
AN OPTIMAL WAY OF MOVING A SEQUENCE

OF POINTS ONTO A CURVE IN TWO DIMENSIONS

No. 160

M.J.D. POWELL

Department of Applied Mathematics & Theoretical Physics

University of Cambridge, Silver Street

Cambridge CB3 9EW, England

December, 1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/35473013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An optimal way of moving a sequence of points onto

a curve in two dimensions

M.J.D. Powell

Abstract: Let 2(t), 0::::; t::::; T, be a smooth curve and let X.i, i = 1, 2, ... , n, be
a sequence of points in two dimensions. An algorithm is given that calculates
the parameters ti, i=l,2, ... ,n, that minimize the function max{llx.i-2(ti)ll2:
i = 1, 2, ... , n} subject to the constraints O::::; t 1 ::::; t2 ::::; · · ·::::; tn::::; T. Further, the
final value of the objective function is best lexicographically, when the distances
llx.i-§.(ti)ll2, i= 1, 2, ... , n, are sorted into decreasing order. The algorithm finds
the global solution to this calculation. Usually the magnitude of the total work
is only about n when the number of data points is large. The efficiency comes
from techniques that use bounds on the final values of the parameters to split
the original problem into calculations that have fewer variables. The splitting
techniques are analysed, the algorithm is described, and some numerical results
are presented and discussed.

Department of Applied Mathematics and Theoretical Physics,
University of Cambridge,
Silver Street,
Cambridge CB3 9EW,
England.

December, 1997.

1. Introduction

If two pictures of a scene are taken at two different times, then differences may
occur, not only because of changes in the scene, but also because of the way in
which the pictures are taken. A highly useful technique that compensates for
the external changes requires the identification of several fixed points of the scene
that occur in both pictures. Then one seeks the smoothest function that maps the
fixed points of the first picture into the fixed points of the second picture. This
mapping is applied to all the data in the first picture. A comparison of the resul
tant image with the second picture is often far more revealing than a comparison
of the original two pictures. This method is called "image registration". It has
applications in medicine, in the analysis of data from satellites, and in mine de
tection, for example. Further information can be found in Brown (1992), Flusser
(1992) and Barrodale, Kuwahara, Poeckert and Skea (1993).

Sometimes there are not enough fixed points to identify a suitable mapping
function, but one may be able to make use of one or more fixed curves in the scene,
such as part of a rib-cage in medical imaging. Therefore the author has developed
a procedure for mapping curves into curves in two dimensions (Powell, 1996).
Each curve in the first picture is replaced by a sequence of points on the curve,
but the corresponding curve in the second picture is approximated by pieces of
circular arcs and straight line segments that are joined to provide first derivative
continuity. Let the sequence and the approximation be {.x.1 , .x_2 , ... , .X.n} c R.2 and
S = {.§_(t) : 0 ~ t ~ T} c R.2

, respectively, where the parameter t can be regarded as
the distance along S. Then the mapping function is required to have the property
that, for i = 1, 2, ... , n, the image of *-i is 2..(ti) for some ti in [O, T]. Further, the
ordering of the sequence of points is preserved by imposing the constraints

(1.1)

For any choice of the parameters subject to the conditions (1.1), one can
regard §..(ti) as the required image of *-i, i = 1, 2, ... , n, in order to apply the
standard image registration method t·hat is the subject of the first paragraph.
The smoothness of the resultant mapping function depends on the choice of ti,
i = 1, 2, ... , n. Powell (1996) adjusts the parameters to the values that make
the mapping function as smooth as possible, which is an interesting optimization
calculation inn variables that has a differentiable objective function and the linear
constraints (1.1). The initial values of the variables are chosen by an algorithm
that solves the subproblem that is stated in the next paragraph. The author
was delighted to find that the solution of the subproblem requires very little
computation, which may be useful to other applications. Therefore we are going
to consider some of the details, theoretical properties and numerical results of the
method that generates the initial values of ti, i = 1, 2, ... , n.

The given sequence {.x.1 , .x.2 , .•. , .X.n} c R. 2 is moved onto the given smooth
curve S = {.§_(t) : 0 ~ t ~ T} c R.2 in a way that preserves the ordering and that

2

minimizes the largest of the changes to the positions of the individual points. In
other words, the algorithm calculates the real numbers ti, i = 1, 2, ... , n, that
minimize the function

(1.2)

subject to the constraints (1.1). Further, if there is not a unique solution, then
the freedom is taken up by the well-known lexicographic method of Chebyshev.
Specifically, for any feasible t., we let { d1 (t.), d2 (t.), ... , dn (t.)} be the distances
llx.i - .§.(ti) 112, i = 1, 2, ... , n, arranged in descending order, so the definition (1.2)
gives f (t.) = d1 (t.). Then two feasible vectors, £ and t say, are equally good only if
all the equations di(£)= di (t), i = 1, 2, ... , n, are satisfied. Otherwise, letting j be
the least integer such that dj (£) #- dj (t), we assume that £ is better than t if and
only if dj(i) is less than dj(t). The algorithm generates a feasible vector t. E nn
that is best in this sense. Local minima can occur, because all the restrictions on
the shape of S have been mentioned already. Therefore S is allowed to have many
fluctuations and to intersect itself several times. Fortunately, such situations are
handled routinely by the algorithm in a way that always provides a global solution
to the calculation of this paragraph.

The main ideas and lemmas that are important to the algorithm are given in
Section 2. Details of the algorithm are addressed in Section 3, and some numerical
results are presented in Section 4. We find that it is usual for the total amount of
computation to be only of magnitude n, but this work can be O(n2), when typical
spacings between adjacent points in the sequence X.i, i , 2 ... , n, are much less
than the distances of most of the points from S.

2. Some properties of the calculation

Let h* be the least value of the objective function (1.2) subject to the constraints
(1.1). The algorithm picks several estimates of h*, and for about half of them it
generates the numbers ai(h), i=O, 1, ... , n, sequentially, where his the estimate.
Specifically, a0 (h) is zero, and, for each i ~ 1, we let ai(h) be the least number in
the closed interval [ai-i(h), T] that satisfies the inequality

(2.1)

except that ai(h) is given the value +oo if ai_1(h) is already +oo or if the distance
fromx_i to all the points {.§.(t): ai-i(h)::;t::;T} is greater than h. It is important
to note that this construction provides the following information.

Lemma 1 If an(h):::; T occurs, then h has the property h ~ h*. Further, ai(h)
is a lower bound on the parameter t; for every integer i in [1, n], where t.* E nn is
any solution of our optimization calculation. Alternatively, if an (h) = +oo occurs,
then h is strictly less than h*.

3

Proof It is sufficient to prove that h 2::. h* and h < h* imply an(h) ST and
an(h) = +oo, respectively. In the case h 2::_ h*, we let t* be any optimal vector of
parameters. Therefore the components oft* satisfy the inequalities

Hence condition (2.1) and ai_1 (h) S ai(h) ST are achieved for i = 1 if we set
a 1 (h) = tf. Thus the definition of a 1 (h) implies a 1 (h) s tf. It now follows from
expression (2.2) that condition (2.1) and a;i_ 1 (h) s ai(h) ST are achieved for
i = 2 if we set a 2 (h) = t2, so the definition of a 2 (h) provides a 2 (h) S t2. By
continuing this argument inductively, we deduce the required bounds ai(h) st;,
i = 1, 2, ... , n, which imply an ST. Thus the lemma is true in the case h 2::. h*.

Alternatively, if h < h*, it follows from the definition of h* that it is not possible
for inequality (2.1) to hold for every i with the ordering condition Os a 1 (h) s
a 2 (h) s · · · S an(h) s.T. Therefore an(h) must be infinite, which completes the
~~ 0

The lemma suggests a procedure for calculating h* to arbitrarily high accuracy,
because, by generating an(h), we can discover whether any positive number h
satisfies h 2::_ h* or h < h*. The procedure obtains a bracket on h* that is refined
by a bisection method, and, for each h, one works forwards through the points
±i, i = 1, 2, ... , n, and along the curve S, in order to calculate the sequence ai (h),
i = 1, 2, ... , n. There is an analogous way of working backwards through the
data points and along S. It is the subject of the following corollary of Lemma 1,
because we can improve on the preliminary procedure by combining forwards and
backwards directions.

Corollary 2 Let h be any nonnegative number and let f3n+1(h) be T. For
i = n, n -1, ... , 1, we let /Ji (h) be the greatest number in the interval [0, /Ji+ 1 (h)]
that satisfies the inequality

(2.3)

except that we set f3i(h) = -oo if /3i+1(h) has this value already or if all of the
distances { ll;ri-.!?'.(t) 112 : 0 St S /3i+1 (h)} exceed h. If /31 (h) is finite, then h 2::. h* and
t;Sf3i(h), i=l,2, ... ,n, hold, where t*ERn is any optimal vector of parameters.
Alternatively, the condition /31 (h) = -oo implies that his strictly less than h*. D

The proof of the corollary is omitted because it is analogous to the justification
of Lemma 1.

We see that a bisection procedure for calculating h* can apply either Lemma 1
or Corollary 2. Further, if the trial number h satisfies h 2::_ h*, then the procedure
provides either upper or lower bounds on the optimal parameters t;, i = 1, 2, ... , n.
The best available bounds on t; for each i can be recorded and revised as the

4

calculation proceeds. This task is straightforward, because the method of proof
of Lemma 1 gives the relations

i=l,2, ... ,n, (2.4)

for all numbers h1 and h2 such that h* ::; h2 ::; h1. We reserve ai and /3i for the best
available bounds on t;, i= 1, 2, ... , n. They are stored and updated explicitly by
the computer program that produced the numerical results of Section 4.

