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ABSTRACT

Vertical profiles of wind velocity and air temperature from a sound detection and ranging (sodar) radio

acoustic sounding system (RASS)-derived dataset within an alpine valley of the New Zealand Southern Alps

were analyzed. The data covered the month of September 2013, and self-organizing maps (SOM; a data-

clustering approach that is based on an unsupervised machine-learning algorithm) are used to detect topo-

logical relationships between profiles. The results of the SOM were shown to reflect the physical processes

within the valley boundary layer by preserving valley boundary layer dynamics and its response to wind shear.

By examining the temporal evolution of ridgetop wind speed and direction and SOM node transitions, the

sensitivity of the valley boundary layer to ridgetop weather conditions was highlighted. The approach of

using a composite variable (wind speed and potential temperature) with SOMwas successful in revealing the

coupling of dynamics and atmospheric stability. The results reveal the capabilities of SOM in analyzing large

datasets of atmospheric boundary layer measurements and elucidating the connectivity of ridgetop wind

speeds and valley boundary layers.

1. Introduction

The atmospheric boundary layer (ABL; the lowest 1–

2 km of the troposphere) responds rapidly to radiative,

heat, and momentum flux exchanges with the surface

throughout its depth (Stull 1988). The structure of the

ABL over complex mountainous terrain can be signifi-

cantly different than over flat surfaces and has been the

focus of major research programs (Rotach and Zardi

2007). While our understanding of the ABL over flat

areas is relatively advanced (Garratt 1994; Weigel et al.

2007), knowledge of its behavior over mountainous

areas needs further research. We believe that ABL re-

search inmountainous areas could benefit from applying

newer analytical tools.

The sloped terrain under the mountain boundary layer

modifies it dynamically and thermally. For example,

mountain boundary layers facilitate exchange between air

masses with the free troposphere (Kossmann et al. 1998)

by mountain venting. Venting proceeds as upslope winds

thicken the boundary layer height locally and trigger

the vertical exchange of boundary layer air into the

free troposphere. The thermal modification of the bound-

ary layer by terrain not only induces slope flows (Whiteman

2000) but is also shown to introduce large biases in

local temperatures from regional projections under

climate change, particularly in areas conducive to

the formation of stable boundary layers (SBL) (Daly

et al. 2010).

The diurnal cycle of the boundary layer is character-

ized by variations between daytime and nighttime ver-

tical profiles of potential temperature and wind velocity.

Near-target remote sensing measurement techniques

such as integrated sound detection and ranging (sodar)

and radio acoustic sounding system (RASS) systems are

able to measure vertical profiles of temperature and

wind velocity, which can be used to determine the

boundary layer height and its stability at high temporal

resolution. However, it is challenging to reduce the

wealth of data to characterize the long-term behavior of

the atmospheric boundary layer.

Self-organizing maps (SOM) are constructed using a

neural network technique based on an unsupervised

machine-learning algorithm to detect topological rela-

tionships between input variables with any dimension,
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and group the organized output into bins or clusters.

This reduces the dimensionality of the data and en-

hances the relationships between variables (Kohonen

1988, 2001). In meteorology, SOM is used to summarize

large spatial patterns of temperature, precipitation, or

cluster atmospheric circulation patterns from model

simulations (Cassano et al. 2006, 2007; Cassano and

Cassano 2010; Alexander et al. 2010; Nigro et al. 2011;

Richardson et al. 2003). In this paper, we apply the

technique to time-varying one-dimensional data from a

sodar–RASS measurement system.

The paper is structured as follows: a description is

provided of the method, including the experimental

setup, instrumentation, and data preparation for the

analysis using SOM. The results are divided into an

overview of themeteorology during the sampling period

followed by an investigation of the intermontane

boundary layer (the first 500m AGL) using SOM. We

then apply SOM to investigate the response of nighttime

SBL profiles to wind speed profile changes. A discussion

and conclusions section is presented that includes the

implications of this research.

2. Method

a. Experimental setup

The dataset used in this research was collected using a

Scintec sodar–RASS and an automatic weather station.

