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OPTIMISATION* 
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Abstract. Grover's quantum computational search procedure can provide the basis for imple­
menting adaptive global optimisation algorithms. A brief overview of the procedure is given and a 
framework called Grover Adaptive Search is set up. A method of Diirr and H!>lyer and one introduced 
by the authors fit into this framework and are compared. 
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1. Introduction. This paper aims to provide the global optimisation commu­
nity with some background knowledge of quantum computation, and to explore the 
importance of this topic for the future of global optimisation. 

Quantum computing [7] holds great potential to increase the efficiency of stochas­
tic global optimisation methods. Current estimates are that quantum computers are 
likely to be in commercial production within two or three decades. These devices 
will be in many respects similar to the computers of today, but will utilise circuitry 
capable of quantum coherence [7], enabling data to be manipulated in entirely new 
ways. 

Grover introduced in [9] a quantum algorithm (that is, an algorithm to be ex­
ecuted on a quantum computer) for locating a "marked" item in a database. This 
was extended in [2] to a quantum algorithm for locating one of an unknown number 
of marked items. The latter method was incorporated into a minimisation algorithm 
by Diirr and H¢yer in [8] (unpublished, but available electronically-see the reference 
list). 

Diirr and H¢yer's algorithm can be viewed as an example of Grover adaptive 
search (GAS), an algorithmic framework we introduced in [4]. GAS in turn is a 
quantum-computational implementation of hesitant adaptive search (6], a parame­
terised pseudoalgorithm whose performance is well understood. Here we analyse Diirr 
and H¢yer's method, present another version of GAS, and explore the relative merits 
of the two methods via numerical simulation. 

Outline. Section 2 presents the general optimisation problem and introduces 
some notation and terminology. Section 3 gives a brief overview of quantum compu­
tation and Grover's algorithm. Section 4 describes the GAS framework. Section 5 
discusses the considerations involved in choosing the "rotation count sequence", the 
parameter distinguishing one GAS algorithm from a110ther. Section 6 presents Diirr 
and H¢yer's algorithm, extending and correcting the theoretical analysis in [8]. In 
Section 7, we present a refined version of GAS, and in Section 8 this version is com­
pared to that of Diirr and H¢yer by numerical simulation. Section 9 concludes the 
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paper. 

2. Optimisation problem. We consider the following finite global optimisation 
problem: 

minimise f ( x) 

subject to x E S 

where f is a real-valued function on a finite set S. 
Throughout this paper we associate with the objective function f the following 

definitions. Let N = /S/, the cardinality of the finite set S. We will usually assume N 
to be a power of two. Let £1 < · · · < f!K be the distinct objective function values in 
the range off. Notice that there may be more than J{ points in S. Given the uniform 
probability measure µ on S, we let 7r be the range measure given by the stochastic 
vector (7ri, ... , 7rK) induced by f. That is, 7rj = lf-1 (£j)l/N for j = 1, 2, ... , K. Let 
Pj denote ~{=1 7l"i, the probability that a random point has value of ej or less. In 
particular, PK= 1. Corresponding to each function value is an improving region, that 
part of the domain having a strictly better value, and we call its measure under µ the 
improving fraction p. (Usually the specified function value will be the best yet seen, 
and thus the improving region will be the set of points with objective function values 
better than any yet seen.) 

3. Quantum computing. This paper concerns optimisation algorithms that 
require the use of a quantum computer. The characteristic feature of a quantum 
computer is that, in place of conventional computer bits, quantum bits or qubits are 
used. A qubit can be in a simultaneous superposition of "off" and "on" and thus allows 
quantum parallelism, where a single quantum circuit can simultaneously perform a 
calculation on a superposed input, corresponding to very many conventional inputs. 

The Grover mechanism. The quantum procedure germane to our purposes is 
Grover Search [9]. This is one of the major advances to date in the fledgling field 
of quantum computation. More details are given in [4], but we reiterate the salient 
features here and give an intuitive discussion. 

Consider the following general search problem. Let n be a positive integer, and 
let S = {O, l}n, so that the domain size N = 2n. Leth: S--> {O, l}. We wish to find 
a point u ES such that h(u) = 1. We further assume that his a black-box, that is, 
that knowledge of h can only be gained by sampling (evaluation), but no structural 
information is available. 

