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Resources, Christchurch, New Zealand 

 

Abstract: Live monitoring data and simple dynamic reduced-order models of the 

Christchurch Women’s Hospital (CWH) help explain the performance of the base isolation 

(BI) system of the hospital during the series of Canterbury earthquakes in 2011-2012. A 

Park-Wen-Ang hysteresis model is employed to simulate the performance of the BI 

system and results are compared to measured data recorded above the isolation layer 

and on the 6th story. Simplified single, two and three degree of freedom models (SDOF, 

2DOF and 3DOF) show that the CWH structure did not behave as an isolated but as a 

fixed-base structure. Comparisons of accelerations and deflections between simulated 

and monitored data show a good match for isolation stiffness values of approximately two 

times of the value documented in the design specification and test protocol. Furthermore, 

an analysis of purely measured data revealed very little to no relative motion across the 

isolators for large events of moment magnitude scale (Mw) 5.8 and 6.0 that occurred within 

3 hours of each other on December 23, 2011. One of the major findings is that the BI 

system during the seismic events on December 23, 2011 did not yield and that the 

superstructure performed as a fixed-base building, indicating a need to reevaluate the 

analysis, design and implementation of these structures.  

Keywords: base isolators,  base-isolation,  Canterbury earthquakes,  shear-wall 

model,  Park-Wen-Ang model,  real-life data,  structural monitoring. 

Introduction 

Christchurch, New Zealand was struck by a series of major earthquakes and aftershocks 

beginning September 2010 [Nicholls 2012], including the moment magnitude scale 6.3 



 

(Mw6.3) event February 22nd, 2011 that caused major damage and resulted in the loss 

of 185 lives [ECRC 2011, EERI 2011]. The Christchurch Women’s Hospital (CWH) is the 

sole base isolated structure in New Zealand’s South Island, and suffered damage beyond 

expectations [McIntosh 2012, stuff 2012]. Observed damage was attributed to the Darfield 

(4 September) and Christchurch (22 February) events. Subsequent events in June and 

December 2011 were not assumed to have contributed significantly more to the damage 

[stuff 2012]. A directly related damage of the structure to the measurements of the 23 

December event(s) cannot be provided as the building was still in service and no formal 

observation report was filed by the building engineers. Understanding the seismic 

performance of the base-isolated CWH structure will provide greater knoweldge of the 

seismic risk in Christchurch and inform the extensive rebuild of the city. 

This project and its analysis of real-life, large ground motion induced data is unique, as 

far as the authors know. Extensive literature exists on theoretical and experimental 

investigations of isolators, retrofited buildings [Guo 2014, Bailey 1988] and base-isolated 

structures on shaking tables (usually scaled or full-scale, but empty) [Lakshmanan 2008, 

Madden 2002]. However, to the best of the authors knowledge, the performance of a fully 

operational building subject to real-life seismic events has not been investigated and 

documented before, which is likely a result of there being relatively few base isolated 

structures, far fewer subject to major ground motions, and thus likely none of those being 

monitored. An older list, compiled by Buckle et al, exists about base-isolated structures 

in the United States of America [Buckle 2000] and worldwide [Buckle 1990] to which the 

CWH performance could be compared to in the future, if some were monitored and then 

subject to a large seismic event. 



 

The closest project to which the CWH performance could be compared to is probably the 

5-story experimental building project led by Hutchinson et al. [UCSD2 2012, Pantoli 2015, 

Chen 2013, Chen 2015]. It is described as including a fully functional elevator, 

prefabricated metal stairs, partition walls, ceilings, synthetic stucco and precast concrete 

cladding exterior façades, as well as mechanical, electrical and plumbing systems and 

medical equipment. It also included two medical floors, a computer server room, living 

space and utilities levels, and was thus, in sum, a very realistic building. However, it 

lacked building services across the isolators, adjacent buildings as well as mold covers, 

relative to the structure investigated in this work. In addition, the isolators protected the 

structural and non-structural elements, in contrast to the results here, so the lack of 

isolation cannot be compared. 