The sodar–RASS was situated on the floor of the Cass

River basin at 600m above mean sea level (MSL), lo-

cated in the middle of the South Island of New Zea-

land (43.046 0688S, 171.768 3668E) on the eastern side of

the Southern Alps. The basin is approximately 7km

wide and aligned in a northwest–southeast direction

(Fig. 1). The sodar–RASS system records 10-min aver-

ages of the 3D wind velocity and air temperature at a

vertical resolution of 5m—from 10m AGL for wind

velocity and 50m AGL for air temperature to approxi-

mately 500m AGL. The sodar–RASS system measures

virtual potential temperature and also converts to

standard air temperature given a user-defined relative

humidity and station pressure input. The standard air

temperature was then converted to potential tempera-

ture accounting for the dry-adiabatic lapse rate. An

automatic weather station was positioned at 1400m

MSL on a nearby ridgeline (point B in Fig. 1). The data

used for this analysis were obtained during a period of

continuous sampling in September 2013 (early spring).

Sampling specifications are provided in Table 1.

b. Self-organizing maps

The SOM algorithm used in this research is the SOM

ProgramPackage (SOM_PAK; Sheridan and Lee 2011).

Initially, SOM is applied to the lapse rate of the vertical

potential temperature profiles, which are determined by

subtracting the mean temperature of each profile from

FIG. 1. Cass River basin (600 m MSL) in the central South Island of New Zealand. The

Google Earth image shows the locations of the measurement sites (A: sodar–RASS; B:

ridgetop weather station). The sodar–RASS range is up to 500m AGL (up to point C), and the

ridgetop weather station is at 800m above basin floor level.
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each level in the profile. The nodes of the SOM were

initialized using a random selection of the profiles and

the algorithm was trained twice, reducing the initial

learning rate parameter and increasing the number of

iterations for the second training but retaining the

neighborhood radius as the smallest of the matrix di-

mensions. SOM iterates through the input dataset,

matching each input to the SOM node that is closest in

terms of its Euclidean distance, and then adjusts the

node and its neighbors to incorporate the input data.

The learning rate parameter controls the rate at which

the SOM absorbs the information from the input data

while the neighborhood radius determines which other

nodes, within a topological distance, are affected by

the input data. The learning rate decreases to zero and

the neighborhood radius decreases to one as the algo-

rithm iterates through the dataset. Several matrix sizes

were tested, and for each matrix size the number of

iterations and learning rate function types were ad-

justed, with the aim of reducing the quantization error

or the mean Euclidean distance between the input

data and the SOM; bigger matrices generally exhibit

lower errors. When the change in the error is minimal

(known as the elbow criterion), the process can be

considered complete. A criterion referred to as the

‘‘Sammon Map’’ is used to see that each node of the

SOM has more in common with its neighboring nodes

than with nonneighboring nodes. If not, the SOM al-

gorithm was rerun with adjusted parameters. A 3 3 4

matrix was selected for the SOM size, as it captured

unique profiles in the sodar–RASS dataset without the

profiles being too general as with a smaller matrix or

containing many similar profiles as with a larger ma-

trix. The SOM algorithm was also used to construct an

SOM from a composite wind speed and potential

temperature profile anomalies with the aim of in-

vestigating the relationships between them.

The sodar–RASS excludes data that do not satisfy the

instrument’s signal-to-noise ratio thresholds. We in-

vestigated SOM sensitivity to these missing data by

constructing an SOM from complete profiles and then

gradually removing data level by level from top of the

profile to the bottom. The reason we have chosen to

remove data in this fashion is that sodar–RASS datasets

usually have the highest percentage of missing data in

the upper range gates because of sound reflection at-

tenuation. Each time data from a level were removed,

we compared the new dataset with the original SOM to

see if and how the match of the input data to the SOM

nodes had changed (i.e., investigating change in the best

matching units). We conclude that the SOM is sensitive

to missing data, but for the period and levels (below

350m) in which we are interested the sensitivity is not

significant. The results of the test show that there will be

at least a 70% match in the SOM nodes despite the

missing data.

3. Results and discussion

a. Meteorological setting

The midlatitude location of the South Island exposes

it to eastward-propagating cyclones and anticyclones,

which influence the ABL structure in the mountains.

Cold fronts are preceded by intense northwesterly

winds, and the passage of the fronts manifest as south-

erly shifts in wind direction followed by ridging that

generally leads to stagnant wind conditions in the moun-

tains. Local thermal circulations can develop when pres-

sure gradients are weak, and with radiative heating and

cooling of the valley surface, up- and downvalley winds are

typically the observed flows (Sturman 1983, 1987).

Ridgetop weather station data (Fig. 2) indicate that

during September the dominant wind direction was

TABLE 1. Relevant technical details of the instrumentation used.

