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Abstract

This thesis describes the development and testing of a new suite of methods for solv-

ing the nuclear vibrational Schrödinger equation in order to calculate anharmonic

fundamental vibrational frequencies for realistically sized chemical systems.

To get around the potential energy surface (PES) construction bottleneck, we

present a new method based upon constructing the PES in a curvilinear coordinate

system and transforming back to rectilinear normal mode coordinates to facilitate

solving the vibrational problem.

We also implement and benchmark the performance of a screened vibrational

configuration interaction method for calculating anharmonic fundamental frequen-

cies. Both methods combined allow modelling of vibrational spectra for molecules

with up to 20 atoms to be calculated routinely on a desktop computer, provided

that the ab initio calculations required to construct the PES are computationally

feasible.

ii



Declaration

All the work presented in this thesis is my own except as otherwise stated, and has

been undertaken under the supervision of Deborah Crittenden in the Department

of Chemistry, University of Canterbury. Parts of this thesis have been previously

published as original research papers or submitted as manuscripts:

– Chapter 2: M. Sibaev, D. L. Crittenden, J. Comput. Chem. 2015, 36, 2200-2207,

doi:{10.1002/jcc.24192};

– Chapter 3: M. Sibaev, D. L. Crittenden, Comput. Phys. Commun., submitted;

– Chapter 6: M. Sibaev, D. L. Crittenden, J. Phys. Chem. A, 2015, 119, 13107-

13112, doi:{10.1021/acs.jpca.5b11386}.

iii

http://dx.doi.org/10.1002/jcc.24192
http://dx.doi.org/10.1021/acs.jpca.5b11386


Deputy Vice-Chancellor’s Office 
Postgraduate Office 
 

	
  
	
  

	
  
	
  

Co-­‐Authorship	
  Form	
  
	
  

	
  
This	
  form	
  is	
  to	
  accompany	
  the	
  submission	
  of	
  any	
  thesis	
  that	
  contains	
  research	
  reported	
  in	
  co-­‐
authored	
  work	
  that	
  has	
  been	
  published,	
  accepted	
  for	
  publication,	
  or	
  submitted	
  for	
  publication.	
  A	
  
copy	
  of	
  this	
  form	
  should	
  be	
  included	
  for	
  each	
  co-­‐authored	
  work	
  that	
  is	
  included	
  in	
  the	
  thesis.	
  
Completed	
  forms	
  should	
  be	
  included	
  at	
  the	
  front	
  (after	
  the	
  thesis	
  abstract)	
  of	
  each	
  copy	
  of	
  the	
  thesis	
  
submitted	
  for	
  examination	
  and	
  library	
  deposit.	
  
	
  

 
Please indicate the chapter/section/pages of this thesis that are extracted from co-authored work and 
provide details of the publication or submission from the extract comes:  
Chapter 2:  M. Sibaev, D. L. Crittenden, J. Comput. Chem. 2015, 36, 2200-2207   

 
 
Please detail the nature and extent (%) of contribution by the candidate:  
1) All work (100%) and most of the writing (85%) was by the candidate 

	
  
Certification	
  by	
  Co-­‐authors:	
  
If	
  there	
  is	
  more	
  than	
  one	
  co-­‐author	
  then	
  a	
  single	
  co-­‐author	
  can	
  sign	
  on	
  behalf	
  of	
  all	
  
The	
  undersigned	
  certifys	
  that:	
  
§ The	
  above	
  statement	
  correctly	
  reflects	
  the	
  nature	
  and	
  extent	
  of	
  the	
  PhD	
  candidate’s	
  

contribution	
  to	
  this	
  co-­‐authored	
  work	
  	
  
§ In	
  cases	
  where	
  the	
  candidate	
  was	
  the	
  lead	
  author	
  of	
  the	
  co-­‐authored	
  work	
  he	
  or	
  she	
  wrote	
  the	
  

text	
  
	
  

Name: Deborah Crittenden                   Signature:         Date: 28/01/2016 
 
 
	
  



Deputy Vice-Chancellor’s Office 
Postgraduate Office 
 

	
  
	
  

	
  
	
  

Co-­‐Authorship	
  Form	
  
	
  

	
  
This	
  form	
  is	
  to	
  accompany	
  the	
  submission	
  of	
  any	
  thesis	
  that	
  contains	
  research	
  reported	
  in	
  co-­‐
authored	
  work	
  that	
  has	
  been	
  published,	
  accepted	
  for	
  publication,	
  or	
  submitted	
  for	
  publication.	
  A	
  
copy	
  of	
  this	
  form	
  should	
  be	
  included	
  for	
  each	
  co-­‐authored	
  work	
  that	
  is	
  included	
  in	
  the	
  thesis.	
  
Completed	
  forms	
  should	
  be	
  included	
  at	
  the	
  front	
  (after	
  the	
  thesis	
  abstract)	
  of	
  each	
  copy	
  of	
  the	
  thesis	
  
submitted	
  for	
  examination	
  and	
  library	
  deposit.	
  
	
  

 
Please indicate the chapter/section/pages of this thesis that are extracted from co-authored work and 
provide details of the publication or submission from the extract comes:  
Chapter 3:  M. Sibaev, D. L. Crittenden, Comput. Phys. Commun., submitted   

 
 
Please detail the nature and extent (%) of contribution by the candidate:  
All work (100%) and most of the writing (75%) was by the candidate 

	
  
Certification	
  by	
  Co-­‐authors:	
  
If	
  there	
  is	
  more	
  than	
  one	
  co-­‐author	
  then	
  a	
  single	
  co-­‐author	
  can	
  sign	
  on	
  behalf	
  of	
  all	
  
The	
  undersigned	
  certifys	
  that:	
  
§ The	
  above	
  statement	
  correctly	
  reflects	
  the	
  nature	
  and	
  extent	
  of	
  the	
  PhD	
  candidate’s	
  

contribution	
  to	
  this	
  co-­‐authored	
  work	
  	
  
§ In	
  cases	
  where	
  the	
  candidate	
  was	
  the	
  lead	
  author	
  of	
  the	
  co-­‐authored	
  work	
  he	
  or	
  she	
  wrote	
  the	
  

text	
  
	
  

Name: Deborah Crittenden                   Signature:         Date: 28/01/2016 
 
 
	
  



Deputy Vice-Chancellor’s Office 
Postgraduate Office 
 

	
  
	
  

	
  
	
  

Co-­‐Authorship	
  Form	
  
	
  

	
  
This	
  form	
  is	
  to	
  accompany	
  the	
  submission	
  of	
  any	
  thesis	
  that	
  contains	
  research	
  reported	
  in	
  co-­‐
authored	
  work	
  that	
  has	
  been	
  published,	
  accepted	
  for	
  publication,	
  or	
  submitted	
  for	
  publication.	
  A	
  
copy	
  of	
  this	
  form	
  should	
  be	
  included	
  for	
  each	
  co-­‐authored	
  work	
  that	
  is	
  included	
  in	
  the	
  thesis.	
  
Completed	
  forms	
  should	
  be	
  included	
  at	
  the	
  front	
  (after	
  the	
  thesis	
  abstract)	
  of	
  each	
  copy	
  of	
  the	
  thesis	
  
submitted	
  for	
  examination	
  and	
  library	
  deposit.	
  
	
  

 
Please indicate the chapter/section/pages of this thesis that are extracted from co-authored work and 
provide details of the publication or submission from the extract comes:  
Chapter 6:  M. Sibaev, D. L. Crittenden, J. Phys. Chem. A, 2015, 119, 13107-  13112 

 
 
Please detail the nature and extent (%) of contribution by the candidate:  
Most work (90%) and most of the writing (65%) was by the candidate 

	
  
Certification	
  by	
  Co-­‐authors:	
  
If	
  there	
  is	
  more	
  than	
  one	
  co-­‐author	
  then	
  a	
  single	
  co-­‐author	
  can	
  sign	
  on	
  behalf	
  of	
  all	
  
The	
  undersigned	
  certifys	
  that:	
  
§ The	
  above	
  statement	
  correctly	
  reflects	
  the	
  nature	
  and	
  extent	
  of	
  the	
  PhD	
  candidate’s	
  

contribution	
  to	
  this	
  co-­‐authored	
  work	
  	
  
§ In	
  cases	
  where	
  the	
  candidate	
  was	
  the	
  lead	
  author	
  of	
  the	
  co-­‐authored	
  work	
  he	
  or	
  she	
  wrote	
  the	
  

text	
  
	
  

Name: Deborah Crittenden                   Signature:         Date: 28/01/2016 
 
 
	
  



Abbreviations

PEF – potential energy function, also referred to as potential

PES – potential energy hyper-surface (used interchangeably with PEF)

PES’ – potential energy hyper-surfaces, plural of PES

QFF – quartic force field (PEF approximated as a 4th order Taylor series expansion

around equilibrium)

SFF – sextic force field (PEF approximated as a 6th order Taylor series expansion

around equilibrium)

KEO – kinetic energy operator

MC – mode coupling

MR – mode represenation

VCI – vibrational configuration interaction

VPT – vibrational perturbation theory

VPT2 – second order vibrational perturbation theory

MAE – mean absolute error

CCSD(T) – coupled cluster with single, double and perturbative triple excitations

HF – Hartree-Fock method

vii



Chapter 1

Introduction

The experimental techniques of infrared and Raman spectroscopy are regularly used

to study molecules and materials. Their spectra characterise molecular vibrations,

which are determined by molecular structure and the strengths of intra- and inter-

molecular interactions. The high accuracy of modern spectrometers and the ability

to study systems in gas, liquid and solid states, makes vibrational spectroscopy a

key research tool in the design and development of new molecules and materials

such as pharmaceuticals, photovoltaics and catalysts.

However, quantitative and unambiguous assignment of IR and Raman spectra

becomes very challenging when studying systems of more than a few atoms. A

purely experimental approach requires complicated procedures, where perturbations

are introduced into the system and resultant changes in the spectrum are studied.

Alternatively, or concurrently, accurate theoretical studies can help elucidate the

link between the shape of the spectrum and dynamics of the system.

Normal mode analysis is the most widely used computational method for mod-

elling vibrational spectra.[1] It assumes that vibrations occur along normal mode

coordinates, which are linear in Cartesian space, and that the potential is harmonic

in those coordinates. However, when accurate predictions are required, more rigor-

ous approaches that account for anharmonicity in the potential must be used.

A more complete form of a quantum Hamiltonian incorporating anharmonicity

has been derived by Watson.[2,3] It uses normal mode coordinates to ensure sep-

arability of the kinetic energy operator (KEO), provided less important angular

1



momentum terms and inverse moment of inertia terms are ignored, and the anhar-

monicity can be included via higher order power series expansion of the potential

energy function (PEF). The simple form of the Watson Hamiltonian, together with

the fact that normal mode coordinates can be uniquely and rather easily defined

for any system, has made it the most useful starting point when developing efficient

black box procedures for solving the vibrational problem. A multitude of meth-

ods have been proposed and implemented, and the main bottleneck restricting their

application and accuracy has become constructing the PEF.

The rectilinear form of normal mode coordinates, although leading to a decou-

pled KEO, is not optimal for the description of the PEF. It has long been known

that curvilinear coordinates, such as valence internal coordinates, lead to a less cou-

pled and faster converging PEF.[4–9] However, their use has been limited to smaller

molecules, mainly due to the complicated nature of the KEO. Additionally, the

curvilinear coordinates for which the KEO can be derived in an analytical form

convenient for subsequent numerical treatments, such as polyspherical harmonics,

form a redundant set. This requires manual user intervention for defining a non-

redundant subset. Therefore, the use of curvilinear coordinates for full treatment of

the vibrational problem is not appropriate if a black box procedure is required.

However, construction of the PEF is completely separate from solving the vi-

brational problem. Thus, as long as the PEF can ultimately be transformed to

normal mode coordinates, it can be constructed in any appropriate coordinate set.

Curvilinear coordinates, defined as combinations of bond lengths, bond angles, and

dihedral angles, are an obvious choice, as they are physically intuitive. Because the

KEO does not have to be defined in the curvilinear coordinates, any non-redundant

set can be chosen, e.g. the delocalised internal coordinates of Baker et al.[10] Con-

structing the PEF in curvilinear coordinates reduces the coupling in the PEF and

therefore decreases the number of terms required for its accurate representation.

Developing and testing this new approach is the main aim of this thesis.

Two things are required in order to assess the ability of the coordinate transfor-

mation procedure described above to generate accurate force fields for calculating

fundamental frequencies:

2



• a library of benchmark analytical PEFs;

• implementation of an accurate method for solving the nuclear vibrational

Schrödinger equation.

During method development it is essential to separate the various sources of error,

so that the accuracy of the proposed approach can be quantified and any limitations

properly understood. For that reason, accurate benchmark data in a form applicable

to a wide range of treatments is essential for fostering future development of this field.

Such benchmark data is spread around the literature in a form of small molecule

studies, where highly accurate semi-global potentials have been constructed and the

nuclear vibrational problem rigorously solved. In order to ensure that this data is

preserved and can be used for future testing and benchmarking, we have developed

a library containing a selection of such high quality potentials that is capable of

providing energy and derivative information to 6th order at any specified geometry,

in some of the most commonly used coordinate systems. It is written mainly in

Python, and symbolic differentiation algorithms are heavily used, ensuring that a

wide range of potentials, in various forms, can be implemented as seamlessly as

possible. Our Python potential energy surfaces library (PyPES library), is available

freely online.[11,12]

Comparison between calculated and literature anharmonic frequencies was used

to verify the implementation of the potential energy surfaces within the PyPES

library. However, in the absence of any freely available and well documented vari-

ational nuclear vibrational structure codes it was necessary to develop our own.

Our general and flexible vibrational configuration interaction (VCI)[13] algorithm is

implemented primarily in Python for accessibility and customisability, with compu-

tationally intensive parts written in C.

However, including enough excited states in the VCI wavefunction expansion

to obtain converged fundamental frequencies rapidly becomes computationally pro-

hibitive for larger molecules. Therefore, we investigate two different approaches for

obtaining anharmonic frequencies at a lower computational cost:

• selecting VCI configurations based upon their contribution to the second order

vibrational perturbation theory (VPT2) energy expression;

3



• a very simple harmonic frequency correction method.

Unlike VCI, second order vibrational perturbation theory (VPT2) is computa-

tionally facile, and can provide accurate results when not affected by divergences

due to near-degenerate states, which is a problem that commonly plagues pertur-

bation theory. In recent research, a simpler and more robust algorithm has been

proposed that involves combining VCI and VPT2 based methods in an iterative

procedure,[14–17] in which a low order VCI wavefunction is used as a starting point

for a VPT2 correction, which concurrently selects a larger VCI space containing any

near-degenerate and strongly interacting states. These states are then explicitly

included in the VCI matrix for the next iteration. Implementation and rigorous

testing of a new way for performing this procedure forms another key part of this

thesis.

Unfortunately, due to the complexity of rigorously including anharmonic effects,

there is always a limit on the size of the system that can be effectively stud-

ied, beyond which normal mode analysis becomes the only computationally fea-

sible method. In such cases, anharmonicity may be estimated using an empirical

model. Most commonly, a simple linear scaling of harmonic frequencies is performed,

with scaling factors parameterised against experimental data to capture both anhar-

monic effects and account for any deficiencies in the underlying electronic structure

model.[18–24] However, we argue that these two independent sources of error in an-

harmonic frequencies should be accounted for independently. Using our benchmark

library of potential energy surfaces to eliminate methodological incompleteness er-

rors, we show that anharmonicity grows approximately quadratically as a function

of harmonic frequencies. We therefore propose a simple one parameter quadratic

correction model that is more accurate than its linear counterpart.

The thesis is structured so that each project is contained in a separate chapter in

journal article format (Chapters 2-6). Chapters 7 and 8 outline directions for future

work and summarise key results from this thesis.
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Chapter 2

The PyPES Library of High Quality

Semi-Global Potential Energy

Surfaces

2.1 Introduction

Since the advent of modern computational quantum chemistry, the development of

new methods for solving the electronic Schrödinger equation has been facilitated by

databases of benchmark molecular geometries and energies. Today, computational

chemists can choose from a range of electronic structure methods to suit the chemical

problem at hand, desired level of accuracy and computational resources available.

A lot of progress has been made in developing methods for solving the nuclear

vibrational Schrödinger equation[1–31], which have been described in some recent

reviews[32–37]. However, harmonic normal mode analysis remains the most widely

used method for solving the nuclear vibrational Schrödinger equation. This can be

attributed, in large part, to the difficulty and computational cost associated with

constructing ab initio potential energy surfaces (PES). The problem of obtaining ac-

curate PES representations becomes particularly acute when testing new approaches

for solving the nuclear ro-vibrational Schrödinger equation. Quantifying and con-

trolling for errors in ab initio derived potential energy surfaces is difficult, as errors

can arise from a multitude of sources e.g. level of theory, basis set incompleteness,
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and numerical differentiation discretization error. Therefore, it is hard to deter-

mine whether disagreements between calculated frequencies and gas phase spectra

are due to inadequacies in the electronic structure model, or method used to solve

the nuclear Schrödinger equation, or both. To circumvent this problem, access to

a benchmark data set of highly accurate semi-global potential energy surfaces is

required.

Fortunately, a lot of time and effort has been devoted to constructing spectro-

scopically accurate analytic potential energy surfaces and high-level ab initio inter-

nal coordinate force fields for small molecules. A selection of these are implemented

within the PyPES library, which has been carefully compiled to contain molecules

with up to 6 atoms that display a representative range of topologies and bonding

patterns. The form of the potential varies between molecules. The simplest semi-

global PES’ included in the PyPES library are quartic Taylor series expansions in

internal coordinates about the equilibrium geometry, while more complicated PES

representations involve parameterized functions that describe multiple local min-

ima, particularly for molecules with low-barrier rotations. These semi-global PES’

describe regions close to the symmetry-equivalent global minima with high accuracy,

but the accuracy deteriorates at longer range and/or around other stationary points

on the global PES.

The accuracy of the potential energy surfaces within PyPES also vary, from

spectroscopically accurate PES that reproduce experimental gas phase IR spectra to

within 1 cm−1 compiled from the astrochemistry and astrophysics literature, to high

quality ab initio derived surfaces that typically reproduce experimental results to

within 5 cm−1, where high enough quality gas phase experimental data are available

for comparison.

Recognising that the form of the potential energy surface and choice of coordi-

nate system vary between PES definitions and representations underlying nuclear

vibrational structure models, the PyPES library provides a framework for evaluating

energies and derivatives of the energy up to 6th order with respect to a range of com-

mon coordinate systems, including curvilinear internal, Cartesian and normal mode

coordinates. These benchmark data will enable sources of error in approximate nu-

clear vibrational models to be isolated and quantified in a statistically meaningful

8



way. This should prove particularly useful in the continuing development of ‘black-

box’ nuclear vibrational structure theories that are scalable to larger molecules.

All potential energy surfaces within the library are accessible through a common

user interface, and wrappers written in C, FORTRAN, MATLAB and Mathemat-

ica are provided to allow easy interfacing with other non-python based codes. All

wrappers interface with PyPES via data files containing unique upper triangular el-

ements of derivative matrices in text format. Code fragments are provided to supply

coordinates to PyPES, evaluate the PES and its derivatives, and read the output

data back into multidimensional arrays (FORTRAN, MATLAB, Mathematica) or

appropriately indexed one-dimensional arrays (C).

For advanced users, the PyPES library has also been designed to be readily

extensible. New surfaces can be easily implemented, either by supplying appro-

priate force constants, i.e. coefficients of Taylor series expansions in any of the

implemented coordinate systems, or through symbolic differentiation of more com-

plicated functional forms. Thus, we anticipate that PyPES will also function as a

general platform for the implementation and distribution of high quality potential

energy surfaces for a broader range of molecules with different sizes and topologies.

2.2 Methodology

2.2.1 Terminology

The following notation is used throughout: S, X and Q represent vectors of internal,

Cartesian and normal mode coordinates, respectively; while r, θ, τ and ω refer to

bond length, bond angle, dihedral angle and out-of-plane coordinates.

Sets of derivatives are denoted using square brackets. For example, derivatives

of the potential with respect to internal coordinates to arbitrary order are denoted
[
∂V
∂S

]
, while derivatives of the set of internal coordinates with respect to Cartesian

displacements are denoted
[
∂S
∂X

]
. Note that this notation implies the complete set

of derivatives up to the maximum implemented capability of 6th order.
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V(S)
[
∂V
∂S

]

[
∂V
∂S′

]

[
∂S
∂S′

]

[
∂V
∂X

]
[
∂S
∂X

]

[
∂S′

∂X

]

[
∂V
∂Q

]
[
∂X
∂Q

]

Figure 2.1: Outline of operations performed by PyPES. The first un-

annotated arrow denotes a differentiation step, while subsequent anno-

tated arrows denote coordinate transformation steps. Each annotation

specifies the derivative sets required to achieve the corresponding co-

ordinate transformation. Dotted arrows indicate optional steps. V(S)

represents the original PES as a function of implemented internal co-

ordinates, S, which is first differentiated to a chosen order with respect

to the original coordinate set. This may be followed by transformation

into an alternative internal coordinate set, S′. Regardless of whether

this option is chosen or not, the next step is transformation to give

energy derivatives with respect to Cartesian coordinates, X, followed

by a linear transformation into normal mode coordinates, Q. The

process can be stopped at any step.

2.2.2 PyPES Outline

The flow chart illustrating the operations performed by PyPES is given in Figure

2.1.

The PyPES library contains only analytic potentials formulated in terms of the

implemented internal coordinates listed in Table 2.1. This set (S1 + S2) contains

most commonly used internal coordinates, giving the PyPES library broad utility

as a framework for implementing and distributing a wide range of analytical PES’.

For clarity, definitions of the ‘fundamental’ internal coordinates used by PyPES (set

S1) are provided as Supporting Information.