The computer program employs both the forwards and backwards directions
that have been mentioned, in order that the lengths of the intervals [ai, /3i], i =
1, 2, ... , n, can become small. Thus it may happen during the calculation that the
condition /3j::; aj+1 is achieved for some integer j in [1, n-1). Then the original
optimization problem inn variables is split into two similar problems, where one of
the new problems has j variables and the other one has n-j variables. Specifically,
they are the minimization of the functions

We see that these calculations provide the optimal moves of the points {.x_i : i =

1, 2, ... , j} and {.x_i : i = j + 1, j +2, ... , n} onto the curves {.§.(t) : 0::; t::; /3j} and
{.§.(t): aj+1 ::;t::;T}, respectively. Although it seems obvious that this splitting is
valid, we present a formal proof.

Lemma 3 Let Tt, i=l, 2, ... ,j, and Tt, i=j+l,j+2, ... , n, be parameters that
minimize the two expressions (2.5) in the lexicographic sense that is described in
the penultimate paragraph of Section 1, and let /3j and aj+1 satisfy /3j ::; aj+l·
Then the parameter values Tt, i = 1, 2, ... , n, solve the original calculation.

Proof Let t;, i = 1, 2, ... , n, be any solution of the original calculation. The
bounds t; ::; /3j and aj+1 ::; t;+i are satisfied and we are assuming /3j ::; aj+l·
Therefore, if the first j components of t.* are replaced by the numbers Tt, i =
1, 2, ... , j, that occur in the statement of the lemma, then the constraints (1.1)
are preserved. Further, the choice of Tt, i = 1, 2, ... , j, implies that the new vector
t.* is also a solution of the original calculation, so we restrict attention to optimal
vectors t* that have the property t; · Tt, i = 1, 2, ... , j. It follows similarly that t*
remains optimal if we replace its last n-j components by Tt, i = j + 1, j + 2, ... , n,
which gives the required result. D

Our work so far suggests an algorithm that combines splitting with bracketing
and bisection, where splitting occurs whenever the relation /3j ::; aj+l is found
for some integer j in [1, n-1]. It is very useful that, due to Lemma 3, all the
current bounds of the form ai::; t;::; /3i, i = 1, 2, ... , n, can be included in the new
calculations that are introduced by the splitting technique. Some "one-sided"
splitting is also possible, as indicated in the next lemma.

5

It assumes that ai and /3i are always available, because ai = 0 and /3i = T,
i = 1, 2, ... , n, can be set initially. Further, we introduce the name "h-problem"
for a relaxed form of the original calculation, where h is any nonnegative num
ber. Specifically, in this problem the function (1.2) is minimized subject to the
constraints (1.1), and we take up some freedom in the variables by applying the
lexicographic method only to the distances ll;ri - 2(ti) 11 2, i = 1, 2, ... , n, that are
greater than h. Therefore any solution to the h2-problem is also a solution to the
h1-problem if OS h2 S h1, and the 0-problem is the original calculation.

Lemma 4 Let a value of h provide an(h) = +oo. If j is any integer in [1, n-1)
such that Cl!j (h) s ll!j+i, then, for i = 1, 2, ... , j, the current lower bound ai can be
increased to max[ai, ai(h)]. Moreover, let the parameters Tt, i=j+l,j+2, ... , n,
minimize the second part of expression (2.5) lexicographically as before, and let
the other components of r* E Rn be Tt = ai (h), i = 1, 2, ... , j. Then r* is a solution
of the h-problem.

Proof Let t.* be any optimal vector of parameters for the original calculation.
Then the largest of the distances ll;ri-2(t;)ll 2, i=l,2, ... ,j, cannot be reduced
by adjusting t;, i = 1, 2, ... , j, subject to OS ti S ···st; S t;+i · Now the numbers
ai(h), i=l,2, ... ,j, have the properties

OS a1 (h) S a2(h) S · · · S aj(h) S ll!j+i S t;+1 } (
2
.
6

)
and ll;ri-2(ai(h))ll2sh, i=l,2, ... ,j .

It follows from the possibility t; =ai(h), i= 1, 2, ... , j, that the first j components
oft* satisfy ll;ri-2(t;)ll2 Sh, i = 1,2, ... ,j. Hence the definition of ai(h) and
the method of proof of Lemma 1 give ai(h) st;, i = 1, 2, ... , j, which justifies
the assertion that the current lower bound on t; can be increased from ai to
max[ai, ai (h)] for each integer i in [1, j).

For the remainder of the proof, we let t* be any solution of the h-problem. The
conditions (2.6) imply that t* remains a solution of the h-problem if we replace
its first j components by Tt = ai (h), i = 1, 2, ... , j. Therefore we restrict attention
to vectors t* that have the property t; = Tt, i = 1, 2, ... , j. The proof is completed
by applying the last part of the proof of Lemma 3. D

If the conditions of Lemma 4 are achieved by the algorithm, there is an imme
diate switch from the original problem to the minimization of the second function
of expression (2.5), using the largest integer j in [1, n-1) that satisfies aj(h) S ai+l·
Lemma 4 shows that, if t; is an optimal parameter for the new calculation and
if IJ;ri- 2(t;)ll 2 > h occurs, then t; is also an optimal parameter for the original
calculation. We treat the new problem, which has only n- j variables, as though
it were the original one, while seeking the value of h*. Therefore further splittings
are likely. If they reduce the number of variables to only one, which happens fre
quently, partly because of another splitting technique that will be described later,

6

then we require the point on a known section of S that is closest to a particular
data point, ±p say. This calculation is done analytically, using the fact that S is
composed of straight line segments and circular arcs. Then t; is set to the pa
rameter value of the point that is found on S. Another analytic calculation that
determines h* and t; directly for some p is mentioned in Section 3. Otherwise,
the bracket on h* is refined until its width is less than a prescribed tolerance.
Let the parameters that remain in the calculation after all the splittings be ti,
i=p,p+l, ... , q. Further, among all the values of h for which the numbers ai(h),
i = p, p+ l, ... , q, are generated, let h1 be the least value and h2 be the greatest
value that satisfy h1 ~ h* and h2 < h*, respectively, which are identified using
Lemma 1. The algorithm sets t; = ap(h1). Therefore we consider the suitability
of this choice.

We should avoid an unnecessarily large distance between ±p and !2.(t;), but
often the required condition IIJ:.i-!2.(ai(h))ll 2 ~his achieved by satisfying the in
equality as an equation, so the choice t;=ap(h1) is likely to give JIJ:.p-!2.(t;)ll 2 =h1 .

Further, by constructing pathological examples, it can be shown that occasion
ally this choice can make the distance IIJ:.p-!2.(t;)ll 2 much greater than necessary,
even in the case h1 = h*. These examples contain degeneracies, however, due to
nonuniqueness of the shifts of some of the data points that have to move the full
distance h*, and achieving optimality in difficult degenerate situations can require
much computation. Therefore we justify t; = ap (h1) by showing that it is optimal
for a perturbed version of the current calculation.

The calculation after all the splittings is the minimization of the function

where a and (3 are constants. We let the perturbed problem be the minimization
of the expression

in the case c:=h1 -h2 , where CJ is the piecewise constant function

CJ(t)=O, t~O, and CJ(t)=l, t>O. (2.9)

It is not expensive in practice to refine the bracket on h* until the magnitude of
c: is comparable to computer rounding errors. Our analysis of the new problem
depends on the assumption that the available values of ai(h1) and ai(h2), i =
p, p+ l, ... , q, do not allow a Lemma 4 splitting, which is the condition

j=p,p+l, ... ,q-l. (2.10)

Lemma 5 Let the conditions of the previous paragraph be satisfied, and let t;,
i = p, p + 1, ... , q, be any parameters that provide the least value of expression
(2.8) subject to a~t;~· · ·~t;~f3. Then t; has the value ap(h1).

7

Proof First we deduce that, if the parameters t;, i = p, p+ l, ... , q, are optimal
for the perturbed problem, then they have the lower bounds

i=p,p+l, ... 'q, (2.11)

and one or more of them holds as an equation. We require the remark that the
possibility t; = o:i(hi), i = p, p+ l, ... , q, shows that the least value of expression
(2.8) is no greater than hi. Further, the definition of o:i(hi) implies that, if
expression (2.11) fails for any i, then at least one of the distances 1122.j-.§.(t;)lb
j = p, p+ l, ... , i, is greater than hi. It follows that all the conditions (2.11) are
necessary for optimality. Next we suppose that they all hold as strict inequalities.
Then expression (2.8) is the sum of expression (2.7) and the constant c=hi -h2,
but this sum is bounded below by h*+hi-h2 >hi, which also contradicts optimality.
Hence t'J.=o:k(hi) is satisfied for one or more integers kin [p,q].

