
GROVER'S QUANTUM ALGORITHM
APPLIED TO GLOBAL OPTIMISATION

W. P. Baritompa, D. W. Bulger & G. R. Wood

Department of Mathematics and Statistics
University of Canterbury

Private Bag 4800
Christchurch, New Zealand

Report Number: UCDMS2004/22 NOV2004

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UC Research Repository

https://core.ac.uk/display/35473431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GROVER'S QUANTUM ALGORITHM APPLIED TO GLOBAL
OPTIMISATION*

W. P. BARITOMPAt, D. W. BULGER+, AND G. R. WOOD

Abstract. Grover's quantum computational search procedure can provide the basis for imple
menting adaptive global optimisation algorithms. A brief overview of the procedure is given and a
framework called Grover Adaptive Search is set up. A method of Diirr and H!>lyer and one introduced
by the authors fit into this framework and are compared.

Key words. discrete optimisation, global optimisation, Grover iterations, Markov chains, quan
tum computers, random search

AMS subject classifications. 90C30, 68Q99, 68Q25

1. Introduction. This paper aims to provide the global optimisation commu
nity with some background knowledge of quantum computation, and to explore the
importance of this topic for the future of global optimisation.

Quantum computing [7] holds great potential to increase the efficiency of stochas
tic global optimisation methods. Current estimates are that quantum computers are
likely to be in commercial production within two or three decades. These devices
will be in many respects similar to the computers of today, but will utilise circuitry
capable of quantum coherence [7], enabling data to be manipulated in entirely new
ways.

Grover introduced in [9] a quantum algorithm (that is, an algorithm to be ex
ecuted on a quantum computer) for locating a "marked" item in a database. This
was extended in [2] to a quantum algorithm for locating one of an unknown number
of marked items. The latter method was incorporated into a minimisation algorithm
by Diirr and H¢yer in [8] (unpublished, but available electronically-see the reference
list).

Diirr and H¢yer's algorithm can be viewed as an example of Grover adaptive
search (GAS), an algorithmic framework we introduced in [4]. GAS in turn is a
quantum-computational implementation of hesitant adaptive search (6], a parame
terised pseudoalgorithm whose performance is well understood. Here we analyse Diirr
and H¢yer's method, present another version of GAS, and explore the relative merits
of the two methods via numerical simulation.

Outline. Section 2 presents the general optimisation problem and introduces
some notation and terminology. Section 3 gives a brief overview of quantum compu
tation and Grover's algorithm. Section 4 describes the GAS framework. Section 5
discusses the considerations involved in choosing the "rotation count sequence", the
parameter distinguishing one GAS algorithm from a110ther. Section 6 presents Diirr
and H¢yer's algorithm, extending and correcting the theoretical analysis in [8]. In
Section 7, we present a refined version of GAS, and in Section 8 this version is com
pared to that of Diirr and H¢yer by numerical simulation. Section 9 concludes the

*The authors would like to thank the Marsden Fund of the Royal Society of New Zealand for
support of this research.

t Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
(b. baritompa©math. canterbury. ac .nz).

+Department of Statistics, Macquarie University, NSvV 2109, Australia (dbulger©efs. mq. edu. au).
§Department of Statistics, Macquarie University, NSW 2109, Australia (gwood©efs.mq.edu.au).

2 BARITOMPA, BULGER AND WOOD

paper.

2. Optimisation problem. We consider the following finite global optimisation
problem:

minimise f (x)

subject to x E S

where f is a real-valued function on a finite set S.
Throughout this paper we associate with the objective function f the following

definitions. Let N = /S/, the cardinality of the finite set S. We will usually assume N
to be a power of two. Let £1 < · · · < f!K be the distinct objective function values in
the range off. Notice that there may be more than J{ points in S. Given the uniform
probability measure µ on S, we let 7r be the range measure given by the stochastic
vector (7ri, ... , 7rK) induced by f. That is, 7rj = lf-1 (£j)l/N for j = 1, 2, ... , K. Let
Pj denote ~{=1 7l"i, the probability that a random point has value of ej or less. In
particular, PK= 1. Corresponding to each function value is an improving region, that
part of the domain having a strictly better value, and we call its measure under µ the
improving fraction p. (Usually the specified function value will be the best yet seen,
and thus the improving region will be the set of points with objective function values
better than any yet seen.)

3. Quantum computing. This paper concerns optimisation algorithms that
require the use of a quantum computer. The characteristic feature of a quantum
computer is that, in place of conventional computer bits, quantum bits or qubits are
used. A qubit can be in a simultaneous superposition of "off" and "on" and thus allows
quantum parallelism, where a single quantum circuit can simultaneously perform a
calculation on a superposed input, corresponding to very many conventional inputs.

The Grover mechanism. The quantum procedure germane to our purposes is
Grover Search [9]. This is one of the major advances to date in the fledgling field
of quantum computation. More details are given in [4], but we reiterate the salient
features here and give an intuitive discussion.

Consider the following general search problem. Let n be a positive integer, and
let S = {O, l}n, so that the domain size N = 2n. Leth: S--> {O, l}. We wish to find
a point u ES such that h(u) = 1. We further assume that his a black-box, that is,
that knowledge of h can only be gained by sampling (evaluation), but no structural
information is available.

With conventional computing, the Boolean function h could be implemented as a
subroutine, i.e., a conventional logic circuit constructed to take an input string of bits,
representing a point of S, and output the associated bit value of h. The subroutine
could then be applied to all points of S, in succession, to find a required point. Such
a conventional program would require on average N /2 evaluations to find a marked
point.

