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An optimal way of moving a sequence of points onto 

a curve in two dimensions 
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Abstract: Let 2(t), 0::::; t::::; T, be a smooth curve and let X.i, i = 1, 2, ... , n, be 
a sequence of points in two dimensions. An algorithm is given that calculates 
the parameters ti, i=l,2, ... ,n, that minimize the function max{llx.i-2(ti)ll2: 
i = 1, 2, ... , n} subject to the constraints O::::; t 1 ::::; t2 ::::; · · ·::::; tn::::; T. Further, the 
final value of the objective function is best lexicographically, when the distances 
llx.i-§.(ti)ll2, i= 1, 2, ... , n, are sorted into decreasing order. The algorithm finds 
the global solution to this calculation. Usually the magnitude of the total work 
is only about n when the number of data points is large. The efficiency comes 
from techniques that use bounds on the final values of the parameters to split 
the original problem into calculations that have fewer variables. The splitting 
techniques are analysed, the algorithm is described, and some numerical results 
are presented and discussed. 
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1. Introduction 

If two pictures of a scene are taken at two different times, then differences may 
occur, not only because of changes in the scene, but also because of the way in 
which the pictures are taken. A highly useful technique that compensates for 
the external changes requires the identification of several fixed points of the scene 
that occur in both pictures. Then one seeks the smoothest function that maps the 
fixed points of the first picture into the fixed points of the second picture. This 
mapping is applied to all the data in the first picture. A comparison of the resul
tant image with the second picture is often far more revealing than a comparison 
of the original two pictures. This method is called "image registration". It has 
applications in medicine, in the analysis of data from satellites, and in mine de
tection, for example. Further information can be found in Brown (1992), Flusser 
(1992) and Barrodale, Kuwahara, Poeckert and Skea (1993). 

Sometimes there are not enough fixed points to identify a suitable mapping 
function, but one may be able to make use of one or more fixed curves in the scene, 
such as part of a rib-cage in medical imaging. Therefore the author has developed 
a procedure for mapping curves into curves in two dimensions (Powell, 1996). 
Each curve in the first picture is replaced by a sequence of points on the curve, 
but the corresponding curve in the second picture is approximated by pieces of 
circular arcs and straight line segments that are joined to provide first derivative 
continuity. Let the sequence and the approximation be {.x.1 , .x_2 , ... , .X.n} c R.2 and 
S = {.§_(t) : 0 ~ t ~ T} c R.2

, respectively, where the parameter t can be regarded as 
the distance along S. Then the mapping function is required to have the property 
that, for i = 1, 2, ... , n, the image of *-i is 2..(ti) for some ti in [O, T]. Further, the 
ordering of the sequence of points is preserved by imposing the constraints 

(1.1) 

For any choice of the parameters subject to the conditions (1.1), one can 
regard §..(ti) as the required image of *-i, i = 1, 2, ... , n, in order to apply the 
standard image registration method t·hat is the subject of the first paragraph. 
The smoothness of the resultant mapping function depends on the choice of ti, 
i = 1, 2, ... , n. Powell (1996) adjusts the parameters to the values that make 
the mapping function as smooth as possible, which is an interesting optimization 
calculation inn variables that has a differentiable objective function and the linear 
constraints (1.1). The initial values of the variables are chosen by an algorithm 
that solves the subproblem that is stated in the next paragraph. The author 
was delighted to find that the solution of the subproblem requires very little 
computation, which may be useful to other applications. Therefore we are going 
to consider some of the details, theoretical properties and numerical results of the 
method that generates the initial values of ti, i = 1, 2, ... , n. 

The given sequence {.x.1 , .x.2 , .•. , .X.n} c R. 2 is moved onto the given smooth 
curve S = {.§_(t) : 0 ~ t ~ T} c R.2 in a way that preserves the ordering and that 
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minimizes the largest of the changes to the positions of the individual points. In 
other words, the algorithm calculates the real numbers ti, i = 1, 2, ... , n, that 
minimize the function 

(1.2) 

subject to the constraints (1.1). Further, if there is not a unique solution, then 
the freedom is taken up by the well-known lexicographic method of Chebyshev. 
Specifically, for any feasible t., we let { d1 (t.), d2 (t.), ... , dn (t.)} be the distances 
llx.i - .§.(ti) 112, i = 1, 2, ... , n, arranged in descending order, so the definition (1.2) 
gives f (t.) = d1 (t.). Then two feasible vectors, £ and t say, are equally good only if 
all the equations di(£)= di (t), i = 1, 2, ... , n, are satisfied. Otherwise, letting j be 
the least integer such that dj (£) #- dj (t), we assume that £ is better than t if and 
only if dj(i) is less than dj(t). The algorithm generates a feasible vector t. E nn 
that is best in this sense. Local minima can occur, because all the restrictions on 
the shape of S have been mentioned already. Therefore S is allowed to have many 
fluctuations and to intersect itself several times. Fortunately, such situations are 
handled routinely by the algorithm in a way that always provides a global solution 
to the calculation of this paragraph. 

The main ideas and lemmas that are important to the algorithm are given in 
Section 2. Details of the algorithm are addressed in Section 3, and some numerical 
results are presented in Section 4. We find that it is usual for the total amount of 
computation to be only of magnitude n, but this work can be O(n2 ), when typical 
spacings between adjacent points in the sequence X.i, i , 2 ... , n, are much less 
than the distances of most of the points from S. 

2. Some properties of the calculation 

Let h* be the least value of the objective function (1.2) subject to the constraints 
(1.1). The algorithm picks several estimates of h*, and for about half of them it 
generates the numbers ai(h), i=O, 1, ... , n, sequentially, where his the estimate. 
Specifically, a0 (h) is zero, and, for each i ~ 1, we let ai(h) be the least number in 
the closed interval [ai-i(h), T] that satisfies the inequality 

(2.1) 

except that ai(h) is given the value +oo if ai_1(h) is already +oo or if the distance 
fromx_i to all the points {.§.(t): ai-i(h)::;t::;T} is greater than h. It is important 
to note that this construction provides the following information. 

Lemma 1 If an(h):::; T occurs, then h has the property h ~ h*. Further, ai(h) 
is a lower bound on the parameter t; for every integer i in [1, n], where t.* E nn is 
any solution of our optimization calculation. Alternatively, if an ( h) = +oo occurs, 
then h is strictly less than h*. 
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Proof It is sufficient to prove that h 2::. h* and h < h* imply an(h) ST and 
an(h) = +oo, respectively. In the case h 2::_ h*, we let t* be any optimal vector of 
parameters. Therefore the components oft* satisfy the inequalities 

Hence condition (2.1) and ai_1 (h) S ai(h) ST are achieved for i = 1 if we set 
a 1 (h) = tf. Thus the definition of a 1 ( h) implies a 1 ( h) s tf. It now follows from 
expression (2.2) that condition (2.1) and a;i_ 1 (h) s ai(h) ST are achieved for 
i = 2 if we set a 2 (h) = t2, so the definition of a 2 (h) provides a 2 (h) S t2. By 
continuing this argument inductively, we deduce the required bounds ai(h) st;, 
i = 1, 2, ... , n, which imply an ST. Thus the lemma is true in the case h 2::. h*. 

Alternatively, if h < h*, it follows from the definition of h* that it is not possible 
for inequality (2.1) to hold for every i with the ordering condition Os a 1 (h) s 
a 2 (h) s · · · S an(h) s.T. Therefore an(h) must be infinite, which completes the 
~~ 0 

The lemma suggests a procedure for calculating h* to arbitrarily high accuracy, 
because, by generating an(h), we can discover whether any positive number h 
satisfies h 2::_ h* or h < h*. The procedure obtains a bracket on h* that is refined 
by a bisection method, and, for each h, one works forwards through the points 
±i, i = 1, 2, ... , n, and along the curve S, in order to calculate the sequence ai ( h), 
i = 1, 2, ... , n. There is an analogous way of working backwards through the 
data points and along S. It is the subject of the following corollary of Lemma 1, 
because we can improve on the preliminary procedure by combining forwards and 
backwards directions. 

Corollary 2 Let h be any nonnegative number and let f3n+1(h) be T. For 
i = n, n -1, ... , 1, we let /Ji ( h) be the greatest number in the interval [ 0, /Ji+ 1 ( h)] 
that satisfies the inequality 

(2.3) 

except that we set f3i(h) = -oo if /3i+1(h) has this value already or if all of the 
distances { ll;ri-.!?'.( t) 112 : 0 St S /3i+1 (h)} exceed h. If /31 (h) is finite, then h 2::. h* and 
t;Sf3i(h), i=l,2, ... ,n, hold, where t*ERn is any optimal vector of parameters. 
Alternatively, the condition /31 (h) = -oo implies that his strictly less than h*. D 

The proof of the corollary is omitted because it is analogous to the justification 
of Lemma 1. 

