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1 Introduction 

Evolution is often regarded as a tree-like process in which an ancestral species evolves to a set of present­
day species via a sequence of speciation events. This approach is well-suitable to tackle various questions 
arising from evolutionary studies. However, reticulation has now been accepted as a common force in 
the evolution of various species. Two major reticulation scenarios that are discussed in this paper are 
horizontal gene transfer (HGT) and hybridization. In the case of the latter, two ancestral lineages combine 
their DNA to create a new species. This process is common in certain groups of plants and fish [14). On 
the other hand, in the case of HGT, which is widely observed among bacteria [17), a piece of DNA (e.g. 
a gene) is transferred from one organism to another coexisting species. Consequently, if the genome of a 
species is chimeric as a result of one or more HGT or hybridization events, its evolutionary history can 
often be better represented by using a reticulation network rather than a phylogenetic tree. 

Recently, a lot of effort has been put into the development of algorithms to reconstruct reticulation 
networks for a set of present-day species (for example, see [13) and references therein). However, as 
pointed out in [12], although a reticulation network might explain several conflicting signals in a data 
set, there may be no process of instantaneously occurring reticulation events that realizes this network. 
Consequently, the two (resp. three) lineages that are involved in an HGT (resp. a hybridization) event 
are not guaranteed to exist contemporaneously. Roughly speaking, we say that a reticulation network 
is temporal if each reticulation event can be realized between coexisting species, while speciation events 
occur successively. Beside the reconstruction of possibly non-temporal reticulation networks, there exists 
a number of algorithms that do calculations on networks and implicitly assume that the input consists of 
a temporal reticulation network. For example, Jin et al. [10) have developed an algorithm for computing 
the parsimony score of a temporal reticulation network. 

A reticulation network that is not temporal does not necessarily imply that the network is incorrect. 
By allowing for additional taxa that for instance correspond to unsampled or extinct taxa one can 
always resolve this issue without introducing any new reticulation events [2, 16). For example, consider 
the reticulation network shown in Figure 1, where the non-arrowed arcs are directed down the page. If one 
ignores the dashed arc and its end vertices, then the network is not temporal. However, by allowing for 
this dashed arc and the taxon x, then the resulting network is temporal. Given this, a natural task in the 
study of biologically meaningful reticulation networks is to calculate the minimum number of additional 
taxa that must be allowed for so that the resulting network is temporal. We call the analogous decision 
problem AnnTAXA and show in the first half of this paper that this problem is NP-complete. 

In the second half of this paper, we focus our attention on hybridization and consider a task that is 
one step closer to the initial biological data. Instead of being given a reticulation network, one frequently 
starts with a set of gene trees. For example, due to hybridization, these gene trees-reconstructed for 
different genetic loci-often reveal inconsistencies. Here, a fundamental problem is to calculate the small­
est number of hybridization events needed to simultaneously explain the the set of gene trees. While 
this problem is NP-hard, Bordewich et al. [3) and, more recently, Collins et al. [7) have implemented a 
fixed-parameter algorithm for solving it when the initial set consists of two gene trees, T and T' say. 
This algorithm is dependent on finding an as~ociated optimal agreement forest. For the purposes of the 
introduction, simply think of the forest as a smallest collection of (disjoint) subtrees common to T and 
T'. From this forest, the algorithm HYBRIDPHYLOGENY [2) can be applied to reconstruct a hybridiza­
tion network that explains T and T', and in which the number of hybridization events equates to the 
size of the forest. However, despite its practical application, HYBRIDPHYLOGENY does not guarantee 
that the resulting network is temporal. In the second half of the paper, we provide an algorithm, called 
TEMPORALHYBRID, that constructs temporal hybridization networks from agreement forests. It is worth 
noting here that there is no guarantee that such networks exist. Furthermore, two practical applications 
of TEMPORALHYBRID are given with the second application applied to a grass data set. 
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Fig. 1 A temporal hybridization network with one additional taxa x. 

The paper is organized as follows. The next section contains some notation and terminology that 
is used throughout the paper and formally defines the decision problem ADDTAXA. In Section 3, we 
show that ADDTAXA is NP-complete. Despite this negative result, we end the section by showing how 
fixed-parameter algorithms for another NP-complete problem can be used to solve it. In Section 4, we 
present the algorithm TEMPORALHYBRID and two practical applications of it, one of which is applied to 
a grass data set. Section 5 summarizes the paper. Notation and terminology typically follows [18]. 

2 Modeling reticulate evolution 

In this section, we give some preliminary definitions for directed acyclic graphs that are commonly used 
to model reticulate evolution, and formally state the decision problem AnnTAXA. 

