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Verschiedenheit der
Anschauungen, die man etwa
von einem Apfel haben kann: die
Anschauung des kleinen Jungen,
der den Hals strecken muß, um
noch knapp den Apfel auf der
Tischplatte zu sehn, und die
Anschauung des Hausherrn, der
den Apfel nimmt und frei dem
Tischgenossen reicht.1

Die Zürauer Aphorismen
Aphorismus 11/12

Franz Kafka

1The variety of views that one may have, say, of an apple: the view of the small boy
who has to crane his neck for a glimpse of the apple on the table, and the view of the
master of the house who picks up the apple and hands it to his guest.
Translation by Hofmann, M. (2006). The Zurau Aphorisms. Schocken.
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Preface

In this thesis, we introduce and explore a mathematical framework in which to
study the evolution of and within ecological networks. Hence, we focus on a pe-
culiar interpretation of the “biodiversity” concept, namely one that includes the
complex pattern of interactions among species, along with the species abundancy
and evolutionary distinctiveness.

Our objects of inquiry are species communities as complex wholes. Classically,
communities have been approached from two distinct points of view: on one hand,
we can consider the graph describing the energy flows among species in an ecosys-
tem (i.e., an ecosystem’s food web); on the other hand, we can consider the species’
phylogeny, the tree graph describing the evolutionary relatedness of those species.
The structure of an ecosystem (its biological diversity and the topology of its in-
teractions) is the product of fast ecological processes within food webs and of the
long-term evolutionary processes that give shape to the tree of life. In particular,
early ecological literature recognized that the evolutionary history of a species (or
its taxonomical classification, in the pre-Darwin era) helps to determine the species’
role as part of an ecological network of interacting species. Conversely, the “ghost
of past competition” and arms races are famous examples of the fact that a species’
interactions with its resources and consumers helps to determine the evolutionary
trajectory of that species.

As the empirical research presents strong evidence that the ecology-evolution
(eco-evo) feedback loop is, indeed, significant, the ecological and evolutionary points
of view are laboriously being connected more and more strongly. A theoretical
framework has been developed for some important scenario (e.g., the co-evolution
of hosts and parasites, butterfly and flowers, or plants and pollinators).

The case of complex food webs, where is not possible to distinguish two neatly
separated trophic layers, has resisted such a treatment. We argue that this can
be partially addressed by moving from a rigidly binary view of food webs to the
representation of species interactions in a continuous metric space, where species
evolution can be gradual. In Chapter 3 we show how this metric space repre-
sentation of a food web can be estimated efficiently and gather insights about the
evolutionary signature of food webs. Species’ ecological interdependency, arising
from their role as part of complex food webs, is something that the classic model of
trait evolution has avoided. One reason is that it is hard to give a model determin-
ing the presence (and strength) of species interactions throughout their history. In
Chapter 3 Appendix we show how the metric space representation of food webs
may constitute a suitable environment in which to define such a model.

Assessing species’ contribution to biodiversity is an important task that scien-
tifically informs conservation efforts. In Chapter 4 we define a family of measures
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assessing the relative ecological importance of a species in a food web. These mea-
sures are defined directly on the food web’s metric space representation we propose
in the first chapter. We explore the relationship between evolutionary and ecological
uniqueness.

In Chapter 5 we tackle the “mode” of food web evolution more directly exploit-
ing, once again, the functional trait representation of food webs. In particular, we
formulate two contrasting hypotheses on the evolution of frugivore birds’ functional
ecological niches and test it on a dataset of frugivore birds in the Andes.

Finally, in Chapter 6 we make a little detour from food webs and consider a
different kind of ecological network: geographically grounded population networks
composed of patches and corridors among patches. Population networks play a
crucial role in evolution (e.g., determining the dynamics of genes’ flows). The
insight we gained throughout the previous work (especially in the second chapter)
supports the notion that the relevance of a species in a network is not always perfectly
captured by the species’ local properties (such as its number of connections). In this
spirit, we assess the importance of a patch in a geographic network by the global
effect that removing that patch has on the whole network.

All the code and data used in this thesis will be available on a public Github
repository (see gvdr.github.io).
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Chapter 2

Introduction

2.1 Tangled evolution

2.1.1 The abiotic environment

Charles Darwin shed light on the relationship between the environment and
evolution by studying how earthworms [Darwin, 1892] and corals [Darwin,
1889] affect the landscape they live in. Both animals are adapted to an envi-
ronment that would not exist if it was not for the animals’ activity. Clearly,
disentangling the evolutionary and environmental processes is problematic.

The interdependence of the two processes is commonly considered as
being substantially asymmetric: on one hand, long-term changes in the en-
vironment alter the evolutionary path of a species; on the other hand, the
environmental modification induced by a species’ activity is of minor or negli-
gible importance [Eldredge, 2003; Lieberman, 2012]. George E. Hutchinson
elegantly summarised this asymmetric conceptualisation in the title of one of
his books “The Ecological Theater and the Evolutionary Play” [Hutchinson,
1965]: ecology sets the scene where species evolution take place but—as
the actors of a play do not manipulate the scenography of the theatre—the
environmental changes unfold independently from the species’ evolutionary
processes. Apart from some rare exception, species do not build the environ-
ment; rather, they adapt to it.

An interesting counterexample is given by beavers. These rodents, build-
ing impressive dams, turning the environment they live in into a suitable
habitat: a process known as niche construction [Odling-Smee et al., 2003,
2013]. In fact, like earthworms and corals, beavers are adapted to a par-
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ticular ecological niche that would not exist but for their ability to modify
the environment. Richard Lewontin expressed the difference between the
“beaver” and the “theatre/play” models of evolution in mathematical terms
[Lewontin, 2001].

Let E be a variable expressing the environmental factors affecting the
life of a certain species and let O be a variable describing the phenotype of
that species. The evolution of the environment and the species across time
are captured by the variables’ time derivatives, dE

dt and dO
dt , respectively.

Under the “theatre/play” model of evolution, the species’ time derivative
can be written as a function of O and E, whereas the environment’s time
derivative can be written as a function of only E (and not of the species O).
As a formula: 

dO
dt = g (O,E)
dE
dt = f (E) .

(2.1)

On the other hand, under the “beaver” model of evolution, the species
and environment are coupled—although the strength of the interaction can
be asymmetrical. As a formula:

dO
dt = g (O,E)
dE
dt = f (E,O) .

(2.2)

This line of enquiry has been pushed further by John F. Odling-Smee,
Kevin N. Laland and Marcus Feldman, with a particular attention given to
the human species [Odling-Smee et al., 2003].

Establishing the relative importance of biotic and abiotic factors in the
evolution of the species, or the frequency of the “beaver” and “theatre/play”
models of evolution is beyond the scope of this thesis. See [Benton, 2009;
Voje et al., 2015] for two reviews of the evidence so far from two different
perspectives.

2.1.2 The biotic environment

Bipartite networks

Darwin’s work on earthworms and on corals, and the “Niche construction
theory” introduced by Odling-Smee et al. [2003] focus especially on an abiotic
characterisation of the environment. Thus they are particularly concerned
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with the abiotic factors (climatic, geological, topographical, etc.) that affect
organisms’ development and can be affected by organisms’ activity. In doing
so, they can limit their analysis to one or a small number of species at a
time.

In this thesis, we adopt a “food web” description of an organism’s envi-
ronment: we identify a species’ habitat with its set of interactions with other
species; in other words, with the biotic component of the environment.

Again, we find that this ground was covered early on by Charles Darwin:
he studied the evolutionary relationship between orchids and their insect
pollinators [Darwin, 1888] and ventured to predict the existence of a polli-
nator with a really long proboscis that was responsible for the pollination of
Angraecum sesquipedale—a bet which he posthumously won [Arditti et al.,
2012] when Xanthopan morganii praedicta was discovered.

Following Lewontin’s notation, letting O1 and O2 denote two interacting
species, we can represent their evolutionary dependence by two coupled
differential equations. As a formula:

dO1
dt = g (O1, O2)

dO2
dt = f (O1, O2) .

(2.3)

Since Paul R. Herlich’s and Peter H. Raven’s work on the entwined evolu-
tionary histories of butterflies and flowering plants [Ehrlich and Raven, 1964],
the study of coevolutionary processes—whereby the diversification of two
clades of species are tightly linked—has become established as a classic topic
in evolutionary ecology [Futuyma and Slatkin, 1983; Thompson, 1994, 2005,
2013]. Mathematicians, particularly phylogeneticists, have contributed sig-
nificantly to the understanding of coevolution, developing statistical methods
to detect the presence of significant correlations between two clades’ phylo-
genies, [Page, 2003]. However, not all conceptual and algorithmic problems
are resolved (for example, disentangling coevolution and cospeciation is not
trivial [Poisot, 2015]). The topic has been widely studied as a variety of
natural systems show evidence of coevolution, including mutualistic and an-
tagonistic interactions: hosts and parasites in plants [Refrégier et al., 2008]
and animals [Hafner and Page, 1995], plants and their pollinators [Kawakita
et al., 2004], plants and their herbivores [Agrawal et al., 2012] (but see [Fu-
tuyma and Agrawal, 2009] for a review of the evidences) in both natural and
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experimental conditions [Brockhurst et al., 2007; Berenos et al., 2009].

Beyond bipartite networks

Only recently, community ecologists and evolutionary biologists have begun
to approach the coevolutionary processes of species embedded in large ecolog-
ical networks with rigour [Fussmann et al., 2007; Post and Palkovacs, 2009;
Hand et al., 2015]. In the bipartite case, a food web is made of two discrete
non-overlapping sets of interacting species, such as hosts and plants: the
interactions happen between the two sets, and not within. In food webs, this
neat separation is not, in general, possible: species’ evolution is affected, in
a non-additive way, by a complex web of interactions. Theoretical models
for the evolution of species in complex food webs are just now beginning to
be proposed [Itô et al., 2009; Takahashi et al., 2013; Allhoff et al., 2015].
The empirical evidence collected so far has been promising [Crawford et al.,
2015], yet rare.

Nevertheless, how to test the presence of coevolution in food webs remains
an open problem.

2.2 Relevant Literature

Here, we review a limited selection of works of general interest that touch on
the theme of this thesis. Additional and more specific literature is covered
in the main chapters.

2.2.1 The Trees

A phylogeny is a connected, acyclic, directed graph describing the evolution-
ary relationships of a set of species. A phylogeny is said to be a tree if it does
not contain reticulation events; in other words, each node has, at most, one
inward branch. A rigorous review of the mathematical results concerning
phylogenetic trees is offered in [Semple and Steel, 2003]. More recent mathe-
matical and computational developments can be found in [Gascuel and Steel,
2007]. Not all evolutionary histories are tree-like: horizontal transfer of genes,
recombination, gene duplication and hybridisation all produce reticulation
events. A phylogeny containing reticulation events is called a phylogenetic
network. A introduction to phylogenetic networks is presented in [Huson

13



et al., 2010].

Evolution of traits

A recurrent theme in this thesis is the evolution of species’ traits. By this,
we mean any measurable inherited property of a species or its individuals.
In Chapters 3 and 4, we introduce and make use of “abstract traits”: traits
inferred from the species’ interaction networks rather than measured directly.
This extension of traits beyond empirical observation is not completely new,
as it is common practice in functional ecology whenever a dimensionality
reduction algorithm is used [Schaffer, 1981]. However, in that context, the
abstract traits can be expressed as a linear combination of the measured
traits, a possibility we drop in our analysis.

The field of phylogenetic comparative methods (see [Garamszegi, 2014] for
a recent overview) is based on the realisation that the observations of species’
traits are not independent, as every pair of species shares a longer or shorter
evolutionary history. In particular, for many traits, closely related species
tend to be more similar than distantly related species. In fact, the covariance
structure arising from the phylogenetic tree of a group of species is often
a good predictor of the covariance structure determined by a measurable
trait. This correlation has been repeatedly tested empirically for genetic
[Dodsworth et al., 2015], morphological [Naisbit et al., 2011] and behavioural
traits [Kamilar and Cooper, 2013], and across different kind of traits, (e.g.,
behavioural traits are more labile than morphological ones [Blomberg et al.,
2003]).

The trait covariance structure we expect from an observed phylogeny
depends on the evolutionary model [Thomas and Freckleton, 2012] applied
and the assumptions on which it is grounded. Although a wide variety of
models exists, most models for continuous traits (traits which value range
is a (subset) of Rd) can be seen as extension of the elementary branching
Brownian motion process (e.g., [Bartoszek, 2013] and references therein).

A common assumption inherited from the Brownian motion model is that
of branch independence: the drift process acting on a lineage is independent
from the processes occurring on any other concurrent lineage. This rather
strong assumption has not received much attention in the literature; an im-
portant exception is represented by Nuismer and Harmon [2015]. Nuismer
and Harmon showed that the distribution of traits we can expect if species

14



were influencing each other’s evolutionary trajectories is strongly different
from that under any classic model of evolution. Building on [Nuismer and
Harmon, 2015], the recent works (available as a preprint at the time I am
writing) of Drury et al. [2015] and Clarke et al. [2015] provide a likelihood
framework for detecting the effect of interspecific competition on the evolu-
tionary distribution of species’s traits. The results are limited to competition
interaction acting in one clade of species, and thus to the bipartite scenario.

2.2.2 The Webs

Food webs are directed ecological networks describing the flow of energy
within an ecosystem; they can be cyclic, looped and weighted, and they are
complex [May, 1972; Banašek-Richter et al., 2009]. In a food web, nodes
identify species, coarser taxonomic units or guilds (groups of species that
are not distinguishable from their interactions); edges identify ecological
interactions such as predation, consumption, facilitation, and pollination.

A comprehensive introduction to the theory of food webs is offered by
Rossberg [2013]. We will not attempt to enumerate all the proposed food
web models here—not even the food web models that have been developed
with the aim of unifying all models. The reader can find a classic survey in
Drossel and McKane [2003].

Food web history

It would be useful to observe the development over time of a food web,
tracing the effects that the origin of a new species, its evolution and eventual
extinction have on the structure of the web. Alas, we do not have diachronic
data and it is not certain whether we will ever have it.

Precious information can be gathered from the reconstruction of the
mammalian community collapse in the ancient Egypt [Yeakel et al., 2014]—
although the methods used by the authors could not resolve specific ecological
interactions—the inferred species assemblage of the Paleolithic [Roopnarine,
2010, 2012] or the Cambrian [Dunne et al., 2008] periods—but we can not
easily compare the inferred food webs with any modern food web, as the
temporal sampling is too sparse—the observations of six lakes with widely
different ages of origin [Doi et al., 2012]—but they represent six independent
food webs, not one diachronic observation. Finally, Abascal-Monroy et al.
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[2015] offered three direct reconstruction of the Terminos Lagoon’s food web
over a time period of 30 years, although the web’s interaction topology did
not change in those 30 years.

It is therefore necessary to adopt indirect exploratory methods, such as
via a phylogenetic comparative analysis of the species’ food-web roles and
the species’ traits that determine their trophic roles.

Ecological traits

An important step in the reconstruction of food web evolution is the iden-
tification of those traits that have a role in the shaping of food webs: the
“functional traits”.

It has been observed that species’ body size is enough to inform food web
models that capture the global properties of the observed ecological network
[Woodward et al., 2005a]. Species’ body size has been recognised as having
a major role in determining the diet of a species in both marine [Barnes
et al., 2008] and land [Reuman et al., 2009] systems, and the body size
distribution has a role in shaping the global structure of food webs [Stouffer
et al., 2011]. Body size shows a strong phylogenetic signal [Schmidt-Nielsen,
1984; Calder, 1984; Smith and Lyons, 2013] in mammals and across the tree
of life, although the data on non-mammalian clades are sparser.

However, the node-level properties of food webs can not be fully explained
just by body size [Rohr et al., 2010]. Therefore, we need to find a more
complete set of functional traits if we want to give a full picture of food webs.
Two major steps in this direction derive from considering the asymmetry
of species’ interactions, and from moving from directly measurable traits to
abstract traits.

Rossberg [2013] labels “foraging” and “vulnerability” traits as the sets of
traits that determine the interactions of a species as a predator (a consumer)
and a prey (a resource), respectively. We exploit the possibility of decoupling
a species’ foraging and vulnerability traits in Chapters (3) and (4).

Moreover, the dependency of species’ interactions (in terms of propensity
or strength) on species’ traits is not, in general, simple. For this reason, the
identification of a suitable functional response has proven to be crucial in
modelling of food webs. To surmount this increasing complexity, it is conve-
nient to consider, instead of directly measured traits, latent or abstract traits
[Rohr and Bascompte, 2014] that can be indirectly inferred from functional
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or topological data.

Extinction, Diversity and Key Roles

Ecological networks are dynamical systems governed by population dynamic
processes such as predation, competition and cooperation [Lafferty et al.,
2015]. The quest to identify the drivers of stability—the factors that increase
or decrease the stability of an ecological community—date at least to Robert
May’s works [May, 1971, 1972] on the feedback between the complexity and
the stability of a community.

Stability may be approached from a whole-network point of view [Solé
and Bascompte, 2006] (i.e., focussing on global properties of the food webs,
such as nestedness or modularity [Fortuna et al., 2010; Rohr et al., 2014]) or
from a species point of view (i.e., assessing the contribution of each species
to the stability of a food web).

A food web’s stability is defined on the basis of its response to the per-
turbation of its dynamical regime. The perturbation is commonly assumed
to be small (i.e., causing a linear response in the system) and the role of
the species is fixed in time. A review of classic approaches for measuring
the response of an ecological network to small perturbations is offered by
[Neubert and Caswell, 1997].

Two useful measures are the food web’s resilience and the food web’s
resistance. A food web which is able to return to its equilibrium state quickly
after a small perturbation is said to have high resilience; a food web requiring
a strong impulse to move away from its equilibrium state is said to have high
resistance [Vallina and Le Quéré, 2011]. More recently, in the context of
bipartite food webs, Saavedra et al. [2015] proposed to focus on the feasibility
of the equilibrium states rather than just on their stability.

Both the stability and the feasibility measures depend on the strength
of the interaction between the species in a food web (although they are
robust to measurement errors [Allesina et al., 2015]); when the dynamical
parameters or the topological structure of a food web can not be empirically
measured, we need to rely on the definition of a proper model, which is an
open problem [Allesina and Tang, 2015; James et al., 2015].

Different species play different roles in a food web and hence contribute
differently to the overall stability of the food web. Species having a rela-
tively “high importance” are known as keystone species [Mills et al., 1993].
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So far, the concept of keystone species has resisted a satisfactory rigorous
formalisation and a variety of graph theoretical measures have been adopted
as proxies for identifying keystone species [Jordán et al., 2006]. Commonly,
local node properties of the species are used as proxies to infer their stability
importance. How well local properties map the effect of a species’ extinction
on the food web’s global properties is an interesting question.

Apart from its role in food web stability and feasibility, a species can be
valued for its ecological originality (the “distance” between a species food-
web role and the roles of all the other species) and its contribution to a food
web (functional) diversity (the loss in total diversity we would observe if
that species became extinct). Exactly how to define a species’ food-web role
and how to measure the trophic similarity of a pair of species are matters of
ongoing research [Hillebrand and Matthiessen, 2009].

Furthermore, the relationship between a species’ trophic originality and
its contribution to stability is still an open problem; the results presented in
the literature are somewhat contradictory (see Chapter (4)), ranging from
a negative correlation [Lai et al., 2012], suggesting that central roles are
occupied by redundant species (so that the effect of the extinction of central
species is mitigated by the probable survival of similar species), to a positive
correlation [Petchey et al., 2008b], suggesting that the keystone species are
highly original and thus their extinction will affect ecosystems strongly.

2.2.3 The Web and the Tree

The evolutionary history of a species ensemble has an influence on the species’
role in the food webs [Stouffer et al., 2012; Naisbit et al., 2012]. Moreover,
it has been observed that the taxonomic classification of a species can be a
good predictor of its trophic interactions [Ives and Godfray, 2006; Bersier
and Kehrli, 2008; Eklöf et al., 2012]. The hypothesis that the importance
of a keystone species to food webs’ stability is a consequence of a species’
evolutionary history has been proposed [Stouffer et al., 2012], although it is
not clear to what extent a species’ evolutionary history (and measures such
as its evolutionary distinctiveness [Redding and Mooers, 2006]) can be used
to predict the species’ food-web properties.

However, the phylogenetic signal present in a food web’s structure is
often low or insignificant [Rohr and Bascompte, 2014]: in other words, the
phylogenetic structure of a species community does not explain fully the pair-
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wise similarity structure determined by a food web (i.e., its pairwise Jaccard
similarities [Naisbit et al., 2012] or the pairwise functional traits distance
[Rohr et al., 2010]). The lack of signal can be caused by a weak phylogenetic
conservation of species’ food-web roles (but see [Naisbit et al., 2012; Stouffer
et al., 2012] for evidence of conservation) or the strong influence of species’
interactions on their evolution, as this would result in the inadequacy of
standard detection techniques [Nuismer and Harmon, 2015].
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Chapter 3

Food webs as random dot
product graphs

Synopsis: In this chapter we model empirically observed food webs as di-
rected Random Dot Product Graphs. Random Dot Product Graphs extend
current food web models beyond the limitations associated to discrete, largely
deterministic, graph models. Modelling a food web as the realization of a
stochastic process, defined by the Random Dot Product Graphs, allows us to
estimate species’ functional traits. In other words, we infer a pair of vectorial
traits for each species determining the species’ interactions as a predator or as
a prey. The estimated traits induce a pairwise distance structure on the set
of species’ as predators, as prey or as both predators and prey. The species’
embedding in a metric space enables the detection of clusters of species’
ecological roles. The species’ distribution in their functional trait space sug-
gests the notion that the food-web evolutionary signature is stronger in the
food-web’s stochastic backbones, while the phylogenetic conservatism of the
food web’s fine wiring is weak.

Notes: A version of this chapter has been published in Oikos (The Nordic
Society): GVDR and Daniel B. Stouffer (School of Biology, University of
Canterbury), “Exploring the evolutionary signature of food webs’ backbones
using functional traits”. (first published online 25 September 2015). DOI:
10.1111/oik.02305
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Because we are all responsible
for all.

The Brothers Karamazov
Fyodor Dostoyevsky

Translated by Constance Garnett

3.1 Determinism and Stochasticity in food webs

In the classic food-web literature [Coulson et al., 2004; May, 2006] ecological
networks are modelled as deterministic objects: an interaction between two
species (e.g., a predator and its prey) is either present—with a certain weight
defined by its relative importance—or absent; once an interaction is observed
between individuals of two species, at a particular point in time and space,
that interaction is extended uniformly at the species level.

A growing body of evidence, however, challenges this view and supports
the notion that food webs are inherently dynamic objects. The observation
of an interaction between two species depends on the concurrence of various
events, some of which appear stochastic [Holling, 1973; Mullon et al., 2009;
Poisot et al., 2015]. For example, the probability of observing an interaction
depends on neutral processes, niche processes, species behaviours and envi-
ronmental factors [Fortuna et al., 2013; Poisot et al., 2015; Canard et al.,
2014]. More specifically, the interaction probabilities depend at least on
species’ local abundances—determining the probability that an individual
od species i encounters and individual of species J—and on species’ local phe-
notypes as characterized by their trait values—determining the propensity
that two colliding species do interact [Poisot et al., 2015].