We see that a bisection procedure for calculating h* can apply either Lemma 1 
or Corollary 2. Further, if the trial number h satisfies h 2::_ h*, then the procedure 
provides either upper or lower bounds on the optimal parameters t;, i = 1, 2, ... , n. 
The best available bounds on t; for each i can be recorded and revised as the 
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calculation proceeds. This task is straightforward, because the method of proof 
of Lemma 1 gives the relations 

i=l,2, ... ,n, (2.4) 

for all numbers h1 and h2 such that h* ::; h2 ::; h1. We reserve ai and /3i for the best 
available bounds on t;, i= 1, 2, ... , n. They are stored and updated explicitly by 
the computer program that produced the numerical results of Section 4. 

The computer program employs both the forwards and backwards directions 
that have been mentioned, in order that the lengths of the intervals [ai, /3i], i = 
1, 2, ... , n, can become small. Thus it may happen during the calculation that the 
condition /3j::; aj+1 is achieved for some integer j in [1, n-1). Then the original 
optimization problem inn variables is split into two similar problems, where one of 
the new problems has j variables and the other one has n-j variables. Specifically, 
they are the minimization of the functions 

We see that these calculations provide the optimal moves of the points {.x_i : i = 

1, 2, ... , j} and {.x_i : i = j + 1, j +2, ... , n} onto the curves {.§.(t) : 0::; t::; /3j} and 
{.§.(t): aj+1 ::;t::;T}, respectively. Although it seems obvious that this splitting is 
valid, we present a formal proof. 

Lemma 3 Let Tt, i=l, 2, ... ,j, and Tt, i=j+l,j+2, ... , n, be parameters that 
minimize the two expressions (2.5) in the lexicographic sense that is described in 
the penultimate paragraph of Section 1, and let /3j and aj+1 satisfy /3j ::; aj+l· 
Then the parameter values Tt, i = 1, 2, ... , n, solve the original calculation. 

Proof Let t;, i = 1, 2, ... , n, be any solution of the original calculation. The 
bounds t; ::; /3j and aj+1 ::; t;+i are satisfied and we are assuming /3j ::; aj+l· 
Therefore, if the first j components of t.* are replaced by the numbers Tt, i = 
1, 2, ... , j, that occur in the statement of the lemma, then the constraints (1.1) 
are preserved. Further, the choice of Tt, i = 1, 2, ... , j, implies that the new vector 
t.* is also a solution of the original calculation, so we restrict attention to optimal 
vectors t* that have the property t; · Tt, i = 1, 2, ... , j. It follows similarly that t* 
remains optimal if we replace its last n-j components by Tt, i = j + 1, j + 2, ... , n, 
which gives the required result. D 

Our work so far suggests an algorithm that combines splitting with bracketing 
and bisection, where splitting occurs whenever the relation /3j ::; aj+l is found 
for some integer j in [1, n-1]. It is very useful that, due to Lemma 3, all the 
current bounds of the form ai::; t;::; /3i, i = 1, 2, ... , n, can be included in the new 
calculations that are introduced by the splitting technique. Some "one-sided" 
splitting is also possible, as indicated in the next lemma. 
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It assumes that ai and /3i are always available, because ai = 0 and /3i = T, 
i = 1, 2, ... , n, can be set initially. Further, we introduce the name "h-problem" 
for a relaxed form of the original calculation, where h is any nonnegative num
ber. Specifically, in this problem the function (1.2) is minimized subject to the 
constraints (1.1), and we take up some freedom in the variables by applying the 
lexicographic method only to the distances ll;ri - 2(ti) 11 2, i = 1, 2, ... , n, that are 
greater than h. Therefore any solution to the h2-problem is also a solution to the 
h1-problem if OS h2 S h1, and the 0-problem is the original calculation. 

Lemma 4 Let a value of h provide an(h) = +oo. If j is any integer in [1, n-1) 
such that Cl!j ( h) s ll!j+i, then, for i = 1, 2, ... , j, the current lower bound ai can be 
increased to max[ai, ai(h)]. Moreover, let the parameters Tt, i=j+l,j+2, ... , n, 
minimize the second part of expression (2.5) lexicographically as before, and let 
the other components of r* E Rn be Tt = ai ( h), i = 1, 2, ... , j. Then r* is a solution 
of the h-problem. 

Proof Let t.* be any optimal vector of parameters for the original calculation. 
Then the largest of the distances ll;ri-2(t;)ll 2, i=l,2, ... ,j, cannot be reduced 
by adjusting t;, i = 1, 2, ... , j, subject to OS ti S ···st; S t;+i · Now the numbers 
ai(h), i=l,2, ... ,j, have the properties 

OS a1 (h) S a2(h) S · · · S aj(h) S ll!j+i S t;+1 } (
2
.
6

) 
and ll;ri-2(ai(h))ll2sh, i=l,2, ... ,j . 

It follows from the possibility t; =ai(h), i= 1, 2, ... , j, that the first j components 
oft* satisfy ll;ri-2(t;)ll2 Sh, i = 1,2, ... ,j. Hence the definition of ai(h) and 
the method of proof of Lemma 1 give ai(h) st;, i = 1, 2, ... , j, which justifies 
the assertion that the current lower bound on t; can be increased from ai to 
max[ ai, ai ( h)] for each integer i in [1, j). 

For the remainder of the proof, we let t* be any solution of the h-problem. The 
conditions (2.6) imply that t* remains a solution of the h-problem if we replace 
its first j components by Tt = ai ( h), i = 1, 2, ... , j. Therefore we restrict attention 
to vectors t* that have the property t; = Tt, i = 1, 2, ... , j. The proof is completed 
by applying the last part of the proof of Lemma 3. D 

If the conditions of Lemma 4 are achieved by the algorithm, there is an imme
diate switch from the original problem to the minimization of the second function 
of expression (2.5), using the largest integer j in [1, n-1) that satisfies aj(h) S ai+l· 
Lemma 4 shows that, if t; is an optimal parameter for the new calculation and 
if IJ;ri- 2(t;)ll 2 > h occurs, then t; is also an optimal parameter for the original 
calculation. We treat the new problem, which has only n- j variables, as though 
it were the original one, while seeking the value of h*. Therefore further splittings 
are likely. If they reduce the number of variables to only one, which happens fre
quently, partly because of another splitting technique that will be described later, 
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then we require the point on a known section of S that is closest to a particular 
data point, ±p say. This calculation is done analytically, using the fact that S is 
composed of straight line segments and circular arcs. Then t; is set to the pa
rameter value of the point that is found on S. Another analytic calculation that 
determines h* and t; directly for some p is mentioned in Section 3. Otherwise, 
the bracket on h* is refined until its width is less than a prescribed tolerance. 
Let the parameters that remain in the calculation after all the splittings be ti, 
i=p,p+l, ... , q. Further, among all the values of h for which the numbers ai(h), 
i = p, p+ l, ... , q, are generated, let h1 be the least value and h2 be the greatest 
value that satisfy h1 ~ h* and h2 < h*, respectively, which are identified using 
Lemma 1. The algorithm sets t; = ap(h1 ). Therefore we consider the suitability 
of this choice. 

We should avoid an unnecessarily large distance between ±p and !2.(t;), but 
often the required condition IIJ:.i-!2.(ai(h))ll 2 ~his achieved by satisfying the in
equality as an equation, so the choice t;=ap(h1) is likely to give JIJ:.p-!2.(t;)ll 2 =h1 . 

Further, by constructing pathological examples, it can be shown that occasion
ally this choice can make the distance IIJ:.p-!2.(t;)ll 2 much greater than necessary, 
even in the case h1 = h*. These examples contain degeneracies, however, due to 
nonuniqueness of the shifts of some of the data points that have to move the full 
distance h*, and achieving optimality in difficult degenerate situations can require 
much computation. Therefore we justify t; = ap ( h1) by showing that it is optimal 
for a perturbed version of the current calculation. 