In quantum computing, the circuit implementing h (using gates that work with
qubits) inputs and outputs superpositions. Thus it "sees" many possible answers at
once. On a quantum computer, observing the output will collapse it into a conven
tional bit string, according to a probability distribution determined by the superpo
sition; thus quantum computing has a stochastic side. Rather than loop through the
N points in S, a quantum computer can operate on superposed states in such a way
that the probablity distribution governing the collapse can be changed. Grover in [9]

APPLYING GROVER ADAPTIVE SEARCH 3

showed if exactly one point is marked, then only ~IN such operations are required
to find the marked point.

Denote the set of marked points by JvI = { u E SI h(u) = 1} and denote the number
of these marked target points by t. We may or may not be aware of the value of t.
Let p be the proportion of marked points, t/N.

Grover introduced the Grover Rotation Operator, which incorporates the oracle
for h and provides a means of implementing a certain phase-space rotation of the
states of a quantum system encoding points in the domain S. Repeated applications
of this rotation can be used to move from the equal amplitude state, which is simple to
prepare within a quantum computer, toward the states encoding the unknown marked
points. For details see [4, 2, 9].

A Grover search of r rotations applies the above rotation operator r times, start
ing from the equal amplitude superposition of states, and then observes (and hence
collapses to a point) the output state. The mathematical details in [2] show that exe
cuting such a search of r rotations generates domain points according to the following
probability distribution"(on S:

(3.1)

where

(3.2)

gr(P)

t '
x EM,

x E S\M,

9r(P) = sin2 [(2r + 1) arcsin v'PJ.

Note that, in the special case of r = 0, Grover search only observes the prepared equal
amplitude superposition of states and so reduces to choosing a point uniformly from
the domain.

Most of the work in implementing the Grover Rotation Operator is in the oracle
query, so the cost of a Grover search of r rotations is taken as the cost of r oracle
queries. The output is a point in S, and as one would usually want to know if it is in
JvI or not, a further oracle query (acting on the point) would give the function value
under h.

Grover Search is sometimes portrayed as a method for the database table lookup
problem. This is only one elementary application, however. Other interesting appli
cations concern "marking functions" h which are more than simple tests of indexed
data. Examples relating to data encryption and the satisfiability problem are given
in [2, 9].

From searching to optimising. Grover Search solves a special global opti
misation problem: it finds a global maximum of h. For the more general problem
introduced in Section 2, our intention is to use Grover search repeatedly within a
global optimisation method of the adaptive search variety. Adaptive search methods
produce, or attempt to produce, an improving sequence of samples, each uniformly
distributed in the improving region of the previous sample (see [16, 15, 5]).

Given an objective function f : S -) R and a point X E S with f(X) = Y, we
use Grover's algorithm to seek a point in the improving region {w ES : f(w) < Y}.
As described above, Grover's algorithm requires an oracle, a quantum circuit able to
classify a point w E S as inside or outside the target set (see [10]). This will be the
oracle for the Boolean function h(w) = (f(w) < Y).

4 BARITOMPA, BULGER AND WOOD

We denote by a "boxed" name the oracle for a given function. Symbolically [EJ
is found as shown:

[SJ _____, 0 or 1

/
y

The additional comparison logic circuitry [SJ to construct [EJ is minimal, and we will

take the cost of [EJ and [ZJ to be the same.

As far as Grover's algorithm is concerned, [[!is simply a black box quantum
circuit, inputting a point win S (or a superposition of such points), and outputting

{
1,
0,

f(w) < y,
f(w) ?_ y

(or the appropriate superposition of such bits).

Grover search of r rotations, using the compound oracle depicted above, will
require r uses of the objective function sub-oracle [ZJ, and will output a random
domain point. An additional oracle query is required to determine whether the output
is an improvement or not. Therefore, for practical purposes, we can consider the cost of
running Grover's algorithm to be r + 1 objective function evaluations (plus additional
costs, such as the cost of the comparisons, which we will ignore).

As a point of departure for the mathematics to follow, we can condense this
subsection into the following axiom, and henceforth dispense with any direct consid
eration of quantum engineering. (Note that the content of this axiom is taken for
granted in [2] and many other recent publications on quantum searching.)

AXIOM 1. Given f : S -+ JR and Y E JR, there is a search procedure on a quantum
computer, which we shall call a "Grover search of r rotations on f with threshold Y",
outputting a random point x E S distributed uniformly in

{w ES
{w ES

f(w) < Y}
f(w) ?_ Y}

with probability 9r(P), or uniformly in
otherwise,

where p = J{w ES : f(w) < Y}J/JSJ. The procedure also outputs y = f(x). The
cost of the procedure is r + 1 objective function evaluations.

4. Grover Adaptive Search. This section presents the Grover adaptive search
(GAS) algorithm introduced in [4]. The algorithm requires as a parameter a sequence
(rn : n = 1, 2, ...) of rotation counts. Initially, the algorithm chooses a sample uni
formly from the domain and evaluates the objective function at that point. At each
subsequent iteration, the algorithm samples the objective function at a point deter
mined by a Grover search. The Grover search uses the best function value yet seen
as a threshold. Here is the algorithm in pseudocode form:

APPLYING GROVER ADAPTIVE SEARCH

Grover Adaptive Search (GAS)
1. Generate X1 uniformly in S, and set Y1 = f(X1).
2. For n = 1, 2, ... until a termination condition is met, do:

(a) Perform a Grover search of rn rotations on f with threshold Yn,
and denote the outputs by x and y.

(b) If y < Yn, set Xn+l = x and Yn+l = y,
otherwise, set Xn+l = Xn and Yn+l = Yn.