If V(S) is formulated as a Taylor series expansion, derivatives of the energy

with respect to the internal coordinates at any geometry,
[
∂V
∂S

]
, are generated using
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Table 2.1: Summary of internal coordinates that have been imple-

mented, where ∆r and ∆θ are deviations from equilibrium for r and

θ coordinates, respectively; α is the Morse parameter; β1, β2, and β3

are Carter-Handy parameters. The distinction between coordinates in

S1 and S2 refers to the process by which their derivatives with respect

to Cartesian coordinates are obtained, as outlined in Figure 2.2 and

the text. Coordinate conversion operations M, SPF and CH, refer

to transformation into Morse[38], Simons-Parr-Finlan[39] and Carter-

Handy[40] coordinates, respectively.

S1
f̂
−→ S2

r M fM(r)= 1− e−α∆r

r SPF fSPF(r)= ∆r
r

cos(θ) arccos θ

cos(θ) arccos,CH fCH(θ)= β1∆θ + β2∆θ2 + β3∆θ3

τ sin sin(τ)

sin(ω) arcsin ω

sin(ω′) arcsin ω′
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custom-written code within PyPES. For more complicated PES representations, e.g

involving symmetrized internal coordinates, derivatives both at and off equilibrium

can only be found using the symbolic differentiation package SymPy. Derivatives

up to 6th order can be calculated at this step.

It is helpful to note that the PyPES process may be terminated at this point,

with the derivative data set returned as output. This information is likely to be of

limited use in general, as the internal coordinates are molecule and PES-specific,

requiring customized code to construct a PES representation. However, if only 0th

derivatives are requested, the energy of the input structure is returned. Coordinates

may be supplied in either Cartesian or internal coordinates, providing a convenient

way of mapping out V(S) over a grid. In this way, PyPES can be run as a ‘pseudo’-

electronic structure code, providing highly accurate single point energies.

However, PyPES is designed to extract or derive far more information at each

geometry than just single point energies, through its coordinate transformation code.

The coordinate transformations implemented within PyPES can be formulated using

the chain rule and some basic calculus. They have been thoroughly described in the

literature[41–44], so will not be elaborated further here.

Once derivatives of the energy with respect to an initial set of internal coordi-

nates,
[
∂V
∂S

]
, have been generated, they can optionally be transformed into derivatives

with respect to a different set of internal coordinates,
[
∂V
∂S′

]
, following the dotted line

in Figure 2.1. This transformation can only be carried out if all elements of the new

internal coordinate set, S′, can be expressed as straightforward functions of their

counterparts in the original coordinate set, S. This makes the required derivatives

for each coordinate-pair
[
∂S′

∂S

]
easy to derive and hard-code. Implemented trans-

formations between coordinates are shown in Table 2.1, and can be carried out in

either direction across each row of this table.

However, it is typically more useful to transform from simple bond length, angle,

dihedral and out of plane angle coordinates to more sophisticated coordinates with

appropriate asymptotic or periodic behaviour e.g. Morse or inverse bond length

coordinates, trigonometric or polynomial functions of angular coordinates. The

benefits of this procedure have been recently reviewed by Fortenberry et al.[45] When

transforming into Morse or Carter-Handy coordinates, relevant parameters need to
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be specified.

Regardless of whether the optional coordinate transformation step is carried out

or not, the next step in the PyPES procedure is transformation into Cartesian coor-

dinates, to obtain the derivative set
[
∂V
∂X

]
. We note that if the order of the Cartesian

coordinate derivative set,
[
∂V
∂X

]
, is equal to or lower than the order of the internal

coordinate derivative set,
[
∂V
∂S

]
, the Cartesian derivatives will be independent of

the choice of the internal coordinate system. In other words, there is nothing to

be gained by pre-transforming to an alternative coordinate system, i.e. following

the dashed arrows in Figure 2.1. However, if the order of the Cartesian coordinate

derivative set exceeds that of the internal coordinates, the higher Cartesian deriva-

tives will strongly reflect the asymptotic behaviour of V (S), so pre-transforming to

more sophisticated coordinates with appropriate limiting behaviour is advantageous.

In either case, to achieve the subsequent transformation into Cartesian coordinates,

the derivatives of each internal coordinate with respect to each Cartesian coordinate,
[
∂S
∂X

]
, must be evaluated.

For computational expedience, we divide our set of internal coordinates into

a ‘fundamental’ set (S1) and a ‘derived’ set (S2). As the coordinates in set S1

have been widely employed to define force fields used in molecular mechanics and

vibrational spectroscopy, many articles have been devoted to efficient evaluation of

their derivatives with respect to Cartesian coordinates.[46–53] In this work, we closely

follow the formulation of Tuzun et al.[46] for r, cos(θ), τ and sin(ω) coordinates.

We extend their expressions up to 5th order derivatives with repetitive use of the

chain rule, making no attempts at complicated simplifications. We have derived

expressions for derivatives of the sin(ω′) coordinate independently, and report them

to first order in the Supporting Information. Again, higher derivatives are derived

by repeated application of the chain rule from these expressions.

Derivatives of coordinates from set S2 with respect to Cartesian coordinates,
[
∂S2

∂X

]
, are obtained from

[
∂S1

∂X

]
via coordinate transformation, as illustrated in Figure

2.2. This requires derivatives of each derived coordinate in S2 with respect to its

base coordinate in S1,
[
∂S2

∂S1

]
, expressions for which have been hard-coded within

PyPES to 6th order.

This completes the specification of the procedure required to obtain derivatives
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[
∂S1

∂X

] [
∂S2

∂X

]
[
∂S2

∂S1

]

[
∂S
∂X

]

Figure 2.2: Internal coordinates are divided into sets S1 and S2 (Table 2.1) for the

purpose of obtaining derivatives of internal coordinates with respect to Cartesian

coordinates. Derivatives of coordinates in S1 can be efficiently calculated directly

via hard-coded expressions, while derivatives of coordinates in S2 are most easily

and efficiently obtained by coordinate transformation from derivatives in set S1.

Both pathways are generally used to populate
[
∂S
∂X

]
. This process is denoted by

double-lined arrows.

of any internal coordinate with respect to Cartesian displacements,
[
∂S
∂X

]
, illustrated

in Figure 2.2. Because
[
∂S
∂X

]
have been implemented to 5th order, transformation of

[
∂V
∂S

]
to
[
∂V
∂X

]
can be performed up to 5th order off-equilibrium and up to 6th order

at the equilibrium geometry.

The final step of the PyPES procedure is transformation into normal mode co-

ordinates. For completeness, the normal mode analysis code is included in PyPES,

and all normal mode frequencies and normalized eigenvectors are pre-computed at

the equilibrium geometry and stored separately for each molecule contained within

the PyPES library. For generality, we provide the option for the user to specify

alternative rectilinear basis vectors in Cartesian space via text file input.

One of the key features of the PyPES library is its generality and extensibil-

ity. To enable this, a range of approaches have been implemented or incorporated

within PyPES for evaluating derivatives of functions, as described in Table 2.2. The

SymPy interface is provided to enable easy evaluation of derivatives for any poten-

tial energy surface expressed as a function of implemented internal coordinates, no

matter how complex the function is. Likewise, the custom written symbolic differ-

entiation code enables straightforward implementation of new coordinates, provided

those coordinates can be formulated in terms of operations on internuclear vectors,

e.g. see reference [48]. However, this lies beyond the scope of the current paper, as
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Table 2.2: Methods available within PyPES for evaluating derivatives. Code length

and complexity are related to ease of implementation but inversely proportional to

execution speed.

Method Applicability Ease of Execution

implementation speed

Hard-coded expressions Specific to implemented Hard Fast

functions only

Custom-written Applicable to algebraic Moderate Moderate

symbolic differentiation expressions for which

derivatives of terms are

available

SymPy General Easy Slow

all derivative transformations performed on the PES’ contained within the PyPES

library rely on hard-coded expressions for maximum efficiency.

2.2.3 Code

The PyPES program and PES database is written in Python and is compatible

with versions 2.7.0 and later. For full functionality, it requires the python packages

NumPy, SciPy and SymPy. All time consuming steps were optimised and trans-

formed to C code with Cython v0.21. Derivatives of the energy with respect to either

internal coordinates, Cartesian coordinates or normal mode coordinates are output

to file, with a separate file for each derivative order, and a summary file. Scripts for

reloading data into MATLAB, Mathematica, C and FORTRAN and storing them

in appropriate array structures are included in the package. Source code and user

documentation are available from http://sourceforge.net/projects/pypes-lib.
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Figure 2.3: Types of molecular geometries included in the library. Circles represent

atoms and lines indicate connectivity.

2.2.4 Library

Table 2.3 contains a list of potential energy surfaces included in the library. They

represent 50 different molecules, of which 17 are triatomic, 21 are tetraatomic, 10

contain 5 atoms, plus a pair of 6 atom molecules. They cover a wide range of

geometries and bonding patterns, as summarised in Figure 2.3.

Table 2.3: List of semi-global potential energy surfaces that have been implemented

organised by the molecular system they represent and the type of equilibrium geome-

try, as shown in Figure 2.3. The third column contains the set of internal coordinates

with respect to which the PES is differentiated in the first step.

Molecule Geometry Internals References

H2O A {r, θ} [54]

NH2
− A {r, θ} [55]

HO2
+ (X3A′′) A {r, θ} [54]

HO2
+ (A1A′) A {r, θ} [54]

HOCl A {r, fCH(θ)} [56]

Continued on next page
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Table 2.3 – Continued from previous page

Molecule Geometry Internals References

HOBr A {r, fCH(θ)} [56]

HOF A {r, θ} [57]

PF2
+ A {r, fCH(θ)} [58]

PO2
− A {r, fCH(θ)} [58]

SO2 A {r, fCH(θ)} [58]

SiF2 A {r, fCH(θ)} [58]

F2O A {r, θ} [57]

BrO2 (X2B1) A {r, fCH(θ)} [59]

BrO2 (A2A2) A {r, fCH(θ)} [59]

ClO2 (X2B1) A {r, fCH(θ)} [59]

ClO2 (A2A2) A {r, fCH(θ)} [59]

ClO2
+ A {r, fCH(θ)} [58]

BiH3 B {fM(r), θ} [60]

NF3 B {r, θ} [61]

NH3 B {fM(r), θ} [62]

PH3 B {fM(r), θ} [63]

SbH3 B {fM(r), θ} [60]

SiH3
− B {r, θ} [64]

AlF3 C {r, θ, sin(ω)} [65]

BF3 C {r, θ, sin(ω)} [66]

CF3
+ C {r, θ, sin(ω)} [66]

SiF3
+ C {r, θ, sin(ω)} [65]

SO3 C {r, θ, sin(ω′)} [67]

H2CO C {r, θ, τ} [68]

H2SiO C {fSPF(r), θ, τ} [69]

N2H2 D {r, θ, τ} [70]

H2O2 D {fSPF(r), θ, τ} [71]

HSOH D {fM(r), θ, τ} [72]

cis-HSiOH D {r, θ, τ} [73]

Continued on next page

17



Table 2.3 – Continued from previous page

Molecule Geometry Internals References

trans-HSiOH D {r, θ, τ} [73]

cis-HOCO D {r, θ, τ} [74]

trans-HOCO D {r, θ, τ} [75]

C4 E {r, θ, τ} [76]

CF4 F {r, θ} [77]

CH4 F {r, θ} [78]

NH4
+ F {r, θ} [79]

SiF4 F {r, θ} [77]

SiH4 F {r, θ} [80]

SnH4 F {r, θ} [81]

FClO3 F {r, θ} [82]

OPH3 F {r, θ} [83]

SPH3 F {r, θ} [83]

C3H2 G {r, θ, τ} [84]

C3H3
+ H {fM(r), cos(θ), sin(ω)} [85]

C2H4 I {fM(r), θ, τ} [86]

2.2.5 Testing

As noted above, a range of methods are available within PyPES for evaluating deriva-

tives. The correct implementation of each method was verified by cross-checking be-

tween methods, and also by comparison with derivatives obtained through numerical

differentiation.

To verify that the PES’ within the PyPES library are implemented correctly,

fundamental vibrational transition frequencies are calculated and compared to values

from original publications. We used the vibrational configuration interaction (VCI)

method, based upon the Watson operator in normal mode coordinates with zero

rotational angular momentum, including Coriolis coupling through the leading term

in the RSPT1 expansion of the vibrational angular momentum operator[87,88], and
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ignoring the Watson correction term.[89] The wavefunction is expanded in a basis

of harmonic oscillator functions in normal mode coordinates and all integrals are

evaluated analytically. The potential is expanded in normal mode coordinates up

to 6th order in full form with no reduction in mode-mode coupling. We have chosen

this approach as the simplest ‘black-box’ variational method likely to be extensible

to larger molecules yet accurate enough for benchmarking purposes. However, we

note that the choice to represent the PES as a 6th order expansion in normal mode

coordinates is likely to limit the accuracy of the calculated fundamental frequencies,

particularly for high frequency stretching modes.

All configurations with a sum of vibrational quantum numbers up to a specified

value are included in the VCI matrix. This excitation level is increased until all fun-

damental frequencies are converged to within 1 cm−1. Data illustrating convergence

with respect to excitation level are provided as Supporting Information. Full details

of our VCI implementation will be discussed in Chapter 3.

To ensure correct representation of PES’ up to energy regimes important for VCI

calculations of fundamental frequencies, all PES’ originally formulated as quartic

force fields in ‘fundamental’ internal coordinates are transformed to a coordinate set

with appropriate asymptotic behaviour. In particular, r is transformed to fM(r),

θ to cos(θ), and τ to sin(τ). The required Morse parameter is estimated using the

procedure recently reviewed by Fortenberry et al.[45].

An exception to the above rule is made for C3H2, which instead requires transfor-

mation to the alternative {fM(r), θ, τ} coordinate system to avoid the VCI frequen-

cies diverging at high excitation levels, due to unphysically low angle bending and

torsional rotation barriers in the {fM(r), cos(θ), sin(τ)}-transformed potential, and

incorrect asymptotic behaviour in the torsional coordinate, resulting in a spurious

additional minimum. Slices of the PES along these coordinates are provided in the

Supporting Information.

Derivative data required for Taylor series expansion of the PES in asympotically

correct internal coordinates and normal mode coordinates are all calculated at the

equilibrium geometry and stored as part of the library for each molecule.

19



2.3 Results

Converged VCI fundamental frequencies are summarised in Table 2.4, and compared

to values from original publications. Degenerate modes are not repeated and all

fundamentals are listed in ascending order (based on harmonic frequencies), with no

regard for symmetry. The full set of results with all excitation levels and degenerate

modes is included as Supporting Information. The fundamentals agree with reported

literature values to within 3 cm−1 for most molecules, except as discussed below.

Table 2.4: Summary of VCI results from this work compared to reported fundamen-

tal vibrational frequencies from original publications. Fundamentals were ordered

by frequency and only unique values were included. D is used to denote deuterated

hydrogen. Values in brackets for NH3 and D2O2 correspond to splitting due to low

barrier inversion modes. The full set of results demonstrating convergence with re-

spect to excitation level and symmetry preservation in symmetry-equivalent modes,

is attached as Supporting Information. The labels (a), (b) and (c) refer to the re-

sults section, where explanations for significant deviations from literature values are

given. Values are given in cm−1.

Molecule Current Literature Molecule Current Literature Molecule Current Literature

H2O 1596.5 1596.3 HO2
+ 1059.8 1058.4 ClO2 449.9 449.9

(b) 3660.7 3656.1 (X3A′′) 1379.2 1379.0 (X2B1) 940.7 940.7

3759.4 3753.4 (b) 3027.0 3021.7 1105.5 1105.5

HOF 897.7 898.0 HO2
+ 1373.0 1372.9 ClO2 280.5 280.5

1359.8 1360.0 (A1A′) 1443.7 1443.2 (A2A2) 436.7 436.5

3602.0 3600.0 (b) 2964.9 2959.8 698.6 698.4

HOCl 724.7 724.7 ClO2
+ 496.2 496.1 BrO2 316.1 316.1

1239.4 1238.1 1004.8 1005.1 (X2B1) 794.7 794.7

3615.5 3614.0 1271.0 1271.7 856.4 856.4

HOBr 624.0 624.0 PF2
+ 411.3 411.3 BrO2 208.2 208.2

1166.0 1164.0 1017.9 1017.8 (A2A2) 453.6 453.6

3622.2 3621.1 1058.4 1058.4 631.6 631.6

F2O 465.4 465.0 NH2
− 1447.8 1447.8 SO2 515.4 515.6

845.1 845.0 (b) 3122.2 3118.5 1146.2 1146.3

936.7 936.0 3191.8 3186.5 1349.6 1349.7

SiF2 343.6 343.6 PO2
− 460.3 460.3

Continued on next page
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Molecule Current Literature Molecule Current Literature Molecule Current Literature

857.6 857.5 1059.6 1059.6

873.2 873.1 1212.5 1212.6

NH3 951.5 934.2 NF3 490.5 491.0 CF3
+ 592.9 592.6

(c) (969.7) 645.8 645.9 812.4 812.6

1628.4 1628.8 866.7 866.7 1044.8 1044.5

(1630.0) 1018.5 1018.6 1683.6 1682.8

3341.4 3342.2

(3343.2)

3449.9 3449.3

(3449.7)

PH3 991.8 991.9 BF3 480.8 480.6 SiF3
+ 307.1 307.2

1118.8 1118.9 695.8 696.2 356.7 356.7

2322.7 2321.0 887.8 887.6 852.8 853.3

2328.0 2325.8 1470.2 1469.6 1187.2 1187.9

SbH3 799.0 798.9 AlF3 241.3 241.4 SiH3
− 843.2 844.1

836.8 836.8 301.2 301.2 939.9 937.8

1894.1 1893.8 689.0 689.5 1824.7 1821.5

1899.8 1899.1 951.2 951.9 1840.0 1840.7

BiH3 733.9 733.9 SO3 496.5 498.6 C4 303.2 300.5

759.3 759.5 528.3 528.1 522.9 520.4

1742.6 1742.4 1067.0 1067.0 931.8 928.2

1746.8 1746.3 1396.4 1396.3 1003.1 1002.0

1256.9 1256.1

1318.3 1316.0

N2H2 1291.8 1294.2 H2CO 1165.7 1166.1 H2SiO 680.3 680.1

(a) 1317.4 1317.5 1245.7 1245.6 691.0 690.9

1519.7 1519.3 1499.2 1499.1 994.4 994.3

1579.7 1579.4 1744.7 1744.6 1207.0 1206.9

3037.8 3033.3 2781.8 2781.7 2171.2 2171.0

3115.5 3125.0 2843.0 2842.4 2191.7 2191.3

D2O2 273.5 210.1 cis- 469.5 446.9 cis- 458.9 450.2

(b),(c) (251.9) DOCO 541.6 539.8 DSiOD 529.3 523.4

870.2 869.3 (b) 968.2 960.9 (a),(b) 721.8 718.2

952.1 945.4 1123.5 1123.1 838.7 838.4

1026.1 1026.2 1827.2 1827.5 1375.5 1372.8

2664.1 2666.6 2550.3 2551.6 2708.9 2713.1

Continued on next page
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Molecule Current Literature Molecule Current Literature Molecule Current Literature

2663.4 2667.2

HSOH 484.5 443.0 trans- 402.7 368.0 trans- 476.9 469.2

(b) 763.0 760.0 DOCO 593.3 590.1 DSiOD 576.6 573.4

999.1 1007.7 (b) 906.3 902.6 (a),(b) 708.9 705.3

1179.9 1174.0 1088.2 1086.4 835.2 834.7

2542.6 2544.4 1859.6 1859.8 1426.1 1423.6

3608.4 3625.9 2686.9 2685.1 2706.5 2709.7

CH4 1309.0 1312.7 SiH4 912.3 915.1 SnH4 683.2 681.3

(a) 1529.5 1533.1 (a) 968.9 968.3 (a) 754.3 753.6

2914.6 2911.1 2187.2 2185.0 1904.7 1901.4

3015.1 3011.6 2190.0 2185.2 1910.1 1909.9

CF4 435.4 435.4 SiF4 264.2 264.2 NH4
+ 1442.9 1446.2

631.2 631.1 388.4 388.4 (a) 1687.6 1690.8

909.0 909.1 800.9 800.6 3235.7 3230.9

1284.4 1283.7 1031.5 1031.4 3343.2 3339.1

OPH3 846.6 846.6 SPH3 677.1 676.7 FClO3 404.3 405.8

(a) 1116.2 1117.1 723.8 723.8 (a) 552.9 552.8

1146.8 1146.7 1100.7 1102.2 582.8 590.7

1263.7 1262.6 1118.0 1118.0 730.2 730.3

2354.2 2353.1 2348.6 2348.5 1074.5 1074.5

2360.7 2356.4 2366.1 2366.2 1336.1 1335.1

C3H2 776.7 771.1 C3H3
+ 758.9 757.1 C2H4 823.7 822.4

(a) 884.2 879.1 927.7 927.0 935.3 934.3

887.8 882.8 1003.0 1002.0 950.7 949.5

973.1 971.3 1041.3 1040.6 1025.9 1024.9

1057.1 1056.2 1295.5 1296.2 1224.9 1224.3

1274.5 1271.0 1621.1 1622.1 1342.9 1342.5

1592.1 1591.4 3130.8 3134.8 1441.8 1441.1

3111.7 3115.3 3172.7 3175.4 1625.4 1624.4

3133.0 3134.3 2985.5 2985.4

3019.2 3019.0

3079.4 3079.9

3101.3 3101.7

For the purpose of PES verification, disagreements of this magnitude can be
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considered acceptable, as this lies within the error margins arising from the imple-

mentation of slightly different VCI algorithms, potentially varying in approach to

generating VCI excitations, choice of Hamiltonian operator, and PES representation.

There are three main reasons for larger disagreements:

(a) the difference in the method used to solve the nuclear vibrational problem e.g.

VPT2 vs. VCI;

(b) not being able to accurately describe the relevant energy space using a 6th order

expansion of the potential in normal mode coordinates;

(c) inadequacy of the Watson Hamiltonian for describing systems with multiple

minima.

