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Abstract

Invasive species are an increasing problem, costing several billion dollars to the global economy.

Monitoring methods are needed to provide scientists the necessary information to control pop-

ulations of invasive species. Adaptive monitoring means that, for each additional survey, the

monitoring design is updated based on the information obtained during the previous surveys. In

this thesis we introduce a new general framework for adaptive monitoring. This method focuses

on increasing the detection rate of invasive species over consecutive surveys. Compared with the

existing monitoring methods, the proposed algorithm aims to improve adaptive monitoring by

the following three points: (1) The use of a spatially balanced sampling design to select a sample

in each survey, (2) by using both spatial and ecological information to update the monitoring

strategy, and (3) by incorporating an eradication strategy to an adaptive monitoring design.

In Chapter 1, we emphasise the need for the development of adaptive monitoring methods for

invasive species. In Chapter 2, we outline the algorithm of our proposed method for adaptive

monitoring and discuss the use of spatially balanced sampling designs. In Chapter 3, several

sampling designs are introduced and their use for (adaptive) monitoring is evaluated. We give

special attention to a new spatially balanced sampling design, named Balanced Acceptance

Sampling, and compare it with a selection of existing (spatially balanced) sampling designs

such as Generalized Random Tessellation Stratified sampling. In Chapter 4, we illustrate how

ecological information can be used to update the monitoring strategy, which is demonstrated

using a case study on the Asian tiger mosquito. In addition, several practical issues with

probability sampling are discussed. In Chapter 5, the Nearest Unit Tessellation methods are

introduced. These methods can model the observed spatial information of the species to update

the monitoring strategy. Finally, we demonstrate how to combine ecological and spatial informa-

tion to adjust a monitoring strategy. Chapter 6 also explores the use of a method to incorporate

an eradication strategy to an adaptive monitoring strategy, using the Great White Butterfly data.
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Chapter 1

Introduction

1.1 Motivation

In this thesis, a new generic method for adaptive monitoring is introduced to improve the

detection rate of invasive species. The motivation for such a method is threefold: (1) Any

increase of invasive species is costly, (2) the need of high detection rates for eradication of such

species, and (3) a lack of generic methods for adaptive monitoring to increase these detection rates.

(1) Invasive Species

In 1999 USA President Clinton signed Executive Order 13112 to define invasive species as follows:

“Invasive species are those plants, animals, and microbes that are non-native to an area and have

caused or have the potential to cause economic, health or ecological damage.”

New invasions by species can occur naturally. However, the rate at which new introductions of

invasive species occur has increased in recent decades as a by-product of international travel

and trade (Aukema et al., 2010; Hulme, 2009). Because of this, the number of invasive species

that have managed to survive and settle in their new host environment has increased as well.

An example of an invasive species are the caterpillars from the Asian gypsy moth, Lymantria

dispar asiatica. These caterpillars cause severe defoliation, reduced growth and accelerated

1



2 CHAPTER 1. INTRODUCTION

mortality of host trees throughout large parts of the northern hemisphere (Ranjan et al., 2008;

Epanchin-Niell et al., 2012). Another, well-known example, is the invasion of the Nile perch,Lates

niloticus, of Lake Victoria, Africa. Since the species introduction in 1954, it has contributed

to the extinction of more than 200 endemic fish species through direct competition with, or

predation of, other species (Strayer, 2010). A third example is Caulerpa taxifolia, a popular

decorative aquarium alga. Since it was accidently introduced into the Mediterranean Sea, it

has spread over more than 13,000 hectares of the seabed (Ranjan et al., 2008; Glasby, 2012).

Growth of Caulerpa taxifolia prevents the establishment of many native seaweeds. As a direct

result of this, almost all marine life is absent in areas invaded by Caulerpa taxifolia (Glasby, 2012).

The effect of invasive species on the stability of many ecosystems worldwide causes direct and

indirect economic costs. For example, invasive species may cause serious damage to agricultural

productivity by using agricultural land as foraging grounds (Kean et al., 2008; Pimentel et al.,

2001). These economical implications of new invasions, on top of increasing expenditures for

controlling invasive species, have grown to a concerning cost for many effected parties (Aukema

et al., 2010). An example is the cost breakdown of the invasion of the emerald ash borer in the

United States which mainly effects ash trees. It is expected that for the next ten years alone,

the total cost for home-owners and municipalities will be approximately 10.7 billion US dollars

for (ash) tree treatment or removal (Kovacs et al., 2010). Pimentel et al. (2005) estimated that

invasive plant species alone cause an environmental and economical cost of 34 US billion dollars.

The total cost of invasive species in the United States is estimated around 120 billion US dollars.

Giera and Bell (2008) estimated the total economic cost of invasive species and pests to New

Zealand’s primary agricultural sector to be approximately 2.128 billion NZ dollars per year.

With the inclusion of secondary up and downstream services and industries, these costs could

be as high as 3.291 billion NZ dollars, or 1.96 percent of New Zealand’s GDP in 2008 (Giera

and Bell, 2008).

Furthermore, some invasive species can cause a direct threat to human health. For example, the

hairs of the caterpillars of the Asian gypsy moth can cause allergic skin reactions to some people

(Ranjan et al., 2008). Brush-tail possums, which have invaded many parts of New Zealand,
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are carriers of the Bovine Tuberculosis Myco bacterium, better known as bovine TB disease

(Ramsey and Efford, 2010). Due to global warming, several mosquito species are settling in new

host areas. Some of these mosquitoes can transmit diseases such as malaria and yellow fever

(Medlock et al., 2012).

(2) Detection Rates

The first step in the management of invasive species is the prevention of new introductions.

However, once an invasive species manages to invade and settle, the management strategy

changes to controlling the newly established species population. This second step is aimed at the

prevention of further dispersal of the species and/or by eradication of the species (Parnell et al.,

2009; Epanchin-Niell et al., 2012; Burgman et al., 2013). Once an invasive species population

reaches a certain threshold size, it is hard to control further growth and dispersal of the species

population. Therefore, it is important to start eradication as soon as an invasive species is

detected (Tobin et al., 2011; Suckling et al., 2012). Nevertheless, eradication will often only be

considered if the potential environmental loss and economical costs are higher than the cost of

the eradication method (Gaeta et al., 2012). Therefore, the availability of efficient and early

eradication strategies are critical for decision makers to reduce the ecological and economical

costs of new invasions (Lodge et al., 2006; Hulme, 2009; Epanchin-Niell et al., 2012).

An essential step for efficient eradication, especially at an early stage of the invasion, is to map

the distribution of the invasive species population. This is important to target those areas

that are invaded, or are likely to be invaded in the future, by the species. The prevalence

of an invasive species is defined as the number of units that are occupied by the species in

the population of sampling units that constitute to the sampling domain. When selecting a

sample, the number of times the targeted species is present when visiting a site or unit over

the total number of visited sites, is what we will refer to in this thesis as the detection rate of

a sample. In this thesis we will assume that if a species is present it will always be observed,

hence we assume perfect detectability. It is important to note that the term ‘detection rate’

should not be confused with detectability or detection probability which is the probability a
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species is discovered after it has invaded a new area or the probability a species is detected

when visiting a site in which it is actually present (Thompson and Seber, 1996; Moore et al.,

2011). Various studies focus on these concepts of detection probability. For example, Moore

et al. (2011) estimated the detection probability for large plant species. However, in this thesis,

the focus is on the detection rate, thus on methods to select those units in which the species is

actually present. An alternative term for the detection rate could have been the incidence, as for

example used in Wright (1991). Arguably, incidence would have been a better terminology given

the close, and likely confusing, resemblance between the terms detection rate and detection

probability. However, in many biological papers, and more specifically in epidemiological papers,

the definition of incidence is the number of new cases of an event, for example the number of

newly infected persons or newly invaded sites within a certain time interval. Hence, in this thesis

it was chosen to define the detection rate D of a sample of size n as

D = 1
n

n∑
i=1

ID(i), (1.1)

where n is the sample size and ID(i) is an indicator function that equals one if the species is

present in the ith sampled unit and zero otherwise. For example, 100 equally sized sites or units

are visited. The invasive species is abundant in 20 of those units. In this case, the detection

rate is D = 20
100 = 0.2. Note that although this definition for the detection rate is intuitive, there

are several other formats or definitions in which studies have represented the detection rate. For

example, Crall et al. (2013) and Guisan et al. (2006) used contingency tables of presence/absence

of a species in sampled units and Le Lay et al. (2010) used figures to illustrate the positive and

negative predictive power of a sample. Ultimately, all these studies aim to improve the detection

rate of a sample.

For pest control in general, and in surveillance and monitoring programmes for invasive species

in particular, high detection rates are critical so that new incursions can be quickly eradicated

or contained (Crall et al., 2013; Rout et al., 2014). Because selecting units in which the species

is present or may be present during the course of monitoring is important, the detection rate
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can be used to describe the efficiency of an eradication strategy (Kean et al., 2008; Le Lay

et al., 2010; Crall et al., 2013). The higher the detection rate the better the eradication strategy.

For example, Bogich et al. (2008) showed that the higher the detection rate, the lower the

financial cost is of an eradication program and the higher the success rate will be. Many other

studies discuss the importance of increasing the detection rate for eradication strategies or

environmental management in general (Mehta et al., 2007; Kean et al., 2008; Le Lay et al., 2010;

Epanchin-Niell et al., 2012; Whittle et al., 2013). For example, Harvey et al. (2009) analysed

the relationship between the sampling intensity and the detection rate for a recently introduced

water flea, Cercopagis pengoi, in Lake Ontario. They concluded that focussing the sampling

effort on those areas with the highest species suitability is preferred, rather than less intensive

sampling at a wider array of sites.

Despite the knowledge that detection rates are important for eradication, Kean et al. (2008)

stated that one of the greatest constraints to implementing an eradication strategy is the lack of

appropriate methods to improve the detection rate. In addition to eradication purposes, another

reason for having high detection rates is for analytical purposes, such as species distribution

modelling or species dispersal modelling (Alexander et al., 1997; Edwards et al., 2005). Many of

these techniques give poor results when the number of presence units are small (Stockwell and

Peterson, 2002; Lobo et al., 2010).

(3) Adaptive Monitoring

Strategies for invasive species management are usually long lasting programs that require re-

peated surveying. Repeated surveying or long term surveying in ecology is generally known as

monitoring. A monitoring design can sometimes be designed prior to the initial survey and can

remain unchanged for the entire duration of the study. These monitoring designs will often have

an informed design based on the available prior information. This prior information could be

any type of information about the invasive species, for example details about previous invasions,

auxiliary habitat information or expert knowledge. By incorporating this prior information into

the monitoring design better results can be obtained compared with randomly selected samples.

Later in this thesis, we will illustrate that even when no prior information is available better
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results can be obtained, compared with simple random sampling, by selecting samples with an

improved spatial coverage.

These non-adaptive monitoring designs mainly rely on prior information to improve the detection

rates. If possible, it could be useful, to verify the appropriate usage of the used prior information

over time, or even to improve the design of the monitoring design so that it no longer depends on

prior information only. Given the consecutive surveys and long term aspect of monitoring, it is

possible to adjust the monitoring design as a function of the observed data over time. Adjusting

the monitoring design over time is known as adaptive monitoring (Lindenmayer and Likens,

2009; Guisan et al., 2006; Stohlgren and Schnase, 2006; Crall et al., 2013). Lindenmayer and

Likens (2009) defined adaptive monitoring as:

“A monitoring program in which the development of conceptual models, question setting, exper-

imental design, data collection, data analysis, and data interpretation are linked as iterative

steps. An adaptive monitoring program is one that can evolve in response to new questions,

new information, situations or conditions, or the development of new protocols but this must

not distort or breach the integrity of the data record.”

The concept of adaptive monitoring is intuitive and appealing because it mimics how field-

biologists would like to collect data. Areas with a high abundance of the species, or with an

expected future high abundance of the species, should be sampled more intensely compared

with low density or low risk areas. For example, in conducting a survey of a rare species, a

field-biologist may feel inclined to sample more intensively in an area where one individual

has been observed to see if others are present (Brown et al., 2008). Lindenmayer et al. (2011)

illustrated adaptive monitoring using two case studies where the pre-existing monitoring pro-

grams were redesigned over time: One of these case studies is on adaptive monitoring of Bitou

bush, an invasive weed species in Booderee National Park, south-eastern Australia. Adaptive

monitoring, in this case, leads to the decision to respray those areas with an expected high Bitou

bush density. This is done to kill new Bitou bush germinants and to prevent new Bitou bush

growth. There are numerous other papers that use the term adaptive monitoring or describe an
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example in which the monitoring design was adapted over time. For example, Armstrong and

Louw (2013) discussed an adaptive monitoring design for the eggs of the Karkloof blue butterfly

and Tombre et al. (2013) discussed adaptive monitoring for two growing goose populations in

Norway that use agricultural land as their breeding grounds.

Note, firstly, that adaptive monitoring, as defined in this thesis, is different from adaptive

sampling. Adaptive sampling means that the data collection design depends sequentially on

the observed values in the previously selected units (Salehi and Brown, 2010; Thompson, 2012).

The most well-known sampling design is adaptive cluster sampling (Thompson, 1990). These

adaptive sampling designs aim to improve the precision of population estimates. To achieve

this, adaptive sampling designs select a batch of units in two (or more) phases. The first phase

provides information to decide which units should be selected in the second phase. Even though

adaptive sampling designs select a sample in several phases, generally the entire sample is

selected within one survey (for example within a one year long survey). With monitoring, instead

of collecting all the data during one survey, the sampling effort will be spread over multiple

sequential surveys. This is because adaptive monitoring designs are generally used to monitor

changes in the population over time.

Secondly, it is important to notice the difference between adaptive monitoring and adaptive

management. Monitoring is the process of sampling and data collection. Management is the

process in which practical measures are taken to control the invasive species population. Similar

to adapting the monitoring design it can also be beneficial to adapt the management strategy

(Buckley, 2008; Foxcroft, 2004). Hence, one can for example have adaptive management without

adaptive monitoring.

Despite many case specific applications, literature on general frameworks for adaptive monitoring

is difficult to find. Many methodological studies about adaptive monitoring mainly focus on

specific parts of the (adaptive) monitoring process. For example, Bogich et al. (2008) and

Epanchin-Niell et al. (2012) analysed the optimal sampling intensity as a function of cost

constraints and applied it to a case study of the Gypsy moth in California, USA. Other studies

have focussed on how the sampling effort should be allocated over the consecutive years (Lobo
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et al., 2010; Epanchin-Niell et al., 2012). Interestingly, only few studies discuss how to actually

allocate the samples over the study area for adaptive long term monitoring.

An attempt to define a general framework for adaptive monitoring was given in Stohlgren and

Schnase (2006). They outlined an iterative monitoring scheme using a flowchart. Stohlgren

and Schnase (2006) stated that the collected ecological auxiliary information from previous

samples should be used to select future samples. In the same year, Guisan et al. (2006) gave

a practical illustration of a similar iterative and adaptive monitoring scheme to the one that

was introduced by Stohlgren and Schnase (2006). In their study, they described how to use the

collected ecological information from previous surveys to set strata boundaries for sampling of

rare plant species in Switzerland. They concluded that by using the collected information, the

detection rate of a survey can be increased. A similar study was performed in Crall et al. (2013)

in which environmental information was used to set and adjust the strata boundaries over time.

In their study a similar iterative adaptive stratification sampling method was tested for two

invasive plant species in Wisconsin, USA. Crall et al. (2013) showed how the detection rate can

be improved for both invasive species compared with stratified sampling. Le Lay et al. (2010)

used the same adaptive stratified monitoring method to help detect invasive species and and

non-invasive species in the Swiss Alps. In this case, the ecological information was modelled

using two different distribution modelling techniques to predict the distribution of the species.

Based on these predictions the area was stratified into a low, a medium and a high likelihood

stratum. A stratified random sample was selected with half of the sample size allocated to the

medium likelihood stratum and half of the sample size was allocated to the high likelihood

stratum. They showed that the probability of finding a rare plant species could be increased by

almost 50 percent by using ecological information to select the sample compared with random

sampling, and for a common plant species the new number of detections increased by almost

100 percent.
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1.2 Standing on the Shoulders of Giants: How can this Thesis

make a Difference?

The last three cited studies on adaptive monitoring show that using ecological auxiliary informa-

tion to update the monitoring method can improve the detection rate. In this thesis we will try

to extend the methods used in those studies on adaptive monitoring to potentially increase the

detection rate. To do this, we focus on three aspects which can potentially make the proposed

method for adaptive monitoring popular among field scientist:

(I) Most of the previously discussed adaptive monitoring studies used stratified sampling to

allocate samples over the study area. We extend the methods proposed in these studies by

considering several alternative sampling techniques that could be used. A range of sampling

designs will be tested and it will be evaluated which of these sampling design is most suitable

for adaptive monitoring to improve the detection rate. The selected sampling design should

first of all lead to higher detection rates. Additionally, the sampling method should be easy to

implement and easy to adjust for consecutive surveys. That a sampling design should be easy to

adjust is important, for example, when the sample size changes over time or when certain sites

turn out to be inaccessible.

(II) We will consider different types of auxiliary information that can be used to design and

consecutively update the monitoring designs. Many previous studies have used ecological auxil-

iary information to design and update the monitoring design (Guisan et al., 2006; Stohlgren and

Schnase, 2006; Crall et al., 2013). Ecological information is any type of information that can be

used to predict the species’ habitat suitability. The species’ habitat suitability is an index of

the likelihood that a species will settle in a specific type of habitat. Thus, an area with a high

species habitat suitability will be preferred by the species to settle compared with other less

suitable sites. Various models have been proposed in the literature to estimate the species habitat

suitability based on a set of ecological predictor variables, such as logistic regression (Nelder

and Wedderburn, 1972), Maximum Entropy (MaxEnt) (Phillips et al., 2004) and support vector

machines (Vapnik, 1999). These methods are more commonly known as Species Distribution
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Models (SDMs).

A common assumption with SDMs is that the modelled species is in near equilibrium with its

environment (Elith and Graham, 2009; Royle et al., 2012). A species is in equilibrium with its

environment if the species is distributed proportional to the estimated habitat suitability. In

other words: The species is expected to occupy all sites that have a habitat suitability that is

adequate for that species to settle in. Many invasive species are not in equilibrium with the

environment of the study area (Robertson et al., 2004; Guisan and Thuiller, 2005), as they often

do not occur at all the locations with the highest estimated species habitat suitability. For

example, if a species with a high affinity for a certain type of crop invades a new host area,

then a SDM will assign a high species habitat suitabilities to sites containing that type of crop.

However, especially with recent invasions, not all the sites containing that type of crop will

be invaded immediately. In that case, the species are not yet in equilibrium with the habitat.

Hence, it is important to realise that ecological auxiliary information, or auxiliary information

based on SDMs should be interpreted primarily as a measure of species habitat suitability rather

than a measure of current species prevalence.

A different type of information that might provide additional information about the current

species distribution is spatial information. Spatial information is information that uses the

observed geographical information about the invasive species. For example, a list of sites, in

the format of latitudinal and longitudinal coordinates of each observed individual of the species

(and sometimes also absence). Based on Tobler’s First Law of Geography which states that

“Everything is related to everything else, but near things are more related than distant things”

and the idea behind spatial autocorrelation, which is a measure to which a set of spatial sampling

points tend to be correlated or clustered together in space (positive spatial autocorrelation)

or dispersed in space (negative spatial autocorrelation), one can try to make use of spatial

information to estimate where an invasive species is likely to be present. Parnell et al. (2010),

for example, illustrates by means of a simulation study that knowing the location of an invasive

species is the key factor in designing eradication strategies. Hence, incorporating the observed

spatial auxiliary information of the sites that are known to be already invaded is important

to predict the species density. Therefore, spatial information is another type of information
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that can be important when updating the monitoring design. One way to incorporate spatial

information into the proposed method for adaptive monitoring is illustrated in chapter 5 and 6.

In this context it is also important to discuss the differences between so called design based

spatial sampling and model based spatial sampling (Wang et al., 2012, 2013; de Gruijter and

ter Braak, 1990; Knotters et al., 1995; Brus and de Gruijter, 1997). Design based sampling

methods are better know as probability sampling designs. Each sampling unit has a proba-

bility of being included in the sample and units are selected randomly with respect to those

inclusion probabilities. Inferences about the total population are based on the sampled units

and the set inclusion probabilities. In the design based methods the uncertainty of a sample

depends on which sites are sampled and hence would completely disappear in the case each

sampling unit in the sampling domain would be sampled. These methods often assume that

the observed number of individuals is fixed for that unit, or at least that within the sampling

domain the mean number of individuals per unit is fixed. However, in the case the number of

individuals was a one-off realisation of an underlying stochastic process the true population size

is hard to measure even if every unit is sampled. This is exactly what model based sampling

methods assume, namely that the population at the time of a survey is only one realisation

of the super population (which is the set of all the unique populations at different times).

Model based sampling design hence try to estimate the parameters of this underlying stochastic

process. An example of a techniques used for model based sampling is Kriging (Krige, 1951;

de Gruijter and ter Braak, 1990). Kriging is the name of a set of kriging tools, developed

in the field of geostatistics, to estimate properties at unsampled units based on the values of

the sampled units. Geostatistics can be regarded as a collection of numerical techniques that

deal with the characterization of spatial attributes, employing primarily random models in a

manner similar to the way in which time series analysis characterizes temporal data (Olea,

2006). These geostatistical methods make use of the spatial autocorrelation to estimate the

species density (or by extension any variable of interest) at unsampled locations. Based on

a sample a map of the species distribution can for example be formed by Kriging, by using

various interpolation techniques. Several of these distribution maps over time could be used

to make inferences about the super population. In this thesis we will mainly focus on design
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based sampling methods. However, various parts of this thesis, in particular Chapter 4, 5 and

6 could have greatly benefited from a more in-dept model based sampling approach. Addi-

tionally, in chapter 5 and 6, the usage of kriging methods could have been explored in more detail.

(III) Monitoring of invasive species often means collecting information about the species, by

modelling the trend in the population size or distribution. This information can then be used to

set up an invasive species management strategy, such as a eradication strategy. Additionally,

the species monitoring can be used to evaluate the effect of an implemented eradication strategy

and if necessary to adjust the eradication strategy. Even though detection and eradication are

closely related to each other, many studies focus on improving the eradication strategy or on

improving the detection of species (Bogich et al., 2008; Homans and Horie, 2011). One of the

main problems with using these two separate approaches is that when focussing on improving the

eradication rate, the search for newly invaded sites is reduced and vice versa (Bogich et al., 2008;

Homans and Horie, 2011). However, few methods integrate both monitoring and eradication

into the same application (Epanchin-Niell et al., 2012; Bogich et al., 2008). Or as Bogich et al.

(2008) stated: ‘There is an urgent need to design and test joint monitoring and management

strategies in order to achieve early detection and, in turn, provide more effective control’. In this

thesis we aim at improving the detection rate of a monitoring design by increasing the inclusion

probabilities in high density areas. We will test if this can then be used as a potential eradication

strategy as well, namely by eradicating species in those the areas that have been given higher

inclusion probabilities. We will explore the idea of adjusting inclusion probabilities over time

not only for monitoring but also as as potential eradication strategy. We will investigate if an

adaptive monitoring design, especially one that achieves high detection rates could potentially

be used as an eradication strategy and how?

In this thesis, we develop the ideas of the iterative method, as proposed in Stohlgren and

Schnase (2006) and extended by others, to introduce a new and improved general framework

for adaptive monitoring. This method will incorporate and address all three of the potential

points of improvement: Selection of the sampling design, using spatial and ecological infor-
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mation to update the monitoring design and the potential incorporation of an eradication strategy.

1.3 Thesis Outline

In this thesis a new general framework for adaptive monitoring is introduced. This method

will focus on increasing the detection rates of invasive species over consecutive surveys. The

structure of this thesis is as follows:

1 The new framework for adaptive monitoring is introduced in Chapter 2. A brief background

will be given at each step and the points of improvement compared with previous adaptive

monitoring methods will be discussed in greater detail.

2 The selection of an appropriate sampling design to use for the proposed adaptive monitoring

method is done in Chapter 3.

3 Chapter 4 and 5 will illustrate how to adjust the monitoring design over time using

available auxiliary information. Chapter 4 focusses on ecological information and Chapter

5 focusses on the usage of spatial information.

4 Applications of the new method for adaptive monitoring for non-stationary species popula-

tions will be evaluated in Chapter 6 and it is assessed if the idea of adapting the inclusion

probabilities over time can be used to set-up an eradication strategy.



Chapter 2

A New General Framework for

Adaptive Monitoring

In this chapter a new general framework for adaptive monitoring is introduced. The proposed

method is based on the method introduced in Stohlgren and Schnase (2006) and which was

used in other studies such as Guisan et al. (2006) and Crall et al. (2013). The differences of

the proposed methodology compared with these existing methods are addressed. Moreover, we

discuss the key elements that are believed to improve the performance of this method compared

with the existing methods. The focus of this thesis is to achieve an improvement in the detection

rates of the adaptive monitoring method. Additionally, the practical implementation of the

monitoring design is also evaluated. For example, is it easy to implement the method in the

field or can it be used for management strategies of invasive species?

2.1 Adaptive Monitoring: Proposed Algorithm

The proposed methodology for adaptive monitoring comprises the following steps:

Step 1 In the (unlikely) case that no prior information is available, select an uninformed sample

in the first survey. Most of the time information will be available and the initial sample

will be an informed sample and hence the algorithm will start at Step 2 (however for

14
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illustrative, simulation related and computational purposes we will often simplify this in

this thesis and assume that no prior information is available).

Step 2 Estimate the species distribution using the auxiliary information obtained from the previous

sample(s). The auxiliary information can be one of the following types:

(a) Ecological.

(b) Spatial.

(c) Ecological and Spatial.

Step 3 Use predicted species distribution to:

(a) Select an informed sample.

(b) Eradicate species.

Step 4 If more surveys are required return to Step 2, otherwise finish.

The proposed algorithm for adaptive monitoring is also illustrated in Figure 2.1.

As aforementioned in Chapter 1, this algorithm for adaptive monitoring aims to improve the

existing adaptive monitoring methods for the following three principles:

1 Select the most suitable sampling design that allows for adaptive monitoring.

2 Use spatial information, in addition to ecological information.

3 Use the adaptive monitoring technique to design eradication strategies.

Intuitively, it is easy to understand how the second and the third points can lead to an

improvement in the adaptive monitoring method compared with the existing methods. These

points will be discussed in detail in Chapters 5 and 6. The importance of point one, the selection

of a sampling scheme, is perhaps less obvious and needs some additional explanation. Most

existing studies used stratified sampling to allocate the samples. New to our proposal, is the

use of spatially balanced probability sampling designs to select the samples during the adaptive

monitoring scheme. The subsequent sections explain the concept of spatially balanced probability

sampling designs and introduce their use for adaptive monitoring.
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Figure 2.1: Illustration of the proposed method for adaptive monitoring. Each step of the
proposed algorithm is added: 1. Select uninformed sample, 2. Use information to predict species
distribution (a: Ecological, b: Spatial, c: Ecological+Spatial), 3. Select an informed sample ( +
3.b Eradicate), 4. Return to step 2. Note that this map of the South Island of New Zealand is
chosen for illustrative purposes, and that spreading samples over the extent of the entire island
is an oversimplification of any real applications.

2.2 Sampling

Once an invasive species is detected in a new host area, information about the state of the

invasion can be collected. This information can for example be, information on the distribution

of the invasive species or about the population size of a species within a study area. For most of

the sampling designs and their applications in this thesis, the study area is partitioned into a

grid of N quadrants of equal size, which we will call units. These N units constitute to the finite

sampling frame, which is the set of units a sample can be selected from. The study variable to be

recorded is the species abundance yi within unit i. Let U be the set of all units in a population

of size N

U = {1, 2, ..., N} . (2.1)
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The parameter of interest is the total number of individuals of a species Y within the study area,

which is

Y =
∑
i∈U

yi, (2.2)

or the mean number of individuals per unit

µ = Y

N
. (2.3)

Since it is difficult to visit every unit in a study area, a sample is selected from which inferences

about the total area can be made. For example, suppose one is interested in the total number

of possums in a certain national park. In that case, the national park is partitioned into N

units. A limited number of n units are selected in such a way that inferences can be made about

those N units. This could be done for example, by sampling each type of habitat. A sample is

selected according to a certain sampling design or sampling design. Various sampling designs

have been introduced for different surveying application (Cochran, 1977; Levy and Lemeshow,

2013). Selection of the most appropriate sampling design for ecological monitoring programs is

important because of statistical (precision), practical or financial reasons (Gitzen et al., 2012).

In this section, an introduction to sampling is given, to provide the reader with the necessary

background. The reader is referred to Cochran (1977) and Levy and Lemeshow (2013) for a

more comprehensive introduction on sampling. In the next chapter, several sampling designs

are discussed and their suitability for adaptive monitoring is compared.

Sampling designs aim to obtain unbiased and precise estimate of the population total (Cochran,

1977; Thompson, 2006). The bias of an estimate is determined by the difference of the expected

value of that estimate from the population parameter. For example, the difference of the

estimated number of individuals Ŷ within the study area from the true number of individuals

Y is |Y − Ŷ | within that study area. Precision is the variance of the population estimate of

the population size, where the smallest variance is preferred. Unbiasedness and precision of

population estimation are both important when selecting a sample (Cochran, 1977). Biased

parameter estimation, but with a high precision, leads to repetitive measurement of the same,

but wrong, parameter estimate. Unbiased parameter estimation, but with low precision, leads
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to an unbiased estimate but with a large variance.

2.2.1 Probability Sampling

Probability sampling designs are those sampling designs that assign each unit a probability

of selection and thus have a form of randomness included when selecting the sample, so that

statistical inferences can be made (Cochran, 1977; Tillé, 2006). This is compared with non-

probabilistic or deterministic sampling designs which lack this randomness.

For a finite sample space of N units, unit i is assigned an inclusion probability πi, which is the

probability of including unit i in the sample, such that

∑
i∈U

πi = n.

In this thesis we will attempt to use the concept of inclusion probabilities, generally used for

population estimation, to hopefully increase the detection rate. Although the main focus is on

increasing the detection rate, by adjusting the inclusion probabilities we will evaluate if our

proposed method for adaptive monitoring can simultaneously be used for more precise population

estimation as well. If all the inclusion probabilities can be accurately determined, then it is

possible to produce unbiased estimates of the population total by weighting the sampled units

according to their inclusion probabilities. A commonly used unbiased estimate for Y is the

Horvitz-Thompson (HT) estimator (Horvitz and Thompson, 1952), given by

ŶHT =
∑
i∈U

yi
πi
Is(i), (2.4)

where Is(i) is one if the ith unit is selected in the sample and zero otherwise. The variance of

ŶHT for a fixed sample size can be written as

V (ŶHT) = −1
2

∑
i,j (i 6=j)

(πij − πiπj)
(
yi
πi
− yj
πj

)2

. (2.5)
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where πij is the second-order inclusion probability. A second order inclusion probability is the

probability that both unit i and unit j are included in the sample. The variance, in 2.5, can be

estimated from a sample using the unbiased Sen-Yates-Grundy estimator

V̂SYG(Ŷ ) = −1
2

∑
i,j (i 6=j)

(πij − πiπj)
πij

(
yi
πi
− yj
πj

)2

Is(ij),

where Is(ij) is one if both units i and j are included in the sample and zero otherwise.

If all units have equal inclusion probabilities, then πi = n
N for i = 1, 2, ..., N . Hence all units

have an equal chance of being selected in a sample. This is called equal probability sampling or

equiprobable sampling. If the inclusion probabilities vary among the units, then some units have

a higher chance of being selected in a sample as compared with other units. This is called unequal

probability sampling. Figure 2.2 illustrates the concept of both equal and unequal probability

sampling. In this case, an equiprobable sample is selected using Simple Random Sampling

(SRS) and an unequal probability sample is selected using a design called Balanced Acceptance

sampling (BAS, see next section). A review of some classic sampling designs is given in Chapter 3.

Sampling designs are typically designed to obtain precise population estimates. In this thesis,

the idea of probability sampling is used for adaptive monitoring. The reason for using probability

sampling for adaptive monitoring is twofold. First, if one can assign those units with a high

species densities a high inclusion probabilities, then a corresponding probability sample can be

expected to achieve a high detection rate. A logical argument would be: ‘Why not simply select

the n units with the highest inclusion probabilities’. This arguments leads to the second reason:

Surveillance sampling. In this thesis, surveillance sampling is defined as the selection of a certain

number of units from low density areas. This is done, for example, to ensure that monitoring

programs do not miss out on unknown existing hotspots or newly invaded areas by the invasive

species. Many studies discuss the trade-off between eradication and surveillance (Bogich et al.,

2008; Rout et al., 2014). The need for surveillance sampling is one of the reasons why studies, in

which the area is divided into a suitable and an unsuitable strata, allocate a proportion of the
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Figure 2.2: Example of an equiprobable sample (selected using SRS) and an unequal probability
sample (selected using Balenced Acceptance Sampling (BAS), see next later). For both the
equiprobable and the unequiprobable case, N = 100, the sum of all πi is equal to the sample
size n, in this case n = 20. The top figures show the inclusion probabilities for each unit: the
height of each bar indicates the inclusion probability for that unit. The bottom figures show the
selected units based on the pre-set inclusion probabilities.

sample to the non-suitable strata, despite there being a low chance of finding the species. This

is, for example, the case in Guisan et al. (2006) and Crall et al. (2013). Guisan et al. (2006),

for example, used species distribution models to define a high suitability stratum and a low

suitability stratum and allocated 50 percent of the sample size to the low suitability strata.
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Deciding on the allocation of sampling effort between eradication and surveillance is often the

point of discussion in the literature (Bogich et al., 2008; Rout et al., 2014). By selecting an

unequal probability sample, we expect that most units are selected from expected high density

areas, but generally some units from assumed low density areas are still added to the sample.

This concept is further illustrated in the next chapters.

2.2.2 Spatial autocorrelation and Spatially Balanced Sampling

Natural resources are often observed to be spread over the sampling area following some kind of

spatial autocorrelation (Stevens and Olsen, 2004; Theobald et al., 2007). Spatial autocorrelation

is a concept that follows Tobler’s First Law of Geography which states that ‘Everything is related

to everything else, but near things are more related than distant things.’. Legendre (1993) loosely

defines spatial autocorrelation as ‘the property of random variables taking values, at pairs of

locations a certain distance apart, that are more similar (positive autocorrelation) or less similar

(negative autocorrelation) than expected for randomly associated pairs of observations.’ In short,

points closer together tend to have the same value for ecological variables compared with points

that are more distant. Spatial autocorrelation is a spatial version of the more general concept of

autocorrelation. Autocorrelation is a property of many ecological (and non-ecological) variables

whose measurements are correlated in geographic space (spatial autocorrelation) or in time

(temporal autocorrelation, which is the topic of interest in time-series analyses). In this thesis

the focus is on spatial autocorrelation, although a valuable extension of this thesis would be

to take into account the temporal autocorrelation of measured variables in sampled units as

well. In this thesis, spatial autocorrelation means that nearby units tend to have similar species

densities. An example of resources having a spatial autocorrelation are atmospheric pollutants,

like traffic exhaust particles. The concentration of these particles will be higher in urban areas

compared with more rural areas. For example, a bird species can locally have high densities

close to certain preferable breeding areas, but the abundance will be lower in other areas.