Beyond specific trait values, a species’ ensemble of predators and prey—
its consumers and its resources—can be regarded as an emergent form of
its local phenotype: its trophic niche. Within the food-web literature, it is
widely acknowledged that the importance of the various traits in determining
the species trophic niche is not uniform [Petchey et al., 2008a]. The traits
playing a major role in shaping the trophic niche are known as trophic traits;
in particular, body size is commonly assumed to be the most important (i.e.,
Jennings et al., 2002). It has also been shown that many emergent properties
of food-web structures can often be effectively predicted by models based
on just two traits: a predator’s body size and the range of body size of that
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predator’s prey [Williams and Martinez, 2000; Stouffer et al., 2005; Williams
and Martinez, 2008; Williams et al., 2010; Stouffer et al., 2011; Zook et al.,
2011; Gravel et al., 2013], though this may depend on ecosystem type [Wood-
ward et al., 2005a; Stouffer et al., 2011]. However, the performance of many
standard food-web models is reduced when we consider their ability to pre-
dict single interactions [Petchey et al., 2008a]. This decrease in performance
likely arises because of the models’ deterministic nature [Williams et al.,
2010; Gravel et al., 2013] and the phenomenological way in which they relate
to species’ traits [Stouffer, 2010; Eklöf et al., 2013].

3.2 Embedding food webs in a metric space

We consider an observed food web to be the outcome of three distinct stochas-
tic processes: first, ecological and evolutionary factors concur to determine
phenotypes(i.e., the set of morphological and behavioural traits of each
species in the food web); second, the species’ traits—or, more precisely,
a subset of traits that depends on the identities of each pair of species—
determine which interactions can occur and with which propensity; third, an
observer detects some, or all, of the species’ interactions, according to the
sampling effort and the local abundance of each species in the food web’s
area.

In our modelling effort, we focus in particular on the second step—linking
traits to interactions—and set aside the issues related to the other two
processes. A priori we do not know the number, the identity or the value
of the species’ traits that do determine the realization and the propensity of
an interactions between two species; we do not know how many and which
traits to measure. Hence, we need to estimate this information from the
observed food web’s topology: we need to estimate the species’ functional
traits from the observed food web’s binary adjacency matrix. We will do
that through the estimation, through truncated singular value decomposition
of the adjacency matrix, of the parameters of Random Dot Product Graph
(RDPG) model [Wasserman, 1994]—or, more precisely, of a direct graph
extension of RDPG.
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3.2.1 Stochastic Block Models

The Random Dot Product Graph model has been developed as a particular
family of Stochastic Block Model graphs (SBM). Both models tackle the
problem of inferring the presence or absence of non-observed links in a par-
tially observed graph. Under the SBM model, each node of the N nodes in
a graph is assigned to one of k, non overlapping, blocks. The model parame-
ters are a vector ~a ∈ {1, . . . , k}N specfying the assignment of the nodes to
the blocks and a k × k matrix P which entries Pij define he probability of
observing an interaction from a node in the block i to a node in the block j.
In practice, the assignment of the nodes to the blocks is not known nor it is
the matrix P but it must be inferred by the observed adjacency matrix A
(i.e., by the observation of the realized interactions).

The model parameters define a measure of probability on the space of
(labelled) direct graphs with N nodes. The probability of sampling a graph
G with adjacency matrix A from an SBM with parameters (~a, P ) is simple to
compute as the edges of the graph are conditionally independent Bernoulli
random variables given the parameters:

P (G) =
∏
ij

[∑
kl

(
δk(~ai)δl(~aj)P

Aij
kl

(
1− P (1−Aij)

kl

))]
(3.1)

where δk(~ai) is a Kronecker delta with value 1 if the node i is in block k
or 0 otherwise (and the convention that 00 is 1). To estimate the model
parameters through maximal likelihood is known to be an NP problem, even
if the number of blocks is known. However, spectral clustering is known to
offer a consistent estimator under mild conditions [Lei et al., 2014].

When it is used for detecting community of nodes, a natural assumption
is to impose an asymmetry between the within and between blocks link-
ing probability [Abbe and Sandon, 2015], for example requiring the linking
probability between two different blocks to be higher than the linking prob-
ability within a block. A food web model based on the SBM approach has
been introduced by Allesina and Pascual [2009] and applied to the Serengeti
National Park’s food web [Baskerville et al., 2011].

A necessary task in the estimation of the block assignment vector consists
in defining a suitable prior distribution on the number of blocks. Notice that
for a graph with N nodes we have at most N partitions. In particular, we
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N∑
k=1

1
k!

(
k∑
i=0

(−1)k−i
(
k

i

)
iN
)

(3.2)

different assignments of the nodes to the blocks [Holland et al., 1983]. A
uniform distribution on the possible partition results in a priori probability
for the number strongly concentrated on intermediate values; other priors
have been proposed, for example Baskerville et al. [2011] the authors propose
an exponential hyperprior distribution for the aggregation parameter ξ of a
Dirichlet process defining the number of nodes assigned to the blocks. This
approach produce a prior probability of having k blocks in a graph with N
nodes given by [Holland et al., 1983]:

P(k|ξ) = |s(N, k)|ξk∏N
i=! (ξ + i− 1)

, (3.3)

where |s(N, k)| is the number of permutations of N elements containing
exactly k cycles.

The block model depends on the a prior probability for the number of
blocks, which may result difficult to estimate, and considers stochastically
equivalent all the nodes assigned to the same block, thus masking any within
block variance.

3.2.2 Undirected Random Dot Product Graphs

Simple (undirected) Random Dot Product Graphs [Nickel, 2007] are par-
ticular instances of the SBM model where each node is assigned to its own
block—a graph G with N nodes has N blocks. Moreover, to each node i it
is assigned a vector of latent traits T (i). Chosen a model dimension d, T is a
function from the set N(G) of the nodes of the graph G to the d-dimensional
real space, T : N(G)→ Rd.

The probability of interaction between two nodes i and j is given by a
function F : R→ [0, 1] of the dot product of the nodes’ latent trait vectors:

P (Aij = 1) = F (T (i) · T (j)) (3.4)

where Aij is the ijth entry of the adjacency matrix A of G.
Given a parameter matrix T—which rows Ti define the nodes’ latent

traits—the probability of observing a graph G with adjacency matrix A is
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given by:

P (G) =
∏
ij

F (T(i) ·T(j))Aij (1−F (T(i) ·T(j)))(1−Aij) (3.5)

where the product is other all pairs of nodes.
If the latent traits where sampled from the positive orthant of a unitary

ball—so that their dot product is granted to be in [0, . . . , 1]—the function
F can be the identity function. In that case, the probability of observing a
graph G simplifies to

P (G) =
∏
ij

(T(i) ·T(j))Aij (1− (T(i) ·T(j)))(1−Aij) (3.6)

where the product is other all pairs of nodes.
In practice, the latent traits of the nodes are not known, rather, they must

be estimated by one (or multiple) graph observations. It has been proven that,
if the latent traits T(i) are drawn independently from an identic distribution,
it is possible to consistently estimate them from an eigen-decomposition of
the adjacency matrix of the realized graph [Sussman et al., 2014].

Let P be the matrix of interaction probabilities determined by the d
dimensional latent traits T of a set of n nodes (i.e., P = T ·Tt). Let P =
UΣU t be an eigen-decomposition of P and P = UdΣdU

t
d its d dimensional

truncation, so that Ud ∈ Rnd are the first d columns of U and Σd ∈ Rdd is
the diagonal matrix which entries are the first d eigenvalues of d—the entries
of Σ are real as P is symmetric. Then, T is a rotation of UdΣ1/2

d .
Let G be a graph sampled according to the interaction probabilities

defined by P and let A be the adjacency matrix of G. Denote

A ∼WdΥdW
t
d

a d dimensional truncated eigen-decomposition of A. When n is large, P ∼ A
[Rohe et al., 2011]. Then, with an error ε(d, n, g)—where g is the eigengap
of A—bounded above by a function growing as

√
logn and a probability

greater than 1− 2d2+1
n2

∑
ij

√(
WdΥ1/2

d −T
)2

ij
≤ ε(d, n, g) (3.7)
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up to a rotation of Wd [Sussman et al., 2014]. In particular

lim
n→∞

∑
ij

√(
WdΥ1/2

d −T
)2

ij

n
= 0 (3.8)

strongly, as 1 − 2d2+1
n2 → 0. A similar bound can be given for the latent

traits of any node.

3.2.3 Directed Random Dot Product Graphs

The ecological relationships we are interested in are seldom symmetric. There-
fore, we must consider an extension of RDPG to directed graphs [Young and
Scheinerman, 2008]. Species are, accordingly, described not by a single vec-
tor of traits but by a pair of vectors. We will refer to each species’ pair of
vectors as the species’ foraging functional trait and the species’ vulnerability
functional trait vectors. The foraging functional traits of species i will help
determine the probability of observing links toward i—the behaviour of i
as a predator (or consumer)—whereas the vulnerability functional traits of
species i will help determine the probability of observing links from i—the
behaviour of i as a prey (or resource). As with undirected RDPGs, the
probability of a link from species j to species i (i.e., of i consuming j) will
be given by the dot product between the vulnerability functional traits of j
and the foraging functional traits of i.

A toy model

To better understand the theory behind directed RDPGs, consider three
hypothetical species a, b and c as in Figure (3.1). Here, each species is
associated with a pair of two-dimensional functional traits (in this case, the
x and y coordinates). For the sake of simplicity in this example, we have
imposed their functional trait vectors to have length equal to 1 so that the
difference between them is given just by their angular distances. Moreover,
we have constrained all of them to be situated in the positive quadrant so
that the cosine of the angles between falls in the interval [0, 1] .

In this example, the angle between the vectors a(f) and b(v) is smaller than
the angle between the vectors a(f) and c(v); mathematically, this implies that
the dot product of the vectors a(f) and b(v) is greater than the dot product of
the vectors a(f) and c(v). Within the RDPG framework, this also implies that
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there is a greater probability of observing a link from b to a—a consuming
b—than a link from c to a. Similarly, we can see that the angle between c(f)

and a(v) is larger than the angle between c(v) and a(f). This again implies
that there is a greater probability of observing a link from c to a than a link
from a to c. Considering the pairwise angular distances of all other species,
we can directly infer the most likely structure of the three-species food web.
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Figure 3.1: The functional trait space of three hypothetical species and
their corresponding food web. a) The foraging functional traits of species a
and the angular distance with the vulnerability functional traits of species
b and c. b) The vulnerability functional traits of species a and the angular
distance with the foraging functional traits of species b and c. c) The foraging
and vulnerability functional trait vectors for all the species. d) The most
likely food web, where the width of each interactions is proportional to
the probability of the interaction, i.e., the angle between the corresponding
foraging and vulnerability functional trait vectors.
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Formal definition

Under the directed Random Dot Product Graphs [Young and Scheinerman,
2008] to each node i is assigned a pair of vectors of foraging and vulnerability
(or outward and inward) traits, denoted Tf (i) and Tv(i). Chosen a model
dimension d, Tf and Tv are functions mapping the set of the food web’s
species to a subset of the d-dimensional real space, Tf,v : N(G)→ Ω ⊂ Rd,
such that the dot product Tf (i) · Tv(i) is in [0, . . . , 1].

The probability of interaction from a species i to a species j—in other
words, j is observed feeding on i—is given by the dot product of the vulner-
ability traits of i and the foraging traits of j:

P (Aij = 1) = Tv(i) · Tf (j) (3.9)

where Aij is the ijth entry of the adjacency matrix A of the food web G.
Notice that

P (Aij = 1) 6= P (Aji = 1) (3.10)

as in general Tv(i) · Tf (j) 6= Tv(j) · Tf (i).
Let X denote the matrix obtained by multiplying the vulnerability and

foraging parameter matrices Tf and Tv (i.e., X = Tv ·Tf ). We call X the
model matrix defined by Tf and Tv. Then, the entries ij of X give the
probability of observing an interaction from i to j:

P (Aij = 1) = Xij (3.11)

Given the vulnerability and foraging parameter matrices Tf and Tv, and
being X the model matrix they define, the probability of observing a food
web G with adjacency matrix A is given by:

P (G) =
∏
ij

XAij
ij (1−Xij)(1−Aij) (3.12)

where the product is other all pairs of species.

3.2.4 Estimating species’ functional traits

The ensemble of all species’ traits vectors determine the probability of ob-
serving each and every potential link in the food web. As a result, they
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determine the probability of sampling a certain food web from the space of
all allowable realizations (i.e., its likelihood). In practice, we can not observe
directly the process that generates a food web; instead, we usually obtain
a single sample from the set of all the possible food web realizations. This
implies that we then need to estimate species’ foraging and vulnerability
functional traits that are most likely to have produced the observed food
webs.

Let G be an observed food web composed of S species and A its S × S
adjacency matrix. Let the dimension d be given. Let L̂ and R̂ be a pair
of S × d matrices such that the Frobenius distance between the adjacency
matrix A of G and the product L̂× R̂t is minimal, in formula:∥∥∥A− L̂ · R̂t∥∥∥

F
= min

Y,Z∈RS×d

∥∥∥A− Y · Zt∥∥∥
F

(3.13)

where ‖X‖F is the Frobenius norm of the matrix X. As a formula:

‖X‖F =
√∑

ij

X2
ij .

The rows of L̂ and R̂ are the maximum likelihood species vulnerability
and foraging traits [Tang et al., 2013; Lyzinski et al., 2013].

To compute a pair of matrices L̂ and R̂ satisfying the minimization
requirement, we first obtain a Singular Value Decomposition of A into three
matrices L,Σ, R, such that L and R are real, orthogonal S × S matrices; Σ
is an S × S diagonal matrix whose non-decreasing ordered entries are the
singular values of A; and the three matrices satisfy

A = L · Σ ·Rt .

Using the SVD of A, we denote L′ the S × d matrix given by the first d
columns of L; we denote R′ the S × d matrix given by the first d columns
of R; we denote (Σ′)1/2 be the d× d diagonal matrix defined by the square
root of the d greatest singular values of A.

We define L̂ the matrix given by

L̂ = L′ ·
(
Σ′
)1/2 (3.14)
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and we define R̂ the matrix given by

R̂ =
(
Σ′
)1/2 ×R′ . (3.15)

The rows of L̂ and R̂ give the species’ vulnerability functional and for-
aging functional traits, respectively. Note that this traits are not uniquely
identifiable, as any transformation of the matrix L̂ and R̂ preserving their
dot product would be acceptable.

3.2.5 Choosing the trait dimensionality

The dimension of an RDPG model has direct effects on the variability of the
food webs the model produces. In other words, sampling food webs from a
RDPG model given parametrised by higher dimensional traits is associated
with a lower variance. We can detail this notion more rigorously.

Let A be a (binary) adjacency matrix of a food web G with S species.
Choose two S2-dimensional matrices L and R such that L × Rt = A. For
each d < S, let us define an RDPG model with functional traits given by Ld
and Rd, the first d columns of L and R. As d increases, the variance of the
probability distribution given by the RDPG model decreases and the sam-
pled food webs will concentrate around the observed matrix A. Eventually,
choosing d = S, we can read L and R as the species’ traits of dimension
equal to the rank of A. The RDPG model with parameters L and R assigns
probability null to every adjacency matrix but A.

Hence, a pivotal element of the RDPG approach to food webs is the iden-
tification of the model dimensionality. Ideally, one would infer the variability
of a food web from empirical data, i.e., through repeated observation of the
same ecological network. However, this is not always possible, and repeated
observations of food webs are indeed rare. An alternative is given by a
graph-theoretical approach: the decreasing sequence of singular values of the
observed food web’s adjacency matrix A is of great utility in assessing the
presence of structure in the graph, and hence in delimiting an appropriate
dimensionality interval [Chatterjee et al., 2014].

Different methods to asses a suitable range for the model dimension have
been proposed in the statistical literature.
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Full rank A first, conservative upperbound for d is given by the number
of non-zero singular values, Σ+. This is because every coordinate i after Σ+

is strictly null and brings no information into the model. Thus, we can safely
ignore them.

Each additional coordinated contributes proportionally to the i-th singu-
lar value gap (i.e., the distance between the i-th and the (i+ 1)-th singular
values, [Andrews and Patterson III, 1976]).

Scree plot We perform an exploratory data analysis by looking at the
scree plot of the singular values. The objective is to identify an “elbow”–
a large gap—in the sequence of singular values. In fact, we expect it to
decrease quickly up to a certain value d̂, after which the decrease will slow
down [Cattell, 1966]. Although widely used in the literature—and also
presented in textbooks [Friedman et al., 2001]—Cattell’s graphical approach
has the drawback of depending on the researcher’s personal judgment and
visual acuity. Yet, as in many applications we are not trying to identify the
optimal model dimension d̂ but rather a suitable interval of model dimension,
Cattel’s ocular investigation is still a reasonable procedure.

Profile Likelihood We complemented our ocular intuitions with two meth-
ods for the estimation of an optimal model dimension d not relying on the
researcher judgment. The first method was developed by Zhu and Ghodsi
[2006] in the scenario of PCA analysis and is based on the maximization of
a profile likelihood function.

Let Σq and ΣQ be, respectively, the set of the first q singular values of
A and the set of the last S − q singular values of A. When we ocularly
detect an elbow at q in the sequence of singular values we are suggesting
that Σq and ΣQ are distributed according to two distribution f(σ|Θq) and
f(σ|ΘQ) with different parameters Θq and ΘQ. Let f be known and singular
values sequence Σ observed; under the assumption that singular values of
Σq and ΣQ are sampled independently, we can write the log-likelihood of the
parameters q, Θq and ΘQ as:

log L (q,Θq,ΘQ|f,Σ) =
q∑
i=1

log f(σi|Θq) +
S∑

i=q+1
log f(σi|ΘQ) . (3.16)

Then, for any q we can compute the maximum likelihood estimator of Θq
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and ΘQ, which we denote θq and θQ. Thus, the profile likelihood function
of q is:

log L (q) =
q∑
i=1

log f(σi|θq) +
S∑

i=q+1
log f(σi|θQ) . (3.17)

We choose the model dimension d maximizing the profile likelihood log L (d).
In fact, we can extend Zhu and Ghodsi [2006] method for identifying

more than one elbow. Let b ≥ 2 be the number of elbows we want to identify
and define a partition of the singular values Σ into b subsets {Σqi}bi=1—each
of which has qi elements—such that each element in Σqi is greater than each
element in Σqj whenever i < j. In particular, Σq1 is the set of the first q1

singular values of A and Σqb is the set of the last qb singular values of A. As
before, the elements of Σqi are sampled from a distribution f with parameters
Θi. Let f be known and singular values sequence Σ observed; under the
assumption that singular values of each Σqi are sampled independently, we
can write the log-likelihood of the parameters {qi}, and {Θqi} as:

log L ({qi}, {Θqi}|f,Σ) =
b∑
i=1

(∑
j∈qi

log f(σj |Θqi)
)
. (3.18)

Then, for any such partition of the singular values we can compute the MLE
parameters, which we denote {θqi}, and its profile likelihood function

log L ({qi}) =
b∑
i=1

(∑
j∈qi

log f(σj |θqi)
)
. (3.19)

This result allows us to compute increasingly conservative upper bounds
for the model dimension.

Following Zhu and Ghodsi [2006], we choose f to be a Gaussian distribu-
tion: the optimal d estimated under this choice was compatible with every
other method we implemented.

Thresholding The second method is based on the identification of a Uni-
versal Singular Value Threshold: the identification of a threshold such that,
considering only those coordinates associated with singular values higher
than the threshold, the distance between the estimated matrix and the “real”
matrix (the matrix given by the “real” model) is asymptotically small [Chat-
terjee et al., 2014; Gavish and Donoho, 2014]. This latter approach incorpo-
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rates the structural hypothesis used in the model (i.e., different random-graph
models have different threshold values).

3.3 Empirical food webs

We apply our analysis to nine different food webs, widely varying in location,
composition and species’ community size. For the majority of our analyses
and results, we will focus on the two largest food webs. The first large web
was compiled for the Serengeti National Park [Baskerville et al., 2011], and
it is made up of 161 species and 592 feeding relationships. Amongst those
161 species, 129 are plants, 23 are herbivores and 9 are carnivores. Most of
the links (507) are between herbivores and plants whereas 85 are between
animal species. The second large web is a highly resolved food web for the
Antarctic Weddell Sea [Jacob et al., 2011]. This food web is composed of
488 taxonomically identified species, 4 distinct non-living source nodes (e.g.,
detritus), and features more than 16,000 predator-prey interactions. We
chose these two food webs because they are both well resolved to the species
level which then allows for a robust phylogenetic analysis. We expect that the
differences in their latitude, their environment, and their species composition
would help ascertain the utility of our approach.

The remaining seven food webs are smaller and were compiled by different
authors [Dawah et al., 1995; Harper-Smith et al., 2005; Jonsson et al., 2005;
Ledger et al., shed; Memmott et al., 2000; Closs and Lake, 1994; Woodward
and Hildrew, 2001; Woodward et al., 2005b]. We analysed the latter webs in
order to propose a more complete comparison of the model we are introducing
with other well recognized models [Allesina and Pascual, 2009; Petchey et al.,
2008b; Rohr et al., 2010]. The sizes of these seven webs vary from 25 to 80
species.

3.4 Assessing model performance

To further corroborate our choice of dimensionality, we observe the model per-
formance as a function of the trait-vector length d. Specifically, we assessed
the RDPG model’s fitting performance in two distinct ways: 1) through its
sensitivity, i.e., the ratio of correctly predicted links to observed links, and 2)
through its accuracy, i.e., the ratio of correctly predicted observed links and
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correctly predicted absent links to the squared size of the community. To
compute these ratios, for each model dimensionality d within our estimated
optimal interval, we sampled food webs such that each link had an inde-
pendent probability of being observed (given by the d-dimensional model).
Notice that, for the reasons illustrated in the previous section, we expect the
performance to grow with d.

Next, we assessed the RDPG model’s predictive performance in a leave-
one-out cross validation test, and we again focused on the sensitivity (cor-
rectly predicted links, the “ones” in the observed adjacency matrix), speci-
ficity (correctly predicted absent links, the “zeros” in the observed adjacency
matrix) and accuracy (correctly predicted entries in the adjacency matrix).
In the leave-on-out procedure, we sequentially treated each element of the
adjacency as unobserved (i.e., absence of observation, not observation of
absence). To do so, we set the entry equal to the a priori probability p of
observing an interaction in the food web (i.e, the connectivity of the food web
without that interaction). Then, we estimated the d-dimensional functional
traits on the modified adjacency matrix and computed the a posteriori prob-
ability pij of observing an interaction corresponding to that entry. Finally,
we classified an entry with value greater than 0.5 as present and an entry
with value less than 0.5 as absent. Notice that this is equivalent to averaging
the presence/absence of a link over a large sample of randomly sampled food
webs where each links is observed with a probability equal to pij . Finally,
we compared the model-estimated food web, which depends on d, with the
originally observed one.

Finally, we computed the Akaike Information Criterion value for the
RDPG model on all the food webs we analysed. Specifically, the AIC of our
model is given by:

2 · (S · 2 · d)− 2 ·

 ∑
ij|Aij=0

log (1− pij) +
∑

ij|Aij=1
log (pij)

 (3.20)

where pij is the probability specified by the model for an interaction from
species i to species j, Aij is the entry corresponding to the interaction from
species i to species j in the adjacency matrix, S is the number of species,
and d is the length of the trait vectors.

In order to compare the RDPG to the other models, we obtained the
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fitting performances for the other models—for all but the two largest webs—
from the literature [Allesina and Pascual, 2009; Rohr et al., 2010; Allesina,
2011]. For the Serengeti food web, we obtained the species allocation in the
14 groups from the literature [Baskerville et al., 2011] and the estimated link
density between each pair of groups ourselves. We computed the likelihood
of the group model as described above for the RDPG model, considering the
number of parameters equal to S + γ2 (i.e., the number of species plus the
square of the number of groups). All further details regarding the implemen-
tation and fitting performance of these models can be found in the original
publications Petchey et al. [2008a]; Allesina and Pascual [2009]; Rohr et al.
[2010]; Baskerville et al. [2011].