Differences due to (a) arise when comparing our VCI results with original results

obtained using low order vibrational perturbation theory, which is non-variational.

However, fundamentals are within 10 cm−1 in all cases, and we observe full con-

vergence with respect to excitation level. An average deviation of 5 cm−1 between

VPT2 and VCI results has been observed in the literature[45,69,74,75,90,91], with larger

deviations possible for highly anharmonic and less rigidly bound systems[92]. In the

current work, the N2H2 PES contains the largest difference between VCI results and

literature VPT2 results, of 10 cm−1 in the asymmetric NH stretching frequency.

Therefore, we independently verified the implementation of this surface by compar-

ing our values for
[
∂V
∂X

]
with those supplied in the original publication.[70]

There are two groups of cases where 6th order expansion of the PES in normal

mode coordinates is inadequate, leading to reason (b).

For H2O, NH2
−, and both electronic states of HO2

+, the high frequency stretch-

ing fundamentals are overestimated by up to 6 cm−1, reflecting the artificially steep

walls imposed by the truncated Taylor series expansion in normal mode coordinates.

Therefore, it is most likely that the PES is correctly implemented and this small

error only reflects the nature of the PES representation chosen for use in our VCI

implementation.

For tetra-atomics with low frequency torsional modes (H2O2, HSOH, cis- and

trans- HSiOH, cis- and trans- HOCO), the problem is more pronounced. In these
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cases, incorrect description of the potential along the torsional coordinates leads

to significant overestimation of the torsional frequencies, and strong coupling of

torsional coordinates with OH stretching leads to divergence in fundamental OH

stretching frequencies with respect to excitation level. Fortunately, potential energy

surfaces for some molecules in this class can be independently verified. The cis- and

trans- HSiOH surfaces were validated by reproduction of Cartesian derivatives that

were included with the paper describing the original PES implementation,[73] while

HSOH was tested against an energy map provided in the literature by the original

authors of the PES.[72]

Deuteration provides an alternative strategy for assessing the implemented sur-

faces in a lower energy regime, to reduce the effect of errors arising from inappro-

priate asymptotic behaviour of the potential energy surface expansion. Therefore,

we have calculated vibrational frequencies for deuterated isotopologues of H2O2, cis-

and trans- HSiOH, and cis- and trans- HOCO. In all cases, the VCI wavefunction

converges with respect to excitation level, and agreement with the published funda-

mental frequencies[71,73–75,93] improves. This consistent pattern of behaviour across

this class of molecules, combined with independent verification of the cis- and trans-

HSiOH and HSOH surfaces, gives us confidence that these PES’ are correctly im-

plemented within PyPES.

Ammonia (NH3) and hydrogen peroxide (H2O2) have low barrier inversion modes,

with symmetry-equivalent vibrationally accessible minima leading to energy level

tunneling splitting that cannot be properly captured in our treatment. For NH3,

the inversion mode does not strongly couple to the other modes, so we are able to

reproduce the frequencies of all other modes to within 2 cm−1 of both split levels,

and observe full convergence in the VCI wavefunction with respect to excitation

level. For H2O2 and D2O2 the error in the fundamental frequencies is dominated

by the inadequacy of the normal mode PES expansion for describing the PES along

the torsional coordinate, as discussed above. Therefore, we again conclude that

the deviation from published results arises from use of the Watson Hamiltonian in

conjunction with normal mode coordinates for expanding the potential and solving

the VCI problem, rather than errors in our implementation of the potential energy

surfaces themselves.
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2.4 Conclusions

The PyPES library provides a rigorously tested implementation of 50 highly accurate

semi-global potential energy surfaces for a range of small molecules with a wide

variety of geometries and bonding patterns. We anticipate that this library will find

widespread use in benchmarking new methods for solving the nuclear Schrödinger

equation, particularly methods designed to scale to larger molecules and systems.

For maximum user-friendliness, we provide a series of wrappers that allow the user

to treat PyPES as a ‘black-box’ tool for obtaining accurate energies and derivatives

of the energy to 6th order with respect to internal coordinates, Cartesian coordinates

and normal mode coordinates at arbitrary geometries.

PyPES also provides a platform for the implementation and distribution of an-

alytic potential energy surfaces. Most common coordinates are implemented within

PyPES. Force fields formulated as Taylor series expansions up to 6th order in imple-

mented internal coordinates are readily incorporated by providing the appropriate

force constants, and PES’ that are more complicated functions of internal coordi-

nates can be readily differentiated using SymPy. PyPES also provides a powerful

customized symbolic differentiation algorithm to facilitate implementation of new

coordinates if and when required.

The PyPES library is available for free download from http://sourceforge.net/projects/pypes-

lib.
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Chapter 3

PyVCI: a flexible open-source code

for calculating accurate molecular

infrared spectra

3.1 Introduction

The simulation of accurate molecular vibrational spectra has historically been lim-

ited by the difficulty and computational cost associated with modelling how the

energy changes as the molecule vibrates, i.e. constructing multidimensional anhar-

monic potential energy surfaces (PES).

High quality semi-global potential energy surfaces for small molecules are avail-

able in the literature, and a number of these have been compiled into PES li-

braries.[1–9] However, the scalability of this approach is primarily limited by the

need to construct an appropriate curvilinear internal coordinate set in which to rep-

resent the PES that appropriately accounts for molecular symmetry. Choosing and

parameterising appropriate PES functional forms is also non-trivial.

A more pragmatic approach is to focus on simulating only the fundamental vi-

brational transitions required to model experimental infrared spectra. Quantitative

assignment of IR spectra is an important and longstanding problem of widespread

interest within the general chemistry community. Predicting fundamental frequen-

cies requires only the low energy region of the PES in the vicinity of the minimum
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to be accurately described. This can be achieved using a local expansion of the

potential energy surface about equilibrium, which does not necessarily need to be

formulated in internal coordinates.

Recent hardware and software advances[4,10–19] now enable quartic force field

expansions in orthonormal rectilinear coordinate sets to be routinely generated for

larger molecules, in a straightforward although time-consuming manner. This makes

simulating fundamental modes of infrared spectra possible for a larger range of

chemically interesting molecules.

A recent review by Roy and Gerber[20] provides a comprehensive overview of

methods based upon expanding the nuclear vibrational wavefunction in terms of

products of single-mode functions in normal mode coordinates. Formulating the

nuclear vibrational Schrödinger equation in normal mode coordinates confers two

major advantages; separability of the kinetic energy operator and potential energy

integrals that can be evaluated analytically.

A hierarchy of approximations yield a series of methods including normal mode

analysis (NMA)[21], vibrational self-consistent field theory (VSCF)[18,22–28], vibra-

tional perturbation theory (VPT)[28–40], vibrational configuration interaction (VCI)[28,41,42]

and vibrational coupled cluster theory (VCC)[28,43–46]. Analogous to their electronic

structure theory counterparts, the quality of each method is generally commensurate

with its computational cost.[16,28,46]

Despite the extensive efforts that have gone into developing anharmonic nuclear

vibrational structure theories,[28–46] they remain under-utilized within the wider com-

putational chemistry community. This can be traced back to a number of factors in-

cluding: lack of general availability of anharmonic vibrational structure codes[26,47];

the ubiquity, ease of use and relatively low computational cost of harmonic nor-

mal mode analysis; experimental reference data biased by interactions with solvent

molecules limiting the utility of highly accurate gas phase vibrational structure mod-

els, and; the need to customize anharmonic nuclear vibrational theories for larger

molecules to make them computationally tractable.

In this paper, we primarily address the first of these issues. Although some

nuclear vibrational structure methods are included in some quantum chemical soft-
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ware packages, they vary in both how the PES is represented and how the nuclear

vibrational problem is solved. This makes comparing results between different pro-

grams both difficult and time-consuming. To ensure reproducibility, it is necessary

to be able to specify and/or control both the PES representation and the nuclear

vibrational algorithm.

Therefore, we present the PyVCI package, a general and open-source vibrational

configuration interaction code in which the potential energy surface is represented as

a Taylor series expansion up to 6th order in normal mode coordinates. PyVCI can

import force field data from the PyPES library of analytical potential energy sur-

faces, or generate quartic force fields by numerical differentiation of second derivative

data obtained from ab initio calculations. Currently, only the GAMESS quantum

chemistry program package is supported. Although the VCI method we have im-

plemented within PyVCI is general, it is not completely unique; other variants are

possible through different algorithmic choices and alternative approaches to truncat-

ing the full ro-vibrational Hamiltonian. Therefore, in this paper we provide complete

details of our VCI implementation before benchmarking its performance using the

PyPES library of potential energy surfaces.[1,2]

3.2 VCI theory and algorithm

Nuclear vibrational structure theories are defined and differentiated by the form of

the Hamiltonian operator and representation of the wavefunction. In the interests

of computational efficiency, we employ the Watson Hamiltonian and expand both

the wavefunction and potential energy surface in terms of normal mode coordinates

about the global minimum. Coriolis rotational coupling terms may be optionally

included:

Ĥ = Ĥvib + ĤCor (3.1)

Ĥvib = −1

2

M∑

i=1

∂2

∂Q2
i

+ V (Q1, ..., QM) (3.2)

ĤCor = −
∑

α

Bα

∑

i<j

∑

k<l

ζαijζ
α
kl

(
Qi

∂

∂Qj

−Qj
∂

∂Qi

)(
Qk

∂

∂Ql

−Ql
∂

∂Qk

)
(3.3)
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The kinetic energy operator is separable in normal mode coordinates, and the po-

tential energy surface is given as a Taylor series expansion:

V =Vref +
∑

i

FiQi +
1

2!

∑

i,j

FijQiQj +
1

3!

∑

i,j,k

FijkQiQjQk+

1

4!

∑

i,j,k,l

FijklmnQiQjQkQl +
1

5!

∑

i,j,k,l,m

FijklmQiQjQkQlQm+

1

6!

∑

i,j,k,l,m,n

FijklmnQiQjQkQlQmQn + . . . (3.4)

where the summation indices run from 1 through to the number of vibrational

modes. The force constants, F , are the derivatives of the potential with respect to

the normal coordinates. The normal coordinates are defined as linear combinations

of Cartesian displacements that diagonalize the Hessian in mass-weighted Cartesian

coordinates.[21] This produces a coordinate system in which the first order and off-

diagonal second order force constants are zero at equilibrium. For completeness, the

details of our implementation are provided in Appendix A.

This approach yields the diagonal second order force constants, but the higher

order derivatives are usually calculated via numerical differentiation. For this reason,

the PES expansion is usually truncated at fourth order, to keep the computational

cost of generating the force field manageable. However, we have implemented a

library of analytical potential energy surfaces for benchmarking and testing, so also

employ sextic force field expansions for these molecules.

Equilibrium rotational and Coriolis coupling constants, Bα and ζαij, about each

principal axis, α, are required to calculate the overall Coriolis coupling. Rotational

constants are obtained by diagonalising the inertia tensor[21] and ζ matrices are

calculated according to the method of Meal and Polo.[48,49] These algorithms are

detailed in Appendix B.

For computational expedience, we construct the VCI wavefunction from Hartree

products of harmonic oscillator basis functions:

Φn (Q1, ..., QM) =
M∏

i=1

φni
(Qi) (3.5)

where n is a string of quantum numbers n1, ..., ni, ...nM , specifying the vibrational

state across allM modes. The strings that define the VCI basis states are generated

34



Table 3.1: Fundamental Coriolis coupling integrals for vibrational mode i,

〈φn′
i
(Qi)| Ô |φni

(Qi)〉 involving operators Ô =
∂

∂Qi

, Qi
∂

∂Qi

,
∂

∂Qi

Qi

ni − n′i
∂

∂Qi
Qi

∂

∂Qi

∂

∂Qi
Qi

-2 0 −
√
n′(n′−1)

2
−
√
n′(n′−1)

2

-1 −
√

n′

2ωi
0 0

0 0 −1

2

1

2

1
√

n

2ωi
0 0

2 0
√
n(n−1)

2

√
n(n−1)

2

by specifying a maximum value for the sum of the vibrational quantum numbers,

which will henceforth be referred to as the excitation level, with its value denoted

in round brackets, e.g. VCI(8) matrix is indexed by configurations with a sum of

vibrational quantum numbers of 8 or less.

Finally, it remains to evaluate and store the VCI matrix elements:

〈Φn (Q1, ..., QM)| Ĥvib + ĤCor |Φn’ (Q1, ..., QM)〉 (3.6)

for all unique combinations of Hartree product basis functions, then diagonalise the

VCI matrix. The fundamental integrals required to evaluate both the Coriolis and

vibrational correction terms are given in Tables 3.1 and 3.2. Sparse matrix array

structures are used to store the VCI matrix elements.

The final VCI wavefunction for each state Ψn (Q1, ..., QM) is a linear combina-

tion of Hartree product basis states Φn’ (Q1, ..., QM). The coefficients, cn,n’, are the

eigenvectors of the VCI matrix, and the energy levels, εn, its eigenvalues. These so-

lutions are generated using the sparse matrix diagonalization routines implemented

in SciPy, to minimize memory and CPU time requirements.

Ψn (Q1, ..., QM) =
∑

n′

cn,n’Φn’ (Q1, ..., QM) (3.7)
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The VCI fundamental frequencies are identified according to the extent of wavefunc-

tion overlap with Hartree product singly excited basis states. Leading coefficients

in the VCI wavefunction for all states with frequencies below 4000 cm−1 are printed

by default and may be used to resolve ambiguities in state assignments when they

arise.
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Table 3.2: Fundamental kinetic and potential energy integrals for vibrational mode i, 〈φn′
i
(Qi)| Ô |φni

(Qi)〉 involving operators Ô =

∂2

∂Q2
i

, Qi, Q
2
i , Q

3
i , Q

4
i , Q

5
i , Q

6
i . Only ni > n′i cases are shown as all operators are Hermitian.

ni − n′i
∂2

∂Q2
i

Qi Q2
i Q3

i Q4
i Q5

i Q6
i

0 −ωi(n+ 1
2) 0

(2n+1)

2ωi
0

(6n2+6n+3)

4ω2
i

0
5(4n3+6n2+8n+3)

8ω3
i

1 0
√
n

(2ωi)1/2
0

3n
√
n

(2ωi)3/2
0

5(2n2+1)
√
n

(2ωi)5/2
0

2
ωi
√
n(n−1)

2
0

√
n(n−1)

2ωi
0

2(2n−1)
√
n(n−1)

4ω2
i

0
15(n2−n+1)

√
n(n−1)

8ω3
i

3 0 0 0
√
n(n−1)(n−2)

(2ωi)3/2
0

5(n−1)
√
n(n−1)(n−2)

(2ωi)5/2
0

4 0 0 0 0
√
n(n−1)(n−2)(n−3)

4ω2
i

0
3(2n−3)

√
n(n−1)(n−2)(n−3)

8ω3
i

5 0 0 0 0 0
√
n(n−1)(n−2)(n−3)(n−4)

(2ωi)5/2
0

6 0 0 0 0 0 0
√
n(n−1)(n−2)(n−3)(n−4)(n−5)

8ω3
i
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3.3 Methods

Our test set comprises 44 polyatomic molecules containing up to 6 atoms for which

accurate quartic and sextic force fields in normal mode coordinates are available

through the PyPES library.[1,2] This test set is used to explore convergence of cal-

culated fundamental frequencies with respect to:

• number of configurations in the VCI expansion,

• threshold for storage of non-negligible VCI matrix elements,

• threshold for inclusion of non-negligible force constants in the PES expansion,

and

• order of the PES expansion.

A further 6 tetra-atomics with low barrier torsional modes are used to quantify

the effect of excluding divergent modes from the VCI expansion a priori.

VCI calculations include all configurations with an ‘excitation level’ (specified

sum of vibrational quantum numbers) up to a maximum of 10, denoted VCI(10).

Coriolis coupling terms are included in the Hamiltonian throughout. The excitation

level is increased until all fundamental frequencies are converged to within 1 cm−1

for each molecule. The screening threshold for storing non-negligible VCI matrix

elements is set to 10−15 Eh for benchmark calculations and tested at a range of

values between 1×10−7 and 5×10−5 Eh. The screening threshold for retaining non-

negligible force constants in dimensionless normal mode coordinates is set to zero

during benchmark calculations, then tested at values of 0.1, 0.5, 1 and 2 cm−1. The

VCI matrix is diagonalised using sparse matrix diagonalization routines implemented

in SciPy.

Sextic force fields are used in all convergence and threshold testing calculations.

Benchmark results for quartic force fields are also generated without screening.

Statistical data are summarized using box-and-whisker plots, with boxes extend-

ing one quartile in each direction from the median, and whiskers extending out by

1.5 × the interquartile range in each direction, or to the limits of the data, whichever
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comes first. Any data points outside this range are considered outliers and marked

using crosses. Frequency data are expressed in units of reciprocal centimeters (cm−1)

throughout.

The PyVCI program package may be freely downloaded from:

http://sourceforge.net/projects/PyVCI.

3.4 Results

3.4.1 VCI convergence with respect to excitation level

Reference results were generated using a sextic force field at VCI(10) for triatomics

and C3H2, VCI(9) for all other 4 and 5 atom molecules, and VCI(8) for C3H3
+ and

C2H4, to ensure convergence of all fundamental frequencies to within 1 cm−1.

Errors in fundamental frequencies at each excitation level, n, are then calculated

as:

∆SFF
VCI(n) = νref − νSFF

VCI(n) (3.8)

∆QFF
VCI(n) = νref − νQFF

VCI(n) (3.9)

Mean and maximum absolute errors across all fundamental frequencies of the 44

molecules with restricted torsional motion in the PyPES library, for each excitation

level, are presented in Table 3.3.

For excitation levels lower than 4, errors are large and convergence behaviour

erratic, for both QFF- and SFF-derived results. At these lower excitation levels,

QFF and SFF force fields provide equally accurate descriptions of the PES, and

therefore produce similar fundamental frequencies that have similar errors.

At higher excitation levels, differences between quartic and sextic force fields

become apparent in the calculated VCI fundamental frequencies. Between VCI(4)

and VCI(6), both QFF and SFF-derived fundamental frequencies appear to be con-

verging to their respective VCI limits, as illustrated in Figures 3.1 and 3.2.

Beyond VCI(6), SFF-derived fundamental frequencies all eventually converge

to a limiting value. Most are converged to within 1 cm−1 by VCI(8), with the
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Table 3.3: Mean and maximum absolute errors due to VCI wavefunction truncation,

using both sextic (SFF) and quartic (QFF) force field expansions in normal mode

coordinates to represent the potential energy surface. Reference results are generated

using a sextic force field, increasing excitation level until all fundamental frequencies

are converged to within 1 cm−1.

〈
|∆SFF

VCI(n)|
〉
|∆SFF

VCI(n)|max

〈
|∆QFF

VCI(n)|
〉
|∆QFF

VCI(n)|max

n (cm−1) (cm−1) (cm−1) (cm−1)

1 92.9 515.5 92.4 498.2

2 16.2 85.9 16.8 92.8

3 31.1 139.1 32.8 140.6

4 5.6 29.4 6.9 51.0

5 1.0 9.1 5.0 39.7

6 0.6 6.0 4.8 38.9

7 0.2 6.6 5.2 54.9

8 0.04 2.4 6.3 219.0*

* N-H stretching mode in NH3 starts diverging
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Figure 3.1: The magnitude and range of absolute errors in fundamental frequencies

calculated using truncated VCI expansions with a sextic force field (SFF) are shown

using the boxplot format. Data are aggregated across all molecules without low-

barrier torsional modes within the PyPES library, at each excitation level.
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Figure 3.2: The magnitude and range of absolute errors in fundamental frequencies

calculated using truncated VCI expansions with a quartic force field (QFF) are

shown using the boxplot format. Data are aggregated across all molecules without

low-barrier torsional modes within the PyPES library, at each excitation level. The

y axis maximum is restricted to 100 cm−1, excluding an additional outlying data

point at VCI(8) with a value of 219.0 cm−1.
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exception of the symmetric C–H stretching mode of C3H2 and the inversion mode

of NH3. In general, C–H stretches exhibit slowest convergence with respect to VCI

excitation level. This is due to their highly anharmonic nature with strong coupling

to molecular bending modes.

Although the majority of QFF-derived fundamental frequencies converge to a

limiting value, divergence is observed in a small number of pathological cases. These

include the low frequency bending modes of C3H2, the low frequency ‘ring-breathing’

mode of C3H3
+, and the inversion and N–H stretching modes of NH3. Excluding

these pathological cases, QFF-derived frequencies deviate from SFF results by 4.7

cm−1 on average, and up to 39 cm−1 at most.

3.4.2 Negligible VCI matrix element threshold testing

The major computational bottleneck in VCI calculations on larger molecules at

higher excitation levels is the memory required to store and diagonalize the VCI

matrix. This can potentially be reduced by taking advantage of sparse matrix storage

and diagonalization routines, provided enough negligible matrix elements can be

excluded by VCI matrix screening.

The accuracy implications of discarding negligible elements from VCI matrices

generated using sextic force fields with a range of different screening thresholds, are

summarized in Table 3.4 and Figure 3.3, where:

∆VCI(n)
screen = νSFF

VCI(n) − νSFF
VCI(n),screened (3.10)

The fractional reduction in number of matrix elements across the test data set is

represented in Figure 3.4 and broken down by molecule size in Figure 3.5.

Overall, a screening threshold of 2×10−5 Eh achieves a good balance between ac-

curacy and computational cost, reducing the number of matrix elements to be stored

by more than half, while introducing errors of 0.2 cm−1 on average and 1.7 cm−1 at

most. Even more fortunately, the fraction of non-negligible elements decreases as the

molecule size increases (Figure 3.5). Therefore, matrix element screening becomes

more useful the larger the VCI matrix and harder the diagonalization problem.
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Figure 3.3: The magnitude and range of absolute errors in fundamental frequencies

due to matrix element screening are shown using the boxplot format. Data are ag-

gregated across all molecules without low-barrier torsional modes within the PyPES

library, for each threshold value.
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Table 3.4: Mean and maximum absolute errors arising from VCI matrix element

screening with tabulated threshold values.