Instrument Description Measured variable Range (accuracy) Sampling rate

Vaisala, Inc., weather

transmitter WXT510

Ridgetop weather

station

Air temperature,

relative humidity, and

barometric pressure

From 2528 to 1608C (60.38C),
0%–100% (63%), and

600–1100 hPa (60.5 hPa)

15 s, then averaged

over 10min

R. M. Young Co. 05103

alpine wind sensor

Ridgetop weather

station

Wind speed and

wind direction

0–100m s21 (60.3m s21)

and 08–3608 (638)
3 s, then averaged

over 10min

Scintec AG RASS Basin floor radio acoustic

sounding system (radio

frequency 1290MHz)

Virtual temperature From 2358 to 1508C (60.28C) ;10 s, then aver-

aged over 10min

Scintec Flat Array

Sodar (SFAS)

Basin floor sound

detection and ranging

velocity profiler

(audible frequency

range 2525–4850Hz)

u, y, and w from

10 to 250m AGL at

5-m vertical resolution

From 265 to 165m s21

(60.1–0.3m s21 for u, y)

and 610m s21 (60.03–

0.1m s21 for w)

;10 s for complete

nine-beam cycle,

then averaged

over 10min
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from the northwest (Fig. 2a) with wind speeds often

above 10m s21. The shift of wind direction from the

dominant northwest to the intermittent southeast is

clearly depicted in Fig. 2a; it is also associated with

generally weaker winds than from the northwest, and in

the case of high pressure ridging large oscillations in the

diurnal air temperature (Fig. 2b around 15 September)

are indicative of cloudless skies. The sampling period

also had a cold outbreak associated with a southerly flow

that brought air temperatures down to below freezing

levels (268C) on 5 September.

b. Vertical temperature structure

We constructed a 3 3 4 SOM matrix for potential

temperature (PT) anomalies alongside the hourly

frequency distribution and the number of times each

10-min profile transitioned within or between nodes

(Fig. 3). Each PT profile (blue lines in Fig. 3a) is clustered

into a representative SOM node (black lines).

The SOM profiles revealed that for the whole period

the boundary layer is dominated by stable to neutral

atmospheric conditions, as none of the PT nodes fall

within the unstable category. The unclustered data (blue

lines in Fig. 3a) show periods of superadiabatic con-

ditions close to the surface; however, as these were

uncommon they were not recognized by the SOM as a

prominent feature. The stability of the lower boundary

layer as revealed by the SOM is questionable, as it is

known that the RASS tends to overestimate positive

lapse rates in the first 100m AGL because of cross-talk

interference between the transmitter and the receiver

(Petenko 1999; Argentini et al. 2008). Bias in the near-

surface temperature profile could result from mea-

surement errors in vertical velocity by the sodar as

well, as this influences the RASS-derived tempera-

ture. To our knowledge, a suitable correction algo-

rithm is not yet available. The shallow stable layer

(50–135m) could also include instances that reflect the

true atmospheric stability and result from the anom-

alously wet and cold conditions for this month. A 13-yr

climatological analysis (not shown here) from a long-

term weather station on the basin floor suggests that

soil moisture for September 2013 was anomalously

high and mean monthly air temperature (10m AGL)

was the third coldest out of the 13-yr period. An in-

dependent assessment of the near-surface lapse rate

approximated by the difference between the lowest

useable range gate of the RASS (135m AGL) and a

nearby surface weather station (5m AGL and 50m

away from the sodar–RASS) indicated that with this

bulk approximation stable stratification was achieved

for most cases (85% of the entire sampling period),

while 15% (all fell within daytime periods) revealed

unstable cases. Since the results from 50 to 135mAGL

do not alter the conclusions of this research, the data

were excluded from the analysis. Hereinafter, all

mention of the boundary layer stability is for the atmo-

spheric thickness from 135 to 500m AGL.