3.5 Phylogenetic signal

For the two largest webs, we lastly explored the phylogenetic signal of the
observed food webs RDPG approximations as a function of the model di-
mensionality d. Though the upperbound of our analysis is arbitrary, note
that it is much less than the full rank of the food webs’ adjacency matrices.

We quantified the presence of a phylogenetic signal by comparing the
phylogenetic variance-covariance matrix [Revell et al., 2008] between species
in a community with the dissimilarity matrix obtained by considering the
pairwise Jaccard similarity [Real and Vargas, 1996] computed from that
community’s adjacency matrix [Rohr and Bascompte, 2014] (as sampled
from a d dimensional model or testing single dimensions). The Jaccard
similarity of two species in a food web is the number of common predators that
consume both focal species divided by the number of predators that consume
at least one of the two. Across all pairs of species, this defines a pairwise
similarity matrix depending on the model dimension. Similarly, one can
also compute the Jaccard similarity based on common prey, or on common
predators and prey. For each model dimension considered, we computed the
correlation between 99 sampled Jaccard similarity matrices (for species as
prey, predators, or both) and the phylogenetic variance-covariance matrix,
and we tested for significance using a Mantel test with 999 randomizations.

We also computed Blomberg’s K [Blomberg et al., 2003] measure of
phylogenetic signal for the foraging (inward) and vulnerability (outward)
functional traits using its multivariate extension proposed by Adams [2014].
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Notice, however that the analysis of traits obtained through dimensional
reduction techniques can be misleading [Uyeda et al., 2015], in particular
when the data analysed is inherently high dimensional.

For the Serengeti National Park data, we used a dated phylogenetic tree
based on molecular data compiled by De Zwan et alii. For the Weddell
Sea, we approximated the real phylogeny via a cladogram obtained from the
taxonomic classification of the species as given by the Integrated Taxonomic
Information System (http://www.itis.gov; information retrieved on 2014-11-
11). Given these trees, we estimated the phylogenetic variance-covariance
matrix under the assumption of Brownian motion trait evolution [Felsenstein,
1985; Pagel, 1992]. The model assumes that the traits evolved as independent
identically distributed Brownian motion along the lineages defined by the
phylogenetic tree.

3.6 Results

3.6.1 Trait dimensionality

The optimal value for the model dimension estimated by is d = 3 for the
Serengeti food web and of d = 6 for the Weddell Sea food web. The result
is compatible with our ocular examination of the singular values’ scree plot
(Figure (3.2)). The threshold methods indicates an upperbound of d = 4 (or
d = 2 (Hard Singular Value Threshold) for the Weddell food web, while it
failed to indicate a upperbound for the Serengeti food web (the hard singular
value threshold is higher than any of the singular values of the Serengeti
food web’s adjacency matrix).

The upper bound found with the Singular Value Threshold methods for
the smaller webs is consistently d = 1 or less (the threshold is higher than
all singular values). For these webs, the upper bound found with Zhu and
Ghodsi’s method is consistently d = 3 or lower, except for the Grassland
food web [Dawah et al., 1995] for which is d = 8.

3.6.2 Model Performance

Fitting performance

In terms of sensitivity, the fitting performance was high: more than 60%
in a three dimensional model, in both the Serengeti’s and Weddell’s food
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Figure 3.2: Model fitting performance varies with model dimensionality.
We show the cumulative sum of the singular value gaps of the food web’s
adjacency matrix (dots) and fitting sensitivity (triangles) as a function of
functional traits’ dimension for the Serengeti National Park and Weddell Sea
food webs (left and right, respectively). The dotted line corresponds to the
dimensionality suggested by the Universal Singular Threshold method, the
solid line to Zhu and Ghodsi [2006]’s method, and the dashed line to our
visual examination.
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webs, and more than 80% in a six (eight) dimensional model in the Serengeti
(Weddell) food web. The fitting performance was even higher in terms of
accuracy: more than 95% with d = 3 in both food webs. On the smaller
food webs, the accuracy was consistently above 80% while the sensitivity
was more variable, ranging between 20% and 80% at d = 1. It was, however,
consistently above 80% starting at dimensionalities between d = 3 and d = 8,
with the exception of the Tuesday Lake food web for which the sensitivity
never reached 80%).

Predictive power

The predictive power of the RDPG model based on the leave-one-out analysis
was high: in the Serengeti’s food web more than 60% of the observed links
were correctly predicted for models with dimension in the range d ∈ {1, . . . , 7}
and more than 80% of the observed links were correctly predicted for d ∈
{3, 4, 5}. The predictive power was even higher in terms of accuracy: more
than 95% with d = 3 in both food webs. Both accuracy and sensitivity were
high on the Weddell sea food web. We could identify a saturating trend in this
dataset as well, although we could not detect a peak for values of d between
1 and 16 (and we couldn’t extend our analysis further for computational
reasons). Nevertheless, we expect a similar overall trend to be present in
this case as well.

Performance comparison

The RDPG performed well compared to the other three models we analysed
in terms of both fitted and predicted linkwise accuracy. With d = 1, the
RDPG model’s accuracy already exceeded the accuracy of Rohr et al.’s [2010]
and Petchey et al.’s [2008a] models for six of the seven smaller webs; in the
case of the Broadstone stream food web, this is true starting from d = 2 (with
d = 1 the RDPG model’s accuracy roughly matched that of Rohr et al.’s
model). The linkwise sensitivity and accuracy of the blockmodel proposed
by Allesina and Pascual [2009] is outperformed by the RDPG model on the
Serengeti food web starting from d = 3 and d = 2, respectively.

When amenable to comparison, the RDPG model had a lower AIC than
Petchey’s Allometric Diet Breadth model and an AIC that was marginally
lower or higher than that of Rohr’s model and Allesina and Pascual’s model
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Figure 3.3: Model predictive performance varies with model dimensionality.
We show the predictive performance as a function of functional traits’ di-
mension for the Serengeti National Park and Weddell Sea food webs (top
and bottom, respectively), for observed links, (1) non-observed links (0), and
all pairs of species (full dots). The bottom red line indicates the predic-
tive power of a null model (each link has independent probability of being
observed equal to the food web connectance). In the Serengeti plot, we
have highlighted the region of peak predictive performance between the two
vertical lines.
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(Table (3.1)). As one can see from Table (3.2), this is most likely due to
the number of parameters, which is considerably higher in the RDPG model
than in any other model. For Broom [Memmott et al., 2000] and Grassland
[Dawah et al., 1995], two of the smallest webs, the RDPG model assigns a
null probability to (at least one) of the observed interactions when d was low.
Hence, its log-likelihood in these situations is minus infinity and its AIC is
plus infinity.

Random Petchey’s Rohr’s Group RDPG d
Broadstone stream 809 811 285 272 298 1
Broom 974 1111 657 653 Inf -
Coachella Valley 866 777 - 411 445 3
Grasslands 1007∗ - 944 - Inf -
Mill stream 2813 2641 1358 1222 1275 2
Skipwith pond 2529 2654 1491 1360 1485 2
Tuesday Lakes 2893 2513 873 833 1418 3
Serengeti 5647∗ - - 2478∗ 3416 3

Table 3.1: AIC scores for a directed random graph [Erdös and Rényi, 1960],
Petchey’s Allometric Diet Breadth (as reported in Allesina, 2011), Rohr’s
[Rohr et al., 2010], and Allesina and Pascual’s [Allesina, 2011, but see Ap-
pendix C therein for a caveat about using AIC in this model], and the
RDPG model (for the trait length d that minimises the AIC score). The
values highlighted by ∗ are computed here on the basis of the data published
in [Baskerville et al., 2011, however the caveat discussed in Allesina, 2011
holds here as well].

Random Group RDPG
Broadstone stream -403.362 -70.941 -91.12
Coachella Valley -432.108 -115.637 -66.69
Mill stream -1405.41 -466.776 -477.4
Skipwith pond -1263.357 -488.002 -458.2
Tuesday Lakes -1445.359 -199.537 -271.0
Serengeti -2822.5∗ -881.3745∗ -742.2∗

Table 3.2: Log-likelihood of a Random graph [Erdös and Rényi, 1960],
Allesina’s and Pascual’s [Allesina and Pascual, 2009], and the RDPG model
(for the trait length d that minimises the AIC). ∗ from our computation. We
omitted the two food webs where we could not choose the RDPG dimension
based on AIC.
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3.6.3 Species’ functional traits

The distribution of species in the functional-trait space can help us explore
their ecological role. It would be particularly useful in detecting “outliers”,
i.e., species with a truly unique role in food web [Petchey et al., 2008b; Jordán,
2009], and clumps, i.e., species with a similar food-web roles [Allesina and
Pascual, 2009; Stouffer et al., 2012]. Along these lines, we found that the
strongest differentiation in the Serengeti food web was between animals
and plants. The phenomenon is clearly visible in the first coordinate of
foraging functional and vulnerability functional traits (rightmost column of
Figure (3.4)). Top predators and grazers were spread far from the origins of
the coordinate axis while plants are stacked upon the axis’ origin. We would
fully expect this behaviour as they do not have any incoming link (i.e., they
do not feed on any other species that is present in the analysed food web).

Similarly, two Hyracoidea species (Heterohyrax brucensis and Procavia
capensis) appeared unique in the foraging functional trait space of the
Serengeti web, suggesting that their behaviour as predators is “peculiar”.
This unique role of Hyracoidea was also observed by the species grouping
proposed by Baskerville et al. [2011] based on the identity of species’ inter-
actions. Notably, the closest species in terms of foraging functional traits
was the elephant (Loxodonta africana), which also happen to be the closest
evolutionary relative of the Hyracoidea in the Serengeti National Park.

The low-dimensional functional trait space of the Weddell Sea food web
also exhibited a complex structure. In particular, the foraging functional
traits distribution showed a split of the species into two well-defined groups.
As we show in Section (3.6.4), this separation was strongly predicted by the
phylogeny. In addition, it is related to the species’ feeding behaviour and
type. While the Serengeti food web showed a strong separation between
plants and animals, the Weddell Sea trait space appeared to be more blurred
across trophic guilds.

3.6.4 Phylogenetic signal

We tested for phylogenetic signal of species’ functional roles estimated from
the Serengeti and Weddell Sea food webs. In general, species’ roles exhibited
significant phylogenetic signal both for species as predators, as prey, or
for both combined. Moreover, in both of these food webs, we observed a
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Figure 3.4: The distribution of functional traits for species in the Serengeti
National Park and Weddell Sea food webs In the left column we show the first
two coordinates of the foraging functional traits, and in the right column we
show the first two coordinates of the vulnerability functional traits. In the
middle, we show the first foraging functional-trait coordinate against the first
vulnerability functional-trait coordinate. We can notice the outlier position
of the Hyracoidea (and of Loxodonta africana, their closest evolutionary
relative) in the Serengeti National Park. The deep distinction between
plants and animals in the Serengeti is also visually apparent (central panel).

saturation effect in the correlation between the Jaccard similarity matrix
and the phylogenetic variance-covariance matrix as we considered increasing
model dimensions from d = 1 to d = 20 (Figure (3.5)). The trend is stronger if
we considered the contribution of single coordinates, as we have a decreasing
signal (which is non significant for d = 4 and above in the Serengeti).
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Figure 3.5: Correlation between the similarity of species’ roles (as both
predator and prey) and the phylogenetic variance-covariance matrix for the
Serengeti National Park (top) and Weddell Sea (bottom) food webs. In
both panels, we show the (significant at the level p < 0.01) correlation for
99 sampled food webs as a function of the length of species’ trait vectors.
Notice that the model with d = 1 for the Weddell Sea is not significant and
we don’t show the correlation value.

Looking at one coordinate at a time, we detected a decreasing phyloge-
netic signal (Blomberg’s K) for the vulnerability and foraging functional, see
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Figure (3.6).
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Figure 3.6: Phylogenetic signal (Blomberg’s K) across the estimated trait
coordinates for the vulnerability (i) and foraging (f) functional traits.

3.7 Discussion

Previous research has indicated that simple, phenomenological food-web mod-
els can be successful but are unable to account for all the observed variance
of food-web structure [Allesina et al., 2008; Rohr et al., 2010; Williams et al.,
2010]. Therefore, to explain the structure of food webs more accurately, we
need to adopt a different or improved approach. Here, we introduce one
such possibility, the directed random dot product graph model, and study
its behaviour for nine food webs (two larger one from the Serengeti National
Park and the Weddell Sea and seven smaller food webs). Having estimated
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the functional traits for the species in the food webs, we demonstrate that
our model can fit observed interactions with considerable link-wise accuracy.
We show also that the model can predict interactions for which we simulated
absence of observation. While the enumeration and identification of the
minimum or sufficient number of traits to “explain” a food web is still an
open problem [Eklöf et al., 2013; Capitán et al., 2013], our results support
the argument that food webs are inherently low dimensional.

In our approach, we distinguished between species’ vulnerability and
foraging traits with the former defining their “role” as preys and the latter
their role as predators. This distinction is not uncommon in the available lit-
erature [Bersier and Kehrli, 2008; Rossberg et al., 2010; Rossberg, 2013] and
may help to explain an element of its success. The way in which we identify
these trait values is quite different to earlier approaches in the following way:
previous research had attempted to define a suitable function F that maps a
pair of vulnerability and foraging traits to the probability or occurrence of an
interaction [Rossberg et al., 2006; Rossberg, 2013]. Typically, the shape of
F was proposed based on some natural assumption of species behaviour e.g.,
F should increase with respect to the similarity of the prey’s vulnerability
and predator’s foraging traits [Petchey et al., 2008a] or F should allow for a
certain dietary plasticity [Williams et al., 2010].

Actual traits involved in the process of food web assembly may differ
across a web or for each pair of species. For instance, the traits determin-
ing the predation habits of an eagle may not be the same as those that
determine the grazing preferences of a gazelle. Defining a suitable function
F , many prior approaches had to face this problematic complexity. Impos-
ing ad hoc variables and rules for each pair of species is a truly ambitious
task, to say the least. Instead, we propose the use of “abstract” functional
traits that express the combined effect of many species-specific traits that
would be measured empirically. Furthermore, our RDPG model adopts an
extremely simple function F—a dot product—still able to satisfy key criteria
[Rossberg, 2013] while being remarkably predictive. A key consequence of
this simplicity is that the complexity of explaining empirical interactions is
shifted from identifying a suitable function F to the functional traits of the
species themselves.

Similar approaches are not without precedent [Matias and Robin, 2014].
For example, the functional grouping of species proposed by Allesina and
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Pascual [2009] aims to identify groups of species that have distinct within- and
between-group interaction probabilities. Under the stochastic block model
[Holland et al., 1983; Wang and Wong, 1987], the species in a network are
partitioned into groups (blocks) such that every group is non-empty and no
node sits at the intersection between groups. As this clustering into groups is
based solely on the observed food-web structure, the RDPG approach may be
considered a generalization of stochastic block models that extends the upper
bound on the number of blocks to the number of species in the community.
Furthermore, if we consider a model where the block each species belongs
to is determined by its position in functional space [Rohe et al., 2011; Xu
et al., 2014], we can recover the undirected RDPG model by assuming that
the probability of a link between two nodes is given by their distance in this
space. However, as we have seen comparing the fitting performance of our
model and Allesina and Pascual’s 2009 model, information is lost forcing the
species into k blocks (groups) and assuming that species in blocks behave
homogeneously.

3.8 Conclusions

Here, we have shown that complex food webs can be modelled with high
fidelity based on a parsimonious stochastic model. Based on the food webs’
sequence of singular values, we consistently estimated a dimensionality up-
perbound much lower than the full rank of the food webs’ adjacency ma-
trix. The RDPG model outperformed other classic models both in terms of
fitting performance—how many observed present/absent interactions were
accurately captured—and in terms of predicting performance—how many
non-observed interactions where accurately predicted. On this basis, we
believe is important to distinguish the two performance frameworks and
to explicitly consider unobserved interactions. We argue this may be best
achieved by adopting a probabilistic view of species interactions.

Moreover, we detected a low but significant phylogenetic signal in the
species’ food-web roles—a result that echoes the conclusions of previous re-
search [Bersier and Kehrli, 2008; Stouffer et al., 2012; Rohr and Bascompte,
2014]. Here, however, we could distinguish between the contribution given by
food webs’ backbones—the relative lower dimensional model structure—and
food webs’ fine wiring—the relative higher dimensional model structure. In
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particular, our results suggest that most of the evolutionary signal is already
present in the structure of food webs’ stochastic backbones. The importance
of the food-web backbones was consistently found when we considered in-
dependently species as consumers (or predators) and species as resources
(or prey). Moreover, the saturating trend we detected when considering
dimensionally increasing models was backed up by the analysis of single
coordinates.

The fact that the predictive power of phylogeny varies as function of the
choice of model dimensionality begs the question of whether deterministic
food-web models are really able to convey information about the evolutionary
character of species-rich community. Confirming the presence of evolutionary
signal in food webs, our results may be considered a first step in the direction
of investigating more of the detailed nature of this signal.
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Appendix

Synopsis: In the previous Chapter we saw that the (abstract) functional
traits of the species in a food web exhibit an evolutionary signal. The signal
was detected under the assumption that branches do evolve independently.
In other words, the interactions between species do not affect the species’ evo-
lutionary trajectories. However, lineage independence is a strong assumption
when we are modelling the evolution of those traits that determine species
interactions. In this Appendix, I introduce a model for the evolution of traits
that takes the effect of species’ interactions on the evolution of species’ traits
into account, which we label branching interacting traits evolution (BITE)
model. BITE is defined for species for which the probability of interactions is
distributed according to an RDPG model. It represents an explicit attempt
to deal with lineages’ non-independence. We will define it rigorously and
show how, under the condition that the species community is large enough,
it can be interpreted as an extension of the Ornstein–Uhlenbeck model for
the evolution of traits.

3.A Evolutionary histories in a community of in-
teracting species

A central assumption of the evolutionary models used in phylogenetic com-
parative methods (see [Garamszegi, 2014] for a recent introduction) is that
the evolutionary processes occurring on different branches of the phylogeny
are independent. This allows for a fast estimation of the optimal model’s
parameters [Revell, 2012; Pennell et al., 2014].

However, the results presented in this thesis as well as other already
published studies [Freckleton and Harvey, 2006; Pennell et al., 2015] support
the notion that the species’ functional traits may have not evolved according
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to a simple branching Brownian motion.
Despite the recent advances in the modelling of functional trait evolution

in complex ecological networks, a general model is still missing.

3.A.1 The evolution of traits in a fish-bowl

We observe a phylogeny, T , in which the tips are a given group of species
S and, for each species i ∈ S, a d-dimensional vector of traits i. For conve-
nience, we restrict our focus to phylogenies given that are given by rooted
ultrametric binary trees: all internal nodes have exactly one parent node and
two daughter nodes, tips have exactly one parent node and no daughters,
and all tips are observed at the present time T . We model the evolution of
species’ traits as a stochastic process occurring on the branches of T (starting
from its root).

Branching Brownian motion To start, let us consider species’ traits
as one-dimensional real variables. The most elementary model we define is
commonly named the branching Brownian motion model (BBM); the BBM
builds on a simple Brownian motion model. The one-dimensional Brownian
motion with variance σ (a positive real parameter) is a continuous-time
stochastic process Bσ(t) into the real line, R, and satisfying the following
conditions [Mörters and Peres, 2010]:

1. The process starts at the origin (i.e., Bσ(0) = 0).

2. The increments are independent from the past (i.e., Bσ(t+ δt)−Bσ(t)
does not depend on the values assumed by Bσ(t) in the past).

3. Any increment Bσ(t+ δt)−Bσ(t) is normally distributed with mean
0 and variance σδt:

Bσ(t+ ∆t)−Bσ(t) ∼ N (0, σ∆t) ;

4. The process Bσ(t) is almost surely continuous:

lim
s→t

Bσ(s)−Bσ(t) = 0 .

The existence of such a stochastuc process has been proved by Wiener
[1923].
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Let Nt denote the number of extant species at each time t. We express
the values of the traits in S at time t by a column vector of dimension Nt

X(t) ∈ RNt . Each row, Xi(t), of X(t) evolves, between two speciation events,
as a Wiener process. In other words, X(t+ ∆t)−X(t) is distributed as an
indipendently and indentically distributed multinomial random variable with
mean 0 and variance σ∆t. As a formula:

Xi(t+ ∆t)−Xi(t) ∼ N (0, σ∆t), (3.21)

as long as the interval [t, t+ ∆t] does not include a speciation event. Let s
be the time at which the ancestral lineage i speciated. In that moment, the
row i of X(s) is substituted by two rows that have identical values to i(s)
and the evolution process continues independently henceforth. If we ignore
all the other lineages and focus on one lineage from the root to a tip i, the
value of i(t) describes a Brownian motion.

It is convenient to write the Brownian motion as a diffusion process (see
Section 12.4 in [Bosq and Nguyen, 2013]) defined by a stochastic differential
equation:

dX(t) = σ dBt. (3.22)

In fact, what we mean is that the increments of X(t) are given by the integral
equation:

X(t+ ∆t)−X(t) = σ

∫ t+∆t

t
dBu, (3.23)

where the integral has to be interpreted as an Itô integral [Itô, 1944] with
respect to the Brownian process Bu. Under this notation, σ is known as the
diffusion coefficient.

The BBM model is thoroughly detailed in the literature and has been
extended in different directions: it is possible to (a) incorporate a drift
imposing a non-zero mean to the distribution of the underlying Wiener
process (i.e., defining a new stochastic process V (t) = µt + W (t)); (b) to
relax the hypothesis of identical distribution, letting σ depend on the lineages
(i.e., σ = σ(i)); (c) to let the parameters depend on the absolute time (i.e.,
σ = σ(t)), the age of the lineage (i.e., σ = σ(i, t − s(i)), where s(i) is the
time to the most recent ancestor of the lineage s(i)) or the speciation rate
of (a subtree of) the phylogeny. See [Thomas and Freckleton, 2012] for a
review of the above and other models.
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This generalisations does not affect the independence of the lineages:
after a speciation event, all the species evolve independently.

Branching Ornstein–Uhlenbeck model An important extension of the
BBM is based on a stochastic process introduced in the 1930s by Leonard
Ornstein and George Eugene Uhlenbeck that models the motion of a par-
ticle (here a species) that is attracted toward an optima position Θ and
diffuses according to a Brownian motion (see [Wax, 1954]). Using the nota-
tions introduced above, we can write Ornstein’s and Uhlenbeck’s model (the
Ornstein–Uhlenbeck model or OU) as:

dX(t) = α [Θ−X(t)] dt+ σ(t) dB dt, (3.24)

where Θ is a column vector in which the rows are the trait optima of the
species in S(t) and α is a column vector in which the rows are given by
parameter that determine the strength of attraction toward the species’ (the-
oretical) optimum [Doob, 1942]. We call the term α [Θ−X(t)] the drift term
of the stochastic process. Rigorously, the OU stochastic process is defined
as stochastic integral equation:

X(t+ ∆t)−X(t) = α

∫ t+∆t

t
[Θ−X(t)] dt+ σ

∫ t+∆t

t
dBu, (3.25)

where the first integral has to be interpreted in the classic Riemann sense
and the second is the Itô stochastic integral [Itô, 1944].

The branching Ornstein–Uhlenbeck model (BOU) [Hansen, 1997] is de-
fined as the BBM, but the independently and indentically distributed pro-
cesses occurring on the lineages between speciation events are Brownian
motion with drift (OU) processes instead of pure Brownian motion processes.
When a mother lineage speciates, her daughter lineages inherit the mother
traits.