With conventional computing, the Boolean function h could be implemented as a 
subroutine, i.e., a conventional logic circuit constructed to take an input string of bits, 
representing a point of S, and output the associated bit value of h. The subroutine 
could then be applied to all points of S, in succession, to find a required point. Such 
a conventional program would require on average N /2 evaluations to find a marked 
point. 

In quantum computing, the circuit implementing h (using gates that work with 
qubits) inputs and outputs superpositions. Thus it "sees" many possible answers at 
once. On a quantum computer, observing the output will collapse it into a conven­
tional bit string, according to a probability distribution determined by the superpo­
sition; thus quantum computing has a stochastic side. Rather than loop through the 
N points in S, a quantum computer can operate on superposed states in such a way 
that the probablity distribution governing the collapse can be changed. Grover in [9] 
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showed if exactly one point is marked, then only ~IN such operations are required 
to find the marked point. 

Denote the set of marked points by JvI = { u E SI h( u) = 1} and denote the number 
of these marked target points by t. We may or may not be aware of the value of t. 
Let p be the proportion of marked points, t/N. 

Grover introduced the Grover Rotation Operator, which incorporates the oracle 
for h and provides a means of implementing a certain phase-space rotation of the 
states of a quantum system encoding points in the domain S. Repeated applications 
of this rotation can be used to move from the equal amplitude state, which is simple to 
prepare within a quantum computer, toward the states encoding the unknown marked 
points. For details see [4, 2, 9]. 

A Grover search of r rotations applies the above rotation operator r times, start­
ing from the equal amplitude superposition of states, and then observes (and hence 
collapses to a point) the output state. The mathematical details in [2] show that exe­
cuting such a search of r rotations generates domain points according to the following 
probability distribution"( on S: 

(3.1) 

where 

(3.2) 

gr(P) 

t ' 
x EM, 

x E S\M, 

9r(P) = sin2 [(2r + 1) arcsin v'PJ. 

Note that, in the special case of r = 0, Grover search only observes the prepared equal 
amplitude superposition of states and so reduces to choosing a point uniformly from 
the domain. 

Most of the work in implementing the Grover Rotation Operator is in the oracle 
query, so the cost of a Grover search of r rotations is taken as the cost of r oracle 
queries. The output is a point in S, and as one would usually want to know if it is in 
JvI or not, a further oracle query (acting on the point) would give the function value 
under h. 

Grover Search is sometimes portrayed as a method for the database table lookup 
problem. This is only one elementary application, however. Other interesting appli­
cations concern "marking functions" h which are more than simple tests of indexed 
data. Examples relating to data encryption and the satisfiability problem are given 
in [2, 9]. 

From searching to optimising. Grover Search solves a special global opti­
misation problem: it finds a global maximum of h. For the more general problem 
introduced in Section 2, our intention is to use Grover search repeatedly within a 
global optimisation method of the adaptive search variety. Adaptive search methods 
produce, or attempt to produce, an improving sequence of samples, each uniformly 
distributed in the improving region of the previous sample (see [16, 15, 5]). 

Given an objective function f : S -) R and a point X E S with f(X) = Y, we 
use Grover's algorithm to seek a point in the improving region {w ES : f(w) < Y}. 
As described above, Grover's algorithm requires an oracle, a quantum circuit able to 
classify a point w E S as inside or outside the target set (see [10]). This will be the 
oracle for the Boolean function h(w) = (f(w) < Y). 
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We denote by a "boxed" name the oracle for a given function. Symbolically [EJ 
is found as shown: 

[SJ _____, 0 or 1 

/ 
y 

The additional comparison logic circuitry [SJ to construct [EJ is minimal, and we will 

take the cost of [EJ and [ZJ to be the same. 

As far as Grover's algorithm is concerned, [[!is simply a black box quantum 
circuit, inputting a point win S (or a superposition of such points), and outputting 

{ 
1, 
0, 

f(w) < y, 
f(w) ?_ y 

(or the appropriate superposition of such bits). 