A reticulation network N ( on X) is a rooted acyclic digraph with the following properties: 

(i) the outdegree of the root is 2, 
(ii) Xis the set of vertices of outdegree zero (and all such vertices have indegree 1), 

(iii) all remaining vertices either have indegree 1 and outdegree 2, or have indegree 2 and outdegree 1, 
and 

(iv) for every vertex u </. X, there is a vertex v such that (u, v) is an arc in N and v has indegree 1. 

The set X represents a collection of present-day taxa. Furthermore, vertices of N with indegree 1 are 
referred to as tree vertices, while vertices of N with indegree 2 are referred to as reticulation vertices. 
Property (iv) in the definition of a reticulation network guarantees that every species that arises from 
either a speciation or a reticulation event exists for a certain time before going extinct. For example, a 
species does not yield two new hybrid species and simultaneously becomes extinct. This is biologically 
well-motivated since, although hybridization can result in the extinction of one or both hybridizing 
species, this process takes at least a few generations, and hybridization and extinction are often only 
locally observed [15, 19]. Ignoring the dashed arc and its end vertices for the moment, Figure 1 shows 
a reticulation network, where X = {a,b,c,d}. Here, as in all figures in the paper, the direction of any 
non-arrowed arc is down the page. 

Let N be a reticulation network with vertex set V and arc set A, and let u, v E V. If there is a 
directed path from u to v and u -1- v, we write u < v and refer to u as an ancestor of v and to v as a 
descendant of u. If ( u, v) is an arc of N, we call ( u, v) a parent arc of v, and say that u is· a parent of v 
and that v is a child of u. 

A reticulation vertex due to hybridization is called a hybridization vertex, while the parent arcs of 
such a vertex are called hybridization arcs. Similarly, a reticulation vertex due to HGT is called an HGT 
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Fig. 2 A non-temporal HGT network (left) and its associated critical graph (right). 
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Fig. 3 A temporal hybridization network for the 4 taxa a, b, c, and d, with a temporal labeling. 

vertex. The arc pointing to an HGT vertex which contributes some DNA to another lineage is called an 
HGT arc. Note that for a hybridization vertex, both parent arcs are hybridization arcs, whereas, for an 
HGT vertex, only one parent arc is an HGT arc. Hybridization and HGT arcs are collectively referred 
to as reticulation arcs. The remaining arcs of a reticulation network are called tree arcs. A hybridization 
network is a reticulation network where all reticulation events are due to hybridization, while an HGT 
network is a reticulation network where all reticulation events are due to HGT. Throughout the paper, 
whenever we refer to a reticulation network we mean that the network is either a hybridization network 
or an HGT network. Furthermore, in the context of figures, reticulation arcs are always drawn with an 
arrow while tree arcs are drawn without an arrow. Again ignoring the dashed arc and its end vertices, 
Figure 1 and the left figure in Figure 2 show a hybridization network and an HGT network, respectively. 

We next formalize the notion of assigning dates to the vertices of a reticulation network. Let N be 
a reticulation network with vertex set V and arc set A, and let V' be a subset of V. Let f : V' -t N = 
{O, 1, 2, ... } be a map such that, for alls, t E V', we have f(s) = f(t) whenever (s, t) is a reticulation 
arc, and f(s) < f(t) whenever there is a directed path from s tot separated by at least one tree arc. 
Then f is a partial temporal labeling of N. If V' = V, then f is a temporal labeling of N, and we say 
that N is temporal or has a temporal representation. As an example, consider the hybridization network 
shown in Figure 3 which illustrates a temporal labeling f of this network. 

Not all reticulation networks have a temporal representation. However, as noted in [2], one can resolve 
this issue without introducing new reticulation vertices by allowing for additional taxa. Such taxa may 
correspond to unsampled or extinct taxa. This can be done as follows. Let N be a reticulation network, 
and let e = (u, v) be an arc of N. Consider the reticulation network obtained from N by replacing e 
with a 2-arc directed path consisting of (u,z) and (z,v), and then adjoining a new taxa x via the new 
arc (z,x). We say that the resulting reticulation network has been obtained from N by adding a new 
taxa x across (u, v). As an example, consider Figure 1. The hybridization network shown (including the 
dashed arc) has been obtained from the underlying solid-arc hybridization network by adding x across 
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( u, v). We will soon see that by adding new taxa in this way to N it is always possible to produce a 
reticulation network that has a temporal representation. This motivates the following decision problem 
which is the main focus of the first part of this paper. 

Problem: ADDTAXA(N, k) 
Instance: A reticulation network N and a positive integer k. 
Question: Is there a temporal reticulation network that can be obtained from N by adding at most k 
new taxa? 

3 ADDTAXA is NP-complete 

In this section, we show that AooTAXA is NP-complete. We begin with a lemma which in turn requires 
some further definitions. Let N be a reticulation network, and let ( v, v1) be a reticulation arc. If there 
exists a reticulation vertex w with w =/= v1 such that v < w, but v1 -/. w, then v is said to be critical, in 
which case, v1 is a critical reticulation vertex. To illustrate, consider Figure 2. In the left-hand figure, u 
is a critical vertex as the reticulation vertex v1 is a descendant of u, but is not a descendant of u1. 