As for the BBM model, various generalisations have been considered (see
[O’Meara and Beaulieu, 2014] for an overview): α can depend on the lineages
and on the time, where as the optima Θ can be fixed and equal for all species,
or depend on time and lineages (Θ)i(t) = Θ(i, t).

The branching Ornstein–Uhlenbeck model and the named generalisations
assume lineage independence.
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3.A.2 Expected species’ covariance

In practice, we do not observe the evolutionary trajectories of species’ traits;
instead, we can reconstruct the species’ phylogeny from molecular data and
observe the distribution of the traits among its tips.

The problem is to compare the distribution of the traits as observed
empirically with what we would expect to observe under a certain evolu-
tionary model (e.g., BBM, BOU or one of their extensions) to fit the model
parameters and assess if the fit is significant or not. Thus, the evolutionary
models are distinguishable as long as they produce different expected trait’s
distribution (see [Kaliontzopoulou and Adams, 2016] for a discussion of the
limitations imposed by this request).

Consider, at time T , a pair of species i and j for which the most recent
common ancestor speciated at time S. The species i and j have evolved
independently for a time s = T−S. Hence, the expected variance–covariance
structure for the species’ traits is given by:

VBBM = σ

[
T S

S T

]
(3.26)

under a BBM model of evolution [Felsenstein, 1985] with variance σ and by:

VBOU = σ

 1− e−2αT e−2αs
(
1− e−2αS

)
e−2αs

(
1− e−2αS

)
1− e−2αT

 (3.27)

under a BOU model of evolution [Hansen, 1997] with variance σ and an
attraction strength α. Notice that for a BOU with a unique selection regime
(i.e, the α and θ for the same for all the lineages), the trait optimum does
not appear in the covariance matrix.

Given a dated phylogeny T , we can fully specify the expected variance–
covariance matrix of an indefinitely large group of species using Equations
(3.26) and (3.27), as the pairwise covariance of each pair of species is indepen-
dent from that of all the other species. Thus, given the trait’s distribution
and the species’ phylogeny, we can compute the likelihood of a BBM [Pagel,
1999] or BOU [Butler and King, 2004] evolutionary model, even in the pres-
ence of measurement errors in the trait [Ives et al., 2007; Silvestro et al.,
2015] or the phylogenetic [Huelsenbeck et al., 2000; Rangel et al., 2015] data.
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3.B The evolution of traits when species interact

All the models discussed in the previous section assume the independence
of concurrent lineages. As we are interested in studying the evolution of
the traits that determine the probability of interactions between the species,
we may want to abandon that assumption. Indeed, Nuismer and Harmon
[2015] have shown that the presence of evolutionary effects due to species
interactions, in the form of either a repulsion or an attraction between species
with similar traits, leads to trait distributions that are strikingly different
from what would be expected in the absence of interactions effects.

Here, we begin to sketch a food-web model of traits evolution. We
explicitly include in the model the effect of ecological interactions among the
species of a food web: the evolution of a lineage will depend on the traits
of all other interacting lineages. Theoretical [Doebeli, 2011] and empirical
[Abrams, 2000] results regarding the adaptive radiation and diversification of
predator–prey (resource–consumer) systems support the notion that species’
traits adapt to increase their trophic fitness, which is the ability of a species
to prey (consume) or escape predation (consumption) [Nosil and Crespi,
2006; Nosil, 2012].

3.B.1 Adaptive dynamics and coupled differential equation

3.B.2 Functional traits

Let i(t) and j(t) be the real d-dimensional functional traits of the species
i and j at time t. Let mij be a scalar function mapping the functional
traits of i and j into the interaction propensity between i and j; in other
words, mij (i(t), j(t)) ∈ [0, 1] is the probability of species i interacting with
species j. Similarly, let dij be a vectorial function from the traits of i and
j to the direction that the evolution of the traits of i would take if there
were no other species except j (and if the evolution of the traits had no
stochastic motion component); specifically, dij (i(t), j(t)) ∈ Sd0,1, where Sd0,1
is the unitary d-sphere, which expresses the direction of the displacement
of the traits of species i caused by species j. We will often drop the traits
i(t) and j(t) from the notation, and write mij(t) and dij(t) for mij (i(t), j(t))
and dij (i(t), j(t)) respectively.

We can combine the magnitude mij and the direction dij into a function
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fij describing the effect of species j on species i:

fij (t) = mi,j (t) di,j (t) , (3.28)

If i(t) and j(t) are vectors in Rd, then fij maps the functional traits into
the closed unitary d-ball, fij : Rd×Rd → Bd0,1. Each species j that is extant
at time t affects the evolution of species i’s traits in accordance with fij (t)
and a parameter αi(t), giving the sensitivity of species i to the ecological
pressure at time t.

Using the notation we introduced in Section 3.A.1, we assume that the
evolutionary effect of the ecological interactions are additive and define the
evolution of species i’s traits as:

di(t) = αi(t)
∑
j∈S(t)

fij (t) dt+ (1− αi(t)) dB(t), (3.29)

where S(t) are all the species extant at time t and B(t) is a d-dimensional
Brownian motion with vector of variance ~σ (in other words, each coordinate
l of B(t) has variance ~σl).

In general, the three forces fij , mij and dij need not be the same for all
pairs of species; neither, in practice, is it always possible to estimate mij(t)
and dij(t).

3.B.3 The random dot product graph case

The BITE model can be specified for the food-web model defined in this
chapter. Indeed, I propose a definition of the magnitude and direction
component of fij grounded on the species’ functional traits as estimated by
RDPG.

The RDPG model considers asymmetric interactions between species
determined by a pair of vector traits for each species, where each vector is
of length d. If i is a prey of the predator j, then the vulnerability traits of
i are affected by the foraging traits of j (and vice versa). The interaction
probabilities are defined by the proximity of the vulnerability traits (i(out)(t))
and the foraging traits i(out)(t) in a d-dimensional Euclidean metric space.

Accordingly, we can decompose the magnitude of the ecological pressure
of j on i, mij , into the magnitude of the ecological pressure of j on the
vulnerability traits of i (mi(out),j(in) , which depends just on the foraging
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traits of j) and the magnitude of the ecological pressure of j on the foraging
traits of i (mi(in),j(out) , which depends just on the vulnerability traits of j).

We can write an explicit formula for the magnitude of the evolutionary
effect between each pair of species in a food web:

mi(out),j(in) (t) = i(out)(t) · j(in)(t). (3.30)

As the dot product is symmetric, the magnitude of the evolutionary effect
is symmetric:

mj(in),i(out) (t) = mi(out),j(in) (t) . (3.31)

We can define the directional component of the ecological pressure of
j on i similarly, distinguishing the effect on the vulnerability (di(out),j(in))
and the foraging (di(in),j(out)) traits of i. The key modelling assumption is
that the traits of the prey i evolve to maximise the angular distance to the
predator j’s foraging traits and hence decrease the magnitude of the effect
of j; conversely, the traits of the predator j evolve to minimise the angular
distance to the prey i’s vulnerability traits and hence increase the probability
of an interaction with i (e.g., the probability that i is preyed or consumed
by j). In particular, left by themselves, a pair of predator and prey species
would evolve in the same direction, entering into an arms race [Vermeij,
1987]:

di(out),j(in) (t) = dj(in),i(out) (t) (3.32)

Let j(in)(t) −w i(out)(t) be the projection of the vector j(in)(t) − i(out)(t)
onto the sphere which has the origin as its centre and a radius ‖i(out)(t)‖.
We can now write the direction component di(out),j(in) as:

di(out),j(in) (t) = j(in)(t)−w i(out)(t)
‖j(in)(t)−w i(out)(t)‖

. (3.33)

Let pP
[
i(out)(t),X(in)(t)

]
and Pp

[
i(in)(t),X(out)(t)

]
be the total inter-

action effects on the evolution of i as prey and as a predator, respectively.
Specifically:pP

[
i(out)(t),X(in)(t)

]
=
∑
mi(out),j(in) (t) di(out),j(in) (t) ;

Pp
[
i(in)(t),X(out)(t)

]
=
∑
mi(in),j(out) (t) di(in),j(out) (t) .

(3.34)
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We now have a fully specified model for the evolution of the traits in a
group of species that interact according to an RDPG-like food web model.
We can write the traits evolution of each species i in a food web as a couple
of stochastic differential equations:di(out)(t) = ~αipP

[
i(out)(t),X(in)(t)

]
dt+ (1− ~αi) dB(t)

di(in)(t) = ~αiPp
[
i(in)(t),X(out)(t)

]
dt+ (1− ~αi) dB(t) ,

(3.35)

where B(t) is a d-dimensional Brownian motion with variance ~σ.
Notice that pP [·, ·] and Pp [·, ·] are completely determined by the distri-

bution of the species’ functional traits in the functional space of the food
web. Hence, the only free parameters of the models are the variance of the
of the Brownian motion ~σ, the species’ sensitivity to the ecological pressure
~α and the RDPG model dimension d.

3.B.4 BITE as an Ornstein–Uhlenbeck process

Our definition of the Ornstein–Uhlenbeck process can be generalised further
by introducing lineage-specific trait optima, denoted Θ(i, t), which are a
function of the time [Bartoszek, 2013]. In particular, Θ(i, t) can itself be a
stochastic process, such as a Brownian motion. This kind of model has been
considered in phylogenetic comparative methods. For example, Beaulieu
et al. [2012] analysed a family of evolutionary models where the optima
Θ(i, t) were stepwise constant functions, which could differ from lineage to
lineage.

In a complementary direction, the BOU model has been generalised by in-
troducing global optima that are themselves stochastic process: the Ornstein–
Uhlenbeck with Brownian optima (OUBM) model [Hansen et al., 2008] con-
sider optima drifting as a Brownian motion; the Ornstein–Uhlenbeck with
Ornstein–Uhlenbeck optima (OUOU) model [Jhwueng and Maroulas, 2014]
consider optima that evolve as an Ornstein–Uhlenbeck process (independent
from the main Ornstein–Uhlenbeck process) where optima are centred on
zero.

We can express the BITE model in the form of an Ornstein–Uhlenbeck
model with lineage-specific and drifting trait optima. Indeed, we can define
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the optima for the vulnerability traits of species i at time t, Θ(out)
i (t), as:

Θ(out)
i (t) = i(out)(t)− pP

[
i(out)(t),X(in)(t)

]
, (3.36)

and the optima for the foraging traits of species i at time t, Θ(in)
i (t), as:

Θ(in)
i (t) = i(in)(t)−Pp

[
i(in)(t),X(out)(t)

]
. (3.37)

The optima for the vulnerability traits and the foraging traits are both
completely determined by the food-web distribution of the vulnerability and
foraging traits. We can now rewrite the evolutionary Equation (3.35) as:di(out)(t) = ~αi

[
Θ(out)
i (t)− i(out)(t)

]
dt+ (1− ~αi) dB(t)

di(in)(t) = ~αi
[
Θ(in)
i (t)− i(in)(t)

]
dt+ (1− ~αi) dB(t),

(3.38)

where B(t) is a d-dimensional Brownian motion with variance ~σ and sensi-
tivity to the ecological pressure ~α.

In general, we cannot apply the usual techniques to compute the traits’
covariance (see, for example, the Appendix in [Beaulieu et al., 2012]), as the
increments of Θ(out)

i (t) and Θ(in)
i (t) are not independent from the traits of i.

However, let us choose a species i from S uniformly at random. At
each time t of the evolutionary process, the maximum effect that can be
applied by any species j on i is bounded by the norm of j’s trait vectors.
Moreover, suppose that the traits of each species j that fall into a cone Cr(i)
(a hyperconic subset of the functional space, determined by all the point of
the functional space having angular distance to the species i at most equal
to r) are symmetrically distributed around i; in other words, suppose that
the probability of finding a species j is the same in each direction around i.
We can approximate the total ecological pressure on i (for either its foraging
or vulnerability traits) by the sum of all the effects applied by the species j
in the cone C(i); in fact, the magnitudes of the effect applied by the species
decrease with the angular distance from i, and thus the species l falling
outside the cone Cr(i) contribute relative less than the species falling into
the cone. We can, under the hypothesis that the species’ traits in Cr(i) are
distributed independently1, invoke the central limit theorem for bounded

1We could, in fact, weaken this hypothesis and require only weak independence [Billings-
ley, 2008], namely that the traits of species that are distant enough in the functional space
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variables (see, for example, exercise 27.4 in [Billingsley, 2008] and conclude
that the sum of the effects of the species in the cone converges weakly to a
multinomial distribution centered in zero2.

Hence, in the scenario with low d and high S, we expect the evolution of
the species’ functional traits to be described by an Ornstein-Uhlenbeck pro-
cess with lineage-specific optima drifint as an independent Brownian motion
process. However, further analysis is needed to confirm this conjecture.

3.C Discussion

We cannot yet provide a closed expression akin to Equation (3.26) for the
traits’ covariance under the BITE model. In fact, the expected trait variance
of any species and the expected trait covariance of any pair of species depend
on the trait distribution of the whole community of species. However, at
least for relative simpler models [Drury et al., 2015], it has been shown that
the covarinace between each pair of species can be obtained as a solution to
a differential equation.

Analytical insights such as those that close the previous section may help
us to understand—at least qualitatively—what network structure and trait
distribution we should expect when the species’ interactions affect the evolu-
tion of the species’ traits [Nuismer and Harmon, 2015]. In Chapter (4), we
define a family of species’ centrality measures and we estimate their empirical
distribution in a five observed food webs. We will see that the distribution of
those centralities appears to derive from an Ornstein–Uhlenbeck evolutionary
process, compatible with the indications of this Appendix.

Large community-evolution models [Loeuille and Loreau, 2009] have been
proposed from different perspectives, such as individual-based models [Melián
et al., 2011] and the analysis of adaptive dynamics [Brännström et al., 2012].
The results obtained are encouraging. These models are, in general, burdened
by an explicit description of population dynamics (based on linear or non-
linear demographic responses [Drossel et al., 2004]), and are defined on a
low-dimensional [Itô and Ikegami, 2006; Itô et al., 2009; Allhoff et al., 2015;
Drury et al., 2015; Clarke et al., 2015] or discrete space [Caldarelli et al., 1998;

are independently distributed.
2However, the convergence on the number of species in S is slow [Hall and Barbour,

1984] and its speed decreases with d, because the probability of picking a species i from S
that is peripheral in the functional trait space increases.
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Figure 3.C.1: A time lapse of the evolution of a food web under the Bite
model. Here, three guilds of species (plants in green, pollinators in blue and
herbivores in red) interact according to the Bite model.

Drossel et al., 2001; Rossberg et al., 2006]. Generalising these models to
higher dimensions in a continuous space is not trivial, neither mathematically
nor biologically. It has been shown by Doebeli and Ispolatov [2010] that
the dimension of the trait space plays a key role in species evolution, as
there is a trade–off between stability and diversity [Débarre et al., 2014;
Doebeli and Ispolatov, 2014; Ispolatov et al., 2016]. It is interesting to
notice that the dimensionality we estimated from the RDPG model is in
line with this result. The functional space dimension is an easily tuneable
parameter of the BITE model; the model is also easier to simulate, as it
does not depend explicitly on the species’ demographic dynamics. The
relationship between BITE, individual-based and adaptive dynamics models
requires further investigation.

We mentioned in Section (2.2.2) that information about food webs’ di-
achronic assembly is sparse. The available topological definition is not ad-
equate for directly reconstructing the evolutionary trajectories of species’
RDPG traits. Hence, we have to rely on comparative and indirect methods
if we are to assess the relevance of ecological interactions for the evolution
of species in food webs. The use of computer simulation for testing evo-
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lutionary models has a long history [Garland et al., 1993]. Recent results
[Allhoff et al., 2015] have shown that accounting for species’ interactions
when simulating the evolution of food webs produces realistic ecological net-
works. This result support the notion that there is an important feedback
between the ecological and evolutionary processes. Similarly, our preliminary
exploratory simulations (see Figure 3.C.1 for a typical outcome of a short
time simulation) seem to suggest that the BITE model for the evolution of
a food web can recover some of the properties of empirical food webs, such
as their modular structure and their nestedness.
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Chapter 4

Centrality and uniqueness in
random dot product graphs

Synopsis: Estimating species’ relative importance in their ecosystems—in
terms of their contribution to ecosystems’ stability and diversity—is a crucial
task at the core of all scientifically informed efforts to preserve the planet’s
biodiversity. This task is commonly grounded on the measurement of the
species’—morphological, behavioural and trophic—characters, or through
their evolutionary history. However, collecting enough homogeneous data to
assess each species’ importance across a large ecosystem is labour-intensive
and is not always feasible. Thus, the description of ecosystems as food webs—
the graphs of who-eats-whom—allowed the adoption of graph-theoretical
proxies for species’ importance depending just on the food webs’ topological
structures. These measures derive from rigid, deterministic graph models.
Therefore, their applicability to complex food webs, which are characterized
by stochastic behaviours, can be limited. Here, we assess species’ ecological
relevance while accounting for food webs’ stochasticity. To do so, we model
food webs as RDPGs and identify their stochastic backbones: the most sta-
tistically persistent interactions. The RDPG model allows us to estimate a
species’ position in a low-dimensional abstract functional trait space, either
for a species as prey, as a predator or as both predator and prey. The repre-
sentation of a species in this functional space offers a unified framework in
which to estimate the species’ importance for food web stability, their contri-
bution to the food web’s functional diversity and their ecological uniqueness,
relying only on topological data. We compare the species’ ordering based
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on their relevance, as determined by our novel measures and six classic mea-
sures, and explore the distribution of species relevance among the tips of the
Serengeti National Park food web’s phylogeny. Although we do not detect
a linear correlation between evolutionary and ecological relevance, we find
a clade of species that are both ecologically and evolutionarily distinctive.
Our results highlight the importance of considering both evolutionary and
ecological factors when valuing species for conservation purposes.

Notes: A version of this chapter has been submitted to Royal Society
Open Science (The Royal Society Publishing): GVDR and Carey Priebe
(Department of Applied Mathematics and Statistics, Whiting School of Engi-
neering, John Hopkins University), “Important, Unique and Central: Species’
Relevance in Food Webs”.
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I go for all, because someone
must go for all.

The Brothers Karamazov
Fyodor Dostoyevsky

Translated by Constance Garnett

4.1 Introduction

The need for scientifically informed conservation policies boosted the at-
tempts to estimate species’ relative importance in food webs: the graphs
describing the flows of energy between species in an ecosystem [May, 2009].
A sound approach to assess a species’ contribution to an ecosystem is based
on the concept of functional diversity. As summarised by Petchey and Gaston
[2006, pg. 742],

[. . . ] measuring functional diversity is about measuring functional
traits diversity, where functional traits are components of an
organism’s phenotype that influence ecosystem level processes.

In this context, the contribution of a species to the functional diversity of a
food web is captured by the traits diversity loss that we would observe after
the removal of that species [Villéger et al., 2008; Fontana et al., 2015]. How-
ever, identifying suitable phenotypic traits and collecting all the necessary
data across a full food web is often ambitious. The tangled intricacy of food
webs, where there are often thousands of interactions between hundreds of
plants and animals, motivates the use of complex-network tools for solving
ecological problems [Proulx et al., 2005]. Centrality measures—graph theo-
retical measures developed in economic, social, technological and theoretical
scenarios to identify crucial nodes in a network [Newman, 2009]—have been
proposed to assess a species’ centrality and to identify the species that play
a crucial role within an ecosystem [Estrada, 2007; Lai et al., 2012].

The evolutionary distinctiveness of species (i.e., the amount of exclusive
evolutionary information hinging on a species) is an intrinsic component of
biodiversity [Mace et al., 2003] and the evolutionary diversity of species is
used as a proxy for a species’ functional diversity [Winter et al., 2013]. Evo-
lutionary diversity has been shown to promote ecosystem stability [Cadotte
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et al., 2012]. Accordingly, it has been argued that the evolutionary distinc-
tiveness of species should be one of the factors grounding conservation efforts
[Faith, 1992; Redding and Mooers, 2006; Isaac et al., 2007]. However, the
exact relationship between the evolutionary and food-web distinctiveness of
a species is an open problem [Gerhold et al., 2015; Miranda and Parrini,
2015].

In the previous chapter, we introduced directed RDPG for food webs:
from the classic binary description of a food web—its adjacency matrix—we
estimate species’ position in an abstract functional trait metric space so that
the species’ interaction probabilities are determined by the pairwise distance
structure: the probability of observing an interaction from species i to
species j (e.g., j feeding on i) is given by the dot product of the vulnerability
functional traits of i and the foraging functional traits of j.

This motivates the distinction between a food web’s backbone—its most
statistically persistent structure—and its fine wiring, which is more sensi-
tive to contingent ecological factors or stochastic noise [Grady et al., 2012;
Bellingeri and Bodini, 2015]. A robust ordering of species based on their
ecological relevance should not be too sensitive on the fine wiring of a food
web [Livi et al., 2011].

Here, we show how the abstract functional trait space, estimated by
the RDPG model, offers a unified framework in which to assess species’
importance, uniqueness and diversity. We propose three measures, relying
only on topological food-web data, which can serve as proxies for measures
based on phenotypic data.

Building on the existing measures of trophic similarity [Yodzis and Wine-
miller, 1999; Luczkovich et al., 2003; Jordán et al., 2009], we will define
the uniqueness of a species’ food-web role as its isolation (i.e., the average
distance to all the other species) in the abstract functional traits space es-
timated by the RDPG model. To measure the species’ relative importance
in a food web, we define a species’ strain as the effect that removing that
species has on the estimated abstract functional trait space: for each focal
species in the food web we measure the total distance between the remaining
species’ positions in the abstract functional trait space before and after the
removal of the focal species. The strain of a species captures a global effect
at the whole food-web scale, rather than a local property of its interactions
structure. Borrowing from the functional diversity literature, we estimate
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the functional diversity of a food web as the volume of the convex hull en-
closing all the species’ abstract functional traits. Accordingly, we define the
contribution of a species to the functional diversity of a food web as the
loss in diversity caused by the removal of that species. Focussing on the
vulnerability, on the foraging or both the vulnerability and foraging abstract
functional traits, we can assess a species’ relevance as prey, as a predator
or as both predator and prey. We distinguish among the species’ strain,
uniqueness, and contribution to the functional diversity as prey (outward
strain, uniqueness, and contribution to the functional diversity), as a preda-
tor (inward strain, uniqueness, and contribution to the functional diversity)
or as both a predator and prey (total strain, uniqueness, and contribution
to the functional diversity).

We correlate these novel measures among each other as well as with
six classic network centrality measures, and we explore their distribution
among the clades present in the food web. In particular, we test whether the
distribution of ecological relevance among the tips of the Serengeti National
Park food web’s phylogeny is compatible with an evolutionary model of traits
evolution. Finally, we examine the hypothesis that the species’ ecological
relevance and evolutionary distinctiveness are indeed correlated.

4.2 Food-web relevance

Random dot product graphs Let A be a food web including S species.
Given a dimension d, under the RDPG model, each species i in A is as-
sociated to a pair of abstract functional trait vectors of dimension d. The
two vectors are the rank-d vulnerability traits (or outward traits), which
describes the species as a prey or a resource, and the rank-d foraging traits
(or inward traits), which describes the species as a predator or a consumer.
The probability of observing an interaction from species i to species j is
given by the dot product of the out traits of i and the in traits of j. For
an observed food web A, the species’ traits are estimated through a scaled,
truncated, singular value decomposition of the adjacency matrix of A (see
the previous chapter for more details).
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4.2.1 Strain

The strain of species i measures the effect that the removal of i from the food
web has on the remaining species’ abstract functional traits, as estimated
from the RDPG model. The effect is measured for species either as predators,
as prey or as both. Let X(A) be the matrix of either the inward, outward or
total rank-d abstract functional traits (the last one being the matrix in which
the first d columns are given by the inward traits and the next d columns
are given by the outward traits). We use X(A)r(i) to denote the matrix
of the (inward, outward or total) functional traits for all the species in the
food web A except i (i.e., the matrix obtained by X(A) removing the ith
row). The matrix X

(
Ad(i)

)
is the matrix of traits for the species in the food

web A that has been computed after having dropped the species i from the
food web with all its interactions (i.e., the matrix of traits computed after
removing the ith row and column from A). Both X(A)r(i) and X

(
Ad(i)

)
are matrices with S− 1 species (each species in A but i) and d columns (the
model’s dimension). In X(A)r(i), the functional traits are computed before
removing i, in X

(
Ad(i)

)
they are computed after the removal event.