The calculation after all the splittings is the minimization of the function 

where a and (3 are constants. We let the perturbed problem be the minimization 
of the expression 

in the case c:=h1 -h2 , where CJ is the piecewise constant function 

CJ(t)=O, t~O, and CJ(t)=l, t>O. (2.9) 

It is not expensive in practice to refine the bracket on h* until the magnitude of 
c: is comparable to computer rounding errors. Our analysis of the new problem 
depends on the assumption that the available values of ai(h1) and ai(h2), i = 
p, p+ l, ... , q, do not allow a Lemma 4 splitting, which is the condition 

j=p,p+l, ... ,q-l. (2.10) 

Lemma 5 Let the conditions of the previous paragraph be satisfied, and let t;, 
i = p, p + 1, ... , q, be any parameters that provide the least value of expression 
(2.8) subject to a~t;~· · ·~t;~f3. Then t; has the value ap(h1 ). 
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Proof First we deduce that, if the parameters t;, i = p, p+ l, ... , q, are optimal 
for the perturbed problem, then they have the lower bounds 

i=p,p+l, ... 'q, (2.11) 

and one or more of them holds as an equation. We require the remark that the 
possibility t; = o:i(hi), i = p, p+ l, ... , q, shows that the least value of expression 
(2.8) is no greater than hi. Further, the definition of o:i(hi) implies that, if 
expression (2.11) fails for any i, then at least one of the distances 1122.j-.§.(t;)lb 
j = p, p+ l, ... , i, is greater than hi. It follows that all the conditions (2.11) are 
necessary for optimality. Next we suppose that they all hold as strict inequalities. 
Then expression (2.8) is the sum of expression (2.7) and the constant c=hi -h2, 
but this sum is bounded below by h*+hi-h2 >hi, which also contradicts optimality. 
Hence t'J.=o:k(hi) is satisfied for one or more integers kin [p,q]. 

We let k be as small as possible subject to this equation, which gives the 
required result if k=p. Otherwise, conditions (2.11), (1.1) and (2.10) provide the 
bounds 

(2.12) 

Therefore we can let£ be the least integer in [p, k-1] that satisfies o:e(hi) < tc < 
o:e(hz). It follows from o:e(hi) < tc and the optimality of tc that we have the 
relation 

(2.13) 

We are going to make use of the fact that the last inequality is ll22.e-.§.(tc)ll2:Sh2. 
Now, by definition, a:e(h2) is the least value oft in [a:e-i(h2),,B] that satisfies 
1122.e-.§.(t)llz :S h2, the value of o:p-i(h2) being a:. Therefore tc < o:e(h2) and ll22.e
.§.(tc)ll2 :S h2 imply tc<o:e-i(h2), which excludes f=p. In the other case f>p, the 
choice of k provides O:e-i(hi)<tc-i, so we find O:e-i(hi)<tc-i:Stc<O:e-i(h2), but 
this conclusion contradicts the definition of£. Thus all values of£ are excluded. 
The only surviving possibility is t; = o:p(hi), so the lemma is true. D 

In addition to convenience and the optimality of a nearby problem, there are 
two more advantages of the choice t; = o:p (hi). One is that, because it is the 
leftmost reasonable candidate for selection in the interval [a:, ,BJ, where we are 
using the notation of expression (2.7), it leaves as much freedom as possible for 
the selection of the final values of ti, i = p+ l, p+ 2, ... , q. The other advantage 
is that we expect o:p(hi) to be very close to the optimal value o:p(h*), because 
o:p(h) converges to o:p(h*) ash tends to h* from above. This assertion is proved as 
follows. By definition, the dependence of o:p(h) on his monotonic. Therefore o:p(h) 
tends to a limit, a:; say, that satisfies a:;:::::; o:p(h*). Furthermore, the conditions 
ll22.p-.§.(a:p(h))ll2:Sh and h-+h* imply ll22.p-.§.(a:;)ll2:Sh*. Hence the definition of 
o:p(h*) gives o:p(h*) :Sa:;. It follows that a:; is equal to o:p(h*) as claimed. 
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The analogue of Lemma 4 for the upper bounds /3i on t;, j = 1, 2, ... , n, is that, 
if a value of h provides /31 (h) = -oo, and if /3j S /3i+1 (h) occurs for some integer j in 
[1,n-1], then /3i can be reduced to f3i(h) for i=j+l,j+2, ... ,n. Further, the value 
of h* is the least value of the function in the first line of expression (2.5). The 
algorithm makes a one-sided splitting of this kind whenever it can do so. It follows 
from symmetry that, when t; is set to ap(h1), as suggested before Lemma 5, then 
it is usually suitable to set t; = /3q(h3 ) too, where h3 is the least h satisfying h?:. h* 
for which the numbers /3i(h), i=p,p+l, ... , q, have been generated. Further, after 
making the choices t; = ap(h1) and t; = /3q(h3 ), the remaining components oft. are 
derived from up to three independent problems whose objective functions have the 
usual form. Specifically, if p?:. 2 there is a problem for the first p-1 components 
of t_, if p sq- 2 there is a problem for the components ti, i = p+ l, p+ 2, ... , q- l, 
and if q S n-1 there is a problem for the last n-q components oft_. Some of these 
calculations can be assisted by information from any previous one-sided splittings 
that have been made, which will be explained in the next section. Otherwise, each 
of these problems is treated as a new calculation, except that all bounds of the 
form ai St; S /3i are retained. They are valid because ai is increased to ai ( h) or f3i 
is decreased to f3i(h) only when it is known that the current his an upper bound 
on the final value of IIJi.i-2.(ti)ll2, The next section also includes a procedure that 
keeps track of the splittings and subproblems that occur. 

If the solution of the original calculation has to satisfy IIJ;.1-2.(ti) 11 2 = h*, then, 
unfortunately, the conditions of Lemma 4 fail for every h < h*. It is also possible 
that IIJi.n - .§.(t~) 112 = h* has to hold too, which would rule out the splitting that 
is mentioned at the beginning of the previous paragraph. Therefore we include 
yet another one-sided splitting technique in the algorithm of Section 3, which we 
introduce by considering the following simple example. Let the current lower and 
upper bounds on the parameters satisfy CXj+i < /3j s ai+2 < /3j+i for an integer 
j in [1, n- 2], and let some investigations with a trial value of h provide h < h* 
and a value of tj+1 in [/3j, CXj+2] that satisfies IIJi.H1 -.§.(tH1) 11 2 Sh. This choice of 
ti+l is always permissible, because the parameters satisfy t1 s · · · s ti s /3j and 
CXj+2 S tj+2 S · · · S tn. Thus h* is independent of tj+1, although the conditions 
CXj+l < /3j and aj+2 < /3j+i do not allow ti+1 to be isolated by Lemma 3 splittings. 
Further, when seeking h*, the adjustment of the parameters ti, i= 1, 2, ... , j, can 
be separated from the adjustment of the parameters ti, i= j +2, j+3, ... , n. 

Our use of a generalization of these remarks requires the calculation of some 
numbers &i(h), i= 1, 2, ... , n, that are a variation on ai(h), i= 1, 2, ... , n. Specif
icaJly, for any h?:. 0, we set &o(h) = /30 = 0. Then, for i = 1, 2, ... , n, we let &i(h) 
be the least value of t that satisfies the conditions 

and (2.14) 

except that we define &i(h) = +oo if these inequalities cannot be achieved. Thus 
&i(h) is the same as ai(h) for every i if h?:. h*, because &i-i(h) s /3i-l always 
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occurs in this case. On the other hand, if h < h*, then the presence of /3i-l in 
expression (2.14) may allow &i(h) to be finite when &,i_1 (h) = +oo. The new 
splitting method will be derived from the following lemma. 

Lemma 6 Let ai and /3i be the current lower and upper bounds on t; for each 
integer i in [1, n], and let an+l be T. Further, let the numbers ai(h) and &i(h), 
i = 1, 2, ... , n, be calculated with h < h*, which implies an ( h) = +oo. If k is an 
integer in [1, n-1] with the properties ak(h) = +oo and &k+i(h) ~ ak+z, then 
we form a vector r...* E nn. Specifically, the first j components of r...* minimize 
the first half of expression (2.5) with respect to the lexicographic ordering, where 
j is the greatest integer in [1, k] such that &j(h) = +oo. We set rt = &i(h), 
i=j+l,j+2, ... ,k+l. Further, in the case k+2~n, we let the last n-k-1 
components of r...* minimize the function 

(2.15) 

with respect to the lexicographic ordering. Then r...* is a solution of the h-problem 
that is introduced before the statement of Lemma 4. 