5

GAS fits into the adaptive search framework developed in (5, 6, 15, 16, 17] which
has proved useful for theoretical studies of convergence of stochastic global optimisa
tion methods. All adaptive algorithms assume "improving" points can be found (at
some cost). If Grover's algorithm were only applicable to database lookup, one might
get the impression that GAS would require all function values to be first computed
and tabled, before they could then be marked. However, Grover's algorithm can find
points in an unknown target set, specified by an oracle. GAS exploits this ability
by constructing, at each iteration, an oracle targeting the current improving region.
In this way, it builds a sequence of domain points, each uniformly distributed in the
improving region of the previous point. Such a sequence is known to converge to the
global optimum very quickly; for instance, a unique optimum in a domain of size N
will be found after 1 + ln N such improvements, in expectation (see (17]).

Unfortunately this does not mean that GAS can find the global optimum for a
cost in proportion to ln N. The reason is that as the improving fraction p decreases,
larger rotation counts become necessary to make improvement probable; thus the cost
of GAS varies super-linearly in the number of improvements required. Note also that
not every iteration finds a point in the improving region. The probability of finding
an improvement is given by Equation (3.2), and for a known p « 1, a rotation count
r can be found making this probability very nearly 1. But since in general we can
only guess at p, lower probabilities result.

Readers may wonder why we use the best value yet seen as the threshold in the
Grover search. In a sense, all of the work of the algorithm is done in the last step,
when a Grover search is performed using a threshold only a little larger than the global
minimum. This final Grover search is not made any easier by the information gained
in earlier steps. In the general case, however, where we have no prior knowledge of
the objective function's range, these earlier steps are an efficient way of finding a good
value to use as a threshold in the final step. The earlier steps are hot great in number.
Moreover, the cost of each step is roughly inversely proportional to the square root
of the improving fraction; thus, if the sequence of rotation counts is chosen suitably,
most of the earlier steps will be much quicker than the final one.

5. Choosing the rotation count sequence. This section provides a general
discussion of the selection of the rotation count sequence used in the GAS algorithm,
as a precursor to Sections 6 and 7, each of which presents a specific selection method.

Why the rotation count should vary. In [4] we considered the possibility
of using the same rotation count at each iteration. Although it is easy to construct
objective functions for which this method works well, they are exceptional, and in
general it is preferable to vary the rotation count as the algorithm progresses.

To see why, suppose that at a certain point in the execution of the GAS algorithm,
the best value seen so far is Y, and the improving fraction is p = I{ w : f(w) < Y}l/N.
For any given rotation count r, the probability of success of each single iteration of the

6 BARITOMPA, BULGER AND WOOD

0.2 0.4 0.6 0.8
p

FIGURE 5.1. The probability of a step of three Grover rotations finding an improvement, as a
function of the improving fraction p.

algorithm is given by gr(p). Although the rationale for using Grover's algorithm is to
increase the probability of finding improving points, there are combinations of values
ofr and p where the opposite effect occurs. For instance, Figure 5.1 plots g3 (p) versus
p. If p = 0.2, then the step is almost guaranteed not to find an improvement. If the
rotation count varies from each iteration to the next, then this is only an occasional
nuisance. But if it is fixed at r, and if the algorithm should happen to sample a point
x such that the improving fraction p for Y = f(x) has gr(P) zero or very small, then
the algorithm will become trapped.

How the rotation count should vary. In fact, at each iteration during the
execution of the algorithm, some optimal rotation count r is associated with the
improving fraction p of the domain (assuming p > 0). If it is used for the next Grover
search, then an improving point will almost certainly be found. This r is the first
positive solution to the equation gr(P) = 1. (Actually of course we must round this to
the nearest integer, and therefore success is not absolutely guaranteed, but this would
contribute little to the expected cost of the algorithm.)

Unfortunately, in the general case the improving fraction p is unknown, so we
are somewhat in the dark as to the choice of rotation counts. In order to make
the most use of all the information available to us at each iteration, we could take
a Bayesian approach, and keep track of a sequence of posterior distributions of the
improving fraction at each iteration, and choose each rotation count to optimise the
change in some statistic of this posterior distribution. As might be expected, this
kind of approach appears to be very complex and unwieldy. The methods outlined in
the following two sections, however, strike a happy balance between implementability
and optimality of rotation count selection.

6. Diirr and H0yer's random method. In this section we outline a method
due to Diirr and H¢yer for randomly choosing rotation counts and correct two key

APPLYING GROVER ADAPTIVE SEARCH 7

arguments in its originators' analysis.

Grover's search algorithm provides a method of finding a point within a subset
of a domain. If the size of the target subset is known, the algorithm's rotation count
parameter can easily be tuned to give a negligible failure probability. The case of a
target subset of unknown size is considered in [2], where the following algorithm is
presented:

Boyer et al. search algorithm
1. Initialise m = 1.
2. Choose a value for the parameter >. (8/7 is suggested in [2]).
3. Repeat:

(a) Choose an integer j uniformly at random such that 0::; j < m.
(b) Apply Grover's algorithm with j rotations, giving outcome i.
(c) If i is a target point, terminate.
(d) Set m =.Am.

Actually, in [2], the final step updates m to min{Am, m}. It is pointless to
allow m to exceed m, because for a target set of any size, it is known [2] that the
optimal rotation count will be no more than 17rm/4l In the global optimisation
context, however, this point will usually be immaterial, since the target region, though
comprising a small proportion of the domain, will normally be large in absolute terms.

