
Training in Massive MIMO Systems

Wan Amirul Wan Mohd Mahyiddin

A thesis submitted for the degree of

Doctor of Philosophy

in

Electrical and Electronic Engineering

University of Canterbury

New Zealand

2015





Abstract

Massive multiple-input multiple-output (MIMO) systems have been gaining interest re-

cently due to their potential to achieve high spectral efficiency [1]. Despite their po-

tential, they come with certain issues such as pilot contamination. Pilot contamination

occurs when cells simultaneously transmit the same pilot sequences, creating interfer-

ence. Unsynchronizing the pilots can reduce pilot contamination, but it can produce

data to pilot interference. This thesis investigates the impact of pilot contamination

and other interference, namely data to pilot interference, on the performance of finite

massive MIMO systems with synchronized and unsynchronized pilots. Two unsynchro-

nized pilot schemes are considered. The first is based on an existing time-shifted pilot

scheme, where pilots overlap with downlink data from nearby cells. The second time-

shifted method overlaps pilots with uplink data from nearby cells. Results show that if

there are small numbers of users, the first time-shifted method provides the best sum rate

performance. However, for higher numbers of users, the second time-shifted method pro-

vides better performance than the other methods. We also show that time-synchronized

pilots are not necessarily the worst case scenario in terms of sum rate performance when

shadowing effects are considered.

The wireless channel can be time and frequency varying due to the Doppler effect from

mobile user equipment (UE) and a multipath channel. These variations can be simulated

by using a selective channel model, where the channel can vary within the coherence

block in both time and frequency domains. The block fading channel model approxi-

mates these variations by assuming the channel stays constant within a coherence block,

but changes independently between blocks [2]. Due to its simplicity, the block fading

model is widely used in massive MIMO studies [3–8]. Our research compares the impact

of block fading and time-selective fading channel models in massive MIMO systems.

To achieve this, we derive a novel closed form sum rate expression for time-selective

channels. Results show that there are significant differences in sum rate performance

between these models.

In addition to time variation from Doppler effect, the channel can also experience fre-

quency variation due to delay spread from multipath signal propagation. The combi-

nation of time and frequency selective channels can be described as a doubly-selective

channel. Hence, the sum rate expression for time-selective channels can also be extended
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to doubly-selective channels. We investigate two types of pilot sequences, namely con-

stant amplitude pilots and zero padded pilots in doubly-selective channels. Results show

that a zero padded pilot has a better sum rate performance than a constant amplitude

pilot for a wide range of antenna numbers and time-frequency correlation values. Two

different type of training optimization, namely average optimum training and adaptive

optimum training, are investigated. Both methods shows similar sum rate performance.

In addition, we also study the effect of increasing frequency reuse and the pilot reuse

factor. Even though these methods can reduce intercell interference, they also result to

lower sum rate due to inefficient use of time-frequency resources.
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Chapter 1

Introduction

The rapid growth of users in wireless cellular networks along with the greater usage of

data for multimedia consumption demands a higher rate of data transmission. Current

trends show that these demands grow exponentially with time and analysts predict that

the traffic size can potentially increase by around 50% per year [9]. Keeping up with

these demands will be an uphill task for wireless operators as the spectrum bandwidth

becomes a scarce and expensive resource [10]. Wireless issues such as loss of performance

from fading and interference further complicate providing higher throughput [11]. To

overcome these challenges, various technologies are being investigated [12–16].

Multiple antenna systems, commonly known as MIMO systems, have been shown to

increase system capacity [18–22] and small systems are used in the latest wireless stan-

dards, such as WiFi [11]. The basic idea of MIMO is to use more than one antenna at

the transmitter and receiver in a wireless transmission system [17]. Multipath propaga-

tion of radio signals from transmitter to receiver results in diverse spatial characteristics

[23]. MIMO exploits this property to enhance the transmission performance using di-

versity schemes or increases the capacity of the system through spatial multiplexing.

Diversity can be produced using space-time coding to improve reliability and quality of

wireless transmission [24, 25]. Spatial multiplexing increases transmission rate by using

multiple independent streams of data in the same time-frequency resources [11]. MIMO

has become an important part of wireless technology standards such as WiFi, World-

wide Interoperability for Microwave Access (WiMAX) and 3GPP Long-Term Evolution

(3GPP-LTE) [11].

1
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The improvements provided by conventional MIMO systems are not enough to keep up

with the rapid increases of future traffic. Hence, massive MIMO systems have received

significant attention recently due to their ability to achieve high spectral efficiency on a

much greater scale than conventional MIMO [1]. The concept of massive MIMO comes

from the mathematical framework which demonstrates that the total capacity gain from

spatial multiplexing can be increased simply by adding antennas to the transmission

system [2]. It was shown in [26] that under certain conditions, it is always beneficial

to add more antennas at the base station (BS). The additional antennas enable the

transmission energy to be focused into much smaller target areas which results in higher

throughput and reduces interference in other area [27]. Such findings have encouraged

interest in studying the effect of increasing the number of antennas to a massive scale.

A field test in [27] has shown that it is possible to use more than 100 antennas at the

BS.

1.1 Massive MIMO issues

Since MIMO can transmit multiple streams of independent data using the same fre-

quency resource at the same time, there will be inevitable signal overlapping when the

data arrives at the receiver. Channel state information (CSI) is a vital part of MIMO as

it enables us to resolve the overlapped signals by performing equalization at the receiver

or beamforming at the transmitter [37]. The capacity in (2.12) assumes that there is

no CSI at the transmitter, but perfect CSI is available at the receiver. Practically, CSI

will not be perfect because it is obtained through channel estimation. For example, in

a training-based MIMO system, CSI is obtained by transmitting training sequences or

pilots, which will then be used to estimate the CSI. In the multicell scenario, UEs from

different cells may use the same pilot which results in pilot contamination [4]. The prob-

lem basically arises when the number of orthogonal pilot sequences available for users is

limited due to a finite coherence time. The overhead data from pilot training will affect

the channel capacity and it has been shown that the optimum number of pilots in one

coherence frame is equal to the number of transmit antennas [38].

Since the length of pilot sequences is limited, there will be a need for pilot reuse which

results in pilot contamination. Figure 1.1 illustrates the occurrence of pilot contami-

nation where two users from different adjacent cells simultaneously transmit the same
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Cell boundary

User 2

User 1
Base station 1

Base station 2

Figure 1.1: Pilot contamination.

pilot sequence which is received by both of the BSs. As a result, transmissions from

one user in one cell cannot be distinguished from those coming from a different cell.

The effective interference from pilot contamination scales linearly with the number of

antennas [4] and this limits the performance of massive MIMO. In [39] it is shown that

the problem of pilot contamination only exists due to the usage of inappropriate linear

channel estimation. Hence, a scheme based on blind pilot decontamination is proposed

to eliminate the pilot contamination effect. However, [27] argues that under specific

power control assumptions, pilot contamination is still a problem that must be dealt

with.

In addition to pilot contamination, there are several other issues related to massive

MIMO. Since there can be hundreds of antennas in a massive MIMO system, naturally

there will be concerns regarding the practicality of such a system. For example, one of

the main concerns is computational complexity. A massive number of antennas means

that there are a large number of signals that need to be processed. For an optimal

signal detector, the computational complexity grows exponentially with the number of

transmitters [40]. For precoding, a non-linear method can provide better performance

than linear precoding, but non-linear signal processing is harder to implement in massive

MIMO due to computational complexity [1]. However, results in [4] show that linear

precoders such as matched filter (MF) and zero forcing (ZF) can achieve near optimal
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performance when the number of antennas becomes very large. Therefore, the issue

of calculation complexity can be handled by using simple signal processing tools such

as linear detectors and precoders which provide reliable performance in massive MIMO

[41]. Therefore, this thesis will use a simple processing tool, namely MF, to recover the

data signal.

Another issue that may arise when dealing with large numbers of antennas is energy

consumption. This comes from the fact that a power supply is needed for each one

of the hundreds of antennas to transmit the radio signals. However, results from [5]

have shown that as the number of antennas increases, the amount of power per unit

transmission rate is reduced. Therefore, massive MIMO can have beneficial consequences

in terms of power consumption. A practical issue that may also arise is the construction

cost of such a large antenna system. In conventional MIMO, high quality antennas

are used in order to avoid antenna failure, which would result in a significant loss of

performance. This means that each antenna can be expensive to build. Fortunately, the

high quality antenna criteria can be relaxed in massive MIMO systems due to the law

of large numbers, which means that massive MIMO has a greater tolerance to antenna

imperfection [42]. In addition, energy consumption per antenna is significantly lower

than conventional MIMO. This means that we can use cheaper materials to build the

low power antennas. Another concern for massive MIMO systems is that the total

physical size of the array may become very large. The antennas are required to be

spaced at a certain distance in order to avoid mutual coupling and antenna correlation.

This requirement can be a problem if there are hundreds of antennas at the BS. However,

a field test in [33] has shown that massive MIMO performance can be achieved while

maintaining the physical size within a practical limit.

To summarize, despite its potential, massive MIMO also comes with several issues such

as pilot contamination, computational complexity and energy consumption. Although

various studies have given valid potential solutions to these issues, pilot contamination

are still a limitation to massive MIMO systems. Hence, massive MIMO is a work in

progress and further improvement can still be made.
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1.2 Problem statements

As discussed in 1.1, a major limiting factor with the training schemes in massive MIMO

is pilot contamination [1]. Various detailed studies have been done to examine this issue

[1, 4–8]. In [1, 4], the worst case scenario is assumed to be when adjacent cells send

the same pilot sequence at the same time. To avoid the problem of synchronized pilots

between neighboring cells, [3] proposed a time-shifted pilot method, where some cells

send downlink data while others transmit pilots. Although the method can significantly

improve the transmission rate, the analysis in [3] is based on the assumption of an

infinite number of antennas at the BS. As the number of antennas goes to infinity,

the interference from different cell groups during data transmission becomes negligible

and the rate performance can be overestimated. In the case of a limited number of

antennas at the BS, we cannot ignore the impact of the aforementioned interference on

the transmission performance. Therefore, we aim to analyze the effect of massive, but

finite MIMO systems on the time-shifted performance.

Another issue that arises when designing the channel training is related to the channel

models that are used to analyze the performance of massive MIMO. For a moving user

equipment (UE), the channel may be time varying due to the Doppler effect. The

channel may also experience frequency variation due to different delays in the multipath

channel. In order to simulate the time and frequency varying channel, researchers often

use a block fading model which simplifies the channel selectivity by assuming the channel

to be constant within a coherence block and to vary independently from block to block.

The block fading model is also widely used in massive MIMO research [4–7] as it can

greatly simplify analysis. Since the block fading model is an approximation of the

selective channel environment [2], training optimization using a block fading model may

not be accurate, such as in the case of high speed UEs. Therefore, our research considers

the channel selectivity in order to design the training sequence.

1.3 Thesis contributions

As discussed in the problem statements, the original time-shifted pilot research [3] only

analyzed the performance of the method using infinite number of antennas. Therefore,

this thesis aims to investigate the impact of finite number of antennas on the time-shifted
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method. To achieve this, we have derived a novel closed form lower bound ergodic sum

rate for the time-shifted methods with finite number of antennas. The original time-

shifted pilot method overlaps the uplink pilot with downlink data from other cells. In

this thesis, we also investigate another variation of time-shifted pilot method where the

uplink pilot is overlapped with uplink data from different cells. The closed form lower

bound ergodic sum rate is also derived for this time-shifted method. So far, there has

been no other research, which provides detailed sum rate expressions and performance

comparisons of the two time-shifted methods.

Another issue mentioned in the problem statements is the channel model. Most of

recent works on massive MIMO analyze its performance using the block fading model

[4–7]. However, as we discussed in the problem statement, the block fading is just an

approximation of selective fading and may not provide accurate performance analysis. To

provide more accurate analysis, this thesis has derived a novel closed form lower bound

ergodic rate for the time selective channel. The key contribution of this investigation is

that we have proven there are significant differences between sum rate of that obtained

using the block fading model and selective fading model. In addition, we extend the

sum rate expression of the time selective model to doubly selective model in multicell

scenario. Based on the sum rate derivation, we are able to analyze optimal training size

in both time and frequency domain.

1.4 Thesis outline

The outline of the thesis is as follows:

In Chapter 2, we provide a general discussion of the background model and assumptions

we use throughout this thesis. These are mainly related to the physical layer aspects of

the transmission such as the channel model and multiple antenna systems.

In Chapter 3, we analyze the impact of pilot contamination and other interference,

namely data to pilot interference, on the performance of finite massive MIMO systems

with synchronized and unsynchronized pilots. Two unsynchronized pilot schemes are

considered. The first is based on an existing time-shifted pilot scheme, where pilots

overlap with downlink data from nearby cells. The second time-shifted method overlaps

pilots with uplink data from nearby cells. Results show that if there are small numbers
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of users, the first time-shifted method provides the best sum rate performance. However,

for higher numbers of users, the second time-shifted method has advantages compared to

other methods. We also show that a time-synchronized pilot is not necessarily the worst

case scenario in term of sum rate performance when shadowing effects are considered.

In Chapter 4, we investigate the performance of massive MIMO systems in time-selective

channels using the first order Gauss-Markov Rayleigh fading channel model. We derive

a closed form achievable rate for time-selective channels and provide a proof that the in-

tracell interference effect in time-selective channels with constant amplitude (CA) pilots

does not diminish in the asymptotic case. We show that there is a significant difference

between the sum rate obtained using block-fading and time-selective models. We also

show that the optimum training for block-fading may not be optimal for a time-selective

channel, particularly for large numbers of antennas at the BS.

In Chapter 5, we investigate the performance of massive MIMO systems in time and

frequency selective channels. A novel closed form achievable rate is derived for the

channel model. We also compare the transmission performance of two different pilot

sequences, a constant amplitude pilot and a zero padded pilot. The results show that in

general, as the number of antennas increases, the optimum training block size and spatial

multiplexing gain increase. Results also show that a zero padded pilot has a better sum

rate performance than a constant amplitude pilot for a wide range of antenna numbers

and time-frequency correlation values. This chapter also studies two different training

optimization methods which are adaptive optimal training and average optimal training.

Results show that both methods have a similar sum rate performance. In addition, we

study the effect of increasing frequency reuse and pilot reuse factor. Despite their ability

to reduce intercell interference, these methods can lower the sum rate due to inefficient

use of time-frequency resources.

In Chapter 6, we provide overall conclusions for our work. This chapter also includes

possible future research directions. Specifically, we can extend our research to include

antennas spatial correlation and milimeter wave. We can also study the impact of cell

radius and coding schemes on the transmission performance.
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Chapter 2

Background model and

assumptions

Our research relies on mathematical tools to analyze the physical layer of wireless com-

munication systems. Hence, in this chapter, we provide background details on the models

and assumptions that will be applied throughout this thesis. Information on wireless

standards and parameters that are applied in this research are also provided in this

chapter, such as the channel and path loss models, channel estimation, MIMO systems,

multicell scenarios and orthogonal frequency-division multiplexing (OFDM) systems.

2.1 Channel model

A wireless channel is a propagation medium linking the transmitter and the receiver

[11, 24]. It is a vital part of determining the performance of wireless communication

systems in a given environment. A radio wave can be reflected or diffracted from physical

obstructions between transmitter and receiver such as vehicles, trees and buildings. As a

result, the same signal may arrive at the receiver from a number of different propagation

paths. In this condition, the wireless channel undergoes multipath fading, as illustrated

in Figure 2.1 for a single-input single-output (SISO) channel. Multipath fading can be

represented using an impulse response between transmitter and receiver [32]. Due to

the multipath fading, a wireless channel may experience variation across time, frequency

and spatial domains. Such channel variation is commonly categorized into two types,

9
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Transmitter
Receiver

Figure 2.1: Multipath signal propagation from transmitter to receiver in a SISO
channel.
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Figure 2.2: Combined path-loss, shadowing (large scale fading) and multipath (small
scale fading) versus distance (d) [32].

which are large scale fading and small scale fading [24]. An example of the combination

of large and small scale fading is shown in Figure 2.2. The general form of channel model

which combines these two types of channel can be expressed as [4]

g =
√
βh, (2.1)

where β is due to large scale fading and h is the small scale fading value.
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2.1.1 Large scale fading

Large scale fading is a signal power variation due to distance decay and shadowing [24].

Distance decay occurs when a mobile moves further from the BS which results in the

power at the receiver experiencing a geometric decay. Shadowing is when the signal is

obstructed by large objects such as buildings. Large scale fading is usually assumed to

be time, frequency and space independent within a small scale range (for example, in the

range of ten by ten wavelengths [11]). The value of β can be determined using various

path loss models [11]. We generate β using the simple model defined by [5]

β = zδ−γ , (2.2)

where δ is the distance between the transmitter and receiver normalized to the inner

radius of a cell [6] and γ is the exponential decay factor. z is a shadowing variable which

has a log normal distribution, with z = 10
x
10 , where x ∼ N (0, σ2

s ).

2.1.2 Small scale fading

Small scale fading occurs when a radio signal from a transmitter arrives at a receiver from

multiple paths which results in electromagnetic wave superposition (constructive and de-

structive interference) [24]. The small scale fading is commonly modeled as Rayleigh

fading [23]. This model assumes that there is no dominant line of sight between transmit-

ter and receiver. The surrounding environment acts as multiple scatterers which enable

the signal to arrive at the receiver using multiple paths. This condition can occur in a

dense urban environment where the signal can be reflected, diffracted and attenuated

by many surrounding objects. A Rayleigh fading channel can be expressed as

h =
1√
2

(x+ iy) , (2.3)

where x and y are independent Gaussian variables with zero mean and variance one.

The complex valued h represents the amplitude and phase shift variation experienced

by a radio signal when propagating through multiple channel paths. Due to the fading

process, the value of h can vary across time, frequency and spatial domains. Time vary-

ing small scale fading happens due to the Doppler effect from a moving UE. Frequency

variation occurs due to signals arriving at the receiver with different delays due to the
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Figure 2.3: Time variation of small-scale fading power for a block fading channel and
a selective fading channel with 150 km/h UE speed.

multipath channel. Spatial diversity can be realized by using several antenna elements

separated in space, which is further discussed in Section 2.2. The variation of h across

these dimensions depends on the channel model and parameters.

2.1.3 Block fading channel and selective fading channel

Channel variation across the time and frequency domains can be represented by a con-

tinuous fading model such as Jakes’ model [28]. In order to simplify analysis, the con-

tinuous model is often discretized to a block fading model, which is useful for many

time-division multiple access (TDMA), frequency-hopping, or block-interleaved systems

[2]. This model approximates continuous fading by assuming that the channel stays

constant within a coherence block, but changes its value between blocks. Such an as-

sumption is practical for slow fading and sufficiently narrow channels. A coherence

block is the range in time and frequency domains where the channel is approximately

constant. The correlation between channel values within the coherence block is defined

to be above a certain limit [29]. Due to its simplicity, the block fading model is widely

used in massive MIMO studies [4–7]. A more accurate way to represent the channel

variation is using the selective fading model. In this model, the channel can vary within

the coherence block. Figure 2.3 shows examples of time variation of small scale fad-

ing power for a block fading channel and a selective fading channel for a UE with 150

km/h speed. The block fading channel is generated based on 50% coherence time [29],

which means that the channel correlation at two ends of the coherence time is 50%. The
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Figure 2.4: MIMO transmission through the channel H.

coherence time is determined by maximum Doppler shift spread fd, as follows [29]

TC ≈
0.423

fd
. (2.4)

The maximum Doppler shift depends on the UE speed, as follows

fd =
fcs

c
, (2.5)

where fc is the carrier frequency, s is the UE speed and c is the speed of light. For the

selective fading, the channel is generated based on Jakes model [28].

In this thesis, we are using both types of channel models. In Chapter 3, we use a

block fading model in the work on time-shifted pilots. In Chapter 4, we use both block

and time-selective fading models and provide comparison between these two models.

In Chapter 5, we use channel selectivity in time and frequency domains to study the

performance of two types of pilot sequence.

2.2 MIMO

An example of MIMO transmission is given in Figure 2.4. If there are nt transmit
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antennas and nr receive antennas, then the signals at the receiver can be written as

y = Hx+ v, (2.6)

where y is the received nr × 1 signal vector, x is the transmitted nt × 1 signal vector,

H is nr×nt channel matrix and v is the nr× 1 noise vector at the receiver. We assume

each element in H, x and v are independent and identically distributed (iid) complex

Gaussian.

To mathematically analyze the performance of this wireless system, researchers often

use channel capacity, which is an information-theoretical approach that was originally

developed by Claude E. Shannon for the additive white Gaussian noise (AWGN) channel

[30]. Channel capacity is a theoretical upper limit on data rate that can be transmitted

without error. The benefit of using channel capacity is that it enables us to obtain per-

formance analysis of a wireless system without having to go into the details of transceiver

design, or the coding and modulation schemes employed. This is done by assuming that

the code rate is capable of being adapted to its upper bound rate. Research shows

that near channel capacity performance is achievable using turbo coding schemes [31].

Channel capacity was originally applied to study a single link system [30] and has been

extended to analyze MIMO [18]. If we assume channel state information (CSI) is avail-

able at the receiver, but not at the transmitter. It can be shown that the instantaneous

channel capacity of the transmission in (2.6) can be expressed as

C = log2 det

(
Inr +

ρHHH

nt

)
bits/s/Hz, (2.7)

where ρ is defined as average SNR [18]. Following the derivation in [1], (2.7) is upper

bounded by min(nt, nr) · log
(

1 + ρmax(nt,nr)
nt

)
. This means the transmission capacity

scales linearly with min(nt, nr). This proves that multiple antennas can increase the

wireless transmission capacity.

2.2.1 Antenna spacing

MIMO systems depend on spatial diversity at the transmitters and the receivers to

improve the spectral efficiency. Ideally, the spatial signature between different antennas

is uncorrelated. However, practically, the performance of closely spaced antennas will
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be degraded by spatial correlation. A well known result for spatial correlation is given

by [28]

ρ = J0 (2πd/λ) , (2.8)

where d is distance and λ is carrier wavelength. This is based on Jakes’ model where

there are an infinite number of scatterers circularly surrounding the antennas. The

Bessel function property suggests that to achieve zero antenna correlation, the minimum

spacing distance between antennas must be set around 0.4 λ. Since appropriate antenna

spacing is required in order to ensure the correlation between antennas can be reduced,

it is important to make sure that the number of antennas is not so large that the physical

size of the antenna system is impractical. In this thesis, we set the number of antennas at

the BS between 50 and 500 while each UE has one antenna. If the carrier frequency is set

to 2 GHz, then the size of a 50/500 element BS array distributed in a square form with

0.4 λ equal spacing will be approximately 0.5/1.5 meters in width, which is quite large.

The physical size can further be reduced by distributing the antennas in a cylindrical

shape such as in [27]. We can also reduce the antenna spacing by increasing the carrier

frequency. However, radio signals with extremely high frequency may encounter various

issues such as high attenuation [34]. We assume that all the antennas are within a

coherence length. The coherence length can be approximated as L = c/B, where c is

speed of light and B is the bandwidth. For a 20 MHz bandwidth, the coherence length

is 15 meters. Since the wavelength for a 2 GHz carrier frequency is 0.15 meters, the

coherence length is much larger than the wavelength and this allows massive MIMO to

be implemented.