Proof Let t.* be any solution of the h-problem. We are going to show that f* 
remains a solution if t; is replaced by rt = &i(h) for i = j + 1, j + 2, ... , k + 1. 
The equation /3j = min[ &j ( h), /3j] is satisfied due to the choice of j, the condition 
&k+i(h) ~ ak+2 is given, and all of the numbers &i(h), i = j + 1, j + 2, ... , k+ 1, 
are finite. Therefore the definition of &i(h) and the choice of rt for each of these 
values of i provide the bounds 

(2.16) 

It follows that the replacement preserves the conditions (1.1) on the components 
off*. Furthermore, the first part of expression (2.14) gives ll.x.i-!2(rt)ll2 ~ h, 
i = j+ 1, j+2, ... , k+ 1, so the replacement also preserves the required lexicographic 
optimality of t*. Therefore we restrict attention to vectors t* that satisfy t; =rt, 
i=j+l,j+2, ... , k+l. 

Now rJ has the property rJ ~ /3j and the first of the inequalities (2.16) states 
/3j ~ rJ+i · Therefore the first part of the proof of Lemma 3 is applicable. Thus 
optimality is retained if we also overwrite the first j components of t* by the 
first j components of r...*. Finally, if k + 2 ~ n, then we deduce from the bounds 
rk+l ~ ak+2 ~ rk+z and the choice of rt, i = k + 2, k + 3, ... , n, that the last 
n- k-1 components oft* can be treated similarly. Therefore r...* is a solution of 
the h-problem as required. D 

Our algorithm makes a one-sided splitting whenever the conditions of Lemma 
6 are satisfied. Indeed, it switches to the optimization of the first function of 
expression (2.5), because it is known that the least value of this function is greater 
than h. Thus the algorithm takes advantage of the following corollary of the 
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lemma. If t;, i E [1, j], is an optimal value of ti in the new calculation that satisfies 
IIJ2-2(t;) 112 > h, then t; is also an optimal value of ti in the original calculation. 
A difference between this splitting and the previous ones is that now the optimal 
value of the new objective function may be less than h*, if h* is the least value 
of the function (2.15). Another difference is that the conditions of Lemma 6 
do not allow any of the bounds ai :s; t; :s; /3i, i = 1, 2, ... , n, to be revised. Of 
course the algorithm tries to reduce the number of variables in the new problem 
by applying further splittings. Moreover, there is a useful analogue of Lemma 6 
when /31 ( h) = -oo occurs, which follows from symmetry, and which is also applied 
by the algorithm whenever possible. 

Further details of the splitting techniques are given in the next section. It may 
be very helpful to future work that the analysis so far applies not only to data 
points and curves in R 2

, but also to data points and curves in higher dimensions. 

3. Some details of the algorithm 

It is helpful if the first trial value of h in the main calculation, ho say, satisfies ho 2: 
h*, but is not much larger than h*, in order that the numbers ai(ho) and /3i(h0 ), 

i = 1, 2, ... , n, are useful lower and upper bounds on t;, i = 1, 2, ... , n. Therefore 
h0 is generated by a preliminary calculation that requires O(n) operations when 
n is large, but that is relatively inexpensive, because no searches are made along 
the continuous curve S. Instead, S is replaced by the discrete point set {2j : j = 
1, 2, ... , m} for the moment, where fa= 2 (0) and 2m = 2(T) are the initial and final 
points of S, and where 2j, j =2, 3, ... , m-1, are the internal joins of the pieces of 
S, the joins being in sequence, and each piece being a straight line segment or a 
circular arc. The following crude form of the main calculation provides ho. 

If h is a trial value of ho, we ask whether there exist integers 1 :s; j 1 ( h) :s; j 2 ( h) :s; 
· · · :s; jn ( h) :s; m, that satisfy the conditions 

i=l,2, ... ,n. (3.1) 

In other words, we ask whether the data points can be mapped onto the discrete 
form of S, so that the ordering of the data is preserved, and so that the length of 
each move is at most h. An affirmative answer implies h 2: h*, because the points 
2j;(h), i = 1, 2, ... , n, are in order on the original curve S. Therefore we let ho be 
the least trial h that gives an affirmative answer. It is straightforward to seek 
the integers ji(h), i = 1, 2, ... , n, in sequence, by letting each one be as small as 
possible. We begin these trials by picking the value 

(3.2) 

say, and if necessary we overwrite h by 2h+h00 recursively, until it becomes an 
upper bound on ho. The greatest available lower bound on ho is also noted, even 
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if it is zero. Thus, when the upper bound is found, the difference between the 
two bounds is 2k-1h00 , where k is the number of values of h that have been tried. 
Now the discrete approximation of S makes it appropriate to refine the difference 
between the bounds by bisection until it becomes h00 /2. Therefore k bisections 
are made, and we choose ho to be the final upper bound that occurs. 

The other preliminary work is as follows. Let rJ be the prescribed tolerance on 
the width of the final bracket on h* that is mentioned after the proof of Lemma 
4. The algorithm ensures that rJ is at least ho times a pessimistic estimate of the 
relative accuracy of the computer arithmetic. Further, the initial values 

i=l,2, ... ,n, (3.3) 

are chosen, in order that a 1 and /3n are lower and upper bounds on ti and t~, and 
where '"'/i is reserved for an upper bound on ll;r.i - §'.(tI)ll2, i = 1, 2, ... , n, except 
that '"'Ii will be altered to '"'Ii= -1 when ti is given its final value t;. The numbers 
p= 1 and q=n are also set, because the objective function of the main part of the 
calculation has the form 

We retain the notation h* for the least value of this function, which is unknown. 
Further, h- and h+ are lower and upper bounds on h* that may be refined by 
bisection as suggested in Section 2. The algorithm picks the initial values h- =0 
and h+=ho. 

We are now ready to address the recursive part of the calculation. The first 
task is the preliminary work for the minimization of the function (3.4), given 
p, q, h- and h+. If p equals q, there is an immediate branch to the part of the 
algorithm that treats this case analytically. Otherwise, the possibility of obtaining 
an improvement to h+ from the bound 

h* < min[max{ll;r.i-§'.(ap)ll2: i=p,p+l, . .. ,q}, 

max{IIJ2i-!?'.(/Jq)ll2: i=p,p+l, ... , q} J = Po, (3.5) 

say, is considered, the bound being .valid because the constraints of expression 
(3.4) allow the choices tp = tp+l = · · · = tq = ap and tp = tp+l = · · · = tq = /Jq, A 
useful trick is employed in the case h+ 2:: p0 , which is to reduce h+ to the value 
max[p0 -rJ, OJ. Then ai(h+) and /Ji(h+), i = p,p+ l, ... , q, are calculated by the 
methods of Lemma 1 and Corollary 2, respectively. We find aq(h+) = +oo and 
f]p(h+) = -oo if the trick provides h+ < h*, which is very welcome, because one or 
more of the final values t;, i = p, p+ l, ... , q, can be assigned. Specifically, if the 
conditions h+ <h* and IIJ2i-§'.(ap)ll2~Po, i=p,p+l, ... , q, hold, then the algorithm 
sets t; = ap, i = p, p + 1, ... , j, where j is the least integer in [p, q] that satisfies 
aj(h+) > ap. Similarly, if h+ < h* and if the second maximum value in expression 
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(3.5) is less than the first one, then the algorithm sets f; = /3q, i = k, k+ 1, ... , q, 
where k is the greatest integer in [p, q] such that f3k(h+) </3q· These choices oft; 
can be justified when t; = ap, for instance, by considering the function 

Its least value is at most h* but is greater than h+, because the choice of j implies 
that its numbers ai(h+), i = j, j + 1, ... , q, are the same as before, including 
aq(h+) = +oo. Thus the suitability of t; = ap follows from Lemma 5, which 
implies ap ~ t; ::; ap for every integer i in [p, j]. After employing these advantages 
of h+ < h*, there is a branch to the part of the algorithm that picks the next values 
of p and q. Alternatively, in the usual case h+ 2: h*, the bounds ai = ai(h+) and 
/3i = /3i ( h +), i = p, p+ 1, ... , q, are assigned, and then the main recursive procedure 
is begun. 