We let k be as small as possible subject to this equation, which gives the
required result if k=p. Otherwise, conditions (2.11), (1.1) and (2.10) provide the
bounds

(2.12)

Therefore we can let£ be the least integer in [p, k-1] that satisfies o:e(hi) < tc <
o:e(hz). It follows from o:e(hi) < tc and the optimality of tc that we have the
relation

(2.13)

We are going to make use of the fact that the last inequality is ll22.e-.§.(tc)ll2:Sh2.
Now, by definition, a:e(h2) is the least value oft in [a:e-i(h2),,B] that satisfies
1122.e-.§.(t)llz :S h2, the value of o:p-i(h2) being a:. Therefore tc < o:e(h2) and ll22.e
.§.(tc)ll2 :S h2 imply tc<o:e-i(h2), which excludes f=p. In the other case f>p, the
choice of k provides O:e-i(hi)<tc-i, so we find O:e-i(hi)<tc-i:Stc<O:e-i(h2), but
this conclusion contradicts the definition of£. Thus all values of£ are excluded.
The only surviving possibility is t; = o:p(hi), so the lemma is true. D

In addition to convenience and the optimality of a nearby problem, there are
two more advantages of the choice t; = o:p (hi). One is that, because it is the
leftmost reasonable candidate for selection in the interval [a:, ,BJ, where we are
using the notation of expression (2.7), it leaves as much freedom as possible for
the selection of the final values of ti, i = p+ l, p+ 2, ... , q. The other advantage
is that we expect o:p(hi) to be very close to the optimal value o:p(h*), because
o:p(h) converges to o:p(h*) ash tends to h* from above. This assertion is proved as
follows. By definition, the dependence of o:p(h) on his monotonic. Therefore o:p(h)
tends to a limit, a:; say, that satisfies a:;:::::; o:p(h*). Furthermore, the conditions
ll22.p-.§.(a:p(h))ll2:Sh and h-+h* imply ll22.p-.§.(a:;)ll2:Sh*. Hence the definition of
o:p(h*) gives o:p(h*) :Sa:;. It follows that a:; is equal to o:p(h*) as claimed.

8

The analogue of Lemma 4 for the upper bounds /3i on t;, j = 1, 2, ... , n, is that,
if a value of h provides /31 (h) = -oo, and if /3j S /3i+1 (h) occurs for some integer j in
[1,n-1], then /3i can be reduced to f3i(h) for i=j+l,j+2, ... ,n. Further, the value
of h* is the least value of the function in the first line of expression (2.5). The
algorithm makes a one-sided splitting of this kind whenever it can do so. It follows
from symmetry that, when t; is set to ap(h1), as suggested before Lemma 5, then
it is usually suitable to set t; = /3q(h3) too, where h3 is the least h satisfying h?:. h*
for which the numbers /3i(h), i=p,p+l, ... , q, have been generated. Further, after
making the choices t; = ap(h1) and t; = /3q(h3), the remaining components oft. are
derived from up to three independent problems whose objective functions have the
usual form. Specifically, if p?:. 2 there is a problem for the first p-1 components
of t_, if p sq- 2 there is a problem for the components ti, i = p+ l, p+ 2, ... , q- l,
and if q S n-1 there is a problem for the last n-q components oft_. Some of these
calculations can be assisted by information from any previous one-sided splittings
that have been made, which will be explained in the next section. Otherwise, each
of these problems is treated as a new calculation, except that all bounds of the
form ai St; S /3i are retained. They are valid because ai is increased to ai (h) or f3i
is decreased to f3i(h) only when it is known that the current his an upper bound
on the final value of IIJi.i-2.(ti)ll2, The next section also includes a procedure that
keeps track of the splittings and subproblems that occur.

If the solution of the original calculation has to satisfy IIJ;.1-2.(ti) 11 2 = h*, then,
unfortunately, the conditions of Lemma 4 fail for every h < h*. It is also possible
that IIJi.n - .§.(t~) 112 = h* has to hold too, which would rule out the splitting that
is mentioned at the beginning of the previous paragraph. Therefore we include
yet another one-sided splitting technique in the algorithm of Section 3, which we
introduce by considering the following simple example. Let the current lower and
upper bounds on the parameters satisfy CXj+i < /3j s ai+2 < /3j+i for an integer
j in [1, n- 2], and let some investigations with a trial value of h provide h < h*
and a value of tj+1 in [/3j, CXj+2] that satisfies IIJi.H1 -.§.(tH1) 11 2 Sh. This choice of
ti+l is always permissible, because the parameters satisfy t1 s · · · s ti s /3j and
CXj+2 S tj+2 S · · · S tn. Thus h* is independent of tj+1, although the conditions
CXj+l < /3j and aj+2 < /3j+i do not allow ti+1 to be isolated by Lemma 3 splittings.
Further, when seeking h*, the adjustment of the parameters ti, i= 1, 2, ... , j, can
be separated from the adjustment of the parameters ti, i= j +2, j+3, ... , n.

Our use of a generalization of these remarks requires the calculation of some
numbers &i(h), i= 1, 2, ... , n, that are a variation on ai(h), i= 1, 2, ... , n. Specif
icaJly, for any h?:. 0, we set &o(h) = /30 = 0. Then, for i = 1, 2, ... , n, we let &i(h)
be the least value of t that satisfies the conditions

and (2.14)

except that we define &i(h) = +oo if these inequalities cannot be achieved. Thus
&i(h) is the same as ai(h) for every i if h?:. h*, because &i-i(h) s /3i-l always

9

occurs in this case. On the other hand, if h < h*, then the presence of /3i-l in
expression (2.14) may allow &i(h) to be finite when &,i_1 (h) = +oo. The new
splitting method will be derived from the following lemma.

Lemma 6 Let ai and /3i be the current lower and upper bounds on t; for each
integer i in [1, n], and let an+l be T. Further, let the numbers ai(h) and &i(h),
i = 1, 2, ... , n, be calculated with h < h*, which implies an (h) = +oo. If k is an
integer in [1, n-1] with the properties ak(h) = +oo and &k+i(h) ~ ak+z, then
we form a vector r...* E nn. Specifically, the first j components of r...* minimize
the first half of expression (2.5) with respect to the lexicographic ordering, where
j is the greatest integer in [1, k] such that &j(h) = +oo. We set rt = &i(h),
i=j+l,j+2, ... ,k+l. Further, in the case k+2~n, we let the last n-k-1
components of r...* minimize the function

(2.15)

with respect to the lexicographic ordering. Then r...* is a solution of the h-problem
that is introduced before the statement of Lemma 4.

Proof Let t.* be any solution of the h-problem. We are going to show that f*
remains a solution if t; is replaced by rt = &i(h) for i = j + 1, j + 2, ... , k + 1.
The equation /3j = min[&j (h), /3j] is satisfied due to the choice of j, the condition
&k+i(h) ~ ak+2 is given, and all of the numbers &i(h), i = j + 1, j + 2, ... , k+ 1,
are finite. Therefore the definition of &i(h) and the choice of rt for each of these
values of i provide the bounds

(2.16)

It follows that the replacement preserves the conditions (1.1) on the components
off*. Furthermore, the first part of expression (2.14) gives ll.x.i-!2(rt)ll2 ~ h,
i = j+ 1, j+2, ... , k+ 1, so the replacement also preserves the required lexicographic
optimality of t*. Therefore we restrict attention to vectors t* that satisfy t; =rt,
i=j+l,j+2, ... , k+l.

Now rJ has the property rJ ~ /3j and the first of the inequalities (2.16) states
/3j ~ rJ+i · Therefore the first part of the proof of Lemma 3 is applicable. Thus
optimality is retained if we also overwrite the first j components of t* by the
first j components of r...*. Finally, if k + 2 ~ n, then we deduce from the bounds
rk+l ~ ak+2 ~ rk+z and the choice of rt, i = k + 2, k + 3, ... , n, that the last
n- k-1 components oft* can be treated similarly. Therefore r...* is a solution of
the h-problem as required. D

Our algorithm makes a one-sided splitting whenever the conditions of Lemma
6 are satisfied. Indeed, it switches to the optimization of the first function of
expression (2.5), because it is known that the least value of this function is greater
than h. Thus the algorithm takes advantage of the following corollary of the

10

lemma. If t;, i E [1, j], is an optimal value of ti in the new calculation that satisfies
IIJ2-2(t;) 112 > h, then t; is also an optimal value of ti in the original calculation.
A difference between this splitting and the previous ones is that now the optimal
value of the new objective function may be less than h*, if h* is the least value
of the function (2.15). Another difference is that the conditions of Lemma 6
do not allow any of the bounds ai :s; t; :s; /3i, i = 1, 2, ... , n, to be revised. Of
course the algorithm tries to reduce the number of variables in the new problem
by applying further splittings. Moreover, there is a useful analogue of Lemma 6
when /31 (h) = -oo occurs, which follows from symmetry, and which is also applied
by the algorithm whenever possible.

Further details of the splitting techniques are given in the next section. It may
be very helpful to future work that the analysis so far applies not only to data
points and curves in R 2

, but also to data points and curves in higher dimensions.

3. Some details of the algorithm

It is helpful if the first trial value of h in the main calculation, ho say, satisfies ho 2:
h*, but is not much larger than h*, in order that the numbers ai(ho) and /3i(h0),

i = 1, 2, ... , n, are useful lower and upper bounds on t;, i = 1, 2, ... , n. Therefore
h0 is generated by a preliminary calculation that requires O(n) operations when
n is large, but that is relatively inexpensive, because no searches are made along
the continuous curve S. Instead, S is replaced by the discrete point set {2j : j =
1, 2, ... , m} for the moment, where fa= 2 (0) and 2m = 2(T) are the initial and final
points of S, and where 2j, j =2, 3, ... , m-1, are the internal joins of the pieces of
S, the joins being in sequence, and each piece being a straight line segment or a
circular arc. The following crude form of the main calculation provides ho.