A network of instruments installed at the CWH in September 2011 recorded acceleration 

and displacement data during subsequent seismic activity [Gavin 2012, Gavin 2013]. A 

study of these records [Sridhar 2012, Sridhar 2013] indicated that the base isolated 

structural response was that of a linear, fixed-base structure. This analysis identifies a 

series of structural models using real-life data to assess the validity of this initial result 

compared to the expected, isolated design response. 

Structural models range from highly non-linear finite element models [Crisfield 1991, 

Kiyohiro 2000, Oztorun 1998] to simple, linear single degree of freedom models [Calio 

2003]. Previously, similar analyses were used to assess the failure of the Canterbury 

Television Building [CEL 2012]. This analysis identifies models, from data, that would 

admit both the fixed-base conditions observed or the base-isolated system designed. 

Hence, identification of the model over a limited number of larger (Mw6.0) events and one 



 

or more lower in magnitude events (Mw4.0-4.5) will quantify the dynamic system response 

over a range of seismic inputs. Differences from its anticipated as-designed behaviour 

will provide the quantified input to reconsider how such systems are designed for this 

region in future. 

Methods and Models 

Christchurch Womens Hospital Structure 

CWH is a 10-story, 75 m x 32 m structure (Figure 2) opened in March 2005 [HCG 2005]. 

The CWH building has been designed for an alpine fault rupture of magnitude >Mw8.0 

according to Uniform Building Code 1997 [UBC 1997]. The base isolation system was 

designed adopting a return period of 2000 yrs (R=1.7 (CATII, 50 yrs Design Life)) for the 

maximum credible event and 500 yrs for the maximum probable earthquakes or design 

basis earthquakes. Figure 1 depicts the design spectra for the structure. 

The base-isolator system has been designed to shift the natural, fundamental period of 

the structure to 3 s [Gavin 2010, HCG 2001]. The fundamental period of the equivalent 

fixed-base structure is 1.2 sec. The superstructure is supported on a concrete raft 

foundation slab, supported by 41 lead rubber bearings and 4 sliding pot bearings. Tables 

1 and 2 list the design specifications of a single lead rubber and sliding pot bearing, 

respectively, used in the CWH [HCG 2001]. All lead rubber and sliding bearings have 

identical parameters and have been tested before installation [Oiles 2002]. A perimeter 

concrete frame resists seismic loads aided by lateral load resisting V-bracing over the 

first lower 4 storeys (Figure 2). The CWH building is linked to the adjacent Christchurch 

Hospital in the basement and at the four above-ground floors via corridors with a sliding 

gap and sliding cover plates to provide seismic separation. The detailed design was 



 

obtained from structural drawings and the designers report written for the owner and 

council during the consenting process. 

Acceleration and Displacement Measurements 

Sensors comprised 4 tri-axial and 3 uni-axial accelerometers, as well as 3 displacement 

sensors, installed September 2011 [Gavin 2012], where specific sensor locations are 

detailed in Table 3 and Figure 2. Sensors were located across the isolation layer 

(above/below BI) and the 6th story. It is thus possible to integrate and correct acceleration 

data across the isolation layer to get relative displacement (and velocity) of the slab and 

foundation, as well as to measure this displacement directly. Sensors in two corners 

ensure that both translatory and rotational (torsional) responses of the superstructure can 

be measured. 

Recorded Ground Motions Used 

Over 100 seismic events were recorded since the installation of sensors in 2011. This 

analysis is limited to the Mw5.8 and Mw6.0 earthquakes recorded on December 23rd, 2011 

[Gavin 2013], and one arbitrarily selected Mw4.0 event [GNS 2012] also obtained on 

December 23rd, 2011. Accelerations in the NE and SW corners were effectively identical 

in both directions [Sridhar 2012], indicating a single direction response and the absence 

of torsion. 

Models 

A Park-Wen-Ang (PWA) nonlinear, hysteretic model [Park 1986, Wen 1976] is used to 

model the BI system based on prior work by Gavin et al. [Gavin 2010], and uses a 

simplified superstructure model in 2 dimensions (𝑥, 𝑦). Presented is the behaviour of the 

structure in the 𝑦 direction, decoupled from the perpendicular 𝑥 direction (see Figure 2). 