In the previous chapter we noticed that the parameter matrix of and
RDPG model is defined up to an orthogonal transformation. Thus, the
distance between X(A)r(i) andX

(
Ad(i)

)
is given by both the species removal

effect and, possibly, a different basis for the RDPG parameters. Let M
and W denote two S × d matrix. We denote Mproc(W ) the Procrustes
transformation1 [Borg and Groenen, 1997] of M of minimal distance to W
(we drop the argument (W ) from the notation whenever it is clear from
the context). Then, the Frobenius norm of the two matrices differences,
||Mproc(W ) − W ||F , is called the Procrustes distance between M and W

[Dryden and Mardia, 1998]. We denote

X̂
(
Ad(i)

)
=
[
X
(
Ad(i)

) ]
proc

(
X (A)r(i)

)
,

the Procrustes transformation of X
(
Ad(i)

)
of minimal distance to X(A)r(i).

We define the rank d strain of the species i as the sum of squared entries
of the differences between X(A)r(i) and X̂

(
Ad(i)

)
. Being X(A) the matrix

1A Procrustes transformation is a geometric transformation given by a combination of
a translation, a rescaling and a rotation. Notice that a Procrustes transformation preserves
angles.
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of either the inward, outward or total rank-d functional traits, we will speak
of species’ inward, outward or total strain, respectively. In formula:

strain(i) := ||X(A)r(i) − X̂
(
Ad(i)

)
||F (4.1)

We are interested in the use of RDPG-based measures to value species in
a way that is robust to model parameters. Therefore, we tested whether the
species’ ordering by strain was sensitive to the choice of model dimensionality
and performed a pairwise correlation test for each pair of dimensions in the
range [1, . . . , 15]. Notice that the latter upper range limit is much greater
than the suitable upper bound for model dimensionality found in the previous
chapter.

4.2.2 Uniqueness

We define the rank-d uniqueness of a species in a food web, either as a
predator, prey or both, as the average of its Euclidean distance to every other
species in the d-dimensional (inward, outward or total) abstract functional
trait space.

Let d (p, q) denote the d dimensional Euclidean distance between the
point p and q; let 〈f(i, j)〉j be the mean of the function f over all the species
j except i. That is, 〈f(i, j)〉j = 1

S

∑
j 6=i(f(i, j)). Then, the uniqueness of

species i is defined as:

uniqueness(i) := 〈d (X(A)i, X(A)j)〉j . (4.2)

The relative uniqueness of the species in a food web is robust to orthogonal
transformations of the food web’s abstract functional space: indeed, the
pairwise distance structure is invariant to rotations and translation, while
uniform rescaling leaves unchanged the ratio

uniqueness(i)
uniqueness(j)

for every pair of species i and j.
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4.2.3 Diversity

The volume of the convex hull of a community of species in the traits space
is a proxy for its functional diversity [Villéger et al., 2008]. Here, we define
the contribution of species i to a food web’s abstract functional diversity as
the difference in volume between the convex hull of the species traits, in the
(inward, outward or total) abstract functional space, before and after species
i is removed.

Let H(d) (X) be the convex hull of a set of points X in the real space Rd.
Then, we define V

(
H(d) (X)

)
its d dimensional volume—or the area of the

convex hull of X if d = 2. We identify X(A) with the set of points of the
species in A and X(A)r(i) with the set of points of the species in A but i.
Then, the contribution to the food-web functional diversity of a species i is
the difference in volume between the two convex hulls

diversity(i) := V
(
H(d) (X(A))

)
− V

(
H(d)

(
X(A)r(i)

))
(4.3)

and we define its normalized version as

normdiversity(i) :=
V
(
H(d) (X(A))

)
− V

(
H(d)

(
X(A)r(i)

))
V
(
H(d) (X(A))

) (4.4)

Again, the relative diversity and normalized diversity of a species is robust
to orthogonal transformations of the abstract functional space.

In this sense, all the three RDPG based measures we defined are robust to
the non identifiability of the (inward, outward and total) abstract functional
traits.

4.2.4 Topological centralities

We assessed the keystone centrality of a species i in a food web A by using
six different (topological) network measures following Estrada [2007] (see
[Jordán et al., 2009] for more details about their ecological interpretation).
We choose these topological measures as their evaluation does not necessitate
morphological trait data nor interaction weights.

• the betweenness (BC [Freeman, 1979; Brandes, 2001]) of species i,
given by the number sjij′ of shortest paths connecting every pair j, j′

of species in the food web traversing species i, weighted by the total
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number sjj′ of paths between j and j′:

BC(i) := sjij′

sjj′

• the closeness (CC [Bavelas, 1950; Freeman, 1979]) of species i, defined
as the reciprocal of the sum of the path distances, dp(·), from i to every
other species j in the food web:

CC(i) :=

∑
j 6=i

dp(j, i)

−1

• the degree (DC) of species i, measuring the number of interactions
involving the species i (both as a predator or as a prey):

DC(i) := | {j ∈ A|i→ j or j → i} |

• the eigenvector centrality (EC [Bonacich and Lloyd, 2001]) of species i,
that is a graph centrality satisfying the request that the score of each
species i in the food web is proportional to the sum of the centrality
scores of the species interacting with i. The values of EC are computed
as the entries of the first eigenvector of A.

• the information centrality (IC [Stephenson and Zelen, 1989]) of species
i, that is the harmonic mean of the resistance distances [Klein and
Randić, 1993] toward the species i. Let Iji denote the resistance dis-
tance from j to i, then:

IC(i) := S∑
j 6=i (Iji)−1

• the subgraph centrality (SC [Estrada and Rodriguez-Velazquez, 2005])
of species i, which counts the number of returning loops starting from
species i, discounted exponentially by their size. It is possible to give
a closed expression for IC in terms of the exponential of the adjacency
matrix A:

SC(i) :=
[
eA
]
ii

We will discuss more these topological measures in the next chapters.
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4.3 Phylogenetic diversity

The concept of “phylogenetic diversity” [Faith, 1992; Hartmann and Steel,
2007] constitutes an alternative point of view from which to evaluate the
diversity of a community of species. The phylogenetic diversity of an evo-
lutionary tree is the total sum of branch lengths in that phylogeny. This
concept has been applied in the prioritisation of species for conservation
purposes [Faith, 1992; Mace et al., 2003]. We each estimated species’ evolu-
tionary distinctiveness by measuring its fair proportion value [Isaac et al.,
2007], equal splits value [Redding and Mooers, 2006] and the length of the
terminal phylogenetic branch leading to that species, following Faye et al.
[2015]. The fair proportion and equal split scores attempt to apportion the
total evolutionary history of a phylogeny among the extant species.

4.4 Comparative analysis

Because of their shared evolutionary histories, we would expect to observe
more similar traits for more closely related species [Cavalli-Sforza and Ed-
wards, 1967; Felsenstein, 1985]. The evolutionary dependency of species
arises the statistical issue of controlling and correcting for the phylogenetic
covariation structure of the observed species’ traits. To select the appropriate
evolutionary model, we compute the relative Akaike information criterion
corrected for finite sample size (AICc, see Hurvich and Tsai [1989]) of four dis-
tinct models [Garamszegi and Mundry, 2014]. We consider an uncorrelated
null model, a Brownian motion model [Felsenstein, 1985], a Brownian motion
with attraction toward an optimum (Ornstein–Uhlenbeck) model [Hansen,
1997] and a model with early burst of differentiation [Harmon et al., 2010].
We test for linear correlations among the (inward, outward and total) novel
measures (of strain, uniqueness, and contribution to functional diversity)
and among (inward, outward and total) strain and uniqueness and the six
keystone centralities.

4.5 Results

We computed the species strain for d ∈ [1, . . . , 15] (Figure (4.1 a)). In the
previous chapter we estimated a suitable model dimension d = 3 for the
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Serengeti National Park food web. The species’ strain (model dimension
d = 3) has an average value of 0.032 and a variance of 0.017; a small number
of species have a high strain (Figure (4.1 b)). The three species with the
highest strain are all in the Afrotheria clade (and represent the totality of
that clade in the food web). These are Procavia capensis (rock hyrax, strain
= 1.316), Heterohyrax brucei (yellow-spotted rock hyrax, strain = 0.884)
and Loxodonta africana (the African bush elephant, strain = 0.317). The
ordering of species based on their strain is robust to the choice of model
dimension, in the range d ∈ [1, . . . , 15] (Figure (4.1 c)). Every pairwise
ordering correlation in the analysed interval is significant at p < 0.01 (this
result is also confirmed by the analysis of the independent assembly of the
Serengeti National Park food web by de Visser et al. [2011]).

The Afrotheria are also characterized by high uniqueness in terms of
their mean distance to the other species in the abstract functional trait
space. The observation can be extended the species’ phylogeny, noticing
that the two measures are non-uniformly distributed among the tips of the
phylogenetic tree (Figure (4.2 a)). There is also support for an Ornstein–
Uhlenbeck (Brownian motion with attraction toward an optimum) model of
evolution for both strain and uniqueness (Figure (4.2 b)).

The correlation between species’ (outward and total) strain and unique-
ness is significant at p < 0.01, while the species’ inward strain and uniqueness
are not consistently correlated for d > 4 (Figure (4.3 a)). The computation
of the species’ contribution to the abstract functional diversity for d > 4
(species as both predators and prey) and d > 7 (species as either predators or
prey) was not possible because of software limitations. However, in the fea-
sible range of d, the species’ total strain is significantly positively correlated
with both the species’ total uniqueness and their contribution to the total
functional diversity (Figure (4.3 b)). The correlations for the partial (either
inward or outward) measures are not consistently significant and depend on
the measure considered.

The strain and mean distance of species in the Serengeti National Park
are, in general, positively correlated with the common keystone centralities
(Figure (4.4)). The significance and strength of the correlations depend on
the particular combination of the centrality measure, the model dimension
and the functional space considered (either inward, outward or total). We ob-
served the most consistent correlations with the Betweenness, Subgraph and
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Figure 4.1: The distribution of species’ strain in the Serengeti National Park
food web [Baskerville et al., 2011]. (a) The line trace strain of each species
(Log10 transformed) along an increasing model dimension (d ∈ [1, . . . , 15]).
The strain has been computed for species as both predators and prey. (b)
A cross-section of (a) for d = 3 (corresponding to the suitable model dimen-
sion). (c) Pearson product-moment correlation coefficients for the species
ordering induced by the species’ total strain across the model dimensions
d ∈ [1, . . . , 15]. The ordering is robust to the choice of the model dimension
d: the Pearson’s r is consistently above 0.5 (and all the pairwise correlations
are significant at p < 0.01).

Degree centralities. The correlation results are qualitatively confirmed by per-
forming the regression analysis either accounting for or ignoring the species’
phylogenetic covariance structure. Hence the correlations hold whether or
not we consider the phylogenetic structure of the food web. This general
agreement between our novel measures and the common graph-theoretical
indices used to identify keystone species supports the applicability of the
RDPG model for food webs.

Although there are species with both high phylogenetic distinctiveness
and high strain or uniqueness (Table (4.1)), we did not detect any significant
linear correlation between the species’ evolutionary and ecological relevance
measures.
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Figure 4.2: (a) Distribution of rank-3 species’ strain and uniqueness in the
phylogeny (lighter yellow for lower values; darker blue for higher values) for
species as both predators and prey (all). The silhouettes (from phylopic.org)
mark the corresponding clades: Afrotheria (hyraxes and elephants) are the
species with the highest strain and uniqueness. (b) Akaike Information Cri-
terion (corrected for sample size) weights for four models of species’ (inward,
outward and total) strain and uniqueness evolution: uncorrelated, Z; Brow-
nian motion, B [Felsenstein, 1985]; Ornstein-Uhlenbeck, OU [Hansen, 1997];
Early Burst, E [Harmon et al., 2010]. The data consistently supports an OU
model, except for the low-dimension strain evolution, in which there is also
good support for the B model.

4.6 Discussion

For each species in the food web, we researched its position in the (inward,
outward and total) abstract functional trait space for d ∈ [1, . . . , 15] and
computed three measures of ecological relevance (strain, uniqueness and
contribution to functional diversity). We verified that species’ ordering
based on the measures we introduced is robust to the choice of the model’s
dimension d. The RDPG model for food webs allows us to distinguish
between the low-dimensional, stochastic backbone of a food web and its fine
wiring. The stochastic backbone is robust to food web variability and to
misspecifications of the food web structure, such as a missed observation
of an interaction or an erroneous recording. Being based on the estimated
(low-dimensional) structural food-web backbone, the measures we introduced
are themselves robust to the variability of complex food webs. Other classic
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Figure 4.3: (a) There is a significant correlation between a species’ uniqueness
and strain for the species as prey (outward) and as predators and prey
(total). For model dimensions d > 3, the correlation is not consistently
significant for the species as a predator (inward). (b) There is a significant
correlation between the species’ (inward and total) strain and uniqueness
and the species’ contribution to the functional diversity (the loss of abstract
functional diversity after the removal of a species). The correlation between
a species’ outward strain and contribution to functional diversity is not
significant for low dimensions. The dashed red lines correspond to p = 0.05.

measures of trophic uniqueness [Yodzis and Winemiller, 1999; Luczkovich
et al., 2003; Jordán et al., 2009] do not make this distinction.

The RDPG model allows us to estimate the abstract functional diversity
of a food web by relying solely on topological data. It remains to be ascer-
tained whether there is a correspondence between the classic morphological
functional diversity and our novel concept of abstract functional diversity. If
verified, the abstract functional diversity may serve to estimate the (classic)
functional diversity without the burden of identifying suitable phenotypic
traits with a functional role across all the species in a food web—an ambi-
tious task, given species’ heterogeneity. Our results appear to point toward a
positive answer. The range of suitable abstract space dimensions estimated
under the RDPG model, is in good accordance with the number of (classic)
functional traits that Maire et al. [2015] estimated for an optimal (classic)
functional diversity analysis.

We showed that a species’ abstract functional trait uniqueness is posi-
tively correlated with its classic centrality in the Serengeti National Park
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Species Strain Uniqueness Diversity Equal Splits
Procavia capensis 1.32 1 3 6.5
Heterohyrax brucei 0.88 2 1 6.5
Loxodonta africana 0.32 7 6 2
Panthera pardus 0.31 3 10 148.5
Panthera leo 0.18 6 4 148.5
Eudorcas thomsonii 0.17 8 19 150.5
Nanger granti 0.16 5 13 150.5
Connochaetes taurinus 0.15 4 14 138
Madoqua kirkii 0.15 11 2 100
Aepyceros melampus 0.12 13 0 100

Table 4.1: The 10 species in the Serengeti National Park food web [Baskerville
et al., 2011] with the highest strain (as both predators and prey) and their
ordering based on ecological uniqueness (as both predators and prey), con-
tribution to functional diversity (diversity, as both predators and prey) and
equal splits (a measure of evolutionary distinctiveness). Strain, uniqueness
and contribution to functional diversity are positively correlated. However,
although there are species (e.g., the Afrotheria clade) with a high score in all
four measures, in general, there is no significant linear correlation between
ecological relevance and evolutionary distinctiveness.

food web. The result was also confirmed for the Weddell Sea food web
[Jennings et al., 2002], the Caribbean Sea food web [Opitz, 1996] and the in-
dependent compilation of the Serengeti National Park food web by de Visser
et al. [2011]. A positive correlation between classic functional uniqueness,
sensu Yodzis and Winemiller [1999], and the degree centrality—the num-
ber of trophic interactions—has already been established by Petchey et al.
[2008b]. The result is even more interesting if read in comparison with the
negative correlation found by Lai et al. [2012] between the classic centralities
and the trophic uniqueness of a species sensu Luczkovich et al. [2003] and
Jordán et al. [2009]. Further comparative analyses are therefore needed to
explain this difference and explore the relationship between the abstract
functional uniqueness of a species and its trophic uniqueness as otherwise
defined. Similarly, a species’ strain is positively correlated with its classic
centrality and that a species’ uniqueness predicts its strain. In addition, both
strain and uniqueness are positively correlated with a species’ contribution
to the abstract functional diversity of the food web. Petchey et al. [2008b]
have shown that trophically unique species are exposed to a higher risk of
secondary extinction, highlighting their fragility. Conversely, the correlation
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between uniqueness and strain supports the notion that food webs are par-
ticularly fragile to the extinction of functionally unique species, as already
suggested by O’Gorman et al. [2010].

The ecological relevance—strain and uniqueness—of the species in the
Serengeti food web is not uniformly distributed across the phylogeny (in fact,
it is compatible with the distribution we would expect under a Ornstein-
Uhlenbeck model of evolution). We did not detect a significant correlation
between the species’ ecological relevance and their evolutionary distinctive-
ness. However, a small number of species have both high ecological relevance
and high evolutionary distinctiveness. This is the case in the Afrotheria clade
(i.e., the African elephants and two hyrax species). The peculiarity of the
Afrotheria clade has already been suggested by Baskerville et al. [2011] on
the basis of the particularity of the hyrax’s trophic role. Our results confirms
the importance of considering both ecological and evolutionary factors in
the evaluation of species for conservation purposes.
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Figure 4.4: Correlation between a species’ strain and uniqueness (as a preda-
tor, inward; prey, outward; predator and prey, total) and the species’ be-
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lation is stronger for low d). The dashed red lines correspond to r = 0 and
p = 0.05.
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Appendix

4.A Food webs representation

Here we present a graphical depiction of the five food webs we analysed in the
chapter. In particular, nodes (species) are disposed in a plane space where
the horizontal axis represents the omnivory index of the species (plus a small
noise to avoid superposition) and the vertical axis represents the trophic
level of the species; the area of the nodes correspond to the species’ degree
centrality (the total number of their interactions, the bigger the higher) while
their colour indicates the ranking of the species based on their total strain,
computed at d = 3 (deep blue for lower values, light yellow for higher values).
For each web we also show the distribution of outward, inward and total
strain, computed at d = 3.

The Trophic level [Pauly et al., 2000] of a consumer species i, TLi, is
defined as:

TLi = 1 + 1
dini

∑
j→i

TLj (4.5)

where the sum is over all the species j consumed by i and dini is the number
of resources of i. Thus, the trophic level of a basal species (such as a plant)
is one.

The omnivory index [Pauly et al., 2000] of a species i, OIi, is defined as
the variance of the trophic level the species’ resources:

TLi = 1
dini

∑
j→i

(
TLj − (TLi − 1)

)2
. (4.6)
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4.B Weighted networks

In the previous chapter we computed species strain from topological food
webs’ data only. In fact, obtaining estimates for the amount of energy flowing
between a pair of species is often difficult. Therefore, we usually have a more
reliable knowledge of the topological structure of an interaction network
rather than of its weighted version. However, the components of the species’
diets are not equally important. Thus, if the species’ ranking we estimated
from the topological data were extremely sensitive to the interactions’ weight
its applicability would be limited. On the other hand, if the topological
species’ ranking were not affected at all by the specification of interactions
weights, that would rise doubt about its ecological meaning.

To test the extent to which our strain and mean distance measures are
robust to the specification of interactions’ weights, we compared the ranking
of the species based on topological data with the rankings we obtained
by simulating interactions weights. To do so, we sampled the interactions
weights from a Log-Normal distribution, truncated so that their minimum
value was 10−6 and normalised so that the maximum value was 1.

The results we obtained show that the correlation between the topological
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and the weighted rankings were significant and positive for more than 95% of
the simulations. However, the amount of variation in the weighted ranking
explained by the topological ranking had a large variance (i.e., it spanned
the range from almost null to almost one). Yet, the set of species with higher
strain and the set of species with higher mean distance as estimated from
the topological data was consistent across the simulated weighted networks,
indicating that our measures are able to identigy the species with distinctively
high ecological importance.
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Figure 4.B.1: Frequency of presence in the set of four species with the highest
strain as estimated by the simulated weighted networks for the four species
with the highest strain as estimated by the topological networks. Baskerville’s
Serengeti National Park food web (top) and Weddell Sea food web (bottom).
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Figure 4.B.2: Frequency of presence in the set of four species with the
highest mean distance as estimated by the simulated weighted networks
for the four species with the highest mean distance as estimated by the
topological networks. Baskerville’s Serengeti National Park food web (top)
and Weddell Sea food web (bottom).
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Chapter 5

Evolutionary hypothesis in a
metric trait space

Synopsis: Tropical rainforests are a hotspot of animal and plant biodiversity.
It has been suggested that the coexistence of such a rich ensemble of species
is the outcome of an interplay between ecological and evolutionary processes—
the diversification of species into finely resolved niches with low overlap—
supported by long-term environmental stability and the high productivity
of the tropical forest. Here, we test these ideas across a guild of frugivorous
birds at two sites in the tropical Andes of Peru, a global hotspot of avian
diversity.

We introduce a niche model that combines a recently published functional
space representation [Dehling et al., 2016] of species’ foraging niches and a
related novel measure of niche overlap. We embed the frugivore bird–fruit
plant interaction networks into a pair of multidimensional metric spaces
(one for the resources and one for the consumers) and identify a frugivore’s
foraging niche with the convex hull enclosing its plant resources.

We introduce a null model of niche evolution where the niche boundaries
and preferences evolve in unison. We define two alternative trajectories,
modelling the hypothesis that frugivore diversification at short evolutionary
distances is dominated by a modification of the frugivores’ consumption
propensities or by the redefinition of the frugivores’ diets (i.e., by the in-
troduction of new plant species in their niches or the exclusion of old plant
species from their niches).

We test this hypothesis and provide evidence of a different coexistence
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strategy for recently speciated frugivores and distantly related ones: fine-
scale differences in foraging preferences are apparently sufficient to reduce
competition between ecologically very similar species. Our results provide
a straightforward explanation for the mechanisms underpinning the origin
and maintenance of species’ coexistence in megadiverse communities.

Notes: A version of this chapter has been submitted to the Proceeding
of the National Academy of Science as: GVDR, Matthew C. Hutchinson,
Daniel B. Stouffer, D. Matthias Dehling (School of Biology, University of
Canterbury) “Coexistence in a megadiverse foraging guild is explained by
short-term resource-use modification and long-term niche shifts”
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[. . . ] a vast number of animals
can be found in even a small
district. It is natural to ask:
“What are they all doing?” [. . . ]
Animals are not always
struggling for existence, but
when they do begin, they spend
the greater part of their lives
eating.

Animal Ecology
Charles Sutherland Elton

5.1 Biodiversity and niche overlap

The Peruvian Manú National Park holds an extraordinary richness of “endless
forms most beautiful and most wonderful”, as biodiversity was described
by Darwin [1859]. It is, indeed, an hotspot of animal and plant diversity
[Dehling et al., 2014a]; more than 1000 bird species [Walker et al., 2006]
thrive in the Manú reserve, finding ecological conditions that meet their
survival and reproductive requirements—the set of which compose a species’
“niche” [Hutchinson, 1957]. A key facet of niches is given by a species’ feeding
requirements [Elton, 1927; Pianka, 1981; Winemiller et al., 2015]: however
flourishing it may be, any habitat can offer only a limited pool of resources;
thus in a megadiverse group of species, such as the Manú’s birds, the species’
diets inevitably overlap [Gause, 1934; MacArthur, 1972] and may cause
competition [Cody, 1974; Lara et al., 2015].