2.2.2 MU-MIMO

Conventional point-to-point MIMO only uses one user for the same time and frequency.

The specific type of MIMO that we use is a multiuser MIMO (MU-MIMO), which enables

spatial multiplexing transmission with more than one UE [35]. This method can also be

termed as space-division multiple access (SDMA). In this thesis, we define the number

of spatial multiplexed UEs as the number of UEs that use the same time-frequency

resources in a cell to perform parallel data transmission, where each UE has one antenna.

Keep in mind that the number of spatial multiplexed UEs is not necessarily the same as

the total number of active UEs in a cell. This is because there can be different groups
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of UEs that use different time-frequency resources (such as in the case of orthogonal

frequency-division multiple access (OFDMA)), which means that the total number of

UEs can be higher than the number of spatial multiplexed UEs.

2.3 Massive MIMO

Massive MIMO, which is also known as very large MIMO or large scale antenna system,

can use up to hundreds of antennas in the transmission. The rationale behind this idea

is that as the number of BS antennas increases, the spatial signature between different

UEs becomes less correlated [1]. In the case of Rayleigh fading [23], the channel between

different users of the same cell will become asymptotically orthogonal when the number

of BS antennas approaches infinity. This is due to the asymptotic of random matrix

theory starting to take place when the number of antennas grows large. The channel

orthogonality enables the separation of multiple parallel streams of transmitted data

with minimal error.

Referring to (2.6), each transmit antenna transmits an independent stream of data and

the receiver task is to recover all the transmitted data. The data from each transmit

antenna can be recovered at the receiver using a linear combiner which correlates a vector

with the received signal, wHy [36]. To recover transmitted data from n-th transmit

antenna (n-th element in vector x or xn), we can use matched filter (MF) equalization,

which is hHn
nr
y. hn is the n-th column vector of H and we assume the channel is known

at the receiver. Using (2.6), we can expand this operation as

hHn y

nr
=

hHn hnxn
nr︸ ︷︷ ︸

Desired signal

+

nt∑
i 6=n

hHn hixi
nr

+
hHn v

nr︸ ︷︷ ︸
Interference and noise

. (2.9)

hi is the channel vector between the i-th transmitter and the receiver. Assuming no

correlation between antennas, it can be shown that as nr approaches infinity, then

hHn hi
nr

→ 0 for i 6= n. This also applies to the noise term v. As the interferences

vanish due to the law of large numbers, the channel has achieved a state of favorable

propagation [1]. Consequently, the MF equalization in (2.9) becomes

lim
nr→∞

hHn y

nr
= xn. (2.10)
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Obtaining xn means that the transmitted data can be recovered without any error in the

asymptotic case. This proves that as the number of antennas at the receiver becomes

very large, the noise and interference diminish.

The potential of massive MIMO is also supported by channel capacity analysis. In [1]

it was shown that capacity bounds for MIMO systems can be simplified to

log2 (1 + ρnr) ≤ C ≤ min (nt, nr) · log2

(
1 +

ρmax (nt, nr)

nt

)
. (2.11)

The lower bound on capacity occurs when the channel matrix has rank 1 (such as in the

case of line of sight transmission) while the upper bound on capacity occurs when the

channel matrix is full rank and experiences favorable propagation. In [1], it is further

shown that when the number of receive antennas becomes much greater than the number

of transmit antennas, the instantaneous capacity when there is perfect knowledge of the

channel matrix, H, at the transmitter can be represented as

Cnr�nt = log2 det

(
Int +

ρ

nt
HHH

)
≈ nt · log2

(
1 +

ρnr
nt

)
. (2.12)

This matches the upper bound capacity in (2.11), which shows that having an excess of

receive antennas is a desirable condition.

2.4 Channel estimation

As discussed in Section 1.1, spatial multiplexing transmission requires the use of CSI.

This thesis uses a linear channel estimator where the received pilot signal is used to

obtain the CSI estimate. The pilot is transmitted periodically in order to update the

CSI estimate. If there are nt transmit antennas, nr receive antennas and a pilot length

of N , then the received signal during pilot transmission can be expressed as

Y = ΨH + V , (2.13)

where Y is the N ×nr received pilot matrix, Ψ is the N ×nt concatenated pilot matrix

from nt transmitters, H is the nt×nr channel matrix and V is an N ×nr noise matrix
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at the receiver. A common way to obtain the channel estimate from the received pilot

is to use a least squared (LS) estimate, as follows

ĤLS =
(
ΨHΨ

)−1
ΨHY , (2.14)

where the value of Ψ is set so that ΨHΨ = Inr . This can be achieved if pilot sequences

from each transmitter are orthogonal to each other and N ≥ nt. In the case of massive

MIMO systems with a large number of BS antennas, but a small number of total UE

antennas, estimation of the uplink channel will be straightforward because the length of

uplink pilot should be greater than or equal to the number of total UE antennas. For

downlink transmission, the BS will be the transmitter, which means that the length of

the downlink pilot needs to be greater than or equal to the number of antennas at the

BS to estimate the downlink channel. Since there can be hundreds of BS antennas in

massive MIMO systems, this means that a large pilot overhead is needed to estimate the

downlink channel. This is a problem since the large overhead means there will be fewer

time-frequency resources than can be used to transmit the data within the coherence

block. Even if we assume that the UEs manage to estimate the CSI, large information

feedback would be needed so that the BS could perform beamforming. This consumes

even more time-frequency resources.

2.4.1 Channel reciprocity

The problem of acquiring downlink CSI can be solved by using channel reciprocity, which

is a condition when the uplink channel is the same as the downlink channel. If a radio

signal is transmitted along a certain channel path, its reverse direction will also follow the

same path if it has the same frequency, thus creating the reciprocity condition [43]. This

means that channel reciprocity can occur in time division duplex systems (TDD), where

the uplink and the downlink signal use the same frequency. In the case of frequency

division duplex (FDD), downlink and uplink use different frequency bands which means

that channel reciprocity cannot be achieved in FDD. Using channel reciprocity, we can

make use of the estimated CSI from the uplink pilot to form a precoding matrix to

transmit the downlink data. Therefore, the overhead pilot length will remain the same

as the number of spatial multiplexed UEs. In addition, channel reciprocity makes the

CSI feedback unnecessary.
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An issue that arises in the channel reciprocity assumption is that the signal distortion

that originates from the front end hardware of the antennas will cause a channel mis-

match between uplink and downlink transmission [44, 45]. In [33], they propose to use

the indirect calibration method to achieve reciprocity in massive antenna systems. Field

tests in [33] show that this method is a practical solution for channel mismatch. Hence,

channel reciprocity is an applicable assumption in massive MIMO.

2.4.2 LMMSE channel estimation

In this thesis, we use linear minimum mean squared error (LMMSE) channel estimation.

LMMSE derives its concept from the minimum mean squared error (MMSE) approach

which aims to minimize the channel estimation error [46]. Since LMMSE is a linear

estimator, it is considered as a sub-optimal estimator compared to the MMSE estima-

tor. However, LMMSE provides a practical solution for channel estimation due to its

low computational complexity. In addition, LMMSE has near-optimal performance in

massive MIMO [41]. LMMSE and MMSE, both provide a channel estimate that is uncor-

related with the channel estimation error. This property is important to obtain the lower

bound ergodic rate [38]. If the initial channel information is obtained from the LS chan-

nel estimate in (2.14), then the LMMSE estimate can be defined as ĤLMMSE = WĤLS,

where W is a linear multiplier that minimizes the error. The channel estimation error

is E = H −WĤLS. This is minimized when it becomes orthogonal to ĤLS, meaning

E
[
EĤ

H
LS

]
= 0. This equality can be expanded as follows [47]

E
[
EĤ

H
LS

]
= 0

E
[(
H −WĤLS

)
Ĥ

H
LS

]
= 0

E
[
HĤ

H
LS

]
−WE

[
ĤLSĤ

H
LS

]
= 0

RHĤLS
−WRĤLSĤLS

= 0. (2.15)

Using (2.15) and ĤLMMSE = WĤLS, we can obtain the LMMSE channel estimate in

terms of ĤLS as [47]

ĤLMMSE = RHĤLS

(
RĤLSĤLS

)−1
ĤLS. (2.16)
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Figure 2.5: Hexagonal multicell structure.

This result will be used throughout the thesis. Note that in the case of a block fading

channels, the LMMSE estimate is equal to the MMSE estimate when the signal used to

estimate the channel at the receiver (i.e. the received pilot) has a Gaussian distribution

[5, 8].

2.5 Multicell system

We consider a multicell structure to analyze the impact of intercell interference on mas-

sive MIMO systems. We use hexagonal cells with each cell surrounded by 6 adjacent

cells, as shown in Figure 2.5. Each cell is set to have the same number of UEs and

same number of BS antennas. The UEs can be located at uniform random locations

within the cell [3] or at equal distance from the BS [6]. Each UE will belong to the cell

which has the biggest link gain (large scale fading) between the UE and the cell BS.

This is because UE cell allocation is determined from the power level between BS and

UE rather than the physical distance between them [11]. We use frequency reuse 1 (all

cells use the same bandwidth), which means there can be interference from all nearby

cells. We assume that the interference from outside the 7 cells has a negligible impact

on the middle cell in Figure 2.5. This is because the performance degradation mainly
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comes from interfering signals from the cell edge UEs. Since we use a pathloss exponent

decay of 3.8, the power from cell edge UEs outside the 7 cells is only 4% of the power

of cell edge UEs from inside the 7 cells. This is calculated based on the radius of the

7 cells being 2 times the radius of one cell. This means that the power ratio between

the two distances in the pathloss model without shadowing is (2/1)−3.8 ≈ 0.04. Hence,

the interference from outside the 7 cells is negligible compared to the interference from

adjacent cells.

2.6 OFDM system

In OFDM, the carrier bandwidth is divided into multiple narrow band subcarriers for

parallel streams of data transmission [11, 32, 48]. The narrow band allows the trans-

mission to handle frequency selectivity more effectively. OFDM achieves high rate data

by combining large numbers of subcarriers. For example, the number of subcarriers in

an LTE system can range from 128 to 2048. To avoid inter carrier interference, each

subcarrier is set to be orthogonal to each other. The orthogonality between subcarriers

is ensured by setting the subcarrier frequency to be a multiple of the lowest subcar-

rier frequency. Using the efficient FFT algorithm, the signals from the subcarriers are

summed to produce an OFDM symbol. Our research will analyze the transmission from

a time-frequency point of view, which is represented in Figure 2.6. Signals from each
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resource element are transmitted through a time-frequency channel model before arriv-

ing at the receiver. Each resource element is occupied with either pilot or data symbols.

Pilot symbols are a set of orthogonal sequences which are used to estimate the channel.

Data symbols are modulated signal which are represented as complex numbers. We

assumed that the data has a Gaussian distribution, which is an assumption needed to

obtain a lower bound on ergodic rate [8]. The arrangement and values of pilot and data

in OFDM depends on the training model to be used, which will be discussed in detail in

the following chapters. Note that in a standard wireless system, a cyclic prefix or guard

band is used to handle multipath delay more effectively. The cyclic prefix is a tempo-

ral period symbol that is added to each OFDM symbol to avoid symbol overlapping

from multipath delay. For simplicity, we exclude the impact of resource loss from using

the cyclic prefix. This assumption will not affect the performance comparison between

different transmission methods that use the same cyclic prefix length.

2.7 Summary

In this chapter, we provided background details on the models and assumptions that will

be applied throughout this thesis. Specifically, we discussed background information for

the channel model, MIMO system, massive MIMO, multicell scenario and OFDM.



Chapter 3

Time-shifted pilots in massive

MIMO

3.1 Introduction

As discussed in Chapter 1 and 2, pilot contamination is a major limiting factor in

massive MIMO because the interference does not diminish even when the number of

antennas becomes very large. In the case of a transmission that uses a linear channel

estimator, pilot contamination is an issue that must be dealt with [27]. In [1, 4], the worst

case pilot contamination occurs when neighboring cells send the same pilot sequence

simultaneously. To avoid the problem of synchronized pilots between adjacent cells, [3]

proposed a time-shifted pilot method, where some cells send downlink data while others

transmit pilots. Although the method can significantly improve the transmission rate,

the analysis in [3] is based on the assumption of an infinite number of antennas at the

BS. Using the time-shifted method along with a certain cell group arrangement, all the

interference from the nearest cells can be eliminated in the asymptotic case. As the

number of antennas goes to infinity, [3] shows that the interference from different cell

groups during data transmission becomes negligible and the rate performance can be

overestimated.

In the case of a limited numbers of antennas at the BS, we cannot ignore the impact of the

aforementioned interference on the transmission performance. Therefore, in this chapter,

we study the effect of massive, but finite MIMO systems on the time-shifted performance.

23
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We derive novel closed form expressions for downlink and uplink transmission rates

using MF for two different time-shifted methods. The closed form achievable rate for

a finite number of antennas using estimated channels has been analyzed in massive

MIMO systems [5–8]. These achievable rate derivations are based on [38], where the

lower bound rate is obtained by assuming the interference behaves like Gaussian noise.

We use a similar concept to obtain a closed form achievable rate for the time-shifted

pilots in [3] with a finite number of antennas. In [49] the time-shifted method from [3]

is studied with a zero-forcing scheme.

This chapter also investigates another variant of the time-shifted method, where the

uplink pilots overlap with uplink data from other cells instead of downlink data from

other cells. The impact of uplink data interference on pilots was briefly analyzed in

[5], and said to have a similar effect as pilot to pilot interference (time-synchronized

pilot). Subsequent works on massive MIMO [52–54] also use similar assumptions as

in [5] regarding the impact of uplink data interference on the pilots. The assumptions

arising from these works are built on a relatively brief analysis and provide no detailed

sum rate derivations and performance comparisons of the time-shifted methods. Hence,

in this chapter, we provide a more complete analysis of the time-shifted methods by

deriving novel closed form rate expressions for time-shifted methods with finite number

of antennas. The rate expressions allow us to obtain significantly faster results compared

to Monte Carlo simulation and provide insights into performance. Specifically, the results

show that time-shifted pilots with downlink data overlap perform the best when there

are a small number of UEs while time-shifted pilots with uplink data overlap has the

advantage when there are high numbers of UEs. We also show that time-synchronized

pilots are not necessarily the worst case scenario in terms of sum rate performance.

The rest of this chapter is arranged as follows. Section 3.2 provides the general system

model. Section 3.3 describes the time-shifted pilot method with downlink data overlap

and Section 3.4 describes the time-shifted pilot method with uplink data overlap. Both

sections 3.3 and 3.4 investigate channel estimation, downlink transmission rate and

uplink transmission rate. The time-synchronized method is discussed in Section 3.5.

This is followed by numerical results in Section 3.6 and a summary in Section 3.7.
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3.2 System model

We assume an OFDM system, where each subcarrier has a narrow bandwidth such

that we can assume flat fading transmission. Each BS has M antennas and each UE

has one antenna. The number of coherent subcarriers is N . If we limit the discrete

length of the pilot in the time domain as τ , then the total length of pilot sequences

in the time-frequency domain is K = τN symbols. K is also the maximum number

of orthogonal pilot sequences, which means there can be K UEs performing parallel

transmission using the same time-frequency resource through spatial multiplexing [4].

Since K is proportional to N , this implies that coherence in the frequency domain can

be used to achieve a higher spatial multiplexing gain.

We consider a block fading channel model with a frame duration of T symbols. Each

frame includes uplink pilot, downlink data and uplink data transmission within a time-

coherent channel block. We use a similar Rayleigh fading channel model as that discussed

in Chapter 2, but extended to include cell and UE numbers. We define the channel vector

between the k-th UE in cell i and the BS in cell l as gilk =
√
βilkhilk. hilk is a 1 ×M

small-scale fading vector where hilk ∼ CN (0, IM ) and βilk is a time-invariant large-scale

fading coefficient that depends on the path-loss model [3]. We assume all UEs have the

same average transmit power and all BSs have the same average transmit power. All

UEs and BSs have the same average noise power.

Due to the large-scale of massive MIMO channel information, it is difficult for a single

antenna UE to obtain instantaneous channel information when the coherence time is

limited [41]. However, the BS can estimate the channel by using the received uplink pilot

from the UE. The BS can use the estimated channel not only to equalize data received

from the UE during uplink data transmission, but also to beamform data from BS to

UE during downlink data transmission. This assumes channel reciprocity, where both

uplink and downlink channels are the same. Field tests in [33] show this is achievable

in massive MIMO using TDD. We use MF for precoding and equalization. We consider

any signal that originates from a different cell is treated as interference.
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A3

A3A3

A2 A2

A2

A1

Figure 3.1: Cell group arrangement for 7 cell system.

3.3 Time-shifted pilot with downlink data overlap

In this section, we consider the time-shifted pilot arrangement of [3], where the cells are

arranged according to groups and pilots overlap with downlink data. We refer to this

as TShdown (and superscript TD in equations). Since [3] assumed an infinite number

of antennas, the novelty of this section is the derivation of the closed form ergodic sum

rate for a finite number of antennas. We consider 3 cell groups, denoted A1, A2 and

A3. Cells from different groups are often adjacent or close to each other, which means

they can interfere with each other’s signals. As shown in Figure 3.2, each group is set

to have an uplink pilot interval that does not interfere with the pilot from other groups,

but interferes with the downlink data from other groups. In this arrangement, pilot

contamination from different cell groups can be avoided, but pilot contamination from

the same cell group can still occur. An example group arrangement for a 7 cell system

is shown in Figure 3.1. For group A2 and A3, the precoding vector is obtained using

the channel estimate from the previous frame. Due to the block fading assumption, we

assume the coherence block for group A2 and A3 is from the beginning of the pilot in

the previous frame to the beginning of the pilot in the current frame. Note that the

downlink data duration is twice as long as the pilot duration. However, it is still possible

to have longer data duration, as long as there is no pilot overlap between different cell
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Group 

A1 

Group A2 

Group 

A3

Uplink Pilot Downlink Data

Downlink Data Uplink Pilot Downlink Data

Downlink Data Uplink Pilot

Uplink Data

Uplink Data

Uplink Data

Time

Figure 3.2: The arrangement of time-shifted pilots for TShdown.

Cell l ∈ A1

Cell j ∈ A1 Cell i ∈ A2

Cell i ∈ A3

BS

BS

BS

BS

UE

UE

Figure 3.3: Received signal at cell j BS during group A1 cells uplink pilot transmission
phase for TShdown.

groups. This requires some modification on the sum rate equation, which can potentially

be extended as future research.

3.3.1 Channel estimation

Channel estimation is required to define the precoding matrix during downlink trans-

mission and the equalizer matrix for uplink transmission. To find a lower bound on

transmission rate, we use LMMSE channel estimation [38]. The uplink pilot signal from

the UE is used to estimate the channel. As shown in Figure 3.2, when uplink pilots

are transmitted from group A1 cells, the group A2 and A3 cells transmit downlink data.

This transmission can be illustrated in Figure 3.3. If cell j belongs to group A1, then
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the received signal at BS cell j during this phase can be represented as

Y j =
∑
i∈A1

K∑
k=1

√
prβijkψkhijk︸ ︷︷ ︸

Uplink pilot from UEs in group A1

+
∑
i/∈A1

K∑
k=1

√
pfδjiqika

T
ikGji︸ ︷︷ ︸

Downlink data from BSs in groups A2 and A3

+Zj , (3.1)

where

– Y j is the K ×M received signal matrix at BS cell j.

– pr is the average UE transmit pilot power.

– ψk is the K × 1 pilot sequence vector of UE k with ‖ψk‖2 = K.

– pf is the average BS downlink data power.

– δji is the large-scale fading from BS cell i to BS cell j.

– qik is the K×1 downlink data vector from BS cell i to UE k with qik ∼ CN (0, IK).

– aik is the M × 1 precoding vector from BS in cell i for UE k in cell i.

– Gji is the M × M small-scale fading matrix from BS cell i to BS cell j, where

vec(Gji) ∼ CN (0, IMM ).

– Zj is the K ×M noise matrix at cell j BS, where vec (Zj) ∼ CN (0, IKM ).

Next, we derive the LMMSE channel estimate. First, we correlate the received signal

with the pilot. k′ represents UEs that have the same pilot sequence. The pilot sequence

of the k′-th UE is correlated with the received pilot signal (3.1) as

ȟjk′ = ψHk′Y j . (3.2)

Any two distinct pilot sequences are orthogonal to each other, meaning ψHk′ψk = 0 for

k 6= k′, while identical sequences are completely correlated, ψHk′ψk′ = K. As a result,

(3.2) becomes

ȟjk′ =
∑
i∈A1

√
prβijk′Khijk′ +

∑
i/∈A1

K∑
k=1

√
pfδjiψ

H
k′qika

T
ikGji +ψHk′Zj . (3.3)
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To analyze the impact of pilot contamination, we obtain channel estimates between UEs

and BSs in all same group cells. Similar to [6], we use the correlation between the

received signal and pilot in (3.3) to obtain LMMSE channel estimation.

Theorem 3.1. If l and j are in the same cell group, then LMMSE estimation of the

channel between UE k′ in cell l and BS in cell j is given by

ĥljk′ =

√
prβljk′

αTD
jk′

ȟjk′ , (3.4)

where

αTD
jk′ =

∑
i∈A1

prβijk′K +
∑
i/∈A1

K∑
k=1

pfδji
K

(
1 +

pfδji(1− 1
M )

φik

)
+ 1,

φik =
∑
p∈Aγ

prβpikK +
∑
p/∈Aγ

pfδip + 1.

Proof. The LMMSE estimate is given by [46]

ĥ
T

ljk′ = Rhljk′ ȟjk′

(
Rȟjk′ ȟjk′

)−1
ȟ
T
jk′ , (3.5)

where Rȟjk′ ȟjk′
is the covariance of ȟjk′ while Rhljk′ ȟjk′

is the cross-covariance of hljk′

and ȟjk′ .

The covariance of (3.3) can be written as

Rȟjk′ ȟjk′
=
∑
i∈A1

prβijk′K
2E
[
hHijk′hijk′

]
+
∑
i/∈A1

K∑
k=1

pfδjiE
[
GH
jia
∗
ikq

H
ikψk′ψ

H
k′qika

T
ikGji

]
+ E

[
ZH
j ψk′ψ

H
k′Zj

]
. (3.6)

If we assume that every random variable in (3.6) is uncorrelated with each other, then

we obtain following solution for (3.6)

Rȟjk′ ȟjk′
=

∑
i∈A1

prβijk′K
2 +

∑
i/∈A1

pfδjiK +K

 IM
= φjk′KIM , (3.7)
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where φjk′ =
∑

i∈A1
prβijk′K +

∑
i/∈A1

pfδji + 1. This expression is considered as an

approximation because in reality, there will be correlation between Gji and aik because

aik is a function of Gji. To see this more clear, we use (3.3) and (3.19) to obtain the

precoding vector at different cell groups (i /∈ A1) as

aik =
ĥ
H

iik√
K
∥∥∥ĥHiik∥∥∥ =

ȟ
H
ik√

K
∥∥∥ȟHik∥∥∥ , (3.8)

where ȟ
H
ik′ is the correlation between the pilot and received pilot signal at BS in cell

i /∈ A1. Since ȟ
H
ik′ contains the variable Gij and GT

ij = Gji (channel reciprocity), this

means that aik is partially correlated with Gji.