Threshold
〈
|∆VCI(8)

screen |
〉
|∆VCI(8)

screen |max

〈
|∆VCI(4)

screen |
〉
|∆VCI(4)

screen |max

(Eh) (cm−1) (cm−1) (cm−1) (cm−1)

5× 10−5 0.8 7.1 0.8 11.7

2× 10−5 0.2 1.7 0.2 3.1

1× 10−5 0.09 1.3 0.08 1.0

5× 10−6 0.04 0.5 0.04 0.4

2× 10−6 0.01 0.1 0.01 0.1

1× 10−6 0.006 0.06 0.004 0.05

5× 10−7 0.002 0.02 0.002 0.02

2× 10−7 0.0006 0.005 0.0004 0.004

1× 10−7 0.0003 0.002 0.0001 0.002
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Figure 3.4: The fractional number of VCI matrix elements to be stored varies signifi-

cantly with screening threshold (x-axis) and across all molecules without low-barrier

torsional modes within the PyPES library, as indicated using the boxplot format.
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Figure 3.5: The fractional number of VCI matrix elements to be stored at a screening

threshold of 2 × 10−5 Eh is broken down by molecular size (x-axis), with collated

data represented in boxplot format.

However, the size of the VCI matrix grows much faster with molecule size than

the extent of screening, particularly at high excitation levels. Even with matrix

element screening, VCI(8) calculations are not practicable for molecules with more

than 7 or 8 atoms. For larger molecules, it will be necessary to truncate the VCI

expansion at a lower level, or use a more sophisticated screening approach for se-

lecting VCI matrix elements. Therefore, we test the transferability of our threshold

screening value recommendations by repeating the screening threshold testing at

VCI(4).

The results presented in Table 3.4 confirm that screening errors are only weakly

dependent on VCI level, with negligible differences between average errors due to

screening in VCI(8) and VCI(4) calculations.

3.4.3 Negligible force constant threshold testing

Although VCI matrix diagonalization is the computational bottleneck of the VCI

algorithm, determining whether a calculation is feasible or not, the majority of a
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Table 3.5: Mean and maximum absolute errors arising from force constant screening

with tabulated threshold values, using a VCI(8) wavefunction expansion with a

sextic force field.

Threshold
〈
|∆SFF

screen|
〉
|∆SFF

screen|max

(cm−1) (cm−1) (cm−1)

2 0.1 1.0

1 0.05 0.4

0.5 0.02 0.2

0.1 0.003 0.02

job’s runtime is often taken up in VCI matrix construction. A straightforward way

to reduce runtime is to pre-screen the force field, removing negligible force constants.

Errors in fundamental frequencies, due to force-constant screening during VCI(8)

calculations with a sextic force field, are calculated as:

∆SFF
screen = νSFF

VCI(8) − νSFF,screened
VCI(8) (3.11)

Statistical analysis of the combined results, for a series of different threshold values,

are presented in Table 3.5 and illustrated in Figure 3.6.

The data presented in Table 3.5 and Figure 3.6 show that force constant screening

errors converge rapidly and monotonically to the unscreened limit, with maximum

errors around half the threshold value and average errors ∼ 20 times lower.

Errors due to force constant screening are expected to be largely independent of

VCI level; this is supported by our data which return the average errors listed in

Table 3.5 for all VCI excitation levels greater than 1. Maximum errors are slightly

more dependent on VCI excitation level, but only for higher screening thresholds

and at low excitation levels. For example, with a screening threshold of 2 cm−1,

maximum errors are constant for 4 < n < 8, decreasing to 0.8 at n = 3 and 0.6 at

n = 2.
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Figure 3.6: The magnitude and range of absolute errors in fundamental frequencies

due to force constant screening are shown using the boxplot format. Data are ag-

gregated across all molecules without low-barrier torsional modes within the PyPES

library, for each threshold value.
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3.4.4 Effect of excluding low-barrier torsional modes

Low-barrier torsional modes are problematic when solving the nuclear vibrational

problem in normal mode coordinates, due to both inaccurate representation of the

potential energy surface over a large amplitude torsional range, and the inadequacy

of the Watson Hamiltonian for describing flexible systems with multiple low barrier

minima. The most expedient solution would be to exclude these modes entirely

from the VCI expansion, but this could impact upon the accuracy of the remaining

fundamental frequencies, particularly if there is strong coupling between torsional

modes and others.

To quantify this effect, we have performed VCI(8) calculations using SFFs with

the torsional mode excluded from the VCI expansion for each of the molecules listed

in Table 3.6. Errors are calculated relative to benchmark literature values:

∆tors = νref − νVCI(8) (3.12)

In all cases, the mean absolute error is less than 10 cm−1. Larger mean and

maximum errors for cis-HSiOH and trans-HSiOH likely arise from the inaccuracy of

the VPT2-derived reference data, as well as the neglect of torsional modes within our

VCI calculations, and so should be considered absolute worse-case values. HOOH

is the most anharmonic and strongly coupled, and this is reflected in slightly poorer

predictions of fundamental frequencies with the torsional mode excluded. It also

has the lowest torsional barrier, resulting in torsional splitting of the other modes

that our VCI formulation is unable to capture. This effect also contributes to the

relatively large observed ∆tors errors for HOOH.

3.4.5 Recommendations

Final algorithmic recommendations are presented in Table 3.7. In making these

choices, we have first aimed to balance force field and VCI method accuracy, and

then ensure that errors due to screening are around an order of magnitude lower

than errors inherent in the choice of force field representation and VCI excitation

level. Overall, we consider that these combinations will provide an optimal balance

between accuracy and computational resource demand. The calculated cumulative
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Table 3.6: Mean and maximum absolute deviations in calculated fundamental fre-

quencies for all modes except low-barrier torsions, calculated at VCI(8) using a sex-

tic force field and excluding the torsional mode from the VCI expansion. Reference

data are collated from the literature, and are generated using a range of different

methods, as implemented in; a) RVIB4, b) TROVE[50], c) MULTIMODE[26] and d)

SPECTRO[47]. ‡ For HOOH, strong tunnelling splitting leads to doublet spectral

peaks. Reference data are derived by averaging split peak positions.

Molecule Reference method, 〈|∆tors|〉 |∆tors|max

[citation] (cm−1) (cm−1)

HOOH VCIa[51] 7.3‡ 13.4‡

HSOH VCIb[52] 3.4 6.8

cis-HOCO VCIc[53] 3.2 7.8

trans-HOCO VCIc[54] 3.2 9.6

cis-HSiOH VPT2d[55] 9.2 20.2

trans-HSiOH VPT2d[55] 5.7 13.2
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Table 3.7: Recommended algorithmic choices and settings

matrix element force constant cumulative cumulative

FF VCI screening screening average maximum

order level threshold threshold error error

(Eh) (cm−1) (cm−1) (cm−1)

4 (QFF) 5 2× 10−5 2 5.3 43.4

6 (SFF) 7 5× 10−6 1 0.3 7.5

errors in Table 3.7 are likely to be a significant overestimate, as some error cancel-

lation is to be expected.

We note that errors arising from discarding negligible matrix elements and force

constants may increase somewhat for larger molecules, as the number of small matrix

elements and force constants is likely to increase. Therefore, their combined con-

tribution to the overall accuracy of the calculated fundamentals may also increase,

requiring a lower screening threshold. If accuracy is paramount, we recommend re-

peating the screening analysis at VCI(4) to tailor screening thresholds for a given

molecule.

Finally, we note that the accuracy of calculated VCI frequencies will strongly

reflect the quality of the ab initio method used to construct the force field. Here, we

have circumvented this problem by using a library of high quality analytic potential

energy surfaces. Nonetheless, the benchmark data presented herein will enable the

user to make informed choices of VCI level and screening threshold for the quality

of the force field in hand. It also provides a useful starting point for estimating

contributions to the overall error in calculated fundamental frequencies from ap-

proximations inherent in both electronic and nuclear vibrational structure models.

3.5 Summary of program capabilities

Our freely available, open-source PyVCI package provides:
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• normal mode analysis with projection of contaminant translational and rota-

tional modes arising from numerical imprecision and/or incomplete geometry

optimization

• vibrational configuration theory based upon states with an ‘excitation level’

(maximum sum of vibrational quantum numbers) of up to 10.

• expansion of the potential up to 6th order in normal mode coordinates and/or

any orthonormal linear combination of normal modes

• Coriolis coupling corrections

• optional exclusion of selected vibrational modes – typically low-barrier tor-

sional modes – from the VCI expansion

• parallel sparse matrix construction and diagonalization
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Appendix A: Normal mode analysis

All quantities reported herein are in atomic units, unless explicitly stated otherwise.

The atomic unit of energy is Hartree, the atomic unit of length is the Bohr radius,

and the electron mass is the fundamental atomic unit of mass (me = 1). The

conversion factor to convert between a.m.u. (g mol−1) and atomic units of mass (me

molecule−1) is 1822.888482.

1. Form the mass-weighted Cartesian matrix fMWC from the second derivatives

of the energy with respect to nuclear displacements (Hessian matrix, fHess):

fMWC
ij = fHess

ij /
√
mimj (3.13)

2. Project out translational and rotational modes.

Construct and diagonalize the inertia tensor, I:

I =




Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


 =




∑
imi(y

2
i + z2

i ) −∑imi(xiyi) −∑imi(xizi)

−∑imi(yixi)
∑

imi(x
2
i + z2

i ) −∑imi(yizi)

−∑imi(zixi) −∑imi(ziyi)
∑

imi(x
2
i + y2

i )




(3.14)

where 1 < i < Natom, producing a 3× 3 matrix, X of normalized eigenvectors of I.

Calculate the centre of mass, RCOM from the atomic position vectors ri:

RCOM =

∑
imiri∑
imi

(3.15)

and shift the coordinates of each atom, indexed by i, so the centre of mass is at the

origin:

Ri = ri −RCOM (3.16)

Assemble vectors corresponding to translation and rotation in mass-weighted

Cartesian coordinates, storing them as 3×3N matrices Dtrans and Drot, respectively:

Dtrans
ij = δik

√
mn (3.17)

where 1 < i < 3, 1 < j < 3N , n is the atom number for a given value of

j [n = ceiling(j/3)] and k the Cartesian component index [k = modulo(j, 3) +
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3×floor(j/3)]; 1 = x, 2 = y, 3 = z.

Drot
ij =

[
(Rn ·XT

l )Xim − (Rn ·XT
m)Xil

]
×√mn (3.18)

where i, j, k and n are defined as above, and k, l,m are cyclic permutations of x, y, z,

i.e. if k = 1 = x then l = 2 = y and m = 3 = z; if k = 2 = y then l = 3 = z and

m = 1 = x, and if k = 3 = z then l = 1 = x and m = 2 = y.

Append Dtrans, Drot and the identity matrix, DI, to form the (3N + 6) × 3N

projection matrix D. Orthonormalize D using the Gram-Schmidt process, deleting

the 6 redundant rows at the end, to yield a final (3N × 3N) D matrix.

Transform the mass-weighted Hessian to an ‘internal’ Cartesian coordinate set

with translational and rotational modes rigorously projected out, by extracting the

bottom right Nvib ×Nvib sub-matrix f INT:

f INT = DfMWCDT (3.19)

3. Diagonalize the projected force constant matrix, to obtain the eigenvalues Λ

and eigenvectors, L:

f INTL = ΛL (3.20)

4. Calculate frequencies in units of reciprocal centimetres, reduced masses and

normalized Cartesian displacement vectors for each vibrational mode

ν̃i =
√
λi × 219474.6435 (3.21)

where λi are the diagonal elements of Λ, and ν̃i are the frequencies in cm−1.

The unnormalized Cartesian displacement vectors that diagonalize fHess are given

by:

lCART = MDT
INTL (3.22)

where DINT is the D matrix with the first 6 rows corresponding to rotational and

translational vectors omitted, M is a diagonal matrix with diagonal elements Mn =

1/
√
mn for 1 < j < 3Natom and n identifies the atom number for each block of x, y, z

coordinates, as defined above.
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Normalization factors (Nn) and reduced masses (µn) are straightforward to cal-

culate for each vibrational mode:

µn =

(
3N∑

j=1

(lCART
jn )2

)−1

(3.23)

Nn =
√
µn (3.24)

where n is the vibrational mode index.

Appendix B: Coriolis coupling constants

Alongside the D and L matrices from above, enforcing Eckart conditions and trans-

formation from Cartesian to normal mode coordinates, respectively, 3 rotational

vector product matrices (M x, M y and M z) are also required. Each matrix com-

prises Natom identical 3×3 submatrices (one for each atom) along the main diagonal.

These diagonal blocks have the form:

(M x) =




0 0 0

0 0 1

0 −1 0


 , (M y) =




0 0 −1

0 0 0

1 0 0


 , (M z) =




0 1 0

−1 0 0

0 0 0


 (3.25)

The eigenvectors of the moment of inertia tensor stored in the matrix X are also

required to rotate the coordinate system to align the molecule with its principal

axes of inertia. This is acheived by composing a (3N × 3N) matrix X with Natom

identical 3× 3 X blocks on the diagonal.

Coriolis coupling coefficient matrices, ζx, ζy and ζz are then calculated as:

ζα = (X TDT
INTL)TM αX TDT

INTL (3.26)

where α = x, y, or z.
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Chapter 4

Efficient construction of anharmonic

vibrational force fields by coordinate

transformation from curvilinear to

rectilinear normal mode coordinates

4.1 Introduction

Infrared and Raman spectroscopy are widely used chemical characterisation tech-

niques that interrogate the vibrational structure of matter, providing information

about molecular structure and bonding. However, they fall short of other spec-

troscopic methods, such as nuclear magnetic resonance or X-ray diffraction, in the

amount of structural information that may be deduced from each spectrum. This

is largely due to the mismatch between the accuracy to which IR spectrum can be

easily modelled using normal mode analysis and the much higher accuracy needed

for quantitative assignment.

A variety of black box methods for calculating anharmonic vibrational frequen-

cies have been developed. They include vibrational perturbation theory (VPT),[1–14]

vibrational self consistent field,[15–20] vibrational coupled cluster[21–23] and vibrational

configuration interaction (VCI).[24–27] A series of recent review articles provide a good

overview of the field.[28–34]
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All black box nuclear vibrational structure models are based upon the Watson

Hamiltonian,[35,36] which is formulated in rectilinear normal mode coordinates. The

main advantages of this coordinate set are that it can be uniquely defined, has a

simple form, and to a good approximation, decouples the kinetic energy operator

(KEO). When the potential energy function is expanded as a power series in nor-

mal mode coordinates, then the Hamiltonian can be integrated analytically over a

harmonic oscillator or distributed Gaussian function product basis, thus allowing

efficient evaluation of Hamiltonian matrix elements. However, the rectilinear nature

of normal mode coordinates, while leading to a simple KEO, introduces artificial

coupling in the potential and increases the computational cost of its construction.

Curvilinear coordinates, i.e. coordinates that are non-linear in Cartesian space,

more naturally describe intramolecular motion and lead to reduced coupling in the

potential.[37–42] However, derivation of the KEO becomes rather complicated,[43–45]

although it has been done for some types of curvilinear coordinates.[46–48] Most no-

tably, recent advances with polyspherical harmonic coordinates now allow derivation

of analytical expressions of the KEO with any practical set of valence internal co-

ordinates.[49–52] However, even when analytical expressions are available they are

still far more complicated than those obtained from the Watson Hamiltonian, and

applications have been limited to smaller systems.

Ideally, the potential should be constructed using curvilinear coordinates to min-

imise the number of computationally intensive ab initio calculations required, and

then transformed to rectilinear normal mode coordinates, so that the vibrational

problem can be more easily solved using the Watson Hamiltonian. The issue of

formulating a non-redundant set of curvilinear coordinates from a redundant set of

valence internals has been addressed in research on geometry optimisation.[53,54] The

delocalised internal coordinates proposed by Baker et al.[55] can be defined automat-

ically and form a non-redundant set. They are commonly used in geometry optimi-

sation and give faster convergence than Cartesian coordinates. Defining curvilinear

normal mode coordinates from delocalised internal coordinates allows the potential

to be generated by numerical differentiation. Subsequent coordinate transforma-

tion to rectilinear normal modes is straightforward, although the implementation is

non-trivial.
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4.2 Description of the Method

4.2.1 Formulation of Curvilinear Normal Mode Coordinates

Assuming, for now, that a redundant set of Nint internal coordinates have been

defined, S = (s1, s2, . . . , sNint
)T , we now wish to perform a linear transformation

to a non-redundant set of internal coordinates, Σ = (σ1, σ2, . . . , σNmode
)T , where

Nmode = 3n − 6 is the number of vibrational degrees of freedom, or (3n − 5) for

linear molecules, and n is the number of atoms. This can be represented with an

(Nmode ×Nint) matrix U,

Σ = US. (4.1)

Various approaches for defining the matrix U have been proposed, and in our studies

we use the delocalised internal coordinates formulation of Baker et al.[55] It requires

construction and subsequent diagonalisation of an (Nint ×Nint) matrix,

G = BBt, (4.2)

where B is the usual Wilson B matrix,[56] with elements Bij = (∂si/∂xj) evaluated

at equilibrium. After diagonalisation of G, the Nmode eigenvectors with non-zero

eigenvalues form the U matrix.

With the usual procedure,[56,57] rectilinear normal mode coordinates,

Q = (q1, q2, . . . , qNmode
)T , can be defined and their relationship to Cartesian co-

ordinates, X, established,

∆X = L∆Q, (4.3)

where L contains elements Lij = (∂xi/∂qj) defining the one-to-one mapping form

normal mode to Cartesian space.

The curvilinear normal modes, Q̃ = (q̃1, q̃2, . . . , q̃Nmode
)T , are defined as the linear

combination of Σ that reproduces their rectilinear counterparts, Q, to first order in

Cartesian space,

R(σ) = (B(σ)L)−1 (4.4)

where B(σ) the Wilson B matrix, as defined above, with the non-redundant set of

internals, and R(σ) is an (Nmode × Nmode) matrix with elements R(σ)
ij = (∂q̃i/∂σj).
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To simplify subsequent transformations, it is convenient to relate Q̃ directly to the

redundant set of internals,

R = R(σ)U, (4.5)

where matrix R contains elements Rij = (∂q̃i/∂sj).

The curvilinear and rectilinear normal modes can be related via a non-linear

transformation,

∆q̃i =
∑

r

L̃i,r∆qr +
1

2!

∑

r,t

L̃i,rt∆qr∆qt + . . .

= ∆qr +
1

2!

∑

r,t

L̃i,rt∆qr∆qt + . . . ,
(4.6)

where

L̃i,rt =
∂2q̃i
∂qt∂qr

,

with similar notation adopted for higher order derivatives. The simplification in the

first term of equation (4.6) arises because the curvilinear normal mode coordinates

(Q̃) and rectilinear normal mode coordinates (Q) are the same to first order, by

construction. That is, L̃i,r = δir, where δir is the Kronecker delta.

4.2.2 Coordinate Transformations

With curvilinear normal mode coordinates now defined, q̃i =
∑

j Rijsj, the potential

energy function can be constructed as a Taylor series expansion in Q̃,

Ṽ =
1

2!

∑

i,j

Fij∆q̃i∆q̃j +
1

3!

∑

i,j,k

Fijk∆q̃i∆q̃j∆q̃k +
1

4!

∑

i,j,k,l

Fijkl∆q̃i∆q̃j∆q̃k∆q̃l + . . . ,

(4.7)

where force constants F represent derivatives at equilibrium with respect to curvi-

linear normal modes. The first derivative is zero at equilibrium and the absolute

energy is irrelevant in this context, so those terms were omitted.

Due to the non-linear relationship between curvilinear and rectilinear normal

modes, equation (4.6), the coordinate transformation of the potential is also non-

linear. The necessary expressions have been described in detail elsewhere[1,38,58,59]

and only the expression for the normal mode coordinate force constants of third
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order, Krtv, is included here for illustration,

Krtv =
∑

i,j,k

FijkL̃i,rL̃j,tL̃k,v +
∑

i,j

Fij(L̃i,rtL̃j,v + L̃i,rvL̃j,t + L̃i,tvL̃j,r)

= Frtv +
∑

i,j

Fij(L̃i,rtL̃j,v + L̃i,rvL̃j,t + L̃i,tvL̃j,r).
(4.8)

The derivatives L̃ can be obtained by two linear transformations. Only transfor-

mations up to third order are shown, and higher order transformations can be easily

derived by application of the chain rule.

Firstly, derivatives of internal coordinates S with respect to X are transformed

to Q,

∂si
∂qr

=
∑

α

∂si
∂xα

Lαr

∂2si
∂qt∂qr

=
∑

αβ

∂2si
∂xβ∂xα

LαrLβt

∂3si
∂qv∂qt∂qr

=
∑

αβγ

∂3si
∂xγ∂xβ∂xα

LαrLβtLγv,

(4.9)

where Lαr = (∂xα/∂qr) are elements of the L matrix, and the summation is over

all Cartesian coordinates that were used in definition of si. Lastly, derivatives of Q̃

with respect to Q are defined as linear combinations of derivatives of S with respect

to Q,

L̃i,r =
∑

α

∂sα
∂qr

Riα

L̃i,rt =
∑

α

∂2sα
∂qt∂qr

Riα

L̃i,rtv =
∑

α

∂3sα
∂qv∂qt∂qr

Riα,

(4.10)

where Riα = (∂q̃i/∂sα) are elements for the previously defined matrix R.

Once the L̃ derivatives have been evaluated, the transformation can be per-

formed. The opposite transformation, from rectilinear to curvilinear normal modes,

can also be performed, and the necessary derivatives can be obtained from L̃, as

described in the Appendix. This can be useful if the reverse transformation form

rectilinear to curvilinear normal modes is required. For example, when comparing

different sets of curvilinear coordinates, by changing S, and using the potential in
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Q as an intermediate for the exact transformation into a potential in Q̃ of the same

derivative order.