 

This consideration is justified by the significantly stiffer (× 2.5) nature of the building in 𝑥 

direction (due to the aspect ratio) than in its 𝑦 direction. The mass normalized shear force 

of the isolation system yf  is thus [Gavin 2010]: 
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where the design parameters yC , yD , and  are defined in Table 4 and g  is the gravity 

constant. 𝑦𝑏 in (1) is the variable describing the motion of the building in 𝑦-direction. 

The hysteretic variable yz  is defined [Gavin 2010]:  
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where 0.8=  and 0.2=  [Gavin 2010] are dimensionless values that determine the 

shape of the hysteresis.  

The governing equation of motion for the combined superstructure and isolation system 

is then 
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Equation (3) describes a motion of a rigid block (single degree of freedom (SDOF) 

system) on a BI system, fully ignoring the flexible nature of the superstructure;   is the 

damping ratio. 

The SDOF system assumes that the superstructure mass 
7

total 102.7= m  kg is perfectly 

rigid and sits on top of the BI system with effective stiffness 
8107.3789= bk  N/m. 



 

Equation (3) thus captures the design approach with a flexible isolation layer and rigid 

superstructure. 

A two degree of freedom (2DOF) model considers two flexible parts, namely the isolation 

layer and the superstructure between top and bottom floor. The superstructure is 

considered a linear shear structure and the isolator as modeled in Eqs. (1)+(2). Figure 3a 

shows a schematic diagram of the 2DOF model. 

Finally, a three degree of freedom (3DOF) model (see Figure 3b) is evolved from the 

2DOF model and considers a linear superstructure of 2 degrees of freedom and one DOF 

representing the BI system. The 2DOF superstructure model reflects the two distinctively 

different natures of effective stiffnesses in the structure. The first four lower floors have a 

V-brace support while the upper three floors are without the V-brace supports, which 

justifies the assumption that the lower part of the building is stiffer than the upper part (in 

the considered direction). 

Parameter Identification 

The isolator properties are taken from previous work by Gavin et al. [Gavin 2010]. The 

total mass is divided with approximately 10% assigned to a degree of freedom just above 

the isolation layer and the remaining 90% to the one or two DOFs assigned to the 

superstructure. Thus, for the 2DOF and 3DOF systems the total mass is split by 

estimating the ratios to 𝑚aboveBI = 0.16 𝑚tot and 𝑚aboveBI = 0.1 𝑚tot,  𝑚l = 0.6 𝑚tot, 𝑚u =

0.3 𝑚tot, respectively, according to the first natural frequencies of the real structure. The 

structural damping for the superstructure uses a Caughey damping matrix [Paultre 2010] 

with 5-15% damping (for further details see Table 5). Numerical simulations of the multi-

degree of freedom systems is performed using a Runge-Kutta method. 



 

Stiffness values for the superstructure are identified from the SDOF model given an 

isolation layer stiffness (𝑘𝑏). The process assumes no additional stiffness due to the non-

structural walls and panels and that column stiffnesses are identical for a given DOF to 

find the effective structural stiffness (𝑘𝑠). Thus, estimating Young’s modulus of concrete 

as approximately 26 GPa and multiplying the stiffness (𝑘𝑠) by the number of 42 columns 

of the CWH, the inter-story stiffness is approximated to be of the order of magnitude 109 

N/mm for the 2DOF case, which is modified in the 3DOF model. Thus, identification 

involves a simple gradient descent method based on repeated re-simulation to minimise 

sum squared error between measured and simulated responses by modulating the 

value(s) of 𝑘𝑠 for the superstructure DOFs. 

Analyses 

The purpose of the SDOF analysis is to match standard assumptions that an isolated 

structure has little or no flexible superstructure motion. The Mw4.0 event provides the 

linear properties of the isolator. The Mw5.8 and Mw6.0 events are used in SDOF analysis 

to confirm the linearity and show if the assumptions regarding the superstructure motion 

held at larger events, which would indicate satisfactory isolation performance. 

The 2DOF and 3DOF cases are identified to account for any superstructure motions that 

the SDOF case misses. These cases will more precisely quantify how well (or poorly) that 

assumption is held if the resulting stiffnesses are compared to estimated or calculated 

stiffnesses from the design. A far better match to all measured displacements and 

accelerations is achieved. 