This procedure applies the methods of Lemma 1 and Corollary 2 for several 
values of h. Thus it updates the bounds h- and h+ until the tolerance condition 

(3.7) 

holds, or until there is a switch to an analytical calculation of h*. The efficiency 
of the algorithm depends crucially on the splittings that are studied in Section 
2, but those techniques will be addressed later. Indeed, this paragraph presents 
some other techniques by describing the operations of the algorithm when there 
are no splittings and when condition (3.7) is achieved eventually. If it is found 
that the current h satisfies h < h*, then h- is always replaced by max[h, h-J. 
Further, h+ is replaced by min[h, h+] whenever h 2: h* is revealed. Therefore only 
the value of each new h and the choice between the methods of Lemma 1 and 
Corollary 2 remain to be described. The first h is set to ih+ or to Hh- +h+) in 
the case h- = 0 or h- > 0, respectively, the factor of 7 /8 being helpful, because 
h- = 0 is a default value and h* 2: ih+ occurs frequently. Each later choice of h 
is either !(h- + h+) or h+, the smaller value being preferred more often. Thus 
inequality (3. 7) is attained eventually. The reason for letting the new h be h+ 
occasionally is due to the importance of good values of ai and f3i, i=p,p+l, ... , q, 
to successful splittings. For example, if h* = 2-10-10 , and if h- = 1 and h+ = 3 
occur initially, then h+ becomes h+ = 2, and it stays there until a trial h satisifies 
h+-2-10 ~ h < h+. Therefore, if every new his h= !(h-+h+), then ai=ai(2) and 
/3i=/3i(3), i=p,p+l, ... ,q, are retained until the difference h+-h- is reduced to 
max[17, 2 x 10-10]. Thus the /3/s can be useless for most of the calculation. The 
algorithm avoids such inefficiencies in the following way. When the values 

i=p,p+l, ... 'q, (3.8) 

have been set for the current h+, then the new his always !(h-+h+). On the 
other hand, when either the a/s or the /3/s do not satisfy expression (3.8), we 
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replace the formula h = !(h- +h+) by h = h+ if and only if at least three values 
of h have been tried and the last three consecutive ones have the property h < h*. 
The choice h = h+ leads to the completion of the equations (3.8), because of the 
following switching between the methods of Lemma 1 and Corollary 2. First the 
method of Lemma 1 is applied until h ~ h* occurs. Then Corollary 2 is preferred 
until the next occurrence of h ~ h*. This alternation continues throughout the 
procedure of this paragraph. Therefore, letting ,f, be the integer such that the 
condition h ~ h* has been satisfied .e times already, the algorithm applies Lemma 
1 instead of Corollary 2 to the next value of h if and only if .e is even. 

The Fortran program that calculated the numerical results of Section 4 in
cludes several subroutines, but we use the term "subroutine" for the one that 
applies either Lemma 1 or Corollary 2, the choice between these alternatives be
ing controlled by an argument that is set by the calling program. This paragraph 
describes the output from the subroutine only in the case of Lemma 1, because the 
Corollary 2 output can be deduced from symmetry. An integer variable, namely 
INFO, is set to -1, 0 or 1. The value INFO= -1 indicates that the trial value of 
h satisfies h < h*, and that none of the splittings of Section 2 occurs. The value 
INFO= 1 indicates h ~ h*, and that ai and "Yi have been updated to ai(h) and h, 
respectively, for i=p,p+l, ... , q. In this case the possibility of a splitting has to 
be investigated by the calling program. Therefore the remaining value INFO= 0 
indicates h < h*, and that at least one Lemma 4 or Lemma 6 splitting is available. 
The variables that are allowed to be deleted from the current calculation by a 
splitting can be found by the calling program, because, if i is any integer in (p, q] 
such that ti can be dropped, then the subroutine gives ii= h, but the other values 
of ii are not disturbed. Furthermore, if a Lemma 4 splitting is possible, then the 
algorithm makes the changes to the lower bounds that are stated in Lemma 4, 
but the other values of ai are not altered. 

When the subroutine provides INFO= 1 during the main recursive procedure, 
a search is made for a Lemma 3 splitting. We know that the main procedure will 
continue if there is no splitting, so we· suppose that there exists an integer j in 
[p, q- l] that satisfies /3j 5:, aj+l · Then h and q are reduced temporarily to h- and 
j, respectively, and the subroutine is called again. Thus we determine whether 
the least value of the function 

is at most h-. This is the case if INFO= 1 occurs, and then the subroutine provides 
ai=ai(h-) and ii=h-, i=p,p+l, ... ,j, automatically, which will be useful later, 
because the algorithm makes the splitting that removes ti, i=p,p+l, ... ,j, from 
the current calculation. This is done by restoring h and q to their previous values 
and by increasing p to j + 1. Now Lemma 3 shows that the value of h* for the 
new calculation is the same as before, so the current h- and h+ still provide the 
bounds h- < h* 5:, h+. Therefore, except for a branch to the part of the algorithm 
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that has been noted already if p = q, one can go back to the beginning of this 
paragraph to find out what happens next, forgetting about the increase in p. 
Alternatively, if the least value of the function (3.9) is greater than h-, then the 
current bounds h- < h*::::; h+ apply not only to the objective function (3.4) but 
also to expression (3.9), although the new h* may be less than before. Therefore 
the temporary value q = j is accepted and h is restored to its previous value, in 
order that the minimization of the function (3.9) becomes the current calculation. 
Again a p = q branch is possible. Otherwise, the work of the main procedure is 
resumed, forgetting that q has decreased. The description of Lemma 3 splittings 
is complete. 

The one-sided splitting when INFO= 0 is easy to describe, because the variable 
ti can be removed by a splitting if and only if the integer i E [p, q] has the property 
'Yi= h. Therefore p is increased if necessary to the least integer k in [p, q] that 
satisfies 'Yk -=J. h. Then q is reduced if necessary to the greatest integer R, in [p, q] 
that is allowed by the conditions 

'Yi > h, i=k,k+l, ... ,e. (3.10) 

The minimum value of the new objective function (3.4) is greater than h, because 
otherwise all the numbers 'Yi, i = k, k+ l, ... , f, would have been set to h. Thus 
the bounds h- < h*::::; h+ are inherited by the new calculation, even if h* is smaller 
than before, and the next h- is the current value of h. Then, apart from the 
usual treatment of the case p = q, the algorithm returns to the main procedure, 
regardless of any changes top and q. 

We complete the description of the operations that may be relevant to the 
first final choice of a parameter by addressing the analytic calculations that are 
mentioned in Section 2. When p = q, the algorithm determines the final value 
of tp, namely t;, by minimizing the distance llx.P - .§.(tp)ll2, ap ::::; tp ::::; (3p. The 
other analytic calculation that is employed instead of bisection is the subject of 
this paragraph. Imagine that S is fairly straight and that one is going along it, 
looking for x.1 initially, but that one sees x.2 nearby before x.1 comes into sight, 
although x.1 is also close to the curve. Then, if there is no interference from the 
points X.i, i = 3, 4, ... , n, the final values of t 1 and t 2 have the properties 

and (3.11) 

Now .§.(a1(h)) comes before .§.(ti) on S if and only if a1(h) is a strict lower bound 
on t!, and then expression (3.11) and the scenario provide llx.2 - .§.(a1(h))ll2 < 
llx.1-.§'.(a1 (h)) 112· Further, this inequality and the definition of a2(h) imply a2(h) = 
a 1(h), and one can argue similarly that (31(h) = (32 (h) is likely to hold. Thus, if 
a 1 = a2 and /31 = (32 occur during the calculation, they suggest strongly that 
the equations (3.11) are going to be satisfied. This kind of situation happens 
frequently, perhaps 100 times in a problem with n= 1000. Therefore the algorithm 
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includes the following device. If both the conditions 

(3.12) 

are found during the minimization of the function (3.4), where p < q, then the 
algorithm tests the possibility of the given scenario by seeking answers to some 
questions analytically, except that the sequence of questions is abandoned if an 
answer is negative. Firstly, we ask if the inequalities 

(3.13) 

hold, at least one of them being strict. Secondly, we ask if the distance ll.x.p-Q(tp)ll 2 , 

ap s tp S f}p, decreases strictly monotonically. Thirdly, we ask if 11.x.q- Q(tq)ll 2 , 

aq s tq S f}q, increases strictly monotonically. When all the answers so far are 
favourable, there is a unique number t* E [ap, f}p] that satisfies 11.x.P - Q(t*) 112 = 
11.x.q-.§.(t*) 11 2 = d*, say, and it is calculated analytically. Finally, if there are integers 
between p and q, we ask whether all the distances 11.x.i - Q( t*) II 2 , p + 1 S i S q - 1, 
are bounded above by d*. Affirmative answers imply that the choices ti = t*, 
i=p,p+l, ... ,q, give the objective function (3.4) the valued*. Further, the strict 
monotonicity requirements of the second and third questions, and the constraints 
ap S tp S tp+l S · · · S tq S f}q, imply that ti= t* is the only optimal choice of ti 
for each integer i in [p, q]. Thus the final values of all the variables of the current 
optimization calculation are often assigned before the tolerance condition (3.7) is 
achieved. The successful completion of either of the analytic techniques of this 
paragraph is always followed by the operations of the algorithm that pick the next 
values of p and q. 