The statistical problem that arises with spatial autocorrelation is that the value at a site can

at least be partially predicted using the value from a neighbouring site. Hence, sampled units

are no longer stochastically independent from each other, which is a common assumption in
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statistical inference. Legendre (1993) says ‘This may come as a surprise to ecologists who have

been trained in the belief that nature follows the assumptions of classical statistics, one of them

being the independence of the observations. However, field ecologists know from experience

that living beings in nature are distributed neither uniformly nor at random.’. In this thesis

we assume that spatial autocorrelation is isotropic. This mean that the spatial autocorrelation

only depend on the distance between two locations. In the case that things are more alike for

shorter distances in some directions than in other directions the spatial autocorrelation is called

anisotropic.

In the case of invasive species, one can assume that a unit which is located next to a unit with

a known high density of the species will contain a high number of individuals as well. This is

compared with a more distant unit. Hence, sampling nearby units provides similar information,

and thus adds less information to the sample, compared with sampling more distant units.

Furthermore, having large unsampled areas adds uncertainty to the sample. Therefore, it is

desirable to distribute the selected sample over the study area such that the sample is evenly

spread over the extend of the target resource, which, in this thesis, is the underlying species

density. Such a sample is called a spatially balanced sample (Stevens and Olsen, 2004; Grafström

and Tillé, 2013; Robertson et al., 2013). Spatially balanced sampling designs usually result in

more efficient sampling designs by providing more information per sample unit, as each sample

is distributed across the population. Therefore, they can improve the efficiency of population

estimates by selecting a sample with few nearby units (Theobald et al., 2007).

In the case of isotropic spatial autocorrelation, it is possible to use Stevens and Olsen (2004)

method of using Voronoi cells to define a spatially balanced sample. This is is illustrated in

Figure 2.3. The Voronoi polygon ψi for sampled unit i is the collection of all the units in the

study area that are closer to unit i than to any other sampled unit in the sample. Note that in

the case of a small finite population, some units can be equidistant from the sampled unit. To

avoid this problem one can assume at this stage, that the population is sufficiently large with

very small units, for example, pixel sized units. Let υi be the sum of the inclusion probabilities
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of all the units within Voronoi polygon ψi, thus

υi =
∑
i∈ψi

πi. (2.6)

A sample is spatially balanced if υi is approximately one for all Voronoi cells ψi. The test

statistic introduced by Stevens and Olsen (2004) to measure the spatial balance of a sample

is the variance in υ, ξ = V (υ) with υ = {υ1, υ2, ..., υn}. The smaller ξ, the higher the spatial

balance of a sample. Note that in the case of an equiprobable design, all Voronoi cells are

expected to have similar areas. Therefore, in the case of an equiprobable design, one can simply

evaluate the variance in the areas of the Voronoi cells.

The difference between a spatially balanced sample and a sample with less spatial balance for

an equiprobable design is illustrated in Figure 2.3. The points of spatially balanced sample are

evenly spread, resulting in more equally sized Voronoi cells. Therefore, the variance among the

areas of the Voronoi cells will be small. The sample with poor spatial balance has some points

that are clustered and hence the variance of the Voronoi cells will be larger.

(a) Good spatial balance (GRTS) (b) Poor spatial balance (SRS)

Figure 2.3: Illustration of a spatially balance sample (selected using generalised randomised
tessellated stratified (GRTS), see next chapter) compared with a sample with less spatial balance
(SRS). Note that the size of the Voronoi cells for the sample with high spatial balance is less
variable compared with the sample generated by SRS.
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Spatially balanced sampling designs are mainly used as a means to improve the precision of pop-

ulation estimates in the presence of spatial autocorrelation (Stevens and Olsen, 2004). Recently,

Grafström and Lundström (2013) provided computational and theoretical evidence to support

this claim that spatially balanced sampling designs can improve the precision of a sample. In

their paper, they used a simulation study on some virtual datasets of natural resources to show

that the variances of population estimates obtained by spatially balanced sampling designs are

generally lower compared with the estimates of non-spatially balanced sampling designs such as

SRS. More importantly for this thesis is that since spatially balanced sampling designs spread

the sample evenly over the study area, this could also be used to increase the detection rate of

a sample. For example, a sample selected by SRS might by chance not select units in a large

section of the study area. In terms of surveillance sampling, this would mean that a potential

invasion of this section would go unnoticed. A spatially balanced sample tends the spread out

the sample more evenly over the study area. In the next chapter, several methods for spatially

balanced sampling are introduced.

2.3 Adaptive Monitoring Using Probability Sampling

As discussed previously, one of the main advantages of selecting a probability sample is that the

allocation of sampling units over the study will follow a similar trend as the pre-set inclusion

probabilities. For example, as we will discuss in the next chapter, with stratified sampling one

has to decide on an allocation scheme to distribute the sample over the strata. If the pre-set

inclusion probabilities are high in areas of high species densities and lower elsewhere then more

units will be selected in those high density areas and a small number of units will be selected in

low density areas. However, how can one set these inclusion probabilities for each unit?

If the aim of the sampling design is to increase the detection rate, then expected high density

units should be sampled more frequently and hence those units should be given higher inclusion

probabilities. One way of doing this is by setting the inclusion probabilities proportional to the

species density. If enough data are available then data driven computational techniques allow for
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unit specific computation of the inclusion probabilities. Stratified sampling, for example, does

not set unit specific inclusion probabilities, but gives all the units within the same strata an equal

inclusion probability. However, for a single survey sufficient information is seldom available to

accuratetly pre-set inclusion probabilities on the unit level. Therefore, it is difficult to accurately

set the inclusion probabilities proportional with the true population density. In contrast, with

monitoring, the repeated surveys provide increasingly more information over time, and this

information can be used to update the inclusion probabilities. One can expect that if more

information is available, then the computed inclusion probabilities can be expected to be more

proportional with the true species density. In chapters 4, 5 and 6 we will illustrate how the species

density information will be used to set unit specific inclusion probabilities. Because of simulation-

related issues we will assume that the first survey is always uninformed and hence the sample will

be uniformly distributed. As mentioned before, frequently it is the case that the initial sample

is also an informed sample. After the first sample we will use statistical interpolation techniques

(see chapter 4 and 5) to predict the species density at each unit in the sampling domain. Next,

we can set the inclusion probabilities for each unit in the sampling domain using this predicted

species suitability. By doing this, each unit will have an inclusion probability in the next survey

to be selected to the sample. The proposed algorithm for adaptive monitoring uses two types of

information to pre-set the inclusion probabilities: ecological information and spatial informa-

tion. Using information to update the inclusion probabilities are discussed in Chapters 4, 5 and 6.

2.4 Discussion

In this chapter a general framework for adaptive monitoring has been introduced. This method

is based on the iterative method for adaptive monitoring introduced by Stohlgren and Schnase

(2006), which was used and modified by, for example, Guisan et al. (2006) and Crall et al. (2013).

We developed our method by focussing on three main areas. Firstly, we will use a spatially

balanced probability sampling design to select the samples. Second, both ecological as well as

spatial auxiliary information will be used to update the sampling design. Third, this method for
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adaptive monitoring can potentially also be used for eradication.

The concepts of probability sampling and of spatially balanced sampling have been introduced

and a introduction on why adaptive monitoring would benefit from these methods has been

given. Spatially balanced probability sampling can be expected to increase the detection rate,

while selecting a surveillance sample to ensure that newly invaded areas will be detected as well.

In the next chapter a selection of probability sampling methods and spatially balanced sampling

methods are introduced and their performance are reviewed.



Chapter 3

The Selection of a Sampling Design

for Adaptive Monitoring

Many previous studies on adaptive monitoring have used a stratified sampling design to select the

units (Stohlgren and Schnase, 2006; Guisan et al., 2006; Crall et al., 2013). In this chapter, several

other sampling designs are introduced and their suitability for (adaptive) monitoring is evaluated.

We start by introducing a selection of common probability sampling designs. Next, several

spatially balanced sampling design are introduced. Two spatially balanced designs are discussed

in greater detail: Generalized Randomized Tessellation Stratified Sampling (GRTS)(Stevens

and Olsen, 2004) and Balanced Acceptance Sampling (BAS) (Robertson et al., 2013). GRTS

can be thought of as the current benchmark method for spatially balanced sampling. BAS is

a recently introduced alternative to GRTS. The spatial balance of these designs is compared

using a simulation study. Finally, we assess which sampling design can be useful for adaptive

monitoring. This is done by testing which sampling method achieves the highest detection rate

for a one-off (un)informed initial sample using simulation studies. Evaluation of the achieved

detection rates for a smaller selection of sampling methods for consecutive surveys is done in

the next chapters. Although the main focus is on detections rates, we will also evaluate if

these sampling methods can increase the detection rate, without loss in precision or accuracy of

common population estimates. Throughout this chapter, the practical (dis)advantages of the

27
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proposed sampling designs are discussed.

3.1 Probability Sampling Designs

In this section, three probabilistic sampling designs are discussed, these are Simple Random

Sampling (SRS), Stratified Random Sampling (StratRS) and Conditional Poisson Sampling (CP).

All the considered sampling designs in this thesis are based on sampling without replacement.

Note that there are many other designs that can select a probability sample. This is by no

means a complete review. Note that when we introduce the estimators in the following sections

for each discussed sampling design, we assume perfect detection. This is an assumption we will

make throughout this thesis.

3.1.1 Simple Random Sampling

With SRS, each unit has an equal chance of being selected. To select a sample using SRS, units

are randomly selected and added to the sample until the required sample size is reached.

Because each unit has an equal chance of being included in the sample, πi = n
N for each unit i.

Therefore, we can rewrite the HT-estimator for SRS as

ŶSRS = N

n

∑
i∈U

yiIs(i). (3.1)

The variance of this abundance estimator for SRS is given by

V (ŶSRS) = N(N − n)σ
2

n
, (3.2)

with σ2 being the finite population variance which is

σ2 = 1
N − 1

∑
i∈U

(yi − µ)2, (3.3)

were µ is the population mean, the mean number of individuals per unit.When selecting a sample
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of size n, an unbiased estimator of the variance for SRS is given by

V̂ (ŶSRS) = N(N − n)s
2

n
, (3.4)

with s2 being the sample variance given by

s2 = 1
n− 1

∑
i∈U

(yi − ȳ)2Is(i), (3.5)

were ȳ is the sample mean number of detected individuals per unit. Proof that these estimators

are unbiased can be found in Cochran (1977).

SRS is a straightforward design and easy to implement. SRS is often used as the benchmark

methodology to compare the precision of other sampling designs with (Lohr, 2010; Levy and

Lemeshow, 2013). This can be done by calculating the relative variance (RV), also known as

the design effect or the efficiency rate. The RV is the ratio of the variances of the population

estimators of two designs. Thus if SRS is the benchmark design:

RV = V (Ŷalternative.method)
V (ŶSRS)

. (3.6)

If RV > 1 then the alternative design has a higher variance compared with SRS and thus that

the alternative design has lower precision. If RV < 1 then the alternative sampling design has a

smaller variance compared with SRS and thus has a higher precision. The RV can be generalized

by using the variance of any other sampling design in the denumerator.

3.1.2 Stratified Random Sampling

Equiprobable sampling designs, such as SRS, give each unit an equal probability of being selected.

However many species populations are clustered or the species population has a strong spatial

autocorrelation over the area. Stratified Random Sampling (StratRS) is a classic sampling design

that is used to improve parameter estimation when dealing with those type of populations. To

apply StratRS, the study area is partitioned into strata. A SRS sample is selected in each strata.
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Stratification can be used for various reasons. If, for example, the stratification is done such

that the values of the target variable in each stratum are as homogeneous as possible, thus

by grouping those units that are as similar as possible, it is possible to obtain more precise

estimates than the estimates of SRS (Cochran, 1977). For example, for a survey on invasive

species, stratification may be based on the type of habitat, since the species density can be

expected to be more homogeneous within the same type of habitat.

On the other hand, stratified sampling is often used to increase the spatial coverage and the the

spatial balance of a sample, compared with for example SRS. The use of StratRS to increase the

spatial coverage of a sample will be discussed in more detail in the next section about spatially

balanced sampling designs.

Unbiased population estimators are also available for StratRS. The estimated total number of

individuals for StratRS when the study area partitioned into L strata is

ŶStratRS =
L∑
h=1

Ŷh, (3.7)

where Ŷh is the estimated number of individuals within stratum h thus

Ŷh = Nh

nh

Nh∑
i=1

yihIs(i), (3.8)

where Nh is the number of sampling units in the hth stratum and nh is the selected sample size

from that stratum. The variance of the total abundance estimator ŶStratRS, can be written as

V (ŶStratRS) =
L∑
h=1

Nh(Nh − nh)σ
2
h

nh
, (3.9)

with σ2
h the variance for the hth strata given by

σ2
h = 1

Nh − 1

Nh∑
i=1

(yih − µh)2. (3.10)
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An unbiased estimator for this is given by

V̂ (ŶStratRS) =
L∑
h=1

Nh(Nh − nh) s
2
h

nh
, (3.11)

where s2
h is the sample variance for the hth stratum given by

s2
h = 1

nh − 1

Nh∑
i=1

(yih − ȳh)2Is(i). (3.12)

Proof that these estimators are unbiased can be found in Cochran (1977).

It is shown that StratRS will almost always improve the precision of a survey compared with

SRS (Cochran, 1977). This is because the sum of the within strata variances is almost always

smaller than the variance obtained by SRS. However, when strata are ly chosen, it is possible

that the variance is not reduced (much) by stratification compared with SRS (Gitzen et al.,

2012). This is discussed in more detail in Chapter 4. This can happen, for example, when

stratification is implemented out of practical convenience instead of as a means to reduce the

variation (Gitzen et al., 2012). An example of ‘practical stratification’ is stratification based on

geographical borders, when for example each district has only a limited number of field scientists.

In that case, the districts borders are the strata boundaries and the number of field scientists

within each district could be used to determine the sample size within each district/strata.

Practical stratification can also be useful when a guaranteed number of sampling units are

required within each stratum. For example, in the case one would like to select ten units in each

district. Practical stratification might result in lower financial costs. However, it does not ensure

improvement in the precision of the survey design.

Setting the Strata

To increase the efficiency of StratRS when estimating the total number of individuals the

sampling area should be partitioned into strata that are as homogeneous as possible (Cochran,
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1977). This means that stratification should preferably be done based on the underlying species

distribution. For example, the area could be stratified into a low species density strata, a strata

of intermediate density and a high density strata. Unfortunately, most of the time the underlying

species distribution is the variable of interest and is thus unknown. To circumvent this issue,

auxiliary variables which are highly correlation with the species density are often used to base

the stratification on (Lohr, 2010; Guisan et al., 2006; Crall et al., 2013). For example, the

density of a population of invasive mosquito species could be correlated to the availability of

water. Therefore, strata could be defined based on the proximity of water. Note that in the case

stratification is used for other purposes than population estimation, for example mapping of a

species population, the sampling intensity could be optimized in another way. For example one

could focus the sampling intensity in those areas with the highest change in the density of the

species.

Several algorithms have been designed to determine the strata boundaries and to determine

the sampling allocation based on auxiliary information. Examples of these algorithms include:

Cumulative Square Root Algorithm (Dalenius and Hodges, 1957), Ekman Algorithm (Ekman,

1959), Lavallée-Hidiroglou Algorithm (Lavallée and Hidiroglou, 1988) and the cube method

(Tillé, 2011). These methods look for cut-off values in the auxiliary variable such that units

can be combined into homogeneous group based on the level of the auxiliary variable. Many

of these techniques have their background in disciplines other than ecology such as economics

and agricultural sciences (Benedetti et al., 2010). In ecology, species distribution models and

dispersal models have been used to set the strata boundaries (Guisan et al., 2006; Albert et al.,

2010; Elith and Leathwick, 2009; Peterman et al., 2013). These models use environmental

covariates to estimate the species habitat suitability. Most of these studies use the estimated

habitat suitability to base the stratification on. These studies often partition the study area

into two strata: A high suitability stratum and a low suitability stratum. In Chapter 4 the

applications of species distribution models in designing sampling designs will be discussed in

greater detail.

Deciding on the number of strata is another issue with stratification. Adding strata can improve

the precision, but depending on the situation the addition of new strata must be traded off
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against the additional time restraints and financial costs (Caughlan and Oakley, 2001). These

time and financial restraints are issues that do not only occur with StratRS but also with almost

any other type of sampling design for example for GRTS and BAS as well as for SRS. These

practical issues will be outlined when introducing these sampling designs.

Allocation Sampling Effort

Once the study area is partitioned into strata the sampling units need to be allocated over the

strata. The three most common sampling allocation schemes are: fixed allocation, proportional

allocation and Neyman allocation.

Fixed allocation distributes a fixed proportion of the sample size to each stratum. The allocation

is not based on the size of the strata but rather on other, often logistical or other convenient

issues. For example, this can be based on the available number of volunteers in each stratum or

based on the number of accessible sites in each stratum.

With proportional allocation, the sample size in each stratum is set proportional to the size of

the stratum, thus

nh = n
Nh

N
. (3.13)

For example, if a stratum covers 40 percent of the study area, then 40 percent of the total

sample effort will be allocated to that stratum. This type of stratification is convenient since it

spreads the sample more uniformly over the study area compared with SRS (Gitzen et al., 2012).

Neyman allocation is an allocation scheme that allocates the sampling effort proportional to the

population variance of each stratum (Neyman, 1934). Neyman allocation is given by

nh = n
Nhσh∑L
k=1Nkσk

. (3.14)

More units will be selected in strata with higher variances. Unfortunately, σ2
h for each stratum

is rarely known prior to sampling. A possible solution to obtain σ2
h is based on previous surveys

or in the format of a small sample pilot study. In the case that these variances are known, or

well approximated, Neyman allocation can lead to more precise population estimates. Optimal
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allocation includes a cost function such that strata that are more time consuming or more costly

to visit, will get allocated a relative smaller portion of the sampling effort.

3.1.3 Conditional Poisson Sampling

SRS is an equiprobable sampling design and each unit has an equal inclusion probability.

With StratRS units within the same stratum have equal inclusion probabilities and a SRS

is selected from each stratum. In the case that the study area is not stratified and units

have different inclusion probabilities, an unequal probability sample can be selected. Many

probabilistic sampling designs have been proposed in the literature that allow for unequal

probability sampling. Brewer and Hanif (1983) list about 50 sampling schemes of this kind

and recent reviews can be found in Tillé (2006) and Levy and Lemeshow (2013). Examples

of unequal probability sampling designs are Probability Proportional to Size Sampling (pps)

(Rosén, 1997) and Pivotal Sampling (Deville, 1998). Pivotal Sampling selects a sample in several

steps. At each step a unit is selected and the inclusion probabilities of the remaining units are

updates. In this thesis Conditional Poisson (CP) sampling (Hajek, 1981) is used as a reference

method to compare it with other unequal probability sampling designs. This method is chosen

because it was used as a reference method in Robertson et al. (2013) which introduced Balanced

Acceptance Sampling (BAS, see later in this chapter).

Poisson sampling is a sampling design for which each unit is selected according to an independent

Bernoulli trial. These Bernoulli trails use predefined probabilities p as the chance of being

selected. In the case of probability sampling, these probabilities p for each unit can be obtained

by pi = πi
max(πi) . Hence, with Poisson sampling a set of independent Bernoulli trials determine if

the unit becomes part of the selected sample or not. CP sampling is a special case of Poisson

sampling where the condition is added that a sample with a fixed sample size n should be

selected. There are several versions of CP sampling. However, in this thesis, as well as in the

BAS paper, CP-reject sampling as introduced in Hajek (1981) will be used. To achieve a fixed

sample size, new Poisson samples are drawn until eventually a selected sample has the required

sample size n. The fact that not all samples are accepted when selecting a CP sample affects

the inclusion probabilities. A method to obtain adjusted inclusion probabilities for CP sampling



3.2. SPATIALLY BALANCED SAMPLING DESIGNS 35

was given in Tillé (2006) and is

π
(n)
i = n

pi

(1−pi)(1− π(n−1)
i )∑N

j=i
pj

(1−pj)(1− π(n−1)
j )

. (3.15)

Using 3.15, standard estimators such as the HT-estimator can be used for population estimation.

CP sampling can be slow since in some situations many Poisson samples must be generated

before a sample of size n is selected. Therefore, CP sampling is less suitable for large populations.

3.2 Spatially Balanced Sampling Designs

In this section, a selection of spatially balanced sampling designs is introduced. First, some

standard methods that spread a sample evenly over an area are discussed, such as systemic

sampling. Thereafter, more recent methods such as GRTS or BAS are introduced. Since these

methods improve the spatial balance of a sample, are more flexible, and allow for unequal

probability sampling, we will go into greater detail for these last methods.

3.2.1 Systematic Sampling

A classic method to select an evenly spread sample over a two dimensional area is systematic

sampling (Bickford et al., 1963; Hazard et al., 1989). To begin, a grid is placed over the study

area with l the number of intersection of the grid within the study area. Sampling starts by

selecting a random intersection on the grid. Thereafter, every kth intersection is selected such

that k = l
n . Units including the selected intersections are selected. Alternatively, systematic

sampling can be done by selecting a random unit in the study area. Thereafter, every kth unit

is selected such that k = N
n . Systematic sampling is illustrated in Figure 3.1. The method

described here is the most well known form of systematic sampling. There are several variations

of the base design, such as stratified random systematic sampling where a point is selected

within each stratum and centric systematic sampling where points are selected at the centre of

each stratum.
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The efficiency of systematic sampling tends to depend on the spatial correlation of the species

distribution. In the case that the species are uniformly distributed, one can expect a similar

efficiency with systematic sampling as with SRS. In the abundance of spatial autocorrelation

it is known that systematic sampling can have a higher efficiency compared with alternative

sampling designs such as SRS or StratRS (Payandeh, 1970; Ripley, 1991; Stevens and Olsen,

2004; Wang et al., 2012, 2013). Because of this, systematic sampling is often implemented when,

in the presence of spatial autocorrelation, a precise estimates of the number of individuals of

a species is required or if mapping of the species distribution over the study area is wanted.

Additionally, systematic sampling can be implemented for logistic reasons. It can for example

be easier for field scientist to visit sites at regular intervals.

A potential problem could be that the species density follows a similar pattern as the pattern of

the select units. For example, a ploughed field is sampled for seedlings of an invasive weed species.

The sample units are placed in the same pattern as the furrows on the field. If you always

count seedlings in the base of the furrow the variance will be underestimated. To solve this

problem several variations of the classic system sampling algorithm have been proposed in the

literature to perturb the purely systematic character of the selection of sampling units Olea (1984).

Although it is shown theoretically that systematic sampling can be more efficient than SRS a

particular issue with systematic sampling is that there is no ‘design-based’ unbiased estimator.

(Cochran, 1977; Wang et al., 2013). ‘Design based’ in this case means using probability based

sampling theory. In short: Once the initial starting point is selected on the grid, the remaining

points of the sample are part of a deterministic sequence. Because of this, the variance estimation

can become biased. Furthermore, since the second order inclusion probabilities (which is the

probabilities that two units are selected in the same sample) of neighbouring units are often

(near) zero. It is therefore difficult to obtain an unbiased variance estimate. Several solutions

have been proposed to solve this problem of having an unbiased estimator (Dunn and Harrison,

1993). One classic solution is to post-stratify the area. The area is stratified such that each

stratum has (usually) two sampling units per stratum. The systematic sample is then treated

as a StratRS sample. If similar sampling units are grouped within the same strata then the
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within-strata variance will decrease and hence the overall variance of the estimator will decrease.

In the case of anisotrophic spatial autocorrelation this stratification is preferably done in the

direction of the spatial autocorrelation, for example long narrow strata following the direction of

the spatial autocorrelation McArdle and Blackwell (1989); Ripley (1991). Another method is to

treat the systematic sample as a SRS and use the variance estimators for SRS. However this

results generally in a conservative variance estimation.

Systemic sampling has a practically attractive design. Potentially, the fact that all the selected

intersections on the grid need to be sampled to obtain a spatially balance sample can have

its disadvantages. The design can lose its uniform spread when problems like non-response or

premature endings arise. By non-response in this case we mean that when a sampling unit

cannot be sampled in practise. For example, assume the unit is located on private property or

the area is inaccessible for any other reason. Although the non-responses can have an effect on

the spatial coverage effects on the precision of the population estimation are generally small. An

example of a premature ending is when the sampling sequence starts in one corner but because

of time or money related issues the survey is aborted before visiting all units. In that case, some

areas end up being unsampled. This affects the spatial balance of the sample. Furthermore, it is

difficult to add additional units to the initial sample while maintaining the spatial balance of

the sample. Sampling additional units would be considered, for example, when extra funding

becomes available to continue the survey. Of course, some of these issues also occur with other

sampling designs. Finally, there is no obvious method to select an unequal probability sample

with Systematic sampling.(Stevens and Olsen, 2004)

3.2.2 StratRS to Improve the Spatial Balance

Stratified sampling can also be used to improve the spatial balance of a sample. To do so, the

study area is often tessellated into regular polygons such as squares, triangles or hexagons, or

of any possible equally sized shapes. In fact, in the case of anisotropic spatial autocorrelation

adjusting the shape of the strata according to the direction of the spatial autocorrelation
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(a) k = 1, n = 100, l = 100 (b) k = 3, n = 33, N = 100

Figure 3.1: Illustration of Systematic Sampling.

can highly improve the spatial autocorrelation. For example, assume the species distribution

increases from the east to the west (but there is no trend from south to north). In that case

rectangular strata stretching from east to west can improve the efficiency of the sampling design.

In this thesis we will assume only isotropic spatial autocorrelation hence we will not discuss

this in detail. Next, one or two units are selected in each polygon. The tessellation of the

area can also be based on natural boundaries or other arbitrary decisions. Note that, polygons

that intersect the boundary of the study region can result in biased estimates, because some

polygons will be smaller than other polygons (Lister and Scott, 2009). Also, it may be difficult

to tessellate the area perfectly into the required number of equally sized polygons. An exam-

ple of using StratRS as a means to increase the spatial balance of a sample is shown in Figure 3.2.

3.2.3 Generalized Randomized Tessellation Stratified Sampling (GRTS)

Stevens and Olsen (2004) presented a spatially balanced design called Generalized Random-

ized Tessellation Stratified sampling, or simply GRTS. The GRTS method is explained below.

Compared with the previously described spatially balanced sampling designs GRTS has some

desirable features. One advantage is that GRTS remains spatially balanced in the case of an
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Figure 3.2: Illustration of Stratified Random Sampling with one unit per strata. In this case
there are 121 strata.

advanced ending of a planned survey, as long as the units are visited in the specified order. Of

course visiting sites in a specific order can be troublesome because of logistics, time and cost

restraints. Additionally, GRTS adds the flexibility to add additional units to a sample while

maintaining spatial balance. Again, this feature should be traded off against the same travel

time problems. GRTS also allows for unequal probability sampling while remaining spatially

balanced. These properties make GRTS increasingly popular among environmental scientists

for designing sampling designs. GRTS has been applied to sample different types of natural

resources such as aquatic resources (Hill et al., 2013; Lackey and Stein, 2013; Widmer et al.,

2010), invasive plant species (Lemke et al., 2013) and chemical compounds (Dodder et al., 2012).

GRTS has been cited by more than 380 papers. Examples of the use of GRTS are: Widmer

et al. (2010) used GRTS to design a sampling designs for small-bodied fishes in a sand-bed river.

Dodder et al. (2012) used GRTS to estimate the distribution of polybrominated diphenyl ethers

in the Southern California Bight. Lemke et al. (2013) used GRTS in a study to estimate the

effect of open surface mines on invasive plant species. Given this popularity of GRTS, we will

use GRTS as the benchmark reference for spatially balanced sampling designs.



40 CHAPTER 3. THE SELECTION OF A SAMPLING DESIGN FOR ADAPTIVE
MONITORING

Methodology

The GRTS methodology is illustrated step by step in Figure 3.3. First, the study area is rescaled

to the unit box. Next, the unit box is partitioned hierarchically into quadrants. This hierarchical

partitioning is continued until the expected number of units in each quadrant is one. Each

quadrant is assigned an unique hierarchical address. Figure 3.3 shows the first three levels of

hierarchical quadrant partitioning and the structure of the hierarchical addresses. For example,

the shaded quadrant in Figure 3.3 has the address 301.

After this partitioning, a transformation of all the addresses is applied. This is done by using a

permutation algorithm on the separate digits of the address of each quadrant. This transformation

introduces stochasticity to the sampling design. The reason for this is that otherwise the top

left quadrant in Figure 3.3 would always have the address 000 and the bottom right quadrant

would always have address 333 and so on.

Next, the permuted addresses are reversed. For example, address 201 becomes 102. Finally,

these reversed addresses are put in an increasing order on a line, also known as the real line.

Each quadrant obtains a segment of equal length on the real line. A systematic sample is then

selected using Brewer and Hanif (1983)’ design. In short: To select a systematic sample from

the real line the first segment is chosen as starting point.

Next, as with systematic sampling, segments are selected such that k = N
n , where n is the sample

size and N the number of segments. Thus k is the number of segments on the real line between

each selected segment. The permutated addresses of the selected segments are transformed back

to the original addresses, using the same permutation algorithm but in the reverse direction.

Finally, the selected quadrants can be mapped back using the original addresses.

The reason why GRTS selects well spread samples is because of the hierarchical stratification.

Assume for example that there is only one level of partitioning, then there would only be 4

squares. If four units would be selected one unit would be selected in each partitioned rectangle.

The remaining part of the algorithm is necessary to decide from within which rectangle the first

unit would be selected and to allow GRTS to perform unequal probability sampling. In the
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case the hierarchical partitioning has more than one level the logic behind the GRTS algorithm

becomes more complex. The basic logic of GRTS is that the first four units are selected each

within a different rectangle created by the first level of hierarchical partitioning, next the second

set of four points will also be each selected from within a different rectangle of the first level

of partitioning etc. The second level of partitioning ensures that the first four units that are

selected within the first rectangle, created by the first level of partitioning, are each selected

within a different rectangle created by the second level of partitioning and so on. An example of

the GRTS sample is shown in Figure 2.3a.

Because of the way this algorithm works, the sample remains spatially balanced even in the case

of advanced ending of the sample. This is of course only if the selected units are sampled in the

order specified by the GRTS algorithm. In practise ensuring that points are sampled in such an

order could come with a huge economical cost given the travel time and could turn out to be

very ineffective.

Figure 3.3 illustrates the selection of an equiprobable sample using GRTS. Unequal probability

sampling can be implemented as introduced in Brewer and Hanif (1983). The length of each

quadrant on the real line is rescaled proportional to the inclusion probability of that unit. For

example, unit A has an inclusion probability which is double the inclusion probability of unit

B. Then the length on the real line of unit A will be twice as long as for unit B. Figure 3.4

visualizes how unequal probability sampling is implemented in GRTS. Implementing unequal

probability sampling with GRTS, units with higher inclusion probabilities will be more likely

included in the sample, without the loss in spatial balance.

Population Estimation

GRTS has the ability to select an unequal probability sample. For population estimation

standard design based estimators can be used, which allows for unbiased estimation, such as

the HT-estimator. Second order inclusion probabilities are difficult to compute for GRTS.

Furthermore, since it is a spatially balanced sampling design second order inclusion probabilities

of neighbouring units are often (near) zero. Therefore, Stevens and Olsen (2003) derived the
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Figure 3.3: Step by step illustration of the GRTS methodology. (1) Rescale the study area
to the unit box. The area is hierarchically partitioned into quadrants and assign hierarchical
address. In this case, the first 3 levels of the hierarchical quadrant partitioning are shown. The
address of the shaded unit is 301. (2) The addresses of all the quadrants are transformed using
a digit specific permutation algorithm. Next, the transformed addresses are reverted. Finally,
the reverted addresses are sorted and put on the real line. (3) Select units using Brewer and
Hanif (1983)’ method for systematic sampling on the real line. (4) Re-transform and re-revert
the address of the selected units and map them back on to the study area.
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Figure 3.4: Illustration of Brewer and Hanif (1983)’ method for systematic sampling on the real
line for equal probability sampling and unequal probability sampling.

local mean variance estimator for the GRTS method. This approach of the variance estimator is

very similar to the approach suggested for systematic sampling where two units are selected in
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each stratum. The local mean variance estimator is given by

V̂NBH(Ŷ ) =
N∑
i=1

∑
j∈Di

wij

(
yi
πi
− ȳDi

)2
Is(ij), (3.16)

where Di is the neighbourhood to unit i that contains at least four observed units and ȳDi is

unit i’s neighbourhood mean. The weights, wij , decrease as the distance between unit i and unit

j increases and satisfy
∑
j∈Di

wij = 1. For details on how to compute the weights, see Stevens

and Olsen (2003). The local mean variance estimator is not an unbiased estimator but generally

tends to overestimate the variance (this is compared with the observed simulated variance) as

shown in Stevens and Olsen (2004),Grafström et al. (2012a) and Robertson et al. (2013). The

local mean variance estimator performs best when the selected samples are well spread over

the study area. This means that the local mean variance estimator works well for sampling

designs that have small second order inclusion probabilities for units that are near each other,

like spatially balanced sampling designs.

3.2.4 Balanced Acceptance Sampling (BAS)

Recently, Blair Robertson, Jennifer Brown, Trent MacDonald and the author of this thesis pre-

sented a new spatially balanced design called Balanced Acceptance Sampling (BAS) (Robertson

et al., 2013). Jennifer Brown, Trent McDonald and Blair Robertson initiated the research on

BAS when they attempted to extend GRTS to higher dimensions. GRTS can select spatially

balanced samples in one and two dimensions. Examples of one dimensional problems are rivers

systems or coastlines. Examples of two dimensional study areas are national parks or resources

spread over a two dimensional area. In certain cases, it could be interesting to add a third (or

even higher dimension) to the sample design. For example, for sampling of aquatic resources,

depth could be added as a possible third dimension. In this section the BAS methodology will be

explained in an easy and understandable manner, to make BAS more accessible to non-experts.

