roe, Morris, & Benzingera, 2015). Therefore, the extent of

white matter lesions could predict the level of amyloid accumulation and perhaps pro-

vide an indirect measure of β-amyloid deposition.

As mentioned earlier, a network indicating the distribution of increased amyloid ac-

cumulation was created. It showed the specific pattern of regional uptake in the brain

associated with amyloid accumulation. Prominent regions with amyloid accumula-

tions included the temporal cortical region, medial frontal cortical region, precuneus,

putamen, anterior cingulate and posterior cingulate. This finding is consistent with the

previous studies and also resembles an "AD like accumulation pattern". However, the

network showed that the hippocampus in our data was not included in the areas as-

sociated with high level of β-Amyloid (the blue region in figure 3.14). This shows that

amyloid accumulation in PD may not necessarily be the same as that expected in AD.

However, this was not directly compared, therefore, future studies directly compar-

ing amyloid accumulation in PD-MCI and AD-MCI would help to confirm our initial

observation.

The network score for the amyloid-positive group showed an association with the

global cognitive Z score and also the MoCa score (figure 3.13). However, it showed



Chapter 4. Discussion 71

no association with the Parkinson’s disease dementia conversion score (PDDRS). It is

interesting to note that the network score was associated with the cognition Z score

but not with the PDDRS. This indicates that the cortical amyloid deposition may im-

pact current cognitive status, but may not provide information about future status.

However, PDDRS is a prediction and we would have to wait and see if any of the cur-

rent PD-MCI participant develop dementia over the course of the next 3 years. This

is exactly what this continuing study intend to do. PD-MCI participants will now be

followed to determine whether they do in fact develop dementia. Future work would

then investigate whether baseline FBB scans contribute to the prediction of dementia

development.

This study has some limitations which would be interesting to work on in the future.

Since the sample were only PD-MCI , we did not obtain data from participants across

the cognitive spectrum. Therefore, future research should look at comparing our results

from PD-MCI to controls (PD-N and PDD). Also, since in this study we found the "AD

like accumulation pattern" in some regions. It would be interesting to compare our

PD-MCI findings with the AD-MCI population.

In this study we employed standard uptake value ratio (SUVRs) as our tool to calculate

the radioactivity concentration for regions of interest. In future, it would be interesting

to acquire arterial blood sampling for these participants, along with SUVRs. Arterial

blood concentration is a measure which provides information of the concentration of

the radiotracer as function of time (Phelps, 2004). This is important, as it is the concen-

tration of radiotracer that feeds into various tissues (Phelps, 2004).

In the case of motion correction, we employed the second method (discussed in section

2.5.2), where we applied attenuation correction before motion correction. Even though,

we obtained good quality images for our analysis, it would be interesting to work on

the first method, where motion correction is employed before attenuation correction.

Motion correction prior to attenuation correction, has been shown to provide better

image quality in terms of visibility of possible amyloid deposition, size and contrast

of images. I looked at the radon transformation method as a reconstruction tool for

attenuated corrected sinogram, which reduced the image quality. However, I believe



72 Chapter 4. Discussion

by employing the iterative reconstruction method (which is employed by the image

reconstruction in PET/CT scanner) we could potentially reconstruct images which will

provide us with better image quality. We were unable to look at the iterative recon-

struction method in this thesis as we did not have access to the specific software and

were unable to manually apply this reconstruction method due to time constraints.

However, even though we has some limitations to this study. This study have one huge

strength, which is the sample size of fifty PD-MCI participants. This sample size has

previously never been examined to study amyloid burden in PD-MCI using amyloid-

PET imaging.
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Summary

The aim of this thesis was to evaluate the use of FBB-PET imaging as a tool for invivo

visualisation of amyloid accumulation in PD-MCI. Another relative aim was to deter-

mine the association of amyloid accumulation with the cognitive decline and clinical

evaluation in PD-MCI. The reason for this study was to contribute to the ongoing longi-

tudinal study, in helping to predict which individuals with PD-MCI are at higher "risk"

of developing dementia in the near future.

We showed that FBB-PET imaging may be an extremely valuable tool for assessing

amyloid accumulation in PD. We found that around 22% of the PD-MCI in our study

population showed amyloid positivity, suggesting that individuals with PD-MCI may

have amyloid deposition. Using principal component analysis, I identified a pattern

(regions) of amyloid accumulation in the PD-MCI patient, which were similar to that

found in studies examining AD type amyloid deposition. These regions were: neo-

cortical, frontal and temporal cortex, precuneus, anterior and posterior cingulate, cau-

date nucleus and thalamus. Impairment in executive function, attention, learning and

memory appears to be associated with the accumulation of amyloid in the regions men-

tioned earlier.