Access to the analytic method that has just been described is a branch from 
the main recursive procedure, immediately before the choice of the next value of h. 
The branch is made if the equations (3.12) hold, and if the analytic technique has 
not been tried already for the current values of p, q, ap and f}q, A convenient way 
of ensuring the last condition is to set p1 = 2T when expression (3.5) is considered, 
and to reduce p1 to f}q - ap whenever the analytic technique is unsuccessful, as 
then it is sufficient to add the constraint f}q-ap<p1 to the equations (3.12). An 
unfavourable answer to any of the questions of the previous paragraph is followed 
by a branch back to the recursive procedure, in order to refine the bracket on h* 
if inequality (3. 7) is not yet satisfied. 

If the recursive procedure finds that condition (3. 7) is achieved, then, instead 
of picking a new h, it assigns the final values of tp and tq, the indices p and q being 
different, because of the action that is taken analytically in the case p=q. These 
final values are t; = ap(h+) and t; = f}q(h+), as recommended in Section 2. Now 
the most recent call of the subroutine with h;?: h* employed h = h+. Further, if 
that call applied the method of Lemma 1, then ap is the required value of ap(h+), 
and, if Corollary 2 was applied instead, then f}q is the required value of f}q(h+). 
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We also recall that occasionally both ap(h+) and {Jq(h+) may be available, because 
the subroutine may have been invoked twice with h=h+. Otherwise, the call that 
completes the equations (3.8) is made, and it is repeated with a slightly larger 
value of h if rounding errors cause an INFO= -1 or INFO= 0 return. Then, after 
setting t; = ap and t; = {Jq, the flow of the algorithm goes to the operations of the 
next paragraph. 

New integers p and q are chosen whenever the final values of one or more of 
the variables ti, i = 1, 2, .... , n, are assigned. If t; is any of the new final values, 
then the bounds are updated by applying the formula aj = /3j = t;, but all other 
revisions of bounds are made later. Further, 'Yj is set to -1 as mentioned soon 
after equation (3.3), and we assume 'Yo ="fn+I = -1. The techniques that pick the 
new p and q depend on the integer, r say, that is the least j for which t; has just 
been determined, and on a property of the algorithm that we call the "staircase" 
condition. This condition is that, for every p throughout the calculation, the 
sequence 'Yi, i = 1, 2, ... ,P, increases monotonically, and is trivial initially due to 
p = 1. The following remarks prove that the condition is achieved by the method 
of calculation that has been described so far. Any changes to 'Yi are made by the 
subroutine, each new 'Yi being the current h, and each h being bounded below by 
h-. Therefore it is sufficient if h- 2: "Ip-I holds at all times, and if the splittings 
preserve the staircase structure. Neither the recursive procedure nor a splitting 
reduces h-, so it remains to consider splittings that increase p, from j5 top say. A 
Lemma 3 splitting is acceptable, because it sets 'Yi= h-, i = j5, f5+ 1, ... , p- l, if it 
increasesp. A one-sided splitting, however, provides "fi=h, i=j5,j5+1, ... ,p-l, for 
the current h, which is acceptable too, because this his the next h-. Therefore the 
staircase condition can be used in the choice of p and q that follows the selection 
oft;. 

First we address the case when not all of the final values tt, i= 1, 2, ... , r, have 
been chosen. According to the staircase structure, it is characterized by 'Yr-l 2: 0. 
Then a provisional choice of p and q is made that corresponds to the top step 
of the staircase just before t;, so q and p are set to r - 1 and the least positive 
integer that satisfies "fp = "fq, respectively. During the search for p, the bound {Jp 
is reduced if necessary so that /3p::; /3p+i holds for each trial p. Next we look for 
Lemma 3 splittings of the variables ti, i = p, p+ 1, ... , q, and, if there is one, q is 
decreased to the least integer that is allowed by the inequalities 

(3.14) 

These choices of p and q are the final ones if "/p-l = -1, and then h- is set to zero. 
Alternatively, in the case "fp-l 2: 0, the algorithm finds out if the top step of the 
staircase can be lowered to the level of the previous step, by calling the Algorithm 
1 version of the subroutine with h = "fp-·1 , for the current p and q. An INFO= 1 
return is received if and only if the lowering is valid, and then the subroutine will 
have overwritten 'Yi by "fp-I for all integers i in [p, q]. The successful broadening of 

17 



the top step demands a decrease in p, so there is a branch back to the operation 
of this paragraph that chooses the provisional p. The other two returns from the 
subroutine, however, indicate that 'Yp-l is strictly less than the minimum value of 
the function (3.4). Therefore h- is set to 'Yp-l, and the chosen values of p and q 
are going to be from the current interval [p, q]. In the case of an INFO= 0 return, 
the technique that gives expression (3.10) is applied, because the subroutine has 
reduced one or more of the numbers 'Yi, i = p, p + 1, ... , q, to 'Yp-l · Specifically, 
letting k be the least integer in [p, q] such that 'Yk > 'Yp-l holds, and then letting e 
be the greatest integer in [p, q] that has the property 

'Yi > 'Yp-l, i=k, k+l, ... , e, (3.15) 

the indices p and q are reset to k and e, respectively. Thus the INFO= 0 and 
INFO= -1 cases become equivalent. Again there is a search for Lemma 3 splittings, 
so q is decreased if possible to the least integer that satisfies the inequalities (3.14), 
as before. Fortunately, h- = 'Yp-l remains a strict lower bound on the function 
(3.4) if q is reduced, because any splitting that decreases q was not given as a 
Lemma 4 splitting by the recent call of the subroutine. The description of the 
choice of the new indices p and q when 'Yr-l 2:: 0 occurs is complete. Therefore, after 
setting h+ =,Yp, the flow of the algorithm goes to the beginning of the paragraph 
that includes expression (3.5), in order to begin the search for the least value of 
the new objective function (3.4). 

In the case 'Yr-l = -1, the algorithm increases r by 1 if the conditions r :s; n-l 
and 'Yr+l = -1 are satisfied, which is done recursively. Thus the value r = n is 
achieved if and only if all the final values of the parameters have been assigned, 
so the calculation is terminated in this case. Otherwise, the search for the next 
indices p and q gives priority to Lemma 3 splittings, because, if n is large, it 
is important to efficiency to avoid many values of q - r that are of magnitude 
n. Therefore the first provisional value of q is the least integer in [r + 1, n] that 
satisfies one or both of the inequalities 

(3.16) 

Further, during the search for q, the bound aq+l is increased if necessary so that 
aq+l 2:: aq holds for each trial q. Then the numbers 'Yi, i = 1, 2, ... , q, have the 
staircase structure, so again p is set provisionally to the least positive integer 
that has the property 'Yp = ,yq. We employ the notation 'Y;+1 for the number 
'Yq+l or -1 in the case /3q > aq+l or /3q :s; aq+i, respectively, in order that %+1 
becomes irrelevant when a splitting makes ti, i = 1, 2, ... , q, independent of ti, 
i=q+l, q+2, ... , n. It follows that the required values of p and q have been found 
already if the conditions 

(3.17) 
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are achieved, the choice of q having excluded Lemma 3 splittings of the variables 
ti, i=p,p+l, ... ,q. Then the algorithm sets h-=o and h+="(p, and branches to 
the instructions of the paragraph that includes expression (3.5). Otherwise, we 
investigate if the top step of the staircase can be lowered by calling the Lemma 
1 version of the subroutine for the current p and q, with h set to max[,'p-l, 1;+1J. 
Again the answer is negative if an INFO = 0 or INFO = -1 return occurs, which 
is analogous to the corresponding situation in the previous paragraph. Therefore 
h- is set to the current h, and there is a branch to the operations of the previous 
paragraph that select the final p and q from the current interval [p, q] for these 
values of INFO. On the other hand, after an INFO= 1 return, the subroutine has 
reduced i'i to the current h for every integer i in [p, q], which allows the step under 
consideration to be widened, but it may not be the top step any more if h is 1;+1. 