Lemma 31 Let N be a reticulation network. Then N has a temporal representation if and only if there 
exists a partial temporal labeling for the set consisting of the critical vertices and critical reticulation 
vertices of N. 

Proof Evidently, if N has a temporal representation, then, by restricting the labeling of such a repre­
sentation to the critical vertices and critical reticulation vertices, we have a partial temporal labeling of 
these vertices. 

Now suppose that we have a partial temporal labeling Jc of the critical vertices and critical reticula­
tion vertices of N. By assigning values to the other vertices of N, we extend the relative ordering of the 
labeling of these vertices under f c to a temporal labeling of N. We do this in two steps; we first extend 
to all reticulation vertices and their parents, and then, second, extend to all remaining tree vertices. For 
convenience, we will assume that the labeling is over the non-negative rationals. No generality is lost 
here as it is the relative ordering that is important and not the actual values assigned to the vertices. 

If N is a hybridization network and (v, v1) is a hybridization arc in which v is critical, then it is 
possible that the other parent of v1, say v', is not critical. In this case, extend f c by assigning v' the 
same value as v and v1. Since v' is not critical, every hybridization vertex that is a descendant of v' is 
also a descendant of v1. It is now easily seen that this extension is a partial temporal labeling of N. 
Continuing in this way, we eventually assign appropriate values to all parents of critical hybridization 
vertices. 

Together with the assignment given in the last paragraph in the case· that N is a hybridization 
network, we now extend f c to all remaining reticulation vertices and their respective parents so that the 
resulting extension is a partial temporal labeling of N. We do this using induction on the number k of 
reticulation vertices not currently assigned a temporal label. If k = 0, then this extension is vacuous. Now 
suppose that we can extend f c to include an additional k - 1 reticulation vertices and their respective 
parents, where k 2':: 1. Let v1 be a reticulation vertex without a label, and suppose that the parent 
vertices of v1 are v and v'. Let ta denote the maximum value of a temporal label assigned to an ancestor 
of v1. If no ancestor of v1 has been assigned such a label, set ta = 0. Let td. denote the minimum value 
of a temporal label assigned to a descendant of v1. If no descendant of v1 has been assigned such a 
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label, set td = oo. Note that, since v1 is unlabeled, neither v nor v' is critical, and so every reticulation 
vertex that is a descendant of v or v' is a descendant of v1. Therefore, td is also the minimum value of 
a temporal label assigned to a descendant of either v or v'. Now ta < td; otherwise we contradict the 
induction assumption that we can extend f c to k - 1 additional reticulation vertices and their respective 
parents. It now follows that any rational in the interval (ta, td) can be assigned to v1, v, and v' to obtain 
an appropriate extension of fc to k reticulation vertices and their parents. Thus, by induction, fc can 
be extended to all such reticulation vertices and their parents. 

Now that all of the reticulation vertices and their parents are labeled appropriately, we next label 
the remaining tree vertices of N. We first partition the set of tree vertices (including the root) of N 
as follows. Let 01, 02, ... , Ck denote the maximal connected subgraphs of N whose vertex sets consist 
entirely of tree vertices. For all i, the subgraph Ci is a rooted tree as each vertex is a tree vertex. Without 
loss of generality, we may assume that C1, C2, ... , Ck is ordered so that i < j if and only if either the 
root of Ci is an ancestor of the root of Cj or neither the root of Ci nor the root of Cj is an ancestor of 
the other. Thus C1 contains the root of N. Beginning with the vertices in C1 and using this ordering, 
we can systematically label the remaining unlabeled tree vertices of N as follows. For each i, label the 
root with a rational bigger than that of any of its ancestors, but smaller than that of any descendant 
that is labeled and, for each of its leaves, label with a rational bigger than that of any currently labeled 
ancestor, but smaller than that of any descendant that is labeled. Now label the rest of the vertices of 
Ci appropriately. Note that Ci may contain a vertex v that has already been assigned a label; in which 
case vis a parent of a reticulation vertex. However, this is not problematic as it simply means that each 
ancestral vertex of v must be labeled with a rational smaller than the label assigned to v, and each 
descendant vertex of v must be labeled with a rational bigger than the label assigned to v. As Ci is a 
rooted tree, this is always possible. The resulting labeling is a temporal labeling of N. This completes 
the proof of the lemma. 

Remarks. 