Results and Discussion 

SDOF Model Analysis 



 

The stiffness and damping parameters of the SDOF model from Table 2 were modified 

to best match the measured response for the Mw5.8 event as the original parameters 

were not able to match the data, as seen in Figure 4. While the results in Figure 4a clearly 

show a softer, lesser damped behaviour with original design data (with 50 mm 

displacement across the isolators), the recorded data in Figure 4b only show peak 

displacements of 14.3 mm and a different damping mechanism. A simulation with 

modified parameters for the BI system show a linear behaviour with an equivalent 

stiffness of 𝑘𝑏 =  2.96 ∙ 109 N/m compared to the original designed specification value of 

𝑘𝑏 =  7.38 ∙ 108  N/m, which is an increase of approximately 300 % or 4 times stiffer 

isolator. 

Hence, for a relatively large magnitude event, the isolation layer is effectively far stiffer 

than predicted by the design specification. In addition, the response is effectively linear 

as very little damping is observed, and results are similar for the Mw6.0 event (not shown). 

The Mw4.0 event (Figure 5) shows far lesser displacements, as expected, and the motion 

across the isolation layer clearly obeys linear dynamic laws. Thus, the isolation layer can 

be treated to behave linearly with equivalent stiffness and damping quantities. 

Figure 6 shows the measured and SDOF modeled accelerations just above the base 

isolators (b), d)) and at the 6th story (a), c)). The left two panels a), b) use the original 

design isolator stiffness, 𝑘𝑏  =  7.38∙108  N/m, and structural mass, 𝑚 =  2.7 ∙ 107  kg, 

and the two right panels c), d) use the modified stiffness value 𝑘𝑏  =  2.96∙109 N/m used 

to match the peak displacement in Figure 4b. The lower, original stiffness matches 

accelerations above the isolator better than the higher stiffness (panels b), d)). However, 

neither value yields a good and acceptable match. The 6th story results are somewhat 



 

better, qualitatively, but the differences are large enough in both cases to indicate further 

flexible behaviour within the superstructure, between the floors just above the isolators 

and the 6th story, and thus justifying further investigations using 2DOF and 3DOF models. 

2DOF Model Analysis 

Figure 7 shows the simulated accelerations of the 2DOF model and corresponding 

measured data at the 6th story (a) and above the base isolator (b). The quality of the 

match is better compared to that of the SDOF model. The model uses the modified 

isolation layer stiffness as identified with the SDOF model (Figure 7 c, d), and identifies a 

value for the structural stiffness, 𝑘𝑠  =  8.63 ∙ 108 N/m, which is 1.17 ×  the originally 

specified isolator stiffness, but still less than the identified isolator stiffness, although they 

are of similar magnitude. 

Hence, the 2DOF model captures a flexibility in the superstructure observed in the data, 

with similar results (not shown) for the Mw6.0 and Mw4.0 events. The 2DOF model 

analysis shows that the equivalent stiffness values of isolation layer and structure were 

effectively similar, rather than one being much lower than the other as might be expected 

by design. However, there are still some discrepancies that might be further mitigated by 

the 3DOF model, particularly towards the end of the record which represents the free 

vibration of the BI system and superstructure. 

3DOF Model Analysis 

Figure 8 shows the results of the 3DOF analysis for both the Mw5.8 event shown for the 

prior cases, as well as for the Mw6.0 event to illustrate the robustness of our findings. The 

results show very good agreement throughout the record (initial as well as free 

responses) for both events and for both, the level above the base isolator and at the 6th 



 

story. Table 6 shows the peak accelerations for each event and the absolute error. Thus, 

the 3DOF model - which includes the distinction of effective stiffnesses between lower 

and upper floors with and without V-braces (Figure 2), respectively - adds further 

dynamics that explains the observed behavior quantitatively. 

The identified values for the lower and upper story stiffnesses in the 3DOF case are 𝑘𝑙  =

 8.12 ∙ 108 N/m, which is 1.1 × the original base isolator stiffness specification and lower 

than the identified value, and 𝑘𝑢  =  2.95 ∙ 108 N/m, which is lower than either isolator 

stiffness value specified or identified from the SDOF case. Both these results are again 

contradictory to what might be expected for a base isolated structure, and thus show that 

the as-implemented isolation system was much stiffer in use than as originally designed. 