Grover search of r rotations, using the compound oracle depicted above, will 
require r uses of the objective function sub-oracle [ZJ, and will output a random 
domain point. An additional oracle query is required to determine whether the output 
is an improvement or not. Therefore, for practical purposes, we can consider the cost of 
running Grover's algorithm to be r + 1 objective function evaluations (plus additional 
costs, such as the cost of the comparisons, which we will ignore). 

As a point of departure for the mathematics to follow, we can condense this 
subsection into the following axiom, and henceforth dispense with any direct consid­
eration of quantum engineering. (Note that the content of this axiom is taken for 
granted in [2] and many other recent publications on quantum searching.) 

AXIOM 1. Given f : S -+ JR and Y E JR, there is a search procedure on a quantum 
computer, which we shall call a "Grover search of r rotations on f with threshold Y", 
outputting a random point x E S distributed uniformly in 

{w ES 
{w ES 

f(w) < Y} 
f(w) ?_ Y} 

with probability 9r(P), or uniformly in 
otherwise, 

where p = J{w ES : f(w) < Y}J/JSJ. The procedure also outputs y = f(x). The 
cost of the procedure is r + 1 objective function evaluations. 

4. Grover Adaptive Search. This section presents the Grover adaptive search 
(GAS) algorithm introduced in [4]. The algorithm requires as a parameter a sequence 
(rn : n = 1, 2, ... ) of rotation counts. Initially, the algorithm chooses a sample uni­
formly from the domain and evaluates the objective function at that point. At each 
subsequent iteration, the algorithm samples the objective function at a point deter­
mined by a Grover search. The Grover search uses the best function value yet seen 
as a threshold. Here is the algorithm in pseudocode form: 



APPLYING GROVER ADAPTIVE SEARCH 

Grover Adaptive Search (GAS) 
1. Generate X1 uniformly in S, and set Y1 = f(X1). 
2. For n = 1, 2, ... until a termination condition is met, do: 

(a) Perform a Grover search of rn rotations on f with threshold Yn, 
and denote the outputs by x and y. 

(b) If y < Yn, set Xn+l = x and Yn+l = y, 
otherwise, set Xn+l = Xn and Yn+l = Yn. 

5 

GAS fits into the adaptive search framework developed in (5, 6, 15, 16, 17] which 
has proved useful for theoretical studies of convergence of stochastic global optimisa­
tion methods. All adaptive algorithms assume "improving" points can be found (at 
some cost). If Grover's algorithm were only applicable to database lookup, one might 
get the impression that GAS would require all function values to be first computed 
and tabled, before they could then be marked. However, Grover's algorithm can find 
points in an unknown target set, specified by an oracle. GAS exploits this ability 
by constructing, at each iteration, an oracle targeting the current improving region. 
In this way, it builds a sequence of domain points, each uniformly distributed in the 
improving region of the previous point. Such a sequence is known to converge to the 
global optimum very quickly; for instance, a unique optimum in a domain of size N 
will be found after 1 + ln N such improvements, in expectation (see (17]). 

Unfortunately this does not mean that GAS can find the global optimum for a 
cost in proportion to ln N. The reason is that as the improving fraction p decreases, 
larger rotation counts become necessary to make improvement probable; thus the cost 
of GAS varies super-linearly in the number of improvements required. Note also that 
not every iteration finds a point in the improving region. The probability of finding 
an improvement is given by Equation (3.2), and for a known p « 1, a rotation count 
r can be found making this probability very nearly 1. But since in general we can 
only guess at p, lower probabilities result. 

Readers may wonder why we use the best value yet seen as the threshold in the 
Grover search. In a sense, all of the work of the algorithm is done in the last step, 
when a Grover search is performed using a threshold only a little larger than the global 
minimum. This final Grover search is not made any easier by the information gained 
in earlier steps. In the general case, however, where we have no prior knowledge of 
the objective function's range, these earlier steps are an efficient way of finding a good 
value to use as a threshold in the final step. The earlier steps are hot great in number. 
Moreover, the cost of each step is roughly inversely proportional to the square root 
of the improving fraction; thus, if the sequence of rotation counts is chosen suitably, 
most of the earlier steps will be much quicker than the final one. 