For instance, suppose the domain contains 1020 elements and suppose finding one
of the smallest 10000 points is required. The optimal rotation count to find a target
set of this size is 108 7r / 4, substantially less than I 7fm / 4l The actual target size
will be unknown, and therefore the actual optimal rotation count will be unknown.
But when m reaches this magnitude, if not before, each step will have a substantial
probability (on the order of 1/2) of finding a target point. Therefore, unless >. is very
large, there will be negligible probability of m reaching m = 1010 before a target
point is produced. For simplicity, therefore, in this article we ignore the m ceiling
on the growth of m.

In the quant-ph internet archive, Diirr and H~yer [8] propose using the Boyer
et al. algorithm as the nucleus of a minimisation algorithm. Their paper gives the
impression that the algorithm is just for the database problem. They begin with "an
unsorted table of N items each holding a value from an ordered set. The minimum
searching problem is to find the index y such that T[y] is minimum." Again we
stress their algorithm fits in the GAS framework and is thus applicable to the general
optimisation problem.

In their paper, they indicate that every item that is improving is explicity marked.
However, this is a mistake as it is incompatible with their complexity analysis later
in the paper. We describe a corrected version of their method using the terminology
of this paper.

8 BARITOMPA, BULGER AND WOOD

Diirr and H0yer's algorithm
1. Generate X1 uniformly in S, and set Y1 = f(X1).
2. Set m = 1.
3. Choose a value for the parameter ,\ (as in the previous algorithm).
4. For n = 1, 2, ... until a termination condition is met, do:

(a) Choose a random rotation count rn uniformly distributed
on {O,. . ., Im -11}.

(b) Perform a Grover search of rn rotations on f with threshold Yn,
and denote the outputs by x and y.

(c) If y < Yn, set Xn+l = x, Yn+l = y, and m = 1;
otherwise, set Xn+l = Xn, Yn+l = Yn, and m =Am.

This is the special case of GAS arising when the rotation count rn is chosen
randomly from an integer interval which is initialised to {O} at each improvement, but
which grows exponentially to a maximum of {O, ... , I ffe-1 l} between improvements.

The analysis of the algorithm reported in the archive [8) uses incorrect constants
from a preprint of [2). In our analysis that follows, we correct this by using the
published version of [2). Because the Boyer et al. algorithm underpins that of Durr
and Hpyer, we begin with an analysis of the former algorithm. Theorem 3 in (2) is an
order of magnitude result, but inspection of the proof implies that the expected time
required by the Boyer et al. algorithm to find one oft marked items among a total of
N items is bounded by 8Jii7t. This constant can be improved upon, though, as we
shall see after the following theorem.

THEOREM 6.1. The expected number of oracle queries required by the Boyer et
al. algorithm with parameter A to find and verify a point from a target subset of size
t from a domain of size N is

(6.1)

where (} = arcsin(ft!N)
Proof. Conditioned on reaching iteration j, the expected number of oracle queries

required at that iteration is l>-il /2 (including the test of the output of Grover's
algorithm for target subset membership.) The probability of reaching iteration j is
a product of failure rates; the probability of the algorithm failing to terminate at
iteration j, having reached this iteration, is

(this is Lemma 2 in (2)). Thus the expected number of oracle queries required at
iteration j, not conditioned on whether the iteration is reached, is

and summing over all possible iterations j = 0 ... oo gives the result. D
It is straightforward to evaluate the geometrically convergent series (6.1) numer

ically. By graphing the ratio of (6.1) to Jii7t versus t for a range of>., empirically

~

'!::'.
~
>
.0
"O
<ll

1.2

~ 0.8
"O

§:
0 0.6
(/)

E
:::J
(/)

iii :e 0.4
«!

0...

0.1

APPLYING GROVER ADAPTIVE SEARCH 9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Target proportion of domain

FIGURE 6.1. The ratio between the partial sums of the geometrically convergent series (6.1)
and VFf1i when .\ = 1.34, plotted against t/ N. Note that 1.32 appears to be an upper bound.

A that gave the lowest maximum is 1.34. The plot of Figure 6.1 uses this value of\
and it justifies the following observation.

OBSERVATION 1. The expected number of oracle queries required by the Boyer et
al. algorithm with parameter A = 1.34 to find and verify a point from a target subset
of size t from a domain of size N is at most l.32y'N/i.

Now we can derive a performance bound for Diirr and H¢yer's algorithm. This
is similar to and extends the result in [8]; the main difference is in our treatment of
the coefficient of the order bound. Also we correct another technical error in their
argument, which is pointed out in our proof below.

THEOREM 6.2. Assume the validity of the above observation. Let 1 :::; s :::; N
and assume that there are s points in the domain with strictly better ob.fective function
values than the remaining N -s points. The expected R-umber of oracle queries required
by Durr and H¢yer's algorithm with A = 1.34 to find one of these s points is bounded
above by

N 1
l.32VN L Jr=l' r r -1

r=s+l

Note that, if s is small compared to N, then the above bound approximately
equals 2.46~.

10 BARITOMPA, BULGER AND WOOD

Proof. Assign the domain points ranks from 1 to N, giving the best point rank
1 and so forth. Where several points have equal objective function value, break ties
arbitrarily, but let l(r) be the least rank and h(r) the greatest rank among the points
with the same value as the rank r point. (In the distinct values case we will have
l(r) = h(r) = r for each r E {1, ... , N}.)

Since Diirr and H0yer's algorithm will move through a succession of threshold
values with rank above s before finding the desired target point, the bound on the
expectation in question is given by

N

(6.2) L p(N, r)B(N, l(r) - 1),
r=s+l

where p(N, r) is the probability of the rank r point ever being chosen and B(N, l(r)-1)
is the expected number of iterations required by the Boyer et al. algorithm to find
and verify a point from a target subset of size l(r) - 1.