Full details of BAS can be found in Robertson et al. (2013). My contribution to the BAS paper

was mainly evaluating the performance of BAS and comparing its results with other spatially
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balanced designs such as GRTS. Some of these results and additional simulation studies will be

discussed later in this chapter.

Methodology

The Halton Sequence For SRS often pseudo random numbers are used to select a sample.

Pseudo random numbers are the classical type of random numbers generated by (pseudo) random

number generators using computers. The randomness of these pseudo numbers can lead to the

selection of clustered units and samples with poor spatial balance. To select spatially balanced

samples, BAS uses quasi random numbers to select the units. Quasi random numbers are

typically uniformly distributed over an interval and are therefore generally not clustered. These

quasi random numbers are generated by deterministic sequences.

The quasi random numbers used in BAS are known as the Halton sequence (Halton, 1960).

The Halton sequence is a multidimensional extension of a van der Corput sequence. A van der

Corput sequence is a sequence of points which are evenly distributed over the unit interval.

Robertson et al. (2013) mentions that the kth element in a van der Corput sequence with base p

can be calculated using the radical inverse function φp(k) which is given by

φp(k) = 0.λ0, λ1, . . . , λK−1, λK =
K∑
j=0

λj
p1+j , (3.17)

where λj ∈ {0, 1, ..., p− 1} and K is a positive integer. For example, in the case of base p = 2,

thus the binary system, the radical inverse for k = 6 is 0.011, or φ2(6) = 0.011. Converting φ2(6)

back to the decimal system with base 10, this gives 3
8 . The first ten members of the van der

Corput sequence with base 2 are:

{φ2(k)}10
k=1 =

{1
2 ,

1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 ,

7
8 ,

1
16 ,

9
16 ,

5
16

}
. (3.18)

This example also illustrates an alternative and more intuitive method to reconstruct a van der

Corput sequence. In the case of the sequence with base 2, start by dividing the interval [0,1]
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in halves, then in fourths, eighths, etc..., To generate the sequence with base 3, we divide the

interval [0,1] in thirds, then ninths, twenty-sevenths, etc., which generates

{φ3(k)}10
k=1 =

{1
3 ,

2
3 ,

1
9 ,

4
9 ,

2
9 ,

5
9 ,

8
9 ,

1
27 ,

24
27 ,

10
27

}
. (3.19)

The Halton sequence is a combination of Van de Corput sequences, using prime numbers as the

bases for the van der Corput sequences. Thus, the d-dimensional Halton sequence is

xk =
(
φp1(k), φp2(k), . . . , φpd

(k)
)
, for k = 1, 2, 3, . . . , (3.20)

where p1 = 2, p2 = 3 and pj is the jth prime.

As an example, assume we would like to select a sample of size seven in the unit square. Start

by selecting the first two dimensions of the Halton sequence, the first to be based on prime

number two and the second to be based on prime number three. Next, we pair them, to get a

sequence of points in a unit square:

(
{φ2(k)}7k=1, {φ3(k)}7k=1

)
=
{(1

2 ,
1
3

)
,

(1
4 ,

2
3

)
,

(3
4 ,

1
9

)
,

(1
8 ,

4
9

)
,

(5
8 ,

7
9

)
,

(3
8 ,

2
9

)
,

(7
8 ,

5
9

)}
(3.21)

Mapping a Halton point on a two dimensional area is straightforward. The first dimension

becomes after rescaling the x-coordinates of the sample. The second dimension becomes after

rescaling the y-coordinates of the sample. This example only considers the first two dimensions

of the Halton sequence. However, BAS can be extended to higher dimensions by using additional

Halton sequences based on other prime numbers.

The Halton sequence is a deterministic sequence. This means that unless stochasticity is

introduced, the same units will be selected for each sample. Robertson et al. (2013) therefore

introduced the random start Halton sequence. Simply stated: The random start Halton sequence

works as follows: skip the first ud elements of the dth Halton dimension. ud can be different for

each dimension.
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Thus, the random start Halton sequence for d dimensions is

xRandomStart
k =

(
φ1(u1 + k), φ2(u2 + k), . . . , φd(ud + k)

)
for k = 1, 2, 3, . . . (3.22)

where p1 = 2, p2 = 3 and pd is the dth prime and ui ∈ N for i = 1, 2, ...d. In this thesis all BAS

samples are selected using the random start Halton sequence, with ui an integer, randomly

selected between zero and 500,000.

Selecting a sample using BAS This is best explained by means of an example. Suppose

that a species population is distributed over a study area as shown in Figure 3.5a. The population

density increases linearly with increasing x-coordinates and is uniformly distributed over the

y-coordinates. The inclusion probabilities are set proportional to the species density, illustrated

in Figure 3.5b. To select a sample, first generate a sufficiently long list of Halton points in A+ 1

dimensions, where A is the number of dimension of the study area. In this thesis, we will only

consider two dimensional study area, thus A = 2. The first two dimensions of each Halton point

will be used to define the x- and y-coordinates. These coordinates refer to the unit containing

these coordinates. The third dimension will be used for acceptance/rejection sampling. We will

call this third dimension the acceptance/rejection dimension. BAS selects a sample by adding

units to the sample using acceptance/rejection sampling (von Neumann, 1951) until the required

sample size is reached.

To illustrate acceptance/rejection sampling we will call the grey area under the inclusion

probability surface the acceptance area and the area above the surface the rejection area. To

improve the computational efficiency of acceptance/rejection sampling the inclusion probabilities

are rescaled such that the rescaled inclusion probabilities pi over all units i has a maximum of

one by

pi = πi
max (πi)

. (3.23)

The rescaled inclusion probabilities pi are illustrated in Figure 3.5c. We can see that the

acceptance area has become relatively bigger as compared with the rejection area. Accep-

tance/rejection sampling simply selects all these Halton points that fall within the acceptance
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Table 3.1: Example of acceptance/rejection sampling for BAS

1st 3 Halton dimensions Acceptance/Rejection
x y Accept/Reject pi Decision

point 1 0.84 0.23 0.33 0.67 Accept
point 2 0.63 0.62 0.85 0.49 Reject
point 3 0.11 0.78 0.02 0.12 Accept

area.

For example, Table 3.1 illustrates acceptance/rejection sampling for three Halton points, based

on the pre-set inclusion probabilities illustrated in Figure 3.5. Note that these three points are

chosen for illustrative purposes. The x- and y-coordinates of the first point, based on the first

and second Halton dimension, are (0.84,0.23). The value of pi at those coordinates is 0.67. Since

the third Halton dimension of 0.33 is less than 0.67, the unit containing these coordinates is

therefore be accepted and added to the sample. The second point, has the coordinates (0.63,0.62).

For these coordinates pi = 0.49. The third Halton dimension for this second point is 0.85. Since

0.85 is higher than 0.49, this second point is rejected and discarded from the sample. Finally,

following the same reasoning, the third point is accepted and added to the sample. Units are

added to the sample until the required sample size is reached. A sample of size 25 selected based

on the pre-set inclusion probabilities is shown in Figure 3.5d.

Note that when the inclusion probabilities are not rescaled, acceptance/rejection can be per-

formed on the original inclusion probabilities πi. However, as the difference between Figure 3.5b

and Figure 3.5c suggests, fewer Halton points will fall in the acceptance area. Hence, more

Halton points will have to be evaluated to select the required sample size. Therefore, the

computational efficiency will be lower.

Population Estimation

A method to compute exact first order inclusion probabilities for BAS is given in Robertson et al.

(2013). In the same paper an alternative method was also proposed to approximate the first
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Figure 3.5: Illustration of sampling using BAS
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order inclusion probabilities. For example, Robertson et al. (2013) showed by using Monte Carlo

simulations that when using this approximation method for equal probability sampling πi ≈ n
N .

Given these first order inclusion probabilities the HT-estimator and its variance estimator can be

used for population estimation. This variance estimator can be estimated from a sample using

the Sen-Yates-Grundy estimator. However, the Sen-Yates-Grundy estimator can be unstable

for spatially balanced sampling designs, because it is common for spatially balanced designs

to have second order inclusion probabilities that are close to zero for units that are close in

distance. Robertson et al. (2013) found that, just like the other spatially balanced sampling

designs such as GRTS or systematic sampling, in some simulation studies the second order

inclusion probabilities were (near) zero. Therefore, they proposed the usage of the local mean

variance estimator which Stevens and Olsen (2004) also proposed for the GRTS method.

3.2.5 Other Spatially Balanced Sampling Designs

Similar to BAS, other spatially balanced sampling designs were developed to select spatially

balanced samples in more than two dimensions. For example, Grafström et al. (2012a) proposed

a design called Spatially Correlated Poisson Sampling (SCPS). The SCPS selects sampling units

sequentially and uses weights to preclude unobserved units close to previously observed units

from being selected. More recently, the Local Pivotal Methods 1 and 2 (LPM1 and LPM2)

(Grafström et al., 2012a) where introduced. These designs also select a spatially balanced sample

from finite populations in multi-dimensional space. The Local Pivotal Methods are adjusted

versions of the pivotal method introduced by Deville (1998) for spatially balanced sampling. In

short: Units are selected sequentially. After each step, the inclusion probabilities are updated

for a pair of units such that the sampling outcome is decided for at least one of the two units.

The Local Pivotal Methods (LPM1 and LPM2) ensure, by decreasing the inclusion probabilities

of those units near the latest selected units, that a more spatially balanced sample will be

selected. Without going into the details: The LPM1 design has greater spatial balance, but

LPM2 is simpler and faster (Grafström et al., 2012a). The Local Pivotal Methods can only

sample discrete populations and can become computationally too expensive with increasing

sample sizes.
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3.2.6 Test for Spatial Balance

The test statistic introduced by Stevens and Olsen (2004) to measure the spatial balance of a

sample, in the presence of isotropic spatial autocorrelation, is ξ = V (υ)′ with υ = {υ1, υ2, ..., υn}.

The smaller ξ, the higher the spatial balance of a sample. To compare the spatial balance of two

sampling designs, we compare the ratio in ξ

ξ(ratio) = ξ(design A)
ξ(design B) (3.24)

. If ξ(ratio) = 1 then both designs have equal spatial balance, if ξ(ratio) < 1 then design A has

greater spatial balance and if ξ(ratio) > 1 then design B has greater spatial balance.

In the case of an equiprobable design, for a spatially balanced sample, the points will be evenly

spread. Thus Voronoi cells are expected to have similar areas. Therefore, the variance among

the areas of the Voronoi cells will be small. A sample with poor spatial balance, has some points

that are clustered. Thus, the variance in the areas of the Voronoi cells will be higher. Therefore,

in the case of equiprobable sampling, one can simply replace ξ by the variance of the areas of

the Voronoi cells to obtain the test statistic for spatial balance.

Simulation Study

A simulation study was performed to compare the spatial balance of several sampling designs. For

each sampling design 1000 samples were selected. For this simulation study points are selected in

the unit box instead of selecting units from a discrete population. All sample sizes ranging from

five to 250 were evaluated. To compare the spatial balance between the designs, the ξ(ratio)

between the different methods were computed. The evaluated designs were SRS, GRTS and BAS.

The results of this simulation study were published in Robertson et al. (2013) and the selection of

the methods was based on the methods that were compared in the study that introduced GRTS

(Stevens and Olsen, 2004). Systematic sampling was not included in the simulation study mainly

because it can be difficult to select each tested sample size using systematic sampling in a easy

way. However, it could have been worthwhile to include systematic sampling by, for example,
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randomly selecting n polygons (on the grid) and select one point in each selected polygon, hence

insuring a good spatial balance of each selected sample. In hindsight, this would have strengthen

the conclusion of this and other simulation studies. LPM1 and LPM2 were also not included

in this comparison. The reason for this is that these methods can only select a sample from a

predefined discrete set of units. Therefore these methods cannot select a set of points in the

unit square. This is a disadvantage of LPM1 and LPM2 (Robertson et al., 2013). As a possible

solution to this problem, one could consider performing this simulation for a finite population.

This could be done by tessellating the study area using a very fine grid (pixel size). Next, LPM1

or LPM2 could be used to select a number of units from this tessellated area. This is in fact

similar to what GRTS does to select points in a box. However, for LPM1 and LPM2 this would

be computationally too intensive. These designs only work efficiently for smaller population sizes.

The results are visualized in Figure 3.6. The ξ(BAS/SRS) curve and the ξ(GRTS/SRS) curve

had consistently values of less than one for each sample size. This indicates that SRS has

the lowest spatial balance for each evaluated sample size compared with GRTS and BAS. The

ξ(BAS/GRTS) curve had values of less than one for each sample size. This shows that BAS has

a greater spatial balance compared with GRTS for all evaluated sample sizes. The peaks in the

ξ(BAS/GRTS) curve, for example for n = 16 and n = 64, can be explained by the algorithm of

the GRTS methodology (Robertson et al., 2013). Recall that the GRTS methodology is based on

hierarchical partitioning of the study area into quadrants. This partitioning splits the sampling

area into 4, 16, ..., 4q squares of equal size. If n = 4q, GRTS will have one point in each of these

squares. From Figure 3.6 we can see that the ratio of the variance between BAS and GRTS

was the highest, so in favour of GRTS for sample sizes 42 = 16 and 43 = 64 and this ratio was

increasing towards 44 = 256. However, the maximum ratio between BAS and GRTS was 0.78,

so even at those optimal sample sizes for GRTS, BAS still had greater spatial balance.

Adding Additional Units

In the previous simulation study for each repetition and at each sample size a new set of units

was selected. However, a feature of both GRTS and BAS is the flexibility to add additional
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Figure 3.6: Results of the simulation study to compare the spatial balance for BAS, GRTS and
SRS for using different sample sizes. For each repetition and for each sample size a new sample
was generated. The results are represented as a ratio ξ(new/old). A ratio of one indicates equal
variance and thus equal spatial balance, a ratio of less than one indicates greater spatial balance
for the design in the numerator and vice versa.

units to a sample while maintaining the spatial balance. This is useful, for example, if additional

funding becomes available to sample extra units, or if one decides to extend the survey by an

additional year. In those cases, selection of additional sampling units is required. To review

how adding units, to an already selected sample, affects the spatial balance of a BAS sample, a

similar simulation study was performed as conducted in the previous section. In the previous

simulation study a new sample was generated for each sample size. For example, if a sample

was selected of size n then n+1 new points were selected for the next sample of size n+ 1. For

the simulation study in this section, sampling points were added one-by-one to the sample. The

initial samples had a sample size of five and points were added one by one until a maximum

sample size of 250.

The results of this simulation study are shown in Figure 3.7. There was no change in the

ξ(BAS/SRS) curve compared with the previous simulation study. This indicates that BAS does
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not loose its spatial balance when additional points are added to the sample. The ξ(GRTS/SRS)

curve and ξ(BAS/GRTS) curve however, did follow a different trend compared with the previous

simulation study. For smaller sample size, the ξ(BAS/GRTS) curve was slightly lower compared

with the previous simulation study, however for higher sample sizes the curve increased and the

values became more similar compared with the previous simulation study. This means that the

spatial balance of GRTS is more affected by adding additional points to a sample when sample

sizes are small. This can be explained as follows: For both GRTS and BAS gaps are filled in

when points are added to the sample. However, it seems that for smaller sample sizes BAS does

this more efficiently (relative higher spatial balance) compared with GRTS. However, once the

sample size reaches a certain sample size one can expect that all gaps are more or less already

filled in and that the effect of adding one point to the study will have less of on effect on the

total spatial balance of the sample.
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Figure 3.7: Results simulation study to compare the spatial balance for BAS, GRTS and SRS
for different sample sizes. Units were sequentially added one-by-one to a sample. The results
are represented as a ratio ξ(new/old). A ratio of one indicates equal variance and thus equal
spatial balance, a ratio of less than one indicates greater spatial balance for the design in the
numerator and vice versa.
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Dealing With Non-Response/skipping points

An example of non-response is when a unit that got included in the initial sample cannot be

sampled in practice, e.g. a selected unit might be located in inaccessible terrain or on private

property. In this case certain sampling point are skipped and additional units have to be added

to the sample to meet the required sampled size. In other words some points in the generated list

of Halton points are skipped and units are added to the sample to meet the required sample size.

In the previous simulation study it was evaluated how adding points to the sample would effect

the spatial balance of the final sample. This simulation study is similar, however in addition to

adding points to a sample, we skip a certain number of points and add points. This simulation

study is important since GRTS and BAS provide a sequence of points which ideally should be

visited in a fixed order to ensure spatially balanced samples.

To evaluate the effects of skipping points in the Halton sequence, due to non-response, on the

spatial balance of the final sample a simulation study was performed. This simulation study is

similar to the previously conducted simulation study. However, instead of selecting a sample in

the unit box, a 20 percent non-response area was added inside the unit box. The distribution of

the non-response area is illustrated in Figure 3.8. Voronoi tessellation was based on the final

set of selected points, thus not including those points that fell within the non-response areas.

The area calculation of the Voronoi cells excluded the non-response areas. This was done since

these areas were assumed to be impossible to visit and should therefore not be included in the

sampling population.

The results of this simulation study are shown in Figure 3.9 . Both the ξ(BAS/SRS) curve and

ξ(GRTS/SRS) curve had values less than one for all sample sizes. This indicates that BAS and

GRTS have better spatial balance compared with SRS when 20 percent of the visited units

would be for example turn out to be impossible to visits. BAS performed better compared

with GRTS for almost all tested sample sizes. However, ξ(BAS/GRTS) is not as low as com-

pared with the previous simulation study. This indicates that BAS will likely be more affected

by skipping Halton points as compared with GRTS. This can possibly be explained by the

fact that BAS has a better spatial balance when there is not a non-response area compared
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Figure 3.8: Illustration of the distribution of the 2O percent non-response area (grey areas).
The Voronoi tessellation for a sample excluding the non-response area is added.

with GRTS. Since skipping points can have an impact on the spatial balance of a sample,

this effect will be relatively bigger for those designs which have greater spatial balance in the

case that no points are skipped. For example, there does not seem to be any effect on the

spatial balance of SRS compared with the other designs. This is since the sampling process

for SRS is completely at random and hence non-response will not effect the spatial balance of SRS.

3.3 The Selection of Sampling Design

In the previous sections, several sampling designs have been introduced. In this section, we will

evaluate which sampling design is suitable for adaptive monitoring. Achieving high detection

rates is the first and most important selection criteria. Achieving a high detection rate means

knowing where the invasive species are. While we focus on achieving high detection rates in this

thesis, it is still interesting the gain knowledge about the population size of the invasive species.

Therefore, the second selection criteria is obtaining precise population estimates.
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Figure 3.9: Results simulation study to compare the spatial balance for BAS, GRTS and SRS
for different sample sizes with non-response area of 20 percent. Units were sequentially added
one-by-one to a sample. The results are represented as a ratio ξ(new/old). A ratio of one
indicates equal variance and thus equal spatial balance, whereas a ratio of less than one indicates
greater spatial balance for the design in the numerator and vice versa.

3.3.1 Detection Rate Initial Sample

In this section we evaluate which sampling designs achieves the highest detection rate. In the

case of the proposed methodology for adaptive monitoring, the initial sample, unless prior

information is available, is an equiprobable sample. Therefore, first we will look at the achieved

detection rate of different sampling designs when selecting an equiprobable sample. After the

initial survey, information will be used the adjust the inclusion probabilities over time. Based

on these adjusted inclusion probabilities, an unequal probability sample will be selected. Hence,

a second evaluation will evaluated which sampling design achieves the highest detection rate

for unequal probability sampling. Both hypotheses were reviewed by means of a simulation

study. For these simulation studies, a dataset about a Rockfish population in Alaska was used.

This dataset is adopted from Su and II (2003). The original population is highly clustered, as

illustrated in Figure 3.10a. The study area consists out of 40 by 40 square units, N = 1600.

The number of units occupied by Rockfish is 405.
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Surveys using no prior information: Equiprobable Sampling

A Monte Carlo simulation study was performed for each sampling design, with the number of

simulation m = 1000. The number of simulations of 1000 was chosen similar to the number

used in Stevens and Olsen (2004) and Grafström et al. (2012a). This was due to computational

limitations. GRTS and especially LPM1 and LPM2 can be very slow to run even on relatively

fast cluster server computers (some simulations in the coming chapters took several days to

finish). Each iteration a sample was selected and the detection rate Dj was calculated. These

simulations were repeated for three different sample sizes, respectively: five, ten and 15 percent

of the units were sampled. The sampling designs that are evaluated are: SRS, LPM1, LPM2,

GRTS, BAS, StratRS with four equally sized strata (StratRS 4), StratRS with 16 equally

sized strata (StratRS 16) and StratRS with 80 equally sized strata (StratRS 80). The strata

partitioning for StratRS 4, StratRS 16 and StratRS 80 are illustrated in Figure 3.11. For all

three stratified sampling designs, proportional allocation was conducted. Note that the strata

sizes were selected such that an equal number of points could be selected in each strata. Because

of this when selecting five percent of the units (n=80 units) StratRS 80 will have one unit per

stratum. CP sampling was not included in the simulation study since in the case of equiprobable

sampling CP is identical to SRS. For each sampling design and for each sample size the mean

detection rate D̄ was calculated

D̄ = 1
m

m∑
j=1

Dj , (3.25)

as well as the simulated variance of the calculated detection rates V̂SIM (D)

V̂SIM (D) = 1
m

m∑
j=1

(Dj − D̄)2. (3.26)

Spatially balanced designs are assumed to perform better than the non-spatially balanced designs

when there is spatial autocorrelation in the target population. In the case of the Rockfish popu-

lation, there is an obvious spatial clustering of the population and thus spatial autocorrelation

is present. To evaluate for the effect of a spatial autocorrelation (clustering) on the achieved

detection rates, the simulation study was repeated for a semi-clustered population and a random
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population. These populations are altered versions of the original Rockfish population. To

create a semi-clustered population, 40 percent of the units were randomly selected and their

positions were randomly switched. To create the random population, all units were randomly

switched. The resulting semi-clustered and random populations are illustrated in Figure 3.10b

and Figure 3.10c respectively.

(a) Clustered (b) Semi-Clustered (c) Random

Figure 3.10: Illustration of the (modified) Rockfish populations. In Figure (a) the population is
clustered, similar to the original Rockfish population adopted from Su and II (2003). Figure (b)
and figure (c) are modified species distributions and were made less clustered.

(a) StratRS 4: 4 Strata (b) StratRS 16: 16 Strata (c) StratRS 80: 80 Strata

Figure 3.11: Illustration of the strata partitioning of the Rockfish population.

For each evaluated sampling designs the relative simulated variance RVSIM of the detection rate

compared with SRS was calculated, were

RVsim(D) = V̂ Design
SIM (D)
V̂ SRS

SIM (D)
.
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The results are shown in Table 3.2. For all three Rockfish populations and all three sample sizes,

the sampling designs achieved similar mean detection rates. The mean detection rate was close

to 0.253. This is what one can expect since this is the total number of occupied units divided by

the population size. This illustrates that if no prior information is available and an equiprobable

sample is selected, then any sampling design is as good as any other in terms of achieving a

high detection rate. However, when looking at the RVSIM’s, some sampling designs did achieve

less variable detection rates. For example, for the clustered Rockfish population, all designs had

a RVSIM of less than one. This means that they achieved less variable detection rates compared

with SRS. The spatially balanced designs generally had the lowest RVSIM. Of all the evaluated

sampling designs, BAS achieved, for two out of three of the sample sizes, the lowest RVSIM. The

RVSIM of BAS when sampling five, ten and 15 percent of the units was, respectively, 0.312, 0.201

and 0.250.

All three stratified sampling designs had RVSIM’s of less than one. This means that they had

less variable detection rates compared with SRS. This is because stratified sampling using

proportional allocation, generally, selects samples with a higher spatial balance than SRS does.

The importance of selecting a spatially balance sample is again illustrated by comparing the

results of the stratified random samples. StratRS 4 distributes the samples over only 4 strata,

StratRS 16 allocates the samples over 16 strata and StratRS 80 over 80 strata. StratRS 80

generally will ensure the highest spatial balance, with depending on the sample size one, two

or three units per stratum. Because of this StratRS 8 has much lower RVSIM compared with

StratRS 4 and StratRS 4. Even though the strata for StratRS 16 are still large and not ideal

as ‘stratification to improve the spatial balance of the sample’ it still performed clearly better

than StratRS 4. The RVSIM of StratRS 80 is close to the other spatially balanced sampling

designs. StratRS 80 had even very similar results as GRTS for the five percent sample size.

However, in general the other spatially balanced sampling designs performed slightly better.

This can potentially be explained by the fact that with StratRS two (or more) selected units in

neighbouring strata can still be clustered in the selected sample which is generally less likely

with the other evaluated designs such as LPM2 and BAS.
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For the semi-clustered population, similar results were obtained as for the clustered population.

The main difference was that the RVSIM’s were generally not as low as in the case of the clustered

population. Although the spatially balanced designs still performed best, the difference with

SRS and the stratified designs had become smaller. This indicates that the spatially balanced

sampling designs perform better when there is a strong spatial autocorrelation in the species

population. BAS performed generally best when five or ten percent of the units were sampled.

LPM1 performed best when selecting 15 percent of the units.

The results for the random Rockfish population were different compared with the clustered and

semi-clustered populations. For each sampling design, the RVSIM’s was around one. This shows

that if there is no spatial autocorrelation in the population, the sampling designs perform more or

less similar. This means that if there is no spatial autocorrelation in the species population, then

it is difficult to obtain higher detection rates or less variable detection rates for a sampling design,

compared with SRS. This illustrates once more that spatially balanced sampling designs work

best when nearby units have similar response values. If their is no such spatial autocorrelation

in the response variable, like in this third Rockfish population, then spatially balanced sampling

designs do not ensure better results compared with non-spatially balanced sampling designs.

Surveys using prior information: Unequiprobable Sampling

In this section the detection rates from the different sampling designs with unequal probability

sampling are reviewed. A similar simulation study as for the equiprobable case is performed.

The problem, however, is how to set the inclusion probabilities. Ideally, if a unit is not occupied,

πi should be zero. In that case the unit is no longer included in the sample population and thus

cannot be selected in the sample. Since inclusion probabilities cannot be zero this problem was

circumvented by setting the inclusion probabilities based on a small subset of units. This was

done as follows: A semi-clustered Rock fish population, similar to the previous simulation study,

was created. The study area was partitioned into 64 strata of 5 by 5 units, Nh = 25 for all

h = 1, 2, ..., 64. For each stratum, the number of occupied units ch were counted. The inclusion
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Table 3.2: Results of the simulation study on detection rates initial survey: Equiprobable
sampling. The best performing method per population per percentage sampled is highlighted in
bold.

Units Sampled 5% 10% 15%
D̄ RVSIM(D) D̄ RVSIM(D) D̄ RVSIM(D)

C
lu

st
er

ed

SRS 0.252 \ 0.252 \ 0.252 \
StratRS 4 0.253 0.896 0.254 0.837 0.252 0.883
StratRS 16 0.253 0.686 0.252 0.593 0.253 0.657
StratRS 80 0.252 0.428 0.254 0.314 0.254 0.310
LPM1 0.253 0.313 0.253 0.236 0.253 0.212
LPM2 0.255 0.344 0.253 0.232 0.252 0.213
GRTS 0.253 0.421 0.254 0.279 0.254 0.301
BAS 0.251 0.312 0.252 0.228 0.252 0.250

Se
m

i
C

lu
st

er
ed

SRS 0.253 \ 0.252 \ 0.254 \
StratRS 4 0.253 0.950 0.254 0.897 0.252 0.952
StratRS 16 0.254 0.894 0.254 0.847 0.253 0.935
StratRS 80 0.254 0.739 0.254 0.757 0.252 0.779
LPM1 0.254 0.741 0.252 0.674 0.253 0.707
LPM2 0.253 0.696 0.253 0.653 0.253 0.665
GRTS 0.254 0.800 0.255 0.750 0.254 0.777
BAS 0.258 0.618 0.258 0.606 0.255 0.705

R
an

do
m

SRS 0.253 \ 0.253 \ 0.254 \
StratRS 4 0.252 0.989 0.253 1.007 0.254 0.996
StratRS 16 0.254 1.001 0.256 0.997 0.254 1.018
StratRS 80 0.254 0.991 0.255 1.022 0.254 0.994
LPM1 0.252 0.997 0.253 1.155 0.253 1.081
LPM2 0.254 1.051 0.253 1.143 0.254 1.042
GRTS 0.254 0.989 0.254 1.176 0.254 1.042
BAS 0.251 1.093 0.252 0.980 0.253 1.051

probability πi,h for unit i in the hth stratum was set equal to

πi,h = 1
25

chn∑64
k=1 ck

. (3.27)

Thus each unit within a stratum is assigned the same inclusion probability, but each strata

had different inclusion probabilities. For example, Figure 3.12 shows a semi-clustered species

distribution and the resulting inclusion probabilities. Strata with a large number of occupied
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(a) species distibution

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

(b) Inclusion probabilities

Figure 3.12: Illustration of the pre-set inclusion probabilities based on a simulated species
distribution. Different shades of grey mean different inclusion probabilities

units have high inclusion probabilities and vice versa. In the case, when a stratum has no

occupied units the inclusion probabilities for all units in that strata will be zero. Therefore, it

was ensured that in each stratum at least one occupied unit was present. To achieve this, new

species distributions were generated until this requirement was satisfied. An unequal probability

sample is selected from the study area using the pre-set inclusion probabilities. The sampling

designs that were evaluated are: SRS,CP, LPM1, LPM2, GRTS and BAS. Stratified sampling

was not included since in the case of proportional allocation, the sample would an equiprobable

sample. Hence, the results for stratified sampling would be similar to the previous simulation

study. Alike the previous simulation study, 1000 samples were selected for each sampling design.

The simulation study was repeated for three different sample sizes, these are 5%, 10% and 15%

of the units sampled.

For each evaluated sampling design D̄ and RVSIM(D) were calculated. The results are shown in

Table 3.3. All evaluated sampling designs achieve higher detection rates than those achieved by

SRS. This means that the selection of an unequiprobable sample can improve the detection rate

compared with SRS. The spatially balanced designs, LPM1, LPM2, GRTS and BAS achieved

slightly higher mean detection rates compared with CP, which is not a spatially balanced

sampling design. The resulting RVsim(D)s show that the precision in the detection rates was
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Table 3.3: Results of the simulation study on detection rates initial survey: Unequiprobable
sampling

Units Sampled 5% 10% 15%
D̄ RVSIM(D) D̄ RVSIM(D) D̄ RVSIM(D)

SRS 0.253 \ 0.253 \ 0.251 \
CP 0.329 1.211 0.331 1.020 0.339 1.032
LPM1 0.341 1.141 0.355 0.944 0.361 0.952
LPM2 0.340 1.061 0.356 0.884 0.370 0.996
GRTS 0.332 1.130 0.348 0.935 0.380 1.032
BAS 0.340 1.032 0.350 0.974 0.371 0.936

similar for all designs. However, CP had the lowest precision for each sample size.

3.3.2 Population Estimation

In this section the efficiency of the different sampling designs for population estimation is

reviewed. This is done by means of Monte Carlo simulations using two virtual study populations.

The results of these simulation studies can also be found in Robertson et al. (2013).

Example 1

The first virtual population is an example taken from Grafström et al. (2012b). The target value

yi is defined by the function

f(x, y) = 3(x+ y) + sin(6(x+ y)) (3.28)

with (x, y) in the unit box. This function f(x, y), which has a spatial autocorrelation, is visualized

in Figure 3.13. The study area is divided into 20 by 20 equally sized squared units. For unit i,

the response variable yi is the volume under Equation (3.28) within that unit. The population

total is Y =
∑400
i yi ≈ 2.9994. In this example 1000 equiprobable sample where selected for

each sampling design. The evaluated sampling designs were: SRS, LPM1 LPM2,GRTS, BAS

and StratRS. For StratRS the study area was partitioned in 20 strata of four by five units. Since

CP and SRS are identical in the case of equal probability sampling CP was not included in this
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simulation study. The simulation study was repeated for three different sample sizes: n = 20, 40

and 60. The precision of a sampling design was estimated by using

V̂SIM(Ŷ ) = 1
m

m∑
i=1

(Ŷj − Y )2,

where m = 1000 is the number of simulated samples and Ŷj is the population estimate from the

jth sample. The local mean variance estimator Mean(V̂NBH) was also calculated to evaluate the

performance of this estimator for the spatially balanced sampling designs. For SRS and StratRS

the exact variance estimates were computed.

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.00

1

2

3

4

5

x
y

z

Figure 3.13: Continuous function z = f(x, y) used to compute the response variable yi (Example
1).

The results for this simulation study are given in the first four columns of Table 3.4. For

each sampling design Mean(Ŷ ) was approximately 2.9994 with no obvious bias. The simulated

variances were similar for BAS, LPM1 and LPM2 and achieved overall the best performance.

The simulated variances for GRTS were always higher than those achieved by BAS, LPM1 and

LPM2. SRS had the highest simulated variance and performed the least efficient. StratRS had

simulated variances similar to the other spatially balanced sampling designs, for n = 20 it has

the highest precision and for n = 40 and n = 60 the variance is lower than the one observed for

GRTS. What makes StratRS for n = 40 and n = 60 advantageous over the other methods is

that, since at least two units per stratum are sampled, unbiased estimates for the variance are
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possible. This is an important advantage for StratRS over the other spatially balanced sampling

designs. This is especially since the mean local variance estimator was generally greater than the

simulated variance. This indicates that the mean local variance estimator does not perform well

for this problem. However, since this estimated variance is still smaller than the one observed

for SRS, and since there is to our knowledge no alternative estimator that achieves a more

precise estimate for the variance, this estimator can and should still be used. Of course, this is

given the fact that one can expect a conservative estimate of the variance. Whereas the mean

local variance estimator was generally a very conservative variance estimator for the spatially

balanced sampling designs the exact variance estimates for SRS and StratRS were very close to

the observed simulated variance especially for StratRS. This is advantageous or StratRS over

the other spatially balanced sampling designs

Example 2

For the second example, an altered version of a artificial population introduced in Grafström

et al. (2012b) was used. The population was defined by dividing a rectangular study area into

20 by 20 regular units. The units are numbered as follows: 1 to 20 for the first row, 21 to 40 for

the second row, etc. The inclusion probability of unit i was defined by πi = nzi/(
∑
j zj), where

zi is the ith value in the auxiliary matrix Z. This auxiliary matrix is visualized in Figure 3.14.