A final comparison for the Mw5.8 event is shown in Figure 9, which shows the Fourier 

spectra of the acceleration response for the 6th story and the floor above the base isolator. 

The results of measured data and identified model are very similar up to 1.5 Hz. Above 

1.5 Hz the spectra for the measurement just above the isolation layer are still in good 

agreement. However, the 6th story spectra drops to zero for the model and the match is 

no longer good above 1.5 Hz. This result is expected as the 3DOF model has natural 

vibration modes at 0.72, 1.36 and 3.66 Hz, and thus does not have the ability to offer the 

same frequency content as measured. A better match for a broader bandwith would 

require further degrees of freedom. 

Summary and Limitations 

The overall results show that the isolation layer as designed and as implemented behaved 

very differently. The as designed specifications showed a much lower stiffness and a 

lower yield point than was observed in two relatively large events on December 23, 2011. 



 

As a result, the isolation layer had almost no relative displacement over the records and 

did not isolate the system from the motions. 

These outcomes are evident in the model-based analyses presented. The SDOF model 

identifies the higher stiffness of the isolators directly and the higher yield force implicitly 

via a lack of observed yielding displacement in the measurements. As validation, Figure 

10 shows the input accelerations and resulting relative displacements across the isolator 

for both large events on December 23, 2011. 

The relative motion across the BI system is very small (see e.g. Figures 10d, 11b), 

showing lack of isolation of the superstructure from the ground motion. The strong motion 

input portions show only a few displacements about 3-5 mm, which is very small 

compared to the isolator size and represent less than 1-2% strain accross the isolator. 

The smaller second shock for the Mw5.8 event (right panels in Figure 10) indicates that 

smaller events would have no effective isolation layer motion (as is also confirmed in 

Figure 5 for the Mw4.0 event). 

The 2DOF and 3DOF model analyses clearly show that there was a flexible, essentially 

fixed based response of the superstructure that was not expected by design. The 3DOF 

model clearly captures all relevant dynamics that were measured, while the 2DOF 

approach offers a good fit to data. In both cases, the identified superstructure stiffness 

values were of the same order of magnitude and lower than the identified isolator stiffness 

value. Hence, no isolation would be expected even for magnitude >Mw6.0 events. 

The simple models used in this analysis do not capture all observed dynamics, of course. 

A more comprehensive model would capture more of the data, as noted in Figure 9. 

However, the fundamental dynamics are captured and the peak accelerations predicted 



 

by the 3DOF model in Table 6 are within 7-11%, which is good for such a simple model. 

More detailed modeling would likely reveal greater insight and resolution compared to the 

stiffness and damping values used here, but would not change the fundamental 

conclusions. 

Conclusions 

The main results of this study include: 

 The CWH structure performed as a fixed base structure rather than an isolated 

structure during large magnitude seismic events, despite having been designed with 

methods proven elsewhere. This outcome indicates a greater need for study around 

the design and implementation of base isolated, critical infrastructure to ensure they 

perform to expectations. 

 A parameter set for a 3DOF model was identified, which captures observed 

dominating dynamics. The analysis explains the damage observed in this structure 

that resulted in part from the increased upper story accelerations observed as a result 

of there being no reduction of input acceleration across the base isolation layer. The 

approach used here is simple and general. 

The underlying reasons for the observed performance of the base isolators in the CWH 

remain speculative. However, based on the analysis, the authors rank multiple reasons 

from the most to the least probable as follows: 

1. The CWH building has been designed for an alpine fault rupture of magnitude >Mw8.0. 

The base isolation system was designed adopting a return period of 2000 yrs (R=1.7 

(CATII, 50 yrs Design Life)) for the maximum credible event and 500 yrs for the 

maximum probable earthquakes or design basis earthquakes. However, the PGA of 



 

~0.2g should have led to isolating behaviour as the design curve for the structure 

intended yield of the lead rubber bearing core at 0.03g (3% building weight), [Gavin 

2010]. Unlike other base-isolated structures, the system of base-isolators in the CWH 

is not a combination of rubber bearings with and without lead core, but all 41 bearings 

are identical, consisting of rubber and lead, therefor concluding that the shear force is 

perhaps too high by design, given the intended design performance. 