There is no physical significance associated with the

order of the SOM nodes, although they might appear to

have been sorted in order of decreasing atmospheric

stability from nodes 1 to 12. This ordering is a feature of

FIG. 2. Meteorological parameters measured by the ridgetop weather station for the entire

month of September 2013: (a) wind speed (blue) and wind direction (green) and (b) atmospheric

pressure (blue) and air temperature (green).
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the SOM algorithm. Aligned with each PT node is a

frequency of occurrence plot (Fig. 3b) that indicates the

time of the day at which each of the PT nodes occurs. For

example, node 1, which has a relatively strong stable

profile, occurs mostly during the evening and morning

periods. Node 12 is an example of a well-mixed atmo-

spheric layer. The frequency of occurrence of node 12

shows that this particular profile could occur at any time

of the day and suggests that the dominant mechanism

causing the well-mixed layer is either one or both

FIG. 3. (a) Potential temperature SOMnodes from the sodar–RASS data (node numbers in red at the top-right corners). The horizontal

axis represents departure from the vertical mean. The black lines represent the SOMprofile; brown lines (matching under the black lines)

are the mean of the observations (blue lines) that belong to the node. (b) The frequency of occurrence as a function of the time of the day

of each of the nodes in (a). The numbers on top of each subplot represent the number of counts for the node and the percent of occurrence

of the node. (c) The number of transitions between the nodes.
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turbulent kinetic energy generation processes (shear or

buoyancy).

The internodal transition matrix (Fig. 3c) illustrates

the transition frequencies and persistence of each sta-

bility type. To aid interpretation, the intensity of the

background node color (gray hue) is directly propor-

tional to the frequency. The diagonal of this matrix

represents the number of transitions that occurred

from each node to itself. Most of the transitions occur

in the less stable regimes (nodes 8–12). This finding

aligns with the meteorological conditions throughout

the sampling period, which were relatively high wind

speeds with brief stagnant periods (see discussion in

section 3a). Node 1 represents a relatively strong stable

profile. As it is an uncommon feature in this dataset

there were few transitions from or to it (excluding its

self-transitions). Most of the transitions occur be-

tween a weakly stable boundary layer and a well-mixed

boundary layer.

c. Nighttime SBL dynamics

1) SINGLE-VARIABLE APPROACH TO SOM

In this section, the impact of the wind speed profile

and ridgetop wind speed on mountain ABL stability is

the prime focus. Figure 4 shows an SOM of nighttime

PT profiles and the corresponding mean wind speed

profiles derived from the unclustered data. The PT

profile nodes in Fig. 4a all vary from a very stable at-

mosphere (node 1) to a neutral atmosphere (node 12),

and this node intervariability is closely related to the

variance in wind speed profiles. The two extreme nodes

(nodes 1 and 12) provide a useful example. Node 1 is a

relatively strong stability profile, and the wind speeds

from the surface up to 200m AGL are minimal with a

linearly increasing wind speed profile above 200m

AGL. Node 12 is a well-mixed profile and it corre-

sponds to strong mean wind speeds (;10m s21). An-

other example is the progression from nodes 1 to 2 to 3

representing a decrease in stability. This destabilizing

of the lower section of the ABL results from the

downward transfer of momentum because of an in-

crease in wind speed aloft.

The sensitivity of the mountain boundary layer to

ridgetop weather conditions can be highlighted by ex-

amining the time series evolution of ridgetopwind speed

and direction and node transitions. Figure 4c shows the

response of mountain boundary layer stability during

the transition period between the two weather systems

on 26–27 September 2013 and is an example of an SBL

being established. During this period wind speeds de-

celerated rapidly after the end of a cold southerly out-

break, which brought snow and freezing temperatures to

the basin floor. A rapid advance of a high pressure ridge

followed resulting in settled weather. As ridgetop wind

speed decelerated from around 0230 to 0400 local time

(LT) (decelerating at a rate of 2.6m s21 h21) the PT

profile within the basin responded by cooling and sta-

bilizing (moving between nodes 4 and 1). During this

period, near-surface wind speeds measured by the sodar

at 40m AGL (not shown here) were less than 2m s21,

which suggests that the response of the PT profile to

ridgetop wind speed deceleration is a decoupling of the

near-surface layer from disturbances aloft. The second

example (Fig. 4d) did not involve a transition to an SBL,

but rather the movement of a cold air mass or front

(slowly increasing in depth to envelope the ridgetop

station) from the east-southeast direction into the

valley-basin system. This transition occurred between

0200 and 0300 LT (see shift in wind direction in Fig. 4d)

with an increase in wind speed from 1 to 4m s21, fol-

lowed by relatively constant wind speed throughout the

rest of the night. The SOM nodes, in response to this

airmass incursion into the basin, oscillated within

weakly stable nodes (8–12). This night highlights the fact

that although ridgetop wind speeds are important to

atmospheric stability in mountain areas, shallow airmass

exchanges (below ridgeline heights) occurring on the

valley depth scale could play a role in modifying these

relationships.