1. We remarked prior to the formal description of ADDTAXA that a reticulation network N can always 
be made temporal by adding new taxa in a certain way. Indeed, because of Lemma 31, we can do 
this as follows. Suppose that ( v, v1) is a reticulation arc in N such that v is critical, and consider 
the reticulation network N' obtained from N by adjoining a new taxa x across (v,v1). Let (z,x) 
denote the adjoining arc. Since ( v, z) is not a reticulation arc, v is not critical in N'. Furthermore, 
z is not critical in N'. So N' has strictly less critical vertices than N. Continuing in this way, we 
eventually obtain a reticulation network with no critical vertices and thus, by Lemma 31, a network 
that is temporal. 

2. In the context of AnnTAXA, we can view an instance consisting of an HGT network N and k as an 
instance consisting of a hybridization network and k. To see this, let N' be the hybridization network 
that is obtained from N by adding a new taxa across the parent tree arc of each HGT event and 
viewing each such event as a hybridization event. Clearly, N is a temporal HGT network if and only 
if N' is a temporal hybridization network. Moreover, if N is not temporal, it is easily seen that the 
minimum number of new taxa to add to N so that the resulting HGT network is temporal is equal 
to the minimum number of new taxa to .add to N' so .that the resulting hybridization network is 
temporal. 

Because of the second remark, to show that AnDTAXA is NP-complete, it is sufficient to show that it is 
NP-complete when restricted to HGT networks. 

For an HGT network N, let CN denote the graph whose vertex set is the set of critical vertices of N 
and whose arc set is 

{(u, v): u < v1, where (v, v1) is an HGT arc in N}. 
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The graph CN is called the critical graph of N. As an example, the critical graph of the HGT network 
shown in Figure 2 is shown in the right of that figure. 

Lemma 32 Let N be an HGT network, and let ( v, v1) be an HGT arc of N such that v is a vertex of 
CN. Let N' be the HGT network obtained from N by adding a new taxa across ( v, v1). Then the graphs 
CN, and CN\v are equal. 

Proof First observe that, as vis not incident with an HGT arc in N', it is not critical. Moreover, the 
parent vertex, z say, of the new taxa in N' is also not critical since, except for the new taxa, z and v1 
have the same descendants. It now follows that the vertex sets of CN, and CN\v are equal. Furthermore, 
for all vertices u and w in C N', we have that ( u, w) is an arc in CN, if and only if it is an arc in C N \ v. 
Thus the graphs CN, and CN\v are equal. 

Proposition 33 Let N be an HGT network. Then N has a temporal representation if and only if CN 
is acyclic. 

Proof First suppose that CN is acyclic. To show that N has a temporal representation, it suffices to 
show by Lemma 31 that there is partial temporal labeling Jc of the critical vertices and critical HGT 
vertices of N. We define such a labeling as follows. It is well-known and easily proved that, as CN is 
acyclic, it has a vertex v with indegree zero. Let ( v, v1) be the HGT arc incident with v in N. Since v 
has indegree zero, no vertex in CN is an ancestor of v or v1 in N. Set fc(v) = fc(v1) = 1. Now delete 
v in CN and consider the resulting graph. Since this graph is acyclic, it has a vertex of indegree zero. 
Repeat the above process for this vertex, but assign it and its child HGT vertex value 2 under fc, By 
deleting this vertex and continuing in this way, we eventually assign all critical vertices and critical HGT 
vertices of Na value under Jc, Moreover, fc is a partial temporal labeling of the critical vertices and 
critical HGT vertices of N and so, by Lemma 31, N has a temporal representation. 

Now suppose that C N has a directed cycle vo, v1, ... , Vm-1, vo. For all i, let Vil denote the child 
HGT vertex of Vi in N. Then, for all i modulo m, there is a directed path from Vi-1 to Vil containing 
at least one tree arc. It follows that N has no temporal representation. This completes the proof of the 
proposition. 

Corollary 34 Let N be an HGT network, and let Ve be a subset of the vertex set of CN, Then the 
HGT network obtained from N by adding, for each v E Ve, a new taxa across the HGT arc incident with 
v has a temporal representation if and only if C N \ Ve is acyclic. 

Proof Combining Lemma 32 and Proposition 33 gives the desired result. 

We next show that AnnTAXA is NP-complete. The NP-complete problem that we use for the 
polynomial-time reduction is FEEDBACKVERTEXSET [11]: 

Problem: FEEDBACKVERTEXSET(G, m) 
Instance: Directed graph G = (V, E) and a positive integer rn:::; IVI· 
Question: Is there a subset V' ~ V with IV'I :::; m such that G\ V' is acyclic? 

Observe that if N is an HGT network, then, by Corollary 34, the answer to AnnTAXA(N, k) is yes 
if and only if the answer to FEEDBACKVERTEXSET(CN, k) is yes. It is this observation that is exploited 
in the proof of the next theorem. 
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Fig. 4 The base case for the proof of Theorem 35. 

Theorem 35 The decision problem ADDTAXA is NP-complete. 