Note that Z is an auxiliary matrix which has a spatial autocorrelation. The target value yi had

been given a linear relationship in the ratios yi/zi by setting

yi = zi

(
1.1− 0.2 zi −minj(zj)

maxj(zj)−minj(zj)

)
+ εi,

where εi is a random error term uniformly distributed on [0, 0.1]. This error term is added to

distort the ratio between πi and yi and make it variable between the units. If this ratio is equal

for all units, then the variance will be zero. This error term leads to a situation where some

units will create negative bias and other units will create positive bias when added to a sample

(Grafström et al., 2012a). The population total is Y =
∑
i yi ≈ 525.37. The evaluated sampling

designs were: SRS, CP, LPM1, LPM2, GRTS, BAS. StratRS was not included since it was not
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possible to select an exact (integer) sample size within each stratum. The simulation study

was repeated for three different sample sizes: n = 20, 40 and 60. The following test statistics

were calculated: Mean(Ŷ ), V̂SIM and Mean(V̂NBH). For SRS the exact variance estimates were

computed.
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Figure 3.14: Visualization auxiliary matrix Z.

The results of this second example are given in the final three columns of Table 3.4. All

evaluated methods achieved unbiased population estimates. The spatially balanced designs

GRTS, BAS, LPM1 and LPM2 performed better for the variance estimation compared with the

two non-spatially balanced methods CP and SRS. BAS had similar precision and accuracy to the

other spatially balanced designs. However, when running the simulations BAS was observed to

execute faster (see later this chapter). In this second example, the mean local variance estimator

worked well for all spatially balanced designs. This illustrates that the mean local variance

estimator can be a good estimator when there is a spatial autocorrelation in the response yi.

Importance of a Spatial Autocorrelation in the Response for Population Estimation

In both previous examples, there was a from of spatial autocorrelation in the response value. As

shown in the first example, spatially balanced sampling designs give more precise population

estimates when there is a spatial autocorrelation in the target value in the case of equal probability

sampling. To evaluate for the importance of having such a spatial autocorrelation in the response

value, the simulation study for the first example was repeated. This time distortion was added
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Table 3.4: Results simulation study for population estimation.

Example 1 Example 2
Design Mean(Ŷ ) V̂SIM Mean(V̂NBH) Mean(Ŷ ) V̂SIM Mean(V̂NBH)
n = 20

BAS 2.9972 0.0122 0.0209 525.61 34.91 40.52
LPM1 2.9961 0.0122 0.0266 525.60 26.15 40.30
LPM2 3.0004 0.0124 0.0264 525.26 27.63 39.26
GRTS 2.9844 0.0961 0.0220 525.74 33.70 38.35
CP - - - 525.50 87.45 34.19
SRS 2.9951 0.0943 0.0991 (VSRS(Ŷ )) 527.97 2608 2714.4 (VSRS(Ŷ ))
StratRS 2.9925 0.0101 0.0102 (VStratRS(Ŷ )) - - -
n = 40

BAS 2.9995 0.0033 0.0070 525.89 11.57 12.32
LPM1 2.9977 0.0037 0.0073 525.24 10.66 13.63
LPM2 3.0024 0.0037 0.0070 525.41 9.83 13.74
GRTS 3.0024 0.0051 0.0070 525.27 13.56 13.02
CP - - - 525.66 38.59 12.02
SRS 3.0001 0.0487 0.0473 (VSRS(Ŷ )) 526.43 1127 1109.5 (VSRS(Ŷ ))
StratRS 2.9978 0.0048 0.0049 (VStratRS(Ŷ )) - - -
n = 60

BAS 3.0008 0.0016 0.0031 525.85 7.484 8.284
LPM1 3.0000 0.0018 0.0034 525.36 6.332 7.350
LPM2 2.9978 0.0018 0.0033 525.40 6.460 7.405
GRTS 2.9977 0.0032 0.0032 525.29 6.823 7.080
CP - - - 525.55 25.79 6.677
SRS 2.9937 0.0288 0.0306 (VSRS(Ŷ )) 524.87 791.0 801.2 (VSRS(Ŷ ))
StratRS 2.9999 0.0030 0.0030 (VStratRS(Ŷ )) - - -
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to the target value of each unit to break the ‘smooth’ spatial autocorrelation in the target value.

The new response values y′i after distortion of the spatial autocorrelation were created by setting

the distorted response variable y′i equal to y′i = yi + δi, with δi ∈ [−d(range(yi)), d(range(yi))]

and d being the intensity of the distortion. Adding the distortion was done is such a way that∑N
i=1 y

′
i remained equal to

∑N
i=1 yi. This was done by selecting 200 uniformly random values of

δi, thus δ1 = (δ1, δ2, ..., δ200) and then setting δ2 = (−δ1,−δ2, ...,−δ200). Finally for each unit

i select a value δi from δ = (δ1, δ2). We repeated the simulation study for Example 1 in the

previous section for four different levels of d: 0 (= identical as in the previous section), 0.1, 0.2

and 0.3. For each level of d, 1000 samples were selected, each of size 40. Figure 3.15 gives an

illustration of the response density function used in Example 1 after adding distortion.
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(c) d = 0.3

Figure 3.15: Example of added distortion to density function target population Example 1.

The results are shown in the first two columns of Table 3.5. The variance of all the spatially

balanced designs increased with increasing distortion d. For SRS, however, the variance remained

more or less constant. One would expect that the variance would be exactly the same for SRS.

However, due to the relative small numbers of simulations there can still be some differences

in the actual observed simulated variance. This confirms the general expectations that for

equiprobable sampling, spatially balanced designs work better than SRS only if there is spatial

autocorrelation in the response variable. These results also confirm the general perception that,

since the results of spatially balanced sampling designs are always better or as good as the

results of SRS for any distortion rate, it is advisable to use spatially balanced designs regardless

of the spatial autocorrelation of the response variable. Moreover adding distortion did not seem
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to affect the accuracy. Overall the population estimates were found to be unbiased.

Importance of constant proportionality between yi and pii for Population Estima-

tion

In the second example, yi was perfectly proportional with pii and thus have a perfect linear

relationship, except for some added error ε, for all values of yi. If this proportionality is perfectly

constant, then the variance of the HT-estimator will be zero. Unfortunately, unless the response

value yi is known for each unit, it is often impossible to set the inclusion probabilities so that

there is a perfect linear relationship between the inclusion probabilities and the target variable.

This issue is well documented in the literature (Cochran, 1977; Tillé, 2006). When using the

HT-estimator, to obtain precise estimates the ratio in yi
πi

should be (near) constant for each unit.

Hence, there should be a linear relation between the number of invasive species yi and the set

inclusion probability πi. This means that units with a low species density (yi) should ideally be

assigned a low inclusion probability and units with a high species density should be assigned a

high inclusion probability. Deviations from this linear relationship can lead to imprecise results.

The linear relationship between yi an πi and possible effects caused by deviation from this

linear relationship are illustrated in Figure 3.16. The black line illustrates the perfect linear

relationship between yi
πi

. In the case when every unit in the population is a point somewhere

on this line, then any selected sample will result in accurate population estimates. If not, then

points that fall above the line will add a positive bias to the population estimate and points

that fall beneath the line will create negative bias. If the units are scattered symmetrically

around this line, then the population estimate can be unbiased but is likely to have a larger

variance. In most cases the species density, and thus yi, is not known. Auxiliary information,

such as the species habitat suitability, can be used to approximate the species density. This

approximation will never be 100 percent perfect. Therefore, it is difficult to set the inclusion

probability perfectly linear with the species density based on auxiliary information. Hence,

population estimates based on inclusion probabilities set by using auxiliary information can be

inaccurate and imprecise. For example, if a units has a low Ŝi then that unit is believed to be

unoccupied and will be assigned a small inclusion probability. Assume that unit is selected in
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the sample and, totally unexpected, the species would be observed in that unit after all. Then

that would create a large bias and the population total would be overestimated. Similarly, if a

unit is assigned a high inclusion probability and no species has been observed, this will create a

underestimating estimate.

πi

yi
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Unbiassed 
 and precise
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Figure 3.16: Illustration of the importance of a linear relation between in yi
πi

when using
probability sampling and the HT-estimator. The black line shows the perfect relation between
yi
πi

. Each dot represents a sampling unit.

To test the effect of deviations from this ideal proportionality, a modified version of the simulation

study that was conducted for Example 1 was performed. The ideal inclusion probabilities have

perfect linear relation with the response, thus πi = yi
n∑N

i=1 yi

. For this simulation study four

different sets of inclusion probabilities were compared with increasing deviations from the ideal

linear relation in yi
πi

. These four sets were obtained by adding distortion to the ideal inclusion

probabilities πi. The new inclusion probabilities with added distortion π′i were calculated by

setting π′i = πi + δi, where δi ∈ [−d(range(πi)), d(range(πi))] and d being the intensity of the

distortion. Adding the distortion was done in such a way that
∑N
i=1 π

′
i remained equal to∑N

i=1 πi = n. To achieve this requirement we applied the same method as was done in the

previous section. Four different levels of d were evaluated: 0 (perfect linear autocorrelation), 0.1,
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0.2 and 0.3. For each level of d, 1000 samples where selected, each of size 40. Figure 3.15 gives

an illustration of the response density function used in Example 1 after adding distortion.

The results are shown in the last two columns of Table 3.5. The accuracy and precision of

SRS did not get affected by distorting the linear relation in yi
πi

. However, all the sampling

designs that can select an unequal probability samples lost precision when the linear relation

in yi
πi

became more distorted. The decrease in the precision seemed similar for the spatially

balanced designs. The simulation variance for CP was similar to the spatially balanced de-

signs. The accuracy for CP was a little more biased compared with the spatially balanced

sampling designs. These results indicates that having a linear relation in yi
πi

is important when

selecting an unequal probability sample. These results suggest that the precision of an unequal

probability sample can decrease rapidly with increasing distortion and thus caution should be

taken when the inclusion probabilities are not set (nearly) proportional with the response variable.

Decision

In this section, simulation studies were performed to evaluate several sampling designs for their

potential use for adaptive monitoring. The main criteria for being a good sampling design was

achieving high detection rates. Additionally, it was considered which sampling design is best for

population estimation.

All the sampling designs achieved very similar mean detection rates. However, the spatially

balanced sampling designs generally achieved the lowest simulated variances in the detection

rates. This was especially the case when the underlying species population was clustered or

semi-clustered, thus when spatial autocorrelation was present. The stratified sampling designs

also achieved lower variances compared with SRS. Especially in the case when the strata are

small enough, such that there are only one,two or three units selected per stratum, the difference

in the observed simulated variance is nearly as good as for the other spatially balanced sampling

designs. Out of all the evaluated spatially balanced sampling designs, BAS generally performed

at least nearly as good as or better than the other spatially balanced sampling designs in terms
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Table 3.5: Results for the “test for importance spatial autocorrelation in response” and “test for
importance proportionality yi

πi
”.

Spatial autocorrelation yi Linear proportionality yi
πi

Design d Mean(Ŷ ) V̂SIM Mean(Ŷ ) V̂SIM
BAS 0 2.998 0.004 2.999 0.000

0.1 2.996 0.006 3.000 0.002
0.2 2.999 0.012 2.998 0.013
0.3 2.989 0.019 2.993 0.020

LPM1 0 3.001 0.005 2.999 0.000
0.1 3.001 0.006 2.997 0.002
0.2 3.004 0.011 2.995 0.012
0.3 2.993 0.014 2.996 0.019

LPM2 0 3.003 0.004 2.999 0.000
0.1 2.999 0.005 3.000 0.002
0.2 3.005 0.011 3.000 0.012
0.3 3.003 0.014 3.003 0.021

GRTS 0 3.001 0.005 2.999 0.000
0.1 3.001 0.006 2.998 0.002
0.2 2.997 0.012 3.002 0.011
0.3 2.995 0.016 2.996 0.018

SRS 0 2.993 0.050 2.941 0.049
0.1 3.001 0.048 3.000 0.048
0.2 2.989 0.049 2.988 0.050
0.3 2.997 0.049 2.993 0.049

CP 0 / / 2.999 0.000
0.1 / / 2.981 0.004
0.2 / / 3.002 0.014
0.3 / / 3.010 0.021
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of observed variance in iieved detection rates. Is it important to note that these results are

conditional on the fact that the tests for spatial balance were only performed for BAS, SRS

and GRTS and the tests for the detection rates did not include all possible spatially sampling

designs such as systematic sampling.

The results of the simulation studies on population estimation, in Table 3.4, showed that spatially

balanced sampling designs generally performed better compared with SRS and at least as good

as CP. When spatial autocorrelation is present (example 2) BAS achieves accurate results often

with a higher precision compared with the other spatially balanced sampling designs. One

important note is that StratRS had a higher precision than BAS for a sample size of 20 and had

equal or even better unbiased estimates for all three test sample sizes. Furthermore StratRS

with n = 40 or n = 60 , which is 2 or 3 replicates per stratum, is one of the simplest spatially

distributed methods which has an unbiased estimate of the variance. This is not the case for

BAS or GRTS. Furthermore StratRS is an intuitive design and is simple to apply. The main

reason why StratRS as such is not considered in the next chapters is because our main focus was

on using methods that would allow for probability sampling when the inclusion probabilities

are set on the unit level. In hindsight, it would have been a good idea to include StratRS with

two (or more) units per strata to be able to compare the results with a wider variety of relevant

sampling designs.

The last two simulation studies on population estimation show that it is important that there is

a linear autocorrelation in the response yi and that there is a linear relation in yi
πi

when selecting

a (unequal) probability sample. If this is not the case, and the inclusion probabilities are not set

proportional (enough, for example d < 0.2) with the response then the results of a probability

sample can become imprecise and the advantage over selecting an equiprobable sample disap-

pears. The fact that population estimates can become imprecise if the inclusion probabilities

are not set precise enough (proportional with Yi’s) means that one has to be careful with

selecting unequal probability samples.This is especially the case when not enough information is

available to base the inclusion probabilities on, like before the first survey. Therefore, it is impor-

tant to notice that one has to be careful with selecting an unequal probability in the initial sample.
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In general we can conclude that BAS performed (nearly) as good as, or better than the other

designs. Note that in this chapter, the performance of different sampling designs were evaluated

when selecting a sample for a single survey. In the next chapters, the performance of these

sampling designs for repeated surveying or long term monitoring will be evaluated.

3.4 Practical aspects of BAS

BAS does not only achieve high detection rates and precise population estimates, it also has some

practical features that make this sampling design desirable for long term adaptive monitoring.

In this section we discuss some of the practical features of BAS for adaptive monitoring.

3.4.1 Long Term Sampling

The selection of a spatially balanced sample can improve the population estimates compared

with a non-spatially balanced sample. In the case of repeated sampling, such as long term

monitoring, for each year, the selected sample should preferable be spatially balanced. In

addition to the selection of a spatially balanced sample in each year, it sometimes is important

that the cumulative set of all units selected over all previously years are spatially balanced.

For example, assume a spatially balanced sample is selected in year one and a second spatially

balanced sample is selected in year two. Sometimes it is preferable that the selected units in year

one combined with the selected units in year two are a spatially balanced set of units as well. By

doing this the combined set of sampling units over the two years would be a spatially balanced

set of units which would allow for better mapping of the species distribution after year two

for example since the total sample will have a higher spatial balance. If this was not the case,

sampling points for year two could be very close to the units already visited in year one, which

would provide less information. Note that it is not always necessary that all sampling units

are cumulatively spatially balanced. For example, if one is interested in capturing a temporal

change, for example in the context of model-based sampling, it is often useful to sample a certain

number of units each year (Gitzen et al., 2012). Having a certain number of units that are
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sampled could also be useful to map the changes in the species distribution over time. Deciding

on which type of sampling design to use will depend from case to case and will not be discussed

in further detail.

Since BAS can add points to a sample without loosing its spatial balance, as was illustrated

previously in the chapter, this can easily be achieved with BAS. Assume that each year in a 3

year long survey, 50 units will be selected. To ensure that both the year specific samples and

the overall sample are spatially balanced, simply generate a list of the first 150 selected units by

a BAS sample. The first 50 units should be sampled in year one, the second cohort of 50 units

should be sampled in year two and finally the last 50 units will be sampled in year three. It is

also possible that, for example in the case funding would be available for another three years, to

add units to the sample while keeping the spatial balance of the sample. This is, as long as the

starting points of the random start Halton sequence are known. Note that a similar approach is

possible for GRTS, however, as illustrated in Section 3.2.6, GRTS loses spatial balance compared

with BAS when adding points to a sample. Figure 3.17 shows a spatially balanced sample selected

over a three year long survey using BAS in 2D and 3D. We can see that the points are spatially

balanced within each year and also over all three years. Note that this method for long term

sampling works for both equal and unequal probability sampling. For example, in the case of

non-adaptive monitoring in which one would like to allocate a larger share of the sampling effort

to certain parts of the study area, an unequal probability sample can be selected using BAS. By

visiting the selected units in the order of the Halton sequence, the visited units will be spatially

balanced within each survey. Furthermore, target inclusion probabilities are achieved each year

as well as over all the years. In the case of adaptive monitoring in which the (unequal) inclusion

probabilities will be updated at the end of each year, the sample within each year will be spatially

balanced. However, the overall sample (all units combined) is likely to be no longer spatially

balanced, this is especially the case when there are large changes in the set inclusion probabilities.
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Figure 3.17: Illustration of a long term sample selected using BAS in 2D and 3D. During the
three year long survey 50 points were selected in each year.
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3.4.2 Premature Ending, Non-Response and Oversampling

In a previous section of this chapter, it was illustrated that adding points to a sample or skipping

points does not affect the spatial balance of a BAS sample much. This provides BAS with

additional desirable features which can be used for long term sampling.

The first one is dealing with premature endings of a planned sequence of sampling units. In the

case when not all units are sampled in a certain year, one can simply continue sampling using

the original list of selected Halton points. For example, in Figure 3.17, if only 30 points could be

sampled in year one, one can start with point 31 in the next year and sample the next 50 points

and so on. This allows for greater flexibility for researchers in case of unforeseen circumstances.

Another advantage of BAS over GRTS is the fact that oversampling is not necessary for BAS.

Oversampling is a sampling technique in which more sampling points are selected than the

required sample size was. Oversampling can be useful when it is not clear what the final sample

size would be. An example of the usefulness of this feature would be where funding for an

additional survey needs to be approved annually. An example of oversampling is when additional

sample units are points are generated when there is a risk of non-response. Oversampling is also

often applied to ensure that the required sample size will be reached when non-responses are

likely to occur. GRTS, for example, requires oversampling to maintain its spatial balance when

dealing with non-response and additional units need to be selected. GRTS cannot add points to

a sample (unless the permutation scheme and the details of the hierarchical partitioning are

stored, which is difficult to program). With BAS, only storage of the seeds u1, u2, ..., ud used to

perform the random start Halton sequence is required to select additional sampling points.

3.4.3 Computational Efficiency of BAS

In appendix B a R script is given for implementing BAS and StratBAS. These scripts require

shape files (.shp) as input files to specify the study area. Generating an equiprobable BAS

sample over a rectangular area is fast. The speed is comparable or even faster than GRTS. For

example, an equiprobable sample of size 10000 selected within the unit square required a running

time of 1.1 seconds for BAS and 2.4 seconds for GRTS, this includes reading in the shape files.

Most of the times, however, the study area is not rectangular shaped. In that case a bounding
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box, this is the smallest possible rectangle that includes each point of the sampling area, is

placed around the sampling area. Halton points will be generated within the bounding box.

Each Halton point has to be evaluated to see if it is within the study area or not. Only points

that fall within the sampling area are added to the sample. The higher the fraction of the

non-study area within the bounding box, the more Halton points will be rejected and thus the

slower BAS will be. Another problem with BAS sampling is that if the study area is not of one

polygon but exist out of several polygons scattered within the bounding box, it can become

computational slow to evaluate if a point falls within the sampling area or not. An illustration of

these two problems is given in Figure 3.18. The sampling are is all the broad leaved trees areas

on the Chatham Islands, New Zealand. The bounding box is indicated by the blue rectangle.

The total sampling area is the collection of several small polygons scattered within the bounding

box. The majority of the bounding box is ‘empty’. Evaluating if a point falls within a polygon

is computationally slow.

The computational speed of BAS sampling can be improved as follows: Place a bounding box

around each separate polygon. Next, generate a set of Halton points within the overall bounding

box (blue rectangle). Next, evaluate for each Halton point if that point falls within one of

the polygon specific bounding boxes (red rectangles). If not, reject the point from the sample.

Otherwise evaluate if that point falls within the polygon within that particular bounding box.

To select a sample of size 100 over the sampling area as shown in Figure 3.18, GRTS takes

almost 24 seconds, BAS without polygon specific bounding boxes takes around 41 seconds and

BAS with the polygon specific bounding boxes takes 13 seconds. This method is faster since

evaluation of a point within a rectangular box is generally faster compared with testing if a

point lies within an irregular polygon.

For study areas rasterized into squared units, the computational efficiency of BAS can be

improved by mapping the two dimensional cells onto the one dimensional real line. This method

is similar to GRTS’s hierarchical partitioning and mapping on the real line. In short each unit

will receive a unique address based on the coordinates of the unit. Since the dimensions of each

unit are known, it is possible to link any two dimensional Halton point to the right address.
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Therefore, a set of two dimensional Halton points can be transform to a set of addresses. The

idea is that before the selection of a BAS sample, the first two dimensions of a generated list

of Halton points are combined into a one dimensional list of addresses. Based on this list of

addresses it is faster to link a Halton point to a certain unit since the number of dimensions

are reduced. This method could be applied to BAS sampling in higher dimensions. When

performing this method selection of an equiprobable sample of size 500 from a study area of 200

by 200 units takes less the one second.

2400000 2440000 2480000
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80
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Figure 3.18: Illustration of the computational efficiency problems of BAS when sampling from a
scattered landscape. The black polygons (.shp files) illustrate broad leaved trees area on the
Chatham Islands, New Zealand. The blue rectangle illustrates the overall bounding box, this
is the smallest rectangular area in which Halton points can be generated. The red rectangles
around each separate polygon are the polygon specific bounding boxes used to improve the
computational efficiency for BAS.
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3.5 Discussion

In this chapter a selection of several sampling designs and especially spatially balanced sampling

designs have been introduced. Simulation studies were performed to compare these sampling

designs.

The first criteria, in this thesis for a suitable sampling design is to achieve high detection rates.

In general spatially balanced sampling design achieved similar mean detection rates compared

with the other sampling designs such as SRS, CP and StratRS. However, when looking at the

variance of the achieved detection rates the spatially balanced sampling designs performed better.

For many simulation studies BAS achieved observed variances in detection rate at least nearly

as low or lower than the other spatially balanced sampling designs. However, in the case where

there is no spatial autocorrelation present in the species distribution there is little advantage in

using a spatially balanced sampling design.

The second criteria was to achieve precise population estimates. In general, the spatially

balanced sampling designs had the best results in the case of unequal probability sampling. In

the equiprobable case there was little difference between StratRS, BAS and GRTS. In fact, in

the equiprobable case StratRS has the advantage that, as long as at least two units are selected

per sample, an unbiased variance estimate is available.

Overall, BAS scored good for both criteria, except for the fact that no unbiased variance

estimator is available. BAS is a new spatially balanced sampling design based on a relatively

simple algorithm. Moreover, several practical features of BAS were explored such as BAS for

long term monitoring. BAS also executes faster than other spatially balanced sampling designs.

All this led to the decision to select BAS as the most consistent performing sampling design, at

least for the initial survey. We will use BAS as our preferred spatially balanced sampling design

that allows for unit specific inclusion probabilities in the coming chapters. It is important to note

that, as illustrated in table 3.5, that when it is difficult to set unit specific inclusion probabilities,

which is the case when insufficient prior information is available, population estimates can

become imprecise. Hence, using methods that make use of unit specific inclusion probabilities

are not always feasible to use for a single survey. In the next chapters, we illustrate how one can



3.5. DISCUSSION 81

set and adjust these inclusion probabilities for consecutive surveys over time.



Chapter 4

Adaptive Monitoring using

Ecological Information to update the

inclusion probabilities

4.1 Introduction

To increase the detection rate over consecutive surveys, areas with high species densities should be

sampled more intensively than low species density areas. To achieve this, a method for adaptive

monitoring has been introduced in Chapter 2. A key concept of the proposed method is that

the inclusion probabilities should be adjusted over time such that the areas with expected high

species densities are given a higher inclusion probabilities than those areas with an expected low

species density. Accordingly, when selecting a probability sample, areas with a high abundance

of the species of interest are expected to be sampled more frequently than lower density areas.

Hence, with this approach for adaptive monitoring, we expect the detection rate to increase

over time. This principle of setting the inclusion higher in observed and expected high density

area is likely to be an oversimplification. Ideally this would be part of a much more complex

process defined by the dynamic processes of the species population. In real life the density and

distribution of the species depends on spatial and temporal deterministic changes, for example

82
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seasonal changes in the population, as well as stochastic changes, for example random predator

prey interactions. In later sections and the next chapters we will discuss how to adjust the

monitoring strategy for changing, non-stationary populations. However, the focus in this chapter

will be on showing how to adjust unit specific inclusion probabilities and how this can effect the

detection rate.

If the underlying species distribution is known, then it is possible to set the inclusion probabilities

proportional to the species distribution. We can say that the perfect inclusion probabilities,

π′i’, have a perfect correlation with the actual species density. Unfortunately, the actual species

distribution is almost never known. Hence, when adjusting the inclusion probabilities, ideally,

the πi’s are set as close as possible to the π′i’s, such that the error εi in

πi = π′i + εi (4.1)

is minimized. If the εi’s are small, then it means that the chosen πi’s will approximate the π′i’s

better. In that case, we expect that the detection rates will be higher than when the εi’s are

larger. Note that as discussed in the previous chapter (section 3.3.2) this approach will only

work well for population estimation if the εi’s are small. With the εi’s becoming larger using an

unequal probability sampling method can become no better or even worse than when using the

equal probability version of that method.

In Chapter 2, several sampling designs have been introduced that can select a probability sample

based on the pre-set inclusion probabilities. In the current and subsequent chapters we discuss

how we can actually set and adjust those inclusion probabilities. To minimise εi, we need to set

the inclusion probabilities proportional to the species density distribution. Since the species

distribution is usually unknown, we will make use of auxiliary information that is correlated

with the species distribution. As mentioned in Chapter 2, there are two types of auxiliary

information one can use to update the inclusion probabilities: ecological information and spatial

information. In this chapter, we illustrate how to use the ecological information to update the

inclusion probabilities for adaptive monitoring.
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The idea is to use auxiliary information in the form of ecological data to predict the species

distribution. All the available ecological data are modelled into a single auxiliary variable to

predict the species distribution, the species’ habitat suitability, say S. The S is an index of

the likelihood that a species will settle in a specific type of habitat. Thus, an area with a high

species habitat suitability will be preferred by the species to settle in over sites with lower S.

We set the inclusion probabilities proportional to the estimated species’ habitat suitability (Ŝ).

The species habitat suitability can be estimated from the available ecological data by using

species distribution models (SDMs). These SDMs model the relationship between ecological

covariates and the observed species distribution (Elith and Leathwick, 2009). Thus, based on

the collected ecological information, such as elevation, precipitation, type of vegetation or road

density, SDMs can estimate the species habitat suitability Ŝi for each unit i. For example,

during a bird survey, the type of vegetation is recorded for each visited unit, as well as the

presence or absence of the bird species of interest in that unit. Two types of vegetation were

observed: grassland and forest. Most birds were found in sampling units within the grassland

vegetation and only a few birds were found in the forest units. In that case, a SDM will likely

predict that grassland units have a higher S than the units with a forest habitat. Many different

species distribution modelling techniques exist. Some examples of SDMs include: Generalized

Linear Models such as logistic regression (Nelder and Wedderburn, 1972), Maximum Entropy

(MaxEnt) (Phillips et al., 2004) and Support Vector Machines (Vapnik, 1999). The selection of

the best species distribution modelling technique depends on the available information about

the species, the research questions, the types of predictors and model expertise. A discussion

of the differences between these species distribution models would go beyond the scope of this

thesis and a detailed review can be found in Elith and Leathwick (2009).

The assumption that there exists a relationship between S and the species density is commonly

made in ecology (Elith and Leathwick, 2009; Elith and Graham, 2009). Hence, the results of

SDMs are often used to predict the species distribution over a study area (Comte and Grenouillet,

2013; Lyet et al., 2013). Some studies describe how SDMs can be used to improve the sampling

design for future surveys (Edwards et al., 2005; Williams et al., 2009; Albert et al., 2010;

Peterman et al., 2013). For example, Peterman et al. (2013) illustrated that for Ambystoma
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jeffersonianum, an endangered salamander species in Illinois, U.S.A, a SDM can be used to

predict if potential breeding ponds are occupied or not. They concluded that the available

ecological information can be used to improve the detection rate when sampling for this species.

As aforementioned in chapter 1, several studies have used SDMs in an adaptive monitoring

context. Stohlgren and Schnase (2006) suggested a methodology for adaptive monitoring in

which the ecological information was used to update the monitoring design. Guisan et al. (2006)

gave a practical illustration of the adaptive monitoring scheme suggested in Stohlgren and

Schnase (2006). In Guisan et al. (2006), before each survey, a SDM is fitted using the collected

data from all previous surveys to predict S for each unit in the study area. Next, Guisan et al.

(2006) partitioned the study area into a suitable stratum and an unsuitable stratum. This

partitioning was done based on the value of Ŝi for each unit, by using a predefined threshold

value. Units with an Ŝi above the threshold value are grouped in the suitable stratum , and units

with an Ŝi below the threshold value are grouped in the unsuitable stratum. This threshold value

was set such that the majority of the units would be partitioned into the unsuitable stratum and

only those units with a high Ŝi would be grouped into the suitable stratum. Next, a stratified

random sample was selected with a fixed sampling allocation of 50 percent of the sampling units

in each stratum. Since the suitable stratum is usually smaller than the unsuitable stratum, but

the same number of units are selected in the suitable stratum as in the unsuitable stratum, the

detection rate is expected to increase. According to Guisan et al. (2006), over time, more data

will become available, and the estimation of S becomes more precise. Hence, the stratification

becomes more accurate. In this case, more accurate means that most of the units that are

occupied by the invasive species will be partitioned into the suitable stratum and vice versa.

Other studies that have used SDM to update the monitoring strategy are Le Lay et al. (2010)

or Crall et al. (2013). Similar to Guisan et al. (2006), these two studies partitioned the study

area into a suitable stratum and an unsuitable stratum, and accordingly selected a sample using

StratRS. We call this type of monitoring, adaptive monitoring using StratRS (AMStratRS).

These three studies showed that the detection rate can be increased by using AMStratRS.

With AMStratRS the strata partitioning is adjusted after each survey. Once the strata bound-
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aries are set, units within the same stratum are assigned equal inclusion probabilities. These

inclusion probabilities depend on the number of units to be selected in each strata. For example,

say the suitable stratum has Nh = 100 and nh = 20, then πi = 20
100 for each unit in that strata.

Albert et al. (2010), stated that, since SDMs can compute Ŝi for each unit in the study area,

stratification based on Ŝi is not necessary. Instead, Albert et al. (2010) discussed the use of other

sampling designs that do not need any stratification. By doing this, there is no need for the

often arbitrary decision for a threshold value for stratification or for a rule on the allocation of

the sampling units. Albert et al. (2010) hypothesised that by using such non-stratified sampling

designs, the detection rate might even increase more than when using StratRS. This idea, that

other sampling designs could be used for adaptive monitoring instead of StratRS, as discussed

in Albert et al. (2010), was one of the main improvements that we suggested when introducing

a new framework for adaptive monitoring in Chapter 2.

In this Chapter, we begin by explaining how the ecological information and SDMs can be used

to set and adjust the inclusion probabilities of each unit. Recall that the inclusion probabilities

cannot be (near) zero. To avoid these problems with near zero inclusion probabilities three

rescaling methods for the inclusion probabilities are introduced.

Next, sampling designs are reviewed for their performance for adaptive monitoring. First, it

will be evaluated whether StratRS, as used in Guisan et al. (2006) to stratify the area into two

homogeneous strata, a suitable stratum and an unsuitable stratum, can be replaced by other

sampling designs which do not require any stratification, for example BAS or CP. Simulation

studies in Chapter 3 showed that BAS overall performed best. Hence, of all the sampling designs

considered here, especially the use of BAS will be evaluated. Second, in the Chapter 3, it was

illustrated that spatially balanced sampling designs achieve higher or more consistent detection

rates then those with SRS, StratRS and CP. Here, we evaluate how well the spatially balanced

sampling designs, and especially BAS, perform in the context of long term adaptive monitoring.
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4.2 Methodology

The methodology for adaptive monitoring using ecological information and SDMs is illustrated

in Figure 4.1, and is: After the initial sample is selected, a SDM is used to estimate Si for all

units in the study area. For the estimation of Si, the ecological information obtained during the

initial survey is used. The inclusion probabilities for the next survey are set proportional to

Ŝi. Based on the set inclusion probabilities a sample is selected. After the second survey, the

cumulative data from all previous surveys is used to update Ŝi. The updated Ŝi is then used to

set the inclusion probabilities for the next survey, and so on.

Over time more and more information becomes available. Hence, the SDM’s predictive power to

estimate Si will become more precise (Guisan et al., 2006). We expect that if the estimation of

Si is more precise, it will be more closely related to the actual species distribution. If so, the

error εi in Equation 4.1 is expected to decrease with an increasing number of surveys. This is of

course if the population is stationary and is not changing over time. Later in this chapter and in

the coming chapters these methods will be evaluated for more dynamic populations. Hence, the

detection rate is expected to increase over time. In this section, each step of adaptive monitoring

using ecological information is explained into greater detail.

4.2.1 Setting the inclusion probabilities using species distribution models

The monitoring strategy will be adapted over time by setting the inclusion probabilities pro-

portional to Ŝi. SDM are used to estimate S. As aforementioned, there are many SDMs and

the selection among the different SDM goes beyond of the scope of this thesis. In the following

simulation studies, for the sake of simplicity, we use simple logistic regression as the SDM of

choice. Logistic regression was chosen because many scientist are familiar with the basics of

logistic regression, as opposed to many other SDMs.

First of all, we assume that Ŝi is a strictly positive estimate. This is a fair assumption to

make since many SDMs, for example logistic regression, will estimate S on a scale between zero

and one, with one being the maximum suitability (Elith and Graham, 2009). We know that∑
i∈U πi = n and πi is set proportional with Ŝi, i.e. πi = cŜi where c is a constant. Hence, the
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Figure 4.1: Illustration of the proposed methodology for adaptive monitoring. Figure is based
on a figure in Guisan et al. (2006). Note that the initial sample is a equiprobable sample,
unless prior information is available. In that case, a SDM can be fitted before the start of the
initial survey and inclusion probabilities can be set proportional to Ŝi. For species with a stable
distribution over time the estimation of S is expected to become more precise, εi is expected to
decrease and the detection rate is expected to increase.
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inclusion probabilities for the kth survey are given by

πi,k = Ŝi,k−1
1∑N

i=1 Ŝi,k−1
nk with k ≥ 2. (4.2)

Note that k is always greater than one because the inclusion probabilities are only updated after

the initial survey.