If h is a trial value of ho, we ask whether there exist integers 1 :s; j 1 (h) :s; j 2 (h) :s;
· · · :s; jn (h) :s; m, that satisfy the conditions

i=l,2, ... ,n. (3.1)

In other words, we ask whether the data points can be mapped onto the discrete
form of S, so that the ordering of the data is preserved, and so that the length of
each move is at most h. An affirmative answer implies h 2: h*, because the points
2j;(h), i = 1, 2, ... , n, are in order on the original curve S. Therefore we let ho be
the least trial h that gives an affirmative answer. It is straightforward to seek
the integers ji(h), i = 1, 2, ... , n, in sequence, by letting each one be as small as
possible. We begin these trials by picking the value

(3.2)

say, and if necessary we overwrite h by 2h+h00 recursively, until it becomes an
upper bound on ho. The greatest available lower bound on ho is also noted, even

11

I .•

if it is zero. Thus, when the upper bound is found, the difference between the
two bounds is 2k-1h00 , where k is the number of values of h that have been tried.
Now the discrete approximation of S makes it appropriate to refine the difference
between the bounds by bisection until it becomes h00 /2. Therefore k bisections
are made, and we choose ho to be the final upper bound that occurs.

The other preliminary work is as follows. Let rJ be the prescribed tolerance on
the width of the final bracket on h* that is mentioned after the proof of Lemma
4. The algorithm ensures that rJ is at least ho times a pessimistic estimate of the
relative accuracy of the computer arithmetic. Further, the initial values

i=l,2, ... ,n, (3.3)

are chosen, in order that a 1 and /3n are lower and upper bounds on ti and t~, and
where '"'/i is reserved for an upper bound on ll;r.i - §'.(tI)ll2, i = 1, 2, ... , n, except
that '"'Ii will be altered to '"'Ii= -1 when ti is given its final value t;. The numbers
p= 1 and q=n are also set, because the objective function of the main part of the
calculation has the form

We retain the notation h* for the least value of this function, which is unknown.
Further, h- and h+ are lower and upper bounds on h* that may be refined by
bisection as suggested in Section 2. The algorithm picks the initial values h- =0
and h+=ho.

We are now ready to address the recursive part of the calculation. The first
task is the preliminary work for the minimization of the function (3.4), given
p, q, h- and h+. If p equals q, there is an immediate branch to the part of the
algorithm that treats this case analytically. Otherwise, the possibility of obtaining
an improvement to h+ from the bound

h* < min[max{ll;r.i-§'.(ap)ll2: i=p,p+l, . .. ,q},

max{IIJ2i-!?'.(/Jq)ll2: i=p,p+l, ... , q} J = Po, (3.5)

say, is considered, the bound being .valid because the constraints of expression
(3.4) allow the choices tp = tp+l = · · · = tq = ap and tp = tp+l = · · · = tq = /Jq, A
useful trick is employed in the case h+ 2:: p0 , which is to reduce h+ to the value
max[p0 -rJ, OJ. Then ai(h+) and /Ji(h+), i = p,p+ l, ... , q, are calculated by the
methods of Lemma 1 and Corollary 2, respectively. We find aq(h+) = +oo and
f]p(h+) = -oo if the trick provides h+ < h*, which is very welcome, because one or
more of the final values t;, i = p, p+ l, ... , q, can be assigned. Specifically, if the
conditions h+ <h* and IIJ2i-§'.(ap)ll2~Po, i=p,p+l, ... , q, hold, then the algorithm
sets t; = ap, i = p, p + 1, ... , j, where j is the least integer in [p, q] that satisfies
aj(h+) > ap. Similarly, if h+ < h* and if the second maximum value in expression

12

j

(3.5) is less than the first one, then the algorithm sets f; = /3q, i = k, k+ 1, ... , q,
where k is the greatest integer in [p, q] such that f3k(h+) </3q· These choices oft;
can be justified when t; = ap, for instance, by considering the function

Its least value is at most h* but is greater than h+, because the choice of j implies
that its numbers ai(h+), i = j, j + 1, ... , q, are the same as before, including
aq(h+) = +oo. Thus the suitability of t; = ap follows from Lemma 5, which
implies ap ~ t; ::; ap for every integer i in [p, j]. After employing these advantages
of h+ < h*, there is a branch to the part of the algorithm that picks the next values
of p and q. Alternatively, in the usual case h+ 2: h*, the bounds ai = ai(h+) and
/3i = /3i (h +), i = p, p+ 1, ... , q, are assigned, and then the main recursive procedure
is begun.

This procedure applies the methods of Lemma 1 and Corollary 2 for several
values of h. Thus it updates the bounds h- and h+ until the tolerance condition

(3.7)

holds, or until there is a switch to an analytical calculation of h*. The efficiency
of the algorithm depends crucially on the splittings that are studied in Section
2, but those techniques will be addressed later. Indeed, this paragraph presents
some other techniques by describing the operations of the algorithm when there
are no splittings and when condition (3.7) is achieved eventually. If it is found
that the current h satisfies h < h*, then h- is always replaced by max[h, h-J.
Further, h+ is replaced by min[h, h+] whenever h 2: h* is revealed. Therefore only
the value of each new h and the choice between the methods of Lemma 1 and
Corollary 2 remain to be described. The first h is set to ih+ or to Hh- +h+) in
the case h- = 0 or h- > 0, respectively, the factor of 7 /8 being helpful, because
h- = 0 is a default value and h* 2: ih+ occurs frequently. Each later choice of h
is either !(h- + h+) or h+, the smaller value being preferred more often. Thus
inequality (3. 7) is attained eventually. The reason for letting the new h be h+
occasionally is due to the importance of good values of ai and f3i, i=p,p+l, ... , q,
to successful splittings. For example, if h* = 2-10-10 , and if h- = 1 and h+ = 3
occur initially, then h+ becomes h+ = 2, and it stays there until a trial h satisifies
h+-2-10 ~ h < h+. Therefore, if every new his h= !(h-+h+), then ai=ai(2) and
/3i=/3i(3), i=p,p+l, ... ,q, are retained until the difference h+-h- is reduced to
max[17, 2 x 10-10]. Thus the /3/s can be useless for most of the calculation. The
algorithm avoids such inefficiencies in the following way. When the values

i=p,p+l, ... 'q, (3.8)

have been set for the current h+, then the new his always !(h-+h+). On the
other hand, when either the a/s or the /3/s do not satisfy expression (3.8), we

13

replace the formula h = !(h- +h+) by h = h+ if and only if at least three values
of h have been tried and the last three consecutive ones have the property h < h*.
The choice h = h+ leads to the completion of the equations (3.8), because of the
following switching between the methods of Lemma 1 and Corollary 2. First the
method of Lemma 1 is applied until h ~ h* occurs. Then Corollary 2 is preferred
until the next occurrence of h ~ h*. This alternation continues throughout the
procedure of this paragraph. Therefore, letting ,f, be the integer such that the
condition h ~ h* has been satisfied .e times already, the algorithm applies Lemma
1 instead of Corollary 2 to the next value of h if and only if .e is even.

The Fortran program that calculated the numerical results of Section 4 in
cludes several subroutines, but we use the term "subroutine" for the one that
applies either Lemma 1 or Corollary 2, the choice between these alternatives be
ing controlled by an argument that is set by the calling program. This paragraph
describes the output from the subroutine only in the case of Lemma 1, because the
Corollary 2 output can be deduced from symmetry. An integer variable, namely
INFO, is set to -1, 0 or 1. The value INFO= -1 indicates that the trial value of
h satisfies h < h*, and that none of the splittings of Section 2 occurs. The value
INFO= 1 indicates h ~ h*, and that ai and "Yi have been updated to ai(h) and h,
respectively, for i=p,p+l, ... , q. In this case the possibility of a splitting has to
be investigated by the calling program. Therefore the remaining value INFO= 0
indicates h < h*, and that at least one Lemma 4 or Lemma 6 splitting is available.
The variables that are allowed to be deleted from the current calculation by a
splitting can be found by the calling program, because, if i is any integer in (p, q]
such that ti can be dropped, then the subroutine gives ii= h, but the other values
of ii are not disturbed. Furthermore, if a Lemma 4 splitting is possible, then the
algorithm makes the changes to the lower bounds that are stated in Lemma 4,
but the other values of ai are not altered.

When the subroutine provides INFO= 1 during the main recursive procedure,
a search is made for a Lemma 3 splitting. We know that the main procedure will
continue if there is no splitting, so we· suppose that there exists an integer j in
[p, q- l] that satisfies /3j 5:, aj+l · Then h and q are reduced temporarily to h- and
j, respectively, and the subroutine is called again. Thus we determine whether
the least value of the function

is at most h-. This is the case if INFO= 1 occurs, and then the subroutine provides
ai=ai(h-) and ii=h-, i=p,p+l, ... ,j, automatically, which will be useful later,
because the algorithm makes the splitting that removes ti, i=p,p+l, ... ,j, from
the current calculation. This is done by restoring h and q to their previous values
and by increasing p to j + 1. Now Lemma 3 shows that the value of h* for the
new calculation is the same as before, so the current h- and h+ still provide the
bounds h- < h* 5:, h+. Therefore, except for a branch to the part of the algorithm

14

that has been noted already if p = q, one can go back to the beginning of this
paragraph to find out what happens next, forgetting about the increase in p.
Alternatively, if the least value of the function (3.9) is greater than h-, then the
current bounds h- < h*::::; h+ apply not only to the objective function (3.4) but
also to expression (3.9), although the new h* may be less than before. Therefore
the temporary value q = j is accepted and h is restored to its previous value, in
order that the minimization of the function (3.9) becomes the current calculation.
Again a p = q branch is possible. Otherwise, the work of the main procedure is
resumed, forgetting that q has decreased. The description of Lemma 3 splittings
is complete.