In practice, the potential energy function has to be truncated at some derivative

level, d, and it is also common to use the reduced mode representation,[60] wherein

mode coupling at all derivative levels is truncated at a specified value, m. Any force

constants which involve more than m different coordinates are excluded. In the

following discussion, the potential will be specified as V (m, d), indicating its mode

representation and highest derivative level, and when m = d than only derivative

level will be specified, V (d). Expansion of the potential in curvilinear normal mode

coordinates, Q̃, will be indicated with a tilde, Ṽ . Potentials obtained by coordinate

transformation will be indicated by giving the starting potential with a right arrow

pointing to the final potential. For example, Ṽ (mc, dc)→ V (mr, dr) represents a

potential in Q̃ with mode representationmc and derivative level dc, transformed to Q

with mode representation mr and derivative level dr. The subscripts c and r pertain

to differentiate curvilinear and rectilinear normal mode coordinates, respectively.

To achieve exact coordinate transformation, not all derivative levels, dl, and

mode representations, ml, in derivatives of mode qi in L̃ are necessary. In particular,

since the first derivative of the potential is zero at equilibrium it does not need to be

transformed, hence dl = dr − 1, see equation (4.8). Also, the mode representation

does not need to be larger than in V (mr, dr).

When valence internal coordinates are used, then the scaling for transforma-

tion of all internal coordinate derivatives with respect to Cartesian coordinates into

derivatives with respect to rectilinear normal modes, equation (4.9), is O(Nml
modeNint).

The scaling from equation (4.10) is also O(Nml
modeNint). On the other hand, non-

linear transformation of the potential scales as O(N
(mc+mr)
mode ) and it simplifies to

O(N
(mc+mr−1)
mode ) when dc = dr. As a result, coordinate transformation of the poten-

tial energy function, rather than construction of the required intermediates, is the

bottleneck of this procedure.
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4.2.3 Choice of Internal Coordinates

If we restrict ourselves to valence coordinates based on bond lengths, bond angles

and dihedral angles, there are a few functional forms that are commonly used.

For bond lengths, both Morse,[61] fM, and Simons-Parr-Finlan,[62] fSPF, coordi-

nates have appropriate asymptotic behaviour and lead to fast convergence of the

potential energy function. They are defined as,

fM(r) = 1− e−a∆r, (4.11)

fSPF(r) =
∆r

r
, (4.12)

where r is the bond length, ∆r is its deviation from equilibrium, and a is an em-

pirical parameter controlling the shape of the Morse coordinate. We choose fSPF in

preference to fM because it is parameter free.

For the angular coordinates, the geometrically defined angles, θ and τ , for bond

angle and dihedral angle, respectively, are commonly used. Alternatively, cos(θ)

and sin(τ) or cos(τ) are often favoured due to their more physically defined periodic

behaviour.[63] The periodic nature of sine and cosine functions allows for more ac-

curate description of potentials with multiple minima, connected via dihedral angle

or bond angle coordinates, which is one of the reasons for their popularity.

However, when defining curvilinear normal modes it is important that they have

correct limits. In case of sine and cosine functions, only values between 0 and 1

have a physical meaning, which restricts working range of Q̃, if they are used. This

is particularly problematic for the dihedral angle coordinates, since the equilibrium

geometry of an ordinary molecule is likely to have sin(τ) and cos(τ) close to their

turning points. Further, since we are restricted to a single minimum by the Watson

Hamiltonian, use of more localised θ and τ functions is more appropriate. The

{fSPF, θ, τ} coordinate set is implemented within the PyPES library[64] along with

all higher order derivatives necessary to define L̃.
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4.3 Computational Details

Our test set consists of 25 molecules, ranging in size from 5 atoms to 8 atoms. From

the PyPES library,[64] we include methane (CH4), ammonium ion (NH+
4 ), phos-

phine oxide (OPH3), cyclopropenylidene (C3H2), cyclopropenyl cation (C3H+
3 ) and

ethene (C2H4) molecules. The rest of potentials are calculated at HF/6-311G∗∗, via

numerical differentiation. The following molecules are included: fluoroethene, cy-

clopropenone, 1,2-diazacyclobutadiene, 1,3-diazacyclobutadiene, 1H-pentazole, 1H-

azirine, 4H-1,2-oxazete, cyclopropene, 1,2,5-oxadiazole, 1,2,4-oxadiazole, oxirane,

thiirane, 2(3H)-azetone, aziridine, cyclobutadiene, cyclopropanone, methylenecy-

clopropene, 1,3-oxazole, and 2H-oxete. Graphical representation of geometries for

all molecules used in this study is included in the Supplementary Information.

For molecules from the PyPES library, the full mode representation V (4) po-

tential is obtained analytically. For other molecules, numerical differentiation is

performed using analytical second derivatives and a variable step size in rectilinear

normal modes. Step sizes recommended by Boese et al.[65] are used:

∆qi = c×√µi ×
√

1000 cm−1

ωi
(4.13)

where c = 0.04 is a constant, ωi is the harmonic frequency for mode i in cm−1, and

µi is the reduced mass for mode i, µi =
(∑

j L
2
ij

)−1

. The V (4) potential is then

evaluated using previously reported expressions:[38,66]

Kijk =
1

2∆qi
[Kjk(+∆qi)−Kjk(−∆qi)]

Kiijk =
1

(∆qi)2
[Kjk(+∆qi) +Kjk(−∆qi)− 2Kjk]

Kijkl =
1

2∆qi∆qj
[Kkl(+∆qi,+∆qj) +Kkl(−∆qi,−∆qj) + 2Kkl

−Kkl(+∆qi)−Kkl(−∆qi)−Kkl(+∆qj)−Kkl(−∆qj)],

(4.14)

where Kij refers to (i, j) elements of the Hessian matrix obtained analytically at

displaced geometry. Values in brackets indicate displacement from equilibrium, and

refer to values at equilibrium when absent. Hessian matrices are evaluated on a full

grid of all unique (±qi) and (±qi,±qj) displacements, and averaged values for any

higher order force constants that could be evaluated in multiple ways are used. For
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example, Kijk can be evaluated from displacements along qi, qj or qk, in this case

all three are calculated and then averaged. V (4) potentials are then transformed to

curvilinear normal modes, Ṽ (4), analytically, using our coordinate transformation

procedure.

For testing purposes, this approach is favoured over construction of the potential

directly in curvilinear normal modes, mainly because step size recommendations for

rectilinear normal modes are available in the literature, but also because rectilinear

normal modes are uniquely defined.

The redundant set of valence internal coordinates is constructed using the usual

procedure outlined by Bakken and Helgaker.[67] Bonded pairs of atoms are defined

according to their interatomic distance being less than 1.3 times the sum of the

respective covalent radii. The bond angle coordinate is formed by any three atoms

A, B and C, where both A and C are bonded to B. The threshold for linearity is

set at 165◦, and only bond angles less than that are included. Dihedral angles are

defined for any set of four atoms A, B, C and D, for which A-B-C and B-C-D bond

angles are defined.

The vibrational problem is solved using the PyVCI program, as described in

Chapter 3. The Coriolis coupling term is not included in the Watson Hamiltonian,

since it does not depend on the potential. The harmonic oscillator basis functions

are restricted by the sum of vibrational quantum numbers for a given product,

referred to as the excitation level. In this study, the excitation level was set to 6,

unless stated otherwise, with no reduction in mode-mode coupling of the basis set.

In keeping with our previous nomenclature, this is referred to as VCI(6).

Before the calculation, the force constants are screened and only significant values

are retained, using a threshold of 1.0 cm−1 in dimensionless normal mode coordi-

nates. We have previously shown that the error from ignoring some force constants

does not vary strongly with the excitation level and VCI(4) calculations can be used

for its estimation.[68] The mean absolute error (MAE) associated with excluding

force constants smaller than 1.0 cm−1 is 0.2 cm−1 and maximum error is 1.2 cm−1

across all molecules in our data set (data available in Supplementary Information).

The threshold for storing non-negligible elements of the Hamiltonian matrix was set

to 1.0× 10−8 Eh and should be accurate to better than 3 d.p.
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4.4 Results and Discussion

In the following discussion, common reference will be made to the low and high fre-

quency regions, the separation of which we define at 2200 cm−1. Consequently, the

high frequency region refers to the fundamentals of modes dominated by stretching

motion of XH groups, where X is a heavy atom. The error is defined as the funda-

mental frequency calculated with the approximate potential minus the corresponding

fundamental with the reference potential. For consistency, errors are plotted as a

function of harmonic frequencies, ω. In all calculations with quartic force fields

(QFF), 1H-pentazole had to be excluded because it diverged after VCI(4).

4.4.1 Errors due to coordinate system

To verify that our completely general procedure for defining curvilinear normal mode

coordinates forms an appropriate basis in which the PES may be accurately ex-

panded, fundamental frequencies calculated using this approach are compared to

those generated using exact sextic force fields (SFF) generated from the PyPES

library. The results are illustrated in Figure 4.1 and summarised in Table 4.1.
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Figure 4.1: Accuracy of Ṽ (4) → V (6) potential against exact V (6) potential for

molecules from PyPES library.

Potentials for CH4, NH+
4 and OPH3 are in the form of quartic force fields in the

{fM, cos(θ)} internal coordinate system; C3H2 and C3H+
3 are also quartic force fields

with {fM, θ, τ} and {fM, cos(θ), sin(ω)} coordinate systems, respectively, where ω

is an out-of-plane coordinate; and C2H4 is represented as sextic force field in the
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Table 4.1: Break down of errors in Figure 4.1 by contributions from each molecule,

summarised using mean absolute error (MAE) values.

Molecule MAE (cm−1)

CH4 1.8

NH+
4 1.6

OPH3 0.5

C3H2 3.8

C3H+
3 5.9

C2H4 1.3

Aggregate 2.9

{fM, cos(θ), sin(τ)} coordinate system. In all cases, potentials are transformed into

SFFs in normal mode coordinates, V (6), as input into VCI(6) calculations.

Good agreement is observed for all vibrational modes of CH4, NH+
4 and OPH3,

with a maximum error of 3.4 cm−1 and MAEs of 1.8, 1.6 and 0.5 cm−1, respectively.

This shows that the {fSPF, θ} and {fM, cos(θ)} coordinate systems compare well for

rigid systems.

The errors are considerably larger for C3H2 and C3H+
3 , with MAEs of 3.8 and

5.9 cm−1, respectively. The largest deviations come from torsional modes, showing

errors of -7.9 and -8.7 cm−1 for C3H2, and -13.7 and -15.7 cm−1 for C3H+
3 . For

C3H2, both coordinate sets have the same functional form, except for the stretching

coordinates, and the errors are solely due to using a redundant set of dihedral angle

coordinates. On the other hand, curvilinear normal modes for C3H+
3 are constructed

from quite different coordinate sets, especially for out of plane motion where a special

sin(ω) coordinate is used in the reference potential.

The vibrational frequencies of C2H4 have a MAE of 1.3 cm−1, with a maximum

error of 10.6 cm−1 in one of the stretching modes. To discern whether deviations are

mainly due to truncation of the potential in Q̃, or use of different coordinate sets,

another V (6) potential was generated from the reference force field, by truncating it
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Table 4.2: Summary of MAE values for comparison against V(4) potential in Figure

4.2.

MAE (cm−1)

V (2, 4) 21.8

V (3, 4) 6.5

Ṽ (2, 4)→ V (4) 6.0

Ṽ (3, 4)→ V (4) 0.3

at fourth order. Results of VCI(6) calculations with the new potential are included in

the Supplementary Information. They show good agreement with our Ṽ (4)→ V (6)

potential, with a MAE of 1.3 cm−1 and maximum error of 2.3 cm−1. This indicates

that the {fSPF, θ, τ} and {fM, cos(θ), sin(τ)} coordinate sets are equally appropriate

for expanding the PEF, and that fifth and sixth order force constants in internal

coordinates, that are typically excluded since they are too costly to generate, can

still have significant contributions.

4.4.2 Errors due to reduced mode representation of QFFs

In this section, we compare the convergence behaviour of QFFs in both curvilinear

and rectilinear normal mode coordinates with respect to mode representation. Rec-

tilinear V (4) potentials are truncated directly, while Ṽ (4) potentials are truncated

and then transformed to V (4), before solving the nuclear vibrational problem. We

note that the untruncated Ṽ (4) potential transforms exactly to V (4) and vice versa.

Results are summarised in Figure 4.2 and Table 4.2.

Rectilinear normal mode coordinates converge slowly with respect to mode rep-

resentation level with MAEs of 21.8 and 6.5 cm−1 for V (2, 4) and V (3, 4) potentials,

respectively, across all fundamental frequencies of all molecules in our test set. Both

potentials have a tendency to underestimate anharmonicity in the low frequency

region, while overestimating it in the high frequency region.
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Figure 4.2: Accuracy of 2 and 3 mode representation quartic force fields in rectilinear

and curvilinear normal mode coordinates. Subfigures (a), (b), (c) and (d) correspond

to V (2, 4), V (3, 4), Ṽ (2, 4)→ V (4) and Ṽ (3, 4)→ V (4) potentials, respectively.
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On the other hand, V (4) potentials generated from reduced mode representation

Ṽ (4) potentials show much faster convergence with respect to mode representation

level, with MAEs of 6.0 and 0.3 cm−1 for Ṽ (2, 4) → V (4) and Ṽ (3, 4) → V (4)

potentials, respectively. Thus, a three mode representation in Q̃ is sufficient to

effectively capture all of the mode coupling in V (4), and is a big improvement

over the corresponding potential constructed using the same number of ab initio

calculations in rectilinear space. It is also interesting to note that, with the Ṽ (2, 4)→
V (4) potential, all of the fundamentals in the high frequency region are within 20

cm−1 of the reference values, but the low frequency region is less well described with

deviations as large as 50 cm−1.

4.4.3 Optimising efficiency in generating SFFs

In theoretical investigations of small molecules, QFFs in internal coordinates have

long been used for accurate prediction of fundamental vibrational frequencies.[61,63,69–74]

Our previous work implementing a selection of such force fields and other semi-global

potentials as part of a larger library, has shown that a sixth order expansion of the

potential in normal mode coordinates, V (6), is generally sufficient for describing the

fundamentals to within 3 cm−1, benchmarked against more rigorous treatments.[64]

Given the fast convergence for the expansion of the potential in Q̃ with respect to

its mode representation, it is reasonable to assert that Ṽ (4)→ V (6) potentials can,

by analogy, be used to calculate fundamentals with relatively small errors.

The aim of this section is to optimise efficiency for constructing sextic force

fields in rectilinear normal mode coordinates, while incurring minimal losses in ac-

curacy, by truncating both curvilinear and rectilinear normal mode potentials at an

appropriate mode representation level.

We first look at errors due to truncating curvilinear normal mode potentials, by

testing sextic force fields constructed from Ṽ (2, 4) and Ṽ (3, 4) against Ṽ (4)→ V (6)

potential as a reference. Results are summarised in Figure 4.3 and Table 4.3.

Neglecting 4-mode coupling in Q̃ has little effect, with a MAE of 0.7 cm−1, across

all vibrational modes of all molecules in our data set, and most fundamentals within

3 cm−1 of the reference values, with only a few difficult cases where deviations up
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Figure 4.3: Accuracy of (a) Ṽ (2, 4) → V (6), and (b) Ṽ (3, 4) → V (6) potentials for

calculating fundamental frequencies, compared to Ṽ (4)→ V (6) reference data.

Table 4.3: Summary of MAE values for fundamental frequencies calculated using

reduced mode representation potentials compared to Ṽ (4)→ V (6).

MAE (cm−1)

Ṽ (2, 4)→ V (6) 4.7

Ṽ (3, 4)→ V (6) 0.7

Ṽ (4)→ V (3, 6) 4.7

Ṽ (4)→ V (4, 6) 0.6

Ṽ (4)→ V (5, 6) 0.03
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to 15.9 cm−1 are observed. The deviations in the low frequency region are due to

inaccurate description of some torsional modes, which has a knock-on effect on the

high frequency stretches by increasing their coupling to those torsional modes. In

particular, the C3H2 molecule has deviations of -7.9 and -8.9 cm−1 in the torsional

modes, which leads to splitting of the wavefunction for high frequency stretches,

resulting in errors of 15.9 and 12.8 cm−1.

Two mode representation in Q̃ leads to a MAE value of 4.7 cm−1, across the

fundamental frequencies of all molecules in our test set. The anharmonicity in

the low frequency region is generally underestimated, with errors up to 40 cm−1.

Errors in the high frequency region are more randomly distributed, with a maximum

deviation of 16.8 cm−1. Large errors in the low frequency region are due to both

bending and torsional modes, and all deviations greater than 20 cm−1 come from

vibrational modes of only three molecules: cyclopropenium cation, cyclopropene and

methylenecyclopropene. Errors in transformed V (4) and V (6) potentials generated

from Ṽ (2, 4) are similar, as a comparison of Figures 4.2(c) and 4.3(a) illustrates.

Therefore, the majority of this error is due to neglect of important force constants

from the Ṽ (4) potential.

Overall, three mode representation in Q̃ gives the best compromise between

computational demand and accuracy, being able to reproduce the fundamentals

calculated from four mode representation potentials to within 3 cm−1 for all but a

handful of difficult cases.

We now look at reducing the cost of the coordinate transformation procedure by

investigating the errors introduced from truncation of the rectilinear normal mode

potential. Ṽ (4) → V (mr, 6) potentials with mr = 5, 4 and 3 were generated and

compared to full sextic contributions with mr = 6 and the results are summarised

in Figure 4.4 and Table 4.3.

At three mode representation of the SFF in rectilinear normal mode coordiantes,

the Ṽ (4) → V (3, 6) potential produces fundamentals with a MAE of 4.7 cm−1 and

shows large errors in the stretching region with deviations up to 37 cm−1. The

low frequency region is much better described, with fundamentals deviating by less

than 15 cm−1, apart from a CO stretching mode that appears in this region from

cyclopropenone which has an error of -19.2 cm−1, at a harmonic frequency of 2066.9
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Figure 4.4: Accuracy of 3, 4 and 5 mode representation approximations in rectilinear

coordinates with Ṽ (4)→ V (6) potential. Subfigures (a), (b) and (c) correspond to

3, 4 and 5 mode representation, respectively.
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cm−1. Most of the fundamentals in the low frequency region are in error by less than

10 cm−1. Five modes with errors between 10 and 15 cm−1 correspond to various

torsional modes in azetinone and oxazole, and an NH bending mode in aziridine.

The anharmonicity is generally overestimated.

At four mode representation, the Ṽ (4)→ V (4, 6) potential results in a MAE of

0.6 cm−1 across all modes of all molecules, with all errors less than 5 cm−1. The

Ṽ (4) → V (5, 6) potential has a MAE of only 0.03 cm−1, and can be considered

converged. However, it is worth noting that while including six mode coupling

does not have a significant effect on the fundamental frequencies, it can alter the

resonance structure of highly anharmonic modes, the resultant changes in relative

contributions of a given harmonic oscillator product will likely become more signifi-

cant in calculating transition intensities. Overall, at least four mode representation

in rectilinear normal modes is required for quantitative assignment of fundamentals.

Finally, we can test the error from approximating both the curvilinear and rec-

tilinear normal mode potentials concurrently. The quality of the Ṽ (2, 4)→ V (4, 6)

and Ṽ (3, 4)→ V (4, 6) potentials is assessed according to the calculated fundamen-

tals in Figure 4.5 and Table 4.4, using the Ṽ (4)→ V (6) results as a reference. The

error is also plotted as a function of anharmonicity,

∆anh = ω − ν, (4.15)

where ν is the frequency from VCI calculation with the reference potential.

In general, the distribution of error for Ṽ (2, 4)→ V (4, 6) and Ṽ (3, 4)→ V (4, 6)

potentials is largely unaffected by truncation of V (6), with MAEs of 4.5 and 1.0

cm−1, respectively. Plotted as a function of anharmonicity, it is clear that the

Ṽ (2, 4)→ V (4, 6) potential does not always improve on the harmonic approximation

in the low frequency region, as indicated by points falling above the black diagonal

line and below the red anti-diagonal line (|error| > ∆anh). However, it shows good

improvement in the high frequency region, with a maximum deviation of 15.8 cm−1.

Therefore, this approach could possibly be used for qualitative modelling of high

frequency XH stretching modes, where X is a heavy atom, and would be particularly

efficient coupled with a lower quality ab initio or density functional method for

generating the potential energy surface.
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Ṽ (3, 4) → V (4, 6)

(d)

Figure 4.5: Accuracy of (a,b) Ṽ (2, 4) → V (4, 6) and (c,d) Ṽ (3, 4) → V (4, 6) po-

tentials for calculating fundamental frequencies with Ṽ (4) → V (6) as a reference.

Black and red solid lines correspond to diagonal and anti-diagonal lines, respectively.

Anharmonicity, ∆anh, is defined as in equation (4.15).

Table 4.4: Summary of MAE values for potentials compared to Ṽ (4) → V (6), in

Figures 4.6 and 4.5.

MAE (cm−1)

Ṽ (2, 4)→ V (4, 6) 4.5

Ṽ (3, 4)→ V (4, 6) 1.0

V (3, 4) 8.6

V (4) 9.9
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The Ṽ (3, 4) → V (4, 6) potential produces results that show good agreement

across the whole frequency range, with a maximum deviation of 13.5 cm−1 and most

fundamentals within 5 and 2 cm−1 in the high and low frequency ranges, respectively.

It can be used, together with a high level ab initio method, for accurate prediction

of fundamental vibrational frequencies.

4.4.4 Existing methods

It is a common practice to use V (3, 4) and V (4) potentials when studying the vibra-

tional structure of molecules,[75–84] usually coupled with methods based on second

order vibrational perturbation theory. This is mostly due to the computational cost

associated with calculation of higher order force constants, and increasing error at

higher orders of numerical differentiation. The quality of these potentials is as-

sessed by the error data illustrated in Figure 4.6 and summarised in Table 4.4, using

frequencies calculated based on Ṽ (4)→ V (6) potential as a reference.