Proof Baroni et al. [2] showed that, given a reticulation network, there is a polynomial-time algorithm 
for deciding if this network has a temporal representation. Therefore, ADDTAXA is in NP. To show that 
it is NP-complete, recall from the the second remark following Lemma 31 that it suffices to show that 
ADDTAXA is NP-complete when restricted to HGT networks. Furthermore, by the observation prior to 
the statement of the theorem, it sufficient to show that, given an instance G of FEEDBACKVERTEXSET, 
we can construct in polynomial time an HGT network N whose size is polynomial in the size of G and 
for which CN and G are the same. The proof that such an HGT network always exists is by induction 
on the number k of arcs of G. 

If k = 0, then G consists of isolated vertices, u1,u2, ... ,unsay, and the HGT network shown in 
Figure 4 has the desired properties. Now assume that, if an instance of FEEDBACKVERTEXSET has k-1 
arcs, where k 2". 1, then there is an HGT network with the desired properties. 

Let G' denote the directed graph obtained from G by deleting an arbitrary arc (u, v). By the induction 
assumption, there is an HGT network N' that can be constructed in polynomial time and is polynomial 
in the size of G', and has the property that CN, and G' are the same. A generic picture of N' is shown 
in Figure 5. Referring to this figure, u1 and v1 are the child HGT vertices of u and v, respectively. Note 
that u is not an ancestor of v1 since ( u, v) is not an arc in G'. We complete the proof by modifying N' 
to obtain an HGT network N such that CN and Gare the same. 

Let N denote the HGT network shown in Figure 6, wh~re the part of the network enclosed by the 
solid triangle is the same as that shown in Figure 5 except that vertices u, ui, v, and v1 have been 
renamed as y, Yl, z, and z1, respectively. In addition to the placement of u, u1, v, and vi, the rest of 
N is obtained by adding non-critical HGT events. For clarity, each of these non-critical HGT events is 
indicated by a dashed line. Each dashed line represents a 2-arc directed path (with the middle vertex 
omitted) and the attachment of a new taxa (also omitted) adjoined to the middle vertex on the path. 
Observe that each middle vertex is non-critical in N. If ( v, u) is not an arc in G, then the dashed line ew 
is not included in the construction. Clearly the construction of N from N' takes polynomial time and 
so, by the induction assumption the construction of N from G also takes polynomial time. Moreover, 

:. .<·.·-·=·~ :,- . 
,· 
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Fig. 5 The HGT network N' in the proof of Theorem 35. Note that u is not an ancestor of vi, however, v is an 
ancestor of u1 if (v, u) is an arc in G'. 

ew-----

Fig. 6 The HGT network N constructed from N' in the proof of Theorem 35. 

the size of N is polynomial in the size of N' and so, again by the induction assumption, the size of N is 
polynomial in the size of G. In particular, at each step of the induction process, the number of additional 
arcs and vertices is constant. 

Because of the way in which N is constructed from N' and noting that neither y nor z is critical 
in N, the set of critical vertices of N is exactly the same as the set of critical vertices of N'. Thus the 
vertex sets of CN and Gare the same. Furthermore, by construction, if w and x are vertices of N and 
{w, x} n {u, v} = 0, then (w, x) is an arc in CN precisely if (w, x) is an arc in G. Thus to show that CN 
and G are the same, it remains to check, for each j E { u, v}, that ( w, j) is an arc in C N precisely if ( w, j) 
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is an arc in G and that (j, w) is an arc in C1v precisely if (j, w) is an arc in G. First observe that because 
of the path indicated by eh, we have (u, v) in C1v, Furthermore, if (v, u) is in G, then the 2-arc directed 
path of N indicated by ew means that ( v, u) is in C N. By symmetry, it is now sufficient to complete the 
check for when j = v. 

Since any ancestor of v in N' remains an ancestor of v1 in N and any ancestor of v1 in N' remains 
an ancestor of v1 in N because of the paths indicated by ea and eb, respectively, it follows by the 
induction assumption that (w, v) is an arc in C1v precisely if (w, v) is an arc in G. Furthermore, since 
any descendant of v in N' remains a descendant of v in N because of the path indicated by e f, it follows 
by the induction assumption that (v,w) is an arc in C1v precisely if (v,w) is an arc in G. It now follows 
that the two graphs C1v and Gare equal. This completes the proof of the theorem. 

We end this section with a brief discussion on solving ADDTAXA in reasonable time despite its NP­
completeness. For an HGT network N, the NP-completeness proof provided an algorithm for solving 
ADDTAXA(N,k). In particular, construct the critical graph ofN and use an exact algorithm for FEED­
BACKVERTEXSET(C1v, k). For hybridization networks, we can use the same approach as the analogous 
results for HGT networks also hold in this setting if we define the critical graph of a hybridization net­
work N, again denoted by C1v, as follows. The vertex set of C1v is the set of critical vertices of N and 
the arc set of C N is 

{(u, v) : u < v1, where (v, v1) is a hybridization arc in N}. 