The one-sided splitting when INFO= 0 is easy to describe, because the variable
ti can be removed by a splitting if and only if the integer i E [p, q] has the property
'Yi= h. Therefore p is increased if necessary to the least integer k in [p, q] that
satisfies 'Yk -=J. h. Then q is reduced if necessary to the greatest integer R, in [p, q]
that is allowed by the conditions

'Yi > h, i=k,k+l, ... ,e. (3.10)

The minimum value of the new objective function (3.4) is greater than h, because
otherwise all the numbers 'Yi, i = k, k+ l, ... , f, would have been set to h. Thus
the bounds h- < h*::::; h+ are inherited by the new calculation, even if h* is smaller
than before, and the next h- is the current value of h. Then, apart from the
usual treatment of the case p = q, the algorithm returns to the main procedure,
regardless of any changes top and q.

We complete the description of the operations that may be relevant to the
first final choice of a parameter by addressing the analytic calculations that are
mentioned in Section 2. When p = q, the algorithm determines the final value
of tp, namely t;, by minimizing the distance llx.P - .§.(tp)ll2, ap ::::; tp ::::; (3p. The
other analytic calculation that is employed instead of bisection is the subject of
this paragraph. Imagine that S is fairly straight and that one is going along it,
looking for x.1 initially, but that one sees x.2 nearby before x.1 comes into sight,
although x.1 is also close to the curve. Then, if there is no interference from the
points X.i, i = 3, 4, ... , n, the final values of t 1 and t 2 have the properties

and (3.11)

Now .§.(a1(h)) comes before .§.(ti) on S if and only if a1(h) is a strict lower bound
on t!, and then expression (3.11) and the scenario provide llx.2 - .§.(a1(h))ll2 <
llx.1-.§'.(a1 (h)) 112· Further, this inequality and the definition of a2(h) imply a2(h) =
a 1(h), and one can argue similarly that (31(h) = (32 (h) is likely to hold. Thus, if
a 1 = a2 and /31 = (32 occur during the calculation, they suggest strongly that
the equations (3.11) are going to be satisfied. This kind of situation happens
frequently, perhaps 100 times in a problem with n= 1000. Therefore the algorithm

15

I-'-,-"-

!
I .

includes the following device. If both the conditions

(3.12)

are found during the minimization of the function (3.4), where p < q, then the
algorithm tests the possibility of the given scenario by seeking answers to some
questions analytically, except that the sequence of questions is abandoned if an
answer is negative. Firstly, we ask if the inequalities

(3.13)

hold, at least one of them being strict. Secondly, we ask if the distance ll.x.p-Q(tp)ll 2 ,

ap s tp S f}p, decreases strictly monotonically. Thirdly, we ask if 11.x.q- Q(tq)ll 2 ,

aq s tq S f}q, increases strictly monotonically. When all the answers so far are
favourable, there is a unique number t* E [ap, f}p] that satisfies 11.x.P - Q(t*) 112 =
11.x.q-.§.(t*) 11 2 = d*, say, and it is calculated analytically. Finally, if there are integers
between p and q, we ask whether all the distances 11.x.i - Q(t*) II 2 , p + 1 S i S q - 1,
are bounded above by d*. Affirmative answers imply that the choices ti = t*,
i=p,p+l, ... ,q, give the objective function (3.4) the valued*. Further, the strict
monotonicity requirements of the second and third questions, and the constraints
ap S tp S tp+l S · · · S tq S f}q, imply that ti= t* is the only optimal choice of ti
for each integer i in [p, q]. Thus the final values of all the variables of the current
optimization calculation are often assigned before the tolerance condition (3.7) is
achieved. The successful completion of either of the analytic techniques of this
paragraph is always followed by the operations of the algorithm that pick the next
values of p and q.

Access to the analytic method that has just been described is a branch from
the main recursive procedure, immediately before the choice of the next value of h.
The branch is made if the equations (3.12) hold, and if the analytic technique has
not been tried already for the current values of p, q, ap and f}q, A convenient way
of ensuring the last condition is to set p1 = 2T when expression (3.5) is considered,
and to reduce p1 to f}q - ap whenever the analytic technique is unsuccessful, as
then it is sufficient to add the constraint f}q-ap<p1 to the equations (3.12). An
unfavourable answer to any of the questions of the previous paragraph is followed
by a branch back to the recursive procedure, in order to refine the bracket on h*
if inequality (3. 7) is not yet satisfied.

If the recursive procedure finds that condition (3. 7) is achieved, then, instead
of picking a new h, it assigns the final values of tp and tq, the indices p and q being
different, because of the action that is taken analytically in the case p=q. These
final values are t; = ap(h+) and t; = f}q(h+), as recommended in Section 2. Now
the most recent call of the subroutine with h;?: h* employed h = h+. Further, if
that call applied the method of Lemma 1, then ap is the required value of ap(h+),
and, if Corollary 2 was applied instead, then f}q is the required value of f}q(h+).

16

We also recall that occasionally both ap(h+) and {Jq(h+) may be available, because
the subroutine may have been invoked twice with h=h+. Otherwise, the call that
completes the equations (3.8) is made, and it is repeated with a slightly larger
value of h if rounding errors cause an INFO= -1 or INFO= 0 return. Then, after
setting t; = ap and t; = {Jq, the flow of the algorithm goes to the operations of the
next paragraph.

New integers p and q are chosen whenever the final values of one or more of
the variables ti, i = 1, 2, , n, are assigned. If t; is any of the new final values,
then the bounds are updated by applying the formula aj = /3j = t;, but all other
revisions of bounds are made later. Further, 'Yj is set to -1 as mentioned soon
after equation (3.3), and we assume 'Yo ="fn+I = -1. The techniques that pick the
new p and q depend on the integer, r say, that is the least j for which t; has just
been determined, and on a property of the algorithm that we call the "staircase"
condition. This condition is that, for every p throughout the calculation, the
sequence 'Yi, i = 1, 2, ... ,P, increases monotonically, and is trivial initially due to
p = 1. The following remarks prove that the condition is achieved by the method
of calculation that has been described so far. Any changes to 'Yi are made by the
subroutine, each new 'Yi being the current h, and each h being bounded below by
h-. Therefore it is sufficient if h- 2: "Ip-I holds at all times, and if the splittings
preserve the staircase structure. Neither the recursive procedure nor a splitting
reduces h-, so it remains to consider splittings that increase p, from j5 top say. A
Lemma 3 splitting is acceptable, because it sets 'Yi= h-, i = j5, f5+ 1, ... , p- l, if it
increasesp. A one-sided splitting, however, provides "fi=h, i=j5,j5+1, ... ,p-l, for
the current h, which is acceptable too, because this his the next h-. Therefore the
staircase condition can be used in the choice of p and q that follows the selection
oft;.

First we address the case when not all of the final values tt, i= 1, 2, ... , r, have
been chosen. According to the staircase structure, it is characterized by 'Yr-l 2: 0.
Then a provisional choice of p and q is made that corresponds to the top step
of the staircase just before t;, so q and p are set to r - 1 and the least positive
integer that satisfies "fp = "fq, respectively. During the search for p, the bound {Jp
is reduced if necessary so that /3p::; /3p+i holds for each trial p. Next we look for
Lemma 3 splittings of the variables ti, i = p, p+ 1, ... , q, and, if there is one, q is
decreased to the least integer that is allowed by the inequalities

(3.14)

These choices of p and q are the final ones if "/p-l = -1, and then h- is set to zero.
Alternatively, in the case "fp-l 2: 0, the algorithm finds out if the top step of the
staircase can be lowered to the level of the previous step, by calling the Algorithm
1 version of the subroutine with h = "fp-·1 , for the current p and q. An INFO= 1
return is received if and only if the lowering is valid, and then the subroutine will
have overwritten 'Yi by "fp-I for all integers i in [p, q]. The successful broadening of

17

the top step demands a decrease in p, so there is a branch back to the operation
of this paragraph that chooses the provisional p. The other two returns from the
subroutine, however, indicate that 'Yp-l is strictly less than the minimum value of
the function (3.4). Therefore h- is set to 'Yp-l, and the chosen values of p and q
are going to be from the current interval [p, q]. In the case of an INFO= 0 return,
the technique that gives expression (3.10) is applied, because the subroutine has
reduced one or more of the numbers 'Yi, i = p, p + 1, ... , q, to 'Yp-l · Specifically,
letting k be the least integer in [p, q] such that 'Yk > 'Yp-l holds, and then letting e
be the greatest integer in [p, q] that has the property

'Yi > 'Yp-l, i=k, k+l, ... , e, (3.15)

the indices p and q are reset to k and e, respectively. Thus the INFO= 0 and
INFO= -1 cases become equivalent. Again there is a search for Lemma 3 splittings,
so q is decreased if possible to the least integer that satisfies the inequalities (3.14),
as before. Fortunately, h- = 'Yp-l remains a strict lower bound on the function
(3.4) if q is reduced, because any splitting that decreases q was not given as a
Lemma 4 splitting by the recent call of the subroutine. The description of the
choice of the new indices p and q when 'Yr-l 2:: 0 occurs is complete. Therefore, after
setting h+ =,Yp, the flow of the algorithm goes to the beginning of the paragraph
that includes expression (3.5), in order to begin the search for the least value of
the new objective function (3.4).