2. The observed performance could be due to poor/variable bearing design or 

construction. An unproven indication for this is the rather large value of the design 

shear force at total design displacement of 740 kN for a single LRB (see Table 1). 

3. While the CWH building was designed as a stand-alone structure, it was built in to a 

complex of existing fixed-based buildings. It was directly connected to the adjacent 

Christchurch General Hospital (CGH), with moat covers, service ducts and a three-

story air bridge, which was added later on. These additional structural parts, while 

isolated by flexible gaps, could have contributed to changed lower story motion 

behaviour in larger events, particularly as there was observed damage across these 

gaps [McIntosh 2012]. 

Point 1. in particular could have caused a change in apparent stiffness characteristics. In 

addition, it is possible that the base-isolator system as designed behaved differently on 

top of soil with varying properties (soft and stiff, or primarily soft patches). Long period 

accelerations and liquefaction debris observed in the isolation galley suggest that soft 

soils may have contributed to this behavior [EERI 2012]. Inter-building connections 

between CWH and CGH increased the overall stiffness of the BI-system. The authors 

currently do not know how interactions with locally soft/weak soils and with 



 

adjacent/coupled structures affect the performance of seismically isolated structures, and 

how do these interactions scale with shaking intensity. 

Hence, main results indicate a need to reconsider how base isolation is designed for 

structures of this type, at least in Christchurch. 
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Figure 1: Horizontal spectral acceleration for Christchurch Hospital (8 km epicentral distance) 

from September 4 and February 22 events compared with NZS 1170.5 elastic design spectra for 

Christchurch (data from GNS Science, 2012). 

Figure 2: Sketch of CWH and set-up locations of sensors. 

Figure 3: 2DOF (a) and 3DOF (b) model schematics with relative coordinate systems. 

Figure 4 (color online): BI behaviour comparison for seismic event Mw5.8; a) PWA model 

simulation (design 𝑘𝑏 line) from original design parameters in Table 2 and modified (4 𝑘𝑏 line) 

parameters; b) measured hysteresis loop showing the 14.3 mm peak displacement recorded 

via both string potentiometer (shown) and integrated and corrected relative accelerations. 

Figure 5 (color online): BI behaviour comparison for seismic event Mw4.0; a) PWA model 

simulation (design 𝑘𝑏 line) from original parameters in Table 2 and modified (4𝑘𝑏 and 100𝑘𝑏 

lines) parameters; b) measured hysteresis loop recorded via string potentiometer. 

Figure 6: SDOF model versus measured accelerations for Mw5.8 event at NE corner in the 𝑦-

direction. Panels a), b) show the 6th floor (a) and just above the base isolators (b) with the 

original mass and stiffness values (𝑘𝑏  =  7.38∙108 N/m and 𝑚 =  2.6∙107 kg). Panels c), d) 

show the same motions above the isolator (d) and at the 6th story (c), but with the modified 

stiffness value (𝑘𝑏  =  2.96∙109 N/m). 

Figure 7: Measured (solid) and modeled (dashed) accelerations for the 2DOF model at the 6th 

story (a) and above the isolation layer (b). 

Figure 8: Measured and modeled accelerations for the Mw5.8 event (a,b) and Mw6.0 event (c,d) 

for the 3DOF case at the 6th story (a,c) and above the base isolation layer (b,d). 

Figure 9: Fourier spectra of the measured acceleration response and 3DOF model with 



 

identified parameters for the 6th story (a) and just above the isolation layer (b). 

Figure 10: Ground motion acceleration below the isolation layer and measured relative 

displacement across the isolation layer for the Mw6.0 (a,b) and Mw5.8 (c,d) events. 

Figure 11: Measured absolute displacements above and below the BI system for (a) Mw5.8 and 

(b) Mw6.0 events. 