Therefore we pick new provisional values of p and q. Because the subroutine has 
not altered ai, f3i and i'i, i=l,2, ... ,p-1, but it may have changed ap, the new 
q satisfies q~max[r+l,p-1). Specifically, it is the least q subject to this lower 
bound that achieves one or both of the conditions (3.16). Then pis revised and 
the subsequent operations are reached by going back to the provisional choice of 
p that is made earlier in this paragraph. The description of the updating of p and 
q is complete, but it should be noted that the given recursive procedure cannot 
cycle indefinitely. Indeed, each cycle with an INFO = 1 return makes changes to 
the bounds 'Yi, i = 1, 2, ... , n, that provide a strict reduction in the cardinality of 
the set { i E [r + 1, r* -1] : ,'i # l'i+l}, where r* is the least integer in [r + 2, n] that 
has the property f3r• ~ O:'.r•+i, the value of O:'.n+l being T. We note also that the 
staircase condition is preserved by the techniques that select the new p and q. 

The final subject of this section is a few brief remarks on the representation 
of S by the algorithm and on the analytic calculations that have been mentioned. 
Therefore we recall the notation fa and .§.m for the initial and final points of S and 
.§.j, j = 2, 3, ... , m-1, for the internal joins of the pieces of S. In every application of 
the algorithm so far, mis an even integer, and the part of S between .§.j and .§.j+l is 
a straight line segment or a circular arc when j is odd or even, respectively. Thus S 
is defined uniquely by the positions of .§.j, j = 1, 2, ... , m. Further, these positions 
have to satisfy the constraint that, if j is any even integer in [2, m-2], then three 
lines are concurrent, namely the straight line extension from .§.j-l through .§.j, the 
straight line extension from ~+2 through .§.j+1, and the perpendicular bisector of 
the line segment from .§.j to .§.j+1 · The constraint is necessary for the continuity 
of the direction of S between Z.j-l and Z.j+2. The algorithm is provided with a 
sequence .§.j, j = 1, 2, ... , m, that satisfies these conditions. 

Then the parametric form S = fo(t) : 0 ~ t ~ T} is defined by induction in the 
following way, beginning with fa =.§.(81), where 81 is zero. For j = 1, 2, ... , m-1, 
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the parameter {)j+l of the identity !2j+1 = 2( {)i+i) is given the value 

{ 

{)j + ll2j+1 -2jll2 or 
{)·+1 = 

J {) j + distance along arc from .§.j to .§.H 1, 
(3.18) 

the latter alternative being preferred when j is even and the arc from .§.j to !2j+1 

turns through more than 1r /2 radians. This construction provides T = {)m, Further, 
when j is odd or when the second line of expression (3.18) applies, we let 2(t), 
{)j ~t~{)j+1, be the point on S whose arc-length distance from .§.j is t-{}j, In the 
remaining case, the parameterization 

(3.19) 

is employed for every t in [{)j, {)j+i]· Here >. and Y. are the differences t-{}j and 
.§.j+l-.§.j, respectively, while 12. is the difference between the midpoint of the circular 
arc from .§.j to !2j+l and the midpoint of the chord from .§.j to !2j+1 · Thus 12. is 
orthogonal to y_. Further, it can be verified that 2(t) takes the values .§.j, !2j+l 

and H2j + 23+1) + 12. in the cases >. = 0, >. = IIY.11 and >. = ! IIY.11 · Moreover, if 12. is 
zero, then the parameterization (3.19) reduces to !2j + AY./IIY.11, which is a usual 
expression for a point on the straight line segment between .§.j and !2j+1 · One can 
also deduce the properties lll({)i)ll=ll.§.'(()H1)ll=1. It follows from the continuity 
of the direction of S that the gradient of the representation {.§.(t) : 0 ~ t ~ T} 
is also continuous, which is important to the procedure for mapping curves into 
curves that is mentioned in Section 1. When !2j is joined to !2j+1 by a circular arc 
whose angle of rotation is more than 1r /2, however, then the algorithm applies the 
formula 

2 (t) = .§.j + r sin(.X/r) .fr+ r{l-cos(.X/r)} .Q, (3.20) 

where >. is t-{}i as before, where r is the radius of the arc, and where .fr and .Q 
are vectors of unit length that are parallel and orthogonal to the direction of the 
incoming tangent, namely .§.j - !2j-l · The large angle of rotation ensures that r is 
bounded. On the other hand, expression (3.19) is suitable when the arc is close 
to a straight line. 

In all of these cases, one can discover analytically if a data point, X.i say, is 
within distance h of the j-th section of S, by addressing the distances from X.i 
to the end-points of the section, and then by considering the stationary points of 
the function llx.i-2( t) 1'2, {)j ~ t ~ {)H1, if necessary. Thus there is no need to solve 
a quadratic equation, but a quadratic is solved if a point on S is required that 
is distance h from X.i. Another analytic calculation occurs soon after the third 
question in the paragraph of equations (3.11)-(3.13). There the number t* that is 
defined by llx.p-2(t*)ll2= i1J2.q-2(t*)ll2 may be derived from the fact that 2(t*) is on 
the perpendicular bisector of the line segment between X.p and bi· Other details 

20 



of these operations of the algorithm include some formulae that are convenient for 
computation and that avoid unnecessary loss of accuracy, but their descriptions 
are omitted because they would be rather long and tedious. 

4. Numerical results 

Each curve S of the numerical experiments of this section has the following form. 
The end-points and joins of the pieces of Sare §..j=§..(Bj), j=l, 2, ... , m, as before, 
the parameters Bj being defined in the way that includes expression (3.18), and 
m being an even integer. Further, for convenience, we pick the points 

(4.1) 

and we satisfy the equations 

We also let the pieces of S be straight line sections and circular arcs alternately, as 
mentioned already. It follows from the conditions (4.1) and (4.2) that Sis defined 
uniquely by the angles of rotation of the arcs, 'lj;k, k = 1, 2, ... , m, say, where m 
is the integer !(m-2). We begin with the case when mis 6 and each 'lj;k is 1r/3 
radians. Thus S is a regular hexagon with rounded corners, except that the line 
segment from §..m-l to §..m is a repeat of the line segment between the points ( 4.1). 

Many features of the splitting techniques can be tested by placing all the data 
points J2i, i = 1, 2, ... , n, on S, so we make the initial choice 

i=l,2, ... ,n, (4.3) 

with [i =0. In general, however, each [i is generated randomly from the uniform 
distribution on the disc {;r : ll;rll2 ::; £5} for some parameter 6. Specifically, three 
values of 6 were employed, namely 0, ..6.. and 10..6.., where ..6.. is the average distance 

n-1 

..6.. = (n-1t1 I: IIJ2i+1 -;rill2 (4.4) 
i=l 

between the adjacent points of expression (4.3) when every [i is zero. Moreover, 
throughout the experiments the parameter 17 of the tolerance condition (3.7) was 
set to 10-10 . The calculations were run in double precision on a Spare 5 /170 work
station. The execution times in seconds for this test problem, using several values 
of n, are given in the "S has one cycle" columns of Table 1. Next, the choice m = 6 
was replaced by m=6n/125, but the angles 'lj;k =1r /3, k= l, 2, ... , m, and formulae 
(4.3) and (4.4) were retained. Thus the number of cycles of S becomes n/125 and 
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S has one cycle S has n/125 cycles 

n 6=0 6 = .6. 6 = 10.6. 6=0 6 = .6. 6 = 10.6. 

125 0.02 0.03 0.03 0.02 0.03 0.03 
250 0.04 0.07 0.07 0.03 0.07 0.07 
500 0.08 0.14 0.16 0.07 0.14 0.14 

1000 0.17 0.29 0.34 0.13 0.30 0.30 
2000 0.37 0.61 0.68 0.27 0.61 0.61 
4000 0.76 1.25 1.42 0.53 1.23 1.25 
8000 1.67 2.62 2.87 1.08 2.57 2.70 

Table 1: Hexagonal S with nearby data points 

there is a corresponding change to T. The running times of the new experiment 
are shown in the last three columns of Table 1. The performance of the algorithm 
is highly satisfactory, because the amount of work is nearly proportional to n. 
Further, we see that it is not disadvantageous to increase the length of S. 