In the case 'Yr-l = -1, the algorithm increases r by 1 if the conditions r :s; n-l
and 'Yr+l = -1 are satisfied, which is done recursively. Thus the value r = n is
achieved if and only if all the final values of the parameters have been assigned,
so the calculation is terminated in this case. Otherwise, the search for the next
indices p and q gives priority to Lemma 3 splittings, because, if n is large, it
is important to efficiency to avoid many values of q - r that are of magnitude
n. Therefore the first provisional value of q is the least integer in [r + 1, n] that
satisfies one or both of the inequalities

(3.16)

Further, during the search for q, the bound aq+l is increased if necessary so that
aq+l 2:: aq holds for each trial q. Then the numbers 'Yi, i = 1, 2, ... , q, have the
staircase structure, so again p is set provisionally to the least positive integer
that has the property 'Yp = ,yq. We employ the notation 'Y;+1 for the number
'Yq+l or -1 in the case /3q > aq+l or /3q :s; aq+i, respectively, in order that %+1
becomes irrelevant when a splitting makes ti, i = 1, 2, ... , q, independent of ti,
i=q+l, q+2, ... , n. It follows that the required values of p and q have been found
already if the conditions

(3.17)

18

are achieved, the choice of q having excluded Lemma 3 splittings of the variables
ti, i=p,p+l, ... ,q. Then the algorithm sets h-=o and h+="(p, and branches to
the instructions of the paragraph that includes expression (3.5). Otherwise, we
investigate if the top step of the staircase can be lowered by calling the Lemma
1 version of the subroutine for the current p and q, with h set to max[,'p-l, 1;+1J.
Again the answer is negative if an INFO = 0 or INFO = -1 return occurs, which
is analogous to the corresponding situation in the previous paragraph. Therefore
h- is set to the current h, and there is a branch to the operations of the previous
paragraph that select the final p and q from the current interval [p, q] for these
values of INFO. On the other hand, after an INFO= 1 return, the subroutine has
reduced i'i to the current h for every integer i in [p, q], which allows the step under
consideration to be widened, but it may not be the top step any more if h is 1;+1.

Therefore we pick new provisional values of p and q. Because the subroutine has
not altered ai, f3i and i'i, i=l,2, ... ,p-1, but it may have changed ap, the new
q satisfies q~max[r+l,p-1). Specifically, it is the least q subject to this lower
bound that achieves one or both of the conditions (3.16). Then pis revised and
the subsequent operations are reached by going back to the provisional choice of
p that is made earlier in this paragraph. The description of the updating of p and
q is complete, but it should be noted that the given recursive procedure cannot
cycle indefinitely. Indeed, each cycle with an INFO = 1 return makes changes to
the bounds 'Yi, i = 1, 2, ... , n, that provide a strict reduction in the cardinality of
the set { i E [r + 1, r* -1] : ,'i # l'i+l}, where r* is the least integer in [r + 2, n] that
has the property f3r• ~ O:'.r•+i, the value of O:'.n+l being T. We note also that the
staircase condition is preserved by the techniques that select the new p and q.

The final subject of this section is a few brief remarks on the representation
of S by the algorithm and on the analytic calculations that have been mentioned.
Therefore we recall the notation fa and .§.m for the initial and final points of S and
.§.j, j = 2, 3, ... , m-1, for the internal joins of the pieces of S. In every application of
the algorithm so far, mis an even integer, and the part of S between .§.j and .§.j+l is
a straight line segment or a circular arc when j is odd or even, respectively. Thus S
is defined uniquely by the positions of .§.j, j = 1, 2, ... , m. Further, these positions
have to satisfy the constraint that, if j is any even integer in [2, m-2], then three
lines are concurrent, namely the straight line extension from .§.j-l through .§.j, the
straight line extension from ~+2 through .§.j+1, and the perpendicular bisector of
the line segment from .§.j to .§.j+1 · The constraint is necessary for the continuity
of the direction of S between Z.j-l and Z.j+2. The algorithm is provided with a
sequence .§.j, j = 1, 2, ... , m, that satisfies these conditions.

Then the parametric form S = fo(t) : 0 ~ t ~ T} is defined by induction in the
following way, beginning with fa =.§.(81), where 81 is zero. For j = 1, 2, ... , m-1,

19

the parameter {)j+l of the identity !2j+1 = 2({)i+i) is given the value

{

{)j + ll2j+1 -2jll2 or
{)·+1 =

J {) j + distance along arc from .§.j to .§.H 1,
(3.18)

the latter alternative being preferred when j is even and the arc from .§.j to !2j+1

turns through more than 1r /2 radians. This construction provides T = {)m, Further,
when j is odd or when the second line of expression (3.18) applies, we let 2(t),
{)j ~t~{)j+1, be the point on S whose arc-length distance from .§.j is t-{}j, In the
remaining case, the parameterization

(3.19)

is employed for every t in [{)j, {)j+i]· Here >. and Y. are the differences t-{}j and
.§.j+l-.§.j, respectively, while 12. is the difference between the midpoint of the circular
arc from .§.j to !2j+l and the midpoint of the chord from .§.j to !2j+1 · Thus 12. is
orthogonal to y_. Further, it can be verified that 2(t) takes the values .§.j, !2j+l

and H2j + 23+1) + 12. in the cases >. = 0, >. = IIY.11 and >. = ! IIY.11 · Moreover, if 12. is
zero, then the parameterization (3.19) reduces to !2j + AY./IIY.11, which is a usual
expression for a point on the straight line segment between .§.j and !2j+1 · One can
also deduce the properties lll({)i)ll=ll.§.'(()H1)ll=1. It follows from the continuity
of the direction of S that the gradient of the representation {.§.(t) : 0 ~ t ~ T}
is also continuous, which is important to the procedure for mapping curves into
curves that is mentioned in Section 1. When !2j is joined to !2j+1 by a circular arc
whose angle of rotation is more than 1r /2, however, then the algorithm applies the
formula

2 (t) = .§.j + r sin(.X/r) .fr+ r{l-cos(.X/r)} .Q, (3.20)

where >. is t-{}i as before, where r is the radius of the arc, and where .fr and .Q
are vectors of unit length that are parallel and orthogonal to the direction of the
incoming tangent, namely .§.j - !2j-l · The large angle of rotation ensures that r is
bounded. On the other hand, expression (3.19) is suitable when the arc is close
to a straight line.

In all of these cases, one can discover analytically if a data point, X.i say, is
within distance h of the j-th section of S, by addressing the distances from X.i
to the end-points of the section, and then by considering the stationary points of
the function llx.i-2(t) 1'2, {)j ~ t ~ {)H1, if necessary. Thus there is no need to solve
a quadratic equation, but a quadratic is solved if a point on S is required that
is distance h from X.i. Another analytic calculation occurs soon after the third
question in the paragraph of equations (3.11)-(3.13). There the number t* that is
defined by llx.p-2(t*)ll2= i1J2.q-2(t*)ll2 may be derived from the fact that 2(t*) is on
the perpendicular bisector of the line segment between X.p and bi· Other details

20

of these operations of the algorithm include some formulae that are convenient for
computation and that avoid unnecessary loss of accuracy, but their descriptions
are omitted because they would be rather long and tedious.

4. Numerical results

Each curve S of the numerical experiments of this section has the following form.
The end-points and joins of the pieces of Sare §..j=§..(Bj), j=l, 2, ... , m, as before,
the parameters Bj being defined in the way that includes expression (3.18), and
m being an even integer. Further, for convenience, we pick the points

(4.1)

and we satisfy the equations

We also let the pieces of S be straight line sections and circular arcs alternately, as
mentioned already. It follows from the conditions (4.1) and (4.2) that Sis defined
uniquely by the angles of rotation of the arcs, 'lj;k, k = 1, 2, ... , m, say, where m
is the integer !(m-2). We begin with the case when mis 6 and each 'lj;k is 1r/3
radians. Thus S is a regular hexagon with rounded corners, except that the line
segment from §..m-l to §..m is a repeat of the line segment between the points (4.1).

Many features of the splitting techniques can be tested by placing all the data
points J2i, i = 1, 2, ... , n, on S, so we make the initial choice

i=l,2, ... ,n, (4.3)

with [i =0. In general, however, each [i is generated randomly from the uniform
distribution on the disc {;r : ll;rll2 ::; £5} for some parameter 6. Specifically, three
values of 6 were employed, namely 0, ..6.. and 10..6.., where ..6.. is the average distance

n-1

..6.. = (n-1t1 I: IIJ2i+1 -;rill2 (4.4)
i=l

between the adjacent points of expression (4.3) when every [i is zero. Moreover,
throughout the experiments the parameter 17 of the tolerance condition (3.7) was
set to 10-10 . The calculations were run in double precision on a Spare 5 /170 work
station. The execution times in seconds for this test problem, using several values
of n, are given in the "S has one cycle" columns of Table 1. Next, the choice m = 6
was replaced by m=6n/125, but the angles 'lj;k =1r /3, k= l, 2, ... , m, and formulae
(4.3) and (4.4) were retained. Thus the number of cycles of S becomes n/125 and

21

S has one cycle S has n/125 cycles

n 6=0 6 = .6. 6 = 10.6. 6=0 6 = .6. 6 = 10.6.