4.2.2 Rescaling Approaches

If Ŝi is zero or near zero (by which we mean relatively small compared with the other Ŝi’s),

then given Equation 4.2, πi will be (near) zero. This is problematic for two reasons. First,

units with zero inclusion probabilities can never be sampled. As discussed in the introduction,

it is important that when monitoring an invasive species that a part of the samples size is

used for surveillance sampling. Hence, each unit should have some chance, even if small, to

be included in the sample. This will be discussed in more detail later in this chapter. Second,

inclusion probabilities of (near) zero make the HT-estimator non definable. This means that

population estimation becomes impossible. To resolve these problems with (near) zero inclusion

probabilities three rescaling techniques are proposed:

1. The minimum suitability approach: This method rescales Ŝi such that for each unit the

minimum estimated species habitat suitability is greater than zero. This is done by setting

a lower limit on Ŝi. Although the definition of this lower limit is arbitrary, we propose the

following rule of thumb. The lower limit Ŝmin, which will become the minimum suitability,

is given by

Ŝmin = l(max {Ŝi} −min {Ŝi}), (4.3)

where l can take a value between zero and one. If a unit has a Ŝi smaller than Ŝmin, then

replace it by Ŝmin.

The rescaled values for Ŝi, or Ŝ∗i , can then be used to compute πi using Equation 4.2.

Figure 4.2 illustrates the minimum suitability approach.
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Ŝmin

(a) Estimated species habitat suitabilities (Ŝi)
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Figure 4.2: Illustration of the minimum suitability approach with l = 0.1.

2. The conservative πi approach: The second method rescales the inclusion probabilities to a

value greater than zero. This is done by rescaling the inclusion probabilities such that

π∗i = a
n

N
+ (1− a)πi, (4.4)

where a is set to 0.5 for each survey. This method is called the conservative πi approach

since for each survey all units have an inclusion probability of at least n
2N . We call n

2N the

base inclusion probability. Note that this base inclusion probability is half of the value of

the inclusion probability in the case of equal probability sampling.

3. The progressive πi approach: This method is similar to the conservative πi approach. The

difference is that in the progressive πi approach ‘a’ in Equation 4.4 is replaced with

a = 1
k + 1 , (4.5)

where k is the survey number. This method is called the progressive πi approach since the

base inclusion probability decreases over time. Hence, over time more weight will be given

to set the inclusion probabilities based on Ŝi. Figure 4.3 illustrates the conservative πi
approach and the progressive πi approach.
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Figure 4.3: Illustration of the conservative πi approach and the progressive πi approach.

4.3 Simulation Study

A simulation study was performed to evaluate the performance of adaptive monitoring when using

ecological information as proposed in this chapter. It was evaluated which rescaling technique

provided better results. Moreover, the use of different sampling designs for adaptive monitoring

was evaluated. AMStratRS was compared with adaptive monitoring that use non-stratified

sampling designs. Additionally, it was reviewed whether the spatially balanced sampling designs

perform better than the other sampling designs for adaptive monitoring or not.

4.3.1 Asian tiger mosquito Data

An artificial data set of the distribution of the Asian tiger mosquito in the South Island of New

Zealand (Aedes albopictus) was chosen for this simulation study. This data set was made available

by the Bio-protection group at Lincoln University, New Zealand and we are very grateful for

the assistance of Professor Sue Warner and Senait Senay for providing access and support to

this data. The Asian tiger mosquito is an invasive species which has recently been detected at
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some of the main ports in New Zealand (Pitt et al., 2009). The Asian tiger mosquito is capable

of carrying several serious human illnesses such as Dengue fever and Yellow fever. A dispersal

model was used to generate future species distribution and densities. This dispersal model

was simulated over a heterogeneous habitat suitability layer obtained by species distribution

modelling. The locations of the initial dispersers in year one were chosen from cargo ports

in the South Island that are similar in both the operation size and the habitat suitability

with other international ports from which Asian tiger mosquito introductions were reported.

Five independent introduction points were chosen accordingly as the initial dispersers which

hypothetically could start the species dispersal. Species specific parameters such as birth and

mortality rate were used to specify the rate of local spread of the species using population

growth and spread rates found in the literature. Both short distance and long distance dispersal

were included in the dispersal model. Details on the species distribution modelling and dispersal

modelling used to generate the distribution maps can be found in Pitt et al. (2009) and Senay

et al. (2013).

Figure 4.4 shows the artificial (worst case scenario) prediction for a possible invasion by the

Asian tiger mosquito of the South Island of New Zealand between the years 2015 and 2018. In

these maps, the South Island was tessellated into square units of three by three kilometres, in

total 9716 units. The number of units with the species present for the years 2015, 2016, 2017

and 2018 were respectively 209, 415, 619 and 1118. These maps illustrate how the population of

the Asian tiger mosquito is expected to expand over time. We will use these four distribution

maps for our simulation study.

Auxiliary information on 20 covariates was used. These covariates were geological, climatological

or ecological covariates such as altitude, rainfall or type of habitat. Details about these covariates

can be found in Appendix A.
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(a) Year 2015; Y = 209 (b) Year 2016; Y = 415

(c) Year 2017; Y = 619 (d) Year 2018; Y = 1118

Figure 4.4: Artificial distribution of a possible invasion of the South Island of New Zealand by
the Asian Tiger mosquito between the years 2015 and 2018. These figures illustrate that the
species population is not uniformly distributed of the South Island of New Zealand, with the
majority of the invaded units on the East coast.
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4.3.2 Testing the use of different Sampling Designs and Rescaling Techniques

In this simulation study the performance of a non-stratified sampling design for adaptive

monitoring is compared with an AMStratRS method. Note that this simulation study mainly

focuses on the rescaling approaches, in the next section we will repeat a similar simulation

study to separate the advantages of spatial coverage from the adavantage of having an adaptive

sampling design.The following monitoring methods were evaluated:

1. Simple Random Sampling (SRS): An independent simple random sample was selected in

each year. Note that this monitoring method is non-adaptive.

2. Adaptive Monitoring using StratRS (AMStratRS): This is adaptive monitoring using

StratRS and SDMs, as was described in Guisan et al. (2006). No prior information was

assumed before the first survey. Hence, in the first year an equiprobable sample was selected

using SRS. Logistic regression was used as SDM. After each survey, Si was estimated using

the cumulative data from all previous years. Based on their Ŝis each unit was labelled

suitable or unsuitable using a threshold value to dichotomize Ŝi. The threshold value we

used was obtained by maximum kappa estimation (Cohen, 1960). Maximum kappa is

frequently used in species distribution modelling to illustrate a model’s predictive capacity.

We used maximum kappa since this was also used in Guisan et al. (2006). Other methods

can be used to define a threshold value such as a fixed threshold (Manel et al., 1999), the

minimal predicted area threshold (Engler et al., 2004) or other data driven thresholds. For

a review on threshold selection in species distribution modelling see Nenzén and Araújo

(2011). After this stratification two different allocation schemes were used:

(a) 50\50 : Half of the units were allocated to the suitable stratum, the other half

were allocated to the unsuitable stratum, this is identical to the allocation method

used in Guisan et al. (2006). Note that there are likely more efficient sampling

allocation schemes, and it is also likely that better methods exist to stratify the

area in two (or more) strata. Nevertheless it was decided to replicate the method

described in Guisan et al. (2006). The reason why they used this method is as follows:

First, after each survey they redefine the boundaries of the suitable stratum and the
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non-suitable stratum. Because they used the maximum kappa method as a cut-off

for the species suitability, the suitable stratum becomes smaller and smaller, but at

the same time also more and more accurate at grouping high density units into one

stratum. Hence, by selecting 50 percent of the units from a smaller area (assuming

the suitable stratum becomes smaller) one can expect that the detection rate will

increase. Second, Albert (2010) wrote a review on adaptive monitoring methods

claiming that even though unequal probability sampling would likely perform better

the reason why many studies stratify the area into a suitable and an unsuitable

stratum is because unequal probability sampling is not as straightforward for many

ecologist to implement as is random stratified sampling.

Note that if one of the strata is smaller than the number of samples that should be

allocated to that strata, then first all the units in that stratum are selected. Next

units are randomly selected from the other stratum until the required (total) sample

size is reached.

(b) PROP : This is proportional allocation. The units were allocated proportional to the

strata sizes.

3. Adaptive monitoring using BAS (AMBAS): Adaptive monitoring using species distribution

modelling, as shown in Figure 4.1 and as explained in Section 4.2. No prior information

was supposed to be available before the initial survey and therefore an equiprobable BAS

sample was selected for the first year. Logistic regression was used as SDM. The species

distribution model was constructed using the cumulative data from all previous years. The

inclusion probabilities were set proportional to Ŝi. BAS is used to select the samples in

each consecutive year. To compared the effects of the different rescaling approaches, we

repeated the simulation study for AMBAS using the following rescaling approaches:

(a) The minimum suitability approach with l = 0.05 (LIM05).

(b) The minimum suitability approach with l = 0.10 (LIM10).

(c) The minimum suitability approach with l = 0.15 (LIM15).

(d) The conservative πi approach (CONS).
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(e) The progressive πi approach (PROG).

Each monitoring method was performed for four consecutive years. Based on the distribution

maps shown in Figure 4.4a, three different species distribution scenarios were evaluated:

1. Low density scenario: The mosquitoes distribution is stationary over time and has a low

species density. The predicted distribution of the Asian tiger mosquito in the year 2015

was used for the four consecutive years. In this scenario the species is not in equilibrium

with its habitat. A species is in equilibrium with its habitat if the species occupies all units

that have a Si which is above the tolerance level for that species (Elith and Leathwick,

2009). In this case, this means that the majority of the occupied units are having a high

S, since those units are usually occupied first. However, not all units with a high S are

already invaded.

2. High density scenario: The species distribution is stationary over time, with a high species

density. The predicted distribution of the Asian tiger mosquito in the year 2018 was used

for the four consecutive years. In this scenario the species is in an advanced state of

equilibrium with its habitat for all years. Hence, most units with a high S are invaded by

the species and some occupied units will have an intermediate to low S.

3. Increasing density scenario: The mosquitoes distribution changes over time. In this case

the density increases, using the data from year 2015 to 2018. In this scenario the species

population expands toward equilibrium over time. This non-stationary scenario is more

realistic than the previous two stationary scenarios.

To compare these methods, Monte Carlo simulations were performed: The four surveys long

monitoring scheme was repeated 1000 times for each method. Each year five percent of the

units were sampled. For each iteration j and for each year k, the detection rate Dj,k and the

estimated population total Ŷj,k were calculated. Based on these Monte Carlo simulations, with
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m = 1000 is the number of simulations, the mean detection rate D̄k calculated per year k is

D̄k = 1
m

m∑
j=1

Dj,k, (4.6)

as well as the survey variance of the calculated detection rates for year k V̂SIM(Dk)

V̂SIM(Dk) = 1
m

m∑
j=1

(Dj,k − D̄k)2. (4.7)

Additionally, the following performance statistics of the population estimation were calculated:

The observed bias of the estimated total number of individuals, B̄k, for the year k is

B̄k = 1
m

m∑
j=1

(Ŷj,k − Yk), (4.8)

and the survey variance of the estimated population total V̂SIM(Ŷk)

V̂SIM(Ŷk) = 1
m

m∑
j=1

(Ŷj,k − Yk)2. (4.9)

Results: Simulation Study

The results of the simulation study are summarized in Table 4.1. The results of the achieved

detection rates are discussed first. After that, the results of the population estimation are

discussed.

Detection rates To begin, the results are discussed ignoring the differences between the

different rescaling techniques. For all three scenarios, in year one, an equiprobable sample was

selected for each evaluated sampling design. The observed mean detection rate for year one was

similar for all sampling methods. This result confirms the results we found for equiprobable
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sampling in the previous chapter. AMBAS had less variable detection rates than those with SRS

and AMStratRS for year one. This result also confirms the results from the previous chapter.

In the previous chapter it was illustrated that the spatially balanced sampling designs achieve

less variable detection rates when selecting an equiprobable sample as compared with selecting

a sample using SRS and StratRS (with a small number of strata).

From year two onwards, the adaptive monitoring techniques, AMStratRS and AMBAS, achieved

consistently higher detection rates than SRS. This is because these adaptive designs allocate

most of their sampling effort in those areas with an expected higher species densities, whereas

SRS randomly selects units over the study area. In general, the detection rates for AMBAS

were at least twice as high as for SRS. AMBAS achieved similar detection rates compared

with AMStratRS. When using AMStratRS, the allocation technique 50 \50 achieved higher

detection rates compared with AMStratRS using PROP. This is since with PROP the allocation

over the strata is proportional to the size of the stratum. Hence, this does not mean that

the (usually smaller) high suitability stratum will be sampled more intensively. However, the

proportional allocation does lead to a more spatially balanced sample compared with SRS. This

increase in spatial balance explains the slightly higher mean detection rates that are achieved

be AMStratRS using PROP, as to the mean detection rates achieved by SRS. Interestingly

the observed variances in the detection rates do not change much over time for the AMBAS

methods after the second survey. One possible explanation is that this suggests that, in this

simulation study, once a first batch of auxiliary information becomes available it is possible

to set the inclusion probabilities relatively accurate. However, after that initial survey more

information, gained from the following surveys, seems to add little to improve the detection

rates of consecutive surveys.

For the low species density scenario, AMBAS achieved higher detection rates compared with

SRS and generally there was only a small difference in the achieved detection rates compared

with AMStratRS. In general those AMBAS methods that had a higher proportion of surveillance

sampling, and thus allocated more units to the likely unsuitable areas performed worse compared

with StratRS. The AMBAS methods that had a smaller proportion of the sample allocated
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as surveillance sampling, such as AMBAS using CONS or LIM15 had marginally better mean

detection rates than AMStratRS. However, AMBAS had generally smaller variances in the

observed detection rates compared with the AMStratRS methods. For both AMBAS and

AMStratRS, after the initial jump in detection rates from year one to year two, the increase in

detection rates reduced. For example, the detection rate for LIM05 increased from 2.7 percent

in the first survey to 13.6 percent in the second survey. The detection rate only increased

with an additional 3.6 percent in the third survey and 3.9 percent in the fourth survey. This

indicates that if a population is stationary or does not change much, the information gained

from the initial survey is most important when updating the monitoring strategy. Additional

information, gained during later surveys, is likely to have a smaller impact on the achieved

detection rates. Note that the results for StratRS are only relative, since we only evaluated

two types of stratification. If one would add more strata, change the strata boundaries or use

a different sampling allocation scheme the results for AMStratRS may significantly improve.

Additional simulation studies are needed to test this.

For the high density scenario, similar results were observed as for the low density scenario. Both

AMBAS and AMStratRS had higher mean detection rates compared with SRS but the difference

in mean detection rates between AMBAS and AMStratRS were small. Of course, since more

units are occupied in the high density scenario as compared with the previous scenario, the

values for the mean detection rates were higher. Another difference is that the increase in the

mean detection rate over time is more constant over the consecutive surveys, compared with

the low density scenario. A possible explanation is that in the case of the high density scenario,

the mosquitoes are more in equilibrium with its habitat. This means that most of the highly

suitable units are invaded. In addition, given the limited number of these highly suitable units,

some units with a lower species habitat suitability are occupied by the species as well. For the

low density scenario, after the initial survey, enough ecological information is available to predict

which units will have a high S. However, it seems that when units with a lower S are invaded

as well, more detailed and more accurate predictions are necessary to predict which of these

units with a lower S are invaded and which are not invaded. Since more information becomes

available over time, we see a more gradual increase in the detection rates for this high density
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scenario.

For the third scenario, in which the density of the invasive species population increases, AMBAS

seemed to achieve generally little higher mean detection rates after the second survey compared

with AMStratRS and also has the most precise detection rates. This indicates that AMBAS

works well for this particular non-stationary population example. An explanation why AMStra-

tRS 50/50 performed not as well compared with AMBAS is because it is likely more difficult

to set strata boundaries when the distribution of the species population changes over time. In

Chapter 6 we will evaluate AMBAS for non-stationary populations in more detail.

These result show that by using an adaptive sampling design one can achieve higher detection

rates. The observed differences in mean detection rates are small between the AMBAS methods

and StratRS (50/50). On the other hand AMBAS does achieve less variable detection rates

compared with StratRS which is an interesting advantage. A possible reason why AMBAS

generally has less variable detection rates than AMStratRS is that no partitioning of the species

habitat suitability for stratification is required when using AMBAS. In the case of (AM)StratRS,

units within the same stratum obtain the same inclusion probabilities. Defining the strata

boundaries and deciding on the sampling allocation over those strata can have a strong impact

on the surveys detection rate and population estimates. Incorrect partitioning may result in a

small, assumed ‘suitable’ strata, with few individuals present or a large, assumed ‘unsuitable’

strata, containing most of the individuals. With AMBAS unit specific inclusion probabilities are

set, which means that each unit can be assigned a different inclusion probability. These unit

specific inclusion probabilities make AMBAS more robust against the effect of misclassification,

because misclassification can happen for a single unit or a small subset of units. Because of

this, the detection rate is likely higher for AMBAS than that with AMStratRS. Again, it is

important to notice that all these results are conditional on the chosen methods for AMStratRS.

As previously discussed, by changing the stratification or the allocation scheme the results for

StratRS could likely be improved.

The rescaling approaches are necessary to avoid (near) zero inclusion probabilities. For example,
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in the first scenario, after the initial survey, on average 64 percent of the units had an Ŝi less than

0.01 and thus would have near zero (or relatively small) inclusion probabilities. We evaluated five

different rescaling approaches for AMBAS to avoid (near) zero inclusion probabilities. AMBAS,

using any of these five rescaling approaches, gave generally similar mean detection rates compared

with AMStratRS, sometimes marginally better and sometimes worse, but had smaller observed

variances in the achieved detection rates. The results of AMBAS did not depend much on the

chosen rescaling technique. Overall, LIM05 achieved often the highest or nearly the highest mean

detection rate compared with the other rescaling approaches. The rescaling approaches CONS

and LIM15 generally had marginally lower detection rates compared with the other rescaling

techniques. This is because these two techniques use a higher proportion of the sample size as a

surveillance sample and thus a smaller number a units will be sampled in expected high density

areas. All the rescaling approaches had similar variances for the simulated detection rates.

Population estimation The results of the population estimation show that, except for the

first year, AMBAS had more biased population estimates than SRS and AMStrat. The results

for AMStratRS using PROP were similar to SRS. This is because AMStratRS using PROP

selects an equiprobable sample, similar to SRS, and the sampling effort is not focussed on

potentially high species density areas. AMStratRS using 50/50 generally had similar or even

better results compared with the other methods. For AMBAS the average bias was mainly

negative, which means that the true population total was underestimated. The differences in

bias and precision among the rescaling approaches for AMBAS were small.

The reason for the poor performance of AMBAS is that due to the rescaling approaches, it forces

the inclusion probabilities to be none proportional with the response yi, as seen in the previous

chapter. The rescaling approached generally force all low suitability units to have a relatively

higher inclusion probability.

AMBAS seemed to achieve marginally smaller observed variances compared with AMStratRS.

Nevertheless, these results indicate, given the observed bias, that AMBAS does not perform well

for population estimation at all. On the other hand, the fact that AMStraRS 50/50 performed

best in this simulation study is advantageous for the stratified methods.
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Table 4.1: Results of the first simulation study on the Asian tiger mosquito population. The
value of the best performing method are in bold (per row)

Year SRS
AMStratRS AMBAS

50\50 PROP LIM05 LIM10 LIM15 CONS PROG

L
ow

de
ns

it
y

D̄

1 0.026 0.026 0.026 0.027 0.026 0.026 0.027 0.026
2 0.026 0.123 0.027 0.134 0.125 0.133 0.134 0.133
3 0.027 0.142 0.028 0.162 0.141 0.135 0.122 0.139
4 0.026 0.181 0.027 0.201 0.183 0.174 0.173 0.188

RVSIM(D)

1 1.000 0.989 0.978 0.728 0.725 0.738 0.732 0.721
2 1.000 0.988 0.952 0.745 0.783 0.845 0.776 0.744
3 1.000 1.009 0.899 0.722 0.794 0.731 0.808 0.717
4 1.000 1.052 0.904 0.694 0.725 0.743 0.785 0.736

B̄

1 -1.541 -0.699 1.015 -1.024 0.502 -0.908 1.201 1.391
2 2.123 2.195 -0.642 -3.548 -4.124 -5.561 -3.981 -4.699
3 2.234 -1.805 -3.243 -2.997 -2.864 -3.512 -5.744 -4.123
4 -2.215 -1.215 -2.087 -3.197 -5.874 -6.937 -3.109 -3.553

RVSIM(Y )

1 1.000 0.993 1.000 0.959 0.942 0.945 0.948 0.954
2 1.000 1.050 0.935 0.895 0.857 0.950 0.847 0.829
3 1.000 0.979 0.960 0.967 0.979 0.935 0.971 0.981
4 1.000 1.090 0.959 0.959 0.935 0.973 0.949 0.963

H
ig

h
de

ns
it

y

D̄

1 0.115 0.115 0.116 0.115 0.115 0.116 0.115 0.115
2 0.115 0.188 0.118 0.185 0.186 0.183 0.187 0.186
3 0.115 0.199 0.118 0.210 0.205 0.190 0.168 0.205
4 0.115 0.229 0.120 0.273 0.274 0.259 0.224 0.271

RVSIM(D)

1 1.000 0.999 0.991 0.888 0.887 0.878 0.888 0.889
2 1.000 1.008 0.952 0.615 0.783 0.745 0.771 0.754
3 1.000 1.239 0.929 0.762 0.744 0.731 0.808 0.757
4 1.000 1.152 0.930 0.714 0.745 0.783 0.785 0.806

B̄

1 -1.148 0.161 1.215 1.001 -0.829 0.882 -0.490 -0.810
2 1.146 -2.002 -0.642 -3.548 -4.124 -5.561 -4.481 -4.699
3 0.986 0.687 -2.243 -2.997 -2.864 -3.512 -3.744 -4.123
4 -0.551 0.299 -1.987 -3.197 -3.874 -2.937 -3.109 -3.553

RVSIM(Y )

1 1.000 1.001 1.000 0.959 0.942 0.945 0.968 0.974
2 1.000 1.089 0.935 1.052 1.050 0.999 1.020 0.991
3 1.000 0.918 0.960 0.971 0.935 0.935 1.079 0.971
4 1.000 0.901 0.959 0.947 0.997 0.973 0.935 1.003

In
cr

ea
si

ng
de

ns
it

y

D̄

1 0.026 0.026 0.026 0.027 0.027 0.027 0.026 0.026
2 0.043 0.063 0.044 0.101 0.098 0.086 0.099 0.100
3 0.064 0.170 0.065 0.229 0.231 0.201 0.188 0.210
4 0.115 0.221 0.129 0.302 0.268 0.247 0.239 0.281

RVSIM(D)

1 1.000 0.987 0.981 0.751 0.749 0.750 0.751 0.777
2 1.000 1.108 0.922 0.775 0.783 0.745 0.776 0.769
3 1.000 1.239 0.949 0.882 0.744 0.731 0.878 0.857
4 1.000 1.452 0.940 0.842 0.855 0.983 0.985 0.836

B̄

1 0.531 1.203 1.015 0.551 0.005 -0.508 -0.801 -0.588
2 1.102 1.449 0.594 -2.145 -2.896 0.002 -2.986 -3.138
3 0.201 1.007 -0.108 -2.997 -2.864 -3.512 -3.548 -4.002
4 -0.054 -0.055 -0.323 -3.481 -4.699 -3.548 -3.109 -4.124

RVSIM(Y )

1 1.000 0.998 1.000 0.959 0.942 0.945 0.998 0.974
2 1.000 1.031 0.930 0.945 0.957 0.950 0.967 0.929
3 1.000 0.989 0.957 0.967 0.979 0.935 0.971 0.981
4 1.000 0.968 0.989 0.959 0.935 0.973 0.949 0.963
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Conclusion: Simulation Study

From this simulation study we can conclude that AMBAS and AMStratRS 50/50 achieved

overall the highest mean detection rates. AMBAS generally achieved the greatest precision in

observed detection rates. When comparing the rescaling approuches, AMBAS with the rescaling

technique LIM05 gave generally the highest (or near highest) mean detection rates. Based on

these results, we will use LIM05 as our preferred rescaling technique for the next simulation

studies.

The results for the population estimation study showed that AMStratRS 50/50 generally resulted

in good population estimates with smaller observed bias and better precision compared with

SRS and AMBAS. AMBAS performed very poorly for population estimation. Hence, from here

on, we will no longer evaluate AMBAS for population estimation.

4.3.3 Test for Spatially Balanced Sampling Designs vs Non-spatially bal-

anced Designs.

In the previous simulation study we compared Guisan’s AMStratRS with AMBAS. AMBAS

uses BAS to select a sample in each survey. In the previous chapter, we illustrated the well

known fact that a patially balanced sampling design achieves higher detection rates compared

with a non-spatially balanced sampling designs is, as expected, also applicable to BAS.

Based on these results, we performed a second simulation study to compare adaptive monitoring

using GRTS, BAS and CP. This was done for two reasons. First, to evaluated whether the

observed advantages of using AMBAS, a non-stratified sampling design for adaptive monitoring,

were only because BAS is a spatially balanced sampling design. We will evaluate if the use of

an unequal probability and non-spatially balanced sampling design such as CP could improve

the detection rates as opposed to AMStratRS. Second, to review if spatially balanced sampling

designs perform better than the non-spatially balanced sampling designs. Hence, the results

of adaptive monitoring using BAS and GRTS were compared with the results of adaptive

monitoring using CP.
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The simulation study on the Asian tiger mosquito data was repeated using the following methods:

1. SRS.

2. AMStratRS: using PROP and 50\50.

3. Adaptive monitoring using BAS: This is identical to AMBAS (using LIM05) in the previous

simulation study

4. Adaptive monitoring using GRTS: This is identical to AMBAS (using LIM05), but using

GRTS to select samples instead of BAS.

5. Adaptive monitoring using CP: This is identical to AMBAS (using LIM05), but using CP

to select samples instead of BAS.

These simulations were repeated for the same three scenarios and five percent of the units were

selected in each survey. Only the test statistic for the detection rates were computed: D̄k and

V̂SIM(Dk).

The results of this second simulation study are summarized in Table 4.2. These results illustrate

that adaptive monitoring using any of the three non-stratified sampling designs, thus using BAS

GRTS or CP, all performed similar. Adaptive monitoring using any of these three non-stratified

sampling designs generally achieved higher and less variable detection rates as compared with

AMStratRS. When comparing the spatially balanced sampling designs, BAS and GRTS, with the

non-spatially balanced sampling design, CP, the spatially balanced designs consistently had little

higher mean detection rates. These results confirm the results from the previous chapter that

spatially balanced sampling designs can achieve higher detection rates than the non-spatially

balanced sampling designs. The results for BAS and GRTS were similar, with generally a small

advantage for BAS over GRTS. The spatially balanced sampling designs had generally lower

variances compared with SRS and AMStratRS. The observed variances for CP were generally

the lowest out of the three tested spatially balanced sampling designs. The observed variances

for GRTS and BAS were very similar in general, with a small advantage for BAS in some cases.
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Table 4.2: Results of the second simulation study on the Asian tiger mosquito population. The
value of the best performing method are in bold (per row)

Year SRS
AMStratRS Non-stratified designs
50\50 PROP BAS GRTS CP

L
ow

de
ns

it
y D̄

1 0.026 0.026 0.026 0.027 0.027 0.026
2 0.026 0.123 0.027 0.136 0.137 0.117
3 0.027 0.142 0.028 0.163 0.162 0.161
4 0.026 0.181 0.027 0.201 0.199 0.188

RVSIM(D)

1 1.000 0.989 0.978 0.728 0.730 0.798
2 1.000 0.988 0.952 0.745 0.752 0.859
3 1.000 1.009 0.899 0.722 0.720 0.805
4 1.000 1.052 0.904 0.694 0.702 0.790

H
ig

h
de

ns
it

y

D̄

1 0.115 0.115 0.116 0.116 0.116 0.115
2 0.115 0.188 0.118 0.185 0.186 0.184
3 0.115 0.199 0.118 0.211 0.209 0.194
4 0.115 0.229 0.120 0.273 0.267 0.258

RVSIM(D)

1 1.000 0.999 0.991 0.888 0.894 0.959
2 1.000 1.008 0.952 0.615 0.721 0.819
3 1.000 1.239 0.929 0.762 0.760 0.806
4 1.000 1.152 0.930 0.714 0.715 0.730

In
cr

ea
si

ng
de

ns
it

y

D̄

1 0.026 0.026 0.026 0.027 0.027 0.026
2 0.043 0.063 0.044 0.101 0.104 0.093
3 0.064 0.170 0.065 0.229 0.210 0.209
4 0.115 0.221 0.129 0.302 0.292 0.273

RVSIM(D)

1 1.000 0.989 0.978 0.728 0.730 0.798
2 1.000 1.108 0.922 0.775 0.770 0.818
3 1.000 1.239 0.949 0.882 0.886 0.900
4 1.000 1.452 0.940 0.842 0.850 0.849
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4.4 Discussion

Adaptive monitoring means that for each additional survey the monitoring design is updated

based on the obtained information from the previous years. In this chapter we illustrated

how to use ecological information to update the monitoring strategy. Based on the collected

ecological information the species habitat suitability is estimated using a SDM. Next, the

inclusion probabilities of all units in the study area are set proportional to the estimated species

habitat suitability. A probability sample is then selected based on the set inclusion probabilities.

Previous studies such as Guisan et al. (2006) followed a similar method, however they used the

estimated habitat suitability to partition the study area in a suitable stratum and an unsuitable

stratum. Based on this stratification of the study area a sample was selected using StratRS.

Simulation studies were performed to compare AMStratRS as used in Guisan et al. (2006) with

alternative non-stratified sampling methods. Initially, we used BAS as our alternative sampling

method and compared AMBAS with AMStratRS. In most of our simulation studies the detection

rates for AMBAS were at least twice as high than those with SRS. When comparing AMBAS

with AMStratRS the mean detection rates were generally very similar. AMBAS did achieve

little smaller variances of the detection rates compared with AMStratRS 50/50.

We proposed three different rescaling approaches to avoid (near) zero inclusion probabilities.

The results of the simulation study indicated that setting a lower limit on the estimated species

suitability, and more particularly LIM05, was the preferred method to use in these cases. Setting

a lower limit, means that the expected low density area can still be sampled, hence a surveillance

sample is ensured. This surveillance sampling is necessary, especially when monitoring an

invasive species to hopefully avoid new outbreaks. However, setting the lower limit to high can

lead to a larger allocation of the sampling effort in the predicted low density areas and therefore

a smaller portion is allocated to the high density areas. Hence, an increase of the lower limit

might decrease the detection rate, which explains the results of our simulation study. Note that

having a large or small surveillance sample depends on various often uncontrollable factors. For

example, if the species expands over time a surveillance sample is essential to detect new and
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emerging hotspots of the invasive species. Therefore it is difficult to make a general statement

about the size of the best lower limit. One size does not fit all.

A second simulation study was performed to compared the differences between using spatially

balanced sampling designs and using non-spatially balanced sampling designs for adaptive

monitoring. The spatially balanced sampling designs achieved higher mean detection rates and

a higher precision. Adaptive monitoring using BAS had marginally better results over adaptive

monitoring using GRTS.

The results of the simulation study showed that AMBAS worked well for species populations

that are in equilibrium (second scenario) with the habitat as well as for species populations that

are not yet in equilibrium with the habitat (first scenario). The simulation study also illustrated

that AMBAS worked well for both stationary (first and second scenario) and non-tationary

populations (third scenario). In Chapter 6 we will evaluate AMBAS in more detail for its use

for non-stationary populations.

The simulation study used in this chapter made use of binary presence-absence per unit data.

We further evaluated AMBAS for count data using distribution data for Solanum acaule, a plant

species that occurs in the high Andes of Peru and Bolivia. This data set is freely available in

the package ’Dismo’ of the R language (Hijmans et al., 2013). In total there are 594 Solanum

acaule individuals spread over 3704 units. Many units had a species count of more than one,

suggesting count data. However excessive zero counts were prevalent. Therefore, simple logistic

regression on presence/absence per unit was chosen as species distribution modelling method.

The results in Table 4.3 indicate that in the case of count data AMStratRS 50/50 achieved

the highest mean detection rates. Out of the non-stratified spatially balanced designs BAS

performed best. Even though AMBAS had a lower observed variance than Guisan’s AMStratRS

these results are still surprising. One reason to explain this is that count information provides

more powerful information to predict the species suitability than presence/absence data. Hence,

the classification algorithm to stratify the units in suitable units or unsuitable units will become
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more accurate and hence the allocation of sampling units to the high suitability stratum when

using AMStratRS will become more accurate and precise.

Table 4.3: Results of the simulation study on the Solanum acaule. The value of the best
performing method are in bold (per row)

Year SRS
AMStratRS Non-stratified designs

50 \50 PROP BAS GRTS CP

D̄

1 0.035 0.035 0.035 0.035 0.035 0.035
2 0.035 0.153 0.065 0.144 0.100 0.077
3 0.035 0.163 0.075 0.139 0.095 0.071
4 0.034 0.152 0.077 0.142 0.093 0.071

RVSIM(D)

1 1.000 0.998 1.001 0.986 0.988 1.001
2 1.000 0.924 0.989 0.829 0.840 0.948
3 1.000 1.012 0.996 0.810 0.826 0.901
4 1.000 1.223 0.992 0.902 0.831 0.887



Chapter 5

Adaptive Monitoring Using Spatial

Information: Nearest Unit

Tessellation

5.1 Introduction

In the previous chapter, ecological information was used to update the monitoring strategy.

Species distribution models (SDMs) were used to model the ecological information to estimate

the species habitat suitability. The estimated species habitat suitability was then used as an

auxiliary variable to predict the species distribution. The inclusion probabilities for each unit

were set proportional to the estimated species habitat suitability. A common assumption that

SDMs make is that the modelled species is in near equilibrium with its environment (Elith and

Graham, 2009). A species is in equilibrium with its environment if the species is distributed

proportional to the estimated habitat suitability and occupies all sites that have a habitat

suitability that is high enough for that species. However, often geographic processes are dom-

inant over environmental ones (Elith and Graham, 2009; Lobo et al., 2010). This is the case

particularly for invasive species, which by definition are not in equilibrium. This is since these

species are new to an area and have not had the time yet to invade all places they can live in

109
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(given there is some physical pathway they can follow to invade these area). In those cases, the

rate of spread of a species is largely determined by geographical or spatial factors instead of the

level of the species habitat suitability (Legendre, 1993; Elith and Leathwick, 2009). Examples

of such geographical factors are contagious diseases, habitat connectivity, species dispersal or

relevant (a)biotic interactions. These geographical factors can result in geographic clumping of

the species population or spatially autocorrelated species distributions.