With this definition of the critical graph for hybridization networks, it is straightforward to check that 
Lemma 32 and Proposition 33 hold for hybridization networks. For the analogous proof of Proposition 33, 
note that, in the context of hybridization networks, if v1 is a hybridization vertex with parents v and 
v', and both v and v' are in the critical graph, then (u,v) is an arc in C1v if and only if (u,v') is an 
arc in C1v, Thus v and v' can be labeled appropriately, similar to the procedure described in the first 
part of the proof of this proposition for labeling an HGT network. Since Lemma 32 and Proposition 33 
hold for hybridization networks, Corollary 34 holds for hybridization networks. Hence, one can also solve 
ADDTAXA(N, k) for when N is a hybridization network by constructing C1v and using an exact algorithm 
for FEEDBACKVERTEXSET(C1v, k). 

It is shown in [5] that FEEDBACKVERTEXSET for directed graphs is fixed-parameter tractable. The 
authors provide an algorithm which solves FEEDBACKVERTEXSET(G,k) in 0(4kk!nO(l)) where n is the 
number of vertices in G. Thus if k is relatively small, this algorithm will work reasonably quickly in 
practice regardless of the size of G. 

For a reticulation network N, the size of C1v is determined by the number of critical vertices of N. 
This number is less than the number of reticulation vertices and we would expect this latter number to 
be much less than the size of N. Consequently, k may typically be relatively small and so the algorithm 
in [5] should work well in helping to find the solution for many instances of ADDTAXA(N, k). 

4 Constructing temporal hybridization 'networks for two trees 

In the previous section, we determined the smallest number of taxa that must be added to a reticulation 
network so that the resulting network is temporal. However, for many evolutionary studies, we are 
initially given a set of gene trees rather than a reticulation network. In such a case, in particular, when 
there are no unsampled taxa, it is of importance to decide whether a temporal reticulation network 
exists that simultaneously explains the evolutionary histories of the gene trees under consideration. An 
example showing that the existence of such a network is not guaranteed is given after some preliminaries. 



a b c d e 

T 
a d e 

T(Y) 
a d e 

TIY 

Fig. 7 A rooted binary phylogenetic X-tree 'T, and the two subtrees 'T(Y) and TIY with Y = { a, d, e }. 
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In this section, we analyze the construction of temporal hybridization networks from so-called agree­
ment forests-such forests are frequently used to model reticulate evolution for when two rooted binary 
phylogenetic trees are given, see for example [1, 4, 9]. Our analysis centers around a new algorithm called 
TEMPORALHYBRID which reconstructs a temporal hybridization network of two rooted binary phyloge­
netic trees if one exists. Two applications of the algorithm are given at the end of this section. Throughout 
this section, we restrict our attention to hybridization networks. 

4.1 The hybridization number 

Before detailing TEMPORALHYBRID, we need some additional definitions. 

Hybrid phylogenies and the hybridization number. A rooted binary phylogenetic X-tree T is a 
rooted tree whose root has degree two and all other internal vertices have degree three, and whose leaf 
set is X. The set Xis called the label set of T and is denoted by .C('T). For a subset A of X, the minimal 
rooted subtree of T that connects all the elements in A is denoted by T(A). Furthermore, the restriction 
of T to A, denoted by TIA, is the rooted phylogenetic tree obtained from T(A) by contracting every 
vertex of degree two apart from the root. An example of both types of subtrees is shown in Figure 7. 

Let T be a rooted binary phylogenetic X' -tree, and let N be a hybridization network with label set 
X, where X' <:;;: X. We say that N displays T if all of the ancestral relationships described in T are 
preserved by N. Formally, N displays T if T can be obtained from N by deleting a subset of arcs and 
vertices of N, and contracting any resulting degree-2 vertices apart from the root. 

A fundamental problem for biologists studying a set of present-day species whose evolutionary history 
includes hybridization is to determine the extent to which hybridization has influenced their past. For two 
rooted binary phylogenetic X-trees T and T', a common way to quantify this extent is by determining 
the value 

h(T, T') = min{h(N) : N is a hybridization network on X that displays T and T'}, 

where h(N) is the number of hybridization vertices of N. However, Bordewich and Semple [4] showed 
that this determination is an NP-hard problem. 

We next give an example of two trees which cannot be displayed in a temporal hybridization network. 
Consider the two rooted binary phylogenetic X-trees T and T' shown at the top of Figure 8. It is easily 
seen that every hybridization network that displays T and T' has at least two reticulation vertices. 
There are exactly nine hybridization networks on X, each with two hybridization vertices, displaying T 
and T'. These networks are shown in the bottom part of Figure 8. None of these networks is temporal. 
Moreover, a straightforward check shows that any hybridization network that displays T and T' with 
more than two hybridization vertices is not temporal either. Thus, there is no temporal hybridization 
network on X that displays T and T'. 
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Fig. 8 Two rooted binary phylogenetic X-trees T and T', and all nine hybridization networks on X displaying 
both trees with two hybridization vertices. None of the hybridization networks is temporal. 