5. Choosing the rotation count sequence. This section provides a general 
discussion of the selection of the rotation count sequence used in the GAS algorithm, 
as a precursor to Sections 6 and 7, each of which presents a specific selection method. 

Why the rotation count should vary. In [4] we considered the possibility 
of using the same rotation count at each iteration. Although it is easy to construct 
objective functions for which this method works well, they are exceptional, and in 
general it is preferable to vary the rotation count as the algorithm progresses. 

To see why, suppose that at a certain point in the execution of the GAS algorithm, 
the best value seen so far is Y, and the improving fraction is p = I{ w : f(w) < Y}l/N. 
For any given rotation count r, the probability of success of each single iteration of the 
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p 

FIGURE 5.1. The probability of a step of three Grover rotations finding an improvement, as a 
function of the improving fraction p. 

algorithm is given by gr(p). Although the rationale for using Grover's algorithm is to 
increase the probability of finding improving points, there are combinations of values 
ofr and p where the opposite effect occurs. For instance, Figure 5.1 plots g3 (p) versus 
p. If p = 0.2, then the step is almost guaranteed not to find an improvement. If the 
rotation count varies from each iteration to the next, then this is only an occasional 
nuisance. But if it is fixed at r, and if the algorithm should happen to sample a point 
x such that the improving fraction p for Y = f(x) has gr(P) zero or very small, then 
the algorithm will become trapped. 

How the rotation count should vary. In fact, at each iteration during the 
execution of the algorithm, some optimal rotation count r is associated with the 
improving fraction p of the domain (assuming p > 0). If it is used for the next Grover 
search, then an improving point will almost certainly be found. This r is the first 
positive solution to the equation gr(P) = 1. (Actually of course we must round this to 
the nearest integer, and therefore success is not absolutely guaranteed, but this would 
contribute little to the expected cost of the algorithm.) 

Unfortunately, in the general case the improving fraction p is unknown, so we 
are somewhat in the dark as to the choice of rotation counts. In order to make 
the most use of all the information available to us at each iteration, we could take 
a Bayesian approach, and keep track of a sequence of posterior distributions of the 
improving fraction at each iteration, and choose each rotation count to optimise the 
change in some statistic of this posterior distribution. As might be expected, this 
kind of approach appears to be very complex and unwieldy. The methods outlined in 
the following two sections, however, strike a happy balance between implementability 
and optimality of rotation count selection. 

6. Diirr and H0yer's random method. In this section we outline a method 
due to Diirr and H¢yer for randomly choosing rotation counts and correct two key 
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arguments in its originators' analysis. 

Grover's search algorithm provides a method of finding a point within a subset 
of a domain. If the size of the target subset is known, the algorithm's rotation count 
parameter can easily be tuned to give a negligible failure probability. The case of a 
target subset of unknown size is considered in [2], where the following algorithm is 
presented: 

Boyer et al. search algorithm 
1. Initialise m = 1. 
2. Choose a value for the parameter >. (8/7 is suggested in [2]). 
3. Repeat: 

(a) Choose an integer j uniformly at random such that 0::; j < m. 
(b) Apply Grover's algorithm with j rotations, giving outcome i. 
( c) If i is a target point, terminate. 
(d) Set m =.Am. 

Actually, in [2], the final step updates m to min{Am, m}. It is pointless to 
allow m to exceed m, because for a target set of any size, it is known [2] that the 
optimal rotation count will be no more than 17rm/4l In the global optimisation 
context, however, this point will usually be immaterial, since the target region, though 
comprising a small proportion of the domain, will normally be large in absolute terms. 

For instance, suppose the domain contains 1020 elements and suppose finding one 
of the smallest 10000 points is required. The optimal rotation count to find a target 
set of this size is 108 7r / 4, substantially less than I 7fm / 4l The actual target size 
will be unknown, and therefore the actual optimal rotation count will be unknown. 
But when m reaches this magnitude, if not before, each step will have a substantial 
probability (on the order of 1/2) of finding a target point. Therefore, unless >. is very 
large, there will be negligible probability of m reaching m = 1010 before a target 
point is produced. For simplicity, therefore, in this article we ignore the m ceiling 
on the growth of m. 