Frequencies calculated from both V (3, 4) and V (4) potentials show significant

deviations from the reference data with MAEs of 8.6 cm−1 and 9.9 cm−1, respec-

tively. The low frequency region is better described with the V (3, 4) potential, which

compensates for its worse performance in the high frequency region, resulting in a

smaller MAE.

The improved performance of the V (3, 4) potential over V (4) is almost certainly

due to cancellation of errors. Ignoring four mode coupling leads to underestimation

of anharmonicity relative to V (4) (Figure 4.2(b)), thus cancelling out some of the

error arising from ignoring higher order force constants that tends to lead to overcor-

rection (Figure 4.6(c)). The deviations at low frequencies are particularly troubling

when viewed as a function of anharmonicity in Figures 4.6(b) and 4.6(d). A consid-

erable number of points lie below the red anti-diagonal line, which corresponds to

overcorrection errors that give frequencies that are worse than the original harmonic

estimates, but lower than the true values.

In this context, it is surprising how accurately experimental frequencies can

be predicted using semi-quartic force fields, V (3, 4), in combination with second

order perturbation theory (VPT2). Agreement to within 10.0 cm−1 of experiment
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Figure 4.6: Accuracy of (a,b) V (3, 4) and (c,d) V (4) potentials for calculating fun-

damental vibrational frequencies with Ṽ (4)→ V (6) data as a reference. Black and

red solid lines correspond to diagonal and anti-diagonal lines, respectively. Anhar-

monicity, ∆anh, is defined in equation (4.15).
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is generally observed for small molecules,[61,63,69–74] provided high quality ab initio

methods are used to construct the potential and resonances are corrected for. As

is common with perturbation theory based methods, this approach suffers from

instabilities due to near degenerate states, which require special treatment. This

is likely to occur more frequently with larger systems.[85] Nonetheless, black box

implementations have been developed and are commonly used.[5,86,87] As such, our

conclusions from Figure 4.6 are mainly concerned with more rigorous variational

treatments, as in VCI. It would be interesting to investigate whether VPT2 still

provides accurate results for larger molecules, with more near degeneracies and more

complicated resonance structures with multiple connected resonances, compared to

more rigorous variational approaches like VCI, but that is beyond the scope of this

work.

4.4.5 Timing and Scaling

The limiting steps in the overall procedure are construction of the Ṽ (mc, 4) potential

from ab initio data and subsequent transformation to V (4, 6) in rectilinear normal

modes. The scaling and feasibility of the first step depends on the method used

to solve the electronic structure problem, which is beyond our control. The second

step has formal scaling of O(N6
mode) and O(N7

mode) operations for mc = 2 and 3,

respectively. The calculation can be sped up by pre-screening of the Ṽ (mc, 4) po-

tential, and/or implementing a parallel algorithm. Even more than timing, memory

requirements play a big role in determining the feasibility of a computation. Most of

the memory during coordinate transformation goes into storing the objects V (4, 6)

and L̃, which scale as O(N4
mode) and O(N5

mode) in size, respectively.

In order to estimate the range of system sizes that this approach can be effec-

tively used on, blank calculations for the coordinate transformation step, where all

operations are performed using dummy data arrays, were performed on a desktop

machine with a 2.7 GHz Intel Core i5 processor and 16 GB 1600 MHz DDR3 mem-

ory. This corresponds to a worst case scenario where no screening is used. The

timings and total memory are summarised in Table 4.5.

This illustrates that both transformations can be performed routinely on a mod-
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Table 4.5: Timing and total memory (RAM) requirement for coordinate transfor-

mation step of Ṽ (mc, 4)→ V (4, 6) potential. The memory does not vary strongly

with mc, since the quartic force field is small in comparison to V (4, 6) and L̃, so

only a common value rounded to 2 d.p. is reported. Blank calculations were run

on a desktop machine with a 2.7 GHz Intel Core i5 processor and 16 GB 1600 MHz

DDR3 memory.

time (hours)

natoms mc = 2 mc = 3 Memory (MB)

10 0.01 0.1 100

15 0.15 3.2 250

20 1.1 30.4 900

25 4.8 182.3 2800

ern desktop computer, within about 5 hours for mc = 2 and 8 days for mc = 3, for

a 25 atom system. Screening of the Ṽ (mc, 4) potential can provide significant speed

up and the main limitation in studying larger systems is the memory required to

store the L̃ derivatives.

4.5 Conclusions

We have implemented and tested a coordinate transformation procedure for inter-

converting force field expansions between rectilinear and curvilinear normal mode

coordinates. Transforming from low order, low mode representation force fields con-

structed in curvilinear coordinates to higher order, higher mode expansion force

fields in rectilinear normal mode coordinates minimises the number of costly ab ini-

tio calculations that are required to construct the force field but enables the nuclear

vibrational problem to be easily solved, as the kinetic energy operator takes a simple

form in rectilinear normal mode coordinates. We overall recommended transforming

from Ṽ (3, 4) to V (4, 6), which we show introduces errors of only 1 cm−1, on average,

across our test set of molecules.
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This is, to the best of our knowledge, the first completely general procedure that

enables sextic force fields in rectilinear normal mode coordinates to be generated

for realistically sized molecules, requiring only sufficient ab initio calculations to

construct the 3MR QFF in curvilinear normal modes.

Although we have chosen to use curvilinear normal mode coordinates for sim-

plicity and ease of implementation in this proof-of-principle study, our coordinate

transformation procedure is completely general and will work with any uniquely

defined, non-redundant set of curvilinear internal coordinates. Indeed, convergence

with respect to the extent of mode coupling in Ṽ may be further improved by using

coordinates that even more appropriately represent independent modes of molecular

motion.

Appendix

Consider two complete and non-redundant sets of coordinates: curvilinear coor-

dinates {η1, η2, . . . , ηN}, and rectilinear coordinates {d1, d2, . . . , dN}. Curvilinear

coordinate ηi can be represented as a Taylor series expansion in {dα} according to

ηi =
∑

α

Bi,α∆dα +
1

2!

∑

α,β

Bi,αβ∆dα∆dβ +
1

3!

∑

α,β,γ

Bi,αβγ∆dα∆dβ∆dγ + · · · , (4.16)

where the necessary derivatives calculated at equilibrium are defined as

Bi,α1...αn =
∂nηi

∂dα1 . . . ∂dαn

,

and are assumed to be available.

The reverse relationship, representing dα as a Taylor series in {ηi} can also be

established,

dα =
∑

i

Aα,i∆ηi +
1

2!

∑

i,j

Aα,ij∆ηi∆ηj +
1

3!

∑

i,j,k

Aα,ijk∆ηi∆ηj∆ηk + · · · , (4.17)

however the necessary values of

Aα,i1...in =
∂ndα

∂ηi1 . . . ∂ηin
,
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cannot be calculated directly. Instead they can be obtained from elements of B

derivatives. This approach has been thoroughly described by Allen and Császár in

Ref. [58], and the necessary relationships are summarised below.

Aα,ij =−
∑

β,γ

Aβ,iAγ,jFα,βγ, (4.18)

Aα,ijk =−
∑

β,γ

(Aβ,iAγ,jk + Aβ,jAγ,ik + Aβ,kAγ,ij)Fα,βγ −
∑

β,γ,δ

Aβ,iAγ,jAδ,kFα,βγδ,

(4.19)

where

Fα,βγ =
∑

i

Aα,iBi,βγ, (4.20)

Fα,βγδ =
∑

i

Aα,iBi,βγδ. (4.21)

In case of curvilinear normal modes, we replace {ηi} with {q̃i} and {dα} with

{qα} in the above, and use L̃ instead of B for consistency with the main discussion,

than the expressions for A can be simplified by noting that, L̃i,α = δiα where δi,α is

the Kronecker delta. Leading to,

Aα,ij =− L̃α,ij, (4.22)

Aα,ijk =
∑

β

(L̃β,jkL̃α,iβ + L̃β,ikL̃α,jβ + L̃β,ijL̃α,kβ)− L̃α,ijk (4.23)
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Chapter 5

Balancing Accuracy and Efficiency in

Screened Vibrational Configuration

Interaction Calculations

5.1 Introduction

Advances in electronic structure methods and computer technology enable increas-

ingly accurate modelling of electronic properties for ever larger and more complex

chemical systems. In contrast to the sustained and ongoing progress in the devel-

opment and application of methods for solving the electronic Schrödinger equation,

harmonic normal mode analysis remains the only widely used method for solving

the nuclear Schrödinger equation for realistically sized chemical systems.

This can largely be attributed to the difficulty and computational cost associated

with modelling how the energy changes as the molecule vibrates, i.e. constructing

multidimensional anharmonic potential energy surfaces (PES). As already described,

we have recently implemented a coordinate transformation procedure to overcome

this problem, based upon obtaining concise, low order PES expansions in internal

coordinates and then transforming to lengthier, higher order expansions in normal

mode coordinates, to facilitate solving the nuclear vibrational problem. This min-

imizes the number of computationally intensive ab initio calculations required to

accurately describe the PES.
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Therefore, we now turn our attention to solving the nuclear vibrational problem

in a general, scalable and accurate manner. Any two of these constraints can be read-

ily satisfied by standard methods; harmonic normal mode analysis[1] and vibrational

self-consistent field theory (VSCF)[2–9] are general and scalable, but not particularly

accurate, vibrational configuration interaction (VCI)[9–11] and vibrational coupled

cluster (VCC)[9,12–15] methods are accurate and general, but scale badly with molec-

ular size. Methods based upon expressing both the kinetic energy operator and

potential energy surface in internal coordinates[16,17] are highly accurate and poten-

tially scalable, but lack generality. Hence, in our opinion normal mode coordinates

are the only practical choice for a black box nuclear vibrational structure model.[18]

Second-order vibrational perturbation theory (VPT2)[9,19–29] displays a promising

balance of generality, scalability and accuracy, but naïve implementations suffer

from numerical instability due to accidental near-degeneracies leading to divergence

of the VPT2 energy expression. More sophisticated implementations avoid this

problem by constructing and diagonalizing VCI sub-matrices for sets of resonant

frequencies. However, the highly efficient analytical implementations that rely on

pre-determining sets of resonant states do not always capture all relevant states

and their couplings.[30,31] More rigorous methods have recently been developed that

identify resonant states using an approximate anharmonic wavefunction ansatz.[23,32]

While these methods are expected to be more reliable, they are still not designed to

converge to the full VCI limit.

An alternative, although less popular,[33–38] way of combining VCI and VPT2

is to first perform a VCI calculation and then apply a VPT2 correction. This is

conceptually appealing, as VCI naturally captures strong resonances, and VPT2 is

designed to capture small perturbations from a reference state. Combining these

two approaches in a simple but robust iterative procedure enables strongly coupled

terms identified by large contributions to the VPT2 energy expression to be included

in the VCI matrix, ensuring convergence to the VCI limit.[34–37]

Even though this procedure reduces the number of elements explicitly included

in the VCI matrix, previous studies have found that memory requirements can

still become prohibitive, even when performing case studies on small molecules.

Therefore, a range of strategies have been employed to reduce the number of VCI
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matrix elements calculated and stored, including; using a state-specific approach

that involves performing separate VCI calculations for each vibrational state of

interest,[34,36,37] restricting the maximum excitation level, below the convergence

limit,[34,36,38] restricting the extent of mode-coupling in excited states, particularly

for larger molecules,[35,37] and mode-by-mode customization of the VCI basis.[33] Dis-

advantages associated with these strategies include increasing run-time, decreasing

accuracy or forfeiting accessibility by requiring expert user input.

Here, we address the memory bottleneck problem differently, using a modified

VPT2 screening procedure to minimize the number of configurations selected, and

using sparse matrices to store only non-negligible matrix elements, in conjunction

with sparse matrix diagonalization routines. The efficiency of this process enables

us to quantify memory requirements as a function of molecule size across a test set

of 45 molecules, ranging in size from 3 - 10 atoms, and establish the computational

scaling behaviour.

Previous studies have also indicated that time requirements can also become

substantial.[33–38] To reduce overall run time, the most commonly employed strat-

egy is to decrease the time required to generate and evaluate the potential energy

surface, either by limiting the dimensionality of the potential energy surface and/or

using a truncated series expansion to represent the PES, typically a quartic force

field.[33–38] However, not only does this decrease accuracy, but it can destabilize the

VCI wavefunction at higher excitation orders, leading to divergence in calculated

frequencies.[39] Therefore, in the present work, we employ sextic force fields through-

out,[40] and explicitly quantify the effect of using reduced mode representations on

the accuracy of calculated fundamentals and time required.

The overall aim of the present work is to establish optimal user-adjustable pa-

rameters controlling the description of the PES, and the construction of the wave-

function that minimize errors for a given computational cost, eliminating errors

due to premature truncation of the wavefunction and/or force field expansion. To

achieve this, we quantify errors and computational resource requirements associ-

ated with each approximation, truncation or numerical screening procedure used

during VPT2-screened VCI calculations to the convergence limit, and explore the

optimal balance between including configurations in the VCI expansion explicitly or
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capturing their contribution using a post-hoc VPT2 correction.

5.2 Theory and algorithms

5.2.1 VPT2

The vibrational Hamiltonian must be partitioned into a primary analytically solv-

able component and a secondary weak perturbation. We follow the usual approach

of separating out the kinetic energy and harmonic potential terms, leaving the an-

harmonic potential correction and, optionally, the Coriolis coupling operator.

Ĥ = Ĥ0 + ∆Ĥ (5.1)
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For computational expedience, basis states are constructed as Hartree products of

harmonic oscillator basis functions:

Φn (Q1, ..., QM) =
M∏

i=1

φni
(Qi) (5.5)

where n is a string of quantum numbers n1, ..., ni, ...nM , specifying the vibrational

state across allM modes. The strings that define the complete set of possible VPT2

and VCI basis states are generated by specifying a maximum value for the sum of the

vibrational quantum numbers, which will henceforth be referred to as the excitation

level, with its value denoted in round brackets, e.g. VCI(8) matrix is indexed by

configurations with a sum of vibrational quantum numbers of 8 or less.

The VCI wavefunction is expressed as a linear combination of basis states:

Ψn (Q1, ..., QM) =
∑

n′

cn,n’Φn’ (Q1, ..., QM) (5.6)
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with associated energies εn. We have previously described in detail how VCI matrix

elements are evaluated and coefficients obtained.[39]

The harmonic energy levels for each Hartree product basis state Φn’ (Q1, ..., QM)

are denoted by εn’,0. These are calculated by the usual harmonic normal mode

analysis procedure.[39]

It is also helpful to partition the set of all excited Hartree product basis states

defined by a given maximum excitation level into mutually exclusive VCI and VPT2

expansion sets.

The general expression for the second order perturbation theory energy correction

is then:

∆εn =
∑

n’

| 〈Ψn (Q1, ..., QM)|∆Ĥ |Φn’ (Q1, ..., QM)〉 |2
εn − εn’,0

(5.7)

The sum runs over all excited states in the VPT2 expansion set but not the VCI set.

This reduces to the usual non-degenerate VPT2 energy expression if the unperturbed

wavefunction is harmonic i.e. Ψn = Φn, εn = εn,0 and the VPT2 expansion set

contains all harmonic excited states except n.

For future reference, we define the VPT2 pair energy, ξn,n’, as the contribution

each VPT2 basis state, n’, makes to the overall VPT2 energy correction for a given

VCI state, n:

ξn,n’ =
| 〈Ψn (Q1, ..., QM)|∆Ĥ |Φn’ (Q1, ..., QM)〉 |2

εn − εn’,0
(5.8)

5.2.2 VPT2 based screening

The primary aim of our screening algorithm is to select a VCI sub-matrix that

contains only the configurations required to describe the ground and fundamental

excited states of the system i.e. configurations that couple strongly to each of these

states, or are responsible for strong coupling between them. In the process, we also

determine VPT2 corrections for each state for each VCI sub-matrix generated.

Our iterative VPT2 based screening algorithm proceeds as described below. In

the illustrations, each grid point represents an individual VCI matrix element, dark

grey shading denotes elements explicitly selected or generated for inclusion in VCI
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sub-matrix, light grey points represent elements calculated during VPT2 screening

which may be subsequently also included in the VCI sub-matrix, and a thick black

line denotes a VCI sub-matrix to be diagonalized.

1. Generate the upper triangular elements of the square and symmetric VCI(1)

sub-matrix, of leading dimension Ninc = M +1, and diagonalize to obtain the initial

VCI wavefunction for the ground and fundamental excited states.

2. Generate the remaining unique elements in the top Ninc ×Ntotal block of the

full VCI matrix.

3. Select configurations to include in the VCI sub-matrix to be diagonalized

based upon the VPT2 pair energy (5.8) exceeding a pre-set threshold for the ground

state, fundamental excited states and states strongly resonant with fundamentals,

noting that the full VCI matrix elements are also intermediates in the evaluation of

the VPT2 pair energy, as 〈Ψn|∆Ĥ |Φn’〉 = 〈Ψn| Ĥ |Φn’〉 if n 6= n’.
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4. Add new configurations to VCI sub-matrix, Ninc = Ninc +Nselected, and diag-

onalize to update VCI wavefunction.

5. Repeat steps 3 and 4 until no new configurations are selected.

6. Repeat steps 3, 4 and 5, decreasing the screening threshold, until fundamental

VPT2-corrected VCI frequencies are converged.

In our algorithm, a resonant state is defined as any state that has a squared

coefficient value from one of the fundamentals in its VCI wavefunction larger than

a pre-set threshold, here set to 0.15. When strong resonances occur, assignment of

the fundamental becomes unclear and inclusion of resonant states in the VCI matrix

during each VPT2 step ensures that all relevant basis functions are selected.

Sequentially lowering the VPT2 screening threshold value ensures that the VCI

wavefunction is iteratively improved so that it provides an appropriately accurate

reference state for selecting new configurations for inclusion at each VPT2 step.

Similarly, multiple configuration selection iterations are carried out at each VPT2

screening threshold, again to ensure that all relevant strongly coupled configurations

- and no irrelevant ones - are included in the VCI matrix. This double iterative

procedure minimizes the number of configurations included in the VCI matrix to be

diagonalized, and therefore results in a more memory efficient algorithm.
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5.3 Methods

Our test set comprises 45 polyatomic molecules containing up to 10 atoms for which

sextic force fields (SFFs) in normal mode coordinates are available[40–42]. For smaller

molecules (3-6 atoms), accurate SFFs of at least CCSD(T)/cc-pVTZ quality have

been compiled from the literature[40,41]. For larger molecules (6-10 atoms), HF/6-

311G** quality SFFs in normal mode coordinates have been generated via a co-

ordinate transformation procedure from quartic force fields (QFFs) constructed in

curvilinear internal coordinates.[42] A full description of the coordinate transforma-

tion and numerical differentiation procedures can be found in Chapter 4. Sixth-

order expansions in normal mode coordinates ensure that the PES is accurately

represented in the energy regime relevant to calculating fundamental vibrational

frequencies.[42] Full details of the potential energy surfaces for all molecules in our

data set are available as Supporting Information.

Benchmark VCI results are generated by including in the VCI expansion all

configurations with a specified sum of vibrational quantum numbers to a maximum

of 6, for all molecules with 8 or fewer atoms. We have previously shown that VCI(6)

predicts fundamental frequencies to well within 1 cm−1 of benchmark values, on

average, across a chemically diverse data set.[39]. For 9 and 10 atom molecules, the

time and memory requirements for the naïve VCI(6) algorithm become prohibitive,

and it is necessary to explore strategies for decreasing the number of VCI matrix

elements that must be calculated and stored.

The first, and simplest strategy, is to restrict the number of vibrational modes

that may be concurrently excited when forming the VCI basis states. Here, we

implement reduced mode coupling by excluding all configurations with more than

3, 4 or 5 modes concurrently excited, regardless of the total sum of vibrational

quantum numbers for each basis state.

VPT2-based screening is then carried out using the algorithm described above,

iterating over different choices of screening threshold ranging from 1×10−4 to 1×10−7

Eh, tabulated in Supporting Information. To minimize memory requirements, all

non-negligible VCI matrix elements (> 1 × 10−8 Eh) are stored in sparse matrix

format and the VCI sub-matrix is diagonalized using the sparse matrix routines
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implemented within SciPy.

To further reduce run time, a reduced mode representation of the potential may

be used. In previous work, we have demonstrated that omitting force constants

with more than 4 unique indices from the SFF does not substantially change the

calculated fundamental frequencies, introducing errors of less than 1 cm−1, on av-

erage. We also used a threshold of 1 cm−1 to screen the force constants, as it was

previously shown to incorporate mean error of only 0.2 cm−1.[42] Although errors

due to truncating the PES expansion and wavefunction expansion are expected to

be only weakly correlated, we test this explicitly by repeating reduce mode coupling

calculations and VPT2-based screening calculations using 4 mode representation

sextic force fields.

Once an optimal force constant and wavefunction screening protocol has been es-

tablished, it is deployed to carry out reduced mode-coupling, VPT2-screened VCI(6)

calculations for all molecules in our test set, denoted VCIscr(6,mMC), where m =

mode coupling level. The same calculation with a VPT2 correction applied to ac-

count for all configurations not explicitly included in the screened VCI wavefunction

is denoted VCIscr(6,mMC)+VPT2. If m = 6, i.e. no reduction in mode coupling is

applied, the mode coupling specifier is omitted, e.g. VCIscr(6).

The accuracy of screened VCI(6) calculations, with or without VPT2 correc-

tions, for molecules containing up to 8 atoms is established by comparison with un-

screened, full SFF VCI(6) calculations. Although the accuracy of screened VCI(6)

calculations on 9 and 10 atom systems cannot be directly established, the results

of screened VCI(6) calculations are nonetheless important for quantifying scaling of

computational resource requirement.