Lemma 3.2. Let

w =
√
ax+

√
b
y

‖y‖
Z, (3.9)

where w, x and y are 1 ×M vectors and Z is an M ×M matrix. x, y and Z are

independent from each other and have elements which are i.i.d. CN (0, 1). We can show

that

E
[
Z
wH

‖w‖
w

‖w‖
ZH

]
=

(
1 +

b(1− 1
M )

a+ b

)
IM . (3.10)

Proof. See Appendix A.

To solve (3.6) using Lemma 3.2, first we simplify (3.6) as

Rȟjk′ ȟjk′
=
∑
i∈A1

prβijk′K
2IM +

∑
i/∈A1

K∑
k=1

pfδjiE

[
GH
ji

ȟ
T
ik∥∥ȟik∥∥ ȟ

∗
ik∥∥ȟik∥∥Gji

]
+KIM . (3.11)

Note that ȟik has a similar expression to that in (3.3), but for cell i /∈ A1. Since ȟik

and Gji are partially correlated, the expectation term in (3.11) has a similar property

to that in (3.10), where w can be replaced with ȟik and Z can be replaced with Gji.

As a result, b in (3.10) is replaced with pfδjiK while a+ b is replaced with the norm of

the covariance of ȟik, or
∥∥∥Rȟikȟik

∥∥∥ for i /∈ A1. Hence, (3.11) becomes

Rȟjk′ ȟjk′
=
∑
i∈A1

prβijk′K
2IM +

∑
i/∈A1

K∑
k=1

pfδji

1 +
pfδjiK(1− 1

M )∥∥∥Rȟikȟik

∥∥∥
 IM +KIM

(3.12)
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The term
∥∥∥Rȟikȟik

∥∥∥ for i /∈ A1 in (3.12) is similar to
∥∥∥Rȟjkȟjk

∥∥∥ for j ∈ A1, which is the

norm of (3.12). For example, if i ∈ A2, then

∥∥∥Rȟikȟik

∥∥∥ =
∑
q∈A2

prβqik′K
2 +

∑
q /∈A2

K∑
v=1

pfδiq

1 +
pfδiqK(1− 1

M )∥∥∥Rȟqvȟqv

∥∥∥
+K. (3.13)

However, this also means that we also need to solve
∥∥∥Rȟqvȟqv

∥∥∥ for q /∈ A2 in (3.13). If

we continue to solve this term, there will be another similar term within this term. As a

result, there will be an endless sequence of functions within functions. However, deriving

the sequence of functions within functions has diminishing impact on the calculation

accuracy of (3.12) because the term
pfδjiK(1− 1

M
)∥∥∥Rȟikȟik

∥∥∥ is less than 1. For example, using

transmission setting from [6] with 100 BS antennas and 3 UEs, we get
pfδjiK(1− 1

M
)∥∥∥Rȟikȟik

∥∥∥ ≈ 0.04.

Hence, to simplify the calculation, we approximate (3.13) similar to (3.7). As a result,

(3.12) becomes

Rȟjk′ ȟjk′
≈
∑
i∈A1

prβijk′K
2IM +

∑
i/∈A1

K∑
k=1

pfδji

(
1 +

pfδji(1− 1
M )

φik

)
IM +KIM . (3.14)

Next we find the cross-covariance of the small-scale channel and (3.3) given by

Rhljk′ ȟjk′
= E

[
hHljk′ȟjk′

]
.

The term ȟjk′ contains a summation of other interference terms, see (3.3), in addition to

hljk′ . However, the expectation of the uncorrelated terms is zero. As a result, Rhljk′ ȟjk′

becomes

Rhljk′ ȟjk′
=
√
prβljk′KIM . (3.15)

Substituting (3.14) and (3.15) into (3.5), the LMMSE estimate becomes (3.4).
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Using (3.4) and (3.14), we can obtain the covariance of the LMMSE channel estimate

as

Rĥljk′ ĥljk′
=E

[
ĥ
H

ljk′ĥljk′
]

=

(√
prβljk′

αTD
jk′

)2

Rȟjk′ ȟjk′

=
prβljk′K

αTD
jk′

IM . (3.16)

The LMMSE channel estimation error is h̃ljk′ = hljk′− ĥljk′ , where h̃ljk′ is uncorrelated

with ĥljk′ (see Appendix B for proof). Hence, the covariance matrix of the channel

estimation error is given by

Rh̃ljk′ h̃ljk′
=Rhljk′hljk′ −Rĥljk′ ĥljk′

=

(
1−

prβljk′K

αTD
jk′

)
IM . (3.17)

We approximate the noise and interference during the channel estimation to be Gaussian

random variables. This means that the estimated channel will also have a Gaussian

distribution. Hence, based on results in (3.16) and (3.17), ĥljk′ and h̃ljk′ have the

distributions CN
(

0,
prβljk′K

αTD
jk′

IM

)
and CN

(
0,

(
1− prβljk′K

αTD
jk′

)
IM

)
, respectively. We

will use this property throughout the chapter.

3.3.2 Downlink transmission rate

The derivation of downlink transmission rate is based on the first half of the downlink

data transmission phase of group A1 (refer to Figure 3.2). In this phase, UEs in the

group A1 cells receive downlink data from the BSs in group A1 and A3 cells and uplink

pilots from UEs in group A2 cells. This transmission can be illustrated in Figure 3.4. If

UE k′ is located in cell j of group A1, then the received signal for this UE during this
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Cell l ∈ A1

Cell j ∈ A1 Cell i ∈ A2

Cell i ∈ A3

UE k’

BS

BS

BS

BS

UE

Figure 3.4: Received signal at UE k′ in cell j during the downlink data transmission
phase for group A1 cells with TShdown.

phase is given by

xTD
jk′ =

∑
i∈A1

K∑
k=1

√
pfβjik′hjik′aikqik︸ ︷︷ ︸

Downlink data from BSs in group A1

+
∑
i∈A2

K∑
k=1

√
prσjik′kvjik′kψk︸ ︷︷ ︸

Uplink pilot from UEs in group A2

+
∑
i∈A3

K∑
k=1

√
pfβjik′hjik′aikqik︸ ︷︷ ︸

Downlink data from BSs in group A3

+ zjk′ , (3.18)

where

– qik is the downlink data from BS cell i to UE k with qik ∼ CN (0, 1).

– σjik′k is the large-scale fading from UE k in cell i to UE k′ in cell j.

– vjik′k is the small-scale fading from UE k in cell i to UE k′ in cell j with vjik′k ∼

CN (0, 1).

– zjk′ is the noise at UE k′ in cell j with zjk′ ∼ CN (0, 1).

We define the MF precoding vector for UE k′ in cell j as

ajk′ ,
ĥ
H

jjk′

√
K
∥∥∥ĥHjjk′∥∥∥ . (3.19)
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The denominator of (3.19) is a normalization factor that ensures the expectation of the

total precoding power is equal to 1.

Theorem 3.3. The closed form lower bound ergodic downlink rate of the TShdown

method for UE k′ in cell j is given by

RTD,DL
jk′ =

Td

T
× log2

(
1 +

Sa

Na

)
, (3.20)

where

Sa =
pfprβ

2
jjk′ξ (M)2

αTD
jk′

(3.21)

Na =
∑
l∈A1

pfβjlk′

K

(
1 +

prβjlk′K(M − 1)

αTD
lk′

)
−
pfprβ

2
jjk′ξ (M)2

αTD
jk′

+
∑
i∈A1

K∑
k 6=k′

pfβjik′

K

+
∑
i∈A2

K∑
k=1

prσjik′k +
∑
i∈A3

K∑
k=1

pfβjik′

K
+ 1. (3.22)

Td is the downlink data length, DL represents downlink, T is the frame length, Sa is

effective downlink signal power for TShdown, Na is the total downlink interference and

noise power for TShdown, ξ (M) = Γ(M+1/2)
Γ(M) and Γ is the gamma function.

Proof. Since the UE receiver does not have a channel estimate, we use a similar approach

to [8] to obtain the achievable ergodic downlink rate for UE k′ in cell j. This is given by

RTD,DL
jk′ =

Td

T
× log2

(
1 +

Sa

Na

)
, (3.23)

Using the method from [8], the average effective channel for the k′-th UE of cell j can

be assumed to be
√
pfβjjk′E

[
hjjk′ajk′

]
. The variance of the effective channel gives the

effective signal (desired) power of (3.23), given by

Sa = pfβjjk′
∣∣E [hjjk′ajk′]∣∣2 . (3.24)

Na in (3.23) is the total interference and noise power. It can be obtained from the

total received power (variance of (3.18)) minus the effective signal power in (3.24),



Chapter 3. Time-shifted pilots in massive MIMO 35

Na = E
[∣∣∣xTD

jk′

∣∣∣2]− Sa. To simplify the analysis, we expand Na as

Na =
∑

l∈A1
pfβjlk′E

[∣∣hjlk′alk′∣∣2]︸ ︷︷ ︸
Downlink data from BSs in group A1cell to UE k′

+
∑

i∈A1

∑K
k 6=k′pfβjik′E

[∣∣hjik′aik∣∣2]︸ ︷︷ ︸
Downlink data from BSs in cell l∈A1to UE k 6=k′

+
∑

i∈A2

∑K
k=1prσjik′kE

[∣∣vjik′k∣∣2]︸ ︷︷ ︸
Uplink pilot from UEs in cell group A2

+
∑

i∈A3

∑K
k=1pfβjik′E

[∣∣hjik′aik∣∣2]︸ ︷︷ ︸
Downlink data from BSs in cell group A3

+ 1︸︷︷︸
AWGN noise

− pfβjjk′
∣∣E [hjjk′ajk′]∣∣2︸ ︷︷ ︸

Sa

. (3.25)

To solve the expectation term in the effective signal power, (3.24), we separate the

correlated and uncorrelated terms as [8]

E
[
hjjk′ajk′

]
= E

ĥjjk′ ĥ
H

jjk′

√
K
∥∥∥ĥHjjk′∥∥∥ + h̃jjk′

ĥ
H

jjk′

√
K
∥∥∥ĥHjjk′∥∥∥


= E


∥∥∥ĥjjk′∥∥∥
√
K



=

√√√√∥∥∥Rĥjjk′ ĥjjk′

∥∥∥
K

E [θ] . (3.26)

Note that θ has a Chi distribution that is scaled by a factor of 1/
√

2 and has 2M

degrees of freedom [8]. Using (3.16) and the expectation of a Chi distribution [50],

(3.26) becomes

E
[
hjjk′ajk′

]
=

√
prβjjk′

αTD
jk′

ξ (M) , (3.27)

where ξ (M) = Γ(M+1/2)
Γ(M) and Γ is the gamma function.

The first expectation term in (3.25) involves the signal power from the BS to UEs of

the same group and same pilot sequence, k = k′. In this term, the precoding vector is

correlated with the channel which the signal propagates through. Therefore, we separate

the channel hjlk′ into correlated and uncorrelated terms [8]. This gives

E
[∣∣hjlk′alk′∣∣2] =E

∣∣∣∣∣∣ĥjlk′ ĥ
H

llk′√
K
∥∥∥ĥHllk′∥∥∥

∣∣∣∣∣∣
2+ E

∣∣∣∣∣∣h̃jlk′ ĥ
H

llk′√
K
∥∥∥ĥHllk′∥∥∥

∣∣∣∣∣∣
2. (3.28)
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Using (3.3) and (3.4), it can be shown that ĥllk′ =
√

βllk′
βjlk′

ĥjlk′ . This also means that

ĥ
H
llk′∥∥∥ĥHllk′∥∥∥ =

ĥ
H
jlk′∥∥∥ĥHjlk′∥∥∥ . Using this, along with Lemma C.1 in Appendix C, (3.28) becomes

E
[∣∣hjlk′alk′∣∣2] =E

∣∣∣∣∣∣ĥjlk′ ĥ
H

jlk′

√
K
∥∥∥ĥHjlk′∥∥∥

∣∣∣∣∣∣
2+ E

∣∣∣∣∣∣h̃jlk′ ĥ
H

jlk′

√
K
∥∥∥ĥHjlk′∥∥∥

∣∣∣∣∣∣
2

=
1

K

(
tr
(
Rĥjlk′ ĥjlk′

)
+

1

M
tr
(
Rh̃jlk′ h̃jlk′

))
. (3.29)

Using (3.16) and (3.17), (3.29) becomes

E
[∣∣hjlk′alk′∣∣2] =

(
1 +

prβjlk′K(M − 1)

αTD
lk′

)
1

K
. (3.30)

The second and fourth terms in (3.25) are the transmitted signals to UEs of the same

group, but with different pilot sequences (k 6= k′) and to UEs of different cell groups,

respectively. In this case, the precoding vector is uncorrelated from the channel vector.

As a result, the expectation value in these terms can be simplified to

E
[∣∣hjik′aik∣∣2] =E

∣∣∣∣∣∣hjik′ ĥ
H

iik√
K
∥∥∥ĥHiik∥∥∥

∣∣∣∣∣∣
2

=
1

K

(
1

M
tr
(
Rhjik′hjik′

))
=

1

K
. (3.31)

The third expectation term in (3.25) involves the signal between UEs of different cell

groups. This is given by

E
[∣∣vjik′k∣∣2] = 1. (3.32)

Substituting (3.27), (3.30), (3.31) and (3.32) into (3.24) and (3.25), the lower bound

ergodic downlink rate for UE k′ in cell j in (3.23) becomes (3.20).
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Cell l ∈ A1

Cell j ∈ A1

Cell i ∈ A2

Cell i ∈ A3

BS

BS

BS

BS UE

UE

UE

UE

Figure 3.5: Received signal at BS in cell j during group A1 cells uplink data trans-
mission phase for TShdown.

The closed form achievable ergodic downlink rate for TShdown, (3.20), shows that the

interference from signals directed to UEs with the same pilot sequence in the same

cell group increases linearly with the number of antennas. However, interference from

different cell groups is not affected by the number of antennas.

3.3.3 Uplink transmission rate

As seen in Figure 3.2, uplink data transmission is performed simultaneously in all cells.

This transmission can be illustrated in Figure 3.5. If the received signal at the cell j BS

of group A1 is yj during uplink data, then the estimated uplink data from UE k′ in cell

j is d̂TD
jk = yjbjk′ . This can be expanded as

d̂TD
jk′ =

∑
i∈A1

K∑
k=1

√
puβijkdikhijk︸ ︷︷ ︸ bjk

′

Uplink data from UEs in group A1

+
∑
i/∈A1

K∑
k=1

√
puβijkdikhijk︸ ︷︷ ︸

bjk′

Uplink data from UEs in groups A2 and A3

+ zjbjk′ ,

(3.33)

where

– pu is the average UE transmit data power.
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– dik is the uplink data from UE k, cell i with dik ∼ CN (0, 1).

– zj is the 1×M noise vector at cell j BS with zj ∼ CN (0, IM ).

– bjk′ is the M × 1 equalizer vector for UE k′ in cell j.

We define the equalizer vector for UE k′ in cell j as

bjk′ ,
ĥ
H

jjk′∥∥∥ĥHjjk′∥∥∥ . (3.34)

Unlike the precoding vector in (3.19), we exclude the term 1/
√
K in the equalizer because

the term will be cancelled out during the division process in the uplink rate equation.

Theorem 3.4. The closed form lower bound ergodic uplink rate of the TShdown method

for UE k′ in cell j is given by

R̃TD,UL
jk′ =

Tu

T
× log2

(
1 +

S̃b

Ñb

)
, (3.35)

where

S̃b =
puprβ

2
jjk′K(M − 1)

αTD
jk′

, (3.36)

Ñb =puβjjk′

(
1−

prβjjk′K

αTD
jk′

)
+

∑
l∈A1∩l 6=j

puβljk′

(
1 +

prβljk′K(M − 2)

αTD
jk′

)

+
∑
i∈A1

K∑
k 6=k′

puβijk +
∑
i/∈A1

K∑
k=1

puβijk + 1. (3.37)

Tu is the uplink data length and UL represents uplink, S̃b is effective uplink signal power

for TShdown, Ñb is the total uplink interference and noise power for TShdown.

Proof. The information-theoretic method to derive downlink rate in Theorem 3.3 is

based on [8]. Such a method is specifically designed for downlink transmission where

the receiver (UE) does not have channel information and the transmission depends on BS

beamforming to overcome channel distortion. For the uplink, the channel is estimated

at the receiver (BS). In this case, we use a similar approach to that in [5] to obtain the
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lower bound ergodic uplink rate for UE k′ in cell j as

RTD,UL
jk′ =

Tu

T
× E

[
log2

(
1 +

Sb

Nb

)]
, (3.38)

Due to the complexity of the expectation in (3.38), we employ Jensen’s inequality as in

[5], to obtain

RTD,UL
jk′ ≥R̃TD,UL

jk′

R̃TD,UL
jk′ =

Tu

T
× log2

(
1 +

(
E
[
Nb

Sb

])−1
)
. (3.39)

Sb in (3.39) is the effective signal (desired) power of the estimated data. Using the

method in [5], the uplink effective signal is
√
puβjjk′djk′ĥjjk′bjk′ . Hence, Sb can be

written as

Sb = puβjjk′
∣∣∣ĥjjk′bjk′∣∣∣2 . (3.40)

Nb in (3.39) is the total interference and noise power. It equals the total power of

estimated data (3.33) minus the effective signal power (3.40), Nb =
∣∣∣d̂TD
jk′

∣∣∣2 − Sb. We

can expand Nb into uncorrelated interference terms and E
[
Nb
Sb

]
becomes

E
[
Nb

Sb

]
= puβjjk′E


∣∣∣h̃jjk′bjk′∣∣∣2

Sb


︸ ︷︷ ︸

Channel estimation error for UE k′ in cell j

+
∑

l∈A1∩l 6=j
puβljk′E

[∣∣hljk′bjk′∣∣2
Sb

]
︸ ︷︷ ︸

Uplink data from UE k′ in cell l∈A1∩l 6=j

+
∑
i∈A1

K∑
k 6=k′

puβijkE

[∣∣hijkbjk′∣∣2
Sb

]
︸ ︷︷ ︸

Uplink data from UE k 6=k′ in cell i∈A1

+
∑
i/∈A1

K∑
k=1

puβijkE

[∣∣hijkbjk′∣∣2
Sb

]
︸ ︷︷ ︸

Uplink data from UEs in cell group A2 and A3

+ E

[∣∣zjbjk′∣∣2
Sb

]
︸ ︷︷ ︸ .

AWGN noise

(3.41)

Note that the channel estimation error term in (3.41) is obtained from E
[
|h̃jjk′bjk′ |2

Sb

]
=

E
[
|hjjk′bjk′ |2

Sb

]
− E

[
Sb
Sb

]
. This is due to the property where h̃jjk′ = hjjk′ − ĥjjk′ , and

h̃jjk′ is uncorrelated with ĥjjk′ .
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To find the closed form of the expectation terms in (3.41), we first solve E
[

1
Sb

]
. Using

(3.34) and (3.40), we can write

E
[

1

Sb

]
=E

 1

puβjjk′
∣∣∣ĥjjk′bjk′∣∣∣2


=

1

puβjjk′
∥∥∥Rĥjjk′ ĥjjk′

∥∥∥E
[

1

θ2

]
. (3.42)

Note that θ2 has a Chi-squared distribution that is scaled by a factor of 1/2 and has

2M degrees of freedom. It can be shown that E
[

1
θ2

]
= 1/(M − 1) [51]. Using this and

(3.16), then (3.42) becomes

E
[

1

Sb

]
=

1

puprβ2
jjk′K(M − 1)/αTD

jk′

=
1

λTD
, (3.43)

where λTD = puprβ
2
jjk′K(M − 1)/αTD

jk′ .

The first expectation term in (3.41) involves interference due to channel estimation

error. Since we approximate the channel estimate as Gaussian, and since h̃jjk and ĥjjk

is uncorrelated, we can apply similar derivation in [5, eq. (76)] to this expectation term

and get

E


∣∣∣h̃jjkbjk′∣∣∣2

Sb

 =E


∣∣∣h̃jjkbjk′∣∣∣2

puβjjk′
∣∣∣ĥjjk′bjk′∣∣∣2


=E

[∣∣∣h̃jjkbjk′∣∣∣2]E
 1

puβjjk′
∣∣∣ĥjjk′bjk′∣∣∣2

 (3.44)

Using (3.34), (3.43) and Lemma C.1, (3.44) becomes

E


∣∣∣h̃jjkbjk′∣∣∣2

Sb

 =E

∣∣∣∣∣∣h̃jjk ĥ
H

jjk′∥∥∥ĥHjjk′∥∥∥
∣∣∣∣∣∣
2E

[
1

Sb

]

=
1

M
tr
(
Rh̃jjkh̃jjk

)
E
[

1

Sb

]
=

(
1−

prβjjk′K

αTD
jk′

)
1

λTD
. (3.45)
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The second expectation term in (3.41) involves the signal power received from UEs of

the same group and the same pilot sequence. Due to pilot contamination, the channel

is partially correlated with the equalizer. Since we approximate the channel estimate as

complex Gaussian, we can separate the channel into correlated and uncorrelated parts

as follows

E

[∣∣hljk′bjk′∣∣2
Sb

]
=E


∣∣∣ĥljk′bjk′∣∣∣2

Sb

+ E


∣∣∣h̃ljk′bjk′∣∣∣2

Sb


=E


∣∣∣ĥljk′bjk′∣∣∣2

puβjjk′
∣∣∣ĥjjk′bjk′∣∣∣2

+ E


∣∣∣h̃ljk′bjk′∣∣∣2

puβjjk′
∣∣∣ĥjjk′bjk′∣∣∣2

 . (3.46)

Using (3.3) and (3.4), it can be shown that ĥjjk′ =

√
βjjk′
βljk′

ĥljk′ . Using this, we can

simplify the first expectation in (3.46) with simple division, as follow

E

[∣∣hljk′bjk′∣∣2
Sb

]
=E

 βljk′
∣∣∣ĥljk′bjk′∣∣∣2

puβ2
jjk′

∣∣∣ĥljk′bjk′∣∣∣2
+ E


∣∣∣h̃ljk′bjk′∣∣∣2

puβjjk′
∣∣∣ĥjjk′bjk′∣∣∣2


=

βljk′

puβ2
jjk′

+ E


∣∣∣h̃ljk′bjk′∣∣∣2

puβjjk′
∣∣∣ĥjjk′bjk′∣∣∣2

 . (3.47)

The second term in (3.47) is the channel estimation error term which can be solved using

a similar method to (3.45). Therefore, (3.47) becomes

E

[∣∣hljk′bjk′∣∣2
Sb

]
=

βljk′

puβ2
jjk′

+ E

∣∣∣∣∣∣h̃ljk ĥ
H

jjk′∥∥∥ĥHjjk′∥∥∥
∣∣∣∣∣∣
2E

[
1

Sb

]

=
βljk′

puβ2
jjk′

+
1

M
tr
(
Rh̃ljkh̃ljk

)
E
[

1

Sb

]

=
βljk′

puβ2
jjk′

+

(
1−

prβljk′K

αTD
jk′

)
1

λTD

=

(
1 +

prβljk′K(M − 2)

αTD
jk′

)
1

λTD
. (3.48)

The third and fourth terms in (3.41) involve signal power from UEs of the same group,

but with different pilot sequences and from UEs of different cell groups, respectively.