For example, in the previous chapter we used a virtual distribution of the Asian tiger mosquito.

The initial invasion of the South Island of New Zealand by the Asian tiger mosquito was initiated

from the east coast of the island. Over time the species spreads over most of the east coast but

only few units are invaded on the west coast. However, the estimated species suitability is very

similar for the west and the east coast. This is mainly caused by the Southern Alps, a mountain

range that crosses the island from north to south (Pitt et al., 2009; Senay et al., 2013). It is

dhifficult for the species to disperse beyond the mountain range. Because of this the west side

of the island has almost not been invaded the Asian tiger mosquitoes. Hence, large areas with

high suitabilities have not yet been invaded by the species. In the simulation study of the Asian

tiger mosquito in the previous chapter, during each survey, samples were selected both on the

west and east coast. By analysing the data it would have been easy to notice that there was a

geographical or spatial effect on the species distribution. The SDM that was used to predict the

habitat suitability ignored this spatial information.

Many SDMs only use the information of in which habitat a species is observed and disregard

the observed spatial distribution of the species over the study area. Thereby, they often neglect

information about possible deviations of the species distribution from its assumed equilibrium

with the habitat (Lobo et al., 2010; Elith and Graham, 2009). This means that environmental

information, or information based on species distribution models should be interpreted only as a

measure of species habitat suitability, rather than a measure of the likelihood of species presence.

This is especially the case when a species is unlikely to be in equilibrium with its environment.

Hence, the observed spatial distribution of the species should therefore not be ignored when

updating the monitoring strategy. Using spatial information is especially important when
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surveying invasive or endangered species. Many of these species are not in equilibrium with the

environment of the sampling area (Robertson et al., 2004; Guisan and Thuiller, 2005) and thus

often do not occur at locations with the highest estimated species habitat suitability. Methods

that use the observed spatial information of the species are called ‘geographical models’. The

concept of geographical models is intuitive. Simply stated; units close to a sampled unit in

which the species of interest was observed will be more likely to contain individuals compared to

more distant units. Thus for sampling, the closer a unit is to a unit in which the species are

observed the more likely it should be selected in the next survey. Thus these units should be

given higher inclusion probabilities in the next survey to increase the detection rate.

Various geographical methods have been introduced to predict the species distribution (Bahn and

McGill, 2007; Colwell and Rangel, 2009; Hijmans, 2012). An example are convex hull methods.

A convex hull is the smallest polygon around a set of points with no angles exceeding 180 degrees.

In ecology for example, a convex hull can be placed around all occupied units in a study area.

The study area can then be stratified based on a unit being inside or outside the convex hull.

This method was applied, for example, by Burgman and Fox (2003) to estimate the range of the

distribution of A. bonvouloiri, a beetle species, in Europe. Another set of geographical methods

is called Kriging (there are several different Kriging methods) (Krige, 1951). Kriging is based on

the first law of geography, namely: ‘Everything is related to everything else, but near things are

more related than distant things.’ (Tobler, 1970). Hence, Kriging techniques give nearby units

similar values. Thus, if a unit is close to a known occupied unit, that unit is assigned a higher

chance of finding a species in. Kerrya et al. (2013), for example, compared two types of Kriging

methods for their accuracy to map the distribution of several large animals in Kruger National

Park, South Africa. Other geographical techniques are spatial point processes modelling in

which the expected density for each unit is predicted based on the number of occupied units

in the neighbourhood of the unit (Seaman and Roger, 1996) or two dimensional kernel density

estimation which is two dimensional variation of kernel density estimation.

The initial idea was to use these methods to adjust the inclusion probabilities for adaptive

monitoring. We experimented with several of these geographical methods and compared their
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practical usage for adaptive monitoring. It appeared that some of the previously discussed

methods were not very suitable in practice for the adaptive monitoring method we introduced

in Chapter 2. Other methods are difficult to use in a simulation study context. For example,

convex hull methods have a binary outcome and thus simply stratify the sampling area into a

suitable stratum and an unsuitable stratum. Our method for adaptive monitoring requires the

assignment of inclusion probabilities on the unit level, preferably without stratification. Convex

hull methods are therefore not suitable. Moreover, many studies (Burgman and Fox, 2003; Elith

and Leathwick, 2009) describe how convex hull methods often give poor results, even after adding

certain conditions to make the methodology more robust. Methods like Kriging and Kernel

density estimation depend strongly on the chosen parameter settings (Kerrya et al., 2013; Oliver

and Webster, 2014; Webster and Oliver, 1992). For example, in kernel density estimation the

bandwidth selection has an important effect on the final estimated densities. Another example

is the specification of the spatial correlation structure of the data, the variogram, for Kriging

methods (Oliver and Webster, 2014; Webster and Oliver, 1992). Although this is not a problem

as such, it does mean that each time these methods are used, optimization of the parameters is

required (Oliver and Webster, 2014; Webster and Oliver, 1992). This can be a difficult, and

often arbitrary, process. This case specific parametrisation makes these methods difficult to

use for repeated surveying such as adaptive monitoring or when running simulation studies.

Furthermore, many of these methods give poor or unrealistic results, or are difficult to fit if not

enough data are available (Oliver and Webster, 2014; Webster and Oliver, 1992; Seaman and

Roger, 1996). For example, the reliability of a variogram depends strongly on the size of the

available data. In the case of presence/absence data, there should be at least 100 presence points

available (Oliver and Webster, 2014). 100 presence units is often unrealistic to achieve when

monitoring invasive species at an early stage of the invasion. Finally, methods like spatial point

pattern analysis or convex hull methods use presence-only data. With adaptive monitoring, and

especially in the case of invasive or rare species, the majority of the visited units are likely to be

unoccupied. Hence, it can be important to include the information about unoccupied units to

the geographical method.
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Because of this, we tried to develop a new class of geographical methods called Nearest Unit

Tessellation (NUT). The idea for NUT originated from the usage of Voronoi tessellations to

measure the spatial balance of a sample. All NUT methods are based on some form of (discretised)

Voronoi tessellation. In this chapter, we will illustrate and compare several NUT methods.

A simulation study is conducted to show that each NUT method has specific properties and

specific applications. Compared with some of the existing geographical methods, these NUT

methods can be used to model the spatial information and to update the inclusion probabilities

for our suggested method for adaptive monitoring. Note that the simulation study only compares

the different NUT methods and does not provide any results of other potential geographical

methods.

5.2 Methodology

The NUT methodology is based on discretised Voronoi cells. The Voronoi cell J for sampled

unit j is the collection of all units that are nearest to unit j compared with any other unit in

the sample. Equidistant units are randomly assigned to one of the potential Voronoi cells. A

sampled unit occupied by the species (and assuming that the detectability is 100 percent) is

called a presence unit, a sampled units unoccupied by the species is a absence unit. A Voronoi

cell based on a presence unit is a presence Voronoi cell, a Voronoi cell based on an absence unit

is called an absence Voronoi cell.

Here we introduce five different NUT methods. All five NUT methods follow the same three

steps based on the selected sample(s):

Step 1 Tessellate the area into (discretised) Voronoi cells.

Step 2 Assign all units within the same Voronoi cell a weight ωi.

Step 3 Set the inclusion probability πi for each unit using the assigned weights.

The NUT methods can be different from each other at each of these three step. This will be

explained in more detail later in this chapter. For example some NUT methods use presence/ab-

sence data for tessellation while others use presence data only for their tessellation. Another
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difference is the way each NUT method sets the inclusion probabilities. Some methods only

use two levels of inclusion probabilities based on presence\absence, other methods set inclusion

probabilities with a continuous range for example based on the size of the Voronoi cell or based

on the observed number of individuals in the sampled units.

To illustrate the NUT methods and to illustrate adaptive monitoring using these NUT methods,

we again make use of the Rockfish data, adopted from Su and II (2003). However, this time the

Rockfish data are modified differently. The original modelled population of Su and II (2003)

had 20 by 20 units, N = 400. In this chapter, the Rockfish population is modified using bilinear

interpolation to 80 by 80 units, N = 6400. The resulting distribution of the Rockfish is shown

in Figure 5.1. The population of Rockfish is highly aggregated over the study area. For much of

the study area, the fish were absent, but when present, their abundance peaked at 25 individuals

per unit.
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Figure 5.1: Distribution of the Rockfish population adopted from Su and II (2003), 80 by 80
units, N = 6400
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5.2.1 Simple Nearest Unit Tessellation

The first NUT method is Simple Nearest Unit Tessellation (SNUT). SNUT uses both presence

and absence units to set the inclusion probabilities. An illustration of SNUT, see Figure 5.2a,

will make it easier to understand the basic principle of SNUT. Based on the sampled units in

the previous survey(s) SNUT works as follows:

1. Tessellate the study area into Voronoi cells: Use both presence and absence units

to construct presence and absence Voronoi cells.

2. Assign weight ωi to each unit: Although the value of these weights ωi are arbitrary,

we suggest the following rule of thumb: If unit j is a presence unit, then ωi = 2 for all

units in the presence Voronoi cell J . However if unit j is an absence unit, then ωi = 1 for

all the units in the absence Voronoi cell J .

3. Calculate πi for unit: For unit i the inclusion probability πi can be calculated by

πi = n
ωi∑N
i=1 ωi

. (5.1)

Thus a unit within a presence Voronoi cell will get an inclusion probability that is double

the inclusion probability of a unit in an absence Voronoi cells.

5.2.2 Unequal Nearest Unit Tessellation

A variation of SNUT sampling is Unequal Nearest Unit Tessellation (UNUT) and is illustrated

in Figure 5.2b. The methodology of UNUT is similar to SNUT. However, for UNUT the Voronoi

tessellation (step 1.) of the SNUT methodology is different and works as follows: The distance

d between two units is the euclidean distance between the centres of the two units of interest.

For each unit the distance dp to the nearest presence cell p and the distance da to the nearest

absence cell a is calculated. If for a unit (1− u)da < udp, with u a value between zero and one,

then that unit will be part of presence Voronoi cell P around presence unit p otherwise it will

be part of absence Voronoi cell A around absence unit a. If u = 0.5 than UNUT is identical to
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(a) SNUT (b) UNUT

Figure 5.2: Illustration of Simple Nearest Unit Tessellation (SNUT) and Unequal Nearest Unit
Tessellation (UNUT) with u = 2

3 . Two percent of the units are sampled. Black units are presence
units, grey units are absence units. Darker Voronoi cells are presence Voronoi cells and will
obtain a higher weight and thus a higher inclusion probability. Absence Voronoi cells are brighter
and will obtain a lower weight and thus a lower inclusion probability.

SNUT. If u > 0.5, then more units will be allocated to presence Voronoi cells and thus presence

Voronoi cells will absorb more units. Therefore more units will have ωi = 2. If u < 0.5, then

more units will be allocated to Voronoi cells around absence units and thus more units will have

ωi = 1. As a rule of thumb we suggest using u = 2
3 . The reason for this rule of thumb is as

follows. After experimenting with UNUT, it was clear that UNUT was a better method than

SNUT but definitely not as good compared with the NUT methods we will introduce in the

next sections. However, because it is an intuitive extension of SNUT we decided to explain the

method and include it in this thesis. The rule of thumb of u = 2
3 was arbitrarily chosen after

trying out various values for u. Nevertheless, u = 2
3 is also intuitive. A value close to one will

likely predict too many absence units a high inclusion probability and a value much lower then

2/3 will decrease the advantage that UNUT offers over SNUT.
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5.2.3 Presence Nearest Unit Tessellation

Presence Nearest Unit Tessellation (PNUT) only uses the spatial information from presence

units, thus of those sampled units in which the species of interest was observed in the previous

survey(s). A possible reason for only using presence units is that presence units provide reliable

information about where a species is located. Absence units do not ensure total absence of

the species. An absence unit may be a false negative due to observation error or can be an

occasional unoccupied unit in an other than that high density area. Therefore absence units may

be misleading observations. Another situation in which using presence only data can be useful

is when dealing with citizen science data. Citizen science data can for example be the reported

observations of a species by volunteers or data from achieved documentation. These reports

mainly describe the occasions when somebody has actually observed the species. However,

reports of a species being absence are rare, this is since not many people report not seeing a

species.

PNUT is illustrated in Figure 5.3. PNUT works as follows:

1. Tessellate the study area into Voronoi cells: Only presence units are used to

tessellate the study area into presence Voronoi cells.

2. Assign weight ωi to each unit: They idea behind PNUT is that large Voronoi cells

indicate low densities and small Voronoi cells indicate high densities. For each Voronoi

cell the number of units that are part of that cell are counted. This count C can be seen

as the relative size of the Voronoi cell. Set the weight equal to the reciprocal of the count,

thus ωi = 1
C .

3. Calculate πi for each unit: For each unit the inclusion probability is set proportional

to the weight

πi = n
ωi∑N
i=1 ωi

. (5.2)

Lower limit After performing PNUT, units in small Voronoi cells will have high inclusion

probabilities since the inclusion probabilities are proportional to the reciprocal of the Voronoi
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Figure 5.3: Illustration of Presence Nearest Unit Tessellation (PNUT). Two percent of the units
are sampled. Black units are presence units, grey units are absence units. Units in smaller
(darker) Voronoi cells will obtain a smaller relative size and thus a higher inclusion probability.
Units in bigger (brighter) Voronoi cells will obtain a higher relative size and thus a smaller
inclusion probability.

cell sizes. However, one possible drawback of PNUT is that if some Voronoi cells are very small,

it will force the inclusion probabilities of the units in other Voronoi cells to be very small. Small

Voronoi cells will look like sharp spikes on a 3D inclusion probability plot, see Figure 5.4. These

extreme inclusion probabilities can be problematic because when selecting a sample it is likely

that only units that are part of these small Voronoi cells will be selected.

If the sample size is higher than the number of units part of those small Voronoi cells, these

extreme differences in inclusion probabilities do not have to be problematic. In that case, all the

units within the small Voronoi cells will be selected first. After that, the remaining sampling

units will be selected from the bigger Voronoi cells.

In the case when the sample size is small or if too many units have high inclusion probabilities we
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suggest the following method. If the relative size Ci of a unit is smaller than a predefined lower

limit Climit, then replace that unit’s Ci by the value of that lower limit Climit. The remaining

part of the PNUT sampling methodology remains the same.

A suggestion for a lower limit Climit would be equal to the total number of units divided by the

sample size of the performed survey, thus N
n . Note that N

n does not have to be an integer. The

logic behind this lower limit is that if both the species and the sampled units are uniformly

distributed over the sampling area, then all Voronoi cells are expected to have the same size.

Note that if each unit in the sampling area would be assigned this lower limit value, all inclusion

probabilities would be equal to n
N which is the same as for basic equal probability sampling.
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(a) PNUT without using a lower limit
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(b) PNUT using a lower limit

Figure 5.4: Example differences in inclusion probabilities when performing PNUT with and
without using a lower limit for the Rockfish data. Note that the inclusion probabilities are
rescaled such that the maximum is one.
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5.2.4 Presence/Absence Nearest Unit Tessellation

Since PNUT only uses presence data, information provided by absence units is neglected.

However, the majority of the sampling units often are absence units, this is especially the case

with small and clustered populations. Presence/Absence Nearest Unit Tessellation (PANUT) is

similar to PNUT but does include the information from the absence units into the geographical

method. PANUT is illustrated in Figure 5.5 and works as follows:

1. Compute inclusion probabilities based on PNUT: Perform PNUT using the set of

presence units only to compute the inclusion probabilities, which we call πPNUT
i .

2. Compute inclusion probabilities based on Absence Nearest Unit Tessellation

(ANUT): Repeat the same steps as for PNUT but use the absence units only instead of

the presence units, thus ANUT, and compute the inclusion probabilities πANUT
i using

πANUT
i = n

ωANUT
i∑N

i=1 ω
ANUT
i

. (5.3)

3. Set πPANUT
i using πPNUT

i and πANUT
i : To compute the final inclusion probabilities

πPANUT
i based on πPNUT

i and πANUT
i first calculate

pPNUT
i = πPNUT

i

max(πPNUT
i )

(5.4)

such that pPNUT
i has a maximum of one, and

pANUT
i = πANUT

i

max(πANUT
i )

. (5.5)

such that pANUT
i has a maximum of one. Then use one of the following combination

techniques:

(a) The additive method:

pPANUT
i = (pPNUT

i − pANUT
i ) + 1. (5.6)
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The +1 is added to ensure that pPANUT
i is non-negative.

(b) The ratio method:

pPANUT
i = pPNUT

i

pANUT
i

. (5.7)

To get to final inclusion probabilities use

πPANUT
i = n

pPANUT
i∑N

i=1 p
PANUT
i

. (5.8)

Note that the obtained inclusion probabilities πANUT
i are a measure of not observing the species

in a unit, and are therefore not useful for probability sampling. However one could consider

rescaling the reciprocal of πPNUT
i to set inclusion probabilities for an unequal probability sampling.

In addition, intuitively one could argue that for ANUT the relative size of the Voronoi cells Ci
could be used as weights instead of the reciprocal thus

πANUT
i = n

CANUT
i∑N

i=1C
ANUT
i

(5.9)

and to obtain the final inclusion probabilities one could modify the additive method to

pPANUT
i = pPNUT

i + pANUT
i . (5.10)

Equation 5.9 and Equation 5.10 will set high inclusion probabilities in those areas for which less

information is available about absence units. However, as illustrated in Figure 5.5, the main

idea of PANUT is that areas with a high predicted species presence based on PNUT, will get

penalized (thus reduced inclusion probabilities) if it is known that absence units are present

within those areas, thus by information gained from ANUT.

5.2.5 Count Nearest Unit Tessellation

All previous NUT methods used binary presence/absence data. Count Nearest Unit Tessellation

(CNUT) is a variation of NUT that uses the observed species count to set the inclusion

probabilities. CNUT is illustrated in Figure 5.6. Based on all sampled units in the previous
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(a) PNUT (b) ANUT (c) PANUT

Figure 5.5: Illustration Presence/Absence Nearest Unit Tessellation (PANUT). Two percent
of the units are sampled. In this case, the additive method is used for PANUT. Black units
are presence units, grey units are absence units. Darker Voronoi cells for PNUT indicate a
higher likelihood of observing a species and thus will increase the final inclusion probabilities.
Darker Voronoi cells for ANUT indicate a higher likelihood of not observing a species and thus
will decrease the final inclusion probabilities. For PANUT darker units have higher inclusion
probabilities.

survey, CNUT works as follows:

1. Tessellate the study area into Voronoi cells: Both presence and absence units are

used for the Voronoi tessellation.

2. Assign a weight ωi to each unit: Set ωi for all units in Voronoi cell J equal to the

observed count of the species, yj , in unit j .

3. Calculate the inclusion probability for each unit: For each unit set the inclusion

probability proportional to the reciprocal of the assigned count by using

πCNUT′
i = n

ωi∑N
i=1 ωi

. (5.11)

If unit j is an absence cell then ωi = 0 for all units in Voronoi cells J and all these units

will have an inclusion probability of zero. To avoid this the inclusion probabilities for each



5.2. METHODOLOGY 123

cell are rescaled as follows:

πCNUTi =
πCNUT′
i + n

N

2 . (5.12)

Figure 5.6: Illustration of Count Nearest Unit Tessellation (CNUT). Two percent of the units
are sampled. Black units are presence units, grey units are absence units. Darker Voronoi cells
have higher inclusion probabilities.

5.2.6 Adaptive Monitoring Using the NUT Methods

The NUT methods estimate the density of a species over a sampling area. Adaptive monitoring

using geographical methods works as follows: Equal probability sampling is performed in the

first survey. Thus πi = n/N for each unit. SRS is an example of an equal probability sampling

method. However, in the case of these NUT methods this initial sample has to be a spatially

balanced sample. This is since units selected with SRS can by chance be clustered near each

other which can influence the NUT tessellation. In Chapter 3, BAS was chosen as the preferred

spatially balanced sampling design. Therefore, we will use BAS to select the sample when using

the NUT methodology. An equiprobable sample selected using BAS for the Rockfish data is

illustrated in Figure 5.7a.
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After an initial sample is taken, a NUT method is chosen and applied to set inclusion probabilities

so that unequal probability sampling can be performed for the subsequent survey. The NUT

methods are designed for adaptive monitoring and are therefore expected to provide good results

when used in an adaptive long term context.

After setting the inclusion probabilities, unequal probability sampling can be performed to

select the sample for the next survey. Since by using a spatially balanced sampling method the

sampling units within each Voronoi cell will be more evenly spread. Therefore we recommend

using BAS to select an unequal probability sample. An unequal probability sample selected using

BAS based on the set inclusion probabilities using PANUT is shown in Figure 5.7b. Compared

with the species distribution in Figure 5.1, this unequal probability sample is more densely

distributed in and near areas with higher species densities.

5.3 Simulation Study

A simulation study was performed to evaluate the performance of the NUT methodologies. The

simulation studies were performed using the Rockfish population and the Asian tiger mosquito

population. The Rockfish population is a highly clustered population. The Asian tiger mosquito

population, introduced in the previous chapter, is a less clustered or scattered population and

has a non-homogeneous species distribution over the South Island. Most of the species are on

the east side of the island.

Monte Carlo simulations were performed to evaluate and compare the NUT methods. The

details about which NUT was used is discussed in the following subsection. For each NUT

method, sampling was performed for ten consecutive years. This ten years long sampling scheme

was repeated 1000 times for each method. Each year three percent of the units were sampled.

For each iteration j, the detection rate Dj,k and the population total Ŷj,k were calculated for

each year k. The mean detection rates D̄k per year k were calculated as well as the variance in
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(a) Equal probability sample (b) Unequal probability sample

Figure 5.7: Illustration of an equal probability and an unequal probability sample for the
Rockfish data. For both samples two percent of the units are selected using BAS. Black units
are presence units, grey units are absence units. In this case, the inclusion probabilities for
unequal probability sampling are set by PANUT.

the calculated detection rates per year V̂SIM(Dk).

5.3.1 Details of the Species Populations

Clustered Rockfish Population

The Rockfish dataset was introduced in Section 5.2 and Figure 5.1. The Rockfish dataset is 80

by 80 units, N = 6400. Of those 6400 units, 1629 units are occupied by Rockfish, which is 25.4

percent of the units.

Scattered Asian Tiger Mosquito Population

The Asian tiger mosquito population dataset was introduced in the previous chapter. Compared

with the Rockfish dataset, the Asian tiger mosquito is a scattered and less clustered population
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with some presence units completely isolated from other presence units. To be able to compare

the results for both species populations it is assumed that, in this chapter, the Asian tiger

mosquito population is stationary, using the predicted distribution for the year 2018. In the

year 2018, 15.8 percent of the units are occupied by the Asian tiger mosquito.

The distribution data of the Asian tiger mosquito is presence/absence data. However, count

data are required for the simulation section of CNUT. Therefore, for the CNUT simulation

study, the Asian tiger mosquito dataset was artificially transformed from presence/absence data

to count data. This was done by first creating a species habitat suitability layer (using logistic

regression, see Chapter 4). This suitability layer had values ranging from zero to one. For

each presence unit the estimated species suitability was multiplied by 10 to get virtual counts.

Counts for absence units were set equal to zero to ensure that the distribution and the number

of occupied units remained unchanged. The resulting distribution and virtual counts are shown

in Figure 5.8.
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Figure 5.8: Predicted distribution and virtual count data of the Asian tiger mosquito in the
South Island of New Zealand for the year 2018.
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5.3.2 Results

SNUT and UNUT

In this section, we compare the results of the simulation study for adaptive monitoring when

using the following geographical methods:

1. SNUT based on the cumulative data from all previous surveys (SNUT-CD).

2. SNUT based on data from the previous survey only (SNUT).

3. UNUT based on the cumulative data from all previous surveys (UNUT-CD).

4. UNUT based on data from the previous survey only (UNUT).

The results are shown in Figure 5.9. For both the Rockfish and the Asian tiger mosquito

population the simulations using the cumulative data resulted in higher detection rates compared

with those of the non-cumulative methods. The error bars are wide and tend to overlap for most

methods at each year. Only the results for SNUT-CD and UNUT do not overlap from year 7

onwards for the Rockfish population. This indicates that the observed differences are likely not

significantly different. For the Rockfish data SNUT performed better, whereas for the Asian

tiger mosquito data UNUT performed better. In the case of a clustered population like the

Rockfish data SNUT performs better than UNUT since one can expect that the bordering units

of a presence unit will be presence units and the bordering units of a absence unit will be absence

units. In the case of a more scattered, non-clustered population like the Asian tiger mosquito

dataset, UNUT will perform better since one can assume that the proximate neighbourhood of

a presence unit will contain more presence units. However these units do not have to border

that presence unit. Using a similar logic, one can assume that the observed absence units could

be bordering presence units or have presence units in their neighbourhood. Therefore, absence

Voronoi cells in high density areas will be relatively small whereas absence Voronoi cells in

low density areas will likely be relatively bigger. Therefore, choosing UNUT and thus having

relatively bigger presence Voronoi cells and smaller absence Voronoi cells will result in higher

detection rates for non-clustered populations.
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Figure 5.9: Results of the simulation study for SNUT and UNUT. The error bars are the 2.5%
and the 97.5% percnetile obtained by the simulation studies.

PNUT

In this section, we evaluate adaptive monitoring using PNUT based on the cumulative data

from all previous surveys with:

1. PNUT with no lower limit (PNUT-0).

2. PNUT with a lower limit of N
n (PNUT-1).

3. PNUT with a lower limit of 0.5Nn (PNUT-0.5).

4. PNUT with a lower limit of 1.5Nn (PNUT-1.5).

The results are shown in Figure 5.10. For both the Rockfish and the Asian tiger mosquito

populations the simulations using PNUT with no lower limit gave the best results followed by

PNUT-0.5, then PNUT-1 and finally PNUT-1.5. Using PNUT without any lower limit was

the only method for which the detection rates increased year after year and reached more than

80 percent for the Rockfish population and reached more than 60 percent for the Asian tiger
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mosquito population. The other three methods, PNUT-0.5, PNUT-1 and PNUT-1.5 all reached

the highest detection rate during the third year and then decreased. This is except for PNUT

1.5 in the Asian tiger mosquito population which surprisingly remains more or less constant from

year three onwards. These results suggest that using a small lower limit or even better, using no

lower limit, results in the highest detection rates. The problem is that PNUT with no lower limit,

or a small lower limit is what we will call a greedy method. Greedy methods tend to allocate all

their sampling effort in known high density areas, which we will call a greedy area. For PNUT,

using no lower limit, once a high density area is located the inclusion probability will be much

higher in that area compared with the other areas. This is as illustrated in Figure 5.4. Therefore

this greedy area will absorb the majority of the sampling effort. Since more presence units will

likely be found in that area, this absorbing effect will increase over time. The detection rate will

increase because many units will be sampled in just one known high density area. However, this

means that only few units are sampled elsewhere to screen the remaining areas for potential

high density areas and thus no (or a very small) surveillance sample will be taken. Because of

this, new invaded areas or existing hotspot are potentially not detected. Therefore, one should

be careful when applying PNUT without using a lower limit.

The error bars are similar in size for each method and for each survey. The overlap in the error

bars for the first two years indicate that that there are only signgificant differences between the

methdos from the third year onwards.

The reason why PNUT-0.5, PNUT-1 and PNUT-1.5 (in the rockfish population only) decrease

after the survey can be explained by the fact the PNUT does not take into account the absence

units. Each time a presence unit is found the sampling effort will increase around that presence

unit. However over time more presence units will be found in low density areas. These isolated

units can be though of as isolated presence units surrounded by absence units. Once many of

those isolated presence units are discovered, which in this case is apparently after the third

year, consequently more samples will be selected within actual low density areas. Because of

this the detection rate might decrease again since the information from the absence units is not

incorporated in the model when using PNUT.
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Figure 5.10: Results of the simulation study for PNUT. The error bars are the 2.5% and the
97.5% percnetile obtained by the simulation studies.

PANUT

In this section we evaluate adaptive monitoring using PANUT:

1. Using the Additive method (PANUT-add) and using

(a) the cumulative data of both presence and absence units from all previous surveys

(PANUT-add-CD).

(b) the cumulative information from all previous surveys for the presence units but only

the information from the last survey for the absence units (PANUT-add-pres).

(c) the cumulative information from all previous surveys for the absence units but only

the information from the last survey for the presence units (PANUT-add-abs).

(d) the information from the last survey only for both presence and absence units

(PANUT-add).

2. Using the Ratio method (PANUT-ratio) using
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(a) the cumulative data of both presence and absence units from all previous surveys

(PANUT-ratio-CD).

(b) the cumulative information from all surveys dataset for the presence units but only

the information from the last survey for the absence units (PANUT-ratio-pres).

(c) the cumulative information from all surveys dataset for the absence units but only

the information from the last survey for the presence units (PANUT-ratio-abs).

(d) the information from the last survey only for both presence and absence units

(PANUT-ratio).

The results are shown in Figure 5.10. First of all, the PANUT-add and PANUT-ratio methods

were compared. PANUT-ratio had in general the highest detection rates. Interestingly, PANUT-

ratio reached the highest detection rate in the second year, after using the information from

the initial survey. This is similar to the non-zero PNUT methods which reached their highest

detection rates after the third survey. The detection rates for PANUT-add-abs on the other

hand still increased after the second survey. These result can be explained because the ratio

method can become a greedy method. Recall that for the Ratio method pPANUT
i = pPNUT

i

pANUT
i

. If

pANUT
i is small, then pPANUT

i can become very big. This will happen in high density areas. On

the other hand if pPNUT
i is small, then pANUT

i can solely become zero. Therefore with PNUT

certain high density areas can absorb the majority of the sampling effort and will become greedy

areas.

Using only the cumulative data of the absence units, thus PANUT-ratio-abs and PANUT-add-abs

results in the highest detection rates. This unexpected result can be explained as follows: Since

the aim is to increase the detection rate, over time more and more presence units will be found.

The amount of presence units found in each survey will be high enough to construct a reliable

PNUT layer. However, when combining the cumulative data of presence points, thus using

PANUT-CD or PANUT-pres, inclusion probabilities will become very high, even for those units

that are in the transition area between low and high density areas. This is problematic, since

these areas often contain a relatively high number of absence units. Therefore, over time the

detection rate will drop since many absence units in these intermediate density transition areas
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will be sampled. This is also the reason why PANUT-CD and PANUT-pres resulted in almost

identical detection rates since the number of available presence units will become too large and

give misleading results. On the other hand, if the cumulative absence points are used, then

these transition areas will get lower inclusion probabilities and the sampling allocation will be

higher in the high density areas since enough presence units are available to map the true high

density areas.

Finally the oscillating character of the completely non-cumulative methods can likely be explained

by the fact that if in one survey a lot of presence units are found the next survey will likely focus

too much on that area and thus a lot of absence units will be found. This in turn will cause the

inclusion probabilities in those areas to drop, hence not enough samples will be selected in those

areas etc. Over time this oscillating character seems to diminish since more information will

become available.

CNUT

In this section, we evaluate adaptive monitoring by comparing

1. CNUT using the cumulative data from all previous surveys (CNUT-CD).

2. CNUT using the data from the previous survey only (CNUT).

The results are shown in Figure 5.12. For both the Rockfish and the Asian tiger mosquito

population, the CNUT-CD resulted in higher detection rates compared with CNUT. For the

clustered Rockfish population CNUT almost reached the highest detection rate in the second

survey. After this intimal jump the detection rates remained more or less constant. Note that

for the Rockfish population there was an overlap in the error bars for each year indicating

that the is no significant difference between the methods. For the Asian tiger mosquito there

was also a big increase in the detection rate in the second survey. However, the detection rate

kept increasing with each consecutive survey. This difference can be explained by the fact that

exact mapping the density of a scattered population needs more information compared with the

clustered populations.
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Figure 5.11: Results of the simulation study for PANUT. The error bars are the 2.5% and the
97.5% percnetile obtained by the simulation studies.

Summary of all NUT Methods

In this section, we select and compare some of the previous NUT methods based on the previous

results and practical aspects. From each NUT type one method was chosen. Furthermore, in



134 CHAPTER 5. ADAPTIVE MONITORING USING SPATIAL INFORMATION:
NEAREST UNIT TESSELLATION

0.
3

0.
4

0.
5

0.
6

Year

D

CNUT
CNUT−CD

1 2 3 4 5 6 7 8 9 10

(a) Rockfish

0.
2

0.
3

0.
4

0.
5

Year

D
CNUT
CNUT−CD

1 2 3 4 5 6 7 8 9 10

(b) Asian tiger mosquito

Figure 5.12: Results of the simulation study using CNUT. The error bars are the 2.5% and the
97.5% percnetile obtained by the simulation studies.

general the method that would give the highest detection rates was chosen unless if that method

would be too greedy as discussed in the previous sections, such as for example PANUT-ratio).

For the Rockfish population the following NUT methods were selected:

1. SNUT-CD.

2. PNUT-0.5.

3. PANUT-add-abs.

4. CNUT-CD.

For the Asian tiger mosquito population the following NUT methods were selected:

1. UNUT-CD.

2. PNUT-0.5.

3. PANUT-add-abs.

4. CNUT-CD.
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The results are shown in Figure 5.13. For the Rockfish population, CNUT had the best results.

It had the highest initial jump in the detection rate after the initial survey. After this initial

jump the detection rates remained more or less constant over time. CNUT had the highest

detection rates for each consecutive year. Although both SNUT and PNUT reached their highest

detection rates in year three, after the third year these detection rates gradually decreased. This

is, as aforementioned, likely because of problems with units in the transition areas between the

low and the high density areas.

For the Asian tiger mosquito dataset the best NUT methodology was less clear. PNUT is

the first method that reached its maximum detection rate but the detection rates decreased

after that. Although the detection rate of CNUT increased year after year, it only reached

the detection rates of PNUT and PANUT after year five. However, from year five on, it had

the highest detection rate. Therefore, it seems that CNUT for scattered data is efficient if a

large amount of cumulative data are available to apply the CNUT method. PANUT had never

detection rates as high as PNUT and CNUT, but did have high and stable detection rates than

those with to the other methods. This illustrates that PANUT is a reliable method with high

detection rates.

For both the Rockfish and the Asian tiger mosquito data the SNUT and UNUT methods resulted

in the lowest detection rates. This can be explained because SNUT and UNUT can only assign

two levels of inclusion probability: a relatively high inclusion probability or a relatively low

inclusion probability. This is similar to Guisan’s StratRS. Therefore, SNUT and UNUT cannot

define any difference between for example low, intermediate or high density areas. Sampling

these intermediate density areas with the same intensity as high density areas will result in lower

detection rates.