Computational efficiency is assessed by comparing number of VCI matrix ele-

ments evaluated during a screened calculation compared to unscreened to quantify

CPU time savings, and analogous statistics on stored VCI matrix elements to quan-

tify the reduction in memory requirements.
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5.4 Results & Discussion

5.4.1 Reduced mode coupling in VCI expansions

Errors in VCI(6) anharmonic frequencies due to applying reduced mode coupling

approximations are illustrated in Figure 5.1 and summarized in Table 5.1. Errors

are calculated by subtracting approximate frequencies from reference data obtained

at VCI(6) with a full SFF.

0 1000 2000 3000 4000

ν (cm−1)

−60

−40

−20

0

20

40

60

3MC
error
(cm−1)

(a)

0 1000 2000 3000 4000

ν (cm−1)

−20

−15

−10

−5

0

5

10

15

20

4MC
error
(cm−1)

(b)

0 1000 2000 3000 4000

ν (cm−1)

−10

−5

0

5

10

5MC
error
(cm−1)

(c)

Figure 5.1: Errors in VCI(6) fundamental frequencies resulting from reducing the

extent of mode-coupling in the wavefunction: a) 3-mode coupling; b) 4-mode cou-

pling and c) 5-mode coupling, marked according to molecular size: 4 atoms (×), 5
atoms (4), 6 atoms(9), 7 atoms (+), 8 atoms(#).

The data illustrated in Figure 5.1 show that errors decrease as the extent of mode

coupling increases, as expected. The error distribution also changes. At lower mode
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Table 5.1: Mean absolute errors (cm−1) in fundamental vibrational frequencies as

a function of molecule size, due to reduced mode coupling (MC) in the VCI(6)

wavefunction.

natom 3MC 4MC 5MC

4 1.5 0.04 0.00004

5 5.3 0.5 0.01

6 16.8 2.1 0.2

7 19.9 2.9 0.1

8 32.9 4.2 0.3

coupling levels, the majority of errors are < 0, i.e. the approximate frequencies

are larger than the reference values. This indicates that the anharmonicity in each

fundamental frequency has not been completely captured.

At 5 mode coupling, the errors become more randomly distributed, suggesting

that the remaining errors are due to neglect of indirect coupling. The large deviations

at higher frequencies are due to coupling with resonant states, which are difficult

to capture correctly. Errors due to resonant states that result in underestimation

of anharmonicities are less pronounced at 3 and 4 MC, mainly because they are

of the same magnitude as errors arising from non-resonant states. However, errors

in resonant states that lead to overestimation of anharmonicities (error > 0) can

clearly be distinguished in all panels of Figure 5.1.

Upon inspection of Figure 5.1, it seems that larger molecules tend to have larger

errors, particularly at lower mode coupling levels. This effect is quantified in the

mean absolute error data presented in Table 5.1.

From Table 5.1, it is clear that 3MC errors are both large and strongly correlated

with molecular size. Therefore, despite the significant reduction in computational

cost due to truncating the VCI wavefunction at 3 mode coupling, the deteriorating

accuracy of results as a function of molecule size makes this approach inappropriate

for larger molecules.

On the other hand, 5 mode coupling truncation of the wavefunction affords
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Table 5.2: Mean absolute errors (cm−1) in fundamental vibrational frequencies for

all molecules containing up to 8 atoms, resulting from VPT2 screening of the VCI

wavefunction terminating at a range of different screening threshold values, both

with and without a subsequent VPT2 correction accounting for weakly coupled

configurations not explicitly included in the VCI wavefunction.

Screening VCIscr(6) VCIscr(6)

threshold (Eh) + VPT2

1× 10−4 65.5 10.1

1× 10−5 24.9 3.6

1× 10−6 10.2 1.3

1× 10−7 4.2 0.4

highly accurate fundamental frequencies with errors that are only weakly dependent

on molecule size. However, the efficiency gains from using 5MC are modest, so do

not significantly extend the limits of applicability beyond the molecules that may

otherwise be modelled using full VCI(6).

Therefore, we overall recommend 4 mode coupling pre-screening of the VCI

wavefunction for an acceptable balance between accuracy loss and efficiency gain.

However, we do note that this can introduce up to 15 cm−1 errors in fundamental

frequencies in the worse case scenario of highly anharmonic, strongly coupled and

resonant modes. This approximation also routinely introduces errors around 5 cm−1,

particularly for larger molecules.

5.4.2 VPT2 screening

Mean absolute errors in VPT2-screened VCI frequencies, with an optional VPT2

correction, are presented as a function of final screening threshold in Table 5.2. In

both cases, errors in calculated fundamental frequencies decrease as the screening

threshold decreases and more configurations are included in the VCI sub-matrix.

However, as the VPT2 correction provides substantially more accurate results for

a minimal increase in computational cost, we recommend that it is always applied.
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Therefore, all subsequent VPT2 screening results presented in this work will include

the VPT2 correction. We also note, in passing, that the VPT2 correction does not

alter the rate of convergence with respect to screening threshold, but rather the

associated pre-factor.

To assess the scalability of the VPT2 screening approach implemented here, it

is useful to examine the relationship between error and molecule size, as illustrated

in Figure 5.2, with associated summary statistics presented in Table 5.3.
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Figure 5.2: Errors in VCIscr(6) + VPT2 with different thresholds at which the VPT2

screening procedure is terminated: a) 1× 10−5 Eh; b) 1× 10−6 Eh and c) 1× 10−7

Eh. Data points are marked according to molecular size: 3 atoms (•), 4 atoms (×),
5 atoms (4), 6 atoms(9), 7 atoms (+), 8 atoms(#).

Unlike the errors associated with a priori reduction in mode coupling, VPT2

screening errors are randomly distributed for all choices of screening threshold value.
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Table 5.3: Breakdown of mean absolute errors (cm−1) in fundamental frequencies

by molecule size. Frequencies are calculated using VCIscr(6) + VPT2, with a range

of different final screening threshold values.

Screening threshold

natom 10−5 Eh 10−6 Eh 10−7 Eh

3 1.6 0.1 0.005

4 2.7 0.3 0.03

5 3.4 0.5 0.1

6 3.8 1.3 0.3

7 3.8 1.4 0.4

8 3.7 1.9 0.6

Further, at the highest acceptable screening threshold of 10−5 Eh, errors are only

weakly related to molecular size, which makes this approach a particularly attractive

way of reducing both the time and memory demands of a full VCI(6) calculation.

However, it should be noted that maximum errors associated with applying the

10−5 Eh screening threshold can be significant, with outliers in Figure 5.2 at up to

30 cm−1, which are due to states with strong resonances. It may be safer to use a

screening threshold of 10−6 Eh, which predicts fundamental frequencies to within 15

cm−1 in all cases, in line with the maximum error associated with applying the 4

mode coupling approximation. However, this will come at increased computational

cost, as discussed in more detail later.

Using a screening threshold of 10−7 Eh produces the most accurate results, but

this gain in accuracy is not worth the associated increase in computational cost. As

using this screening threshold will not be practical for larger molecules, we do not

investigate it any further here.

5.4.3 Reduced mode representation of the potential

We have previously shown that reducing the mode representation (MR) of potential

energy surface expansions is an effective method for decreasing computational run
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Table 5.4: Mean absolute errors (cm−1) in fundamental frequencies as a function of

molecule size, excluding triatomics, using 4 mode coupling in the VCI(6) wavefunc-

tion, VCI(6,4MC), with both full (6 mode) and reduced (4 mode) representations

of the sextic force field potential.

VCI(6,4MC)

natom Full SFF 4MR SFF

4 0.04 0.05

5 0.5 0.6

6 2.1 2.5

7 2.9 3.2

8 4.2 4.9

Aggregate 2.6 2.9

time without significantly sacrificing accuracy (see Chapter 4). Here, we investigate

the extent of coupling between wavefunction truncation and PES truncation errors.

For the larger molecules in our data set (6-10 atoms), we employ a coordinate

transformation procedure to obtain 4MR SFFs in normal coordinates from 3MR

QFFs constructed in curvilinear internal coordinates.[42] This approach minimizes

the computational cost of both generating the ab initio data required to construct

the force field, and performing the coordinate transformation process, both of which

become particularly important for larger molecules.

For the smaller molecules (4-6 atoms, excluding triatomics for which the reduced

mode representation makes no change) in our data set, 4MR SFFs are generated

more directly by simply truncating the SFF expansion to include only force constants

with at most 4 different indices.

The data presented in Tables 5.4 and 5.5 confirm that the 4MR SFF provides

an excellent approximation to the full SFF at much reduced computational cost.

Further, we confirm that errors due to truncation of the force field expansion are

not amplified by also truncating the wavefunction expansion.
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Table 5.5: Mean absolute errors (cm−1) in fundamental frequencies as a function of

molecule size, excluding triatomics, using VCIscr(6) (screening threshold = 10−5 and

10−6 Eh) + VPT2, with both full (6 mode) and reduced (4 mode) representations

of the sextic force field potential.

VCIscr(6)+VPT2, VCIscr(6)+VPT2,

10−5 Eh threshold 10−6 Eh threshold

natom Full SFF 4MR SFF Full SFF 4MR SFF

4 2.7 2.7 0.3 0.3

5 3.4 3.2 0.5 0.5

6 3.8 3.9 1.3 1.4

7 3.8 3.2 1.4 1.3

8 3.7 3.9 1.9 1.9

Aggregate 3.6 3.6 1.3 1.4

5.4.4 Combined screening algorithm - accuracy and compu-

tational scaling

The data presented above allow us to make some clear and unambiguous choices that

reduce computational cost with minimal accuracy loss. Throughout the remaining

results and discussion, the PES will always be represented as a 4MR SFF and the

VPT2 correction will always be applied to the VPT2-screened wavefunction.

Larger errors arise due to applying the reduced mode coupling approximation

and using the VPT2 screening procedure, particularly when the mode coupling level

is low and the VPT2 screening threshold is high. In this case, it is necessary to

weigh up the accuracy loss with the efficiency gain.

Here, we quantify the errors associated with using both reduced mode coupling

and VPT2 screening in tandem, and establish the scaling laws that apply to com-

putational time and memory requirements.

Errors in fundamental frequencies are illustrated in Figure 5.3 and summarized

in columns 4 and 6 of Table 5.6. For clarity, reference data from analogous reduced
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mode coupling (column 2) or VPT2 screening calculations with thresholds of 10−5

and 10−6 Eh (columns 3,5) are reproduced in this Table.
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Figure 5.3: Errors in VCIscr(6,4MC) + VPT2 with different thresholds at which the

VPT2 screening procedure is terminated: a) 1 × 10−5 Eh; b) 1 × 10−6 Eh. Data

points are marked according to molecular size: 3 atoms (•), 4 atoms (×), 5 atoms

(4), 6 atoms(9), 7 atoms (+), 8 atoms(#).

At a VPT2 screening threshold of 10−5 Eh with 4-mode coupling, screening

errors dominate for smaller molecules (up to 6 atoms), while errors due to screening

and reduced mode coupling become cumulative for larger molecules. Overall, the

error grows as a function of molecule size, reaching an average of 6 cm−1 across the

fundamental frequencies of all 8 atom molecules. Inspection of Figure 5.3 reveals

maximum errors of up to 30 cm−1, which can be attributed to the VPT2 screening

procedure rather than reduced mode coupling pre-screening

Decreasing the screening threshold to 10−6 Eh changes the error distribution

substantially. At this screening threshold, errors in calculated fundamental frequen-

cies are primarily due to the 4 mode coupling approximation rather than the VPT2

screening, as evident by comparing columns 2 and 6 of Table 5.6 and Figures 5.3(b)

and 5.1(b).

In both cases, the 4MC approximation is responsible for the component of the er-

ror that increases as a function of molecule size. Therefore, any approach based upon

4MC pre-screening is liable to continue losing accuracy as molecule size increases.

105



Table 5.6: Mean absolute errors (cm−1) in fundamental frequencies as a function

of molecule size, using VCIscr(6,mMC)+VPT2, with both full (m=6 mode) and

reduced (m=4 mode) coupling in the wavefunction, with screening thresholds of

10−5 and 10−6 Eh. VCI(6,4MC) data is also provided for reference. The potential

energy surface is described by a 4MR SFF in normal mode coordinates throughout.

No screening 10−5 Eh threshold 10−6 Eh threshold

natom 4MC Full 6MC 4MC Full 6MC 4MC

3 0 1.6 1.6 0.1 0.1

4 0.05 2.7 2.7 0.3 0.4

5 0.6 3.2 3.6 0.5 1.0

6 2.5 3.9 5.1 1.4 2.7

7 3.2 3.2 5.9 1.3 3.7

8 4.9 3.9 6.0 1.9 4.7

Therefore, it is also worth investigating the accuracy and computational cost asso-

ciated with performing VCIscr(6)+VPT2 calculations without any pre-truncation of

the wavefunction expansion.

As a rough measure of accuracy, not accounting for molecule size-dependence,

mean absolute errors associated with each proposed combination of reduced mode

coupling level and screening threshold are evaluated across the full data set and

reported in Table 5.7.

Associated empirical scaling laws for the total number of VCI matrix elements

calculated and the number of configurations selected for inclusion in the VCI sub-

matrix during the VPT2 screening procedure, both with and without reduced mode

coupling pre-screening, are given in Tables 5.8 and 5.9. The total number of matrix

elements calculated determines the run time, while the number of matrix elements

selected for inclusion in the VCI sub-matrix determines the memory requirements.

The data from which the scaling laws are derived are available as Supporting Infor-

mation.

Although the errors in fundamental frequencies at Vscr(6,4MC) + VPT2 with a
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Table 5.7: Mean absolute error (cm−1) in VPT2-screened and VPT2-corrected

VCI(6) frequencies, both with and without a priori reduction in mode coupling

(rows 1 and 2, respectively), and using loose and tight VPT2 screening thresholds

(columns 1 and 2, respectively). The potential energy surface is described by a 4MR

SFF in normal mode coordinates throughout.

10−5 Eh 10−6 Eh

4MC 5.1 cm−1 3.1 cm−1

Full 6MC 3.6 cm−1 1.3 cm−1

Table 5.8: Empirical scaling laws for the total number of matrix elements eval-

uated during VPT2-screened and VPT2-corrected VCI(6) calculations, both with

and without a priori reduction in mode coupling (rows 1 and 2, respectively), and

using loose and tight VPT2 screening thresholds (columns 1 and 2, respectively).

The potential energy surface is described by a 4MR SFF in normal mode coordinates

throughout.

10−5 Eh 10−6 Eh

4MC O(N5
mode) O(N6

mode)

Full 6MC O(N7−8
mode) O(N8−9

mode)
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Table 5.9: Empirical scaling laws for the number of elements selected for inclusion

in the VCI sub-matrix during VPT2-screened and VPT2-corrected VCI(6) calcula-

tions, both with and without a priori reduction in mode coupling (rows 1 and 2,

respectively), and using loose and tight VPT2 screening thresholds (columns 1 and

2, respectively). The potential energy surface is described by a 4MR SFF in normal

mode coordinates throughout.

10−5 Eh 10−6 Eh

4MC O(N1−2
mode) O(N2−3

mode)

Full 6MC O(N2
mode) O(N2−3

mode)

loose screening threshold (10−5 Eh) push the upper limits of what may be considered

acceptable, the major advantage of this approach is that its memory requirements

scale between linearly and quadratically with molecule size. The exact scaling be-

haviour is determined by the chemical nature of the molecule, and the extent of

coupling between vibrational modes. Further, significant speed-ups in run time are

achieved using this screening procedure, with run time scaling as N5
mode. By com-

parison, unscreened VCI(6) calculations formally scale as N12
mode. The favourable

combination of low memory and runtime scaling requirements mean this approach

may be the only realistic option for performing the VPT2-screened VCI calculations

on larger molecules.

However, if more accurate results are desired, it is necessary to either increase

the extent of mode-coupling or decrease the VPT2 screening threshold, or both. If

runtime, but not memory, is the limiting factor, e.g. on a shared memory symmet-

ric multiprocessing (SMP) supercomputer with limited walltime, VCIscr(6,4MC) +

VPT2 with a tighter screening threshold of 10−6 Eh is recommended.

Conversely, if memory, but not runtime, is the limiting factor, e.g. on a stan-

dard desktop machine, performing VPT2 screening (threshold = 10−5 Eh) without

reduced mode coupling gives significantly more accurate results only a small increase

in memory requirements compared to pre-truncating the wavefunction at 4MC.
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Finally, if computational resources are abundant, the safest approach that guar-

antees high accuracy even for larger molecules is VCIscr(6)+VPT2 with the tighter

screening threshold of 10−6 Eh.

5.5 Conclusions

Vibrational configuration interaction is a simple, robust, easy to implement and easy

to parallelize variational nuclear structure method. However, the need to include

highly excited states in the wavefunction expansion even to describe fundamental

frequencies results in poor scaling properties, and generally precludes its application

to realistically sized molecules of chemical interest.

Therefore, we have implemented and rigorously tested a range of strategies to

reduce the computational cost associated with VCI calculations for a collection of

molecules containing up to 10 atoms.

Truncating the sextic force field expansion at 4 mode representation gives sub-

stantial speed-ups with minimal accuracy loss, whether screening procedures are

applied to the VCI wavefunction or not. A priori reduction of mode coupling in the

wavefunction also significantly reduces runtime, but at the cost of systematically

underestimating anharmonicities and introducing errors that grow as a function of

molecule size. Iterative VPT2 screening of the VCI matrix decreases both runtime

and memory requirements. Both the extent of computational efficiency gain and

magnitude of error introduced depend on the final screening threshold. Applying a

subsequent VPT2 correction always improves the calculated fundamental frequen-

cies at minimal additional computational cost.

Overall, we recommend the VCIscr(6,4MC)+VPT2 procedure with a screening

threshold of 10−5 Eh, as the most efficient method that is capable of yielding rea-

sonably accurate results, subject to the caveat that some highly anharmonic, highly

coupled modes may incur substantial errors of up to 30 cm−1, and that errors are

likely to increase slightly as a function of molecular size.

For reliably accurate results, independent of molecular size, but still at much

reduced computational cost compared to VCI(6), we recommend VCIscr(6)+VPT2
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with a screening threshold of 10−6 Eh.
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Chapter 6

Quadratic Corrections to Harmonic

Vibrational Frequencies Outperform

Linear Models

6.1 Introduction

It is widely reported[1–7] and commonly accepted in the scientific literature that ab

initio derived harmonic vibrational frequencies tend to be larger than experimentally

observed fundamentals, due to the combined effects of anharmonicity and method-

ological incompleteness. Assuming that these effects are uniform across the spectral

range motivates the use of parameterized scaling factors to improve the agreement

between predicted and observed fundamental frequencies.[1–7] Within this empirical

framework, separate scaling factors are required for different ab initio method and

basis set combinations.[1–7]

However, there are two lines of evidence in the literature to suggest that straight-

forward linear scaling of normal coordinate force constants may not always be jus-

tified.

Firstly, internal coordinate force constant scaling approaches[8] achieve higher

accuracies than simple normal coordinate frequency scaling. However, this comes at

the cost of having to define appropriate internal coordinate sets and parameterize

different scaling factors for each internal coordinate. Although somewhat lacking in
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generality, this approach nonetheless illustrates the importance of different scaling

factors for different types of molecular motion.

Even within the literature on normal coordinate force constant scaling, there are

strong indications that anharmonicity and methodological incompleteness effects are

not, in fact, constant across the entire spectral range, with different scaling factors

required in low and high frequency regimes.[5,6] Down-scaling is always recommended

for high frequencies, but scaling factors for low frequencies vary significantly in both

magnitude and direction across different levels of theory, with a median recom-

mended value around 1.0, corresponding to no scaling correction.

These observations raise a number of questions:

• Can an alternative relationship between anharmonicity and harmonic normal

mode frequency be empirically established?

• Could this underpin a more accurate and/or robust anharmonic correction

model that retains the simplicity and generality of a frequency scaling ap-

proach?

• Are the low frequency scaling factors primarily accounting for methodological

incompleteness rather than anharmonicity?

6.2 Methods

To eliminate the confounding effects of methodological incompleteness, we use the

PyPES library of high quality semi-global potential energy surfaces (PES).[9] This

enables us to obtain benchmark anharmonic vibrational frequencies and their har-

monic counterparts for 226 unique fundamental vibrational modes. Although refer-

ence anharmonic vibrational frequencies are available in the literature for the PES

contained within the PyPES library, benchmark harmonic frequencies calculated

from these surfaces have not all been available until now. The 50 molecules within

the PyPES library vary in size from three to six atoms, and contain a range of differ-

ent atom types, bonding patterns and molecular topologies. Hence, the vibrational

modes of these molecules are expected to form a representative set. All benchmark
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anharmonic and harmonic frequencies used in this work are provided as Supporting

Information.

For larger molecules, where high level ab initio calculations to obtain accurate

potential energy surfaces are not feasible, previous work[5,6,10] suggests that density

functionals incorporating around 20% Hartree-Fock exchange reliably recover har-

monic frequencies comparable to those obtained at much higher levels of theory. We

therefore benchmark the ability of the B3LYP[11], B3PW91[12], PBE0[13], EDF2[10],

M05[14] and M06[15] functionals to recover benchmark harmonic frequencies for all

molecules in the PyPES library. We also assess the ability of the quadratic correc-

tion model defined above to predict anharmonic frequencies from DFT harmonic

frequencies.

All calculations are carried out in the atomic orbital basis sets that were used for

parameterizing each functional[16–20], augmenting each basis set with diffuse func-

tions for anionic molecules if not already included.[21,22] The CRENBL ECP ba-

sis[23,24] with the accompanying relativistic effective core potential (ECP) is used

for atoms larger than Kr. All (TD-)DFT geometry optimizations and subsequent

frequency calculations are carried out using the Q-Chem 4.2 program package[25],

employing a Euler-Maclaurin-Lebedev product quadrature grid comprising 75 radial

points and 302 angular points per radial point, with an SCF convergence threshold

of 10−8 and geometry optimization thresholds decreased by an order of magnitude

from their default values.