Since the equalizer vector, bjk′ , is uncorrelated with the channel vector, hijk, for both
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terms, then their expectation terms can be written as

E

[∣∣hijkbjk′∣∣2
Sb

]
=E

∣∣∣∣∣∣hijk ĥ
H

jjk′∥∥∥ĥHjjk′∥∥∥
∣∣∣∣∣∣
2E

[
1

Sb

]

=
1

M
tr
(
Rhijkhijk

)
E
[

1

Sb

]
=

1

λTD
. (3.49)

Equation (3.49) also applies to the AWGN noise term. Substituting (3.43), (3.45), (3.48)

and (3.49) into (3.41), then the lower bound ergodic rate for UE k′ in (3.39) becomes

(3.35).

Similar to the downlink rate in (3.20), we can see the relationship between interference

and the number of antennas in the uplink rate of (3.35). It shows that the interference

from UEs with the same pilot sequence in the same cell group increases linearly with

the number of antennas while interference from a different cell group is not affected by

the number of antennas.

3.3.4 Power optimization

In the time-shifted methods, if the data power is too high, then there will be high

interference during channel estimation resulting in a low transmission rate. This is

because if we refer to Figure 3.2 for TShdown, the downlink data is transmitted at the

same time as other cells transmit their pilot. Hence, the high data power will cause high

channel estimation error. However, if the data power is too low, then the received power

will be too low. Therefore, we need to find a balance for the transmit power level. This

type of power optimization is a unique advantage of time-shifted methods over a time-

synchronized pilot. The same strategy cannot be applied to a time-synchronized pilot

due to the fact that the pilot and the data transmission time with a time-synchronized

pilot do not intersect. For TShdown, since the pilot is overlapped with the downlink

data, we find the optimum downlink transmit power, pf, that maximizes the downlink

sum rate. The optimum power can be found using an exhaustive search based on the

available large-scale fading information. We can also derive the optimum power based on
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the sum rate equation. An expression for optimum transmit power can be approximated

by differentiating (3.20) with respect to pf, and solving for pf in d
dpf

(
RTD,DL
jk′

)
= 0 with

pf > 0 (see Appendix D.1 for more detail). The result is given as

pf =

√√√√√ (
1 + prK

∑
i∈A1

βijk′
) (

1 + pr
∑

i∈A2

∑K
k=1 σjik′k

)
(∑

i/∈A1
δji
) (∑

i∈A1

∑K
k=1

βjik′
K +

∑
i∈A3

∑K
k=1

βjik′
K

) . (3.50)

Note that the pf obtained in (3.50) is only optimized for UE k′ in cell j. In order to

obtain a common value for pf across all UEs in all cells, we average the result in (3.50).

Simulations show that (3.50) generates values with a distribution resembling log-normal

(as shown in Figure 3.14 in the results section). Therefore, we use the geometric mean

to find the average.

Note that (3.50) requires the use of large scale fading information. The acquisition of

the large scale fading values should be similar to the power measurement when a UE

starts to establish a connection with a BS. This power measurement will require an

overhead signal, which is already being used by current wireless standards for cell search

and power control [11]. Therefore, the measured values can be collected and we can

apply it to (3.50). The large scale value must also be shared among the BSs. This can

be achieved through networked BSs.

Based on (3.50), as K increases, the optimum power also increases. This is expected

because as there are more UEs, there will be more interference from uplink pilots from

other cells’ UEs during the downlink data transmission. Thus the downlink data power

needs to increase to overcome the increase in the interference. To get some mathematical

insights on the relationship between optimum power and K, we assume that the values

of βjik′ and σjik′k are the same for all UEs. Applying this assumption on (3.50), as K

grows very large, the optimum power will increase approximately linearly to K.

3.4 Time-shifted pilot with uplink data overlap

In Section 3.3, the pilot is set to overlap with downlink data. In this section, we analyze

another variation where the uplink pilot overlaps with uplink data instead of downlink

data. From now on, the term for the time-shifted pilot method with uplink data overlap
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Figure 3.6: The arrangement of time-shifted pilots for TShup.

is simplified to TShup (and superscript TU in equations). As discussed in the introduc-

tion, TShup has been briefly analyzed in [52–54] without detailed sum rate derivations

and performance analysis. Hence, in this section we derive novel closed form ergodic

achievable rate expressions for TShup in order to provide a more complete analysis of

the method. As shown in Figure 3.6, for TShup the uplink pilot from one group will only

overlap with uplink data from other groups so that pilot to pilot interference between

different groups does not occur, but uplink data to pilot interference can still occur.

The main motivation to investigate TShup is the practical advantage over TShdown in

terms of uplink and downlink time coordination. This is because the TShdown method

requires the uplink and downlink to be changed more than once within one transmission

frame (see Figure 3.2), but this only occurs once in the TShup method.

The important finding in this section is the inter-cell interference behaves differently

in TShup compared to TShdown. This is because in TShup, both interference from

the same and different cell groups increase linearly with the number of antennas. For

interference from different cell groups, this effect can occur for all UEs rather than only

UEs with the same pilot sequences. The proof of this finding will be discussed in the

sum rate derivation sections.

3.4.1 Channel estimation

Channel estimation is done at the BS using the uplink pilot. Referring to Figure 3.6,

during the uplink pilot transmission phase in group A1, UEs in this group transmit

pilot signals while UEs in other groups transmit data signals. This transmission can be

illustrated in Figure 3.7. If cell j belongs to group A1, then the received signal at BS
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Cell l ∈ A1
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Cell i ∈ A2

Cell i ∈ A3
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Figure 3.7: Received signal at BS in cell j during the uplink pilot transmission phase
for group A1 cells with TShup.

cell j during this phase can be expressed as

Y j =
∑
i∈A1

K∑
k=1

√
prβijkψkhijk︸ ︷︷ ︸

Uplink pilot from UEs in group A1

+
∑
i/∈A1

K∑
k=1

√
puβijkdikhijk︸ ︷︷ ︸

Uplink data from UEs in groups A2 and A3

+Zj , (3.51)

where dik is the K × 1 uplink data vector from the BS in cell i to UE k with dik ∼

CN (0, IK).

We can use (3.51) to acquire the correlation between the pilot and received signal using

the same method used to obtain (3.3). This gives

ȟjk′ =
∑
i∈A1

√
prβijk′Khijk′ +

∑
i/∈A1

K∑
k=1

√
puβijkψ

H
k′dikhijk +ψHk′Zj . (3.52)

Theorem 3.5. Using (3.52), if cells l and j are in the same cell group, then LMMSE

estimation of the channel between user k′ in cell l to the BS in cell j is

ĥljk′ =

√
prβljk′

αTU
jk′

ȟljk′ , (3.53)

where αTU
jk′ =

∑
i∈A1

prβijk′K +
∑

i/∈A1

∑K
k=1 puβijk + 1.
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Proof. We use the general expression (3.5) to obtain the LMMSE channel estimate.

Therefore, we need to find Rȟjk′ ȟjk′
, which is the covariance of ȟjk′ , and Rhljk′ ȟjk′

,

which is the cross-covariance of hljk′ and ȟjk′ . The covariance of ȟjk′ in (3.52) can be

written as

Rȟjk′ ȟjk′
=
∑
i∈A1

prβijk′K
2E
[
hHijk′hijk′

]
+
∑
i/∈A1

K∑
k=1

puβijkE
[
hHijkd

H
ikψk′ψ

H
k′dikhijk

]
+ E

[
ZH
j ψk′ψ

H
k′Zj

]
. (3.54)

Since every variable in (3.54) is uncorrelated with each other, then every expectation

term in (3.54) will become a scaled identity matrix. As a result, (3.54) simplifies to

Rȟjk′ ȟjk′
=

∑
i∈A1

prβijk′K
2 +

∑
i/∈A1

K∑
k=1

puβijkK +K

 IM
= αTU

jk′KIM , (3.55)

where αTU
jk′ =

∑
i∈A1

prβijk′K +
∑

i/∈A1

∑K
k=1 puβijk + 1.

The cross-covariance of hljk′ and ȟjk′ has the same derivation as in (3.15), which gives

Rhljk′ ȟjk′
=E

[
hHljk′ȟjk′

]
=
√
prβljk′KIM . (3.56)

Using (3.5), (3.55) and (3.56), we obtain the LMMSE channel estimation in (3.53).

The covariance properties for (3.53) have the same derivation as the TShdown method

in (3.16) and (3.17), but with the term αTD
jk′ replaced by αTU

jk′ . Similar to TShdown, we

approximate the noise and interference to have Gaussian distributions. Consequently,

the distributions for the channel estimate and channel estimation error will be ĥljk′ ∼

CN
(

0,
prβljk′K

αTU
jk′

IM

)
and h̃ljk′ ∼ CN

(
0,

(
1− prβljk′K

αTU
jk′

)
IM

)
.
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Figure 3.8: Received signal at UE k′ in cell j during the downlink data transmission
phase for group A1 cells with TShup.

3.4.2 Downlink transmission rate

As shown in Figure 3.6 and Figure 3.8, during the downlink transmission in group A1,

BSs from cells in all groups simultaneously transmit downlink data. Therefore, the

received signal at UE k′ in cell j of group A1 will be

xTU
jk′ =

∑
i∈A1

K∑
k=1

√
pfβjik′hjik′aikqik︸ ︷︷ ︸

Downlink data from BSs in group A1

+
∑
i/∈A1

K∑
k=1

√
pfβjik′hjik′aikqik︸ ︷︷ ︸

Downlink data from BSs in groups A2 and A3

+ zjk′ .

(3.57)

The precoding vector aik is defined in (3.19), but using channel estimation from (3.53).

Theorem 3.6. The closed form lower bound ergodic downlink rate of the TShup method

for UE k′ in cell j is given by

RTU,DL
jk′ =

Td

T
× log2

(
1 +

Sc

Nc

)
, (3.58)
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where

Sc =
pfprβ

2
jjk′ξ (M)2

αTU
jk′

(3.59)

Nc =
∑
l∈A1

pfβjlk′

K

(
1 +

prβjlk′K(M − 1)

αTU
lk′

)
−
pfprβ

2
jjk′ξ (M)2

αTU
jk′

+
∑
i∈A1

K∑
k 6=k′

pfβjik′

K

+
∑
f /∈A1

K∑
k=1

pfβjfk′

K

(
1 +

puβjfk′(M − 1)

αTU
fk

)
+ 1. (3.60)

Sc is effective downlink signal power for TShup, Nc is the total downlink interference

and noise power for TShup.

Proof. The lower bound ergodic downlink rate for TShup has the same general form as

the TShdown downlink rate in (3.23) which is

RTU,DL
jk′ =

Td

T
× log2

(
1 +

Sc

Nc

)
, (3.61)

Using the same assumption for downlink rate as in the previous section, we can write

Sc = pfβjjk′
∣∣E [hjjk′ajk′]∣∣2 . (3.62)

The total interference and noise power, Nc, can be obtained from the total received power

(variance of (3.57)) minus the effective signal power in (3.62), Nc = E
[∣∣∣xTU

jk′

∣∣∣2] − Sc.

Similar to the previous section, we expand the interference power terms in order to

analyze each of them separately. Therefore,

Nc =
∑
l∈A1

pfβjlk′E
[∣∣hjlk′alk′∣∣2]︸ ︷︷ ︸

Downlink data from BSs in group A1cell to UE k′

+
∑
i∈A1

K∑
k 6=k′

pfβjik′E
[∣∣hjik′aik∣∣2]︸ ︷︷ ︸

Downlink data from BSs in cell l∈A1to UE k 6=k′

+
∑
f /∈A1

K∑
k=1

pfβjfk′E
[∣∣hjfk′afk∣∣2]︸ ︷︷ ︸

Downlink data from UEs in cell group A2 and A3

+ 1︸︷︷︸
AWGN noise

− pfβjjk′
∣∣E [hjjk′ajk′]∣∣2︸ ︷︷ ︸

Sc

.

(3.63)
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The expectation term of the effective power in (3.62) has the same derivation procedure

as (3.27), but uses the channel estimation result in (3.53). As a result,

E
[
hjjk′ajk′

]
=

√
prβjjk′

αTU
jk′

ξ (M) . (3.64)

where ξ(M) defined in (3.27).

The first expectation term in (3.63) involves the signal power from the BS to UEs of

the same group and same pilot sequence, which has the similar derivation as (3.30), but

uses the channel estimation result in (3.53). Therefore,

E
[∣∣hjlk′alk′∣∣2] =

(
1 +

prβjlk′K(M − 1)

αTU
lk′

)
1

K
. (3.65)

The second expectation term in (3.63) involves the signal power from the BS to UEs of

the same group with different pilot sequences. Since the precoding and the channel is

uncorrelated, this means

E
[∣∣hjik′aik∣∣2] =

1

K
. (3.66)

For the third expectation term in (3.63), which involves signals from different cell groups,

the precoding vector, afk, is correlated with the channel from different cell groups,

hjfk′ . This means that uplink data to pilot interference will also contribute to the

contamination effect. Consequently, the interference has a similar derivation as the

expression for pilot contamination in (3.65). However, since the uplink data, dik, and

pilot, ψk′ , are uncorrelated, this means that the expectation term will not have exactly

the same expression as the pilot to pilot interference in (3.65). This is because the

expected power of the correlation between pilot and the received uplink data signal is

E
[∣∣√puβjfkψ

H
k′dik

∣∣2] = puβjfkK while the expected power of the correlation between

pilot and the received pilot of the same sequence is E
[∣∣√prβjlk′ψ

H
k′ψk′

∣∣2] = prβjlk′K
2.

Based on this power difference, we replace the variables related to received pilot power,

namely prβjlk′K in expectation term (3.65) with variables related to received uplink

data power, namely puβjfk′ , in order to get the expectation for different cell groups
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interference as

E
[∣∣hjfk′afk∣∣2] =

(
1 +

puβjfk′(M − 1)

αTU
fk

)
1

K
. (3.67)

Substituting (3.64)-(3.67) into (3.62) and (3.63), the ergodic achievable downlink rate

for UE k′ in cell j in (3.61) becomes (3.58).

The inter-cell interference behaves differently in TShup (3.58) compared to TShdown

(3.20). This is because in TShup, both interference from the same and different cell

groups increase linearly with the number of antennas. For interference from different

cell groups, this effect can occur for all UEs rather than only UEs with the same pilot

sequences.

3.4.3 Uplink transmission rate

Referring to Figure 3.6 and Figure 3.9, during uplink data transmission in cells from

group A1, the BS in group A1 also receives uplink pilots from UEs in group A2 and

uplink data from group A3. If yj is the signal received by the cell j BS in group A1,

then the estimated data is d̂TU
jk′ = yjbjk′ . This can be expanded as

d̂TU
jk′ =

∑
i∈A1

K∑
k=1

√
puβijkdikhijk︸ ︷︷ ︸ bjk

′

Uplink data from UEs in group A1

+
∑
i∈A2

K∑
k=1

√
prβijkψkhijk︸ ︷︷ ︸ bjk

′

Uplink pilot from UEs in group A2

+
∑
i∈A3

K∑
k=1

√
puβijkdikhijk︸ ︷︷ ︸ bjk

′

Uplink data from UEs in group A3

+ zjbjk′ , (3.68)

where bjk′ is the equalizer defined in (3.34), but using channel estimation from (3.53).

Theorem 3.7. The closed form lower bound ergodic uplink rate of the TShup method

for UE k′ in cell j is given by

R̃TU,UL
jk′ =

Tu

T
× log2

(
1 +

S̃d

Ñd

)
, (3.69)
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Figure 3.9: Received signal at BS in cell j during the uplink data transmission phase
for group A1 cells with TShup.

where

S̃d =
puprβ

2
jjk′K(M − 1)

αTU
jk′

(3.70)

Ñd =puβjjk′

(
1−

prβjjk′K

αTU
jk′

)
+

∑
l∈A1∩l 6=j

puβljk′

(
1 +

prβljk′K(M − 2)

αTU
jk′

)

+
∑
i∈A1

K∑
k 6=k′

puβijk +
∑
f∈A2

K∑
k=1

prβfjk

(
1 +

puβfjk(M − 2)

αTU
jk′

)

+
∑
f∈A3

K∑
k=1

puβfjk

(
1 +

puβfjk(M − 2)

αTU
jk′

)
+ 1. (3.71)

S̃d is effective uplink signal power for TShup, Ñb is the total uplink interference and

noise power for TShup.

Proof. The expression for the lower bound ergodic uplink rate for the TShup method

has the same general form as for the TShdown method in (3.39), which is

R̃TU,UL
jk′ =

Tu

T
× log2

(
1 +

(
E
[
Nd

Sd

])−1
)
, (3.72)



Chapter 3. Time-shifted pilots in massive MIMO 52

The effective signal power, Sd, is given by

Sd = puβjjk′
∣∣∣ĥjjk′bjk′∣∣∣2 . (3.73)

The total interference and noise power, Nd, can be obtained from the total power of

estimated data (3.68) minus the effective signal power (3.73), Nd =
∣∣∣d̂TU
jk

∣∣∣2−Sd. Similar

to the previous section, we expand Nd into uncorrelated interference terms to get

E
[
Nd

Sd

]
= puβjjk′E


∣∣∣h̃jjk′bjk′∣∣∣2

Sd


︸ ︷︷ ︸

Channel estimation error for UE k′in cell j

+
∑

l∈A1∩l 6=j
puβljk′E

[∣∣hljk′bjk′∣∣2
Sd

]
︸ ︷︷ ︸

Uplink data from UE k′in cell l∈A1∩l 6=j

+
∑
i∈A1

K∑
k 6=k′

puβijkE

[∣∣hijkbjk′∣∣2
Sd

]
︸ ︷︷ ︸
Uplink data from UE k 6=k′in cell i∈A1

+
∑
f∈A2

K∑
k=1

prβfjkE

[∣∣hfjkbjk′∣∣2
Sd

]
︸ ︷︷ ︸
Uplink pilot from UEs in cell group A2

+
∑
f∈A3

K∑
k=1

puβfjkE

[∣∣hfjkbjk′∣∣2
Sd

]
︸ ︷︷ ︸
Uplink data from UEs in cell group A3

+ E

[∣∣zjbjk′∣∣2
Sd

]
︸ ︷︷ ︸ .

AWGN noise

(3.74)

Similar to (3.41), the channel estimation error term in (3.74) is obtained from E
[
|h̃jjk′bjk′ |2

Sd

]
=

E
[
|hjjk′bjk′ |2

Sd

]
− E

[
Sd
Sd

]
.

The first expectation term in (3.74) involves channel estimation error, which has the

same derivation as in (3.45), but uses the channel estimate of (3.53). As a result,

E


∣∣∣h̃jjkbjk′∣∣∣2

Sd

 =

(
1−

prβjjk′K

αTU
jk′

)
1

λTU
, (3.75)

where λTU in (3.75) has a similar expression to λTD in (3.43), but αTD
jk′ is replaced by

αTU
jk′ . Therefore, λTU =

puprβ2
jjk′K(M−1)

αTU
jk′

.

The second expectation term in (3.74) involves the signal power received from UEs

of the same group and the same pilot sequence. Since this term is related to pilot

contamination, it has a similar derivation as in (3.48), but uses the channel estimate of
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(3.53). Therefore,

E

[∣∣hljk′bjk′∣∣2
Sd

]
=

(
1 +

prβljk′K(M − 2)

αTU
jk′

)
1

λTU
. (3.76)

The third expectation term in (3.74) involves signal power from UEs of the same group

but with different pilot sequences. Since the vector and equalizer are uncorrelated, this

means

E

[∣∣hijkbjk′∣∣2
Sd

]
=

1

λTU
. (3.77)

Note that (3.77) also applies to the AWGN noise term.

The expectation for different cell group interference (fourth and fifth terms in (3.74))

has a contamination effect, which means it has a similar expression to (3.76). However,

since this contamination is caused by data instead of pilots, we need to replace the

variables related to received pilot power, namely prβljk′K in expectation term (3.76),

with variables related to received uplink data power, namely puβfjk (similar strategy

used to obtain (3.67)). As a result we get

E

[∣∣hfjkbjk′∣∣2
Sd

]
=

(
1 +

puβfjk(M − 2)

αTU
jk′

)
1

λTU
. (3.78)

Substituting (3.75)-(3.78) into (3.74), the ergodic achievable uplink rate for UE k′ in

cell j in (3.72) becomes (3.69).

The uplink rate for TShup (3.69) and TShdown (3.35) are quite different because in

TShup interference from the same and different cell groups both increase linearly with

the number of antennas. For different cell group interference, this affects all UEs rather

than for UEs with the same pilot sequence.

3.4.4 Power optimization

Similar to the TShdown method in Subsection 3.3.4, we can derive an optimum power

allocation for TShup as well. However, for TShup, since the pilot is overlapped with the
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uplink data (refer to Figure 3.6), optimization is done by finding the uplink transmit

power, pu, that maximizes the uplink sum rate. An expression for optimum transmit

power is approximated by differentiating (3.58) with respect to pu, and solving for pu in

d
dpu

(
RTU,UL
jk′

)
= 0 with pu > 0 (see Appendix D.2 for more detail). The result is given

as

pu =√√√√√p2
rK
(∑

f∈A2

∑K
k=1 βfjk

) (∑
i∈A1

βijk′
)

+ pr

(∑
f∈A2

∑K
k=1 βfjk +K

∑
i∈A1

βijk′
)

(∑
i∈A1∪A3

∑K
k=1 βijk

)(∑
i/∈A1

∑K
k=1 βijk

)
+
∑

i∈A3

∑K
k=1 β

2
ijk (M − 1)

.

(3.79)

Similar to the TShdown method, the optimum power that we obtained in (3.79) is only

optimized for UE k′ in cell j. In order to obtain a common value for pu across all UEs

in all cells, we average the value of (3.79) across multiple UEs and cells. Since the value

generated from (3.79) resembles a log-normal distribution (as shown in Figure 3.15 in

the results section), geometric mean is used to find the average.

3.5 Time-synchronized pilot

To analyze the performance of the time-synchronized pilot (TSync) method, we can use

the same rate equation as either of the time-shifted methods, but we have to modify

the system so that all cells only belong to one cell group. This is because if all cells

in the time-shifted method belong to the same group, such as in Figure 3.10, then the

pilot transmission in all cells will be time-synchronized. In other words, the TSync

method is a special case of the time-shifted methods. For example, we can set all cells

in TShup to be in group A1. As a result, the pilot and data transmission phase is

arranged as in Figure 3.11. In this case, we need to replace all interference terms from

cell groups A2 and A3 in the downlink rate equation (3.58) and uplink rate equation

(3.69) with interference terms in group A1 in order to obtain the downlink and uplink

rates for TSync. We also need to replace αTU
jk′ with αTC

jk′ =
∑

i∈A1
prβilk′K + 1 for the

TSync method. We use TC as the abbreviation of the variables related to the time-

synchronized method. Therefore, the ergodic downlink rate for TSync can be expressed

as
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Figure 3.10: 7 cells group arrangement for TSync.
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Figure 3.11: The arrangement of time-shifted pilots for TSync.