Agreement Forests. The approach taken by TEMPORALHYBRID (see Section 4.2) is based on the 
following characterization. Loosely speaking, for two rooted binary phylogenetic X-trees T and T', this 
characterization equates h(T, T') with the smallest size of a so-called acyclic-agreement forest for T and 
T'. We next introduce agreement forests and make this characterization precise. 

Let T and T' be two rooted binary phylogenetic X-trees. For the upcoming definitions, we regard 
the roots of both T and T' as an extra vertex p adjoined to the original root by an additional edge and 
.C(T) = .C(T') = XU {p }. An agreement forest for T and T' is a collection :F = { Sp, S1, S2, ... , Sk} 
of rooted leaf-labeled trees, where Sp is a rooted tree whose label set .Cp contains p and Si, S2, ... , Sk 
are rooted binary phylogenetic trees with label sets .C1, .C2, ... , .Ck, respectively, such that the following 
properties hold: 

(i) The label sets .Cp, .Ci, .C2, ... , .Ck partition XU {p }. 
(ii) For all i E {p, 1, 2, ... , k}, Si~ Tl.Ci and Si~ T'I.Ci. 
(iii) The trees in {T(.Ci) : i E {p, 1, 2, ... , k}} and {T' (.Ci) : i E {p, 1, 2, ... , k}} are vertex-disjoint 

rooted subtrees of T and T', respectively. 

We sometimes refer to the component Sp of :Fas the root component of :F. To illustrate, consider the 
two trees T and T' in Figure 8. Viewing the root of each of T and T' as an extra vertex p adjoined to 
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the original root as described above, the restrictions of T (and T') to the label sets {p, a, d}, {b }, and 
{ c}, respectively, are the components of an agreement forest of T and T'. 

To make the connection between hybridization networks and agreement forests, we need to extend 
the definition of an agreement forest. This extension allows for the biological constraint that species 
cannot inherit genetic material from their own descendants. Let G:,: be the directed graph whose vertex 
set is :F and for which (Si, Sj) is an arc precisely if i f j and 

(I) the root of T(.Ci) is an ancestor of the root of T(.Cj) or 
(II) the root of T' (.Ci) is an ancestor of the root of T' ( Lj). 

We say that :F is acyclic precisely if G:,: is acyclic. If :F is acyclic and it has the smallest number of 
components amongst all such forests of T and T', then :F is a maximum-acyclic-agreement forest of T 
and T', in which case we denote !:Fl - 1 by ma(T, T'). 

The minimum number h(T, T') of hybridization events and the size of a maximum-acyclic-agreement 
forest of T and T' are related through the following theorem [1). 

Theorem 41 Let T and T' be two rooted binary phylogenetic X -trees. Then 

h(T, T') = ma(T, T'). 

For an acyclic-agreement forest :F, a tuple ('.) = ( Sp, Si, S2, ... , Sk) is an ordering of the components 
of :F if, for each i, the vertex Si has indegree O in the graph obtained from G:,: by deleting the vertices 
Sp, S 1, S2, ... , Si-1 and their incident arcs. Since :F is acyclic, such an ordering always exists. 

Although not explicitly stated in [1), one direction of Theorem 41 is essentially established by proving 
that, if N is a hybridization network on X that displays T and T', then there is an acyclic-agreement 
forest :F for T and T' such that !:Fl ::::; h(N) + 1. Intuitively, one takes N and iteratively cuts off rooted 
subtrees by deleting hybridization vertices and their three incident arcs. By viewing the root of N as a 
vertex at the end of a pendant arc adjoined to the original root, we obtain an acyclic-agreement forest :F 
ofT and T', and so l:Fl-1::::; h(N). Now, ifwe extend their argument and suppose thatN is temporal, 
then we can obtain an acyclic-agreement forest for T and T' as follows. First, select a vertex v that 
either (i) is a hybridization vertex and, except for v itself, its parents have no hybridization vertex as 
a descendant or (ii) is a tree vertex whose parent is a tree vertex that has no hybridization vertex as a 
descendant. Now delete v and its three incident arcs if v is a hybridization vertex or delete the parent 
arc of v if v is a tree vertex, and contract any non-root degree-2 vertex. Repeating this process so that 
every hybridization vertex is selected, and then reversing the order of the selections, we eventually obtain 
an ordering of an acyclic-agreement forest for T and T'. Given an ordering ('.) of an arbitrary acyclic­
agreement forest :F of two rooted binary phylogenetic X-trees, we say that a temporal hybridization 
network N preserves O if ('.) can be obtained from N in the above way. 