In the quant-ph internet archive, Diirr and H~yer [8] propose using the Boyer 
et al. algorithm as the nucleus of a minimisation algorithm. Their paper gives the 
impression that the algorithm is just for the database problem. They begin with "an 
unsorted table of N items each holding a value from an ordered set. The minimum 
searching problem is to find the index y such that T[y] is minimum." Again we 
stress their algorithm fits in the GAS framework and is thus applicable to the general 
optimisation problem. 

In their paper, they indicate that every item that is improving is explicity marked. 
However, this is a mistake as it is incompatible with their complexity analysis later 
in the paper. We describe a corrected version of their method using the terminology 
of this paper. 



8 BARITOMPA, BULGER AND WOOD 

Diirr and H0yer's algorithm 
1. Generate X1 uniformly in S, and set Y1 = f(X1 ). 
2. Set m = 1. 
3. Choose a value for the parameter ,\ (as in the previous algorithm). 
4. For n = 1, 2, ... until a termination condition is met, do: 

(a) Choose a random rotation count rn uniformly distributed 
on {O,. . ., Im -11}. 

(b) Perform a Grover search of rn rotations on f with threshold Yn, 
and denote the outputs by x and y. 

(c) If y < Yn, set Xn+l = x, Yn+l = y, and m = 1; 
otherwise, set Xn+l = Xn, Yn+l = Yn, and m =Am. 

This is the special case of GAS arising when the rotation count rn is chosen 
randomly from an integer interval which is initialised to {O} at each improvement, but 
which grows exponentially to a maximum of {O, ... , I ffe-1 l} between improvements. 

The analysis of the algorithm reported in the archive [8) uses incorrect constants 
from a preprint of [2). In our analysis that follows, we correct this by using the 
published version of [2). Because the Boyer et al. algorithm underpins that of Durr 
and Hpyer, we begin with an analysis of the former algorithm. Theorem 3 in (2) is an 
order of magnitude result, but inspection of the proof implies that the expected time 
required by the Boyer et al. algorithm to find one oft marked items among a total of 
N items is bounded by 8Jii7t. This constant can be improved upon, though, as we 
shall see after the following theorem. 

THEOREM 6.1. The expected number of oracle queries required by the Boyer et 
al. algorithm with parameter A to find and verify a point from a target subset of size 
t from a domain of size N is 

(6.1) 

where (} = arcsin( ft!N) 
Proof. Conditioned on reaching iteration j, the expected number of oracle queries 

required at that iteration is l>-il /2 (including the test of the output of Grover's 
algorithm for target subset membership.) The probability of reaching iteration j is 
a product of failure rates; the probability of the algorithm failing to terminate at 
iteration j, having reached this iteration, is 

(this is Lemma 2 in (2)). Thus the expected number of oracle queries required at 
iteration j, not conditioned on whether the iteration is reached, is 

and summing over all possible iterations j = 0 ... oo gives the result. D 
It is straightforward to evaluate the geometrically convergent series (6.1) numer­

ically. By graphing the ratio of (6.1) to Jii7t versus t for a range of>., empirically 
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FIGURE 6.1. The ratio between the partial sums of the geometrically convergent series (6.1) 
and VFf1i when .\ = 1.34, plotted against t/ N. Note that 1.32 appears to be an upper bound. 

A that gave the lowest maximum is 1.34. The plot of Figure 6.1 uses this value of\ 
and it justifies the following observation. 

OBSERVATION 1. The expected number of oracle queries required by the Boyer et 
al. algorithm with parameter A = 1.34 to find and verify a point from a target subset 
of size t from a domain of size N is at most l.32y'N/i. 

Now we can derive a performance bound for Diirr and H¢yer's algorithm. This 
is similar to and extends the result in [8]; the main difference is in our treatment of 
the coefficient of the order bound. Also we correct another technical error in their 
argument, which is pointed out in our proof below. 