RTC,DL
jk′ =

Td

T
× log2

(
1 +

Se

Ne

)
, (3.80)

where

Se =
pfprβ

2
jjk′ξ (M)2

αTC
jk′

, (3.81)

Ne =
∑
l∈A1

pfβjlk′

K

(
1 +

prβjlk′K(M − 1)

αTC
lk′

)
−
pfprβ

2
jjk′ξ (M)2

αTC
jk′

+
∑
i∈A1

K∑
k 6=k′

pfβjik′

K
+ 1.

(3.82)

Se is effective downlink signal power for TSync, Ne is the total downlink interference

and noise power for TSync.
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The ergodic uplink rate for TSync can be expressed as

R̃TC,UL
jk′ =

Tu

T
× log2

(
1 +

S̃f

Ñf

)
, (3.83)

where

S̃f =
puprβ

2
jjk′K(M − 1)

αTC
jk′

, (3.84)

Ñf =puβjjk′

(
1−

prβjjk′K

αTC
jk′

)
+

∑
l∈A1∩l 6=j

puβljk′

(
1 +

prβljk′K(M − 2)

αTC
jk′

)

+
∑
i∈A1

K∑
k 6=k′

puβijk + 1. (3.85)

S̃f is effective uplink signal power for TSync, Ñf is the total uplink interference and noise

power for TSync.

3.6 Numerical results

We use the cell arrangement in Figure 3.1 for performance analysis of both time-shifted

methods. In this arrangement, there will be no same group interference from the nearest

cells. This is similar to the optimum arrangement for transmission with a frequency

reuse of 3. We also assume that the interference outside the 7 cells has a negligible

impact on the middle cell. For TSync, all cells belong to the same group, as shown

in Figure 3.10. With these settings, each transmission method will experience different

types of interference from the nearest cells during pilot transmission. First, we compare

the SINR performance of Monte Carlo simulation with the derived closed form for both

time-shifted methods. SINR is defined as the effective signal power divided with effective

interference and noise power. For example, for TShdown downlink, the SINR is equal

to Sa in (3.21) divided by Na in (3.22). For Monte Carlo simulation, we use Zadoff-

Chu sequences for the pilot [10], QPSK modulation for data and model small-scale

fading channel using a random complex Gaussian variable. For every small scale channel

realization, we obtain the channel estimate, precoding and equalizer values. We insert

these values in the expectation term in (3.24), (3.25), (3.40) and (3.41) and find the

average values over all channel realizations for each expectation term in order to obtain

downlink and uplink TShdown SINR. A similar method can be applied to the expectation
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Figure 3.12: Downlink and uplink SINR for the TShdown and TShup method using
Monte Carlo (MC) and closed form (CF) simulations.

terms in (3.62), (3.63), (3.73) and (3.74) to obtain downlink and uplink TShup SINR.

Then we compare the Monte Carlo result with the derived closed form expressions. The

transmit powers for all transmission methods are pf = 20 dB, pu = 10 dB and pr = 10

dB. The transmissions are tested with coherent subcarrier values of N = 1 and N = 5.

Since K = τN , if we set τ = 3, this means the number of spatial multiplexed UEs will be

3 and 15 for each test. Having more coherent subcarriers enables the pilot length to be

longer, which means more parallel data streams or more UEs can be included in spatial

multiplexing transmission. We set all the large-scale fading values using the path-loss

equation β = zd−γ , where z is log-normal shadow fading, γ is the path-loss exponent

and d is the distance between transmitter and receiver, normalized to the inner radius of

the cell. The path-loss exponent is set to 3.8. We assume the UEs are the same distance

from the BS, namely 2/3 of the cell radius and without shadowing (or z = 1) following

the scenario in [6]. The results in Figure 3.12 show that derived closed form expressions

are a very close approximation to the Monte Carlo simulations. The results also show

that SINR for 3 UEs is higher than that of 15 UEs. However, 15 UEs will have a higher

spatial multiplexing gain resulting in a higher sum rate, which we will see next.
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Figure 3.13: Average downlink and uplink sum rate for TSync, TShdown and TShup
and without power optimization (OP).
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Now we proceed using the closed form expressions to obtain sum rate performance.

In this simulation, the UEs are located at uniform random locations within each cell

excluding the area inside a 0.1 normalized distance from the BSs. We also include the

shadowing effect with standard deviation of 8dB [5]. Each UE will be located in a cell

which has the largest large-scale fading between the UE and the BS in that cell. This

is because UE cell allocation will be based on power level between the UE and the BS

[11]. For TShdown, we find the downlink and uplink rates for each UE using (3.20) and

(3.35). For TShup, we find the downlink and uplink rates for each UE using (3.58) and

(3.69). For TSync, we find the downlink and uplink rate for each UE using (3.80) and

(3.83). After obtaining the transmission rate for each UE, the sum rate is obtained by

summing the transmission rate for all UEs in one cell. Then the average sum rate is

obtained by averaging the sum rate across different random locations of the UEs. All

the transmission methods have τ = 3, Td = 6, Tu = 6, and T = 15. As well as using the

same transmit power, we also use optimized power to maximize the sum rate. These

optimum powers are found using an exhaustive search. We use 3 UEs and 15 UEs for

each test.

The average sum rate per cell is shown in Figure 3.13. The TShdown method can improve

both uplink and downlink rates compared to the TSync method when we use 3 UEs and

can be further improved by using optimized power. However, for 15 UEs, TShdown

performs poorly in the downlink. This is because, for high number of UEs, there will be

more pilot interference signals from other cells received by the UEs during the downlink

transmission. For TShup, the downlink rate is significantly improved compared to TSync

for 3 UEs and 15 UEs when the power is optimized. The uplink rate is slightly lower

than TSync. Note that if we apply power optimization, then the transmit data power

from UEs in TShup will be between 3 dB and 7 dB while the transmit data power from

BS in TShdown will be between 14 dB and 22 dB. Therefore, it is possible that the

power optimization can also reduce the power consumption, especially for TShup.

Next, to get a more complete understanding of the behavior of time-shifted methods,

we consider two more types of path-loss model in addition to the path-loss model used

for Figure 3.13. The additional two path-loss model are random UE locations without

shadowing and equal UE distance from the BS without shadowing [6]. The results in

Table 3.1 show the percentage changes in sum rate for the time-shifted methods with

respect to TSync using 200 antennas for the 3 different path-loss models. Note that the
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Table 3.1: Percentage change in the average sum rate with respect to TSync for 200
antennas

Pathloss model
Number TShdown TShup
of UEs DL UL DL UL

Random UE locations with 3 9% 11% 9% -3%
shadowing (Figure 3.13) 15 -10% 1% 8% -1%

Random UE locations 3 17% 15% 12% 1%
without shadowing 15 0% 4% 9% 2%

Equal UE distances from 3 6% 9% 6% 2%
BS [6] 15 2% 4% 5% - 1%

results in Table 3.1 are in comparison to TSync in each specific condition and both of

the time-shifted methods use power optimization. A positive percentage means a sum

rate increase while a negative percentage means a sum rate decrease with respect to

TSync. The results show that for all 3 path-loss models, TShdown generally performs

the best for 3 UEs. However, TShdown has less advantage in the downlink rate for

15 UEs. This is because, as the number of UEs increases, the interference from uplink

pilots from other cells will also increase. For TShup, increasing the number of UEs does

not significantly impact its downlink performance with respect to TSync. This because,

unlike TShdown, TShup does not have UE to UE interference since all the UEs perform

either uplink or downlink simultaneously. This is an important advantage of TShup

because practically the demand for the downlink is usually higher than on the uplink.

In other words, TShdown is the preferable method when there are small numbers of UEs,

but TShup has an advantage when there are higher numbers of UEs. This means that

in addition to being more practical than TShdown in term of downlink and uplink phase

change (see the explanation in Section 3.4 introduction), TShup has a more consistent

downlink rate improvement with respect to TSync when the number of UEs changes.

If we include shadowing effects, TShdown has a significantly worse performance than

TSync in the downlink for 15 UEs. This is because UE to UE interference in the

TShdown downlink can be very large due to the log-normal distribution of the large-

scale fading from the shadowing effect. In other words, under certain conditions, it is not

accurate to assume that TSync is the worst case scenario for transmission. Compared

to the random UE location model, the equal UE distance model for TShdown has less

significant performance changes between 3 UEs and 15 UEs with respect to TSync.

This is because the random UE location model gives more cell edge interference. This

significantly increases UE to UE interference in TShdown when the number of UEs
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increases. Meanwhile, the equal UE distance scenario has less cell edge interference due

to the position of the UEs. Hence, the changes in the number of UEs has less impact

on TShdown performance for this model.

The results in Figure 3.13 are based on power optimization using an exhaustive search.

As we discussed in Section 3.3.4 and Section 3.4.4, we can also obtain the power using

the optimal power equations. Due to the variation of the UEs large scale fading, the

optimum power equation in (3.50) and (3.79) will follow certain distribution, as shown

in Figure 3.14 and 3.15. Since the optimum power distribution in these figures are based

on a logarithmic scale, we use geometric mean to find the average optimum power for

each method. Using the acquired optimum power, we can obtain the sum rate results

as given in Figure 3.16. The results show that the sum rate of an optimized power

exhaustive search agrees well with the equation-based optimum power.

3.7 Summary

We had derived novel closed form downlink and uplink transmission rate expressions for

TShdown and TShup with a finite number of BS antennas. Results showed that if there

were a small number of UEs, the TShdown method with power optimization provided the

best sum rate performance. However, for high numbers of UEs, the TShup method with

power optimization had an advantage compared to other methods. The time shifted

methods do not always outperform TSync when there is no power optimization. As

discussed in Section 3.3.4, data power optimization is a unique advantage that time

shifted methods have over TSync due to the fact that there is no pilot and data overlap

in TSync. In addition to being more practical than TShdown in terms of downlink and

uplink phase change, the TShup performance improvement with respect to TSync was

also more consistent than TShdown when the number of UEs increased. The results also

showed that the TSync method is not necessarily the worst case scenario in terms of

sum rate performance, especially when path-loss models with shadowing are considered.
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Figure 3.14: Distribution for optimum downlink data power for TShdown generated
using (3.50) with 100 BS antennas, 15 UEs and 104 random UEs location drops.
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Figure 3.15: Distribution for optimum uplink data power for TShup generated using
(3.79) with 100 BS antennas, 15 UEs and 104 random UEs location drops.
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Chapter 4

Massive MIMO systems in

time-selective channels

4.1 Introduction

As we discussed in Chapter 2, the channel may vary over time due the UE mobility

[29]. The block-fading channel model is a slow fading approximation, which assumes

the channel to be constant within a coherence block and to vary randomly between

blocks. Research in massive MIMO systems commonly uses the block fading model

due to its simplicity [8]. Unlike the block-fading model, selective fading channel model

allows the channel to vary within the coherence block and thus provides a more realistic

representation of channel variation. We have shown in Figure 2.3 that there can be

significant variation over time between the block fading model and time-selective model,

especially for faster fading (higher speed UE mobility). Hence, this chapter investigates

the performance of massive MIMO systems in time-selective channels, where the channel

conditions can vary within the frame. The key challenge to analyze selective fading

performance is the calculation complexity. This is because there is channel variation

within the frame in selective fading while there is no channel variation within the frame

of block fading model. Therefore, more complicated mathematical expression is required

to obtain the sum rate for selective fading model compared to block fading model.

Various works have studied the optimization of training and data length in time-selective

channels [55–58, 60]. Such optimization depends on the type of performance criteria

65
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Pilot Data

Time

Tf

Tp Td

Figure 4.1: Pilot and data arrangement in one frame.

used. For example, bit error rate (BER) is used in [55, 56] as a performance metric.

In this chapter, we use achievable sum rate for training optimization because we aim

to measure the improvement in sum rate provided by the spatial multiplexing gains.

Optimization based on sum rate and throughput is considered in [56–58, 60], where

[57, 58] study a single antenna system and [56] uses a constant spatial multiplexing

gain. In [60] the channel is assumed constant during training. In contrast, we consider

the effect of time-variation during both training and data phases. Our contribution, is

in deriving a novel analytical proof to show that using constant amplitude pilots, the

interference effect from time-selective channels does not diminish in the asymptotic case

(infinite BS antennas). We also provide a sum rate performance comparison between

block and time-selective fading channels in order to look at optimal training. So far,

we have not found any research that provides a comparison between optimal training of

block and time-selective fading models.

The rest of this chapter is arranged as follows. Section 4.2 discusses the general system

model. Section 4.3 describes the derivation of the channel estimation process. Sec-

tion 4.4 provides the derivation of the sum rate. This is followed by numerical results

in Section 4.5 and a summary in Section 4.6.

4.2 System model

We assume a narrow band channel in a single cell system. The uplink pilot is used to

estimate the channel. Then, the estimated channel is used to beamform the downlink

data for the remainder of the frame, as shown in Figure 4.1. Pilot and data transmission

for all UEs are completely synchronized. We assume channel reciprocity (equal uplink

and downlink channels). Each transmission frame has a length of Tf symbols, consisting

of a pilot of length Tp and data of length Td = Tf − Tp. We set the number of spatial
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multiplexed UEs equal to the pilot length, K = Tp. The number of BS antennas is M .

The channel vector between the k-th UE and the BS at time t is
√
βkhkt, where hkt is

1 ×M small scale fading with hkt ∼ CN (0, IM ) and
√
βk is large scale fading that is

time-invariant. We assume no channel correlation between different antennas. We use

a first order Gauss-Markov time-selective channel model for the small scale fading. We

allow the channel to vary within the transmission frame, but stay constant within each

symbol. The relationship between the channel at time t and s for user k is given by [58]

hkt = δ|t−s|hks +
√

1− δ2|t−s|ekt (4.1)

where δ ∈ [0, 1] is the correlation between two consecutive symbols and ekt has a

CN (0, IM ) distribution, which is mutually independent for different values of k and

t. The value of δ is determined by bandwidth, B, and coherence time, TC (which de-

pends on maximum Doppler shift [29]). δ can be expressed as δTCB = w [59], where w

is the correlation value between two ends of the channel in one coherence time that is

typically set to w = 0.5 [29]. The typical value of δ varies between 0.9 and 0.99 [59].

For example, for w = 0.5, 200 Hz of maximum Doppler shift and 10 kHz bandwidth

will result to δ = 0.968. High value δ means slow fading due to a slow moving UE

while small value δ means fast fading as a result of a high speed UE. From (4.1), the

cross-covariance between channels at time t and s is

E[hHkthks] = IMδ
|t−s|. (4.2)

We assume the BS knows the channel statistical properties, namely the large scale fading

and time-correlation coefficient.

4.3 Channel estimation

To estimate the channel, we use the pilot signal received at the BS. We define the user

k pilot as ψk = [ψk1 ψk2 · · ·ψkτ · · ·ψkK ]T , where |ψkτ |2 = 1 for any discrete time value

τ (i.e. constant amplitude) and ψkτ is the pilot sequence for UE k at training time τ .

If the target UE is k′, its pilot sequence is set to be orthogonal with pilot sequences

from different UEs, or ψHk′ψk = 0 for k 6= k′. To achieve this, we consider Zadoff-Chu
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sequences, which are defined as

ψkτ =exp (− (τ − k) (τ − k + (K mod 2))uπi/K) ,

where u is a constant integer with 0 < u < K and gcd(K,u) = 1. The received

pilot signal matrix at the BS from all users is given by the K × M matrix Y =

[y1 y2 · · ·yτ · · ·yK ]T , where

yτ =

K∑
k=1

√
Ppβkψkτhkτ + nτ , (4.3)

Pp is the UE average transmit pilot power and nτ is a 1 × M noise vector with a

CN (0, IM ) distribution. The received signal is correlated with pilot sequence k′ as

follows

ȟk′ =ψHk′Y

=

K∑
τ=1

ψ∗k′τyτ

=

K∑
τ=1

√
Ppβk′ψ

∗
k′τψk′τhk′τ︸ ︷︷ ︸

A

+

K∑
k 6=k′

K∑
τ=1

√
Ppβkψ

∗
k′τψkτhkτ︸ ︷︷ ︸

B

+

K∑
τ=1

ψ∗k′τnτ , (4.4)

where A is the received signal from the target UE k′ and B is interference from pilot

signals with different sequences. If hkτ in B is constant across τ , such as in the case of

block fading, then the termB is eliminated due to pilot orthogonality, or
∑K

τ=1 ψ
∗
k′τψkτ =

0. However, since hkτ is varying across τ in selective fading, B becomes non-zero.

To obtain a lower bound on sum rate [8], we use the linear minimum mean square error

(LMMSE) channel estimate [38].

Theorem 4.1. The LMMSE estimate of the channel for UE k′ at time t can be expressed

as

ĥk′t = θk′tȟk′ , (4.5)
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where

θk′t =

√
Ppβk′

∑K
τ=1 δ

|t−τ |∑K
k=1

∑K
τ=1

∑K
s=1 Ppβkψk′τψ

∗
kτψ

∗
k′sψksδ

|τ−s| +K
.

Proof. We aim to obtain LMMSE estimation of channel hk′t using information from ȟk′

in (4.4) and channel statistical properties. From [46], the LMMSE channel estimate is

given by

ĥ
T

k′t = Rhk′tȟk′

(
Rȟk′ ȟk′

)−1
ȟ
T
k′ (4.6)

whereRhk′tȟk′
is the cross-covariance between hk′t and ȟk′ , andRȟk′ ȟk′

is the covariance

of ȟk′ . Using (4.2) and (4.4), and by eliminating uncorrelated terms, we get

Rhk′tȟk′
=E

[
hHk′tȟk′

]
=
√
Ppβk′

K∑
τ=1

δ|t−τ |IM , (4.7)

and

Rȟk′ ȟk′
=E

[
ȟ
H
k′ ȟk′

]
=E

[
K∑
k=1

K∑
τ=1

K∑
l=1

K∑
s=1

√
PpβkPpβlψk′τψ

∗
kτψ

∗
k′sψlsh

H
kτhls

]
+

K∑
τ=1

E
[
nHτ nτ

]
. (4.8)

Using (4.2) and since hkτ is independent for different k, we simplifiy (4.8) as

Rȟk′ ȟk′
=

K∑
k=1

K∑
τ=1

K∑
s=1

Ppβkψk′τψ
∗
kτψ

∗
k′sψksδ

|τ−s|IM +KIM . (4.9)

Substituting (4.7) and (4.9) into (4.6), gives (4.5).

Using (4.5) and (4.9), the covariance of ĥk′t is given by

Rĥk′tĥk′t
=E

[
ĥ
H

k′tĥk′t

]
=θ2

k′tRȟk′ ȟk′

=αk′tIM , (4.10)
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where

αk′t =
Ppβk′

(∑K
τ=1 δ

|t−τ |
)2

∑K
k=1

∑K
τ=1

∑K
s=1 Ppβkψk′τψ

∗
kτψ

∗
k′sψksδ

|τ−s| +K
. (4.11)

The channel estimation error at time t is h̃k′t = hk′t− ĥk′t and h̃k′t is uncorrelated with

ĥk′t. The covariance of h̃k′t is

Rh̃k′th̃k′t
=Rhk′thk′t −Rĥk′tĥk′t

=IM −Rĥk′tĥk′t

= (1− αk′t) IM . (4.12)

The covariance in (4.10) and (4.12) will be used to derive the closed form transmission

rate.

4.4 Achievable sum rate

The received downlink data signal at UE k′ at time t can be expressed as

xk′t =
K∑
k=1

√
Pdβk′hk′taktqkt + vk′t, (4.13)

where Pd is the average downlink data power, akt is an M × 1 precoding vector for UE

k at time t, vk′t is noise at UE k′ at time t with vk′t ∼ CN (0, 1) and qkt is downlink data

to UE k at time t with qkt ∼ CN (0, 1) [8]. For the precoding vector, we use conjugate

beamforming defined as

akt =
ĥ
H

kt√
K
∥∥∥ĥkt∥∥∥ . (4.14)

Theorem 4.2. A lower bound on the sum rate of the time-selective channel for K users

is given by (4.15),
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Rsum =
1

Tf

K∑
k′=1

Tf∑
t=K+1

log2


1 +

Pdβk′ξ(M)2αk′t
K Pdβk′

K

(
1 + (M − 1− ξ (M)2)αk′t

)
+
∑K

k 6=k′
Pdβk′
K

(
1 + (M − 1)φ2

k′kt

)
+ 1




, (4.15)

where αk′t is defined in (4.11) and φ2
k′kt is defined as

φ2
k′kt =

Ppβk′
∣∣∣∑K

τ=1 ψ
∗
kτψk′τδ

|t−τ |
∣∣∣2∑K

q=1

∑K
τ=1

∑K
s=1 Ppβqψkτψ∗qτψ

∗
ksψqsδ

|τ−s| +K
. (4.16)

Proof. We use a similar lower bound to that in [8]. However, since the signal to interfer-

ence and noise ratio (SINR) for the time-selective channel model will be time dependent,

this also means that there will be different achievable rates at different times. Therefore,

we sum the rate equation from t = K + 1 to t = Tf (the data time interval) and divide

by the frame length Tf [56] to obtain the average data rate per symbol,

rk′ =
1

Tf

Tf∑
t=K+1

log2

(
1 +

Sk′t
Nk′t

)
, (4.17)

where Sk′t in (4.17) is the effective (desired) power for UE k′ at time t. Using a

similar method as in [8], we assume that the effective channel of the transmission is
√
Pdβk′E [hk′tak′t]. As a result,

Sk′t =Pdβk′E [hk′tak′t]
2 . (4.18)

Using a similar method as in [8, eq. (13)] and (3.27), but with the precoding in (4.14),

we can solve the expectation in (4.18) to give

Sk′t =Pdβk′E

hk′t ĥ
H

k′t√
K
∥∥∥ĥk′t∥∥∥

2

=
Pdβk′

K
E
[∥∥∥ĥk′t∥∥∥]2

=
Pdβk′

K
ξ (M)2

∥∥∥Rĥk′tĥk′t

∥∥∥
=
Pdβk′

K
ξ (M)2 αk′t, (4.19)
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where ξ (M) is defined in (3.27) in Chapter 3. Nk′t in (4.17) is the interference and noise

for UE k′ at time t which equals the total received power minus the effective power,

Nk′t = E
[
|xk′t|2

]
− Sk′t. This can be expanded as

Nk′t =Pdβk′E
[
|hk′tak′t|2

]
+

K∑
k 6=k′

Pdβk′E
[
|hk′takt|2

]
+ 1− Sk′t. (4.20)

The first expectation term in (4.20) can be solved using a similar method to [8, eq. (14)],

but using precoding defined in (4.14). Similar derivation can also be seen in (3.29) in

Chapter 3. Using results from (4.10), (4.12) and Lemma C.1, the expectation term

becomes

E
[
|hk′tak′t|2

]
=E

∣∣∣∣∣∣hk′t ĥ
H

k′t√
K
∥∥∥ĥk′t∥∥∥

∣∣∣∣∣∣
2

=E

∣∣∣∣∣∣ĥk′t ĥ
H

k′t√
K
∥∥∥ĥk′t∥∥∥

∣∣∣∣∣∣
2+ E

∣∣∣∣∣∣h̃k′t ĥ
H

k′t√
K
∥∥∥ĥk′t∥∥∥

∣∣∣∣∣∣
2

=
1

K

(
tr
(
Rĥk′tĥk′t

)
+

1

M
tr
(
Rh̃k′th̃k′t

))
=

1

K
(αk′tM + 1− αk′t). (4.21)

The second expectation term in (4.20) is interference from downlink data to other UEs.