Finally, this study was able to show that once amyloid plaque accumulation begins

in the cortical and subcortical regions described above, it could start to contribute to

cognitive deterioration in PD-MCI. Thus taking a positive step showing that amyloid

deposition may play an important role in PD and the development of future dementia.
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Appendix A

Matlab code for attenuation

correction and Image reconstruction

% CT based ATTENUATION CORRECTION for PET

% 9/07/2015 − Guneet Kaur

% Before using t h i s s c r i p t to r e c o n s t r c u t the at tenuated c o r r e c t e d

% PET image . 1 ) make sure t h a t the TOFNAC PET images are rea l igned

% and a sum image i s crea ted .

% 2) downsample the CT image in order to co−r e g i s t e r i t to the PET

% and MR image . 3 ) co−r e g i s t e r the CT image and PET summed Image using

% SPM co−r e g i s t e r batch .

% 4) make sure t h a t both the CT and PET summed image i s a l s o

% co−r e g i s t e r e d to the MR s t r u c t u r a l (down sampled image 256X256 )

%Load down sampled CT image to PET image

%Only works for 1 image at the moment .

[ i n p u t f i l e ] = spm_select ( 1 , ’ image ’ , ’ S e l e c t down sampled CT image ’ ) ;

CT_im = spm_vol ( i n p u t f i l e ) ;

% Load the PET image for teh same indiv idua l

input2 = spm_select ( 1 , ’ image ’ , ’ S e l e c t PET image ’ ) ;
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PET_im = spm_vol ( input2 ) ;

%Read the CT and PET image .

CT = spm_read_vols ( CT_im ) ;

PET = spm_read_vols ( PET_im ) ;

%% This s tep i s using the CT image only

% convert the HU value to l i n e a r a t t e n u a t i o n c o e f f i c i e n t (LAC) a t 511 keV

% use the standard l i n e a r c o e f f i c i e n t value for water and bone .

LAC = zeros ( s i z e (CT ) ) ;

i f CT<= 0

LAC = ( 0 . 0 9 6 . ∗ ( CT+ 1 0 0 0 ) ) . / 1 0 0 0 ;

e lse

LAC = ( 0 . 0 9 6 + (CT.∗ ( ( 0 . 1 8 4 . ∗ ( 0 . 1 7 2 −0 . 0 9 6 ) ) . / ( 1 0 0 0 .∗ ( 0 . 4 2 8 − 0 . 1 8 4 ) ) ) ) ) ;

end

LAC;

%%

% Eliminate the l i n e a r a t t e n u a t i o n values below 0 s i n c e i t s noise .

l a c _ z e r o= s i z e ( f ind (LAC< 0 ) , 1 ) ;

LAC(LAC<0) = 0 ;

% c r e a t e an image of the LAC MAP

[ pth , nam, ext ] = spm_f i l epar t s ( CT_im . fname ) ;

CT_im . fname = [ pth f i l e s e p nam ’_LAC ’ ext ] ;

CT_im . dt = [16 0 ] ;

spm_write_vol ( CT_im ,LAC)
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%% c r e a t i n g a sinogram of the Linear a t t e n u a t i o n map using the

%radon transform . Create 3D sinogram space

t h e t a = 0 : 1 7 9 ;

for s l i c e =1: s i z e (LAC, 3 )

lac_2d = LAC ( : , : , s l i c e ) ;

%d e f a u l t 0 :179

[R , xp ] = radon ( lac_2d , t h e t a ) ;

R_3d ( : , : , s l i c e ) = R ;

end

%V i s u a l i z e the sinogram across a l l s l i c e s .

f i g u r e ;

colormap gray

for s l i c e =1: s i z e (LAC, 3 )

imshow ( R_3d ( : , : , s l i c e ) , [ ] , ’ Xdata ’ , theta , ’ Ydata ’ , xp ,

’ I n i t i a l M a g n i f i c a t i o n ’ , ’ f i t ’ )

pause ( 0 . 3 )

end

%another way to display a s i n g l e s l i c e .

%imagesc ( theta , xp , R)

%% c a l c u l a t e the Attenuation c o r r e c t i o n f a c t o r and c r e a t e

% a ACF sinogram . Do c a l c u l a t e the ACF we c a l c u l a t e the

% exponent ia l of l i n e i n t e g r a l and f ind the r e c i p r o c a l .
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ACF = exp(−R_3d);% exponent ia l of the l i n e i n t e g r a l

a c f = 1./ACF;

% r e c i p r o c a l of the at tenuat ion , ’ Shepp−Logan ’ i s used for the

%a t t e n u a t i o n c o r r e c t i o n of the i n t e n s i t y of each voxel .