THEOREM 6.2. Assume the validity of the above observation. Let 1 :::; s :::; N 
and assume that there are s points in the domain with strictly better ob.fective function 
values than the remaining N -s points. The expected R-umber of oracle queries required 
by Durr and H¢yer's algorithm with A = 1.34 to find one of these s points is bounded 
above by 

N 1 
l.32VN L Jr=l' r r -1 

r=s+l 

Note that, if s is small compared to N, then the above bound approximately 
equals 2.46~. 
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Proof. Assign the domain points ranks from 1 to N, giving the best point rank 
1 and so forth. Where several points have equal objective function value, break ties 
arbitrarily, but let l(r) be the least rank and h(r) the greatest rank among the points 
with the same value as the rank r point. (In the distinct values case we will have 
l(r) = h(r) = r for each r E {1, ... , N}.) 

Since Diirr and H0yer's algorithm will move through a succession of threshold 
values with rank above s before finding the desired target point, the bound on the 
expectation in question is given by 

N 

(6.2) L p(N, r)B(N, l(r) - 1), 
r=s+l 

where p(N, r) is the probability of the rank r point ever being chosen and B(N, l(r)-1) 
is the expected number of iterations required by the Boyer et al. algorithm to find 
and verify a point from a target subset of size l(r) - 1. 

The probability p(N, r) = 1/h(r). This is demonstrated in the proof of Theorem 1 
in [17], and in Lemma 1 of [8]. Also, by the observation on page 9, B(N, l(r) - 1) :';'.: 
1.32}N/(l(r) - 1). 

In the distinct values case, substitution of the above value for p(N, r) and bound 
for B(N, l(r) - 1) = B(N, r - 1) into (6.2) gives the theorem immediately. In [8] it 
is claimed for the case of repeated objective function values that since the equation 
p(N,r) = 1/r becomes the inequality p(N,r) :';'.: 1/r, the bound still holds. This 
argument ignores that the value of B(N, l(r) - 1) increases (for a given r) when 
repeated values are allowed. Nevertheless, the theorem holds as follows. Consider 
r E {1, ... , N} with l(f) < h(f). We examine just that part of the summation in (6.2) 
with index going from l(f) to h(f). 

h(f) h(f) 1 
L p(N, r)B(N, l(r) - 1) :';'.: l.32v'N L ff(;;\1 

r=l(f) r=l(f) h(r)y l(r) - 1 

~---h(f) 1 
= l.32)N(l(f) - 1) 2=_ h(f)(l(f) _ l) 

r=l(r) 

~,.--,---- h(f) 1 
= l.32)N(l(f) - 1) L r(r _ l) 

r=l(f) 

h(f) 1 
:';'.: i.32v'N :L r::-1. 

r=l(f) ryr - 1 
D 

REMARK 1. Diirr and H0yer's method can be viewed as an implementation of 
Pure Adaptive Search [17], requiring no more than l.32(N/t) 112 iterations in expec­
tation to find an improvement, when t is the cardinality of the improving region. 

7. A new method. In this section we propose an explicit sequence of integers 
to be used as the GAS rotation count sequence. This gives a special case of GAS that 
can be identified with an inhomogeneous Markov chain having states £1, ... ) eK. 

For this paper we have sought an efficient choice for the rotation count sequence 
used in GAS. This has led us to the special case of GAS arising when the sequence 
(rn) is fixed in advanced, and determined by the following pseudocode. Note that the 
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sequence of rotation counts it produces is independent of the particular optimisation 
task; its first 33 entries are 

(7.1) 
o,o,o,1,1,0,1,1,2,1,2,3,1,4,5,1,6,2,1,9, 

11, 13, 16, 5, 20, 24, 28, 34, 2, 41, 49, 4, 60, .... 

Here is the pseudocode: 

Rotation Schedule Construction Algorithm 
1. Initialise u to be the polynomial u(y) = y. 
2. For i = 1,2, .. ., do: 

(a) SetEu=l-f0
1

udy. 
(b) Set b' = 0. 
(c) For r = 0, 1, ... until Eu/(r + 1) :S: 2b', do: 

i. Set v = u + y J:(gr(t)/t) du(t). 

ii. Set Ev = 1 - J0
1 

v dy. 
iii. Set b =(Eu - Ev)/(r + 1). 
iv. If b > b' then: 

A. Set r' = r. 
B. Set b' = b. 
C. Set v' = v. 

(d) Set u = v'. 
( e) Output ith rotation count r'. 