From (4.5) and (4.14), it can be shown that akt = ȟ
H
k√

K‖ȟk‖ . ȟk has a similar expression

as in (4.4), but for different UEs (k 6= k′). Since the interference from other UEs during

training (B in (4.4)) is non-zero in time varying fading, this means that ȟk will become

a function of hk′t. Therefore, hk′t and ȟk are correlated. To solve this expectation term,

we expand hk′t in terms of ȟk as

hk′t = φk′kt
ȟk√∥∥∥Rȟkȟk

∥∥∥ +
√

1− φ2
k′ktεk′t, (4.22)

where φk′kt is the correlation coefficient between hk′t and ȟk given in (4.25). Both

ȟk√∥∥∥Rȟkȟk

∥∥∥ and εk′t have CN (0, IM ) distributions and are uncorrelated with each other.



Chapter 4. Massive MIMO systems in time-selective channels 73

Using (4.22), we expand the expectation term for multiuser interference in (4.20) as

E
[
|hk′takt|2

]
= E

∣∣∣∣∣hk′t ȟ
H
k√

K
∥∥ȟk∥∥

∣∣∣∣∣
2


=
φ2
k′kt

K
∥∥∥Rȟkȟk

∥∥∥E
∣∣∣∣∣ȟk ȟ

H
k∥∥ȟk∥∥
∣∣∣∣∣
2
+

1− φ2
k′kt

K
E

∣∣∣∣∣εk′t ȟ
H
k∥∥ȟk∥∥
∣∣∣∣∣
2


=
φ2
k′kt

K
∥∥∥Rȟkȟk

∥∥∥tr
(
Rȟkȟk

)
+

1− φ2
k′kt

K

1

M
tr
(
E
[
εHk′tεk′t

])
=

1

K
(φ2
k′ktM + 1− φ2

k′kt). (4.23)

To obtain the correlation coefficient between hk′t and ȟk, we first find the covariance

between these two variables. Note that ȟk has a similar definition to that in (4.4). Using

(4.2), and eliminating uncorrelated terms, we can simplify the covariance as

E
[
hHk′tȟk

]
=E

[√
Ppβk′

K∑
τ=1

ψ∗kτψk′τh
H
k′thk′τ

]

=
√
Ppβk′

K∑
τ=1

ψ∗kτψk′τδ
|t−τ |IM . (4.24)

The correlation coefficient is obtained as follows

φk′kt =

∥∥E [hHk′tȟk]∥∥√∥∥E [hHk′thk′t]∥∥ ∥∥∥E [ȟHk ȟk]∥∥∥
=

∥∥E [hHk′tȟk]∥∥√
‖IM‖

∥∥∥Rȟkȟk

∥∥∥ . (4.25)

Using (4.9), (4.24) and (4.25), then φ2
k′kt becomes (4.16).

The closed form equivalent of the first and second expectation terms in (4.20) can be

obtained from (4.21) and (4.23), respectively. Therefore, Nk′t can be written as

Nk′t =
Pdβk′

K
(1 + (M − 1)αk′t) +

K∑
k 6=k′

Pdβk′

K

(
1 + (M − 1)φ2

k′kt

)
+ 1− Sk′t. (4.26)
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The total sum rate for K UEs is

Rsum =

K∑
k′=1

rk′ . (4.27)

Substituting (4.17), (4.19) and (4.26) into (4.27), the final sum rate becomes (4.15).

It can be shown that
Sk′t
Nk′t

→ βk′αk′t∑K
k 6=k′ βkφ

2
k′kt

as M → ∞. This means that even if we

use orthogonal pilot sequences with constant amplitude in a single cell system (no pilot

contamination effect [1]) and we assume no correlation between antennas, the asymptotic

SINR is still limited by the interference effect due to the time-selective channel.

4.5 Results

We let Pp = Pd = 10 dB and βk = 1 for all k. We consider correlation values of δ = 0.95

and δ = 0.99 [55]. For the time-selective channel, we use the sum rate derived in (4.15)

to obtain the optimum frame length, data and pilot length using an exhaustive search.

The results are shown in Figure 4.2. The frame length is varied in order to obtain the

best sum rate performance. The results show that the frame length increases along with

data length and pilot length when there are more antennas at the BS. This is because as

the number of BS antennas increases, the effective signal power in (4.19) also increases.

The improvement in SINR enables the transmission to have longer pilot and data length,

thus achieving higher spatial multiplexing gain. The results also show that the optimal

length for pilot is between 20% to 35% of the frame length.

To obtain the block-fading sum rate, we must define the coherence time. Using the

Gauss-Markov model, we can obtain the coherence time in terms of the number of

symbols as

Tcoh = Round

(
log
(
v

100

)
log(δ)

)
, (4.28)

where Round(·) is rounding to the closest integer. If we let the frame length equal the

coherence time (Tf = Tcoh), then v will be the percentage correlation between the first

symbol of two consecutive frames. The rule of thumb value for v% is defined as 50% [29].

We can obtain the sum rate for the block-fading channel using (4.15), by setting δ = 1

within the coherence time and Tf = Tcoh. Using an exhaustive search, we obtain results
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Figure 4.2: Optimum frame length, data length and pilot length for the time-selective
channels with δ = 0.95 and δ = 0.99.

for optimal pilot and data lengths for the block-fading model as shown in Figure 4.3.

As the number of BS antennas increases, the pilot length increases to exploit the spatial

multiplexing gain, but the data length reduces in order to ensure the frame length does

not grow beyond the coherence time. Comparing the frame size achieved in Figure 4.2

and Figure 4.3 for massive MIMO, we can see that the frame length can be increased

beyond the coherence time to achieve optimality in a time-selective channel.

In Figure 4.4, we compare the sum rates for block-fading and time-selective channels.

For each correlation value, we investigate 3 different conditions which are

• BL-BL is the sum rate of the block-fading channel using the optimal training for

a block-fading channel given in Figure 4.3.

• TS-TS is the sum rate of the time-selective channel using optimal training for a

time-selective channel from Figure 4.2.
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Figure 4.3: Optimum frame length, data length and pilot length for the block-fading
channels with δ = 0.95 and δ = 0.99.
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Figure 4.4: Performance of block-fading sum rate using optimum training for block-
fading (BL-BL), time-selective sum rate using optimum training for block-fading (TS-
BL) and time-selective sum rate using optimum training for time-selective (TS-TS).
The lines are sum rates from analytical simulations, while each point marked with a

‘×’ is from Monte Carlo simulations.
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• TS-BL is the sum rate of the time-selective channel using optimal training for a

block-fading channel from Figure 4.3.

We also obtain the Monte Carlo sum rate for each scenario by numerically solving the

expected values in (4.18) and (4.20) across many random channel realizations. Results

in Figure 4.4 show that the analytical sum rate agrees well with the Monte Carlo sum

rate. If we use the same pilot and data length for both channel models, such as in

the case of BL-BL and TS-BL, then a much higher sum rate is achieved in a block-

fading rather than a time-selective channel. This is expected since the block-fading

model excludes the effect of interference from channel time variation. The result also

shows that if the optimum training values for the block-fading channel model are used

in a time-selective channel (TS-BL), the sum rate is noticeably lower than using the

optimum training values for the time-selective channel (TS-TS) for larger numbers of

antennas. The training optimization for the block fading model is not optimal in a

time-selective fading channel because the channel model approximation method in block

fading model is limited by coherence time which can result to inaccurate analysis under

certain conditions. For example, in the case of massive MIMO system, having many

excess antennas at the BS means the SINR can be increased significantly, which enables

the frame length to be expanded beyond the coherence time to achieve optimal length,

as shown in Figure 4.2. This contradicts the block fading model, which limits the frame

length to the coherence time, thus limit its potential. This shows the importance of

considering channel time variation when determining training and data length in massive

MIMO.

In order to analyze the impact of channel time correlation on the optimal training,

Figures 4.5 and 4.6 show the relationship between δ (correlation between two consecutive

symbols) with optimal frame length, data length, pilot length and sum rate. The results

show that as the value of δ increases, the value of the optimum frame length, data length,

pilot length and sum rate also increase. Note that for higher δ, the increase becomes

steeper. This is due to the exponential relationship between the correlation and time.
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Figure 4.5: Optimum frame length, data length and pilot length for the time-selective
channels with 100 antennas st BS for various values of δ.
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Figure 4.6: Sum rate with optimum training for the time-selective channels with 100
antennas st BS for various values of δ.

4.6 Summary

In this chapter, we derived the achievable sum rate for the time-selective channel model.

We showed that if we used constant amplitude pilots, the asymptotic SINR performance

was limited by the interference effect from the time-selective channel. We also showed

that there is a significant difference between the sum rate obtained for the block-fading

and time-selective models. In addition, we showed that optimal training in a block-

fading channel may not be optimal in a time-selective channel for a very large number of
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antennas at the BS. We showed that for time selective channel model, the optimal frame

length can grow beyond the coherence time when the number of antennas becomes very

large. This finding cannot be obtained using the block fading channel model because

of the limitation of the frame length being equal to the coherence time in block fading

channel model. We also show that the optimal length for pilot is between 20% to 35%

of the frame length for the finite massive MIMO systems considered.





Chapter 5

Massive MIMO systems in time

and frequency selective channels

5.1 Introduction

In Chapter 4, it is shown that the optimal training in block-fading channels may not

be optimal if applied in time-selective fading channels. As discussed in Chapter 2,

other than time variation, the channel may also experience frequency variation due

to multipath. The combination of time and frequency channel variations leads to a

doubly-selective channel model, where the channel can vary within the coherence block

in both time and frequency domains. Hence, in this chapter, we aim to investigate

the performance of massive MIMO systems in doubly-selective channels. Various pa-

pers have studied the optimization of training in time-selective, frequency-selective and

doubly-selective fading channels [55–58, 60–67]. Training optimization in a time-selective

channel model is investigated in [55, 58] with a single antenna system. The impact

of the number of antennas on optimal training in time-selective channels is investi-

gated in [56, 60, 61]. MIMO orthogonal frequency-division multiplexing (OFDM) in

frequency-selective channels is studied in [62–64] by excluding channel selectivity in the

time domain. A capacity-based performance analysis is used to study training design

in a doubly-selective channel using a single antenna system in [57, 65]. Training design

for a multiple antenna system in a doubly-selective channel with a delay tap model is

81
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investigated in [66, 67]. This work only considers a single cell system and excludes the

impact of increasing numbers of antennas on the optimal training.

In this research, we analyze the optimal training and data lengths in the time and

frequency domains in a massive MIMO system. Compared to conventional MIMO,

massive MIMO has the potential to achieve much higher spatial multiplexing gain due

to the asymptotically orthogonal nature of the spatial signatures between different UEs

as the number of BS antennas increases [1]. Since the spatial multiplexing gain depends

on the size of pilot [38], the number of antennas can affect the optimal training size.

We use sum rate as our performance metric since we aim to study the performance

enhancement provided by the spatial multiplexing gains.

This chapter extends the study of optimal training of massive MIMO systems in Chapter

4 to time-frequency or doubly-selective channels in a multicell system. We also compare

two different types of pilot sequence which are a constant amplitude pilot and a zero

padded pilot. Similar pilot sequences have been investigated in [55, 61] for constant

amplitude pilots and in [63, 66] for zero padded pilots. However, so far there has been

no study of the impact of the number of BS antennas and the number of UEs on the

optimum training size in time and frequency domains in doubly-selective channels. In

addition, different channel conditions provide different statistical properties which can

affect the training size. For example, a very high UE speed, but low delay spread means

it is more advantageous to have a longer training length in the frequency domain and

vice versa. Therefore, in addition to the performance comparison between two pilot

schemes, a key contribution of this chapter is to use the novel doubly-selective channel

sum rate expression to obtain the optimum training size in time and frequency domains

for various numbers of UEs, numbers of BS antennas and channel statistical properties.

To achieve this, two methods of time-frequency training optimization are considered,

which are average optimal training and adaptive optimal training.

The rest of the chapter is arranged as follows. Sections 5.2, 5.3 and 5.4 provide the system

model, channel estimation procedure and sum rate derivation, respectively. Section

5.5.1 and Section 5.5.2 discuss constant amplitude and zero padded pilots, respectively.

Section 5.5.3 investigates two training optimization methods. Numerical results are

given in Section 5.6, followed by a chapter summary in Section 5.7.
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Figure 5.1: Time-frequency arrangement of the transmission block. Tf, Tp, Td are
the frame, pilot and data length in the time domain (number of symbols) and F is
the length of the training/data block in the frequency domain (number of subcarriers).
Each small square represents a resource element which is occupied by a pilot/data

symbol.

5.2 System model

We assume OFDM transmission in a multicell system. Based on the time-frequency

transmission arrangement in Fig. 5.1, channel estimation uses the uplink pilot during

the training block. Then, the estimated channel is used to beamform the downlink

data during the data block. Pilot and data transmission for all UEs are completely

synchronized. We exclude the performance loss from the usage of a cyclic prefix. We

assume channel reciprocity (equal uplink and downlink channels). Each transmission

frame or update interval has a length of Tf symbols, consisting of a pilot of length Tp

and data of length Td = Tf − Tp. The total length of the pilot is K = Tp × F symbols.

Note that F is not the total number of subcarriers in the transmission, but the number

of subcarriers used by the pilot to achieve a unique pilot sequence of length K. The same

pilot pattern within the F subcarriers can be repeated across the whole bandwidth. A

pilot of length K means that there can be K orthogonal pilot sequences, which also

means that K UEs can perform spatial multiplexing transmission using the same time-

frequency resources in each cell. Each BS has M antennas while each UE has 1 antenna.

Our channel model is similar to the multicell channel model in [8], but in order to include

the effect of the doubly-selective channel, we extend the channel dimensions to include
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time-frequency dimensions. Therefore, the channel vector between the k-th UE in cell

j and the BS in cell l at discrete time t and subcarrier numberf is
√
βjlkhjlktf , where

hjlktf is 1×M small scale fading with hjlktf ∼ CN (0, IM ) and
√
βjlk is large scale fading

that is time-frequency invariant. We assume no channel correlation between different

antennas. We allow the channel to vary within the transmission block, but stay constant

within each resource element. Using the Jakes model [28], the cross-covariance between

channels at time-frequency t1f1 and t2f2 is

E[hHjlkt1f1
hjlkt2f2 ] =

J0 (σjlk |t1 − t2|)
1− iµjlk (f1 − f2)

IM , (5.1)

where σjlk = 2πfd,jlkTs, µjlk = 2π∆vτs,jlk. Ts is symbol time, fd,jlk is the maximum

Doppler shift between UE k in cell j and BS in cell l that depends on the UE speed and

carrier frequency [29], ∆v is the frequency spacing between subcarriers and τs,jlk is the

r.m.s. delay spread between UE k in cell j and BS in cell l.

We assume the BS knows all the statistical properties of channels such as the large scale

fading and the time-frequency correlation. In order to simplify the analysis, we assume

that there is no inter-carrier interference due to the UEs mobility. The increase of inter-

carrier interference from the UEs mobility and its impact on the performance will be an

interesting topic for future research.

5.3 Channel estimation

To estimate the channel, we use the pilot signal received from the UEs at the BS. We

define the user k pilot within the training block as

Ψk =


ψk11 · · · ψkTp1

...
. . .

...

ψk1F · · · ψkTpF

 , (5.2)

where ψktf is the pilot sequence for UE k at time-frequency tf . The pilot sequences for

different UEs are orthogonal to each other. As a result, the pilot sequences will have
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Figure 5.2: Uplink pilot signal received at BS in cell l from all UEs including those
in nearby cells.

the following properties

{Tp,F}∑
{t,f}=1

ψ∗k′tfψk′tf =K, (5.3)

{Tp,F}∑
{t,f}=1

ψ∗k′tfψktf =0, for k 6= k′. (5.4)

These properties enable the BS to estimate the channel by eliminating interference

between UEs with different pilot sequences during the training.

Fig. 5.2 shows the BS in cell l receiving pilots from all UEs in cell l and nearby cells.

If the BS receives pilots from K UEs in each of L nearby cells, then the received pilot

signal vector at the BS in cell l from all UEs at time-frequency tf can be expressed as

yltf =

L∑
n=1

K∑
k=1

√
Ppβnlkψktfhnlktf + nltf , (5.5)

where Pp is the UE average transmit pilot power and nltf is a 1×M noise vector with a

CN (0, IM ) distribution. Referring to the properties in (5.3) and (5.4), we estimate the

channel by correlating the received pilot signal with the known pilot sequence for UE k′



Chapter 5. Massive MIMO systems in time and frequency selective channels 86

as follows

ȟlk′ =

{Tp,F}∑
{t,f}=1

ψ∗k′tfyltf

=
L∑
n=1

{Tp,F}∑
{t,f}=1

√
Ppβnlk′

∣∣ψk′tf ∣∣2 hnlk′tf︸ ︷︷ ︸
Pilots from UEs with the same sequences

+
L∑
n=1

K∑
k 6=k′

{Tp,F}∑
{t,f}=1

√
Ppβnlkψ

∗
k′tfψktfhnlktf︸ ︷︷ ︸

Pilots from UEs with different sequences (multiuser interference)

+

{Tp,F}∑
{t,f}=1

ψ∗k′tfnltf︸ ︷︷ ︸
Noise

. (5.6)

In (5.6), the first summation term is the received signal from UEs with the same pilot

sequences which contains signals from UEs from other cells in addition to the target cell.

This is a result of pilot reuse in other cells which will also cause pilot contamination.

The second summation term in (5.6) is an interference term from signals with different

pilot sequences. If we assume the channel in the training block is constant, such as

in the case of a block fading channel, then we can apply the relationship in (5.4) and

this interference term can be eliminated. However, since hnlktf is changing across tf in

selective fading, this means that the interference term may not be zero.

Next, we perform LMMSE channel estimation using (5.6). The resulting estimated

channel is independent from its error, which will be used to obtain the lower bound sum

rate [38]. In addition to obtaining channel estimates between the BS and UEs in the

same cell, we also acquire channel estimates between the BS and UEs from different

cells in order to analyze the impact of pilot contamination [8]. For example, if we aim

to obtain the downlink rate for a UE in cell j, then we need to obtain the LMMSE

estimate between the UE and BSs from surrounding cells in order to know the effective

downlink interference from other cells. The LMMSE estimation of channel hjlk′tf is

acquired using channel information from ȟlk′ and statistical properties of the channel.

Theorem 5.1. The LMMSE estimate of the small scale fading between UE k′ in cell j

and the BS in cell l at time-frequency tf can be expressed as

ĥjlk′tf =θjlk′tf ȟlk′ , (5.7)
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where

θjlk′tf = √
Ppβjlk′

∑{Tp,F}
{t1,f1}=1

∣∣ψk′t1f1

∣∣2 J0(σjlk′ |t−t1|)
1−iµjlk′ (f−f1)∑L

n=1

∑K
k=1

∑{Tp,F,Tp,F}
{t1,f1,t2,f2}=1 Ppβnlkψk′t1f1ψ

∗
kt1f1

ψ∗k′t2f2
ψkt2f2

J0(σnlk|t1−t2|)
1−iµnlk(f1−f2) +K

. (5.8)

Proof. Using a similar approach to that in [46], the LMMSE estimate of the small scale

fading between UE k′ cell j and the BS in cell l at time-frequency tf can be expressed

as

ĥ
T

jlk′tf =Rhjlk′tf ȟlk′

(
Rȟlk′ ȟlk′

)−1
ȟ
T
lk′ , (5.9)

where Rȟlk′ ȟlk′
in (5.9) is the covariance of ȟlk′ . Using ȟlk′ from (5.6), Rȟlk′ ȟlk′

can be

expressed as

Rȟlk′ ȟlk′
=E

[
ȟ
H
lk′ȟlk′

]
=E

 {L,L}∑
{n1,n2}=1

{K,K}∑
{k1,k2}=1

{Tp,F,Tp,F}∑
{t1,f1,t2,f2}=1

√
P 2

pβn1lk1βn2lk2

ψk′t1f1ψ
∗
k1t1f1

ψ∗k′t2f2
ψk2t2f2h

H
n1lk1t1f1

hn2lk2t2f2


+

{Tp,F}∑
{t,f}=1

∣∣ψk′tf ∣∣2 E [nHtfntf ] . (5.10)

Using (5.1), (5.3) and since hnlktf is independent for different values of n and k, we

simplify (5.10) as

Rȟlk′ ȟlk′
=

L∑
n=1

K∑
k=1

{Tp,F,Tp,F}∑
{t1,f1,t2,f2}=1

(
Ppβnlkψk′t1f1ψ

∗
kt1f1

ψ∗k′t2f2
ψkt2f2

E
[
hHnlkt1f1

hnlkt2f2

])
+KIM

=
L∑
n=1

K∑
k=1

{Tp,F,Tp,F}∑
{t1,f1,t2,f2}=1

(
Ppβnlkψk′t1f1ψ

∗
kt1f1

ψ∗k′t2f2
ψkt2f2

J0 (σnlk |t1 − t2|)
1− iµnlk (f1 − f2)

IM

)
+KIM . (5.11)
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Rhjlk′tf ȟlk′
in (5.9) is the cross-covariance between the true channel, hjlk′tf and ȟlk′ .

Hence, we eliminate the terms in ȟlk′ (see (5.6)) that are not correlated with hjlk′tf and

obtain

Rhjlk′tf ȟlk′
=E

[
hHjlk′tf ȟlk′

]
=
√
Ppβjlk′

{Tp,F}∑
{t1,f1}=1

∣∣ψk′t1f1

∣∣2 E [hHjlk′tfhjlk′t1f1

]

=
√
Ppβjlk′

{Tp,F}∑
{t1,f1}=1

∣∣ψk′t1f1

∣∣2 J0

(
σjlk′ |t− t1|

)
1− iµjlk′ (f − f1)

IM . (5.12)

Substituting (5.11) and (5.12) into (5.9), gives (5.7) as required, since (5.11) and (5.12)

are scaled identity matrices.