5.4 Discussion

The NUT methods are a set of geographical techniques that use the observed spatial distribution

of a species during a survey to update the inclusion probabilities for adaptive monitoring. NUT

was developed since the existing geographical methods were not suitable for our proposed method
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Figure 5.13: Results of the simulation study for comparing all NUT methods. The error bars
are the 2.5% and the 97.5% percnetile obtained by the simulation studies.

of adaptive monitoring. The NUT methods are intuitive and can easily be applied in practice.

Using a simulation study, we illustrated that the NUT methods can lead to high detection

rates. Of course these results are relative since no comparison is possible with the existing

methods. We also illustrated that the detection rate of a monitoring strategy can be increased

for both clustered populations and scattered populations. In the case of the previously performed

simulation study, CNUT performed best for clustered data when count data are available. In the

case of presence/absence data, PNUT or PANUT performed best. For the scattered Asian tiger

mosquito population PNUT-0.5 is in our opinion the most reliable method. These conclusion of

course depend on what proportion of the sample one wishes to assign as part of the surveillance

sampling and on the species specific dynamics of the invasive population.

Although this chapter provides a good first introduction of the NUT methods, further devel-

opment would be recommended. More extensive analyses should provide us with a better

understanding of the use of each NUT method. Additionally the application of NUT to several

other case studies would illustrate the robustness of the NUT methods better.
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Even though future research is recommended to optimize the NUT methodology, in this chapter

we have illustrated that NUT is a useful geographical method especially in the case of adaptive

monitoring. Therefore, we will review the use of adaptive monitoring using NUT for non-

stationary species populations in the next chapter.



Chapter 6

Adaptive Monitoring using

Ecological and Spatial Information:

Eradication of the Great White

Butterfly

There are two types of auxiliary information that can be used to update the inclusion probabili-

ties for the proposed method for adaptive monitoring. In Chapter 4 ecological information was

used to pre-set the inclusion probabilities. This was done by computing the species’ habitat

suitability using SDMs. In Chapter 5 the observed spatial information of the invasive species

distribution was used to improve the detection rate of the adaptive monitoring strategy. To set

the inclusion probabilities using spatial information the NUT methods were introduced. In these

chapters it has been illustrated that both ecological and spatial information contain valuable

auxiliary data that can be used to increase the detection rate of the monitoring strategy. Hence,

a logical next step is to use both ecological and spatial information simultaneously, to update

the inclusion probabilities for adaptive monitoring.

In this chapter, we illustrate how to combine both types of information for adaptive monitoring.

The methodology for using both types of information to set the inclusion probabilities for adaptive

138
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monitoring is illustrated, and its performance is evaluated using a case study. For the case study

we chose the current invasion of the Great White Butterfly (GWB), Pieris brassicae, of the Nel-

son District in the South Island of New Zealand (Kean and Phillips, 2013a,b; Phillips et al., 2013).

The GWB is a butterfly species that is non-native to New Zealand. The first observations of

the presence of the GWB in Nelson were reported in 2010. The population has been notably

increasing ever since. Similar invasions of the GWB in other parts of the world has lead to

catastrophic effects on the local butterfly populations in the effected areas. In New Zealand, the

native cress species are potential hosts for the GWB, and are therefore are considered threatened.

Of the 79 cress species that are native to New Zealand, 57 are already at risk of extinction due

to habitat loss and impacts from other pests (Phillips et al., 2013). A continuation of the current

rate of dispersal and population growth of the GWB could also cause a large economic cost as

the species also feeds on commercially grown Brassicae species. There are approximately 4,000

ha of Brassicae vegetable plantations in New Zealand and 6250,000 ha of brassica forage crops,

which are estimated to be worth NZ$ 80 million New Zealand dollars (Phillips et al., 2013).

Because of these economical implications, a local eradication strategy has already been imple-

mented in the areas where the species has been detected and in areas where it is assumed to be

established (Kean and Phillips, 2013a). These local eradication areas are mainly in and near

Nelson city. The decision to eradicate the GWB by the New Zealand Department of Conservation

was made to avoid a further spread of the GWB to a more suitable habitat, identified in the

Marlborough and Tasman districts which surround the Nelson district area. Invasion of these

areas would increase the economic cost and would ultimately make future eradication unrealistic.

Even though these more suitable areas are relatively far from where the species is currently

established, the possibility of long distance dispersal through human aided transportation puts

these areas at high risk. Human aided transport of species like the GWB is not uncommon

since the pupae are known for pupating on artificial substrates in absence of their preferred host

plants (Hagstrum and Subramanyam, 2010). Hence, effective and immediate eradication of the

GWB is necessary.
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Here, the GWB case study is used to evaluate the performance of adaptive monitoring using

both types of information and to compare it with adaptive monitoring using only ecological

information or using only spatial information. Initially, these comparisons will be performed

by assuming a stationary population that does not change over time. This is similar to the

simulation studies conducted in the previous chapter. However, the GWB is an invasive species,

and one of the objectives of this thesis is to improve the detection rate of a monitoring strategy,

so that it can be used for eradication management of invasive species. Thus, we explore the

idea to use our proposed adaptive monitoring method to potentially link it to an eradication

strategy. To evaluate the performance of our proposed method for adaptive monitoring as an

eradication strategy, dynamic elements are added to the GWB population during the simulation

study. This means that the GWB population that is used during the simulation study can grow,

decrease, disperse and reproduce over time.

6.1 Methodology Adaptive Monitoring using Ecological and Spa-

tial Information

Adaptive monitoring using ecological and spatial information is a combination of adaptive

monitoring using ecological information (as introduced in Chapter 4) and adaptive monitoring

using spatial information (as introduced in Chapter 5). Adaptive monitoring using ecological

and spatial information simultaneously works as follows:

1. Select an equiprobable spatially balanced sample in the first survey using BAS.

2. Model the (cumulatively) obtained ecological and spatial information to set the combined

inclusion probabilities. This is done by:

(a) Model the ecological information to compute the inclusion probabilities πeco
i s:

i. Set the inclusion probabilities πeco
i s proportional to the estimated species habitat

suitability. This is identical to the method described in Chapter 4. However, no

rescaling method is required at this stage.
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ii. Rescale πeco
i such that it has a maximum of one and a minimum of zero. Thus

compute

peco
i = πeco

i −min (πeco)
max (πeco)−min (πeco) . (6.1)

iii. Set a lower limit l between zero and one such that peco
i = l when peco

i < l. This

lower limit assures that each unit has at least a small chance of being selected.

Here we suggest l = 0.05. This value is chosen following the simulation studies

performed in Chapter 4 which showed that the minimum suitability approach

with l = 0.05 generally performed the best. Note that choosing a smaller value

for the lower limit can increase the detection rate but comes at a cost by reducing

the surveillance sample. Because of this trade-off, deciding on an optimal lower

limit is not trivial and is often monitoring case specific.

(b) Model the spatial information to compute the inclusion probabilities πspat
i s:

i. Select a NUT method to model the obtained spatial information, see Chapter 5.

Calculate πspat
i using the chosen NUT method.

ii. Rescale πspat
i such that it has a maximum of one and a minimum of zero. Thus

compute

pspat
i = πspat

i −min (πspat)
max (πspat)−min (πspat) . (6.2)

iii. Set the same lower limit l as in step 2.a such that pspat
i = l when pspat

i < l.

(c) Combine peco
i and pspat

i to set the final inclusion probabilities πboth
i for each unit by

πboth
i = n

2
(peco
i + pspat

i )∑N
i=1

(peco
i +pspat

i )
2

. (6.3)

3. Select a probability sample using BAS according to the set πboth
i s for the next survey and

return back to Step 2 .

An illustration of combining the inclusion probabilities based on ecological information and the

inclusion probabilities based on spatial information is given in Figure 6.1. This figure shows how

the set inclusion probabilities based on ecological information, πeco
i (see Figure 6.1a), can be
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different from the set inclusion probabilities using spatial information, (πspat
i see Figure 6.1c).

Recall that the NUT methods perform best when the selected samples in each survey are spatially

balanced samples. Therefore, when combining ecological and spatial data as described above,

a spatially balanced sample should be selected in each survey. We suggest using a BAS for

selecting these spatially balanced samples.

When a unit has a high species habitat suitability, it should follow that a high value for πeco
i

will be given, with a high observed species density based on the corresponding NUT method.

Moreover, a high πspat
i should also be observed, thus giving a high combined inclusion probability

which is given by πboth
i . If a unit’s πeco

i and πspat
i is low, then πboth for that unit will be low. If

πeco
i is high but πspat

i is low, or vice versa, then the final inclusion probability πboth will have a

intermediate value. Hence, using both types of information can be expected to lead to inclusion

probabilities that are more closely correlated to the actual species density because it uses two

types of information instead of one. We assume that these pre-set inclusion probabilities πboth
i

will be more close to the ideal inclusion probabilities compared with πeco
i or πspat

i . As discussed

in Chapters 4 and 5, setting the inclusion probabilities closer to the ideal inclusion probabilities

should increase the detection rate of a sample. Hence we expect the detection rate of the

monitoring strategy to increase when combining both types of information.

6.2 The Great White Butterfly Data

Like the Asian tiger mosquito data, which have been used in the previous chapters, the available

GWB data set is a data set of a virtual invasion by the species. However, compared with the

Asian tiger mosquito, the invasion of the GWB is not just a hypothetical invasion, in fact the

invasion has actually already taken place. Therefore, the initial starting point of the invasion is

known and data about the established invasion have been collected. For example, more than

9000 data entry points have been collected from the greater Nelson district area by AgResearch,
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Figure 6.1: Illustration of inclusion probabilities set during adaptive monitoring using ecological
and spatial information. Figure 6.1.a shows the inclusion probabilities, πeco

i s, set using the
ecological information. Figure 6.1.b shows the inclusion probabilities, πspat

i s, set using the spatial
information. Figure 6.1.c shows how πeco

i and πspat
i s are combined into the inclusion probabilities

πboth
i using both types of information.

one of New Zealand’s Crown Research Institutes. This data set was used for cross validating the

distribution of the virtual invasion. The virtual data set was created as part of a GWB project

at AgResearch, Lincoln, New Zealand and the bio-protection unit of Lincoln University, New

Zealand. We are very grateful for the assistance of Professor Sue Warner and Senait Senay from

Lincoln University, and Dr John Kean and Dr Craig Phillips from AgResearch for providing

access to this data.

To generate the data of the virtual invasion a dispersal model was used to simulate and predict

future distribution and dispersion of the GWB over the greater Nelson district area. Since the

invasion of the GWB butterfly is likely to escape the Nelson city area to the greater Nelson

district area, an arbitrary area around Nelson city was selected for this case study. This area is

shown in Figure 6.2. The dispersal model allowed for simulated dispersal over a heterogeneous

habitat suitability layer. This means that each pixel was given a habitat suitability with a

value between zero and one. This habitat suitability was then used as a survival probability for

the GWB if it would invade that unit. This habitat suitability layer was obtained by species

distribution modelling using 17 ecological covariate data layers. These covariates were geological,

climatological or ecological covariates such as altitude, rainfall or type of habitat that could be

used to predict the species habitat suitability. Details of these ecological data layers can be
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found in Appendix A. The locations of the initial dispersers in year one were chosen according

to reports of observations of the GWB in the year 2010. Species specific parameters such as

birth and mortality rates were used to specify the rate of local spread of the species using

population growth and spread rates were retrieved from the literature. Both short distance and

long distance dispersal were included in the dispersal model.

Details on the species distribution modelling and dispersal modelling used to generate the

distribution maps can be found in Senay (2014a) and Senay (2014b). The simulation studies of

the invasion of the GWB started in 2010 and the invasion by the GWB was predicted until the

year 2020. Figure 6.2 illustrates one example of a simulated invasion of the GWB, starting with

the dispersal seeds in the year 2010 until the year 2018.

The local eradication strategy that already has been implemented by the Department of Conser-

vation mainly focuses on Nelson city. The study area chosen for this simulation study includes a

larger section of the Nelson district. For surveying purposes the selected area around Nelson

was tessellated into square units of 100 by 100 meters. The dimensions of the sampling domain

are 207 rows by 278 columns, in total 57546 units. Excluding the units outside the sampling

domain (for example in the ocean) there are N = 48303 units to be sample from.

6.3 Simulation study: Stationary GWB population

A simulation study was performed using the GWB data set to evaluated whether the detection

rate can be increased by combining both types of information compared with using only one

type of information. Adaptive monitoring was performed for seven consecutive years. Each

year 5% of the units are sampled. Monte Carlo simulations were performed with m = 500 (the

number of simulations) using the following methods:

1. Adaptive monitoring using ecological information only (AMBAS, as illustrated in chapter

4): Similar to Chapter 4, we will use logistic regression as the SDM of choice. As a rescaling
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Figure 6.2: Illustration of the study area surrounding Nelson, South Island, New Zealand,
selected for monitoring/eradication of the GWB in the performed simulation studies. The
location of Nelson city is illustrated by the dark grey point and lies central in the selected study
area.

method the minimum suitability approach with l = 0.05 (LIM05) was used.

2. Adaptive monitoring using spatial information only (PANUT, as illustrated in Chapter

5): Since the GWB data are scattered and has only presence/absence data PANUT were

selected as our NUT method of choice (using the cumulative data for both presence and

absence data).

3. Adaptive monitoring using both ecological and spatial information: To be able to compare

this method with the previous two methods logistic regression was used the set peco
i and

PANUT was used to set pspat
i . A lower limit of l = 0.05 was used.

For each method and for each survey the following statistics were calculated: The detection rate

at survey k is given by

D̄k = 1
m

m∑
j=1

Dj,k, (6.4)

as well as the simulated variance of the calculated detection rates per year V̂SIM(Dk) is

V̂SIM(Dk) = 1
m

m∑
j=1

(Dj,k − D̄k)2. (6.5)
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(a) Year 2010 (b) Year 2011 (c) Year 2012

(d) Year 2013 (e) Year 2014 (f) Year 2015

(g) Year 2016 (h) Year 2017 (i) Year 2018

Figure 6.3: Illustration of a potential invasion by the GWB, starting in 2010 until 2019. Note
that the occupied units in the year 2010 (the initial seeds of invasion) are based on the observed
occurrences of the GWB in the year 2010
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Similar to the simulation studies performed in Chapter 4, we evaluate adaptive monitoring using

different types of auxiliary information for three different GWB populations:

1. Low density stationary population: The low density scenario chosen for this simulation

study is similar to the year 2014 GWB population illustrated in Figure 6.3. In this low

density scenario the population is stationary which means that the population does not

change over time.

2. High density stationary population: The high density scenario chosen for this simu-

lation study is similar to the year 2018 GWB population illustrated in Figure 6.3.

3. Increasing density population: Where, over time the GWB population increases. For

this simulation study the species distributions starting in the year 2014 until the year 2020,

as illustrated in Figure 6.3 are used.

6.3.1 Results

The results of the simulation study for each scenario are shown in Figure 6.4. Since an equiprob-

able sample was selected in year one, all methods achieved similar detection rates. After the

initial survey, adaptive monitoring using ecological and spatial information always gave higher

mean detection rates compared with adaptive monitoring using only spatial or only ecological

information. This was the case for all years after the initial survey and for all three scenarios.

Adaptive monitoring using spatial information only, generally achieved higher detection rates

compared with adaptive monitoring using ecological information with the exception of year four

to year seven in the high density scenario. This confirms that, in the case when a species is not

in equilibrium with its habitat, which is often the case for invasive species, spatial information

can often be as important or even more important than ecological information to predict the

species distribution. The GWB population in the second scenario is more in equilibrium with

the environment (invaded more sites that are suitable for the species) compared with the first

scenario, this explains why the advantage of using spatial information over ecological was less

obvious in the second scenario.

In the third scenario the differences between the three methods for adaptive monitoring were
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smaller compared with the first two scenarios. This may be able to be explained as the population

increases in size over time. Because the GWB invades new units in addition to the units already

occupied, it is difficult to predict which units will be occupied in the next year. Therefore, using

a combination of ecological and spatial information performed best and resulted in the highest

mean detection rates. It is interesting to notice that in this third dynamic scenario the highest

detection rates are reached by 2018 and that these detection rates are higher than the highest

observed detection rate for scenario 2 which was stationary at the level of 2018. This can be

explained be the fact that since the population expands over time for certain hotspots (initial

seeds) the model will focus the sampling allocation more on the already invaded areas and areas

near these hotspots (especially since the model incorporates spatial information). In the second

scenario the model has a relatively larger surveillance samples since there are more areas invaded

and hence more areas that are close to these invaded areas. It is therefore not unlikely to expect

that if the simulation study would incorporate more surveys over time that then the detection

rates for both scenarios would become similar.

In the first scenario adaptive monitoring using ecological and spatial information had the lowest

observed variances compared with adaptive monitoring using only one type of information.

Adaptive monitoring using ecological information had a larger observed variance in the detection

rate compared with adaptive monitoring using spatial information. For the second and third

scenarios the trends in the observed variances were less obvious. However, in general adaptive

monitoring that uses both types of information performed best and had the smallest observed

variances in the detection rates.

The results of the simulation study confirm our hypothesis that both types of auxiliary infor-

mation are important. The use of a combination of both types of information allow for more

accurate prediction of the distribution of the invasive species and can therefore lead to higher

detection rates.

Note that, as discussed in Chapter 4, the level of the lower limit l defines the size of the

surveillance sample. In this chapter we have used a lower limit of l = 0.05. A higher lower

limit will increase the size of the surveillance sample, and hence, the monitoring method will be



more sensitive to new or undetected hotspots of the invasive species. However, in that case, the

proportion of the sampling effort that can be used in assumed high density areas will be reduced.

Whereas, a smaller lower limit will reduced the size of the surveillance sample. A smaller

surveillance sample could mean that new hotspots of the invasive species remain undetected.

This could have many negative consequences for the control of the invasive species. If a researcher

is confident that the spatial information (and thus NUT) or the ecological information (and thus

the AMBAB), or a combination of both, will provide enough information to accurately predict

the species distribution, then a small lower limit could be considered. On the other hand, if

the dispersal of a species is unpredictable and cannot be captured well by spatial or ecological

information, a higher lower limit should be considered.
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Figure 6.4: Results of the simulation study on stationary GWB Populations
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6.4 Adaptive Monitoring to set up an Eradication Strategy

Achieving high detection rates while monitoring a species can be useful to improve the efficiency

of an eradication strategy. One aspect of having a more efficient eradication strategy is that a

higher proportion of the occupied units are being selected and thus more of the invasive species

can be eradicated. The proportion of units occupied by the species in survey k is defined by

Ek = N ′k
N
, (6.6)

where N ′k is the number of units occupied by the species at time k. We call an eradication

strategy positive when Ek decreases over time. In that case, the population of the invasive

species will decrease, and the eradication strategy achieves its goal of reducing the invasive

species population. An eradication strategy is called negative when Ek increases over time. In

that case the eradication strategy has failed and the species population continues to expand. A

neutral eradication strategy has on average a constant Ek over time.

The method that we suggest is to use adaptive monitoring as to direct an eradication strategy

to reduce Ek over time. In the subsequent simulations it will, for simplicity, be assumed that

each time a unit is selected all the individuals of the invasive species in that unit are eradicated.

This is in practise of course rarely a realistic assumption and hence further research is necesarry

to test the effect for when eradication is not 100 % succesful. However, to be able to set the

inclusion probabilities based on ecological and spatial information for the consecutive surveys,

an ‘eradicated’ unit remains registered as a presence unit. The reason for this is as follows.

Suppose that only spatial information is used to set the inclusion probabilities. If a sampled unit

is occupied by a species the species in that unit should be eradicated. However, the chances are

relatively high that the units surrounding the sampled unit are occupied. Hence, by modelling

the sampled unit as a presence unit, the inclusion probabilities of surrounding units will increase.

If the sampled unit would be modelled as an absence unit then the surrounding units will be

assigned smaller inclusion probabilities. In the case that ecological information is used then

changing the value of all eradicated units from a zero to one would make the results of SDMs
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unreliable and biased, since the species habitat suitability from a certain unit would change

from high to low even though the actual habitat remains the same.

6.5 Simulation study: Non-stationary GWB Populations

In the previous simulation study, as well as in previous chapters, the species population

was assumed to be stationary over time or non-stationary without any form of eradication

implemented. This was done because it allows for straightforward comparison of the suggested

methods and for simple interpretation of the results. Nevertheless, making this assumption

is highly unrealistic. In reality, the population of an invasive species is highly non-stationary.

The population size of the invasive species can increase or decrease, and the distribution of the

population can change often. Moreover, eradication strategies can have an important impact on

the species population. Therefore, a simulation study was performed to evaluate our suggested

method for adaptive monitoring and to illustrate its use as an eradication strategy.

In this simulation study we apply our method for adaptive monitoring together with the

eradication method as discussed above on a non-stationary GWB population. This simulation

is performed as follow: Begin by choosing one initial GWB population distribution. Next, an

equiprobable sample is selected using BAS for the initial survey. To implement the eradication

strategy, we update our initial GWB population distribution by eradicating all the species in the

sampled units. Because of this the number of units occupied by the GWB will usually decrease.

Next, a dispersal model is applied to the updated GWB population distribution. The dispersal

model we used here is the same dispersal model as was used to generate the virtual dispersal

maps as for example illustrated in Figure 6.3. Complete details about this dispersal model can

be found in (Senay, 2014b,a). After this dispersal step, generally the number of occupied units

by the GWB would increase again. Based on this eradiation step and dispersal step the species

distribution for the next year is set.

To select a sample in the next survey, the inclusion probabilities are set based on the collected

information in the initial/previous survey. This is based on the cumulatively collected ecological

and spatial information as previously discussed. A sample is selected using BAS based on the
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set inclusion probabilities. Then follows a second eradication phase and a second dispersal phase.

These steps are repeated for seven consecutive surveys.

Each year 5 percent of the units are sampled. The simulation study was repeated for two

different initial GWB population distributions. The first GWB distribution is the low density

distribution predicted for the year 2014 as shown in Figure 6.3. The second GWB distribution

is the high density distribution predicted for the year 2018 as shown in Figure 6.3.

Since the population size changes, it would be infeasible to compare the mean detection rates per

survey over all simulations for different methods. Furthermore, since the goal was to eradicate

the species, we computed the eradication efficiency E as a test statistic to compared the different

methods. The eradication efficiency at each survey k, Ēk is given by

Ēk = 1
m

m∑
j=1

Ej,k, (6.7)

as well as the simulated variance of the calculated eradication efficiency per year V̂SIM(Ek) and

is given by

V̂SIM(Ek) = 1
m

m∑
j=1

(Ej,k − Ēk)2. (6.8)

6.5.1 Results

Figure 6.5 shows the results of the second simulation study for both the low density initial GWB

distributions and the high density initial GWB distribution. Both the low and the high density

initial distribution showed a similar pattern in Ēk over time. After the initial survey the number

of occupied units increased and thus more units were occupied by the GWB compared with

the first year. This can be explained because an equal probability sample was selected in the

initial survey. This means that the sample did not focus on any potential high density areas,

since no auxiliary information was available to set unequal inclusion probabilities. Because of

this, the detection rate was relatively low in the initial survey. The number of unit that were

occupied after the first dispersal step was generally higher than the number of units that have

been eradicated during the initial survey. Hence, the proportion of invaded units increased.

From the second survey onwards auxiliary information was available to set the inclusion prob-
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abilities. Because of this, it was possible to more accurately predict the species distribution

and thus to focus the sampling effort on expected high species density areas. As a result, the

detection rate from year two onwards increased and more units were eradicated. Since the

number of occupied units decreased from survey two onwards it seems that more units were

eradicated than the new units were invaded.

For the low initial GWB distribution the proportion of occupied units became on average lower

than in year one from year 5 onwards. For the high initial GWB distribution this number of

occupied units was lower than year one from year 7 on. This suggests that when an eradication

strategy is implemented when the size of the invasive species population is small, the eradication

strategy will more quickly have a positive effect on the control of the invasive species population.

6.5.2 Alternative Eradication Method

In the previous simulation study, if a species was detected in a unit, then all individuals were

eradicated in that unit. However, the method for adaptive monitoring can be used in an

alternative way to define an eradication strategy. This method assumes that after each sample

another batch of units are selected in which all the individuals are eradicated. This second set is

selected based on the set inclusion probabilities. Let n′ be the sample size of this second set

of units. Then select the n′ units with the highest assigned inclusion probabilities. Visit these

n′ units and eradicate the invasive species if present. Note that, the information gained from

visiting these n′ units cannot be used for setting the inclusion probabilities for the next survey(s).

This is due to no straightforward method being available to incorporate the information with the

proposed method for adaptive monitoring. As an example of this eradication method, assume

that Figure 6.1 illustrates the computed inclusion probabilities after the first survey. The selected

n′ units with the highest inclusion probabilities are shown in black in Figure 6.6. The n units in

survey 2 were selected using an unequal probability BAS sample, that are illustrated in grey.

However, more research is needed on this type of eradication. Therefore, we will not go into

further details or test the performance of the eradication method using a simulation study.
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Figure 6.5: Results of the simulation study on non-stationary GWB Populations
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Figure 6.6: Illustration of alternative eradication method. In this case the n′ units are selected
based that have the highest inclusion probabilities. Figures a shows the set inclusion probabilities
based on the ecological and spatial information gained from the first survey. Figure b illustrates
the n′ units with the highest inclusion probabilities (in black) and a sample of size n′ selected
by an unequal probability sample selected using BAS based on the set inclusion probabilities (in
grey).

6.6 Discussion

In this chapter we have demonstrated how to combine ecological and spatial information to

set the inclusion probabilities for adaptive monitoring. This was illustrated using the GWB

invasion of the Nelson district. The results have shown that combining both ecological and

spatial information improves the detection rate of an adaptive monitoring strategy compared to

a strategy that makes use of only spatial information or ecological information alone at least in

the case of the GWB example.

Moreover, we also gave other uses for our method, which saw it implemented as an eradication

strategy. The efficiency of a potential eradication method has been illustrated using the GWB

data. The results of the simulation study demonstrated that the proposed method performed

most efficiently when the size of the population under scrutiny was small as opposed to pop-
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ulations that are larger and are more dispersed. In addition, we noted that the use of both

ecological and spatial information outperformed adaptive monitoring methods which used only

one type of auxiliary information.

The results from this chapter have further reiterated the three key aspects set as our objectives

in the introduction. These aspects were so that the existing methods for adaptive monitoring

can be further improved by: (i) increasing the detection rate by the use of a spatially balanced

probability sample, (ii) combining spatial and ecological information and (iii) incorporating an

eradication strategy to an adaptive monitoring design.



Chapter 7

Discussion and Future Work

In this thesis, I have developed the ideas of for an iterative monitoring method, which was first

proposed in Stohlgren and Schnase (2006) and was extended by others, to introduce a new and

improved general framework for adaptive monitoring. In Chapter 1, we provided a motivation

for the need for the development of adaptive monitoring designs and we outlined three potential

points for improvement: (1) selection of the sampling design, (2) using spatial and ecological

information to update the monitoring strategy and (3) exploring the idea of using the proposed

idea of adjusting unit specific inclusion probabilities to set up an eradication strategy. In the

chapters that followed these points were addressed in more detail. Note that, by selecting these

three points, we identified what we believe to be the most important aspects that could be used

to improve adaptive monitoring. However, it can be further noted that there exists other aspects

that can also improve adaptive monitoring, and therefore should be explored, see Section 1.1.

The algorithm for our proposed framework for adaptive monitoring has been introduced in

Chapter 2. The general concept is that, after each survey the inclusion probabilities are adjusted

using the collected information. This adjustment is done so that units with an expected higher

species density are assigned a higher inclusion probability.

Additionally in this second chapter, a basic background to ecological sampling has been provided.

The concepts of probability sampling and of spatially balanced sampling were discussed. More-

over, a motivation on why adaptive monitoring would benefit from probability sampling and

spatially balanced sampling was given. This reinforced our motivation that the use of spatially
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balanced probability sampling can be expected to increase the detection rate, whilst selecting a

surveillance sample to ensure that newly invaded areas will be detected.

In the third chapter we introduced a selection of probability sampling designs. These sam-

pling designs were: SRS, StratRS, and CP sampling. We also introduced several spatially

balanced sampling methods. Since GRTS can be seen as the gold standard of spatially balanced

sampling and BAS is a recently introduced alternative to GRTS, we mainly focused on BAS

and GRTS. BAS is a new spatially balanced sampling design, based on a relatively simple

algorithm (Robertson et al., 2013). The performance of the spatially balanced sampling designs

for adaptive monitoring was evaluated by using a simulation study. We illustrated that BAS

generally achieved a higher spatial balance compared with SRS and GRTS. This was the case

when selecting a whole batch of units at the same time, as well as when adding units one by one

to the sample. Moreover, BAS achieved a higher spatial balance with and without non-response

areas compared with GRTS and SRS.

We evaluated each of the introduced sampling designs for selecting a one off sample, which led to

selection of the initial sample in a monitoring strategy. The main criteria for a suitable sampling

design is to achieve high detection rates. This was evaluated by performing a simulation study

on the Rockfish population. The results showed that spatially balanced sampling design achieved

similar detection rates compared with SRS, CP and a stratified sampling design but the observed

variance in the detection rates was generally lower. StratRS performed good as well as long as

the selected strata were small enough to increase the spatial balance of the stratified sample.

Overall, BAS achieved the highest detection rates.

The second criteria was to achieve precise population estimates. We demonstrated this by

conducting a simulation study which used two different virtual target populations. Results from

the study showed that BAS generally performed at least as well as the other methods. However,

StratRS has the important advantage of having an unbiased variance estimator compared with

the other tested spatially balanced sampling designs. Additional simulation studies were also

conducted to illustrate the importance of having a spatial autocorrelation in the response and

setting the inclusion probabilities proportional with the response variable when selecting a
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probability sample. These simulation studies illustrated that in case the inclusion probabilities

are not set proportional with the response there is no advantageous in selecting a spatially

balanced sample, and estimates can even become worse compared with SRS or StratRS. The

problem of setting poor inclusion probabilities can become the case for example when not enough

information is available to set the inclusion probabilities. This is sometimes the case before the

initial sample.

Ultimately, in chapter 3, we explored some practical features of BAS, that allowed it to be used

for long term monitoring. In addition, BAS is computationally cheaper than other spatially

balanced sampling designs that were considered.

Since overall BAS scored best for both criteria and has several desirable practical features,

we are of the opinion that BAS is the best sampling design to select the initial sample for

adaptive monitoring. Based on these results, BAS was used in the following chapters to select

the probability samples based on the pre-set inclusion probabilities.

Adaptive monitoring means that, for each additional survey, the monitoring design is updated

based on the obtained information from the previous years. In the fourth chapter we illustrated

how to use ecological auxiliary information to update the monitoring strategy. Based on the

collected ecological information the species habitat suitability is estimated using a SDM. Next,

the inclusion probabilities of all units in the study area were set proportional to the estimated

species habitat suitability. A probability sample is then selected based on the set inclusion

probabilities. This method was called AMBAS, as it uses BAS to select the samples in each

survey. Previous studies such as Guisan et al. (2006) followed a similar method, however they

used the estimated habitat suitability to partition the study area in a suitable stratum and

unsuitable stratum. Based on the stratification of the study area, a sample was selected using

StratRS. We named this method AMStrat.

We compared AMStratRS with AMBAS and SRS by conducting a simulation study using a

virtual data set about a possible invasion of the Asian tiger mosquito in the South Island of New

Zealand. In most of our simulation studies the detection rates for AMBAS were at least twice

as high than those with SRS. When comparing AMBAS with AMStratRS the mean detection
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rates were similar for AMBAS and AMStratRS, but AMBAS generally gave smaller variances in

the observed detection rates.

To avoid problems with (near) zero inclusion probabilities, three different rescaling approaches

were proposed, and simulation study was performed to compare the results of the approaches.

The minimum suitability approach, with a lower limit of l = 0.05 (LIM05) gave the best results

in our simulation studies. Setting a lower limit means that the expected low density area can

still be sampled and a surveillance sample is ensured. This surveillance sampling is necessary

especially when monitoring an invasive species to hopefully avoid new outbreaks. The main issue

with selecting a lower limit is that the seize of the surveillance sample depends from situation

to situation. For example is only a small surveillance sample is required and one would like

to increase the detection rate then a smaller lower limit would work best. However, in many

cases a larger proportion of the sample should be used for surveillance sampling to ensure new

hotspot of the invasive species can be found or the detect new outbreaks. In that case a larger

lower limit should be used. This will then likely come at a cost of higher a lower detection rate.

The results for population estiation using AMBAS were very poor. Because of these result it

was decided not to use AMBAS or any similar method for adaptive mointoring for population

estimation.

A second simulation study was conducted to compare the differences between using spatially

balanced sampling designs and using non-spatially balanced sampling designs for adaptive

monitoring. The spatially balanced sampling designs achieved higher mean detection rates and

higher precision. Adaptive monitoring using BAS had marginally better results over adaptive

monitoring using GRTS.

All the simulation studies were performed by using three different species density scenarios.

The results of these simulation studies showed that AMBAS worked better for species popula-

tions that are in equilibrium with the habitat, compared with species populations that are not

yet in equilibrium. Finally, in Chapter 4, an additional simulation study illustrated that AM-

BAS does not works as well in the case of count data, In which case AMStratRS performed better.

To be able to set the inclusion probabilities based on the observed spatial information we intro-
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duced the NUT methods in Chapter 5. The NUT methods are a set of geographical techniques

that uses the observed spatial distribution of a species during a survey to update the inclusion

probabilities for adaptive monitoring. NUT was developed since the existing geographical

methods were not suitable for our proposed method for adaptive monitoring. Furthermore, the

NUT methods are intuitive and can easily be applied in practice.

Using a simulation study on a Rockfish population and also the Asian tiger mosquito population,

we illustrated that the NUT methods can lead to high detection rates. We also illustrated that

the detection rate of a monitoring strategy can be increased for both clustered and scattered

populations. We recommend using CNUT for clustered data when count data is available. In

the case of presence/absence data, we recommend using PNUT or PANUT. For the scattered

Asian tiger mosquito population PNUT-0.5 was the most reliable method.

Although this chapter is a good introduction of the NUT methods, further development of the

NUT methods are recommended. This includes additional extensive analyses that may provide

us with a better understanding of the use of each NUT method. In addition, the application of

NUT to several other case studies would illustrate the robustness of the methods. Nevertheless,

we have illustrated that NUT can be a useful geographical method, especially when applied to

adaptive monitoring.