The resulting sequence (7.1) is heuristically chosen to maximise a benefit-to-cost 
ratio, denoted bin the pseudocode, at each GAS iteration. The reader can verify that 
u and Eu are the cumulative distribution function and expectation, respectively, of the 
improving fraction of the domain, after the first i-1 iterations of the GAS algorithm. 
The symbols v and Ev denote the corresponding cumulative distribution function 
and expectation after a further GAS step of r rotations. The benefit is (somewhat 
arbitrarily) taken to be the expected decrease in the improving fraction of the domain, 
Eu - Ev. The cost is r + 1, where r is the number of rotations chosen, as per the axiom 
on page 4. The inner loop at (2c) terminates since even if 9r were identically one, the 
expected improving region measure would halve. Thus, higher rotation counts need 
not be considered once we pass the point where half the expected improving region 
measure, divided by the cost, exceeds the current best found benefit-to-cost ratio. 

8. Computational results. In Section 6 we presented a corrected version of 
Diirr and H¢yer's demonstration of a performance bound for their algorithm. This 
readily establishes the 0( JNTS) complexity, inherited from Grover's algorithm. How­
ever, even the improved coefficient of 2.46 suggested by Theorem 6.2 is based on an 
upper bound, and may be a poor indicator of the algorithm's actual performance. In 
this section we study the methods described in Sections 6 and 7 using numerical sim­
ulation. Our aim is twofold: to tune the parameter ,\ appearing in Diirr and H¢yer's 
algorithm, and then to compare their tuned method against the method of Section 7. 

Our simulations will determine the length of time each algorithm requires to 
sample a point in a target region, constituting a certain proportion of the domain. 
Intuitively, the algorithm terminates upon finding a value equal to or lower than the 
quantile determined by a proportion a. 
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Recall the proportion of the domain with value lower than or equal to ei is 
Pi. More precisely, we specify an intended quantile proportion CTnominal and set 
k = min{j : Pi ;::: CTnomina1}. We require the algorithm to find a point with value 
less than or equal to ek. The target set is 1-1 ( { e 1 , e2 , .. ., ek}). Let s be its cardi­
nality. So a= Pk= s/N and gives the quantile the algorithm will find. Note that it 
is the measure under 7r of {el, £2, •.. , ek}. It may be inevitable that a and CTnominal 

differ since it can happen that Pk-l < CTnomlnal <a= Pk· 
Thus the quantity a is often unknown in practice, and is a "global" piece of in­

formation. The dependence of performance on global information is unavoidable [14], 
but we will see that for certain methods, the dependence is primarily on a. For the 
rest of this paper we assume a is close to CTnominal. 

Methodology. For the performance of either algorithm under consideration, the 
distribution of objective function values influences performance only via the range 
measure 7r. Our primary focus here will be the case where 7r is uniformly distributed 
over a finite set of distinct function values. Without loss of generality we can take this 
finite set to be {1, ... , K}. For example to explore seeking the best 1 % of the domain 
under a uniform range distribution (i.e. CTnominal = 0.01), using K = 100 will be fairly 
representative. At the end of this section we look briefly at other distributions. 

To compare the algorithms, we plot their performance graphs (11] which relate 
practical computational effort to the probability of finding a point in the target set. 
The performance graph is simply the cumulative distribution function of the effort to 
success, defined as the number of objective function evaluations before a point in the 
target set is sampled. We compute these with Matlab, using standard techniques for 
Markov chains and stochastic processes. 

Tuning A. The observation on page 9 suggests the parameter choice .\ = 1.34 
for Diirr and H¢yer's algorithm. Numerical experimentation agrees with this choice. 
Figure 8.1 shows the performance graphs, seeking 13 (K = 100) or 0.23 (K = 500) 
of the domain, of Diirr and H¢yer's algorithm using a selection of values of A ranging 
from 1.05 to 30, and including the values 8/7 and 1.34 suggested by (2] and Figure 6.1. 
Performance deteriorates slowly outside of the range from 1.34 to 1.44, but within 
that range there is no visible performance gradient. The value of A may become more . 
important for smaller values of a, but for the remainder of this section we shall use 
the value.\= 1.34. 