The probability p(N, r) = 1/h(r). This is demonstrated in the proof of Theorem 1
in [17], and in Lemma 1 of [8]. Also, by the observation on page 9, B(N, l(r) - 1) :';'.:
1.32}N/(l(r) - 1).

In the distinct values case, substitution of the above value for p(N, r) and bound
for B(N, l(r) - 1) = B(N, r - 1) into (6.2) gives the theorem immediately. In [8] it
is claimed for the case of repeated objective function values that since the equation
p(N,r) = 1/r becomes the inequality p(N,r) :';'.: 1/r, the bound still holds. This
argument ignores that the value of B(N, l(r) - 1) increases (for a given r) when
repeated values are allowed. Nevertheless, the theorem holds as follows. Consider
r E {1, ... , N} with l(f) < h(f). We examine just that part of the summation in (6.2)
with index going from l(f) to h(f).

h(f) h(f) 1
L p(N, r)B(N, l(r) - 1) :';'.: l.32v'N L ff(;;\1

r=l(f) r=l(f) h(r)y l(r) - 1

~---h(f) 1
= l.32)N(l(f) - 1) 2=_ h(f)(l(f) _ l)

r=l(r)

~,.--,---- h(f) 1
= l.32)N(l(f) - 1) L r(r _ l)

r=l(f)

h(f) 1
:';'.: i.32v'N :L r::-1.

r=l(f) ryr - 1
D

REMARK 1. Diirr and H0yer's method can be viewed as an implementation of
Pure Adaptive Search [17], requiring no more than l.32(N/t) 112 iterations in expec
tation to find an improvement, when t is the cardinality of the improving region.

7. A new method. In this section we propose an explicit sequence of integers
to be used as the GAS rotation count sequence. This gives a special case of GAS that
can be identified with an inhomogeneous Markov chain having states £1, ...) eK.

For this paper we have sought an efficient choice for the rotation count sequence
used in GAS. This has led us to the special case of GAS arising when the sequence
(rn) is fixed in advanced, and determined by the following pseudocode. Note that the

APPLYING GROVER ADAPTIVE SEARCH 11

sequence of rotation counts it produces is independent of the particular optimisation
task; its first 33 entries are

(7.1)
o,o,o,1,1,0,1,1,2,1,2,3,1,4,5,1,6,2,1,9,

11, 13, 16, 5, 20, 24, 28, 34, 2, 41, 49, 4, 60,

Here is the pseudocode:

Rotation Schedule Construction Algorithm
1. Initialise u to be the polynomial u(y) = y.
2. For i = 1,2, .. ., do:

(a) SetEu=l-f0
1

udy.
(b) Set b' = 0.
(c) For r = 0, 1, ... until Eu/(r + 1) :S: 2b', do:

i. Set v = u + y J:(gr(t)/t) du(t).

ii. Set Ev = 1 - J0
1

v dy.
iii. Set b =(Eu - Ev)/(r + 1).
iv. If b > b' then:

A. Set r' = r.
B. Set b' = b.
C. Set v' = v.

(d) Set u = v'.
(e) Output ith rotation count r'.

The resulting sequence (7.1) is heuristically chosen to maximise a benefit-to-cost
ratio, denoted bin the pseudocode, at each GAS iteration. The reader can verify that
u and Eu are the cumulative distribution function and expectation, respectively, of the
improving fraction of the domain, after the first i-1 iterations of the GAS algorithm.
The symbols v and Ev denote the corresponding cumulative distribution function
and expectation after a further GAS step of r rotations. The benefit is (somewhat
arbitrarily) taken to be the expected decrease in the improving fraction of the domain,
Eu - Ev. The cost is r + 1, where r is the number of rotations chosen, as per the axiom
on page 4. The inner loop at (2c) terminates since even if 9r were identically one, the
expected improving region measure would halve. Thus, higher rotation counts need
not be considered once we pass the point where half the expected improving region
measure, divided by the cost, exceeds the current best found benefit-to-cost ratio.

8. Computational results. In Section 6 we presented a corrected version of
Diirr and H¢yer's demonstration of a performance bound for their algorithm. This
readily establishes the 0(JNTS) complexity, inherited from Grover's algorithm. How
ever, even the improved coefficient of 2.46 suggested by Theorem 6.2 is based on an
upper bound, and may be a poor indicator of the algorithm's actual performance. In
this section we study the methods described in Sections 6 and 7 using numerical sim
ulation. Our aim is twofold: to tune the parameter ,\ appearing in Diirr and H¢yer's
algorithm, and then to compare their tuned method against the method of Section 7.

Our simulations will determine the length of time each algorithm requires to
sample a point in a target region, constituting a certain proportion of the domain.
Intuitively, the algorithm terminates upon finding a value equal to or lower than the
quantile determined by a proportion a.

12 BARITOMPA, BULGER AND WOOD

Recall the proportion of the domain with value lower than or equal to ei is
Pi. More precisely, we specify an intended quantile proportion CTnominal and set
k = min{j : Pi ;::: CTnomina1}. We require the algorithm to find a point with value
less than or equal to ek. The target set is 1-1 ({ e 1 , e2 , .. ., ek}). Let s be its cardi
nality. So a= Pk= s/N and gives the quantile the algorithm will find. Note that it
is the measure under 7r of {el, £2, •.. , ek}. It may be inevitable that a and CTnominal

differ since it can happen that Pk-l < CTnomlnal <a= Pk·
Thus the quantity a is often unknown in practice, and is a "global" piece of in

formation. The dependence of performance on global information is unavoidable [14],
but we will see that for certain methods, the dependence is primarily on a. For the
rest of this paper we assume a is close to CTnominal.