125 0.02 0.03 0.03 0.02 0.03 0.03
250 0.04 0.07 0.07 0.03 0.07 0.07
500 0.08 0.14 0.16 0.07 0.14 0.14

1000 0.17 0.29 0.34 0.13 0.30 0.30
2000 0.37 0.61 0.68 0.27 0.61 0.61
4000 0.76 1.25 1.42 0.53 1.23 1.25
8000 1.67 2.62 2.87 1.08 2.57 2.70

Table 1: Hexagonal S with nearby data points

there is a corresponding change to T. The running times of the new experiment
are shown in the last three columns of Table 1. The performance of the algorithm
is highly satisfactory, because the amount of work is nearly proportional to n.
Further, we see that it is not disadvantageous to increase the length of S.

Some less regular choices of S were made by generating each of the angles 1Pk,
k= l, 2, ... , m, randomly from the uniform distribution on [-1r /3, 21r /3]. Thus the
average value of 1Pk becomes 1r /6, so the complete curve S turns through about 21r
radians if we pick m= 12 and m= 26. A curve of this form is displayed in Figure
1, with the points (4.3) when n = 30 and 6 = 2.6., each X.i being shown as a circle
that contains the value of i. The positions of a few of these points were modified,
however, in order to make the picture clearer. They were shifted onto S by the
algorithm, the new positions being given as bullets in the figure. The straight
line segments between X.i and Q.(t;) are drawn too for every i. Thus we have an
illustration of the moves of the data points that are made by the algorithm. The
test problem of this paragraph was also employed in some numerical experiments
that are analogous to the calculations of Table 1. Indeed, the same values of n
and 6 were chosen, and the "one cycle" and "n/125 cycles" cases were obtained
by picking m = 12 and m = 12n/125, respectively. The results are not tabulated,
however, because the times are only a little greater than before. For example, the
new measurements that correspond to the n=8000 row of Table 1 are 1.85, 2.89,
3.22, 1.19, 2.93 and 3.05 seconds.

Unfortunately, the total work of the algorithm is usually much greater than
the results so far, if the points X.i, i = 1, 2, ... , n, lie on a smooth curve that is
different from S, and if the distance from X.i to S is large in comparison with
llx.i+1 -x.ill2 for most integers i in [1,n-1]. For example, we let S be the part
of the x-axis between (1, 0) and (n, 0), and we let the coordinates of X.i be (i, i),
i = 1, 2, ... , n. Then no Lemma 3 splittings can occur before a one-sided splitting,

22

Figure 1: A random choice of the angles of S

because the minimum value of the objective function (1.2) is h* = n, and the
inequality /3j(h*) ~aj+i(h*) takes the form

min [n, j + Jn2-p] ~ max [1, j + 1- Jn2 - (j+1)2], (4.5)

which fails for all integers j in [1, n-1], the value of n2 -j2 being at least 2n-l.
On the other hand, some Lemma 4 splittings are possible, but they do not happen
for j 2 2-1/ 2n+ 1, unless the h that provides an(h) = +oo is close to h*. Indeed,
when the conditions of Lemma 4 hold for the first time for such a j, the current
lower bound aj+l satisfies the inequality

aj+1 ~ aH1(h*) = max [1, j+l-Jn2-(j+1)2]. (4.6)

Therefore the h that gives the splitting has the property

aj(h) = max [1, j-Jh2 -p] ~ max [1, j+l-Jn2-(j+1)2]. (4.7)

Further, the conditions j 2 2-1/ 2n+ 1 and j::::; h < n imply that the "max" values
of expression (4.7) exceed one. Thus (h2-j2)112 is at least {n2-(j+1)2}112-1, so
some straightforward algebra provides the bound

(4.8)

23

S has one cycle S has n/125 cycles

n 6=0 6=6. 5 = 106. 6=0 6=6. 6=106.

125 0.14 0.08 0.04 0.14 0.08 0.04
250 0.57 0.25 0.11 0.31 0.19 0.09
500 2.46 0.82 0.30 0.67 0.38 0.19

1000 10.74 3.50 0.78 1.35 0.77 0.38
2000 47.47 14.46 3.08 2.76 1.58 0.90
4000 209.08 65.57 11.82 5.54 3.25 1.79
8000 908.41 268.41 52.04 11.16 6.60 3.93

Table 2: Hexagonal S with separate data points

the last inequality being elementary. Hence we require h ~ n-21/ 2 when n is large.
These remarks suggest that, for some data, the efficiency of the algorithm may be
very poor in comparison with the timings that are shown in Table 1.

We investigate this suggestion by changing the data points of the first test
problem from expression (4.3) to the values

(
sin([i-1]/[n-1]))

x.i = 1 - cos ([i -1 J / [n - 1 D + [i,
i=l,2, ... ,n, (4.9)

but we do not alter S. Thus, when every [i is zero, the new data points are
equally spaced on a circle that is mainly well inside S. Further, the definition
(4.4) provides 6.=2sin(l/[2n-2]), and then we pick 5 and [i, i=l,2, ... ,n, as
before. The times of the algorithm in this case are shown in the "S has one cycle"
columns of Table 2. It seems that the amount of work has become of magnitude
n2 for each of the three choices of 5, and that the times are reduced greatly when
the data points are perturbed by random errors, because useful splittings occur
much earlier in the calculations. Finally, we employed the old S that has n/125
cycles, and we provided the data with the same number of cycles, by changing the
denominators of equation (4.9) from [n-1] to 125, which implies 6. = 2 sin(l/250).
The running times that occurred are given in the last three columns of Table 2.
We find that the approximate O(n) complexity has returned, which is probably
due to a tendency in the algorithm to process the cycles sequentially.

The accuracy of the numerical experiments of this section was tested in the
following way. We let .&(it), i= 1, 2, ... , n, be the points on S that were computed
by the algorithm. Further, both the direction of S and the order of the data X.i,

i = 1, 2, ... , n, were reversed, giving a new problem, which was also solved by
the algorithm, the computed points on the new S being i(l;), i= 1, 2, ... , n, say.
Now, assuming that the lexicographic method provides uniqueness, the identities

24

§.(t;) = .&(i~+i-i), i = 1, 2, ... , n, would hold in exact arithmetic. Therefore the
numbers

i=l,2, ... ,n, (4.10)

were recorded, because they may show some serious consequences of computer
rounding errors, and they may provide some useful information on the tolerance
parameter 'fJ of condition (3. 7). It is possible for (i to be of magnitude 'T/1/ 2 . Indeed,
if h* = !1;1;.i- Q(t;) 11 2 is the least distance from ;1;.i to the curve S, if h* is positive,
and if ti is in the open interval (0, T), then the difference ;1;.i - Q (t;) is orthogonal
to the direction of S at Q(t;). Thus a bound of the form

0 5:tS:T, (4.11)

is satisfied for some number c that depends on ;1;.i and S. Therefore, because the
algorithm may set £: to a value oft such that the left hand side of this inequality
is O(rJ), the discrepancy lir-trl is allowed to be of magnitude 'T/1/

2
, and then (i is

usually of this magnitude too.
Values of (i that are slightly greater than 10-5 may be tolerable in the given

experiments because of the choice 'f} = 10-10 , but it was found that (i hardly
ever exceedeq 10-10 . In particular, throughout the "S has n/125 cycles" tests,
including the experiments on random choices of the angles of the circular arcs of S,
the fourth largest value of (i was 3.7x10-11

. These very small values are incredible
if the argument of the previous paragraph is relevant. It seems, therefore, that
the splittings are so successful in practice that nearly all of the parameters ti,
i = 1, 2, ... , n, are determined by one of the analytic methods of Section 3. This
hypothesis was checked by providing output from the Fortran program whenever
the tolerance condition (3. 7) is achieved, because then the analytic techniques
are replaced by the formulae t; = ap(h+) and t; = /3q(h+). There were only four
instances of this output throughout the "S has n/125 cycles" experiments, and
they coincided with the three largest values of (i, which were 3.5x10-5 , l.2x10-5

and 1.4 x 10-6 . On the other hand, 'in the "S has one cycle" problems, the
formulae t; = ap(h+) and t; = f]q(h+) were employed 10 times altogether, 58 of
the problems having no applications, 2 of them having one, 2 of them having two,
and one of them having four applications. Further, in the 5 experiments that
satisfied the tolerance condition (3.7), all the values of max{(i : i = 1, 2, ... , n}
were in the interval [l.9xl0-8 , l.6x10-5). Two values of (i in the other problems
were of magnitude 10-6 , and they deserve further attention, but the largest value
otherwise in the "S has one cycle" experiments was (i=7.3xl0-13 . Moreover, in
all the occurrences oft;= ap(h+) and t; = /3q(h+), the indices had the property
q 5:p+2. Therefore it may be possible to develop further analytic techniques that
avoid the relatively low accuracy of the adjustment of h by the bisection method.

An interesting question is whether there are any applications of the algorithm
that require high accuracy. The author expects the answer to be negative. On

25

I
I
I.

the other hand, the algorithm is very useful for providing the initial values of the
variables of the optimization calculation that is mentioned in the second paragraph
of Section 1.

Acknowledgement

This work was done at the University of Canterbury, Christchurch, New Zealand.
The author is very grateful for the support and hospitality that he received there,
including the cooperation of members of the Mathematics Department.

References

I. Barrodale, R. Kuwahara, R. Poeckert and D. Skea (1993), "Side-scan sonar
image processing using thin plate splines and control point matching",
Numerical Algorithms, Vol. 5, pp. 85-98.