6.3 Results and Discussion

6.3.1 Anharmonicity Model

For clarity and consistency, we recast the scale factor approach of Radom et al.[5,6]

(6.1) as a linear correction model (6.2).

ν ≈ λνe (6.1)

ν ≈ (1− c1)νe (6.2)
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in which ν represents the benchmark anharmonic frequency we wish to approximate

and νe its harmonic equivalent. This enables us to recast the problem of minimizing

the difference between scaled and benchmark frequencies as a problem of approxi-

mating anharmonicities as a function of harmonic frequencies:

νe − ν ≈ c1νe (6.3)

Or, equivalently,

∆anh ≈ c1νe (6.4)

The optimal coefficient, c1, is determined by least-squares fitting to experimentally

derived or benchmark anharmonicities, i.e. by linear regression with ∆anh as the

response variable and νe as the independent variable, as illustrated in Figure 6.1(a).

As per equations (6.1) and (6.2), the coefficient, c1, derived in this manner is the

complement of the scaling factor, λ, defined by Radom et al. The quality of the

model is more evident upon examining the residual differences between predicted

and benchmark frequencies:

∆res = νpredicted − ν (6.5)

shown in Figure 6.1(b), noting that if no correction is applied to the harmonic

frequencies then νpredicted = νe and ∆res = ∆anh.

From Figures 6.1(a) and 6.1(b), it is clear that a single parameter linear cor-

rection model significantly overestimates anharmonicity corrections in the low fre-

quency, low anharmonicity regime while simultaneously underestimating anhar-

monicity corrections at higher frequencies. Indeed, low frequencies are often overcor-

rected to such an extent that the ‘improved’ frequency estimates are, in fact, further

from the experimental values than the original harmonic estimates. Points below

the red anti-diagonal line on Figure 6.1(b) fall into this category. Ideally, the trend

line on Figure 6.1(a) would provide a closer fit to the benchmark anharmonicity

data, resulting in residual errors in Figure 6.1(b) narrowly and randomly clustered

around the dashed horizontal line.

The tendency of the single parameter linear scaling model to overcorrect low

frequency modes is also reflected in the summary statistics presented in Table 6.1.

116



0 1000 2000 3000 4000

νe (cm
−1 )

−50

0

50

100

150

200

250
∆

an
h
(c
m
−1
)

(a)

−50 0 50 100 150 200 250

∆anh (cm
−1 )

−50

0

50

100

150

200

250

∆
li
n
ea
r

re
s

(c
m
−1

)

(b)

0 1000 2000 3000 4000

νe (cm
−1 )

−50

0

50

100

150

200

250

∆
an
h
(c
m
−1
)

(c)

−50 0 50 100 150 200 250

∆anh (cm
−1 )

−50

0

50

100

150

200

250

∆
p
ol
y

re
s

(c
m
−1

)

(d)

0 1000 2000 3000 4000

νe (cm
−1 )

−50

0

50

100

150

200

250

∆
a
n
h
(c
m
−1
)

(e)

−50 0 50 100 150 200 250

∆anh (cm
−1 )

−50

0

50

100

150

200

250

∆
q
u
ad

re
s

(c
m
−1

)

(f)

Figure 6.1: Left: Benchmark anharmonicities as a function of frequency, with trend-

lines representing; a) single-parameter linear model, c) dual-parameter polynomial

model, and e) single-parameter quadratic model. Right: Corresponding residual

errors as a function of anharmonicity, for b) linear, d) polynomial and f) quadratic

correction models.
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Table 6.1: Mean unsigned, mean signed and maximum signed errors in predicted

anharmonic frequencies (∆res), according to models defined by equation 6.6 and the

parameters given. All values reported in units of cm−1.

〈|∆res|〉 |∆res|max

approx c1 c2 all νmodel νmodel νmodel νmodel

> ν < ν > ν < ν

harmonic 0.0 0.0 47.0 47.6 8.2 236.5 17.3

linear 0.039640 0.0 19.6 24.7 18.2 106.9 44.0

polynomial 0.011214 0.000010982 9.9 12.9 8.1 82.5 28.0

quadratic 0.0 0.00001215 13.3 15.0 3.7 106.6 19.4

Although the mean absolute error decreases from 47.0 to 19.6 cm−1, the average

error associated with underpredicted frequencies increases from 8.2 to 18.2 cm−1,

with corresponding maximum error increasing from 17.3 to 44.0 cm−1. The c1 value

of 0.039640 corresponds to a λ value of 0.96036, in very good agreement with existing

scale factors parameterized for high level correlated ab initio methods across a larger

data set; 0.9639 for CCSD(T)/6-311+G(d,p).[6]

It is now evident that the dual scaling factor recommendation of Radom et al.[5,6]

implies that at least a bi-linear model is required to describe trends in anharmonicity

as a function of harmonic frequency. However, they do not give an exact prescription

for mapping scale factor to frequency range. To complete the specification of their

model, further optimization to determine the optimal ‘cross-over’ point would be

required.

Given the relatively straightforward relationship between anharmonicity and har-

monic frequency apparent upon visual inspection of Figure 6.1(a), this approach

seems needlessly complicated. Instead, we propose a second-order polynomial model:

∆anh ≈ c1νe + c2ν
2
e (6.6)

This produces a much closer fit to the anharmonicity data, as illustrated in Figure

6.1(c) and summarized in Table 6.1. Although the polynomial model produces

universally more accurate estimates of the benchmark frequencies than the single-

parameter linear model, there remains a cluster of outliers in the low frequency,
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high anharmonicity region, a single outlier at 1052 cm−1 and ∆anh = 99 cm−1, and

another outlying pair of modes with ∆anh << 0.

Modes with anomalously high anharmonicities all represent cases in which the as-

sumption of low amplitude vibrations about a single minimum on a PES expanded

in normal coordinates breaks down; for low barrier torsional modes (the low fre-

quency, high anharmonicity cluster) and the NH3 inversion mode (the lone outlier

at 1052 cm−1). In these cases, correcting for anharmonicity by scaling normal co-

ordinate force constants is inappropriate, as internal-coordinate based approaches

for expanding the PES and solving the nuclear vibrational Schrödinger equation are

required.

The two cases in which anharmonicity increases the fundamental frequencies cor-

respond to antisymmetric stretching modes of excited state ClO2 and BrO2. Early

studies attributed this behaviour to Cs-distortion of the equilibrium geometry pro-

ducing a very shallow double minimum in the potential.[26] However, more exten-

sive recent work has concluded that the negative (according to the sign convention

adopted here) anharmonicity corrections arise from strong anharmonic coupling be-

tween symmetric and asymmetric stretching modes.[27]. Again, a normal coordinate

force constant scaling approach is ill-suited to capturing these effects.

This is reflected in the residual error data illustrated in Figure 6.1(d). The

polynomial scaling model fails to allow harmonic frequencies to increase toward their

anharmonic counterparts, resulting in residual errors as large as, or even worse than,

the original harmonic estimates, i.e. |∆res| > |∆anh| when ∆anh < 0. In these cases,

the ‘least worst’ prediction would be no change from the harmonic approximation.

Otherwise, excluding torsional and inversion mode outliers, residual errors tend

to be randomly and narrowly scattered about ∆res = 0. Although the polynomial

model significantly outperforms the linear model on this metric, it has the disad-

vantage of requiring an additional empirical parameter. Further, there remain a

number of points below the red anti-diagonal line on Figure 6.1(d), indicating that

although the magnitude and extent of ‘worse-than-harmonic’ overcorrection errors

have decreased, they have not been completely eliminated.

Therefore, we seek a model that; minimizes overcorrection errors rather than
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minimizing the overall error, requires only a single parameter, and outperforms the

single-parameter linear model in every metric. This combination of constraints yields

the quadratic model illustrated in Figures 6.1(e) and 6.1(f), with c2 = 0.00001215.

A major advantage of this model is that it provides a lower bound estimate of

the anharmonicity in most cases. In other words, it generally corrects harmonic

frequencies down toward but not beyond their experimental values. This is partic-

ularly important when error direction is as important, if not more important, than

error magnitude.

For example, corrected frequencies that are higher than their true values will

yield lower bounds for derived thermochemical parameters such as enthalpies and

entropies. Further, this leads to lower total errors in calculated thermochemical

parameters, as anharmonic frequencies that are too high result in smaller errors

than frequencies that are too low by the same amount, due to the inverse exponential

ansatz.

There remain a handful of cases in which the quadratic model overpredicts the

anharmonicity correction, but in each of these cases, the error is small. Overcor-

rection errors are less than 12 cm−1 in all cases, averaging 3.0 cm−1. Like the

polynomial model, the quadratic model fails to account for the rare cases in which

the true frequencies are higher than the harmonic frequencies and a negative an-

harmonicity correction is required. In these cases, the quadratic model does not

significantly compound this error, but instead returns frequencies similar within 3

cm−1 of the original harmonic frequencies.

6.3.2 DFT Frequencies

(TD-)DFT frequencies are calculated using a range of commonly-used gradient-

corrected functionals including B3LYP[11], B3PW91[12], PBE0[13], M05[14] and M06[15].

The EDF2 functional, which was explicitly parametrized to reproduce anharmonic

vibrational frequencies,[10] is also used. Errors in (TD-)DFT harmonic frequencies

are calculated with reference to benchmark values:

∆harm = νDFT
e − νe (6.7)
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Table 6.2: Mean and maximum errors in DFT harmonic frequencies (∆harm), ex-

cluding excited states and molecules containing atoms larger than Kr. All values

reported in units of cm−1. a 6-31+G(d,p) or b 6-311+G(d,p) or c aug-cc-pVTZ basis

used for anions.

〈|∆harm|〉 |∆harm|max

Method all νDFT
e νDFT

e νDFT
e νDFT

e

> νe < νe > νe < νe

B3LYP/6-31G(d,p)a 23.4 18.4 26.3 72.0 138.3

B3PW91/6-31G(d,p)a 20.0 19.9 20.2 102.5 94.1

PBE0/6-311G(d,p)b 22.2 25.2 19.2 132.9 90.4

M05/6-311+G(2df,2p) 30.4 34.5 27.6 162.3 125.7

M06/6-311+G(2df,2p) 27.5 32.5 23.7 146.4 121.2

EDF2/cc-pVTZc 21.1 21.3 21.1 76.1 82.9

Mean and maximum absolute and signed errors in DFT harmonic frequencies are

reported in Table 6.2. Excited states and molecules containing atoms larger than

Kr are excluded from statistical analysis, because using TD-DFT or effective core

potentials introduces additional approximations beyond those inherent in the pa-

rameterization of each functional, which may further decrease the accuracy of the

calculated νDFT
e . For completeness, the full set of results is provided as Supporting

Information.

The data presented in Table 6.2 are broadly consistent with previous studies

that report mean or RMSD errors in harmonic frequencies of 30 – 40 cm−1 using

B3LYP[28] and PBE0[28,29] with triple zeta basis sets. The minor discrepancy between

the literature results and those reported here arises from our use of a larger and more

representative test set of molecules and our choice to use the basis sets in which each

functional was parameterized.

Of the functionals investigated here, EDF2 is generally the most accurate. This

is to be expected, as it was explicitly parameterized to recover CCSD(T)/cc-pVTZ

harmonic frequencies.[10] Nonetheless, significant errors in harmonic frequencies are

observed, with a mean absolute deviation of 21.1 cm−1 and maximum absolute

error of 82.9 cm−1. Statistically, errors are randomly distributed across the data set.
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Figure 6.2: (a) Errors in EDF2/cc-pVTZ harmonic frequencies as a function of

benchmark anharmonicity, and (b) corresponding errors in predicted anharmonic

frequencies using the quadratic correction model.

However, upon visual inspection of Figure 6.2(a), it is clear that EDF2 systematically

underestimates the frequencies of highly anharmonic modes.

Errors in quadratically corrected DFT-derived anharmonic frequencies are pre-

sented in Table 6.3. Comparing Tables 6.2 and 6.3 reveals a strong correlation be-

tween mean absolute and maximum errors in DFT harmonic frequencies, and corre-

sponding errors in DFT-derived anharmonic frequencies. This implies that residual

errors in predicted anharmonic frequencies derive primarily from the inaccuracy of

the DFT harmonic frequencies rather than inadequacy of the anharmonicity correc-

tion model. This observation is supported by existing literature results, in which

anharmonic corrections are calculated using vibrational perturbation theory. Even

using this significantly more time consuming and rigorous procedure to account for

anharmonicity, errors in calculated anharmonic frequencies are strongly correlated

with errors in the underlying harmonic frequencies.[29]

For low frequency modes, the quadratic model predicts only small anharmonic-

ity corrections by construction, and therefore errors in DFT harmonic frequencies

translate almost directly into residual errors in predicted anharmonic frequencies,

as anticipated above. This behaviour is evident comparing the low anharmonicity

regions of Figures 6.2(a) and 6.2(b).
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Table 6.3: Mean and maximum errors in anharmonic frequencies (∆quad
res ) predicted

from DFT harmonic frequencies using the quadratic correction model (equation

6.6, c1 = 0, c2 = 0.00001215), excluding excited states and molecules containing

atoms larger than Kr. All values reported in units of cm−1. a 6-31+G(d,p) or b

6-311+G(d,p) or c aug-cc-pVTZ basis used for anions.

〈∣∣∆quad
res

∣∣〉 ∣∣∆quad
res

∣∣
max

Method all νmodel νmodel νmodel νmodel

> ν < ν > ν < ν

B3LYP/6-31G(d,p)a 23.1 23.1 23.0 123.18 133.9

B3PW91/6-31G(d,p)a 23.9 26.5 18.5 115.5 91.0

PBE0/6-311G(d,p)b 26.5 31.6 16.4 133.4 87.4

M05/6-311+G(2df,2p) 32.5 39.2 18.4 161.7 102.0

M06/6-311+G(2df,2p) 29.3 34.7 16.4 152.4 100.3

EDF2/cc-pVTZc 19.8 23.8 16.0 91.3 71.7

For high frequency modes, the predicted anharmonic frequencies are scattered

randomly about ∆res = 0, as shown in Figure 6.2(b). This is a consequence of er-

ror cancellation, with the quadratic correction model systematically overestimating

anharmonic frequencies as it was designed to do, and the EDF2 functional systemat-

ically underestimating harmonic frequencies. Although it would be possible to repa-

rameterize the quadratic correction model to reinstate the upper bound behaviour

for high frequencies, or further optimize it to achieve maximum error cancellation,

we consider it preferable to control for anharmonicity and methodological errors

separately so we do not pursue this approach.

6.4 Conclusions

Overall, we recommend using the quadratic correction model in conjunction with

high level ab initio harmonic frequencies, due to its simplicity, accuracy and ability

to provide semi-bounded lower estimates of anharmonicities. This approach recovers

anharmonic frequencies within ∼ 13 cm−1 of benchmark values, on average, across

a diverse range of chemical species. We note that low barrier torsional and inversion
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modes should be excluded a priori due to the inappropriateness of normal modes

for describing these types of motion.

Where high level ab initio harmonic frequency calculations are not feasible,

quadratically corrected DFT frequencies reasonably approximate anharmonic stretch-

ing frequencies, with mean absolute errors in the 20 – 30 cm−1 range. However,

DFT-derived estimates of anharmonic frequencies are less reliable for lower fre-

quency torsional and bending modes, due to these regions of the potential energy

surface being poorly described by DFT methods. In these cases, errors in anhar-

monic fundamental frequencies predicted by both simple empirical correction models

and more rigorous nuclear vibrational structure theories (VPT2) are both dominated

by relatively large errors in the DFT harmonic frequencies.
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Chapter 7

Future Work

In Chapter 4, it was shown that use of curvilinear normal mode coordinates reduces

inter-mode coupling, leading to faster convergence of the PEF. Because this is the

first time such an approach has been implemented and tested, we used a very sim-

ple algorithm to generate a reasonable set of non-redundant internal coordinates.

Namely, the delocalised internal coordinates of Baker et. al.[1] However, it is gener-

ally agreed that optimal decoupling of coordinates can be achieved when the natural

internal coordinates of Pulay et al. are used.[2–4] They exploit local pseudo-symmetry

for groups of atoms within the system to generate non-redundant linear combina-

tions of valence internal coordinates. Their main drawback is the complexity of

implementation, and lack of generality, since a non-redundant set cannot always be

defined.

Both issues have been addressed by von Arnim and Ahlrichs in their definition of

generalised natural internal coordinates.[5] They propose a simpler automatic algo-

rithm for defining natural internal coordinates, and in cases where redundancy issues

arise, delocalised internals are used to describe problematic regions, while the usual

natural internals are used for the rest of the system. To further reduce coordinate

coupling when delocalised internals are necessary, they propose to separate valence

internals of different types. That is, instead of having delocalised coordinates as

linear combinations of the full set of bond lengths, bond angles and torsion angles,

each delocalised internal is generated as a linear combination of only bond lengths,

or bond angles, or torsion angles. Use of generalised natural internal coordinates
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has the benefit of being completely general, like delocalised internal coordinates,

but also exhibiting the separability of natural internal coordinates. In the same

publication,[5] generalised natural internal coordinates were shown to outperform

delocalised internals when used in geometry optimisation. Similarly, they are likely

to lead to even greater decoupling and faster convergence when used for construction

of the PEF.

As was already noted in Chapter 4, a three mode representation quartic force

field, V (3, 4), coupled with standard VPT2 is known to provide quite accurate re-

sults for small molecules, when resonances are accounted for. However, with larger

molecules, resonances become more numerous and occurrence of complicated con-

nected resonances is also more likely. The standard treatment of resonances, to the

best of my knowledge, has not been benchmarked against a more rigorous VCI or

VCI+VPT2 method on large molecules (>10 atoms), where their error is likely to

be the greatest. This information would be quite valuable when deciding what level

of ab initio theory to use when constructing the potential, to ensure that errors

in calculated fundamental frequencies introduced by the level of ab initio theory

used in construction of the PEF are comparable to errors arising from the VPT2

procedure. On that note, it would also be interesting to quantify the accuracy of

Ṽ (2, 4)→ V (3, 4) potential combined with VPT2 for modelling fundamentals.

There are some algorithmic improvements that need to be tested and included

in the code. The program for potential construction in curvilinear normal mode

coordinates would benefit from further:

• setting screening thresholds for force constants in curvilinear normal mode

coordinates;

• using sparse array structures for storing the derivatives of curvilinear normal

mode coordinates with respect to rectilinear normal mode coordinates (L̃ ma-

trix, Chapter 4).

The VCI+VPT2 implementation could be improved by:

• using more efficient sparse matrix diagonalisation routines;
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• investigating whether preconditioning of the VCI matrix for diagonalisation

can be improved by using information from the previous iteration.

Another logical step is to further benchmark both potential construction and

VCI+VPT2 approaches with higher quality PEFs, enabling comparison to exper-

iment. Because highly accurate methods for solving the electronic problem, like

CCSD(T) with a large basis set, scale poorly with respect to molecular size, it is not

practical to construct full anharmonic force fields with them for molecules with more

than 6 atoms. Usually a hybrid approach is used, where highly accurate methods

are applied to obtain harmonic frequencies and lower levels of theory are used to

construct the anharmonic part of potential using the more accurate normal mode

coordinates.[6,7] It would be interesting and novel to look into adopting composite

methods, that are usually used only for calculating energies, to obtain the derivative

data necessary for constructing the PEF.

Composite methods use multiple computations to estimate higher accuracy re-

sults at lower computational cost, overall. The well known Gaussian-n (G-n) series

of methods by Pople and co-workers,[8–10] and more recently correlation consistent

composite approach (ccCA) by Wilson and co-workers,[11] are two examples of highly

accurate composite methods. However, they are not designed for calculating deriva-

tive data and their straightforward application is complicated by the fact that the

equilibrium geometry varies with the level of theory, which will introduce artificial

errors into the combined Hessian from the non-zero gradient. Arguably it would be

more appropriate to use different equilibrium geometry for each level of theory, to

make sure that the gradient terms are zero and the Hessian is positive definite. Of

course, geometry optimisations are computationally demanding, and it is an open

question whether such an approach would be computationally viable.

Finally, once the vibrational wavefunction has been calculated it can be used

to evaluate other properties. For example, intensities of vibrational transitions,

vibrational effects on the molecular electrostatic potential and on NMR chemical

shifts. Implementing procedures to calculate these effects would provide useful tools

for the rest of scientific community.
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Chapter 8

Conclusions

Accurate modelling of vibrational spectra requires methods that go beyond the har-

monic approximation, and take into account anharmonicity in the potential energy

surface (PES). We have developed two methods that together enable rigorous and

efficient calculation of anharmonic vibrational frequencies.

The first method reduces the computational cost of constructing the PES by us-

ing an appropriate set of curvilinear normal mode coordinates during its evaluation,

and subsequently transforming to rectilinear normal mode coordinates so that the

vibrational problem can be solved efficiently.

The second method reduces the computational cost of solving the vibrational

problem, using the computationally efficient second order vibrational perturbation

theory (VPT2) to select an appropriate basis for the vibrational configuration inter-

action (VCI) procedure and concurrently account for energetic contributions from

the excluded configurations, all in an iterative manner.

Together, these methods allow for treatment of large molecules (up to 20 atoms),

with fine control over the balance between accuracy and computational expense.

For even larger molecules where rigorously accounting for anharmonicity becomes

unfeasible, we introduced an empirical quadratic correction model for approximat-

ing fundamental frequencies. Using our carefully compiled collection of high-quality

analytic potential energy surfaces (PyPES library) to eliminate methodological in-

completeness errors, we showed that the effects of anharmonicity can generally not
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be described as a linear function of the harmonic frequencies, as is usually assumed,

but a quadratic one.

Finally, we also addressed the issue of validating our new vibrational methods

during the development stage, using analytic potentials from the PyPES library for

benchmarking and testing our coordinate transformation procedure, and implement-

ing a rigorous VCI algorithm, called PyVCI, to obtain reference data when solving

the vibrational problem.
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