The competition for shared resources between a pair of species can result
in either the complete exclusion of one species from the system [Gause, 1934],
the evolutionary movement of their niches away from the shared resources
[Grant and Grant, 2011; Ellis et al., 2015] or the ecological avoidance of
the shared resources [Maret and Collins, 1997]. Competitive interactions
between species often lead to the specialisation of one or more species on
a subset of the resources available and thus the evolutionary divergence of
lineages based on their resource use [Sale, 1974; Futuyma and Moreno, 1988].
Given the different competitive abilities of each species, the persistence of
rich biodiversity depends on the ecological and evolutionary partitioning of
the available resource space [Gause, 1934; MacArthur, 1972; Pianka, 1981]:
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indeed, differences among species’ niches is considered to be essential for
their coexistence [Chesson, 2000; Chase and Leibold, 2003].

It has been widely observed that evolutionarily close species exhibit more
similar traits than distantly related ones [Darwin, 1859; Felsenstein, 1985];
as they depend, at least in part, on heritable traits, species’ diets show a
significant phylogenetic signal [Böhning-Gaese and Oberrath, 1999; Pearman
et al., 2014], as does their role in trophic networks [Stouffer et al., 2012].
In fact, in Chapters (3) and (4), we found that closely related species have
similar food-web functional traits. However, the extent to which a neutral
model is adequate for describing the evolution of species niches [Wennekes
et al., 2012; Joly et al., 2013; Münkemüller et al., 2015; Winemiller et al.,
2015] and, ultimately, the origin of biodiversity [Rosindell et al., 2012; Fisher
and Mehta, 2014] is an open question: for example, the evidence of niche
phylogenetic conservatism (the tendency of phylogenetic near species to
resemble each other more than what expected under a neutral model of
evolution, where traits evolve as a BBM process, see Section (3.A.1)) is
ambiguous [Losos, 2008; Ingram et al., 2009; Wiens et al., 2010]; similarly,
the exact nature of the relationship between ecological and evolutionary
processes in shaping species’ niches is an open problem [Post and Palkovacs,
2009; Stuart and Losos, 2013; Nuismer and Harmon, 2015].

We adopt a food-web perspective to study the evolution of frugivore
bird niches as consumers of fruit plants in two sites of the Manú National
Park. Nevertheless, the concepts we introduce here can easily be adapted
to other systems. We exploit the embedding of an ecological network into
a suitable metric space, where, as in Chapter (3), the proximity between
two species reflects their ecological similarity, and define the foraging niche
of a consumer species in that network as the portion of the space occupied
by the species’ resources. We consider the foraging niche as a proxy for the
functional, Eltonian [Elton, 1927], interaction niche of a consumer. Notice
that foraging niches are based solely on food webs’ topology; in other words,
they are defined regardless of how much a certain consumer relies on a certain
resource. We define a niche centroid as the weighted centre of its niche, where
the weights are given by consumption propensity: a consumer’s centroid will
be closer to those resources that are more frequently consumed, controlling
for resource availability.

Here, we test whether the overlap of the foraging niches and the distance
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between their centroid are linearly correlated across the bird species’ phylo-
genetic distances. In doing so, we can gather insight into the evolution of
foraging niches and the mechanisms supporting biodiversity in a large bird
community.

5.1.1 Niche differentiation in the functional trait space

Whatever the mechanism driving it, we can distinguish two main patterns in
the differentiation of a foraging niche (see [Sale, 1974]). A niche can evolve
by:

1. the inclusion of a new resource in a consumer’s diet or the removal of
an old, shared, resource from the consumer’ diet, producing a modifica-
tion of the foraging niche boundary, which we name niche redefinition1

(not to be confused with “niche shift” [Pearman et al., 2014]). Niche
redefinition results in reduced (potential or realised) competition be-
tween two frugivores through the reduction of their dependency on
commonly shared resources. Morphological adaptive evolution is likely
to be associated with niche redefinition, as different resources may re-
quire slightly different toolsets to be exploited [Silvertown et al., 2001;
Grant and Grant, 2011];

2. the redistribution of a consumer’s relative propensities toward its re-
sources [Connell, 1961; Willis, 1966; Alatalo et al., 1986], which we
name frequency modification; frequency modification may result in re-
duced competition through a relative reduction of the consumption
load on shared resources in favour of other resources in the existing
niches of frugivores.

If a consumer relies lightly on newly added components of its diet, we can
assume that the consumption frequencies and thus the niche centroids change
only marginally under niche redefinition: species that diversify through niche
redefinition alone will decrease their relative niche overlap. Conversely, a
change in the consumption frequencies of a species does not, in general, affect

1In general, the inclusion of a new resource in a consumer’s diet or the removal of an
old resource from a consumer’s diet does not necessarily modify the consumer’s niche. In
fact, such event modifies the consumer’s niche only if the representation of the resource
species in the functional space is outside the convex hull enclosing the consumer’s diet (i.e.,
its foraging niche). We define as niche redefinition only to those events that modifies the
consumer’s niche boundaries.
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Figure 5.1: The two patterns of niche differentiation that we distinguish
and their trajectories in the correlation between niche overlaps and centroid
distances. The horizontal movement corresponds to frequency modifi-
cation, where species change their consumption propensities, leaving the
boundaries of their foraging niches untouched; the vertical movement cor-
responds to niche redefinition, where species reduce their foraging niche
overlap by either adding or removing resources in their diet. Under the null
model of niche evolution, the niche overlap and the centroid distance change
consistently with the phylogenetic distance separating two species (dotted
trajectory). We consider two alternative hypothesis: if the differentiation
between closely related species results in frequency modification, while niche
redefinition is dominant for further related species, we observe a relative
overlap that is higher than expected under the null model for short phylo-
genetic diversities (light red trajectory); conversely, if the differentiation
between closely related species happens mostly through niche redefinition
and frequency modification follows, we detect a relative overlap that is lower
than expected under the null model for short phylogenetic diversities (dark
green trajectory).
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that species’ foraging niche boundaries: species that diversify by frequency
modification alone will increase their centroids’ distance (see Figure (5.1)).

We consider a null model of niche evolution and we contrast it with two
alternative hypotheses:

Null model: the patterns of frequency modification and niche redefinition
act concurrently—and at the same evolutionary pace—during the di-
versification of the species in a community.

Red trajectory: at the beginning of the evolutionary divergence of a pair
of species, the species diversify mostly through the modification of
their consumption propensities; the redefinition of the foraging niches
follows only afterwards, becoming more evident over long evolutionary
times.

Green trajectory: the species diversify first by redefining their foraging
niches; the centroids’ divergence becomes prominent only afterwards.

In all three cases, we would expect the foraging niche overlaps to correlate
with the centroid distances. To test the previous claim, we fit a linear model of
the niche overlaps against the centroid distances, controlling for the absolute
volume of the bird foraging niches and their degree of frugivory.

We define the overlap excess of a pair of bird species as the difference be-
tween the observed and predicted pair’s overlap. The overlap excess therefore
represents the deviation from the null model of the foraging niche overlaps:
a positive overlap excess means that two species overlap more than expected
and a negative overlap excess means that two species overlap less than ex-
pected.

Under the null model of niche evolution, we do not expect to detect a
significant correlation between the phylogenetic distance and the overlap
excess of a pair of species, as these move consistently during evolutionary
differentiation. The two alternative differentiation hypotheseis yield con-
trasting expectations of the overlap excesses along the phylogenetic distance:
in both cases, we expect a significant correlation between the species’ overlap
excess and their phylogenetic distance, and we expect the correlation to be
positive under the red trajectory and negative under the green trajectory
(see Figure (5.1)).
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5.2 Methods and Materials

5.2.1 Interaction, trait and phylogenetic data

To estimate the degree of overlap between a group of species’ niches, we need
to identify a set of traits that are of ecological relevance across the considered
community and which can be expressed in commensurable coordinates [Holt,
1987].

We used the dataset of bird–plant interactions published by Dehling et al.
[2014a]. We investigated resource use in a foraging guild (all species use
similar resources). All species occur in same habitat. We sampled plant–
bird interaction networks at two sites in the Manù Biosphere Reserve in the
Andes of south east Peru (hereafter “Manù”): Wayqecha, which is located at
13.2S, 71.6W a 3000m above sea level in an upper montane rainforest with
26 bird and 51 plant species, and San Pedro which is located at 13.1S, 71.6W
a 1500m above sea level in a lower montane rainforest with 61 bird and 53
plant species. Details of the sampling procedure can be found in [Dehling
et al., 2014b].

We built the resource functional space by projecting plant species into
a four-dimensional metric space estimated from the following plant traits:
fruit size, fruit diameter, crop mass, and plant height [Dehling et al., 2014b].
We assessed the foraging preference of a bird species by calculating the
interaction centroid, defined as the weighted mean of its resource positions
in the trait space, weighted by the plant abundances [Dehling et al., 2016].

We obtained 1000 dated phylogenetic trees from birdtree.org [Jetz et al.,
2012, 2014] for each of the two community of birds: Wayqecha and San Pedro.
The trees were sampled from the pseudo-posterior distribution estimated on
the phylogenetic backbone given by Hackett et al. [2008]. See Figure (5.1)
for a graphical representation of one sample from the combined phylogeny.

5.2.2 Estimating birds’ foraging niches

We let S denote the functional trait space as estimated in [Dehling et al.,
2014b]. For each bird species i in the plant–bird interaction network W , we
let c(i) denote the centroids of i and Wi = {xi1, . . . } be the set of plants i
consumes. We define the observed foraging niche of a bird species i as the
smallest convex (closed) subset of S containing Wi—its convex hull—and
denote it as h(i). To account for the possibility that we did not detect some

92



Penelope montagnii
Ortalis guttata
Pharomachrus auriceps
Pharomachrus antisianus
Trogon personatus
Aulacorhynchus coeruleicinctis
Aulacorhynchus derbianus
Andigena hypoglauca
Eubucco versicolor
Colaptes rubiginosus
Aratinga leucophthalma
Ampelion rubrocristatus
Cephalopterus ornatus
Rupicola peruvianus
Pipreola intermedia
Pipreola arcuata
Lepidothrix coeruleocapilla
Chiroxiphia boliviana
Xenopipo unicolor
Lophotriccus pileatus
Mionectes striaticollis
Elaenia pallatangae
Elaenia albiceps
Zimmerius bolivianus
Cyanocorax yncas
Entomodestes leucotis
Catharus ustulatus
Turdus chiguanco
Turdus serranus
Turdus fuscater
Myadestes ralloides
Euphonia xanthogaster
Euphonia mesochrysa
Piranga rubra
Chlorophonia cyanea
Iridosornis analis
Iridosornis jelskii
Chlorochrysa calliparaea
Anisognathus somptuosus
Buthraupis montana
Chlorornis riefferii
Thraupis cyanocephala
Anisognathus igniventris
Thraupis episcopus
Thraupis palmarum
Thraupis bonariensis
Tangara ruficervix
Tangara punctata
Tangara cyanicollis
Tangara nigroviridis
Tangara vassorii
Tangara xanthocephala
Tangara arthus
Tangara chrysotis
Tangara gyrola
Tangara chilensis
Saltator maximus
Diglossa sittoides
Diglossa brunneiventris
Diglossa mystacalis
Diglossa caerulescens
Diglossa cyanea
Diglossa glauca
Cyanerpes caeruleus
Dacnis cayana
Ramphocelus carbo
Trichothraupis melanops
Iridophanes pulcherrimus
Chlorospingus ophthalmicus
Chlorospingus flavigularis
Chlorospingus parvirostris
Cacicus chrysonotus
Psarocolius angustifrons
Psarocolius atrovirens
Patagioenas fasciata
Patagioenas plumbea

Wayqecha
San Pedro
Either
Both

Figure 5.1: Empirical distribution of the combined Manú phylogeny, as
sampled from birdtree.org [Jetz et al., 2012]. The lineages are coloured
according to the presence of a descendent in the two network communities:
dark purple if they have at least one descendant in both the Wayqecha and
San Pedro networks, light purple if they have a descedant in each of the two
networks but none in both, dark orange if they have a descedant only in the
Wayqecha network, and light orange if they have a descedant only in the
San Pedro network.
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of the interactions between birds and plants, we introduce two enveloping
algorithms for the observed foraging niches.

Under the first algorithm (centroid enveloping), for each bird species
i and plant species x that is not in Wi, we compute the Euclidean (four-
dimensional) distance from x to c(i) and we let dc(x, i) denote this. We set
dc(x, i) = 0 for all the species x that are in Wi. Next, we assign to each
species x a probability Pc (x|c(i),Wi, α, β) defined as:

Pc (x|c(i),Wi, α, β) =

e
− 1
α
dc(x,i)β if x 6∈Wi

1 if x ∈Wi,
(5.1)

where α and β are two positive real valued parameters determining the shape
of the envelope. Then, for each bird i we sample each plant x in W with
probability Pc (x|c(i),Wi, α, β) and we denote the set of sampled plants Ẇi,
which we label the centroid augmented diet of bird i. Finally, we define the
centroid augmented foraging niche, ḣi, as the smallest convex (closed) subset
of S containing Ẇi.

Under the second algorithm (vertex enveloping), for each bird species
i and plant species x that is not in Wi, we compute the minimum of the
Euclidean (four-dimensional) distances from x to the plant species that are
in the observed diet Wi and we let dW (x, i) denote this. We set dW (x, i) = 0
for all the species x that are in Wi. Next, we assign to each species x a
probability PW (x|Wi, α, β) defined as:

PW (x|Wi, α, β) =

e
− 1
α
dW (x,i)β if x 6∈Wi

1 if x ∈Wi,
(5.2)

where α and β are two positive real valued parameters determining the shape
of the envelope. Then, for each bird i we each plant x in W with probability
PW (x|Wi, α, β) and we denote the set of sampled plants W̄i, which we label
the vertex augmented diet of bird i. Finally, we define the vertex augmented
foraging niche, h̄i, as the smallest convex (closed) subset of S containing W̄i.

Higher values of α increase the probability of the plant resources being
included in the augmented niches, whereas β controls the speed with which
the probability decays as the distance (from the observed interactions or the
centroid) grows.
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We let Ŵi and ĥi denote the diet and the foraging niche of i without
distinguishing among the observed, centroid augmented or vertex augmented
definition of the diet and of the foraging niche, respectively. None of the
following analyses depends strictly on the definition adopted. We use V (X)
to denote the four-dimensional volume of a convex subset of S. If any of
the foraging niches contains less than five resources, or if it contains a set
of resources that lies in a degenerate subset of S of null-four dimensional
volume, we drop the corresponding bird species from the analysis.

Niche overlap We define the overlap space of a pair of bird species i and
j as the intersection between their foraging niches:

O(i, j) = ĥi ∩ ĥj (5.3)

As it is an intersection of convex hulls, an overlap space is convex and possibly
empty.

Moreover, for each pair of consumer species i and j, we propose three
measures of the niche overlap:

Symmetric overlap: the volume of O(i, j):

so(i, j) = V (O(i, j)) . (5.4)

Relative overlap: the volume V (i, j) normalised by the sum of the volume
of i’s and j’s foraging niches:

ro(i, j) = V (O(i, j))
V (ĥi) + V (ĥj)

. (5.5)

Egoistic overlap: the volume V (i, j) normalised by the volume of i’s for-
aging niche:

eo(i, j) = V (O(i, j))
V (ĥi)

. (5.6)

Using qhull [Barber et al., 1996] in the R package geometry [R Core
Team, 2013; Habel et al., 2014], we compute the convex hulls of the observed
and augmented diets of for every bird species in the two interaction networks.
For each pair of consumer species, we computed their symmetric, relative
and egoistic overlap.
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We tested for a linear correlation between niche overlap and phylogenetic
distance, and between centroid distance and phylogenetic distance in the
Wayqecha and San Pedro interaction networks, both by using the function
lm in R [R Core Team, 2013] and by using a Mantel Test using the function
mantel in the vegan package [Oksanen et al., 2015] (999 permutations of the
dissimilarity matrices).

5.2.3 Null model evolution

time

t  - s

t 

r(i,t)

0

r(j
,t)

i jd  (t)ij

h(i,t)

h(j,t)

h  (t)ij

Figure 5.2: A graphical explanation of the notation used in Section (5.2.3), as
projected in a two-dimensional space. The lineages i and j of the phylogeny
Wτ , extant at time t, speciated at time t−s. With each of these, we associate
a niche centroid (c(i, t) and c(j, t)), and a niche radius (r(i, t) and r(j, t)).
The centroids and radii define their niches (h(i, t) and h(j, t)), their centroid
distance (dij(t)) and their niche overlap (the area hij(t)).

We will define our null model of niche evolution in detail and explore its
behaviour. Figure (5.2) shows a diagram of the notation we introduce.

Let S be the four-dimensional Euclidean space. We consider a clade
of birds W , whose phylogeny we denote as Wτ . At every time t in the
history of the phylogeny, with every lineage i in Wτ is associated a niche
centroid c(i, t) ∈ R4 and a radius r(i, t) ∈ R. Under the null model, the
lineages’ centroid coordinates evolve as independently and identically dis-
tributed Brownian motions with mean 0 and variance σ:

dc(i, t)j = dBt(0, σ) dt (5.7)
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for each lineage i and each coordinate j. The centroid of the phylogeny’s
root starts at the origin, c(i, 0) = ~0. Similarly, the lineages’ radii evolve as
independently and identically distributed Brownian motions with mean 0,
variance ρ and constrained to R+ (the positive reals):

dr(i, t) = dBt(0, ρ) dt (5.8)

for each lineage i. The radius of the phylogeny’s root starts at an arbitrarily
chosen value r0; in other words, r(i, 0) = r0. Here, we assume the ratio ρ

r0

to be small enough that the probability that any radius hits 0 is negligible.
In other words, if we let r−(i) be the minimum value of r(i, t) between t = 0
and the present t = T , and Φ(x) be the cumulative distribution function of
the standard normal distribution, then we assume the probability

P (r−(i) ≤ 0) = 2
(
1− Φ

(
r0√
ρT

))
(5.9)

to be small (see [Karatzas and Shreve, 2012] for a proof of the previous
equation).

The foraging niche of each lineage i at time t is defined as the four
dimensional ball with a centre in c(i, t) and a radius r(i, t):

h(i, t) = B (c(i, t), r(i, t)) , (5.10)

for which the volume is given by:

V (h(i, t)) = V
(
B (c(i, t), r(i, t))

)
= π2

2 r(i, t)
4 . (5.11)

As the Brownian motion governing the lineage radius is centred in 0, we
have E(r(i, t)) = r0 for each lineage i and each time t. Thus we have:

E
(
V (h(i, t))

)
= π2

2 E
(
r(i, t)4) = π2

2 r
4
0 . (5.12)

For each pair i and j of lineages in W , let dij(t) denote the distance
between i’s and j’s niche centroids (i.e., dij(t) = ‖c(i, t) − c(j, t)‖). We let
hij(t) denote the intersection of their niches at time t:

hij(t) = h(i, t) ∩ h(j, t) = B (c(i, t), r(i, t)) ∩ B (c(j, t), r(j, t)) . (5.13)
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If dij(t) > r(i, t) + r(j, t), the intersection hij(t) is empty; otherwise, it is a
convex subset of S (in general, it is not a ball). We can now define the niche
overlap of i and j at time t as the volume of hij(t) if it is not empty (or 0
otherwise) and we denote this as Vij(t). The volume Vij(t) can be expressed
as a polynomial function of the niche radii and the centroid distance; this
motivates the regression modelling we propose in the next section.

In the rest of this paragraph, we give an explicit formula for the intersec-
tion volume that will be used in the null model simulations.

The niche intersection hij(t) is delimited by two hyperspherical caps, one
bounded by h(i, t), which we denote ηij , and the other bounded by h(j, t),
which we denote ηji. We compute the volume of the intersection as the sum
of the two hyperspherical cap volumes. Following Li [2011], the volume of a
n dimensional cap is given by:

V (η) = π
n−1

2 rn

Γ
(
n+1

2

) ∫ arccos(hr )
0

sinn(t) dt, (5.14)

where r is the radius of the bounding sphere, n is the dimension of the cap
and h is the height of the cap. We can reduce the dimensionality of the
problem by noticing that the heights of the caps ηij and ηji, determined by
the intersection of two four-dimensional sphere, is equivalent to the heights of
the caps defined by the intersection of their projection to a two-dimensional
plane containing the line segment between joining the i’s and j’s centroid.
We let ζij and ζji denote the heights of the cap ηij and ηji, respectively. We
now have:

ζij
r(i, t) =

d2
ij + r(i, t)2 − r(j, t)2

2dijr(i, t)
;

ζji
r(j, t) =

d2
ij + r(j, t)2 − r(i, t)2

2dijr(j, t)
.

(5.15)

We let θij denote the angle arccos
(

ζij
r(i,t)

)
and we let θji denote the angle

arccos
(

ζji
r(j,t)

)
. Thus the volume of hij(t) is:

Vij(t) = π
3
2

Γ
(

5
2

)(r(i, t)4
∫ θij

0
sin4(t) dt+ r(j, t)4

∫ θji

0
sin4(t) dt

)

= K
(
r(i, t)4g(θij) + r(j, t)4g(θji)

)
,

(5.16)
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where the K = 1
24π is a numeric constant and the function g is defined as:

g(x) = 12x− 16 cos(x) sin(x) + 4 cos(x)3 sin(x)− 4 cos(x) sin(x)3 . (5.17)

We can express, at least at the first approximation, g(θij) and g(θij) as
rational functions of the niche radii and the centroid distances. In fact, for
the first of the two summands in Equation 5.16, we have:

cos(θij) = cos
(

arccos
(

ζij
r(i, t)

))
= ζij
r(i, t) , (5.18)

and:

sin(θij) =

√√√√1−
(

ζij
r(i, t)

)2
, (5.19)

and finally:

θij ∼
π

2 −
ζij

r(i, t) + o

(( ζij
r(i, t)

)2)
. (5.20)

5.2.4 Deviation from the null model

We adopt the notation introduced by Wilkinson and Rogers [1973] to define
as a formula the linear model of the variable x with the variables y1, y2, . . .

as predictors:
x ∼ y1 + y2 + . . . . (5.21)

With this, we mean that each observation xi of the variable x is modelled
as:

xi = η0 + η1y1i + η2y2i + · · ·+ εi , (5.22)

where y1i, y2i, . . . express the values of the predictor variables associated with
the observation xi, εi is the residual associated with the observation xi and
η0, η1, η2, . . . are the model parameters estimated from the set of observation.
We let yi : yj denote the interaction terms of the predictor variables yi and
yj , and yi ∗ yj denote yi + yj + yi : yj .

We test the fit of the null model of niche evolution by fitting a linear
model of the (symmetric, relative and egoistic) niche overlap (for observed
and augmented niches) with the niche volumes and the fourth power of
the centroid distances as predictors. Expressed as formula, for the egoistic
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overlap, we have:

eo(i, j) ∼ d4
i,j + V (h(i)) + V (h(j)) . (5.23)

The model definition would be the same for the other measures of niche
overlap. In order to control for higher-order effects and the role of other
variables, such as an effect of the birds’ order or their degree of frugivory,
we consider also more parameter-rich linear mixed effects models (see Ap-
pendix (5.A)).

Next, we define the overlap excess between species i and j as the stan-
dardised residual associated with their niche overlap. We test the correlation
between overlap excess and phylogenetic distance by fitting a linear regression
model and testing the permutational significance of a Mantel Test [R Core
Team, 2013; Oksanen et al., 2015] (999 permutations). We also controlled
for the effect of degree of frugivory.