Some less regular choices of S were made by generating each of the angles 1Pk, 
k= l, 2, ... , m, randomly from the uniform distribution on [-1r /3, 21r /3]. Thus the 
average value of 1Pk becomes 1r /6, so the complete curve S turns through about 21r 
radians if we pick m= 12 and m= 26. A curve of this form is displayed in Figure 
1, with the points ( 4.3) when n = 30 and 6 = 2.6., each X.i being shown as a circle 
that contains the value of i. The positions of a few of these points were modified, 
however, in order to make the picture clearer. They were shifted onto S by the 
algorithm, the new positions being given as bullets in the figure. The straight 
line segments between X.i and Q.(t;) are drawn too for every i. Thus we have an 
illustration of the moves of the data points that are made by the algorithm. The 
test problem of this paragraph was also employed in some numerical experiments 
that are analogous to the calculations of Table 1. Indeed, the same values of n 
and 6 were chosen, and the "one cycle" and "n/125 cycles" cases were obtained 
by picking m = 12 and m = 12n/125, respectively. The results are not tabulated, 
however, because the times are only a little greater than before. For example, the 
new measurements that correspond to the n=8000 row of Table 1 are 1.85, 2.89, 
3.22, 1.19, 2.93 and 3.05 seconds. 

Unfortunately, the total work of the algorithm is usually much greater than 
the results so far, if the points X.i, i = 1, 2, ... , n, lie on a smooth curve that is 
different from S, and if the distance from X.i to S is large in comparison with 
llx.i+1 -x.ill2 for most integers i in [1,n-1]. For example, we let S be the part 
of the x-axis between (1, 0) and (n, 0), and we let the coordinates of X.i be (i, i), 
i = 1, 2, ... , n. Then no Lemma 3 splittings can occur before a one-sided splitting, 
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Figure 1: A random choice of the angles of S 

because the minimum value of the objective function (1.2) is h* = n, and the 
inequality /3j(h*) ~aj+i(h*) takes the form 

min [n, j + Jn2-p] ~ max [1, j + 1- Jn2 - (j+1)2], (4.5) 

which fails for all integers j in [1, n-1], the value of n2 -j2 being at least 2n-l. 
On the other hand, some Lemma 4 splittings are possible, but they do not happen 
for j 2 2-1/ 2n+ 1, unless the h that provides an(h) = +oo is close to h*. Indeed, 
when the conditions of Lemma 4 hold for the first time for such a j, the current 
lower bound aj+l satisfies the inequality 

aj+1 ~ aH1(h*) = max [1, j+l-Jn2-(j+1)2]. (4.6) 

Therefore the h that gives the splitting has the property 

aj(h) = max [1, j-Jh2 -p] ~ max [1, j+l-Jn2-(j+1)2]. (4.7) 

Further, the conditions j 2 2-1/ 2n+ 1 and j::::; h < n imply that the "max" values 
of expression (4.7) exceed one. Thus (h2-j2)112 is at least {n2-(j+1)2}112-1, so 
some straightforward algebra provides the bound 

(4.8) 
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S has one cycle S has n/125 cycles 

n 6=0 6=6. 5 = 106. 6=0 6=6. 6=106. 

125 0.14 0.08 0.04 0.14 0.08 0.04 
250 0.57 0.25 0.11 0.31 0.19 0.09 
500 2.46 0.82 0.30 0.67 0.38 0.19 

1000 10.74 3.50 0.78 1.35 0.77 0.38 
2000 47.47 14.46 3.08 2.76 1.58 0.90 
4000 209.08 65.57 11.82 5.54 3.25 1.79 
8000 908.41 268.41 52.04 11.16 6.60 3.93 

Table 2: Hexagonal S with separate data points 

the last inequality being elementary. Hence we require h ~ n-21/ 2 when n is large. 
These remarks suggest that, for some data, the efficiency of the algorithm may be 
very poor in comparison with the timings that are shown in Table 1. 

We investigate this suggestion by changing the data points of the first test 
problem from expression ( 4.3) to the values 

( 
sin([i-1]/[n-1]) ) 

x.i = 1 - cos ( [ i -1 J / [ n - 1 D + [i, 
i=l,2, ... ,n, (4.9) 

but we do not alter S. Thus, when every [i is zero, the new data points are 
equally spaced on a circle that is mainly well inside S. Further, the definition 
(4.4) provides 6.=2sin(l/[2n-2]), and then we pick 5 and [i, i=l,2, ... ,n, as 
before. The times of the algorithm in this case are shown in the "S has one cycle" 
columns of Table 2. It seems that the amount of work has become of magnitude 
n2 for each of the three choices of 5, and that the times are reduced greatly when 
the data points are perturbed by random errors, because useful splittings occur 
much earlier in the calculations. Finally, we employed the old S that has n/125 
cycles, and we provided the data with the same number of cycles, by changing the 
denominators of equation ( 4.9) from [n-1] to 125, which implies 6. = 2 sin(l/250). 
The running times that occurred are given in the last three columns of Table 2. 
We find that the approximate O(n) complexity has returned, which is probably 
due to a tendency in the algorithm to process the cycles sequentially. 

The accuracy of the numerical experiments of this section was tested in the 
following way. We let .&(it), i= 1, 2, ... , n, be the points on S that were computed 
by the algorithm. Further, both the direction of S and the order of the data X.i, 

i = 1, 2, ... , n, were reversed, giving a new problem, which was also solved by 
the algorithm, the computed points on the new S being i(l;), i= 1, 2, ... , n, say. 
Now, assuming that the lexicographic method provides uniqueness, the identities 
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§.(t;) = .&(i~+i-i), i = 1, 2, ... , n, would hold in exact arithmetic. Therefore the 
numbers 

i=l,2, ... ,n, (4.10) 

were recorded, because they may show some serious consequences of computer 
rounding errors, and they may provide some useful information on the tolerance 
parameter 'fJ of condition (3. 7). It is possible for (i to be of magnitude 'T/1/ 2 . Indeed, 
if h* = !1;1;.i- Q(t;) 11 2 is the least distance from ;1;.i to the curve S, if h* is positive, 
and if ti is in the open interval ( 0, T), then the difference ;1;.i - Q ( t;) is orthogonal 
to the direction of S at Q(t;). Thus a bound of the form 

0 5:tS:T, (4.11) 

is satisfied for some number c that depends on ;1;.i and S. Therefore, because the 
algorithm may set £: to a value oft such that the left hand side of this inequality 
is O(rJ), the discrepancy lir-trl is allowed to be of magnitude 'T/1/

2
, and then (i is 

usually of this magnitude too. 
Values of (i that are slightly greater than 10-5 may be tolerable in the given 

experiments because of the choice 'f} = 10-10 , but it was found that (i hardly 
ever exceedeq 10-10 . In particular, throughout the "S has n/125 cycles" tests, 
including the experiments on random choices of the angles of the circular arcs of S, 
the fourth largest value of (i was 3.7x10-11

. These very small values are incredible 
if the argument of the previous paragraph is relevant. It seems, therefore, that 
the splittings are so successful in practice that nearly all of the parameters ti, 
i = 1, 2, ... , n, are determined by one of the analytic methods of Section 3. This 
hypothesis was checked by providing output from the Fortran program whenever 
the tolerance condition (3. 7) is achieved, because then the analytic techniques 
are replaced by the formulae t; = ap(h+) and t; = /3q(h+). There were only four 
instances of this output throughout the "S has n/125 cycles" experiments, and 
they coincided with the three largest values of (i, which were 3.5x10-5 , l.2x10-5 

and 1.4 x 10-6 . On the other hand, 'in the "S has one cycle" problems, the 
formulae t; = ap(h+) and t; = f]q(h+) were employed 10 times altogether, 58 of 
the problems having no applications, 2 of them having one, 2 of them having two, 
and one of them having four applications. Further, in the 5 experiments that 
satisfied the tolerance condition (3.7), all the values of max{(i : i = 1, 2, ... , n} 
were in the interval [l.9xl0-8 , l.6x10-5). Two values of (i in the other problems 
were of magnitude 10-6 , and they deserve further attention, but the largest value 
otherwise in the "S has one cycle" experiments was (i=7.3xl0-13 . Moreover, in 
all the occurrences oft;= ap(h+) and t; = /3q(h+), the indices had the property 
q 5:p+2. Therefore it may be possible to develop further analytic techniques that 
avoid the relatively low accuracy of the adjustment of h by the bisection method. 

An interesting question is whether there are any applications of the algorithm 
that require high accuracy. The author expects the answer to be negative. On 
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the other hand, the algorithm is very useful for providing the initial values of the 
variables of the optimization calculation that is mentioned in the second paragraph 
of Section 1. 
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