Using (5.7) and (5.11), the covariance of ĥjlk′tf can be expressed as

Rĥjlk′tf ĥjlk′tf
=E

[
ĥ
H

jlk′tf ĥjlk′tf

]
=
∣∣θjlk′tf ∣∣2Rȟlk′ ȟlk′

(5.13)

=αjlk′tfIM , (5.14)

where αjlk′tf is given in (5.19).

The channel estimation error at time-frequency tf is h̃jlk′tf = hjlk′tf−ĥjlk′tf and h̃jlk′ft

is uncorrelated with ĥjlk′tf . The covariance of h̃jlk′tf is

Rh̃jlk′tf h̃jlk′tf
=Rhjlk′tfhjlk′tf −Rĥjlk′tf ĥjlk′tf

=IM −Rĥjlk′tf ĥjlk′tf

=
(
1− αjlk′tf

)
IM . (5.15)

The covariances in (5.14) and (5.15) will be used to derive the closed form transmission

rate.
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l-th cellj-th cell
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Figure 5.3: Downlink data signal received at UE k′ in cell j from all BSs in surround-
ing cells.

5.4 Achievable sum rate

Fig. 5.3 shows that UE k′ in cell j receives downlink data from BSs in cell j and sur-

rounding cells. The received downlink data signal at time-frequency tf can be expressed

as

xjk′tf =
L∑
l=1

K∑
k=1

√
Pdβjlk′hjlk′tfalktfqlktf + vjk′tf , (5.16)

where

– Pd is the average downlink data power;

– alktf is an M × 1 precoding vector for user k in cell l at time-frequency tf ;

– vjk′tf is noise at UE k′ in cell j at time-frequency tf with vk′tf ∼ CN (0, 1);

– qlktf is downlink data to user k in cell l at time-frequency tf with qlktf ∼ CN (0, 1).

The matched filter (MF) precoding is defined as [68]

alktf =
ĥ
H

llktf
√
K
∥∥∥ĥllktf∥∥∥ . (5.17)
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Theorem 5.2. A lower bound on the mean sum rate of the doubly-selective channel

for K users in cell j is given by

Rj =
1

TfF

{K,F}∑
{k′,f}=1

Tf∑
t=Tp+1

log2


1 +

Pdβjjk′ξ(M)2αjk′tf
K

∑L
l=1

Pdβjlk′
K

(
1 + (M − 1)αjlk′tf

)
+
∑L

l=1

∑K
k 6=k′

Pdβjlk′
K

(
1 + (M − 1)φ2

jlk′ktf

)
+1− Pdβjjk′ξ(M)2αjk′tf

K




,

(5.18)

where

αjlk′tf =

Ppβjlk′

∣∣∣∣∑{Tp,F}
{t1,f1}=1

∣∣ψk′t1f1

∣∣2 J0(σjlk′ |t−t1|)
1−iµjlk′ (f−f1)

∣∣∣∣2∑L
n=1

∑K
k=1

∑{Tp,F,Tp,F}
{t1,f1,t2,f2}=1

(
Ppβnlkψk′t1f1ψ

∗
kt1f1

ψ∗k′t2f2
ψkt2f2

J0(σnlk|t1−t2|)
1−iµnlk(f1−f2)

)
+K

,

(5.19)

and

φ2
jlk′ktf =

Ppβjlk′

∣∣∣∣∑{Tp,F}
{t1,f1}=1 ψ

∗
kt1f1

ψk′t1f1

J0(σjlk|t−t1|)
1−iµjlk(f−f1)

∣∣∣∣2∑L
n=1

∑K
q=1

∑{Tp,F,Tp,F}
{t1,f1,t2,f2}=1

(
Ppβnlqψkt1f1ψ

∗
qt1f1

ψ∗kt2f2
ψqt2f2

J0(σnlq |t1−t2|)
1−iµnlq(f1−f2)

)
+K

. (5.20)

Proof. To find the sum rate bound, we use a similar approach to that in [8]. However,

since the SINR for the doubly-selective channel model will be time and frequency de-

pendent, this also means that there will be different achievable rates at different times

and frequencies. Therefore, we sum the rate equation within the data block interval,

which is from t = Tp + 1 to t = Tf in the time domain and from f = 1 to f = F in the

frequency domain and then divide by the total block size, TfF , to obtain the average

rate per symbol per subcarrier. As a result, the lower bound ergodic rate for UE k′ in

cell j is

rjk′ =
1

TfF

Tf∑
t=Tp+1

F∑
f=1

log2

(
1 +

Sjk′tf
Njk′tf

)
, (5.21)
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where Sjk′tf in (5.21) is the effective (desired) power for UE k′ in cell j at time-frequency

tf . Using a similar method as in [8], we assume that the effective channel of the trans-

mission is
√
Pdβjjk′E

[
hjjk′tfajk′tf

]
. As a result,

Sjk′tf =Pdβjjk′
∣∣E [hjjk′tfajk′tf ]∣∣2 . (5.22)

Using a similar method as in [8, eq. (13)] and (3.27), but with the precoding in (5.17),

we can solve the expectation in (5.22) to give

Sjk′tf =
Pdβjjk′

K

∣∣∣E [∥∥∥ĥjjk′tf∥∥∥]∣∣∣2
=
Pdβjjk′ξ (M)2 αjjk′tf

K
, (5.23)

where ξ (M) is defined in (3.27) in Chapter 3.

Njk′tf in (5.21) is the interference and noise for UE k′ in cell j at time-frequency tf which

equals the total received power minus the effective power, Njk′tf = E
[∣∣xjk′tf ∣∣2]−Sjk′tf .

Using xjk′tf from (5.16), Njk′tf can be expanded as

Njk′tf =
L∑
l=1

Pdβjlk′E
[∣∣hjlk′tfalk′tf ∣∣2]+

L∑
l=1

K∑
k 6=k′

Pdβjlk′E
[∣∣hjlk′tfalktf ∣∣2]+ 1

− Sjk′tf . (5.24)

The first expectation term in (5.24) relates to downlink data signal power for UEs with

the same pilot sequence. Other than the desired signal, there will also be downlink data

transmissions from nearby cell BSs that will result in pilot contamination. The closed

form of the expectation term can be obtained using a similar method to [8, eq. (14)],

but using the precoding defined in (5.17). A similar derivation can also be seen in

(3.29) in Chapter 3. The precoding alk′tf is correlated with hjlk′tf . Since the channel

and its estimate are Gaussian, we can separate hjlk′tf into terms that are correlated

and uncorrelated with alk′tf . Therefore, the second expectation term in (5.24) can be
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written as

E
[∣∣hjlk′tfalk′tf ∣∣2] =E

∣∣∣∣∣∣hjlk′tf ĥ
H

llk′tf
√
K
∥∥∥ĥllk′tf∥∥∥

∣∣∣∣∣∣
2

=E

∣∣∣∣∣∣ĥjlk′tf ĥ
H

llk′tf
√
K
∥∥∥ĥllk′tf∥∥∥

∣∣∣∣∣∣
2+ E

∣∣∣∣∣∣h̃jlk′tf ĥ
H

llk′tf
√
K
∥∥∥ĥllk′tf∥∥∥

∣∣∣∣∣∣
2 . (5.25)

Using (5.7) and (5.17), it can be shown that ĥllk′tf =
√

βllk′
βjlk′

ĥjlk′tf . This also means

that
ĥ
H
llk′tf

‖ĥllk′tf‖
=

ĥ
H
jlk′tf

‖ĥjlk′tf‖
. Using this, along with (5.14) and (5.15), (5.25) becomes

E
[∣∣hjlk′tfalk′tf ∣∣2] =E

∣∣∣∣∣∣ĥjlk′tf ĥ
H

jlk′tf
√
K
∥∥∥ĥjlk′tf∥∥∥

∣∣∣∣∣∣
2+ E

∣∣∣∣∣∣h̃jlk′tf ĥ
H

jlk′tf
√
K
∥∥∥ĥjlk′tf∥∥∥

∣∣∣∣∣∣
2

=
1

K
tr
(
Rĥjlk′tf ĥjlk′tf

)
+

1

K

tr
(
Rh̃jlk′tf h̃jlk′tf

)
M

=
αjlk′tf
K

M +
1− αjlk′tf

K
. (5.26)

The second expectation term in (5.24) is downlink data interference from BSs to UEs

with different pilot sequences (k 6= k′). For the block fading assumption, the channel and

the precoding in this expectation term are uncorrelated. However, in a selective fading

channel, these variables can be correlated. This is because the extra interference term

which arises from selective fading during the training (specifically, the second summation

term in (5.6)) has made alktf becomes a function of hjlk′tf and creates correlation

between these variables. Since hjlk′tf and ĥjlktf are Gaussian, we can express hjlk′tf in

terms of ĥjlktf as

hjlk′tf = φjlk′ktf
ĥjlktf√∥∥∥Rĥjlktf ĥjlktf

∥∥∥ +
√

1− φ2
jlk′ktfεjlk′ktf , (5.27)

where φjlk′ktf is defined as the correlation between hjlk′tf and ĥjlktf . Both
ĥjlktf√∥∥∥∥Rĥjlktf ĥjlktf

∥∥∥∥
and εjlk′ktf in (5.27) have CN (0, IM ) distributions and are uncorrelated with each

other. To obtain φjlk′ktf , we first find the covariance between these two variables,

E
[
hHjlk′tf ĥjlktf

]
. ĥjlktf has a similar definition as in (5.7), but for UE k 6= k′. Using
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(5.1) and eliminating uncorrelated terms, we can simplify the covariance to

E
[
hHjlk′tf ĥjlktf

]
=E

[
θjlktfh

H
jlk′tf ȟlk

]
=θjlktf

√
Ppβjlk′

{Tp,F}∑
{t1,f1}=1

ψ∗kt1f1
ψk′t1f1E

[
hHjlk′tfhjlk′t1f1

]

=θjlktf
√
Ppβjlk′

{Tp,F}∑
{t1,f1}=1

ψ∗kt1f1
ψk′t1f1

J0 (σjlk |t− t1|)
1− iµjlk (f − f1)

IM . (5.28)

The correlation is obtained using the following expression

φjlk′ktf =

∥∥∥E [hHjlk′tĥjlktf]∥∥∥√∥∥E [hHjlk′thjlk′t]∥∥ ∥∥∥E [ĥHjlktf ĥjlktf]∥∥∥ . (5.29)

Using (5.28) and (5.13), φjlk′ktf becomes

φjlk′ktf =

∥∥∥∥θjlktf√Ppβjlk′
∑{Tp,F}
{t1,f1}=1

ψ∗kt1f1
ψk′t1f1

J0(σjlk′ |t−t1|)
1−iµjlk′ (f−f1) IM

∥∥∥∥√
‖IM‖ |θjlktf |2

∥∥∥Rȟlkȟlk

∥∥∥ . (5.30)

Using (5.11) and (5.30), φ2
jlk′ktf becomes (5.20).

From (5.7) and (5.17), it can be shown that alktf =
ĥ
H
jlktf√

K‖ĥjlktf‖ . Using this and (5.27),

we expand the second expectation interference in (5.24) as

E
[∣∣hjlk′tfalktf ∣∣2] =

φ2
jlk′ktf

K
∥∥∥Rĥjlktf ĥjlktf

∥∥∥E
∣∣∣∣∣∣ĥjlktf ĥ

H

jlktf∥∥∥ĥjlktf∥∥∥
∣∣∣∣∣∣
2

+
1− φ2

jlk′ktf

K
E

∣∣∣∣∣∣εjlk′ktf ĥ
H

jlktf∥∥∥ĥjlktf∥∥∥
∣∣∣∣∣∣
2 . (5.31)

Since ĥjlktf and εjlk′ktf are Gaussian and uncorrelated with each other, it follows that

E
[∣∣hjlk′tfalktf ∣∣2] =

φ2
jlk′ktf tr

(
Rĥjlktf ĥjlktf

)
K
∥∥∥Rĥjlktf ĥjlktf

∥∥∥ +
1− φ2

jlk′ktf

K

tr
(
E
[
εHjlk′tfεjlk′tf

])
M

=
φ2
jlk′ktf

K
M +

1− φ2
jlk′ktf

K
. (5.32)
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Substituting (5.26) and (5.31) into the first and second expectation term in (5.24),

respectively, then (5.24) becomes

Njk′tf =

L∑
l=1

Pdβjlk′

K

(
1 + (M − 1)αjlk′tf

)
+

L∑
l=1

K∑
k 6=k′

Pdβjlk′

K

(
1 + (M − 1)φ2

jlk′ktf

)
+ 1− Sjk′tf , (5.33)

where αjlk′tf and φ2
jlk′ktf are given in (5.19) and (5.20), respectively.

From (5.21), we obtain the sum rate for K UEs in cell j as

Rj =
K∑
k′=1

rjk′ . (5.34)

By substituting (5.21), (5.23) and (5.33) into (5.34), the final sum rate becomes (5.18).

Note that the result in (5.18)-(5.20) give the general form for the sum rate where the

pilot values, ψktf , are generic. Two specific pilot sequence methods are considered, which

are discussed in the next section.

5.5 Training sequences and optimizations

5.5.1 Constant amplitude pilot

The use of constant amplitude (CA) pilots is a training method where the pilot amplitude

is the same for every resource element during training, i.e. |ψktf |2 = 1 for all tf . A CA

pilot approach is also considered in Chapter 4 for a time-selective channel. Here, we

consider Zadoff-Chu sequences, which can be written as

ψktf =exp

(
−(t+ Tpf − k) (t+ Tpf − k + (K mod 2))uπi

K

)
, (5.35)

where u is a constant integer with 0 < u < K and gcd(K,u) = 1. Using (5.35), the pilot

sequence will follow the properties in (5.3) and (5.4).

Using a CA pilot in (5.18) creates a non-zero φ2
jlk′ktf . Hence, for CA pilots, all inter-

ference terms from downlink data signal in (5.18) increase linearly with the number of
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antennas. This means that pilot contamination-like interference can still occur with CA

pilots even if all UEs have orthogonal pilot sequences.

Due to multiuser interference during the training phase for CA pilots, the total sum rate

can be severely affected if some of the UEs have significantly higher fading compared to

the other UEs. This condition naturally occurs due to differences in link distance and

shadowing. If the pilot power received at the BS from certain UEs is much higher than

other UEs, this will create high channel estimation error for the other UEs. To reduce

this problem, we can either increase the power for UEs with low fading or reduce the

power for UEs with high fading. The latter method will be more practical since it will

reduce the power consumption. If the transmit pilot power from UE k in cell j is Pp,jk,

then the received pilot power at the BS in cell j from this UE is Pp,jkβjjk. We propose

to use a simple power control method where the received pilot power for all UEs must

not exceed a threshold value, Pthreshold. After Pp,jk is initialized to a predetermined

value, we perform the following procedure

If Pp,jkβjjk > Pthreshold, then Pp,jk =
Pthreshold

βjjk
. (5.36)

Procedure (5.36) enables the received pilot power from each UE to be equal or less than

Pthreshold.

5.5.2 Zero padded pilot

With zero padded (ZP) pilots, each UE will only use one resource element in each

training block and leave the remaining area in the training block empty. A similar

training sequence approach has been applied in [63] in a frequency selective channel.

We assume that UE k′ transmits a pilot signal at time-frequency t′f ′ and transmits no

signal for the other part of the training block as follows

ψk′tf =
√
K for tf = t′f ′,

ψk′tf = 0 for tf 6= t′f ′. (5.37)

The purpose of setting the pilot value at time-frequency t′f ′ to
√
K is to fulfill the

property in (5.3), which ensures that the average pilot power for a ZP pilot will be

the same as that of a CA pilot. To ensure the pilots between UEs are orthogonal and
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follow the property in (5.4), each UE will transmit at different time-frequencies. In other

words, the combination of t′ and f ′ must be different for each value of k′ in order to

avoid pilots overlapping. We set the values of t′ and f ′ based on the value of k′, as

follows

t′ =
((
k′ − 1

)
mod Tp

)
+ 1,

f ′ =
k′ − t′

Tp
+ 1.

The advantage of ZP pilots compared to CA pilots is that there are no same cell UE

pilots overlapping during training so that ψ∗k′tfψktf = 0 for k 6= k′ at any tf . As a result,

there will be no multiuser interference during training with ZP pilots and the second

summation term in (5.6) will be zero. In addition, if we apply (5.37) to obtain φjlk′ktf

in (5.20), we find that φjlk′ktf = 0. This will simplify the sum rate equation. Such a

simplification cannot be applied with CA pilots since φjlk′ktf 6= 0 in this case. Hence,

there can be more interference with CA pilots compared to ZP pilots.

Note that in the block fading model, the sum rate for both types of pilot sequence

methods can be simplified to the same expression. Hence, a more complete comparison

of pilot sequences can be achieved if selective fading in both time and frequency is

considered.

5.5.3 Training optimization

Using the sum rate equation in (5.18), the training can be optimized by finding the

training and data block sizes that yield the highest sum rate. The optimal training de-

pends on the UE statistical properties such as large scale fading and channel correlation.

Even though these statistical properties are assumed to be constant within a small scale

time range, in the long term this values may vary due to the changes in UE position and

speed. As a result of these variations, we consider two methods of finding the optimal

training which are average optimum training and adaptive optimum training. For aver-

age optimum training, we find the optimal training size in order to obtain the highest
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average sum rate. This can be expressed as

Rav
j = arg max

{Tp,F,Tf}

(
Ē [Rj ]

)
, (5.38)

where Ē [·] is the average value across various possible large scale fading and channel cor-

relation values. This approach requires the historical values of the statistical properties

to obtain the long term average sum rate. This method does not require the training size

to be updated regularly. However, since the total length of the pilot is affected by the

number of UEs, this means that the average optimal training also needs to be updated

if the total number of UEs changes.

For adaptive optimum training, the optimization depends on the current statistical prop-

erty. Therefore, instead of obtaining the highest average sum rate as in (5.38), this

method finds an optimal training size that yields the highest sum rate for every channel

condition. This can be expressed as

Rad
j = Ē

[
arg max
{Tp,F,Tf}

(Rj)

]
. (5.39)

Since (5.39) is adaptive to the channel conditions, it is expected to result in a better sum

rate performance than the average optimum training method. However, this method re-

quires the optimum training size to be computed and updated based on the current

channel statistical values, which requires considerable extra processing and control over-

heads. This approach is far less practical and is essentially a benchmark of what can be

achieved with no constraint on the overheads. Both the average and adaptive optimum

training are found using an exhaustive search approach.

5.5.4 Frequency and pilot reuse

Frequency reuse is a method of reducing intercell interference by allocating different

frequency band at different cells [11]. As we discussed in Chapter 2, if we use frequency

reuse factor 1, all cells will use the same frequency band and this will create interference

from all nearby cells. We can increase the frequency reuse factor to avoid this inter-

ference. The reduction in interference enables the transmission to increase the training

block size and achieve higher spatial multiplexing gain. However, there will be a trade-off

effect where the bandwidth that can be used in each cell is equal to the total bandwidth
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Figure 5.4: Cell arrangement with frequency reuse factor 3. F1, F2 and F3 represents
different frequency band that is used by each cells.

divides by the frequency reuse factor. Therefore, we aim to investigate this trade-off

effect and study the impact of frequency reuse on the doubly selective channel. In the

case of a hexagonal cell system, the interference from the nearest cells can be avoided

by using frequency reuse factor 3, as shown in the Fig 5.4.

In addition to frequency reuse, intercell interference can also be reduced by increasing

the length of pilot. This method does not eliminate the interference from the nearest

cells unlike the frequency reuse method, but it can avoid pilot contamination from

the nearest cell. To achieve this, the UEs from different cells must use different pilot

sequences, which means the pilot size (training block) needs to be longer than the

number of spatial multiplexed UEs per cell. In the case of a hexagonal cells system,

we can avoid pilot contamination from the nearest cells by increasing the pilot size to

at least 3 times the number of spatial multiplexed UEs per cell. This uses a similar

cell arrangement to a frequency reuse factor of 3 in Fig 5.4. Note that the pilot reuse

method will also experience a trade-off where the number of spatial multiplexed UEs

can only be one-third the size of the pilot.
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5.6 Numerical results

We use a 7 cell hexagonal cluster. All the large-scale fading values are obtained using

the path-loss equation β = zd−γ , where β is large scale fading, z is log-normal shadow

fading, γ is the path-loss exponent and d is the distance between transmitter and receiver,

normalized to the inner radius of the cell [6]. The path-loss exponent is set to 3.8.

Transmission variables are given in Table 5.1, which are based on the LTE system [10],

along with high speed UEs [57] and high delay spread [11]. In Table 5.1, we assume all

UEs have the same speed and delay spread. Hence, the variables σjlk and µjlk in (5.1)

are assumed to have constant values of σc and µc for all UEs. Using information from

Table 5.1, we can obtain σc ≈ 0.12 and µc ≈ 0.28.

Table 5.1: Transmission variables

Frequency spacing between subcarrier, ∆v 15 kHz
OFDM symbol time, Ts 66.7 µs
Carrier frequency 2 GHz
Speed of UE 150 km/hour
Delay spread, τs 3 µs

We compare the closed form sum rate in (5.18) with Monte Carlo simulation. In this

simulation, we consider equal distance UEs, where the UEs are located at 2/3 of the

cell radius away from the BS, and use 0 dB log-normal shadowing (z = 1) [6]. The

transmit power for all UEs and BSs is set to Pp = 10 dB and Pd = 20 dB [8]. We use

Tp = 3, Td = 4 and F = 3. To obtain the sum rate using Monte Carlo simulation, we

first generate the complex random time-frequency channel with the correlation structure

given in (5.1). Note that the generation of the channel with a predetermined correlation

can be realized using a Cholesky decomposition of the channel correlation matrix [47].

For example, to generate a channel vector v ∼ CN (0,Rvv), we can use v = Au, where

A is the lower triangular output of the Cholesky decomposition of the covariance matrix,

Rvv, and u is an i.i.d. CN (0, IN ) vector. To generate the pilot sequences, we use (5.35)

for CA pilots and (5.37) for ZP pilots. For every channel realization, we obtain the

LMMSE channel estimate and the rate is found by averaging values in the expectations

in (5.22) and (5.24) across many channel realizations. We then compare the Monte

Carlo simulation with the closed form sum rate obtained from (5.18). Note that the

sum rate in (5.18) is in bits/symbol/subcarrier. Values in Table 5.1 can be used to

convert the sum rate to bits/second/Hz. Results are given in Fig. 5.5 and show that
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Figure 5.5: Sum rate performance using CA and ZP pilots. The lines are obtained
using closed form expressions in (5.18) while points marked ‘×’ are obtained using

Monte Carlo simulation.

the closed form sum rate agrees well with Monte Carlo simulation. Also notice that

ZP pilot has noticeably higher sum rate than CA pilot. This is because, as explained

in Section 5.5.2, there are pilots overlapping between different UEs during CA training

which create an extra interference term. Since there are no pilots overlapping during ZP

pilot transmission, this means that there is less interference with ZP pilots compared to

CA pilots.