5.3 Results

For the sake of expository simplicity, we present the results for the outcome
of one randomisation. We augmented the foraging niches via centroid en-
veloping with the parameters α = 1/4 and β = 1 for the Wayqecha network,
and α = 2/3 and β = 1 for the San Pedro network, which we chose as these
parameters conserve the foraging niche shapes while reducing the number
of degenerate foraging niches (0 out of 26 birds for Wayqecha; 2 out of 61
birds for San Pedro). For each interaction network, we selected the first of
the phylogenetic trees downloaded from birdtree.org [Jetz et al., 2012]; the
R random seed was set to 42.

The analysis across different randomisation settings (see Appendix (5.B)
for more details of all the combinations we tested) produced results that were
fully consistent with the ones we show here; although the regression slopes
changed numerically, they preserved significance and sign. The conclusions
we draw are based on these.

We will provide simulation and analysis code in a publicly accessible
repository (see http://gvdr.github.io) to allow the readers run the analsys
pipeline on the presented and other datasets with user-defined parameters.
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5.3.1 Ecological and evolutionary distance

There is a significant linear correlation between the centroid distance and the
phylogenetic distance (see Figure (5.1)), and between the niche overlap and
the phylogenetic distance (see Figure (5.2)), in both the Wayqecha and San
Pedro interaction networks. The correlation between the centroid distance
and the phylogenetic distance is significant (at the level of p < 0.001) and
positive (Wayqecha slope 0.002 ± 0.001; San Pedro: slope 0.007 ± 0.001).
In other words, the consumption propensities of distantly related consumer
species are more dissimilar than those of closely related ones. The correlation
between the niche overlap and the phylogenetic distance is significant and
negative: the foraging niches of closely related consumer species intersect
over a larger functional trait space than those of distantly related species; it
is significant (at the level of p < 0.001) for the symmetric (Wayqecha: slope
−0.0061± 0.0011; San Pedro: slope −0.0023± 0.0006), relative (Wayqecha:
slope −0.0013± 0.0001; San Pedro: slope −0.00101± 0.00006) and egoistic
(Wayqecha: slope −0.0020 ± 0.0003; San Pedro: slope −0.0010 ± 0.0001)
overlap. All the results are confirmed by a Mantel Test’s permutational
significance over 999 permutations.

5.3.2 Overlap Excess

There is a significant and negative linear correlation between the overlap
excess and the species’ phylogenetic distance in both interaction networks:
controlling for their niche volumes and centroid distances, closely related
species tend to overlap more than what would be expected under a null
model of niche evolution, whereas distantly related ones overlap less than
expected (see Figure (5.3)). The correlation is significant (at the level of
p < 0.001) for the symmetric (Wayqecha: slope −0.004± 0.001; San Pedro:
slope −0.0016±0.0003), relative (Wayqecha: slope −0.006±0.001; San Pedro:
slope −0.0033±0.0003) and egoistic overlap (Wayqecha: slope −0.005±0.001;
San Pedro: slope −0.0018± 0.0003). This negative correlation is confirmed
when controlling for the birds’ degree of frugivory.
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Figure 5.1: The species’ niche centroid distances versus their phylogenetic
distances in the Wayqecha (top) and San Pedro (bottom) interaction net-
works. The continuous red line represents the linear regression of the centroid
distance versus the phylogenetic distance. In both networks, the slope is sig-
nificant and positive: the consumption propensities of closely related species
are more similar than those of distantlt related species.
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Figure 5.2: The species’ niche overlaps versus their phylogenetic distances
in the Wayqecha (top) and San Pedro (bottom) interaction networks. From
left to right: the symmetric, relative and egoistic overlaps. The continuous
red line in each facet represents the linear regression of the niche overlap
versus the phylogenetic distance. In all cases, the slope is significant and
negative: the foraging niches of closely related species overlap more than
those of far related species.
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Figure 5.3: The species’ overlap excesses versus their phylogenetic distances
in the Wayqecha (top) and San Pedro (bottom) interaction networks. From
left to right: the excesses for the symmetric, relative and egoistic overlaps.
The red continuous line in each facet is the linear regression of the overlap
excess versus the phylogenetic distance. In all the cases the slope is significant
and negative: closely similar species tend to overlap more than expected.

104



5.4 Conclusions

Ecological and evolutionary diversification correlate Our results
support the notion that the ecological role of the species is shaped by their
evolutionary history. Closely related species share a larger portion of the
resource space and have more similar consumption propensities than species
that diverged a long time ago. Thus the evolutionary similarity of a pair of
species is a predictor of their ecological similarity.

Both the processes of frequency modification and niche redefinition ap-
pear to have a role in reducing the competition between coexisting species
and, ultimately, in supporting the biodiversity of Wayqecha and San Pedro.
In diverse ecological assemblages, it is these processes that maintain ecolog-
ical coexistence and affect the evolutionary trajectories of the constituent
species [Alatalo et al., 1986; Gavrilets and Losos, 2009]. For example, in
tropical regions, it has been suggested that up to 90% of woody plants pro-
duce fruits [Fleming, 1979], which, in turn, supports a diverse frugivorous
fauna. Therefore, the coexistence of these frugivore species is likely to be
determined by their ecological (frequency modification) and evolutionary
(niche redefinition) response to the competition for food resources.

Niche differentiation: centroid first, boundary later The excess in
niche overlap decreases with increasing phylogenetic distance between the
species. In other words, species that diverged recently tend to overlap more
than what we would expect, given the differences in their consumption
propensity and overall foraging niche volume. This trend suggests that the
coexistence strategies of recently speciated frugivores and distantly related
ones may be different. Species that have diverged recently share similar
morphologies; hence, they can gather resources from a similar pool of plants.
As a consequence, they can reduce their mutual competition by redistributing
their consumption efforts away from each other. Frequency differences in
foraging preferences appear to play a key role in the coexistence of closely
related species. On the other hand, those species that have diverged a long
time ago have evolved ecological traits that are different enough to result in
a reduced intersection of their foraging niche. Therefore, they do not need
to ecologically adapt their consumption preferences to coexist.

We need to understand better the evolutionary history of species’ foraging
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traits in order to be in the position to provide a more detailed interpretation
of the observed correlations between niche and phylogenetic dissimilarity.
In particular, whether the trend we detected expresses an ecological differ-
entiation induced by natural selection or is instead mainly consequence of
ecological processes it depends on the degree of ecological plasticity of the
niche centroids.
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Appendix

5.A Higher complexity models

We tested the effect of the interaction terms and the significance of other
categorical variables—namely, the taxonomical order of the bird species and
their degree of frugivory—by considering more complex models. In particular
using the function lmer in the R package lme4 [Bates et al., 2015] we fitted
a complete model with and additive random effect for each level of birds’
dietary dependence on fruits:

eo(i, j) ∼d4
i,j ∗ V (h(i)) ∗ V (h(j)) +

+ (d4
i,j |Fi/Fj) + (V (h(i)) |Fi) + (V (h(j)) |Fj),

(5.24)

where Fi and Fj are categorical variables expressing the degree of frugivory
(either “obligate” or “partial”) of species i and j, respectively (see [Wilkin-
son and Rogers, 1973] for the notation). Similarly, we fitted a complete
model with and additive random effect for each level of birds’ taxonomical
classification:

eo(i, j) ∼d4
i,j ∗ V (h(i)) ∗ V (h(j)) +

+ (d4
i,j |Oi/Oj) + (V (h(i)) |Oi) + (V (h(j)) |Oj),

(5.25)

where Oi and Oj are categorical variables accounting for the order of the
bird species i and j, respectively (see [Bates et al., 2015] for the notation).

We also tested models containing the possible subsets of the predictor
variables present in the two complete models. The results we show in Sec-
tion (5.3) are robust to all the choices of predictors we considered.
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5.B Randomisations

To assess the robustness of our results, we conducted series of 42 randomisa-
tions spanning the possible combinations of:

1. different algorithms for enveloping the observed foraging niche, either
based on the distance of the species from the birds’ centroid or based
on the plants in the observed birds’ diet, as defined in Section (5.2.2);

2. different parameters for the enveloping algorithms: we ran the ran-
domisations for the combination of α in {1/100, 1/4, 1/2, 1, 2} and β
in {1, 1.5, 2} (see Section (5.2.2) for the definitions of the enveloping
parameters);

3. different trees from the 1000 phylogenies’ pseudo-posterior distribution
offered by birdtree.org [Jetz et al., 2012];

4. different definitions of the overlap measure: we computed the overlap
excess for the symmetric, relative and egoistic niches as defined in
Section (5.2.2);

5. different regression models, as explained in Appendix (5.A).

In order to control for dimensionality issues (such as the sparsity of the
plants in the functional space) and to test the hypothesis that the observed
trends were driven by only some of the functional space dimensions, we
performed a jack-knifing procedure on the space’s dimensions. We removed
each of the axes and reran the analysis by projecting the centroid and the
niches onto the remaining three-dimensional space, and by modifying the
regression models accordingly to the reduced dimension (e.g, considering the
third power of the centroid distance instead of the fourth power).

Finally, to control for the effect of empty intersections—which produce
null overlaps—we performed the analysis by filtering any pair of birds with
an overlap (either symmetric, relative or egoistic) smaller than an abitrary
threshold (set at 10−3) from the dataset.

The correlations between centroid distance and phylogenetic distance,
between niche overlap and phylogenetic distance, and between overlap excess
and phylogenetic distance were confirmed across all the combinations, except
only for the randomisations with α = 2 and β = 1. We attribute this to the
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fact that at the highest values of α, the augmented foraging niches saturate
the functional space, yielding meaningless results for the niche overlap.

5.C Centroid phylogenetic analysis

Here, we show the scattergram of the centroids for the Wayqecha and San
Pedro species community obtained by using the function fancyTree in the R
package phytools [Revell, 2012] (see Figures (5.C.1) and (5.C.2)).
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Figure 5.C.1: The scattergram of the niche centroids in the Wayqecha plant–
birtd interaction network, obtained by using phytools [Revell, 2012].

We consider two hypotheses for the distribution of the species’ niche
centroids: (1) the null hypothesis, H0, that the centroids are distributed
as a Multinomial independent of the phylogenetic history of the species in
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Figure 5.C.2: The scattergram of the niche centroids in the San Pedro plant–
birtd interaction network, obtained by using phytools [Revell, 2012]. On
the diagonal the distribution of the centroids’ coordinates across the bird
phylogeny. Out of the diagonal, the two-dimensional scatter plot of the
coordinate pairs.
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each interaction network: and (2) the alternative hypotesis, H1, that the
centroids are the outcome of an evolutionary processes taking place on the
phylogeny according to a branching (multivariate) Brownian motion.

To test the hypothesis H0, we estimate the variance covariance matrix of
the centroid coordinates and their means from the observed centroids (ignor-
ing the phylogenetic covariance). To test the hypothesis H1, we estimate the
BBM parameters taking into account the correlation between species deter-
mined by their shared evolutionary history (we use mvBM from mvMORPH
to accomplish this task). Then, in both case we fit the simulated centroids
to a multivariate Brownian motion and compare the Log-Likelihood of the
empirical centroids to the simulated one.

We can refute the null hypothesis H0 but not the alternative hypothesis
H1. In fact over 1000 simulations none of the multinomial had a higher
likelihood than the observed centroid distribution; on the other hand, 17%
(for the Wayqecha community) and 28% (for the San Pedro community) of
the centroids simulated according to a BBM model had a lower likelihood
than the observed ones.

5.D Niche intersections in the evolutionary null
model

5.D.1 Upper and lower bounds

We provide upper and lower bounds for Vij(t) that hold for non-spherical
convex hulls. The intersection volume is bounded from above by the volume
of the smallest of the two niches and is bounded from below by the volume
of the largest sphere that is fully contained in the hij(t). As a formula:

max
B(x,r)⊂hij(t)

V
(
B(x, r)

)
≤ Vij(t) ≤ min

(
(V (h(i, t)) , (V (h(j, t))

)
, (5.26)

where the maximum is over the four-dimensional balls B(x, r) contained
in hij(t). If one niche is contained in the other (i.e., h(i, t) ⊆ h(j, t) or
h(j, t) ⊆ h(i, t)) then the largest ball B(x, r) is the largest ball contained in
the smallest niche itself.

We analyse the case where for two niches, one is not a subset of the other.
Consider the left-hand side of Equation (5.26). Let rij(t) be the radius
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of the largest ball in hij(t). If the two niches are balls, then:

rij(t) = 1
2
(
r(i, t) + r(j, t)− di,j(t)

)
. (5.27)

However, in general

|rij(t)−
1
2
(
r(i, t) + r(j, t)− di,j(t)

)
| = εij(t) . (5.28)

The error εij(t) depends non-trivially on the shape of the convex hulls. Thus
the left hand side of Equation (5.26) is difficult to approach, at least for
niches which shape is strongly non spherical.

If the two niches are not too different from a sphere, we can express
the left-hand side of Equation (5.26) as a function of the lineages’ radii and
centroid distances:

max
B(x,r)⊂hij(t)

V
(
B(x, r)

)
= max

(
0, π

2

2
(
r(i, t) + r(j, t)− di,j(t)

)4)
= π2

2 max
(
0,
(
r(i, t) + r(j, t)− di,j(t)

))4
.

(5.29)

Let s be the time since the divergence of lineages i and j, and be rs and
cs the radius and centroid of the most recent common ancestor of i and j.
In this case, we have E(rs) = r0 and E(cs) = 0. Remember that, as the
Brownian motion governing the radii is centred on 0, we have:

E (r(i, t)) = E (r(j, t)) = r0 (5.30)

and thus:
E (r(i, t) + r(j, t)− di,j(t)) = 2r0 − E (dij(t)) . (5.31)

We can compute E (dij(t)) by remembering that the coordinates of the cen-
troids evolve as independently and identically distributed Brownian motions;
hence, for each coordinate k, following [Letten and Cornwell, 2015], we have
an expected centroid distance that is proportional to the square root of the
time since s and to the variance σ. As a formula:

E (dij(t)k) = E (c(i, t)k − c(j, t)k) = σ
√
s , (5.32)
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so that:
E (dij(t)k) =

√
4ρ2s = 2σ

√
s . (5.33)

Moving our attention to the-right hand side of Equation (5.26), using the
volume formula of Equation (5.11), the value of the minimum niche volume
is a function of the lineages’ radii:

min
(
(V (h(i, t)) , (V (h(j, t))

)
= min

(
π2

2 r(i, t)
4,
π2

2 r(j, t)
4
)

= π2

2 min
(
r(i, t), r(j, t)

)4

≤ π2

2

(
r(i, t) + r(j, t)

2

)4

.

(5.34)

For linearity, we have:

E
(
r(i, t) + r(j, t)

2

)
= r0 . (5.35)

Notice that in Equations (5.29) and (5.34) that, again, we can bound the
niche overlap of a pair species from above and from below, at least in the first
approximation, with a polynomial function of their radii and the centroid
distance—which depends on the evolutionary history of the two species.

5.D.2 Simulation results

We simulated the null model evolution of spherical niches (defined in Sec-
tion (5.2.3)) for Wayqecha and San Pedro interaction networks. To do so,
we used the function mvSIM in the R package mvMORPH [Clavel et al.,
2015]. In particular, the evolution of the centroids was simulated according
to a four-dimensional Brownian motion with coordinate covariance structure
set equal to the one estimated from the observed distribution of the traits
by using the function mvBM in the R package mvMORPH.

Here we present the result of one random simulation. The results were
consistend across 100 simulation: the regression of the centroid distance
versus the phylogenetic distance, and of the niche overlap versus the phylo-
genetic distance were significant on all the simulations.

Under the null model of evolution, the correlation between overlap excess
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Figure 5.D.1: The species’ niche centroid distances versus their phylogenetic
distances for a null model simulation based on the Wayqecha (top) and San
Pedro (bottom) interaction networks. The continuous red line represents the
linear regression of the centroid distance versus the phylogenetic distance.
In both networks, the slope is significant and positive: under the null model,
the consumption propensities of closely related species are more similar than
those of distantlt related species.
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Figure 5.D.2: The species’ niche overlaps versus their phylogenetic distances
for a null model simulation based on the Wayqecha (top) and San Pedro
(bottom) interaction networks. From left to right: the symmetric, relative
and egoistic overlaps. The continuous red line in each facet represents the
linear regression of the niche overlap versus the phylogenetic distance. In all
cases, the slope is significant and negative: under the null model, the foraging
niches of closely related species overlap more than those of far related species.

115



−4

−2

0

2

4

6

−2.5

0.0

2.5

5.0

−2.5

0.0

2.5

5.0

7.5

excess_s
excess_r

excess_e

0 50 100 150 200
Pdistance

va
lu

e

−5

0

5

−8

−4

0

−10

−5

0

5

excess_s
excess_r

excess_e

0 50 100 150 200
Pdistance

va
lu

e

Figure 5.D.3: The species’ overlap excess versus their phylogenetic distances
for a null model simulation based on the Wayqecha (top) and San Pedro
(bottom) interaction networks. From left to right: the excesses for the
symmetric, relative and egoistic overlaps. The red continuous line in each
facet is the linear regression of the overlap excess versus the phylogenetic
distance. In all cases, the slope is not significant and negative: under the null
model, the overlap excesses are not predicted by the species’ phylogenetic
distances.
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and the phylogenetic distance were not significant on more than 90% of the
simulations and the sign of the regression slope was not consistent across
the simulations associated with a significant regression.
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Chapter 6

Global centrality in
population networks

Synopsis: The status of a population network in landscape genetics is com-
monly assessed via node measures or network statistics. Here, we use insights
from the theory of finite-state Markov chains to measure the contribution of
single patches to the overall effective connectedness of a population network
and to test the sensitivity of the network to different perturbations, such as
the removal of a patch. In particular, we introduce a novel node measure
based on the average of random walk hitting times, capturing local and
structural network properties. We test this analytical approach on simulated
geographic networks, and explore the relationship between this measure and
other common centrality measures. Finally, we see how detailed modelling of
the corridor structure of a population network and of the dynamic properties
of its individuals are pivotal in identifying central patches.

Notes: A version of this chapter is in preparation for submission as:
GVDR, Mike Steel (School of Mathematics and Statistics, University of
Canterbury) and Arne Ø. Mooers (Department of Biological Sciences, Simon
Fraser University), “Assessing network connectivity through random walks”.
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I only went out for a walk and
finally concluded to stay out till
sundown, for going out, I found,
was really going in.

John of the Mountains
John Muir

6.1 Introduction

Graph theory has been used in many fields to characterize local and system-
wide processes in complex interconnected systems (reviewed in [Newman,
2009; Estrada, 2011]). An instance is given by population graphs—networks
in which nodes represent discrete populations and edges represent dispersal
corridors or measured genetic connectivity [Dyer and Nason, 2004]. Node
measures such as betweenness and centrality, and network measures such
as node degree and path-length distributions, have all been presented as
useful metrics for querying such graphs [Garroway et al., 2008]. Here, we
provide a further extension of network theory into ecology. In particular,
we propose that if the edges linking subpopulations can be parametrized as
the probability of movement by individuals (and their genes) between these
subpopulations, we can use insights from the study of finite-state Markov
chains to measure the overall “connectedness" of the resulting network, and
to test the sensitivity of the network under perturbation. Both these may
be of special interest to conservation biologists tasked with considering the
effects of different management regimes, e.g., for endangered species on a
patchy landscape undergoing anthropogenic modification [Osborne et al.,
2000].

6.2 Population networks as Markov chains

To ground our description, without loss of generality, we consider nodes to
be “patches" and edges to be “corridors", and describe the movement among
nodes as being that of “individuals". A “population network" is a strongly
connected directed graph G = (V,E) in which each node vi ∈ V is a patch
and the binary structure of the graph is given by the connection of the
network: a link eij = (vi, vj) is in E if and only if there is a corridor from the
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patch vi to the patch vj . We let N = |V | and S = |E| denote the number of
nodes and links in the graph G.

Let w denote the “weight” of each corridor. The weights wij will depend
on the usability of the corridors. We will suppose that each patch vi has an
associated leaving probability li ∈ (0, 1), which is the probability that an
individual currently residing at vi leaves in the next time step. Hence, the
probability of remaining in the patch is (1− li) ∈ (0, 1). Moreover, we will
assume that each corridor eij has an associated using cost cij > 0. We define
the weights wij of the extant links eij :

wij := w(eij) := li

(
cij∑
j 6=i cij

)−1

, (6.1)

where the term between brackets is the inverse of the normalized cost. The
weights of the loops eii, which express the probability of staying in the same
node, are given by:

wii := w(eii) := 1− li . (6.2)

In general, the weights are not symmetric: wij 6= wji.
If w ∈ RS+ denotes these weights on the edges, then we will let AGw

denote the adjacency matrix of the weighted graph G = (V,E,w) and aij
denotes its entries, or, more concisely, A if the graph and the weights are
made clear by the context. The entries of matrix AGw are defined as:

aij =

wij , if eij ∈ E;

0, if eij /∈ E .
(6.3)

The rows of AGw sum to 1 by construction. The matrix is symmetric if
and only if the underlying graph G and the weights w are symmetric (i.e.,
wij = wji). In general, however, we will not assume symmetry.

The matrix AGw is stochastic and it defines a finite-state discrete-time
irreducible Markov chain processMGw, where the states of the chain are the
patches of the population network and the transition probabilities between
states are defined by the weights w. Conversely, we can regard AGw as the
matrix of transition probabilities of the process MGw: the probability of
going from state i to state j is equal to aij .
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Figure 6.1: A simple example of a population network. Edge widths are
proportional to transition probabilities.

6.2.1 Random walks on population networks

Let G = (V,E,w) be the directed weighted graph describing the landscape
network of interest and let AGw be the adjacency matrix of G. For each
patch vi, we can define a modified graph G→i (“G to i”), which is obtained
by removing all the links leaving vi from G, except for the loop eii, which
has its weight re-set to 1. We denote the new set of weights w→i. Hence, the
patch vi becomes the only absorbing state of the Markov chainMG→i,w→i

defined by G→i: once an individual following a random walk in G→i reaches
the absorbing patch vi, it stops there.

For each patch vi, we can write the adjacency matrix of G→i as:

AG→i,w→i =

 A−i A↓i
~0 1

 (6.4)

where A−i is obtained from AGw by deleting the ith row and column, A↓i is
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Figure 6.2: The modified population network with Patch 6 as the only
absorbing patch, G→6, from our simple example of population network. Edge
widths are proportional to transition probabilities.

the column vector of transition probabilities from the patches j 6= i to i, ~0
is a row vector of zeros and 1 is the scalar unit.

Absorbing times A classic result from Markov chain theory allows us to
compute the expected time to absorption of a random walk starting from a
defined transient (non-absorbing) state [Kemeny and Snell, 1960; Grinstead
and Snell, 1998]. Let P be the N × N transition probability matrix of a
Markov chainMP with a single absorbing state j and let Q be the minor
obtained from P by deleting its jth row and column, (i.e., Q is a matrix of
transition probabilities between the transient states). The expected time (in
terms of the number of steps) that a random walk starting in a transient
patch i spends in any another transient patch k before reaching the absorbing
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state (and hence stopping) is given by the ij-th entry of the matrix:

H = (IN−1 −Q)−1 = IN−1 +
∞∑
n=1

Qn , (6.5)

where IN−1 is the (N − 1)× (N − 1) identity matrix, −1 denotes the inverse
matrix and n denotes the nth power of a matrix. The inverse of (IN−1−Q)
exists [Kemeny and Snell, 1960, Theorem 3.2.1].