Methodology. For the performance of either algorithm under consideration, the
distribution of objective function values influences performance only via the range
measure 7r. Our primary focus here will be the case where 7r is uniformly distributed
over a finite set of distinct function values. Without loss of generality we can take this
finite set to be {1, ... , K}. For example to explore seeking the best 1 % of the domain
under a uniform range distribution (i.e. CTnominal = 0.01), using K = 100 will be fairly
representative. At the end of this section we look briefly at other distributions.

To compare the algorithms, we plot their performance graphs (11] which relate
practical computational effort to the probability of finding a point in the target set.
The performance graph is simply the cumulative distribution function of the effort to
success, defined as the number of objective function evaluations before a point in the
target set is sampled. We compute these with Matlab, using standard techniques for
Markov chains and stochastic processes.

Tuning A. The observation on page 9 suggests the parameter choice .\ = 1.34
for Diirr and H¢yer's algorithm. Numerical experimentation agrees with this choice.
Figure 8.1 shows the performance graphs, seeking 13 (K = 100) or 0.23 (K = 500)
of the domain, of Diirr and H¢yer's algorithm using a selection of values of A ranging
from 1.05 to 30, and including the values 8/7 and 1.34 suggested by (2] and Figure 6.1.
Performance deteriorates slowly outside of the range from 1.34 to 1.44, but within
that range there is no visible performance gradient. The value of A may become more .
important for smaller values of a, but for the remainder of this section we shall use
the value.\= 1.34.

Comparing the new method to Diirr and H!ilyer . Having settled on the
parameter value A = 1.34 for Diirr and H¢yer's method, we can compare it to the
method of Section 7. Figure 8.2 shows that, in the two cases studied, the new method
dominates that of Diirr and H¢yer. For instance, to sample a target comprising 0.23
of the domain with probability 90% or more, Diirr and H¢yer's method requires more
than 100 units of effort, whereas the new method requires only 79 (and in fact it then
samples the target with probability 963).

Note also, in the two situations depicted in Figure 8.2, the estimated bound of
2.46VNTS on the expected time required by Diirr and H¢yer's algorithm, mentioned
following Theorem 6.2, amounts to 24.6 and 55.0. While the true expectations cannot
be computed from any finite portion of the performance graphs, these figures do
appear visually to be in approximate agreement with the numerical results.

Nonuniform range distributions. Until now in this section we have assumed
a uniform range distribution. This corresponds to the assumption of injectivity of the
objective function, that is, that different points in the domain map to different values

>, 07

~

~ 06

e
O."'
~
~ 04

(f)"'

--<>- A= 1.05
-+-1'=1.14
~ 1'=1.34
- - 1'=2.00

1'=5.00
- - · A= 8.00
- 1'=30.00

A= 1.24
" --· 1'=1.34

- 1'=1.44
"' -·- A= 1.54

gos
:g e 05

0.

gi 04

8
Ol

APPLYING GROVER ADAPTIVE SEARCH

Seeking 1 % of the domain

Effort

~eeking 0.2% of the domain

..
Effort

--0- A= 1.05
-+- l.=1.14
~ 1'=1.34
·-·- A= 2.00

A= 5.00
-- · A= 8.00
- i.=30.00

Seeking 0.2% of the domain

.. "
Effort

13

""

FIGURE 8.1. Performance graphs for Durr and H11yer's algorithm for various values of the
parameter ..\ and two domain sizes. The third graph repeats the second with a finer mesh of ..\
values.

in the range. In many cases, however, for instance in combinatorial optimisation,

Seeking 1% of the domain

Durr & Hoyer, l.=1.34
- New method

o0k:'.'.__~~~~~~~~,~,-==~~~,c,~~~~~~
Effort

Seeking 0.2~/o of the domain

Durr & Hoyer, 1.=1.34
- New method

",L..,~~~~~~~~~,,'-'=====~==~====~="

Effort

FIGURE 8.2. Performance graphs comparing Durr and Hpyer's method to the method of Sec
tion 7, for a uniform range distribution.

14

0.9

0.8

>-0.7
~

:g 0.6
.a e
Cl.0.5
(/)
(/)

~0.4
u
:i

(/) 0.3

0.2

0.1

BARITO!v!PA, BULGER AND WOOD

Seeking 0.2% of the domain

Durr & Hoyer, A.=1.34
New method

FIGURE 8.3. Performance graphs comparing Durr and H¢yer's method to the method of Sec
tion 'l, for a nonuniform range distribution.

there may be a unique optimum, or a small number of optimal domain points, but
large sets of the domain sharing values in the middle of the range; this results in a
nonuniform range distribution.

Experimentation indicates that nonuniformity of the range distribution improves
the performance of both methods under study. To produce Figure 8.3, we randomly
created five stochastic vectors of length 20 with first element 0.002 (the remainder of
each vector was a point uniformly distributed in [O, 1)19 and then scaled to sum to
0.998), and simulated the performance of both methods. Compare this with the last
plot of Figure 8.2. Nonuniformity has improved the performance of the method of
Section 7 somewhat. However, a greater improvement in Diirr and H¢yer's method
has allowed it to overtake the method of Section 7. Here, for most of the five sample
range distributions, Diirr and H¢yer's method reaches the target with probability 90%
or more after 61 or fewer units of effort, whereas the new method now requires 67.