Comparing the new method to Diirr and H!ilyer . Having settled on the 
parameter value A = 1.34 for Diirr and H¢yer's method, we can compare it to the 
method of Section 7. Figure 8.2 shows that, in the two cases studied, the new method 
dominates that of Diirr and H¢yer. For instance, to sample a target comprising 0.23 
of the domain with probability 90% or more, Diirr and H¢yer's method requires more 
than 100 units of effort, whereas the new method requires only 79 (and in fact it then 
samples the target with probability 963). 

Note also, in the two situations depicted in Figure 8.2, the estimated bound of 
2.46VNTS on the expected time required by Diirr and H¢yer's algorithm, mentioned 
following Theorem 6.2, amounts to 24.6 and 55.0. While the true expectations cannot 
be computed from any finite portion of the performance graphs, these figures do 
appear visually to be in approximate agreement with the numerical results. 

Nonuniform range distributions. Until now in this section we have assumed 
a uniform range distribution. This corresponds to the assumption of injectivity of the 
objective function, that is, that different points in the domain map to different values 
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FIGURE 8.1. Performance graphs for Durr and H11yer's algorithm for various values of the 
parameter ..\ and two domain sizes. The third graph repeats the second with a finer mesh of ..\ 
values. 

in the range. In many cases, however, for instance in combinatorial optimisation, 
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FIGURE 8.2. Performance graphs comparing Durr and Hpyer's method to the method of Sec­
tion 7, for a uniform range distribution. 
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FIGURE 8.3. Performance graphs comparing Durr and H¢yer's method to the method of Sec­
tion 'l, for a nonuniform range distribution. 

there may be a unique optimum, or a small number of optimal domain points, but 
large sets of the domain sharing values in the middle of the range; this results in a 
nonuniform range distribution. 

Experimentation indicates that nonuniformity of the range distribution improves 
the performance of both methods under study. To produce Figure 8.3, we randomly 
created five stochastic vectors of length 20 with first element 0.002 (the remainder of 
each vector was a point uniformly distributed in [O, 1)19 and then scaled to sum to 
0.998), and simulated the performance of both methods. Compare this with the last 
plot of Figure 8.2. Nonuniformity has improved the performance of the method of 
Section 7 somewhat. However, a greater improvement in Diirr and H¢yer's method 
has allowed it to overtake the method of Section 7. Here, for most of the five sample 
range distributions, Diirr and H¢yer's method reaches the target with probability 90% 
or more after 61 or fewer units of effort, whereas the new method now requires 67. 

9. Conclusion. This paper outlines the significance of Grover's quantum search 
algorithm (with its performance characteristics implying 0( y'iTfi) performance taken 
as an axiom) for global optimisation. Grover search can provide the basis of imple­
menting adaptive global optimisation algorithms. One example is an algorithm of 
Diirr and H¢yer's introduced as a method for finding minimum values in a database. 
An improved analysis of Diirr and H¢yer's algorithm suggests increasing its parameter 
.\from 8/7 to 1.34. Also, that algorithm fits the Grover Adaptive Search framework, 
and thus is applicable to the more general global optimisation problem. A new algo­
rithm within the same framework is proposed in Section 7. Our numerical experiments 
in Section 8 show that the algorithms have similar performance. The method pro­
posed in Section 7 had its parameters tuned for the distinct objective function value 
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case, and shows superior performance to that of Durr and H¢yer's in that case. Ou 
the other hand, Durr and H¢yer's method (with A= 1.34) overtakes the new method 
if there is a great deal of repetition in objective function values. 

A final comment concerning implementation on a quantum computer. This is 
work mainly for computer engineers of the future, but some indications are known 
at the present time. A fully functional quantum computer would be able to evaluate 
an objective function in just the same way as a conventional computer, by executing 
compiled code. A technical requirement to control quantum coherence, which we have 
not mentioned previously, is that the gates must implement reversible operations. The 
code implementing the objective function must be run in the forward direction and 
then in the reverse direction. This obviously at most doubles the computational effort 
for a function evaluation compared to a conventional computer. 
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