For training optimization, a more complex path loss model with random UE locations

and shadowing is considered. The sum rate is obtained using the closed form expression

in (5.18). The UEs are located at uniform random locations within each cell excluding

the area inside a 0.1 normalized distance from the BSs. The log-normal shadow fading

has a standard deviation of 8 dB [5]. The final sum rate is calculated by averaging the

sum rate across many possible UE locations and log-normal shadowing values. The UE

cell allocation will be based on the power level between the UE and the BS [11], so that

each UE will be located in the cell which has the largest received power. In addition to

using the transmit pilot power value defined previously, we also use power control for the

CA pilot where the transmit pilot power is adjusted using (5.36). The initial power is set

to Pp,jk′ = 10 dB and the threshold power, Pthreshold, is set to the optimum value (which

yields the highest sum rate) using an exhaustive search. The values for Td, Tp and F are
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Figure 5.6: Optimum F , Tp, and Td values for CA pilots, CA pilots with power
control and ZP pilots.

optimized using the average optimum training method as in (5.38). We also assume the

number of UEs is flexible, which means we can add or reduce UEs to achive the highest

sum rate. Results are given in Fig. 5.6. In this figure, we can see that the optimal

training and data block size increases as the number of antennas increases. This means

that the higher the number of antennas, the more we can exploit the channel correlation

to expand the pilot and data size in both time and frequency domains. This results
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Figure 5.7: Sum rate performance for CA pilot, CA pilot with the power control and
ZP pilot for various number of antennas.

in higher spatial multiplexing gains. For example, when the number of BS antennas

increases from 50 to 500, the optimal number of spatial multiplexed UEs increases from

8 to 24 for CA pilots, from 16 to 42 for CA pilots with power control and from 18 to 52

for ZP pilots. The ZP approach shows a higher spatial multiplexing gain than the CA

approach because there are no pilots overlapping during the training phase ZP pilots

and this allows the scheme to expand the pilot with less interference compared to CA

pilots.

Using the optimum training in Fig. 5.6, we obtain the sum rate results given in Fig. 5.7.

The results show that power control can significantly improve the performance of the

CA pilot. However, CA pilots have a much lower sum rate compared to ZP pilots even

with power control. This is because, as we discussed in Section 5.5.2, there are no

pilots overlapping during training with the ZP pilot scheme, which means there will

be less interference from channel selectivity compared to CA pilots. Note that there is

potential trade-off between the ZP and CA approaches. With ZP pilots, different UEs

have a different time-frequency gap between their data and the pilot. The larger the

pilot-data gap, the bigger the mismatch between the estimated channel and the true

channel during the data phase. In order to reduce the pilot-data gap, an intermediate

approach can be proposed where, for example, two UEs occupy two time-frequency slots

using a Zadoff-Chu sequence and the remaining slots are zero padded. The other slots
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Figure 5.8: Sum rate performance for CA pilot, ZP pilot and combination of CA and
ZP pilots for various number of antennas.

are then used by the pilots of other UE pairs. This allows the two users in each pair

to spread their pilots over the pilot block and reduce the pilot-data gap. However, it

also introduces pilot contamination-like interference as in the full CA approach. To

realize the combined CA and ZP pilot method, we consider the use of only two resource

elements in each training block and leave the remaining area empty (zero padded) for

pilot transmission for each UE. As a result, two UEs must use the same two resource

elements in each training block. To ensure orthogonality, these two UE pilots are valued

based on Zadoff-Chu sequences in (5.35) with length of two. These pilots are positioned

in the training block so that the total time-frequency distance between the pilot and the

nearest data will be approximately the same for each UE. Results in Figure 5.8 show

that combining CA and ZP pilot results in a sum rate performance that lies between

that of a CA pilot and a ZP pilot. This means the trade-off is not beneficial and the

extra interference outweighs the reduced pilot-data gap leading to worse performance

than the ZP approach.

The results in Fig. 5.7 use the correlation values that are calculated from Table 5.1.

Different UE speeds and delay spreads will result in different time-frequency correlation.

Hence, we now analyze the performance of the pilot methods for various correlation

values. We vary σc (with a constant µc = 0.28) to analyze the impact of correlation

variation in the time domain and vary µc (with a constant σc = 0.12) to analyze the
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Figure 5.9: Sum rate performance for CA pilots, CA pilots with power control and
ZP pilot for various σc and µc values using 100 BS antennas.

impact in the frequency domain. We use the optimum training and data length for each

correlation value. The results using 100 BS antennas are given in Fig. 5.9. The results

confirm that the sum rate for ZP pilots still outperforms that for CA pilots with power

control, for all correlation values considered.

The results in Figs. 5.7 and 5.9 use average optimal training. As discussed in Section

5.5.3, we can also perform optimization using adaptive optimum training. Therefore,

next we compare the performance between these two optimization methods. Note that

Fig. 5.7 and 5.9 uses flexible number of UEs to obtain the highest average sum rate. In

the next test we investigate the impact of the number of UEs with random speed on the

training optimization. Each UE has a speed generated from a Gaussian distribution with

84 km/h mean and 19 km/h standard deviation [69]. ZP pilots and 100 BS antennas

are used for this test. The result in Fig. 5.10 shows that adaptive optimum training

has a slightly higher sum rate than average optimum training, but the difference is not
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Figure 5.10: Sum rate performance for average optimal training and adaptive optimal
training for various number of UEs using 100 BS antennas.

noticeable. Hence, we can use the average optimum training approach and still achieve

a similar performance to the adaptive optimal training. This has a considerable impact

on the system design since average optimum training is far more convenient and since

it is a long term selection, an exhaustive search is a feasible solution.

Next, we analyze the impact of changing the frequency and pilot reuse factor on the

performance, as discussed in Section 5.5.4. Previous results depended on using frequency

and pilot reuse factor of 1, which means all cells use the same bandwidth and same pilot

sequences. In this test, we use the ZP pilot method and the variable settings from Table

5.1. To obtain the performance of a frequency reuse factor of 3, we just eliminate the

interference from the nearest cell and divide the final sum rate by 3. For a pilot reuse

factor 3, we just need to ensure that there will be no pilot sequence reuse from the

nearest cell. For each frequency and pilot reuse condition, we find the optimum training

and data block size, which is given in Fig. 5.11. The results show that increasing the

frequency and pilot reuse factor can also increase the optimum training and data size of

the transmission. This is because a higher frequency and pilot reuse factor can reduce

intercell interference which enables the training and data to expand in both time and

frequency domains. However, this does not necessarily mean that such methods will

result in a higher sum rate, as shown in Fig. 5.12. This result shows that using a

frequency and a pilot reuse factor of 1 has a higher sum rate performance compared to

a frequency reuse factor of 3 and pilot reuse factor of 3. This is because, in the case
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Figure 5.12: Sum rate performance for various frequency and pilot reuse factor.

of a frequency reuse factor of 3, even though there is no nearby intercell interference,

each cell only uses one-third of the available bandwidth, which reduces the spectral

efficiency. In the case of a pilot reuse factor of 3, even though pilot contamination from

nearby cells is avoided, the number of spatial multiplexed UEs is only one-third of the

training block size. In other words, both intercell interference reduction methods create

trade-offs which can reduce the final sum rate of the transmission system.

5.7 Summary

In this chapter, a closed form achievable rate for a time and frequency selective channel

model in a massive MIMO system had been derived. Two types of pilot sequence were

studied, namely CA and ZP pilots. The results for both pilot methods showed that as the

number of antennas increased, optimum training and data length in time and frequency

domain also increased. A sum rate comparison shows that ZP pilots always have a higher

sum rate than CA pilot for all numbers of antennas and time-frequency correlation values

considered. Two different optimization methods, namely adaptive optimal training and

average optimal training were also investigated. A sum rate comparison shows that both

methods had similar performance. This chapter also investigated the impact of intercell

interference reduction methods such as increasing the frequency reuse and pilot reuse
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factors. However, these methods were shown to reduce the sum rate due to inefficient

use of time and frequency resources.



Chapter 6

Conclusions and future works

6.1 Conclusions

In Chapter 3, we investigated the performance of synchronized and unsynchronized pilots

in finite massive MIMO systems. We considered TShdown and TShup unsynchronized

pilot or time-shifted pilot schemes. TShdown is where the pilots are overlapped with

downlink data from nearby cells while TShup is where the pilots are overlapped with

uplink data from nearby cells. Results showed that if there are a small numbers of UEs,

TShdown generally had a higher sum rate than other methods. However, for higher

numbers of UEs, TShup with power optimization had advantages over the other methods.

The results also showed that compared to TShdown, the TShup with power optimization

sum rate performance improvement with respect to TSync was more consistent when

the number of UEs was increased. We also showed that in the case of a path-loss models

with shadowing, that TSync is not necessarily the worst case scenario in terms of sum

rate performance.

In Chapter 4, we studied the impact of channel variation in the time domain on the

performance of massive MIMO systems. Using the first order Gauss-Markov Rayleigh

fading channel model, we derived a closed form achievable rate for time-selective chan-

nels. Constant amplitude (CA) pilot was used. Asymptotic analysis showed that even

if there was no pilot contamination from other cells, the intracell interference effect in

time-selective channels didn’t diminish when the number of antennas approached infin-

ity. The numerical results showed that there is a significant difference between the sum

109
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rate obtained using block-fading and time-selective models. We also showed that the

optimum training for block-fading may not be optimal for a time-selective channel, par-

ticularly for large numbers of antennas at the BS. Due to these differences, it is important

to consider the impact of channel selectivity in the time domain on the performance of

massive MIMO systems. We showed that for time selective channel model, when the

number of antennas becomes very large, the optimal frame length can grow beyond the

coherence time. This result cannot be observed in block fading channel model because

the frame length in this model is limited by the coherence time. We also show that the

optimal length for pilot is between 20% to 35% of the frame length.

In Chapter 5, we analyzed the impact of time and frequency selective channels on the

design of training for massive MIMO systems. To achieve this, we derived a closed form

achievable rate for the doubly selective channel model. Two different pilot sequences

were considered, namely the CA pilot and a zero padded (ZP) pilot. The results showed

that in general, as the number of antennas increased, the optimum training block size

and spatial multiplexing gain increased. Comparing the two pilot sequence schemes,

the results also showed that the ZP pilot has a better sum rate performance than the

CA pilot for a wide range of numbers of BS antennas and time-frequency correlation

values. In addition to comparing the pilot schemes, Chapter 5 also compared the sum

rate performance of two different training optimization methods, namely adaptive opti-

mal training and average optimal training. Results showed that both methods have a

similar sum rate performance. Chapter 5 also studied the effect of two intercell interfer-

ence reduction methods, namely increasing the frequency reuse and pilot reuse factors.

However, due to inefficient use of time-frequency resources, these methods lower the sum

rate.

6.2 Future works

6.2.1 Spatial correlation

Throughout this thesis, we assume that there is no spatial correlation between anten-

nas. This assumption comes from the Jakes’ channel model [28] which shows that when

there are an infinite number of multipath channels circularly surrounding the receiver,

then zero spatial correlation between antennas can be achieved by using an appropriate



Conclusions and future works 111

antenna spacing (see Section 2.2.1 in Chapter 2). Using this assumption, along with

certain time-frequency channel correlation assumptions, the number of spatial multi-

plexing UEs can be upper bounded by the number of BS antennas (see Section 2.4 in

Chapter 2). As there can be hundreds of BS antennas in massive MIMO, this means

that there can also be hundreds of UEs to transmit parallel streams of data using the

same time-frequency resources using spatial multiplexing or SDMA. Since we can poten-

tially support hundreds of spatial multiplexed UEs under these conditions, this means

that other multiple access schemes, namely OFDMA, will be unnecessary because divid-

ing the time-frequency resources among the UEs will be inefficient compared to SDMA

where the UEs can share the same time-frequency resources. However, this is only true

when there is no spatial correlation between antennas. Realistically, there will be spa-

tial correlation between antennas, such as in the case of limited numbers of multipath

channels [7]. In addition, if the time-frequency channel correlation values are low due

to high speed UEs and high channel delay spread, the channel training size can also

be limited. As a result, it may not be possible to support hundreds of spatial multi-

plexed UEs in one cell. This means that other multiple access schemes such as OFDMA

need to be included. To perform this analysis, we can use the training-based sum rate

equation (5.18) developed for the doubly-selective channel in Chapter 5 and extend it

to include the spatial correlation effect. The optimum combination of resource alloca-

tion schemes such as SDMA and OFDMA under different spatial, time and frequency

channel correlation values will be an interesting topic for future research. In relation to

spatially correlated channels, recent measurement of massive MIMO systems shows that

the channel propagation is sparse in nature, which means there are few significant paths

of propagation. Although this can reduce the number of spatial multiplexed UEs, this

can also simplify the channel estimation process. Therefore, extension in this specific

area can provide important insights on massive MIMO performance.

6.2.2 Millimeter wave

Other than massive MIMO systems, millimeter wave (mmWave) has also been proposed

as a key component of next generation wireless technology [12]. The idea is to use a

very high carrier frequency for wireless transmission in the range of tens to hundreds

of Gigahertz. As spectrum is becoming a scare resource in microwave frequencies, re-

searchers are looking into the untapped higher frequency range, namely the mmWave
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realm. The mmWave and massive MIMO systems do not have to be two competing

wireless technologies. In fact, both of them can be used to improve each other’s limita-

tions. For example, in the case of mmWave, one of the issues using frequencies at this

range is high signal attenuation due to energy absorption from the surrounding medium.

Since massive MIMO has been shown to be able to achieve higher SINR by directing the

signal energy into a more concentrated area [27], this enables mmWave to compensate

for its high power attenuation. In the case of massive MIMO, one of the issue is array

size because the antennas need to be set with certain spacing based on the signal wave-

length in order to reduce correlation. Since the wavelength in mmWave is within the

millimeter range, this means that we can pack a lot of antennas within small physical

space to achieve the massive MIMO range. For mmWave, high mobility UEs will be an

issue because the small cell radius means there will be frequent handover between cells

for fast moving UEs. One way to solve this is to use microwave (larger cell radius) for

high mobility UE and use mmWave (smaller cell radius) for low mobility UEs. Another

issue with mmWave is that since its cell radius is small, more BSs need to be constructed

per unit area. This can increase the complexity and the cost of backhaul links between

BSs. This issue can potentially be solved by using massive MIMO in the microwave

range that acts as a backhaul connection between mmWave BSs. Note that since we are

using mmWave for the small cells, there will be no interference issues between the small

cells and the microwave links. The addition of small cells means there will be fewer

UEs per BS. Furthermore, unlike the regular BS to UEs links, the wireless backhaul

links between BS and the smaller cell BSs do not require regular channel training due

to the static nature of the BSs. As a result, the addition of mmWave cells can poten-

tially reduce the channel training size. To analyze its performance, we can extend the

training-based analytical results from this thesis by including the mmWave cells. The

idea of combining the conventional microwave, massive MIMO systems, small cells and

mmWave is still not widely being investigated and therefore can be a worthy area for

future research.

6.2.3 Cell radius

Even though there are many studies on massive MIMO systems in multicell scenarios,

so far there has been no detailed study on the impact of cell radius length. Determining

the size of a cell is an important part of designing the cellular network. A longer cell
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radius is beneficial in terms of construction cost because there will be fewer base station

towers to be built per unit area. There will also be a smaller concentration of backhaul

links and this further reduces the cost of construction. Increasing the cell radius can also

reduce the loss of performance due to handover between cells as the average length of the

cell boundary per unit area is also reduced. However, a larger cell radius will also result

in certain negative issues. For example, due to the exponential decay of power against

distance, the cell edge UEs will suffer low SINR. Another issue is that if the number of

UEs per unit area is constant, as the cell becomes bigger then there will be an increase

in the number of UEs per BS, which consequently increases intracell interference and

reduces time-frequency resources per UE. Such issues can be reduced by using massive

MIMO which has the ability to improve the SINR at the receiver and support larger

number of UEs. Since the changes in radius size can also effect the total number of

UEs in a cell, this means that the radius size can also affect the channel training size.

To study the impact of the cell radius on massive MIMO performance, we can use the

training-based sum rate expression developed in this thesis. This allow us to study the

relationship between the cell radius, the sum rate, the number of antennas at the BS

and the channel training size.

6.2.4 Coding scheme

In this thesis, we depend on an information-theoretical approach to measure the trans-

mission performance. As we discussed in Section 2.2 Chapter 2, this approach excludes

the coding and modulation schemes in its performance evaluation by assuming that the

data rate is able to achieve its theoretical upper limit (channel capacity). This approach

has certain benefits such as the reduction of data rate calculation complexity. However,

it also excludes an investigation of coding scheme design. Since our research involves

channel variation in both time and frequency domains, it is interesting to extend this

research into the design of coding schemes that are optimized for the channel condition

in massive MIMO systems. We can also investigate how to include the time-frequency

training optimization methods that are studied in this thesis into this research exten-

sion. In this thesis, we assume that the BS knows the statistical channel information

in order to perform training optimization. Practically, we still need to acquire the sta-

tistical knowledge in some ways. Therefore, it can be beneficial to research methods of

acquiring the statistical channel information. Specifically, we can study how much of
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the time-frequency resource is needed to obtain the statistical information (i.e. through

channel training) and how much performance improvement it can contribute to the

wireless transmission.

Another way to make our analysis more realistic is to include inter-carrier interference.

So far, in order to simplify the analysis, we assume that there is no inter-carrier in-

terference due to the UEs mobility. The increase of inter-carrier interference from the

UEs mobility and its impact on the performance will be an interesting topic for future

research.

6.3 Summary

In this thesis, we have provided various novel contributions related to training in massive

MIMO systems. Specifically, we provided a detailed analysis of the impact of unsyn-

chronizing the pilots in massive MIMO. Furthermore, we developed a mathematical tool

which allowed us to compare the performance of block-fading and time-selective models.

We also extend the research to a doubly selective channel, where we studied the impact

of different pilot schemes and training optimization methods. In addition to enhancing

our understanding of massive MIMO systems through the numerical results, this thesis

has provided various analytical results which can be used as tools for future work.



Appendix A

Proof of Lemma 3.2

If we condition on y, thenw and Z are both complex Gaussian with zero mean. Consider

w and zi (the i-th row of Z). Conditional on y, both w and zi are correlated zero mean

Gaussian vectors and it is straightforward to show

zi = uiw + vie, (A.1)

where ui =
√
b

a+b
yi
‖y‖ , vi =

√
1− b

a+b

∣∣∣ yi‖y‖ ∣∣∣2 and e is a CN (0, IM ) vector independent of

w and yi is the i-th element of y.

Let Sij be the i, j-th element of ZwHwZH

wwH or Sij =
ziw

HwzHj
wwH . Since zi and zj are

independent, for non-orthogonal elements, we obtain

E [Sij ] = 0, for i 6= j. (A.2)

Next, consider the expected value of a diagonal element, Sii, which can be written as

E [Sii] =E [E [Sii|y]]

=E
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. (A.3)
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By expanding w using (3.9), we obtain

E [Sii] =
b

(a+ b)2E

[∣∣∣∣ yi‖y‖
∣∣∣∣2 axxH + b

∣∣∣∣ yi‖y‖
∣∣∣∣2 y

‖y‖
ZZH y

H

‖y‖

]

+ 1− b

a+ b

∣∣∣∣ yi‖y‖
∣∣∣∣2 . (A.4)

To solve (A.4), first we find the closed form solution of E
[∣∣∣ yi‖y‖ ∣∣∣2]. This expectation can

be written as

E

[∣∣∣∣ yi‖y‖
∣∣∣∣2
]

=E

[
|yi|2

yyH

]

=E

[
|yi|2
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n6=i |yn|
2

]

=E
[

X

X + Y

]
, (A.5)

where X and Y have a Chi-squared distribution with 2 and 2(M −1) degree of freedom,

respectively. It is well-known that X
X+Y ∼ β(1,M − 1), where β(·) represents a Beta

distribution [70]. This distribution has an expected value of 1
M . This means that

E

[∣∣∣∣ yi‖y‖
∣∣∣∣2
]

=
1

M
. (A.6)

Using (A.6), along with the identities E
[
ZZH

]
= MIM , E

[
y
‖y‖

yH

‖y‖

]
= 1 and E

[
xxH

]
=

M , (A.4) becomes

E [Sii] =
b

a+ b
+ 1− b

(a+ b)M
. (A.7)

Combining results in (A.2) and (A.7), we get (3.10).
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Proof of uncorrelated channel

estimation error

The cross covariance between the LMMSE channel estimate and its error can written as

Rĥljk′ h̃ljk′
=E

[
ĥ
H
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]

=E
[
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. (B.1)

Using (3.4), then (B.1) becomes

Rĥljk′ h̃ljk′
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√
prβljk′
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E
[
ȟ
H
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]
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. (B.2)

Using (3.3), and eliminating uncorrelated terms in ȟjk′ , then (B.2) becomes

Rĥljk′ h̃ljk′
=

√
prβljk′

αTD
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=
prβljk′K

αTD
jk′

IM −
prβljk′K

αTD
jk′

IM

=0M . (B.3)

Since Rĥljk′ h̃ljk′
= 0M , this means ĥljk′ is uncorrelated with h̃ljk′ .
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Lemma C.1

Lemma C.1. Let v and w be 1 ×M vectors with CN (0, IM ) distributions. If v and

w are independent from each other, then

E
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Proof.
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Using known properties of the trace operator, (C.2) becomes
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Appendix D

Power optimization

D.1 Power optimization for TShdown

Since RTD,DL
jk′ = Td

T × C
(
Sa
Na

)
, the maximization of RTD,DL

jk′ is the same as the max-

imization of the SNIR, Sa
Na

, with respect to pf. Therefore, we can find the optimum

value of pf by solving d
dpf

(
Sa
Na

)
= 0 with pf > 0. However, the SINR for downlink

transmission includes the signal terms related to the precoding vector from other cells,

which is αTD
lk′ for l 6= j. Since αTD

lk′ contains the term pf, this makes the differentia-

tion process complicated. To solve this, we assume that αTD
lk′ in the interfering cells

is equal to that of the target cell, j (αTD
lk′ = αTD

jk′ ). We also perform the approxima-

tion, αTD
jk′ ≈

∑
i∈A1

prβijk′K +
∑

i/∈A1

∑K
k=1

pfδji
K (1 + pfδji) + 1. The results in Figure

3.16 show that this approximation is a reliable method to obtain the optimum downlink

power. Using these approximations along with (3.21) and (3.22), we find the optimum

power as the solution of

d
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where αTD
jk′ ≈

∑
i∈A1

prβijk′K +
∑

i/∈A1

∑K
k=1

pfδji
K (1 + pfδji) + 1 and pf > 0. Solving

(D.1), we get (3.50).

D.2 Power optimization for TShup

Similar to Appendix D.1, we can obtain the optimum power for TShup using the asso-

ciated SINR. However, since TShup uses the uplink transmit data power optimization

(see Section 3.4.4), we use the uplink SINR, which is Sd
Nd

. Similar to Appendix D.1, the

optimum power can be obtained by solving d
dpu

(
Sd
Nd

)
= 0 with pu > 0. Using (3.70) and

(3.71), we get the optimum power as the solution of

d

dpu
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where αTU
jk′ =

∑
i∈A1

prβijk′K +
∑

i/∈A1

∑K
k=1 puβijk + 1 and pu > 0. Solving (D.2), we

get (3.79).
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