9. Conclusion. This paper outlines the significance of Grover's quantum search
algorithm (with its performance characteristics implying 0(y'iTfi) performance taken
as an axiom) for global optimisation. Grover search can provide the basis of imple
menting adaptive global optimisation algorithms. One example is an algorithm of
Diirr and H¢yer's introduced as a method for finding minimum values in a database.
An improved analysis of Diirr and H¢yer's algorithm suggests increasing its parameter
.\from 8/7 to 1.34. Also, that algorithm fits the Grover Adaptive Search framework,
and thus is applicable to the more general global optimisation problem. A new algo
rithm within the same framework is proposed in Section 7. Our numerical experiments
in Section 8 show that the algorithms have similar performance. The method pro
posed in Section 7 had its parameters tuned for the distinct objective function value

APPLYING GROVER ADAPTIVE SEARCH 15

case, and shows superior performance to that of Durr and H¢yer's in that case. Ou
the other hand, Durr and H¢yer's method (with A= 1.34) overtakes the new method
if there is a great deal of repetition in objective function values.

A final comment concerning implementation on a quantum computer. This is
work mainly for computer engineers of the future, but some indications are known
at the present time. A fully functional quantum computer would be able to evaluate
an objective function in just the same way as a conventional computer, by executing
compiled code. A technical requirement to control quantum coherence, which we have
not mentioned previously, is that the gates must implement reversible operations. The
code implementing the objective function must be run in the forward direction and
then in the reverse direction. This obviously at most doubles the computational effort
for a function evaluation compared to a conventional computer.

REFERENCES

[1] W. P. Baritompa, Handling different cost algorithms, Department of Mathematics and Statis
tics, University of Canterbury Report, preprint, (2001).

[2] M. Boyer, G. Brassard, P. H¢yer and A. Tapp, Tight bounds on quantum searching, Fortschr.
Phys., 46 (1998), pp. 493-506.

[3] S. H. Brooks, A discussion of random methods for seeking maxima, Oper. Res., 6 (1958),
pp. 244-251.

(4] D. W. Bulger, W. P. Baritompa and G. R. Wood, Implementing pure adaptive search with
Grover's quantum algorithm, J. Optim. Theory Appl., 116 (2003), pp. 517-529.

(5] D. W. Bulger, D. L. J. Alexander, W. P. Baritompa, G. R. Wood and Z. B. Zabinsky, Expected
hitting time for backtracking adaptive search, Optimization, 53 (2004), pp. 189-202.

[6] D. W. Bulger and G. R. Wood, Hesitant adaptive search for global optimisation, Math. Pro
gram., 81 (1998), pp. 89-102.

[7] Centre for Quantum Computation, Oxford, http: //www.qubit.org.
(8] C. Diirr and P. H¢yer, A quantum algorithm for finding the minimum,

http: //lanl. arxiv. org/abs/quant-ph/9607014, version 2 (7 Jan 1999).
(9] L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings of the

28th Annual ACM Symposium on Theory of Computing, (1996).
[10] L. K. Grover, A framework for fast quantum mechanical algorithms, Proceedings of the 30th

Annual ACM Symposium on Theory of Computing, (1998).
[11] E. M. T. Hendrix and 0. Klepper, On uniform covering, adaptive random search and raspber

ries, J. Global Optim., 18 (2000), pp. 143-163.
[12] R. Laflamme, Los Alamos scientists make seven bit quantum leap,

http://www.lanl.gov/worldview/news/releases/archive/00-041.html(2000).
[13] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer, SIAM J. Comput., 26 (1997), pp. 1484-1509.
[14] C. P. Stephens and W. P. Baritompa, Global optimization requires global information, J. Optim.

Theory Appl., 96 (1998), pp. 575-588.
(15] G. R. Wood, Z. B. Zabinsky and B. P. Kristinsdottir, Hesitant adaptive search: the distribution

of the number of iterations to convergence, Math. Program., 89 (2001), pp. 479-486.
(16] Z.B. Zabinsky and R.L. Smith Pure adaptive search in global optimization, Math. Program.,

53 (1992), pp. 323-338.
(17] Z. B. Zabinsky, G. R. Wood, M.A. Steel and W. P. Baritompa, Pure adaptive search for finite

global optimization, Math. Program., 69 (1995), pp. 443-448.
[18] C. Zalka, Grover's quantum searching algorithm is optimal, Phys. Rev. A, 60 (1999), pp. 2746-

2751.

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -0.65, 746.36 Width 599.57 Height 96.87 points
 Mask co-ordinates: Horizontal, vertical offset 504.00, 290.14 Width 94.25 Height 458.84 points
 Mask co-ordinates: Horizontal, vertical offset 504.00, 1.48 Width 90.98 Height 297.82 points
 Mask co-ordinates: Horizontal, vertical offset 10.47, 11.30 Width 591.71 Height 5.89 points
 Mask co-ordinates: Horizontal, vertical offset -1.31, -2.45 Width 611.35 Height 9.82 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 AllDoc
 18

 CurrentAVDoc

 -0.6545 746.3559 599.5663 96.8732 504.0022 290.1357 94.255 458.8384 504.0022 1.4799 90.9822 297.8195 10.4728 11.2982 591.7117 5.8909 -1.3091 -2.4474 611.3481 9.8182

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 20
 19
 20

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 283.20, 510.28 Width 12.22 Height 6.55 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 283.1994 510.2844 12.2181 6.5454

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 15
 16
 15
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 0.44, 150.72 Width 20.51 Height 25.75 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 0.4363 150.7216 20.5091 25.7454

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 14
 16
 14
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 278.40, 217.92 Width 7.42 Height 10.47 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 278.3994 217.9214 7.4182 10.4727