 

 Table 1: Design parameters of one lead rubber bearing 

parameters LRB1 

total design displacement [mm]  265 

total maximum displacement [mm]  420 

compression stiffness [kN/mm]  1,794 

design shear force at total design displacement [kN]  740 

design area of hysteresis loop at total design displacement [kNmm]  366,600 

average (DL+SLL) [kN]  3,495 

average (DL+SLL+EDBE) [kN]  4,466 

average (DL-EDBE) [kN]  2,166 

maximum (DL+LL) [kN]  4,417 

maximum (DL+SLL+EMCE) [kN]  6,570 

minimum (DL-EMCE) [kN]  357 

 
 
Notes: 1) DL - dead load; 2) SLL - serviceability live load; 3) LL - live load; 4) EDBE - total design 

displacement (design basis earthquake); 5) EMCE - total maximum displacement (maximum considered 

earthquake); 6) design shear force is calculated as 𝐹 = 𝑄𝑑 + 𝐾𝑟∆ where 𝑄𝑑 is the isolator characteristic 

strength, 𝐾𝑟 is the stiffness and ∆ is the DBE displacement; 7) area of hysteresis loop is calculated as 

4𝑄𝑑(∆  − ∆𝑦) where ∆𝑦 is the yield displacement of the isolator 

 

 Table 2: Design parameters of one sliding bearing as used in the CWH 

parameters pot1 

average (DL+SLL) [kN]  4,986 

maximum (DL+LL) [kN]  5,768 

maximum (DL+SLL+E MCE ) [kN]  11,270 

maximum motion [mm]   420 

maximum rotation [rad]  0.006 

maximum dynamic friction coefficient (dry)  0.12 

 

 

 

 Table 3: List of sensors in the CWH 

location in the 
building 

sensor location measurement sensors direction(s) 



 

NE corner 

 6th floor  acceleration tri-axial 𝑥, 𝑦, 𝑧 

 lower ground (above BI)  acceleration uni-axial 𝑦 

 foundation (below BI)  acceleration tri-axial 𝑥, 𝑦, 𝑧 

 base isolators  displacement string potentiometer 𝑦 

SW corner  

 6th floor  acceleration tri-axial 𝑥, 𝑦, 𝑧 

 lower ground (above BI)  acceleration two uni-axial 𝑥, 𝑦 

 foundation (below BI)  acceleration tri-axial 𝑥, 𝑦, 𝑧 

 base isolators  displacement two string potentiometers 𝑥, 𝑦 

 

 

 Table 4: Design parameters of base isolation system 

parameter design value  definition  

yD   10 mm  isolator yield displacement  

yC   0.0286  yield strength coefficient  

   0.1574  post-yield stiffness ratio  

 

Table 5: Summary of equivalent parameters of models 

structural 
parameters 

SDOF 
(nonlinear) 

SDOF (linear) 2DOF 3DOF 

stiffness super 

structure [N/m] 

-- -- 𝑘𝑠  =  8.63 ∙ 108  𝑘𝑙  =  8.12 ∙ 108 

𝑘𝑢  =  2.95 ∙ 108 

stiffness base-

isolator [N/m] 

PWA 

parameters 

(Table 4) 

𝑘𝑏 =  7.38 ∙ 108 

(design) 

𝑘𝑏 =  2.96 ∙ 109 

(adjusted) 

𝑘𝑏 =  2.96 ∙ 109 𝑘𝑏 =  2.96 ∙ 109 

mass distribution 

of superstructure 

[kg] 

scaled with 

respect to 

mass 

𝑚𝑡𝑜𝑡 = 2.7 ∙ 107 𝑚𝑎𝑏𝑜𝑣𝑒𝐵𝐼 = 0.16 𝑚𝑡𝑜𝑡 𝑚𝑎𝑏𝑜𝑣𝑒𝐵𝐼 =

0.1 𝑚𝑡𝑜𝑡, 

𝑚𝑙 = 0.6 𝑚𝑡𝑜𝑡, 

𝑚𝑢 = 0.3 𝑚𝑡𝑜𝑡  

damping ratios per 

mode 

20%  5% (both modes) 10% (1st mode), 

15% (2nd and 3rd 

mode) 

 

 



 

 Table 6: Peak acceleration comparison of modeled and measured data for 3DOF case. 

seismic event sensor location 
measured peak 

acceleration [mm/s
2

] 

modeled peak 

acceleration [mm/s
2

] 
difference [%] 

Mw6.0  

 above base isolator  1201 1097 8.7 

 6th floor  1742 1547 11.0 

Mw5.8  

 above base isolator  771 827 7.3 

 6th floor  1536 1644 7.0 

 