%Display ACF

f i g u r e ;

colormap gray

for s l i c e =1: s i z e (LAC, 3 )

imagesc ( theta , xp , a c f ( : , : , s l i c e ) )

pause ( 0 . 3 )

end

%Test out inverse radon

I = iradon (R , t h e t a ) ;

imagesc ( I ) ;

%%

% Inverse radon transform the acf−−to get the a c f image , j u s t to have a

% look , but not necessary . . .

%f i g u r e

%I2 = iradon ( acf , t h e t a ) ;

%imagesc ( I2 )

%f i g u r e ; h i s t ( a c f )

%f i g u r e ; h i s t (R)

%%
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for s l i c e =1: s i z e (LAC, 3 )

PET_2d = PET ( : , : , s l i c e ) ;

%d e f a u l t 0 :179

[ P , xr ] = radon ( PET_2d , t h e t a ) ;

pet_R_3d ( : , : , s l i c e ) = P ;

end

f i g u r e ;

for s l i c e =1: s i z e (LAC, 3 )

imagesc ( theta , xp , pet_R_3d ( : , : , s l i c e ) )

pause ( 0 . 3 )

end

%%

% mult iple the pet dinogram by the a c f c o e f f i c i e n t s to c r e a t e the

% a t t e n u a t i o n c o r r e c t e d PET sinogram

att_PET_sino = pet_R_3d . ∗ a c f ;

%%

% converts the sinogram i n o t an image

for s l i c e =1: s i z e (LAC, 3 )

imagesc ( theta , xr , at t_PET_sino ( : , : , s l i c e ) )

pause ( 0 . 3 )

end
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%Use the inverse Radon to convert back i n t o image space

for s l i c e = 1 : s i z e (LAC, 3 ) ;

acPET_im ( : , : , s l i c e ) = iradon ( att_PET_sino ( : , : , s l i c e ) , theta , ’ ram−lak ’ ) ;

a =iradon ( att_PET_sino ( : , : , s l i c e ) , t h e t a ) ;

end

%%

%acPET_im i s the 3D, motion−c o r r e c t e d ( done p r i o r to t h i s s c r i p t ) ,

%a t t e n t u a t i o n−c o r r e c t e d PET image .

[ pth , nam, ext ] = spm_f i l epar t s ( PET_im . fname ) ;

%Get the scan number

s1 = regexp (nam, ’\_ ’ , ’ s p l i t ’ ) ;

sub = char ( s1 ( 3 ) ) ;

PET_im . fname = [ pth f i l e s e p ’ ac_AB_PET_fft ’ sub ext ] ;

spm_write_vol ( PET_im , acPET_im )
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Matlab code for Standard uptake

value ratio calculation

%This s c r i p t c a l c u l a t e s the standard uptake value r a t i o

%Only works for 3 images a t the moment .

[ i n p u t f i l e 1 s t s ]= spm_select ( 3 , ’ image ’ , ’ 1 s t PET , 2nd WM, 3rd cerebellum ’ )

vph1=spm_vol ( i n p u t f i l e 1 ( 1 , : ) ) ;

hot1=spm_read_vols ( vph1 ) ;

vph2=spm_vol ( i n p u t f i l e 1 ( 2 , : ) ) ;

hot2=spm_read_vols ( vph2 ) ;

vph3=spm_vol ( i n p u t f i l e 1 ( 3 , : ) ) ;

hot3=spm_read_vols ( vph3 ) ;

%Don ’ t inc lude NaNs in c a l c u l a t i o n of mena .

gm_cer=(~ isnan ( hot1 ) ) & ( hot3 >0) & ( hot2 > 0 . 2 ) ;

%Get mean PET value within region defined as

%c e r e b e l l a r WM , GM or whole brain .

avg_pet_gm=mean( hot1 ( gm_cer ) ) ;
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%Create SUVR by dividing by the avb_pet_wm value .

suvr_pet=hot1/avg_pet_gm ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%Write as image .

[ pth nam]= s pm_f i l e par t s ( vph1 . fname ) ;

s1=regexp (nam, ’\_ ’ , ’ s p l i t ’ ) ;

sn=char ( s1 ( 4 ) ) ;

vph1 . fname=[ pth f i l e s e p ’ sum_suvr_cerebellum_GM_ ’ sn ’ . n i i ’ ] ;

spm_write_vol ( vph1 , suvr_pet ) ;
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