2) COMPOSITE-VARIABLE APPROACH TO SOM

To further explore the potential of the SOM tech-

nique, we have reorganized both the wind speed and PT

variables for the nighttime period into one composite

variable. The purpose here is to allow for the re-

construction of the SOM using two variables that are

dynamically interlinked through the effect of wind shear

on atmospheric stability. The fundamental difference

between this composite SOM approach and the single-

variable approach used in Fig. 4 is that SOM will treat

both the wind speed and PT parameter as one variable

array for every time step of sampling. Previously, only

one variable was used for the SOM and the other was a

derived quantity from the statistics of the unclustered

dataset (an example is Figs. 4a,b). The main rationale

behind this approach is to support the conclusions made

in the previous section using the one variable SOM ap-

proach and demonstrate the success of SOM in

performing a composite analysis. This approach could

lead to other composite parameter SOManalyses, which

is beneficial as the study of atmospheric thermody-

namics is often about the correlation of two or more

different variables. Figure 5 shows the SOM results of a

3 3 4 matrix for the composite nighttime variable (PT

and wind speed anomalies). Note that the node numbers
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(red numerals in Fig. 5) do not refer to the SOMs in the

single-variable SOM analysis (Figs. 3a and 4a). The

anomalies represent the deviation from the mean of

the entire profile. For example, occurrence of a positive

surface anomaly of PT and a negative upper-level

anomaly indicates a destabilizing atmospheric layer,

as the vertical profile of PT is tending toward a neutral

profile.

One good example from Fig. 5 is the progressive de-

stabilization that occurs between nodes 1, 2, and 3 where

the wind shear is increasing from nodes 1 to 3 (upper-

level winds have positive anomalies, while lower-level

winds have negative anomalies) and the PT profile is

responding to this change by producing a tendency

toward a neutral profile (node 3) from a relatively stable

profile (node 1) because of the increase of mechanical

mixing. The increasing wind shear, moving from left

to right for all the nodes, seems to be a persistent

dynamic feature of the atmospheric boundary layer of

this location at this time of the year. Figure 5 reiterates

and strengthens the findings of Figs. 4a and 4b. The

SOM technique is successful as an objective tool to

study atmospheric stability regimes as a function of

wind shear.

4. Conclusions

Wind velocity and air temperature profiles were

measured with a sodar–RASS within an alpine valley of

the New Zealand Southern Alps. SOM was used sum-

marize relationships in the raw time series that would be

challenging to elicit otherwise. The results of SOM are

FIG. 4. (a) Potential temperature 3 3 4 SOM nodes from the sodar–RASS data but only for the nighttime period (black lines are the

SOM-derived profile, red lines are the observed profiles, and the pink lines are the average of the red lines). (b) Corresponding mean (red

lines) and 10-min average (gray lines) wind speed variation with height from the sodar, with the x axis corresponding to absolute values

and not deviations from the mean as in (a). (c),(d) Time series of nighttime ridgetop wind speed (blue line), wind direction (green line),

and SOM node number (red dots).
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FIG. 5. SOMnodes, 33 4, for a composite potential temperature–wind speed anomaly variable. Potential temperature is below the zero

y-axis line, and wind speed is above the zero y-axis line. The zero y-axis line represent 500m AGL for the PT profile (bottom half of each

node), and the zero y-axis line also represents the first gate level above the ground for thewind speed profile (top half of each node). Blue is

the SOM-derived profile, thick red lines are themean profiles of the nonclustered data, and thin red line is the mean6 1 std dev. Note that

node numbers have no connection to earlier SOMs in Figs. 3a and 4a.
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realistic because they reflect the physical processes

within the valley boundary layer and its response to

wind shear. The results reveal the capabilities of the

SOM method in analyzing large datasets of atmo-

spheric boundary layer measurements and elucidating

the connectivity of ridgetop and valley boundary layers.

The results from two cases investigating the relation-

ship between ridgetop weather conditions and the re-

sponse of the valley boundary layer reveal that care

needs to be exercised in this complex environment, as

the connectivity between ridgetop weather distur-

bances and valley atmospheric stability could bemasked

by shallow airmass exchanges occurring on the valley

depth scale. Also, the approach of using a composite

variable (like in wind speed and potential temperature)

for SOMmay provide greater detail about the coupling

of dynamic and atmospheric stability. SOM could be

especially useful for analyzing longer sampling periods

that capture extended mountainous boundary layer

climates.
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