In Chapter 6, it was demonstrated how to combine ecological and spatial information to set the

inclusion probabilities for adaptive monitoring. This was illustrated using the GWB invasion

of the Nelson district. The results have shown that combining both ecological and spatial

information improves the detection rate of an adaptive monitoring strategy compared with a

strategy that makes use of only spatial information or ecological information.

Moreover, we also gave other uses for our method, which saw it implemented as an eradication

strategy. The efficiency of our eradication method has been illustrated using the GWB data.

The results of the simulation study demonstrated that the proposed method performed most

efficiently when the size of the population under scrutiny was small as opposed to populations

that are larger and are more dispersed. In addition, we noted that the use of both ecological and

spatial information outperformed adaptive monitoring methods when only one type of auxiliary
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information is used.

The results from this final chapter have further reiterated the three key points set as our

objectives in the introduction. These points were defined so that the existing methods for

adaptive monitoring can be further improved by (i) increasing the detection rate by the use of a

spatially balanced probability sample, (ii) combining spatial and ecological information and (iii)

incorporating an eradication strategy to an adaptive monitoring design.

7.1 Future Work

We have illustrated that our proposed algorithm for adaptive monitoring performs well by

increasing the detection rate in comparison with previously applied monitoring methods. Despite

these improvements we acknowledge that we can improve our method further, and suggestions

for future research are numerous .

Here, the most relevant future research questions and remarks are briefly outlined:

• In chapter one, we assumed that throughout this thesis we will have perfect detectability.

This means that if a species is present in a unit and that unit is sampled, then the species

is always observed. However, this is a simplification of most real life applications and

many studies have discussed issues with imperfect detectability. Therefore further research

is needed to understand what the effects of imperfect detectability are on our proposed

method for adaptive monitoring.

• In this thesis, we selected an equal sample size in each survey. However, the efficiency of

distributing the sample size equally over subsequent surveys has not been evaluated. A

possible scenario is that this strategy may be suboptimal over other sampling allocation

strategies over time. For example it maybe the case that, allocating the majority of the

sampling effort in the first survey would give better results. This is a simple research

question that will not likely have a simple answer.
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• A useful extension of BAS is to use BAS in a stratified context, which there are several

applications. For example, selecting a BAS sample in each strata or generating Halton

points over the strata until a sufficient number of points in each strata has been selected.

This research question is already work in progress. However, it was not straightforward to

include these results into this thesis without compromising the logical structure of this

thesis.

• The importance of a surveillance sample has been mentioned several times in this thesis,

however we failed to provide specific details. This is because studying the importance of

the size and distribution of a surveillance sample can be complex and would require a great

number of additional simulation studies, which required more time than what we had.

• Further work on NUT needs to be undertaken to ensure it works well in different situations

and for different applications. Although the result of NUT look to be very promising,

more research is required to make it suitable for publication. For example, more research

is needed on the effect of the used lower limit. Additionally, more research is needed on

the cumulative or non-cumulative use of collected information.

• A potential extension of the proposed method for adaptive monitoring would be the

inclusion of practical covariates. For example, adding a cost function to the monitoring

strategy. Question such as, how would our monitoring strategy change when certain units

would be twice as expensive or more difficult to visit compared to other units, could be

addressed. This very interesting research question could easily be to subject of one or

many new PhD theses.

These research questions, and many other questions that are not given in this list, illustrate the

need for future research in this interesting and challenging field of ecological statistics.



Chapter 8

Appendix

8.1 Appendix A: Data case studies

8.1.1 Ecological Covariates

The auxiliary information used in this thesis, are based on the standard 19 bioclimatic variables

(BIOCLIM) used by Worldclim, an online databank for global climate data (http://www.worldclim.org/.).

On there website they discribe these 19 ecological covariates as:

1. Annual Mean Temperature: The mean of all the weekly mean temperatures. Each

weekly mean temperature is the mean of that week’s maximum and minimum temperature.

2. Mean Diurnal Range(Mean(period max-min)): The mean of all the weekly diurnal

temperature ranges. Each weekly diurnal range is the difference between that week’s

maximum and minimum temperature.

3. Isothermality 2/7: The mean diurnal range (parameter 2) divided by the Annual

Temperature Range (parameter 7).

4. Temperature Seasonality: the temperature Coefficient of Variation as the standard

deviation of the weekly mean temperatures expressed as a percentage of the mean of those

temperatures (i.e. the annual mean). For this calculation, the mean in degrees Kelvin
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is used. This avoids the possibility of having to divide by zero, but does mean that the

values are usually quite small.

5. Max Temperature of Warmest Period: The highest temperature of any weekly

maximum temperature.

6. Min Temperature of Coldest Period: The lowest temperature of any weekly minimum

temperature.

7. Temperature Annual Range (5-6): The difference between the Max Temperature of

Warmest Period and the Min Temperature of Coldest Period.

8. Mean Temperature of Wettest Quarter: The wettest quarter of the year is determined

(to the nearest week), and the mean temperature of this period is calculated.

9. Mean Temperature of Driest Quarter: The driest quarter of the year is determined

(to the nearest week), and the mean temperature of this period is calculated.

10. Mean Temperature of Warmest Quarter: The warmest quarter of the year is deter-

mined (to the nearest week), and the mean temperature of this period is calculated.

11. Mean Temperature of Coldest Quarter: The coldest quarter of the year is determined

(to the nearest week), and the mean temperature of this period is calculated.

12. Annual Precipitation: The sum of all the monthly precipitation estimates.

13. Precipitation of Wettest Period: The precipitation of the wettest week or month,

depending on the time step.

14. Precipitation of Driest Period: The precipitation of the driest week or month, de-

pending on the time step.

15. Precipitation Seasonality: The Coefficient of Variation is the standard deviation of the

weekly precipitation estimates expressed as a percentage of the mean of those estimates

(i.e. the annual mean).



16. Precipitation of Wettest Quarter: The wettest quarter of the year is determined (to

the nearest week), and the total precipitation over this period is calculated.

17. Precipitation of Driest Quarter: The driest quarter of the year is determined (to the

nearest week), and the total precipitation over this period is calculated.

18. Precipitation of Warmest Quarter: The warmest quarter of the year is determined

(to the nearest week), and the total precipitation over this period is calculated.

19. Precipitation of Coldest Quarter: The coldest quarter of the year is determined (to

the nearest week), and the total precipitation over this period is calculated.

Asian tiger mosquito

The ecological layer/covariates that were used to create the artificial distribution of the Asian

tiger mosquito are illustrated in Figure 8.1. The resolution of this data is on the original scale.

Each pixel is five by five kilometre. These layers where used both in Chapter 4 and Chapter 5

and the pixel size was reduced for simulation speed purposes.

Great White butterfly

The ecological layer/covariates that were used to create the artificial distribution of the Great

White butterfly are illustrated in Figure 8.2. The resolution of this data is on the original scale.

Each pixel is one by one kilometre. These layers where used Chapter 6.
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Figure 8.1: covariates used for the Asian tiger mosquito case studies.
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Figure 8.2: covariates used for the Great White butterfly case studies.



170 CHAPTER 8. APPENDIX

(a) Year 2015 (b) Year 2016

(c) Year 2017 (d) Year 2018

Figure 8.3: Distribution maps Asian tiger mosquito.

8.1.2 Distribution maps Asian tiger mosquito

The artificial distribution of the Asian tiger mosquito form year 2015 till 2018 are illustrated

in Figure 8.3. The resolution of this data is on the original scale. Each pixel is one by one

kilometre. In this thesis, for simulation purpose (mainly speeds related issues), the resolution

of the data was reduced to three by three kilometres (Chapter 4) sized pixels or two by two

kilometres (Chapter 5) sized pixels.
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8.2 Appendix B: R code

Each time BAS was used the R script was rewritten such that it was most convenient to use in

that particular context. The following R-script illustrates the R code used for the non-stationary

simulation study on the GWB (Chapter 6). This R-script was chosen since it gives an illustration

of the use of BAS, NUT and AMBAS together with the usages of ecological raster layers all in

one script. Note that more details to the code can be provided if required.

##################

########## s c r i p t s e t t i n g s ###

##################

##### read s t a r t up f i l e #####

source ( ”H: /R codes/ f u n c t i o n s / s ta r tup .R” )

i <− c (NA)

i f ( i s . na( i ) )

{

s ta r tup (par . i n i=TRUE, read . l ibrary=TRUE, working . d i r e c t o r y=” s : /pja101/R

output ” )

}

i<−1 # makes sure f u n c t i o n s t a r t u p w i l l on ly be read once

##################

########## parameter s e t t i n g s ################

##################

factor . aggregate <− 1 # reduce p i x e l s i z e

r e j e c t i o n . type <− ” both ” # eco , geo , both ( r e j e c t i o n sampling based

on )

memory <− ” both ” # no , both , presc , abs

combi . method <− ”add” # add or t imes

n . sims <− 1 # number o f s i m u l a t i o n s

f i x e d . seed <− ”no” # ” yes ” or ”no”
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perc . sampled <− 0 .1 # percentage u n i t s sampled

method <− ”PANUT” # ”NUT” , ”PANUT” or ”CNUT”

combi method <− ”add” # ”add” or ” r a t i o ” # f o r PANUT only

response <− ” binary ” # binary or counts

plot . map <− ” yes ” # p l o t yes or no

l i m i t <− 1 # v a l u e o f lower l i m i t NUT

c r i t i c a l . va lue . geo <− 0 .01 # range goes from 0 t i l l 1

c r i t i c a l . va lue . eco <− 0 .01 # range goes from 0 t i l l 1

years <− c ( ” yr2015 ” , ” yr2015 ” , ” yr2015 ” , ” yr2015 ” , ” yr2015 ” , ”

yr2015 ” , ” yr2015 ” ) # s e l e c t years

##################

########## read in data ###

##################

source ( ”H: /R codes/GWB/ l a y e r s 2 .R” )

dev . of f ( )

############# p l o t #############

#myTheme <− rasterTheme ( reg ion=rev ( grey p a l ( s t a r t = 0 .0 , end = 0.99) (2) ) )

#l e v e l p l o t ( s t a c k R[ [ ” year2020 ” ] ] , par . s e t t i n g s=myTheme , x l a b =””, margin=F,

s c a l e s= l i s t ( x= l i s t ( draw=FALSE) , y= l i s t ( draw=FALSE) ) )

l e v e l p l o t ( s tack R [ [ ” yr2015 ” ] ] , x lab=”” , margin=F, s c a l e s=l i s t ( x=l i s t ( draw=

FALSE) , y=l i s t ( draw=FALSE) ) )

# r a s t e r to p o i n t d a t a s e t

s tack R[ i s . na( b io . 1 R) ]<−NA

#s t a c k R[ i s . na (GWB.2018 R) ]<−NA

#s t a c k R[ i s . na (GWB.2021 R) ]<−NA

s tack R[ i s . na( surv . g l o b a l R) ]<−NA

stack P<−ras te rToPoint s ( s tack R)

# make zero counts are zero i n s t e a d o f NA

for ( i in unique ( years ) )

{

s tack P[ i s . na( s tack P[ , i ] ) , i ]<−0
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}

##################

############## Functions ####

##################

##### NBS var iance e s t i m a t o r

source ( ”H: /R codes/ f u n c t i o n s /NBSvar .R” )

##### CNUT f u n c t i o n

CNUT<−function ( )

{

### count c e l l s ###

c e l l count<−rep (0 , n c e l l s )

s e l e c t . l i s t<−which( ! i s . na( samplepresc ) )

voro . box<−rep (0 , n c e l l s )

for (d in 1 : n c e l l s )

{

d i s t M <− r d i s t ( s tack P[ c (d , 1 ) , c ( ”x” , ”y” ) ] , s tack P[ which( ! i s . na(

samplepresc ) ) , c ( ”x” , ”y” ) ] )

vec<−d i s t M[ 1 , ]

s e l e c t <− which( vec==min( vec ) )

voro . box [ d ]<−s e l e c t [ 1 ]

c e l l count [ d ]<−s tack P[ s e l e c t . l i s t [ s e l e c t [ 1 ] ] , years [ y ] ]

}

c u t o f f<−quantile ( c e l l count [ c e l l count [ ] !=0 ] , probs =0.99 , na .rm=T)

c e l l count [ c e l l count [ ]> c u t o f f ]<−c u t o f f

#c e l l count<−l og10 ( c e l l count +1)

pi counts<−c e l l count∗ (n . samples/sum( c e l l count , na .rm=T) )

p i equal<−n . samples/ n c e l l s

p i equal<−rep ( p i equal , n c e l l s )
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geoX pred<−( 0 . 2 5 ∗pi equal+1.75∗pi counts )/2

geoX pred<−geoX pred/max( geoX pred , na .rm=T)

geoX pred [ i s . na( geoX pred ) ]<−0

geoX pred [ geoX pred<c r i t i c a l . va lue . geo ]<−c r i t i c a l . va lue . geo

geoHT pred<−geoX pred∗ (n . samples/sum( geoX pred ) )

return (cbind (geoHT pred , geoX pred ) )

}

##### PANUT f u n c t i o n #####

PANUT<−function ( )

{

pres abs<−samplepresc [ ! i s . na( samplepresc ) ]

lower . l i m i t<−n c e l l s / (n . samples )∗ l i m i t

### presence p o i n t s ###

voro . box<−rep (0 , n c e l l s )

c e l l type<−rep (0 , n c e l l s )

for (d in 1 : n c e l l s )

{

d i s t M <− r d i s t ( s tack P[ c (d , 1 ) , c ( ”x” , ”y” ) ] , s tack P[ which( samplepresc

[]==1) , c ( ”x” , ”y” ) ] )

vec<−d i s t M[ 1 , ]

s e l e c t <− which( vec==min( vec ) )

voro . box [ d ]<−s e l e c t [ 1 ]

}

vor . s i z e<−function ( variable )

{

return ( length ( voro . box [ which( voro . box[]==variable ) ] ) )

}

voro . s i z e<−sapply ( voro . box , vor . s i z e )



8.2. APPENDIX B: R CODE 175

voro . s i z e [ which( voro . s i z e<lower . l i m i t ) ]<−lower . l i m i t

geoX pred pres<− (1/voro . s i z e )/ (max(1/voro . s i z e ) )

### absence p o i n t s ###

voro . box<−rep (0 , n c e l l s )

c e l l type<−rep (0 , n c e l l s )

for (d in 1 : n c e l l s )

{

d i s t M <− r d i s t ( s tack P[ c (d , 1 ) , c ( ”x” , ”y” ) ] , s tack P[ which( samplepresc

[]==0) , c ( ”x” , ”y” ) ] )

vec<−d i s t M[ 1 , ]

s e l e c t <− which( vec==min( vec ) )

voro . box [ d ]<−s e l e c t [ 1 ]

#c e l l type [ d ]<−pres abs [ s e l e c t [ 1 ] ]

}

voro . s i z e<−sapply ( voro . box , vor . s i z e )

voro . s i z e [ which( voro . s i z e <(lower . l i m i t ) ) ]<−lower . l i m i t

geoX pred abs<− (1/voro . s i z e )/ (max(1/voro . s i z e ) )

### presence and absence ###

HT pred pres<−geoX pred pres∗ (n . samples/sum( geoX pred pres ) )

HT pred abs<−geoX pred abs∗ (n . samples/sum( geoX pred abs ) )

### r a t i o ###

i f ( combi method ==” r a t i o ” )

{

geoX pred r a t i o<−geoX pred pres/geoX pred abs

HT pred<−geoX pred r a t i o ∗ (n . samples/sum( geoX pred r a t i o ) )

geoX pred<−geoX pred r a t i o /max( geoX pred r a t i o )

}

### add ###
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i f ( combi method ==”add” )

{

geoX pred r a t i o<−geoX pred pres−geoX pred abs

geoX pred r a t i o<−geoX pred r a t i o+1

geoX pred r a t i o<−geoX pred r a t i o /2

geoX pred<−geoX pred r a t i o /max( geoX pred r a t i o )

geoX pred [ geoX pred<c r i t i c a l . va lue . geo ]<−c r i t i c a l . va lue . geo

geoHT pred<−geoX pred∗ (n . samples/sum( geoX pred ) )

}

return (cbind (geoHT pred , geoX pred ) )

}

##### GLM f u n c t i o n

GLMfunction<−function ( )

{

data .glm P<−as . data . frame ( s tack P[ ! i s . na( samplepresc [ ] ) , ] )

response<−samplepresc [ ! i s . na( samplepresc [ ] ) ]

data .glm P<−cbind (data .glm P, response )

glm1 <− glm( response ˜ # cov01 +

cov02 +

# cov05 +

cov09 +

# cov10 +

cov14 +

# cov17 +

cov20 +

# cov22 +

cov23 +

# cov25 +
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cov26 +

# cov27 +

cov28 +

# cov30 +

cov33

# cov35

, family=binomial , data=data .glm P)

ecoX pred<−predict ( glm1 , newdata=data . frame ( s tack P) , type=” response ” )

ecoX pred<−ecoX pred/max( ecoX pred )

ecoX pred [ i s . na( ecoX pred ) ]<−0

ecoX pred [ ecoX pred<c r i t i c a l . va lue . eco ]<−c r i t i c a l . va lue . eco

ecoHT pred<− ecoX pred∗ (n . samples/sum( ecoX pred , na .rm=T) )

return (cbind ( ecoHT pred , ecoX pred ) )

}

####### p l o t maps

plotmaps<−function ( )

{

### s p e c i e s ###

i nputs<−s tack P[ , years [ y ] ]

inputs [ inputs [ ] !=0 ]<−1

#i n p u t s [ samplepresc []==1]<−0

r R<− r a s t e r i z e ( s tack P [ , 1 : 2 ] , empty R, inputs )

myTheme <− rasterTheme ( r eg i on=c ( ” gray99 ” , ” b lack ” , ” grey60 ” ) )

print ( l e v e l p l o t ( r R, x lab=”” ,par . s e t t i n g s=myTheme, margin=F, s c a l e s=l i s t ( x=

l i s t ( draw=FALSE) , y=l i s t ( draw=FALSE) ) ,

co l o rkey =FALSE) )

### sample ###

r R<− r a s t e r i z e ( s tack P [ , 1 : 2 ] , empty R, sample , fun=sum)
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myTheme <− rasterTheme ( r eg i on=rev (grey pal ( start = 0.01 , end = 0 . 9 7 ) (2 ) ) )

print ( l e v e l p l o t ( r R, x lab=”” , par . s e t t i n g s=myTheme, margin=F, s c a l e s=l i s t ( x

=l i s t ( draw=FALSE) , y=l i s t ( draw=FALSE) ) ,

co l o rkey =FALSE) )

### geo ###

i f ( r e j e c t i o n . type==” geo ” )

{

i nputs<−geoX pred∗n . samples/ (sum( geoX pred ) )

r R<− r a s t e r i z e ( s tack P [ , 1 : 2 ] , empty R, inputs , fun=sum)

print ( l e v e l p l o t ( r R, x lab=”” , margin=F, s c a l e s=l i s t ( x=l i s t ( draw=FALSE) , y=

l i s t ( draw=FALSE) ) ) )

}

### eco ###

i f ( r e j e c t i o n . type==” eco ” )

{

i nputs<−ecoX pred∗n . samples/ (sum( ecoX pred ) )

r R<− r a s t e r i z e ( s tack P [ , 1 : 2 ] , empty R, inputs , fun=sum)

print ( l e v e l p l o t ( r R, x lab=”” , margin=F, s c a l e s=l i s t ( x=l i s t ( draw=FALSE) , y

=l i s t ( draw=FALSE) ) ) )

}

### both ###

i f ( r e j e c t i o n . type==” both ” )

{

i nputs<−( ( ecoX pred+geoX pred )/2)∗n . samples/

(sum( ( ( ecoX pred+geoX pred )/2) ) )

r R<− r a s t e r i z e ( s tack P [ , 1 : 2 ] , empty R, inputs , fun=sum)

print ( l e v e l p l o t ( r R, x lab=”” , margin=F, s c a l e s=l i s t ( x=l i s t ( draw=FALSE) , y

=l i s t ( draw=FALSE) ) ) )

}

### s p e c i e s ###

# r1 R<− r a s t e r i z e ( s t a c k P[ , 1 : 2 ] , empty R, sample )

# i n p u t s<−( ( ecoX pred+geoX pred )/2)∗n . samples/

(sum( ( ( ecoX pred+geoX pred )/2) ) )
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# r2 R<− r a s t e r i z e ( s t a c k P[ , 1 : 2 ] , empty R, inputs , fun=sum)

# r1 R[ r2 R>0.16]<−0.5

# r R<−r1 R

# myTheme <− rasterTheme ( reg ion=c (” gray97 ” ,” b l a c k ” ,” grey60 ”) )

# p r i n t ( l e v e l p l o t ( r1 R, par . s e t t i n g=myTheme , x l a b =””, margin=F, s c a l e s= l i s t (

x= l i s t ( draw=FALSE) , y= l i s t ( draw=FALSE) )

, c o l o rkey =F) )

# myTheme <− rasterTheme ( reg ion=rev ( grey p a l ( s t a r t = 0.01 ,

end = 0 . 9 7 ) (2 ) ) )

# i n p u t s<−( ( ecoX pred+geoX pred )/2)∗n . samples/

(sum( ( ( ecoX pred+geoX pred )/2) ) )

# r R<− r a s t e r i z e ( s t a c k P[ , 1 : 2 ] , empty R, inputs , fun=sum)

# p r i n t ( l e v e l p l o t ( r R, par . s e t t i n g s=myTheme , x l a b =””, margin=F, s c a l e s= l i s t (

x= l i s t ( draw=FALSE) , y= l i s t ( draw=FALSE) ) ) )

# r M<−as . matrix ( r R)

# wireframe ( r M, screen = l i s t ( z = 290 , x = −65, y = 3)

, drape = TRUE,

# par . s e t t i n g s = l i s t ( a x i s . l i n e = l i s t ( c o l = ”

t r a n s p a r e n t ”) ) , z l im=c (0 ,1) , shade=F,

s c a l e s = l i s t (arrows = FALSE, cex =1.2) ,

# x l a b= l i s t (”Y−c o o r d i n a t e ” , r o t = −60, cex =1.3) , y l a b=

l i s t (”X−c o o r d i n a t e ” , r o t = 15 , cex =1.3) ,

z lab=l i s t ( ” Rescaled i n c l u s i o n P r o ba b i l i t y ” , ro t = 90 , cex =1.3) , co l o rkey=

F)

# plot3D (GWB.2022 R∗100 , c o l=heat . c o l o r s )

}

##################

########## prepar ing data #################

##################
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# p o i n t d a t a s e t

empty R<−s tack R [ [ ” cov01 ” ] ]

empty R[ ! i s . na( empty R) ]<−0

dim R<−dim( empty R)

n c e l l s<−dim R[ 1 ] ∗dim R[ 2 ]

ext R<−extent ( empty R)

c e l l<−1 : n c e l l s

v a l s<−getValues ( empty R)

c e l l . id<−c e l l [ which( v a l s []==0) ]

s tack P<−cbind ( s tack P, c e l l . id )

# number o f c e l l s

n c e l l s<− length ( s tack P [ , 1 ] )

# sample s i z e

n . samples<−round( perc . sampled∗ n c e l l s , 0 )

# h a l t o n seguence

dat . ha l ton . a l l<−runif . ha l ton (n=5000000 ,dim=3)

# r e s u l t s matrix

dat . r e s u l t<−matrix (nrow=0,ncol=6)

# s e l e c t a type o f d i s p e r s a l

my<−0

mx<−0

mv<−c (my,mx)

sdy<−0 .25

sdx<−0 .25

rho<−0 .0

Sigma<−matrix ( c ( sdy ˆ2 , sdy∗sdx∗rho , sdy∗sdx∗rho , sdx ˆ2) , 2 , 2 )

# make s p e c i e s r a s t e r

s p e c i e s R<−empty R

s p e c i e s 1 R<−s tack R [ [ year s [ 1 ] ] ]

s p e c i e s R[ s p e c i e s 1 R[ ]==1]<−1
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#################

########## s t a r t s i m u l a t i o n s ##

##################

for ( s in 1 : n . sims )

{

print ( ” s imu la t i on ” )

print ( s )

y<−1

stack P[ s tack P[ , years [ y ] ]>0 , years [ y ] ]<−1

halton . seed<−runif (1 ,1 ,1000000) #i f ( f i x e d . seed==”yes ”)

{ halton . seed<−1}

dat . ha l ton<−dat . ha l ton . a l l [−c ( 1 : ha l ton . seed ) , ]

x . r a s t e r <− cei l ing ( dat . ha l ton [ , 1 ] ∗dim R[ 2 ] )

y . r a s t e r <− cei l ing ( dat . ha l ton [ , 2 ] ∗dim R[ 1 ] )

c e l l . s e l e c t<−dim R[ 2 ] ∗ ( y . r a s t e r −1) + x . r a s t e r

c e l l . s e l e c t<−c e l l . s e l e c t [ which( c e l l . s e l e c t%in% c e l l . id ) ]

ha l ton . s e l e c t<−dat . ha l ton [ which( c e l l . s e l e c t%in% c e l l . id ) , 3 ]

##################

############# sample year 1 #####

HT pred<−rep (n . samples/ n c e l l s , n c e l l s )

##### t ake sample #####

sample . s e l e c t V<−c e l l . s e l e c t [ 1 : n . samples ]

sample<−rep (0 , n c e l l s )

sample [ which( s tack P[ , ” c e l l . id ”]% in% sample . s e l e c t V) ]<−1

samplepresc<−rep (NA, n c e l l s )

samplepresc [ which(sample []==1 & s tack P[ , years [ y]]==0 ) ] <−0
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samplepresc [ which(sample []==1 & s tack P[ , years [ y ]]>0 ) ]<−1

# combine presence p o i n t s

samplepresc prev ious<−samplepresc

# e s t i m a t i o n

d <− length (which( samplepresc==1))/n . samples

HT pred<−rep (n . samples/ n c e l l s , n c e l l s )

HT<− sum(sample∗ s tack P[ , years [ y ] ] / (n . samples/ n c e l l s ) )

nbs<−1

#res <− EST( s t a c k P[ , years [ y ] ] ,HT pred , s t a c k P[ , 1 ] , s t a c k P[ , 2 ] , sample ,

vartype=’ Local ’ )

#nbs<−re s$SE

s p e c i e s<− s tack P[ , years [ y ] ]

s p e c i e s<− s p e c i e s [ sample [ ] !=1 ]

count s p e c i e s<−sum( s p e c i e s )

new . entry<−c (y , s , d ,HT, nbs , count s p e c i e s )

dat . r e s u l t<−rbind ( dat . r e s u l t ,new . entry )

################## s p a t i a l in format ion ##############

i f ( r e j e c t i o n . type !=” eco ” )

{

##### CNUT #####

i f ( method==”CNUT” )

{

output<−CNUT( )

geoHT pred<−output [ , 1 ]

geoX pred<−output [ , 2 ]

}

##### PANUT #####
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i f ( method==”PANUT” )

{

output<−PANUT( )

geoHT pred<−output [ , 1 ]

geoX pred<−output [ , 2 ]

}

}

################## e c o l o g i c a l in format ion ##############

i f ( r e j e c t i o n . type !=” geo ” )

{

output<−GLMfunction ( )

ecoHT pred<−output [ , 1 ]

ecoX pred<−output [ , 2 ]

}

################## p l o t ##############

i f ( plot . map==” yes ” )

{plotmaps ( ) }

##################

############# sample year X #####

n . ha l t<−n . samples

for ( y in 2 : length ( years ) )

{

print ( ” year ” )

print ( y )

## d i s p e r s a l #################

e r a d i c a t i o n R<− r a s t e r i z e ( s tack P [ , 1 : 2 ] , empty R, sample , fun=sum)

s p e c i e s R[ e r a d i c a t i o n R[ ]==1]<−0

l e v e l p l o t ( s p e c i e s R)

l e v e l p l o t ( e r a d i c a t i o n R)

pre sence . un i t s<−which( s p e c i e s R[ ]==1)



184 CHAPTER 8. APPENDIX

l i s t . un i t s<−c ( presence . un i t s )

for ( i in presence . un i t s )

{

print ( i )

n . gwb<−rpois ( 1 , 0 . 5 )

i f (n . gwb>0)

{

xy<−cbind ( r l a p l a c e (n . gwb , l o c a t i o n = 0 , scale = 2) ,

r l a p l a c e (n . gwb , l o c a t i o n = 0 , scale = 2) )

xy [ xy [ ]< −15]<− −15

xy [ xy [ ]> 15 ]<− 15

xy<−xy∗50

xy .new<−xyFromCell ( s p e c i e s R, i , s p a t i a l=F)

xy [ , 1 ]<−xy .new[1 ]+xy [ , 1 ]

xy [ , 2 ]<−xy .new[2 ]+xy [ , 2 ]

new . p re sence<−cellFromXY ( s p e c i e s R, xy=data . frame (xy) )

l i s t . un i t s<−c ( l i s t . un i t s ,new . p re sence )

}

}

l i s t . un i t s<−l i s t . un i t s [ ! i s . na( l i s t . un i t s ) ]

accept . r e j e c t<−runif ( length ( l i s t . un i t s ) )∗100

surv<−surv . g l o b a l R[ l i s t . un i t s ]

l i s t . un i t s2<−l i s t . un i t s [ surv>accept . r e j e c t ]

s p e c i e s R[ l i s t . un i t s2 ]<−1

s p e c i e s points<−ras te rToPo int s ( s p e c i e s R)

s tack P[ , years [ y ] ]<−s p e c i e s points [ , 3 ]

s p e c i e s R<− r a s t e r i z e ( s tack P [ , 1 : 2 ] , empty R, s tack P[ , years [ 1 ] ]

, fun=sum)

print ( l e v e l p l o t ( s p e c i e s R) )
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#############

s tack P[ s tack P[ , year s [ y ] ]>0 , years [ y ] ]<−1

sample . s e l e c t V<−c ( )

while ( length (sample . s e l e c t V)<n . samples )

{

n . ha l t<−n . ha l t+1

i f ( r e j e c t i o n . type==” geo ” )

{

HT pred<−geoHT pred

i f ( ha l ton . s e l e c t [ n . ha l t ]<geoX pred [ which( s tack P[ , ” c e l l . id ”

]== c e l l . s e l e c t [ n . ha l t ] ) ] )

{

sample . s e l e c t V<−c (sample . s e l e c t V, c e l l . s e l e c t [ n . ha l t ] )

}

}

i f ( r e j e c t i o n . type==” eco ” )

{

HT pred<−ecoHT pred

i f ( ha l ton . s e l e c t [ n . ha l t ]<ecoX pred [ which( s tack P[ , ” c e l l . id ” ]

==c e l l . s e l e c t [ n . ha l t ] ) ] )

{

sample . s e l e c t V<−c (sample . s e l e c t V, c e l l . s e l e c t [ n . ha l t ] )

}

}

i f ( r e j e c t i o n . type==” both ” )

{

i f ( combi . method==”add” )

{

bothX pred<−geoX pred+ecoX pred/2

bothX pred<−bothX pred/max( bothX pred , na .rm = T)

HT pred<−(geoHT pred+ecoHT pred )/2
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i f ( ha l ton . s e l e c t [ n . ha l t ]<bothX pred [ which( s tack P[ , ” c e l l . id ” ]

==c e l l . s e l e c t [ n . ha l t ] ) ] )

{

sample . s e l e c t V<−c (sample . s e l e c t V, c e l l . s e l e c t [ n . ha l t ] )

}

i f ( combi . method==” times ” )

{

bothX pred<−geoX pred ∗ ecoX pred

bothX pred<−bothX pred/max( bothX pred , na .rm = T)

HT pred<−(geoHT pred+ecoHT pred )/2

i f ( ha l ton . s e l e c t [ n . ha l t ]<bothX pred [ which( s tack P[ , ” c e l l . id ” ]

==c e l l . s e l e c t [ n . ha l t ] ) ] )

{

sample . s e l e c t V<−c (sample . s e l e c t V, c e l l . s e l e c t [ n . ha l t ] )

}

}

}

}

}

sample<−rep (0 , n c e l l s )

sample [ which( s tack P[ , ” c e l l . id ”]% in% sample . s e l e c t V) ]<−1

i f (memory==”no” )

{

samplepresc<−rep (NA, n c e l l s ) # no memory

}

i f (memory==” both ” )

{

samplepresc<−samplepresc prev ious # memory presence and absence

}

samplepresc [ which(sample []==1 & s tack P[ , years [ y]]==0 ) ] <−0
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samplepresc [ which(sample []==1 & s tack P[ , year s [ y ]]>0 ) ]<−1

# combine presence p o i n t s

samplepresc prev ious<−samplepresc

# e s t i m a t i o n

d <− length (which(sample==1 & s tack P[ , year s [ y ] ]>0) )/n . samples

HT<− sum(sample∗ s tack P[ , year s [ y ] ] /HT pred )

#r es <− EST( s t a c k P[ , years [ y ] ] ,HT pred , s t a c k P[ , 1 ] , s t a c k P[ , 2 ] , sample ,

va r typ e =’Local ’ )

#nbs<−re s$SE

s p e c i e s<− s tack P[ , year s [ y ] ]

s p e c i e s<− s p e c i e s [ sample [ ] !=1 ]

count s p e c i e s<−sum( s p e c i e s )

new . entry<−c (y , s , d ,HT, nbs , count s p e c i e s )

dat . r e s u l t<−rbind ( dat . r e s u l t ,new . entry )

################## s p a t i a l in format ion ##############

i f ( r e j e c t i o n . type !=” eco ” )

{

##### CNUT #####

i f ( method==”CNUT” )

{

output<−CNUT( )

geoHT pred<−output [ , 1 ]

geoX pred<−output [ , 2 ]

}

##### PANUT #####

i f ( method==”PANUT” )

{
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output<−PANUT( )

geoHT pred<−output [ , 1 ]

geoX pred<−output [ , 2 ]

}

}

################## e c o l o g i c a l in format ion ##############

i f ( r e j e c t i o n . type !=” geo ” )

{

output<−GLMfunction ( )

ecoHT pred<−output [ , 1 ]

ecoX pred<−output [ , 2 ]

}

################## p l o t ##############

i f ( plot . map==” yes ” )

{plotmaps ( ) }

#################

########## end s i m u l a t i o n s ####

} # b r a c k e t years loop

} # b r a c k e t s i m u l a t i o n s loop

#################

########## end s i m u l a t i o n s ####

plot ( dat . r e s u l t [ , 1 ] , dat . r e s u l t [ , 6 ] )

points ( dat . r e s u l t [ , 1 ] , dat . r e s u l t [ , 3 ] , col=2)

aggregate ( dat . r e s u l t [ , 6 ] , by=l i s t ( dat . r e s u l t [ , 1 ] ) ,mean)

warnings ( )

#w r i t e . csv ( dat . r e s u l t , ”GWB geo . csv ”)
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