L.G. Brown (1992), "A survey of image registration techniques", Computing
Surveys, Vol. 24, pp. 325-376.

J. Flusser (1992), "An adaptive method for image registration", Pattern Recog
nition, Vol. 25, pp. 45-54.

M.J.D. Powell (1996), "A thin plate spline method for mapping curves into
curves in two dimensions", in Computational Techniques and Applications:
CTAC95, editors R.L. May and A.K. Easton, World Scientific (Singapore),
pp. 43-57.

26

 HistoryItem_V1
 TrimAndShift

 Range: From page 3 to page 27; only even numbered pages
 Trim: none
 Shift: move right by 11.34 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1797
 167
 Fixed
 Right
 11.3386
 0.0000

 Even
 3
 SubDoc
 27

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 1
 27
 25
 12

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page, only if even numbered
 Trim: none
 Shift: move right by 11.34 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1797
 167
 Fixed
 Right
 11.3386
 0.0000

 Even
 3
 CurrentPage
 27

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 1
 27
 1
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 27; only even numbered pages
 Trim: none
 Shift: move right by 2.83 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1797
 167
 Fixed
 Right
 2.8346
 0.0000

 Even
 2
 SubDoc
 27

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 1
 27
 25
 13

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -1.93, 561.27 Width 603.73 Height 280.65 points
 Mask co-ordinates: Horizontal, vertical offset 515.00, -0.02 Width 126.34 Height 678.95 points
 Mask co-ordinates: Horizontal, vertical offset 212.17, 272.91 Width 137.91 Height 81.98 points
 Mask co-ordinates: Horizontal, vertical offset 112.84, 465.80 Width 150.45 Height 28.93 points
 Mask co-ordinates: Horizontal, vertical offset 141.77, 435.90 Width 26.04 Height 36.65 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 -1.9288 561.2747 603.7252 280.6454 514.9988 -0.0161 126.3386 678.9496 212.1718 272.9139 137.9117 81.9754 112.8368 465.7974 150.4491 28.9325 141.7693 435.9004 26.0393 36.6479

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 27
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 558.24, -0.01 Width 49.42 Height 840.10 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 AllDoc
 17

 CurrentAVDoc

 558.2361 -0.0098 49.4176 840.0995

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 27
 26
 27

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 22.88, 691.84 Width 484.11 Height 129.95 points
 Mask co-ordinates: Horizontal, vertical offset 498.75, 388.01 Width 72.30 Height 133.61 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 22.8785 691.8369 484.1096 129.95 498.7519 388.0101 72.2962 133.6106

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 1
 27
 1
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 105.24, 736.68 Width 111.65 Height 66.81 points
 Mask co-ordinates: Horizontal, vertical offset 389.85, 719.29 Width 144.59 Height 64.06 points
 Mask co-ordinates: Horizontal, vertical offset 504.24, 162.89 Width 19.22 Height 89.68 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 105.2412 736.6788 111.6472 66.8053 389.8501 719.2911 144.5923 64.0599 504.2427 162.8853 19.2179 89.6838

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 27
 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 98.84, 738.51 Width 136.36 Height 53.99 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 98.8352 738.509 136.356 53.9933

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 3
 27
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 109.82, 746.75 Width 440.18 Height 91.51 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 109.8169 746.7453 440.1829 91.5141

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 4
 27
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 88.77, 749.49 Width 122.63 Height 72.30 points
 Mask co-ordinates: Horizontal, vertical offset 24.71, 790.67 Width 55.82 Height 32.03 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 88.7687 749.4907 122.6289 72.2961 24.7088 790.6721 55.8236 32.03

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 5
 27
 5
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 32.03, 744.92 Width 159.23 Height 69.55 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 32.0299 744.9151 159.2346 69.5507

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 6
 27
 6
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 89.68, 749.49 Width 103.41 Height 74.13 points
 Mask co-ordinates: Horizontal, vertical offset 164.73, 30.19 Width 110.73 Height 24.71 points
 Mask co-ordinates: Horizontal, vertical offset 498.75, 97.00 Width 33.86 Height 15.56 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 89.6838 749.4907 103.4109 74.1265 164.7254 30.1898 110.7321 24.7088 498.7519 96.9951 33.8602 15.5574

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 7
 27
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 51.25, 744.00 Width 532.61 Height 95.17 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 51.2479 743.9999 532.6122 95.1747

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 8
 27
 8
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 109.82, 751.32 Width 69.55 Height 70.47 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 109.8169 751.321 69.5507 70.4658

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 9
 27
 9
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 127.20, 733.93 Width 223.29 Height 70.47 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 127.2046 733.9334 223.2944 70.4658

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 10
 27
 10
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 94.26, 744.91 Width 137.27 Height 82.36 points
 Mask co-ordinates: Horizontal, vertical offset 284.61, 24.70 Width 92.43 Height 30.20 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 94.2595 744.915 137.2712 82.3627 284.6089 24.699 92.4293 30.1996

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 11
 27
 11
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 120.80, 748.58 Width 68.64 Height 47.59 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 120.7986 748.5756 68.6356 47.5873

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 12
 27
 12
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 97.00, 750.41 Width 88.77 Height 54.91 points
 Mask co-ordinates: Horizontal, vertical offset 499.67, 193.09 Width 89.68 Height 640.60 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 97.005 750.4059 88.7687 54.9084 499.6671 193.085 89.6839 640.5988

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 13
 27
 13
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 64.97, 679.02 Width 11.90 Height 8.24 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 64.975 679.0249 11.8968 8.2363

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 13
 27
 13
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 62.23, 737.59 Width 166.56 Height 70.47 points
 Mask co-ordinates: Horizontal, vertical offset 465.81, 240.67 Width 15.56 Height 17.39 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 62.2296 737.5939 166.5557 70.4659 465.8068 240.6723 15.5574 17.3876

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 14
 27
 14
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 95.17, 745.83 Width 102.50 Height 65.89 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 95.1747 745.8302 102.4958 65.8901

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 15
 27
 15
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 0.92, 744.00 Width 588.44 Height 97.92 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 0.9151 743.9999 588.4357 97.9201

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 16
 27
 16
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 106.16, 744.91 Width 106.16 Height 64.06 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 106.1564 744.915 106.1564 64.0599

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 17
 27
 17
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 120.80, 749.49 Width 95.17 Height 53.99 points
 Mask co-ordinates: Horizontal, vertical offset 281.86, 139.09 Width 12.81 Height 12.81 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 120.7986 749.4907 95.1747 53.9933 281.8635 139.0916 12.812 12.812

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 18
 27
 18
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 501.50, 412.72 Width 37.52 Height 155.57 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 501.4973 412.7188 37.5208 155.574

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 18
 27
 18
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 44.84, 746.75 Width 272.71 Height 74.13 points
 Mask co-ordinates: Horizontal, vertical offset 504.24, 645.16 Width 18.30 Height 94.26 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 44.8419 746.7453 272.712 74.1265 504.2427 645.1647 18.3029 94.2596

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 19
 27
 19
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 107.99, 741.25 Width 158.32 Height 67.72 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 107.9866 741.2545 158.3194 67.7205

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 20
 27
 20
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 97.00, 732.10 Width 172.96 Height 77.79 points
 Mask co-ordinates: Horizontal, vertical offset 374.29, 642.42 Width 148.25 Height 39.35 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 97.005 732.1031 172.9617 77.787 374.2927 642.4193 148.2529 39.3511

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 21
 27
 21
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 72.30, 740.34 Width 355.99 Height 95.17 points
 Mask co-ordinates: Horizontal, vertical offset 33.86, 770.54 Width 96.09 Height 38.44 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 72.2962 740.3393 355.9899 95.1747 33.8602 770.539 96.0898 38.4359

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 22
 27
 22
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 86.94, 738.51 Width 79.62 Height 69.55 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 86.9384 738.509 79.6173 69.5507

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 23
 27
 23
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 327.62, 683.60 Width 175.71 Height 92.43 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 327.6205 683.6006 175.7071 92.4293

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 23
 27
 23
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 92.43, 733.02 Width 267.22 Height 67.72 points
 Mask co-ordinates: Horizontal, vertical offset 284.61, 711.97 Width 13.73 Height 5.49 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 92.4293 733.0182 267.2212 67.7205 284.6089 711.9699 13.7271 5.4909

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 24
 27
 24
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 455.74, 557.31 Width 64.97 Height 188.52 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 455.7403 557.3111 64.975 188.519

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 24
 27
 24
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 79.62, 744.00 Width 204.99 Height 60.40 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 79.6173 743.9999 204.9916 60.3993

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 25
 27
 25
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 61.31, 748.58 Width 177.54 Height 55.82 points
 Mask co-ordinates: Horizontal, vertical offset 44.84, 680.86 Width 25.62 Height 45.76 points
 Mask co-ordinates: Horizontal, vertical offset 206.82, 218.71 Width 148.25 Height 107.07 points
 Mask co-ordinates: Horizontal, vertical offset 496.92, 328.53 Width 37.52 Height 67.72 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 61.3145 748.5756 177.5374 55.8235 44.8419 680.8552 25.6239 45.757 206.8219 218.7089 148.2528 107.0715 496.9216 328.5258 37.5208 67.7205

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 26
 27
 26
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 505.16, 353.23 Width 37.52 Height 73.21 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 505.1579 353.2346 37.5208 73.2113

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 23
 27
 23
 1

 1

 HistoryList_V1
 qi2base