Therefore, the expected time an individual takes in following a random
walk starting from a transient state i before reaching the absorpting state j
is the ith row of the column vector:

t = H · 1↓N−1 (6.6)

where 1↓N−1 is a column vector of ones, 1↓N−1 = {1}N−1.

The expected hitting time from patch vi to patch vj , denoted as Tij , is
defined as the expected time (in terms of the number of steps) an individual
starting in patch vi takes to reach the patch vj for the first time following a
random walk according to the corridor weights w.

The expected hitting time from any transient patch vi to the any other
transient patch vj in the original Markov chainMGw can be computed using
Eqn.(6.6). In fact, it is sufficient to notice that Tij in G is equivalent to
the expected time to absorption of a random walk in the absorbing Markov
chainMGj ,wj starting from vi:

Tij =
[
(IN−1 −A−j)−1 · 1↓N−1

]
i
. (6.7)

We define the hitting matrix T as the N ×N matrix which ij-th entries
are given by Eqn.(6.7) for i 6= j and are set to 0 for i = j. The inverse of
(IN−1 −A−j) exists for every vj ∈ V , as the graph is strongly connected,
and thus T exists.

The times Tij express the degree of connectedness between two patches
in an ecological network.

The matrix T determines two node quantities that were originally intro-
duced by Noh and Rieger [2004] and are useful for establishing the centrality
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of patches in population network. Specifically, from the columns of T, we
can compute the average hitting time from a random patch in the population
network to a focus patch vi (named random walk closeness centrality [Noh
and Rieger, 2004]); from the rows of T, we can compute the average hitting
time from a focus patch vi to a random patch in the population network.
We will refer to the former as in-walk centrality and the second as out-walk
centrality.

6.2.2 Hitting time centrality

We are interested in the contribution of each patch to the population net-
work’s connectedness (i.e., the ease with which an individual travels between
patches in the network). In the following, we will make this concept more
rigorous.

Using the notation of the previous section, let T be the matrix of expected
hitting times for a population network G. We define the reduced network
Gr(k) obtained removing the patch vk from G and rescaled the weights so
that the rows of the adjacency matrix of Gr(k) sum to one, that is:

w
r(k)
ij = wij + wik

out(vi)− 1 for each ij 6= k (6.8)

where wr(k)
ij is the weight of the corridor between patches vi and vj in the

k-reduced network Gr(k), wij is the weight of the corridor between patches vi
and vj in G and out(vi) is the out-degree of vi in G (counting the loop). The
denominator out(vi)− 1 is strictly greater than zero as the graph is strongly
connected and every patch has a loop—and so out(vi) ≥ 2. For definition,
the adjacency matrix AGr(k)wr(k) of Gr(k) is stochastic an hence defines an
irreducible Markov chainMGr(k)wr(k) .

We use Td(k) (T deleted k) to denote the matrix of hitting times obtained
by deleting the kth row and column from T and use Tr(k) (T reduced k) to
denote the matrix of hitting times computed on the reduced network Gr(k).

We define T (vi) and call this the raw hitting time centrality of the patch
vi, which is the quantity:

T (vi) =
∑
kl

Td(i)
kl −Tr(i)

kl (6.9)
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Figure 6.3: The 6-reduced population network, Gr(6) from our simple exam-
ple of a population network. We left the label of the patch six to show where
it was. Edge widths are proportional to transition probabilities.
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where the summation goes over every entry of Td(i) and Tr(i). Corridors
going to or coming from the patch i do not appear in any of the matrices, as
they were deleted in the former case and they do not exists in the underlying
reduced population network in the latter case. Under strict similarity, the
normalized version of this measure is given by

Tn(vi) = T (vi)
maxvj |T (vj)|

(6.10)

which is constrained to lie in [−1, 1]. Notice that the sign of the centrality
reflects the fact that if one removes a patch, the expected hitting time can
either increase (the measure is negative) or decrease (the measure is positive).

Notice that, in general, the reduced network Gr(i) may no longer be
connected. Let vk and vl be two patches residing in disconnected components
of Gr(i). In this case, the expected hitting time from vk to vl is infinite—a
random walk starting in vk will never reach vl. Hence, we define Tr(k)

ij =∞
and, accordingly, the centrality of vi is infinite, T (vi) =∞.

6.2.3 Discounted hitting time centrality

Katz [1953] introduced a centrality measure based on the concept of dis-
counted walks. Here, walks of length m are weighted by a factor αm, with
α ∈ [0, 1], so that short walks have a higher weight than longer walks. In
the framework we introduced, this is translated as:

Tij,α =
[
(IN−1 − α ·A−j)−1 · 1↓N−1

]
i

(6.11)

Therefore, we define the discounted hitting time centrality of a patch vi
as:

T (vi, α) =
∑
kl

Td(i)
kl,α −Tr(i)

kl,α (6.12)

and its corresponding normalized version as:

Tn(vi, α) = T (vi, α)
maxvj |T (vj , α)| , (6.13)

which is constrained to lie in [−1, 1].

126



6.2.4 Variance centrality

The hitting time centrality can be extended to consider the contribution
of patches to the higher moments of the hitting time distribution [Hunter,
2008; Stewart, 2009]. The variance of the hitting times can be of interest
in assessing the effect of removing a patch from a population network. As
for the expected hitting times, we will compute the variance of the hitting
times inMGw via the variance of the number of steps before absorption in
a modified absorbing Markov chainMGkwk .

For each patch vk ∈ V , we let Hk denote the first moment of the funda-
mental matrix of A−k (Hk = (IN−1−A−k)−1). Moreover, we let T·,k denote
the column vector of the expected number of steps before a random walk
enters the absorbing patch vk in MGkwk . If we have already computed T,
then T·k is obtained from the kth column of T, deleting the kth row. Now,
the variance of the number of steps an individual following a random walk
inMGkwk starting at patch vi takes before reaching the absorbing patch vk
is:

Vik =
[
(2Hk − IN−1) T·k −T(2)

·k

]
i

(6.14)

where T(2)
·k is the column vector which entries are the square of the entries

of T·k.
Let V denote the matrix for which ij-th entry (i 6= j) is Vik (the variance

of the hitting time from vi to vj inMG→i,w→i) and has zero entries entries
on the diagonal.

As we did for the expected hitting times matrix, we use Vd(k) (V deleted
k) to denote the matrix of hitting times variance obtained by deleting the
kth row and column from V and use Vr(k) (V reduced k) to denote the
matrix of hitting times variance computed on the reduced network Gr(k).
Finally, we define V (vi) and call it the variance centrality of the patch vi for
the quantity:

V (vi) =
∑
kl

Vd(i)
kl −Vr(i)

kl , (6.15)

where, as before, the summation is over all the patches except vi and, if
Gr(k) is not connected, we set V (vi) =∞. As before, we define a normalized
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version of this centrality as:

Vn(vi) = V (vi)
maxvj |V (vj)|

(6.16)

which is again constrained to lie in [−1, 1] and the sign of the centrality
reflects whether the variance has increased or decreased.

a) b)

c) d)

e) f)

Figure 6.4: Our population network simple example drawn with nodes size
proportional to a centrality measure: (a) Degree; (b) Betweenness; (c) Hitting
time centrality; (d) Estrada removal centrality; (e) eigenvector centrality; (f)
Closeness.
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6.3 Estrada removal centrality

The “Estrada removal centrality” is based on the subgraph centrality originally
proposed by Estrada [2000] for undirected unweighted graphs and extended to
directed networks [Estrada and Rodriguez-Velazquez, 2005; Estrada, 2011].

The subgraph centrality of a node i in a undirected un-weighted graph
G is the weighted sum of all closed walks starting and ending in that patch
[Estrada, 2011, Sec. 7.2.3], where the weight of a walk of length l is 1

l! . If A
is the adjacency matrix of G, the subgraph centrality is given by:

EE(i) =
[ ∞∑
l=0

Al

l!

]
ii

=
[
eA
]
ii
, (6.17)

where Al is the l th power of A and eA is the matrix exponential of A. We
can generalize this measure, correcting the path weights by a multiplicative
scalar βl, given as:

EE(i, β) =
[ ∞∑
l=0

βlAl

l!

]
ii

=
[
eβA

]
ii

(6.18)

Here, β is a scalar interpreted in statistical-mechanical terms as an inverse
temperature [Estrada and Hatano, 2007]: when β is less than one, long paths
receive a heavier penalization; when β is more than one, the penalization is
lighter.

An extension of the subgraph centrality to weighted undirected graphs has
been proposed by Crofts and Higham [2009], where they suggest normalizing
the edge weights because of the risk of “poor weight calibration” (see also
[Higham et al., 2007] for more on this issue).

Now, although the calibration problem for the corridors’ costs still exists,
we take advantage of how the weights are already normalized and extend
the subgraph centrality to weighted directed population networks. Moreover,
as for the hitting times expectations and variances, we are interested in the
contribution of patches to the whole network’s connectedness.

Hence, as for the other two measures we introduced, we consider the
difference between the Estrada centrality in the original network and in
the networks obtained by sequentially removing each patch. The Estrada
removal centrality of a patch vi in the population network G = (V,E,w) is
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what we call the difference between the average of the subgraph centralities
computed by deleting the ith row and column from G and the average of
the subgraph centralities computed on the reduced network Gi:

ED(vi) = 〈EEd(vi)〉 − 〈EEr(vi)〉 , (6.19)

where:
〈EEr(vi)〉 =

∑
j 6=i

EEGiwi(vj)
N − 1 , (6.20)

and:
〈EEd(vi)〉 =

∑
j 6=i

EEGw(vj)
N − 1 . (6.21)

6.4 Computational studies

6.4.1 Network simulation

We simulated artificial population networks by sampling simple directed
random graphs from a truncated Random Geometric Graphs model [Penrose,
2003], which we now describe.

We set the number of patches in the graph, N , and the connectance
radius, r. We draw N points in the unit square [0, 1] × [0, 1]. Whenever
two patches are at a distance r or less, they determine the existence in the
network of a pair of symmetric links. In this case, we used a Euclidean
distance but any other alternative is possible. We retained doubly connected
networks only (connected networks for which removing a single patch would
not disconnected the network).

For each patch vi, we drew the probability of staying in vi uniformly at
random from the unit interval. The probability of leaving vi is the comple-
mentary probability. We set the initial cost of each extant corridor to the
Euclidean distance (in the unit square) between its two endpoints. Let aij
denote the inverse of the cost of the corridor from patch vi to patch vj times
a random noise of mean one and variance σ, or zero if the result is negative.
Again, we discarded networks that failed to be doubly connected. Finally,
we normalize all the outgoing probabilities so to obtain a stochastic matrix.
Notice that σ determines the asymmetry of the population network corridor
probabilities.

We simulated population networks spanning 20 to 2000 patches with
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a radius of 0.1 to 0.5. These synthetic networks were meant to model geo-
graphic networks where the topological structure is defined by the geographic
distance between patches, and the corridor costs depend on ecological, envi-
ronmental and geographic reason.

We used the simulated population network to test for correlations among
the proposed hitting time and variance centralities and a set of other common
centrality measures: namely degree, closeness, betweenness [Freeman, 1979;
Newman, 2001; Barrat et al., 2004; Opsahl et al., 2010] and eigenvector
centrality [Noh and Rieger, 2004; Borgatti, 2005].

6.4.2 Large networks

For large population networks, computing the hitting time centrality for all
the patches becomes demanding, although the number of operations required
is polynomial on the number of patches. Our parallel implementation in Julia
[Bezanson et al., 2014] was able to handle networks of up to 2000 nodes in
few minutes; however, for larger networks, alternative computing approaches
may be needed.

One candidate is the generalized inverse of the Laplacian matrix, by
[Boley et al., 2011]: if M is the Moore-Penrose inverse of the asymmetric
Laplacian and if mab denotes the ath row–bth column entry of M , then the
hitting time matrix can be computed as:

Tij = mjj −mij +
∑
l

(mil −mli)πl (6.22)

where πl is the stationary probability of the node l. If Π denotes the matrix
in which the diagonal entries are the stationary probabilities πl and the off-
diagonal entries are zero, the asymmetric Laplacian of a strongly connected
directed weighted graph with the adjacency matrix Adj is defined as Π(I −
Adj).

This method is equivalent to the previous direct method, but is compu-
tationally more convenient. However, in the article, we choose to present
the hitting time and variance centralities based on the direct computation
method, as we think it helps to elicit the meaning of those centralities. Boley
et al. interpreted the diagonal entries mii in M as an index of the central-
ity of the node vi in the network, approximating, up to a scale factor of
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N2, the difference between the average hitting time computed on all the
possible paths and the average hitting time computed on the paths passing
through the node vi. The caveats presented in Section (6.5) also hold for
this centrality index,.

6.4.3 Results

An exploratory analysis showed that the hitting time centrality was correlated
with degree, betweenneess, closeness and eigenvector centrality (see Fig. 6.1
for an example of a population network with 100 patches and radius of 0.2).
Similarly, we found a strong linear correlation between the variance centrality
and the hitting time centrality (see Fig. 6.2).
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Figure 6.1: Correlation between the opposite of the normalized hitting time
centrality and (a) Degree, (b) Betweenness, (c) Closeness, (d) and Eigenvec-
tor centrality in a network with 200 patches, a connection radius of 0.3 and
an intensity noise of 0.05.

The correlation between the classic centralities and the hitting time
centrality is not linear, and both the correlation coefficient and the goodness

132



of fit depend on the population network size, connectance and asymmetric
noise intensity. The fit between the centralities improves as the network
becomes denser and larger.
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Figure 6.2: Correlation coefficient and adjusted R2 of the linear model with
hitting time centrality as the predictive variable and variance centrality as
the independent variable in a network with 200 patches and varying radii.
The results are presented over 42 randomizations.

The sign of the coefficient of correlation between the hitting time cen-
trality and all the other centrality measures is positive. Interestingly yet not
totally unexpectedly, the removal of “central” patches—in terms of one of
the classic centrality measures—reduces the expected hitting time between
the remaining patches and also its variance.
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Figure 6.3: Correlation coefficient and adjusted R2 of the linear model with
the hitting time centrality as predictive variable and discounted hitting time
centrality (with α = 0.5) as the independent variable in a network with 200
patches and varying radius. Results are presented over 42 randomizations.

Moreover, as we would expect, we detected a strong linear correlation
between the expected hitting time centrality and its discounted version,
which was again stronger (both in correlation and in adjusted R2 terms)
in sparsely connected networks (see Fig. 6.3). Moreover, in this case, as
we allow the asymmetric noise to increase, the goodness of fit of the two
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centralities decreases. Hence, discounting longer paths makes a difference in
the centrality ranking of patches—in particular for small or sparse graphs
where the cost of corridors is sufficiently asymmetric.

6.5 Discussion

We have introduced two patch centrality measures for population networks,
namely the hitting time centrality T (vi) (the overall effect of removing a patch
from a network on the expected random walks’ hitting times) and the variance
centrality V (vi) (the overall effect of removing a patch on the variance of
random walks’ hitting times). The two measures can be computed from
the adjacency matrix of the graph, via the introduction of a set of ancillary
matrices. These latter matrices can be obtained by modifying the random
walk defined on the original adjacency matrix so that each patch sequentially
plays the role of being the only absorbing states in a random walk. The
hitting time and variance centralities have a natural interpretation in terms
of the effect on the random walks of individuals (species, genes, . . . ) random
walks in the population network. Specific questions about the perturbation
of sets of corridors or patches can be efficiently investigated in terms of the
effects on expected hitting times and their variance. Hence, these novel
measures may result in valuable tools for the evaluation of conservation
policies affecting population networks. This, in turn, may also help in
ranking patches according to their value in terms of population network
connectedness.

Lost in a walk It is important to describe the scenario in which the hitting
time centrality and the variance centrality fail to shed light on the structure
of a network. On one hand, patches with a high degree tend to have lower
expected hitting times than low-degree patches; on the other hand, patches
connected by many short paths have lower hitting times than patches that
are poorly connected or far apart.

It would seem natural, for some scenarios, to define the cost of an edge
as the geographical distance between patches (i.e., as the Euclidean distance
given by the coordinates of the patches). Therefore, it is easy to define
complete graphs where all the pairs of nodes are connected by an edge of
positive weight. However, we should note that many standard measures of
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network connectivity, patch distance and patch centrality have less meaning
when the connectivity of the graph is too high, as illustrated by von Luxburg
et al. [2010]. Hence, node degrees are good estimators for the hitting time
and the commuting time (i.e., Tij + Tji). Indeed, in this cases the average
time for reaching patch vj from patch vi does not depend on the structure
of the graph but just on the local properties of the nodes.

Hence, it is necessary to prepare the data for the analysis so as not to
include too many links: considering a population network as a complete graph
with the corridor costs given as a function of only the geographical distance
between patches may lead to unrealistic patch rankings, such as rewarding
patches with a high degree and overlooking the network structure. A deeper
knowledge about the structure of a population network can be achieved by
considering more detailed models of the corridors cost—including climatic
informations, conservation status of the corridors and of the patches they
lead to, geomorphological data and so on. It is preferable to not include
corridors that directly link distant patches whenever those corridors do not
actually exists.

Conclusions Our results showed that the hitting times measures elicit
local and global structures that are not fully captured by other centrality
measures. Moreover, both measures have an appealing natural explanation
in terms of individual movement statistics.

It is interesting to notice the sign of the correlation between the various
measures. In particular, degree, closeness, betweenness, hitting time and
variance centralities are all positively correlated. In other words, removing
a patch that is central in the degree, closeness or betweenness sense from a
population network means a larger effect on the average hitting time: the
network’s average hitting time will be significantly greater after the removal
of a central patch than after the removal of a peripheral patch. Moreover,
the same holds for the variance of the hitting times: the removal of a patch
with high degree, closeness or betweenness produces a larger effect.
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Chapter 7

Conclusions

In this thesis, we provided analytical tools for studying the relationship
between ecological and evolutionary processes beyond the scenarios currently
considered in the literature. In particular, our analyses include unipartite
ecological networks (i.e., food webs where species are not neatly separable
in discrete trophic levels). In Chapter 3, we found a clear evolutionary
trace in the structure of food webs. The evolutionary signal is present both
when we consider the species’ diet dissimilarities and when we consider the
species’ representation in the food web functional space. In fact, the species’
trophic roles show a significant phylogenetic signal that is stronger for the
low-dimensional backbone of the food webs than for the food webs’ fine wiring.
The insights we gained by modelling food webs as random dot product graphs
support the notion that the species’ niches can be accurately described in
an inherently low-dimensional space, even when the species are part of a
complex network of interactions. This result was obtained by moving from
a rigidly binary food web modelling to a stochastic model and by adopting
an abstract definition of the species’ functional traits and foraging niches.

In the Appendix of Chapter 3 we began to introduce an evolutionary
model where the evolution of traits depends explicitly on the species’ in-
teractions. Whether this or similar models can help us to explain the trait
distributions we observe empirically—in particular the distribution of traits
that determine the structure of interaction networks—will be an object for
future work.

The food webs’ RDPG embedding discussed in Chapter 3 offers addi-
tional ecological information. Indeed, in Chapter 4 we have shown that the
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position of the species in the food web’s functional space and the pairwise
distance structure that the species’ positions induce can be used to estimate
the species’ importance (i.e., its strain), ecological uniqueness (i.e., its mean
distance) and the contribution to the functional diversity of the food web.
We assessed these measures for four large food webs (including both ma-
rine and land food webs) for each species as a predator (consumer), as a
prey (resource) and as both a predator and a prey (consumer and resource).
For the food webs we analysed, we detected a strong correlation between a
species’ importance, uniqueness and diversity: important species tend to be
unique and to contribute greatly to the total functional diversity of the food
web. Moreover, the ranking of the species based on their importance, unique-
ness or diversity which we computed by considering only the interactions’
presence or absence was consistent with the rankings which we obtained by
considering the (simulated) relative strength of the interactions. In other
words, the species having higher importance, uniqueness and diversity in
the topological food webs are, with high frequency, the species with higher
importance, uniqueness and diversity in the weighted networks. Finally, we
showed that the importance, uniqueness and diversity of the species is not
uniformly distributed among the tips of the food webs’ phylogenies but is
disproportionally higher in some clades.

Indeed, we could identify clades of species with both high evolutionary
distinctiveness and high ecological uniqueness. However, the relationship
between these two definition of “originality” appears to be complex, as it
is shown by the lack of linear correlation between evolutionary ecological
originality. We may ask what are the mechanism that determine the emer-
gence of a clade originality, and under which condition (both ecological and
evolutionary) the two will correlate. Moreover, we showed that the measures
of ecological originality we introduce are robust to the specification of inter-
action strengths. Further research is needed to ascertain the generality of
this results to a wider class of strength distributions.

In Chapters 3 and 4 we saw that the species’ evolutionary history has a
deep impact on their ecological roles. Next, in Chapter 5, we investigated
how these ecological roles have evolved. Again, we did so by moving from a
graph representation to a metric space representation of food webs (in this
case, bird-plant networks). We found a strong negative correlation between
a pair of birds’ niche overlap and their phylogenetic distance. Similarly,
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the foraging niche centroids are distributed as we would expect under a
multidimensional Brownian motion model of evolution. In other words,
closely related bird species have more similar consumption propensities and
their niches overlap more than distantly related birds. We provided evidence
that the diversification between closely related species is produced mainly by
a modification of the birds’ consumption propensities (which is likely to be
caused by ecological mechanisms); the redefinition of the niche boundaries
becomes predominant for distantly related bird species. The observed niche
trajectory suggests that the diversification may not be just the product of
neutral drifting, but rather be accentuated by the competition for shared
resources between frugivorous birds.

Further eco-evolutionary hypotheses can be considered in order to explain
the observed trend of diversification. We can formulate more specific hy-
potheses by acknowledging the species natural history and their geographic
origin, and by considering explicitly the competition effects on the birds’
evolutionary trajectories.

In Chapters 3, 4 we stressed the notion that the importance of a species
in a network should be assessed as a global property instead of a local property.
The same rationale motivates our analysis of geographic population networks
in Chapter 6. The corridor structures among geographic patches are crucial
to understand evolutionary processes where spatial factors are relevant (e.g.,
the dynamics of genes’ flows, adaptive diversification, . . . ). When a patch
becomes unavailable, the event affects the connectivity of the whole network
in a way that is difficult to predict simply by local properties.

Across this thesis, we provided evidence for the importance of the rela-
tionship between ecology and evolution. At least for some important traits
determining the way species interact, this relationship appears symmetric:
ecological processes occurring on food webs (such as competition and preda-
tion) influence the evolutionary trajectory of species traits; the evolutionary
history of the species shape the deep structure of food webs. In contrast
with the classic coevolutionary scenario (“diagonal” networks such as host-
parasite or grass-herbivour systems), the evolution of the species in a food
web is driven by diffuse and complex interactions. Therefore, we need to
consider species from a global (whole network) point of view and to adopt
novel representation of ecosystems, beyond rigid graph models.
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Gingest du über eine Ebene,
hättest den guten Willen zu
gehen und machtest doch
Rückschritte, dann wäre es eine
verzweifelte Sache; da du aber
einen steilen Abhang
hinaufkletterst, so steil etwa, wie
du selbst von unten gesehen bist,
können die Rückschritte auch nur
durch die Bodenbeschaffenheit
verursacht sein, und du mußt
nicht verzweifeln.1

Die Zürauer Aphorismen
Aphorismus 14
Franz Kafka

1If you were walking across a plain, felt every desire to walk, and yet found yourself going
backward, it would be a cause for despair; but as you are in fact scaling a steep precipice,
as sheer in front of you as you are from the ground, then your backward movement can
be caused only by the terrain, and you would be wrong to despair.
Translation by Hofmann, M. (2006). The Zurau Aphorisms. Schocken.
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