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 13
 16
 13
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 45.38, 1.92 Width 90.76 Height 31.42 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 45.3817 1.9219 90.7634 31.4181

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 12
 16
 12
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 357.82, 675.23 Width 96.44 Height 63.71 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 357.8174 675.2294 96.4361 63.709

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 12
 16
 12
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 480.00, 202.21 Width 29.67 Height 13.09 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 479.9989 202.2123 29.6727 13.0909

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 11
 16
 11
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 78.11, 495.45 Width 5.67 Height 4.36 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 78.1089 495.448 5.6727 4.3636

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 10
 16
 10
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 54.55, 76.10 Width 34.04 Height 12.65 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 54.5453 76.1035 34.0363 12.6545

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 9
 16
 9
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 94.25, 709.27 Width 30.55 Height 17.89 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 94.2543 709.2657 30.5454 17.8909

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 9
 16
 9
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 81.16, 5.41 Width 25.31 Height 14.40 points
 Mask co-ordinates: Horizontal, vertical offset 81.60, 311.30 Width 7.85 Height 6.55 points
 Mask co-ordinates: Horizontal, vertical offset 174.55, 320.03 Width 3.93 Height 3.05 points
 Mask co-ordinates: Horizontal, vertical offset 170.62, 316.54 Width 4.36 Height 1.31 points
 Mask co-ordinates: Horizontal, vertical offset 413.24, 312.61 Width 11.78 Height 12.22 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 81.1635 5.4128 25.309 14.4 81.5998 311.303 7.8546 6.5455 174.5451 320.0303 3.9272 3.0545 170.6178 316.5394 4.3636 1.3091 413.2354 312.6121 11.7818 12.2182

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 8
 16
 8
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 479.56, 456.61 Width 19.64 Height 7.42 points
 Mask co-ordinates: Horizontal, vertical offset 345.60, 652.10 Width 15.71 Height 12.22 points
 Mask co-ordinates: Horizontal, vertical offset 360.00, 679.16 Width 92.95 Height 63.27 points
 Mask co-ordinates: Horizontal, vertical offset 60.65, 700.54 Width 37.53 Height 20.95 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 479.5625 456.6118 19.6363 7.4182 345.5992 652.1022 15.709 12.2182 359.9992 679.1567 92.9452 63.2726 60.6544 700.5385 37.5272 20.9454

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 8
 16
 8
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -0.44, 524.25 Width 15.71 Height 36.22 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 -0.4363 524.248 15.709 36.2181

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 5
 16
 5
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 75.05, 4.98 Width 37.53 Height 25.75 points
 Mask co-ordinates: Horizontal, vertical offset 78.55, 312.18 Width 8.29 Height 4.80 points
 Mask co-ordinates: Horizontal, vertical offset 169.75, 316.10 Width 3.93 Height 2.18 points
 Mask co-ordinates: Horizontal, vertical offset 414.54, 313.92 Width 6.55 Height 8.73 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 75.0544 4.9764 37.5272 25.7454 78.5453 312.1757 8.2909 4.8 169.7451 316.103 3.9272 2.1818 414.5445 313.9211 6.5454 8.7273

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 4
 16
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 466.04, 443.96 Width 43.64 Height 74.62 points
 Mask co-ordinates: Horizontal, vertical offset 338.62, 723.67 Width 61.96 Height 27.05 points
 Mask co-ordinates: Horizontal, vertical offset 403.64, 687.88 Width 39.27 Height 30.55 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 466.0353 443.9572 43.6363 74.618 338.6174 723.6657 61.9635 27.0545 403.6355 687.884 39.2726 30.5454

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 4
 16
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 76.80, 565.70 Width 30.55 Height 27.05 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 76.7998 565.7024 30.5454 27.0545

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 4
 16
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 469.09, 172.98 Width 0.00 Height 1.75 points
 Mask co-ordinates: Horizontal, vertical offset 448.14, 149.85 Width 67.20 Height 30.98 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 469.0898 172.976 0 1.7455 448.1444 149.8488 67.1998 30.9818

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 3
 16
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 426.33, 324.39 Width 19.64 Height 12.65 points
 Mask co-ordinates: Horizontal, vertical offset 16.15, 160.32 Width 44.51 Height 13.09 points
 Mask co-ordinates: Horizontal, vertical offset 3.49, 142.43 Width 20.51 Height 22.25 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 426.3263 324.3939 19.6363 12.6545 16.1454 160.3215 44.509 13.0909 3.4909 142.4307 20.509 22.2545

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 3
 16
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -3.93, 11.09 Width 41.89 Height 72.87 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 -3.9272 11.0855 41.8908 72.8726

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 16
 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 151.85, 30.29 Width 72.00 Height 17.89 points
 Mask co-ordinates: Horizontal, vertical offset 285.38, 505.48 Width 13.09 Height 16.15 points
 Mask co-ordinates: Horizontal, vertical offset 8.73, 515.08 Width 17.02 Height 19.20 points
 Mask co-ordinates: Horizontal, vertical offset -4.80, 463.59 Width 19.64 Height 107.78 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 18

 CurrentAVDoc

 151.8542 30.2855 71.9998 17.8909 285.3812 505.4844 13.0909 16.1454 8.7272 515.0844 17.0182 19.2 -4.8 463.5936 19.6363 107.7816

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 16
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 42.52 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1920
 15

 Fixed
 Right
 42.5197
 0.0000

 Both
 2
 AllDoc
 9

 CurrentAVDoc

 None
 56.6929
 Bottom

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 7
 16
 15
 16

 1

 HistoryList_V1
 qi2base