4.2 The algorithm TEMPORALHYBRID 

In this section, we present the algorithm TEMPORALHYBRID. This algorithm takes two rooted binary 
phylogenetic X-trees T and T', and an ordering ('.) of an acyclic-agreement forest :F of T and T' as 
input, and outputs either 
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(i) a temporal hybridization network on X that displays T and T', and preserves 0, or 
(ii) a statement indicating that there is no such network. 

Baroni et al. [2], have previously presented a similar algorithm. Called HYBRIDPHYLOGENY, this algo­
rithm has the same input as TEMPORALHYBRID but without an ordering O of F. The task for HYBRID­
PHYLOGENY is simply to construct one of potentially many hybridization networks that display T and 
T'. However, in doing so, there is no guarantee that the resulting network is temporal. The correctness 
of TEMPORALHYBRID is established after some remarks following the description of the algorithm. 

Algorithm: TEMPORALHYBRID(T, T 1
, 0) 

Input: Two rooted binary phylogenetic X-trees T and T', and an ordering O = (Sp, S1, S2, ... , Sk) of 
an acyclic-agreement forest F for T and T'. 
Output: A temporal hybridization network on X with at most k hybridization vertices that displays T 
and T' and preserves 0, or a statement indicating that there is no such network. 

1. For each i E {1, ... , k}, regard Pi as the label of an extra vertex adjoined to the original root of Si 
by an additional edge. 

2. Set No= Sp, and set i = 1. 
3. Attach Si to Ni-1 via at most two new arcs. Each new arc joins the vertex labeled Pi to a new vertex 

which subdivides an arc of N;_ 1. The subdivided arcs e and e1 are chosen so that 
(i) the resulting network displays TJ(.C(Ni-1) U.C(Si)) and T'J(.C(Ni-1) U.C(Si)), where .C(Ni-1) = 

.C(Sp) U .C(S1) U · · · U .C(Si-1), and 
(ii) no element of {Pl, P2, ... , Pi-1} is a descendant of either e or e1 and, if e =I- e', then e and e' are 

not on the same path from the root of Ni-1 to one of its leaves. 
Set M to be the resulting network. If there is no such attachment for Si, then stop and return there 
is no temporal hybridization network on X that displays T and T', and preserves 0. 

4. If i = k, remove the arc incident with the vertex labeled p and remove all labels in {p, Pl, P2, ... , Pk} 
from Nk, contract any resulting degree-0 and degree-2 vertices apart from the root, and return the 
obtained network. If i < k, increment i by 1 and return to Step 3. 

Remarks. 

1. If No consists of an isolated vertex labeled p, a slight complication arises in Step 3 of the algorithm 
since no arc can be subdivided by a new vertex. In this case, S1 is adjoined to No by adding precisely 
one new arc that joins the vertex labeled Pl with the vertex labeled p. 

2. For all Si E F, the algorithm TEMPORALHYBRID potentially checks each arc of M-1 to decide 
whether Si can be appropriately attached to Ni-1 · Thus, the running time of the algorithm is at 
most O(kn), where n = JXJ. 

3. If F is a maximum-acyclic-agreement forest, then the attachment of a new component Si to M-1 
always requires two new arcs in Step 3 of the algorithm; otherwise, F is not optimal. 

4. If TEMPORALHYBRID returns a temporal hybridization network, then this is the unique such network 
on X that displays T and T', and preserves O (see Theorem 42). 

We next prove the correctness of TEMPORALHYBRID. In.doing this, we additionally show that if the 
algorithm returns a hybridization network, then this network is unique relative to the ordering of 0. 

Theorem 42 Let T and T' be two rooted binary phylogenetic X -trees, and let O be an ordering of an 
acyclic-agreement forest F for T and T' with JFJ - 1 = k. Then 

(i) TEMPORALHYBRID returns a temporal hybridization network N that displays T and T' with h(N) ::;: k 
and that preserves O if there exists such a network, or 
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(ii) TEMPORALHYBRID returns a statement indicating that there is no such network. 

l'~t 
Moreover, if TEMPORALHYBRID returns a temporal hybridization network, then, up to isomorphism, this 
is the unique network with the properties in (i). 

Proof Without loss of generality, let O = (Sp, S1, S2, ... , Sk)· The proof is by induction on k. If k = 0, 
then Sp ~ T ~ T' and the theorem trivially holds. Now assume that k > 0 and that the theorem 
holds for all orderings of all acyclic-agreement forests with at most k components of two rooted binary 
phylogenetic trees. Let 'Ii be the rooted binary phylogenetic tree Tl(X - .C(Sk)), and let T{ be the 
rooted binary phylogenetic tree T'\(X -.C(Sk)). Since Skis the last coordinate in 0, the trees 'Ii and T{ 
can also be obtained from T and T 1

, respectively, by deleting a single edge and contracting the resulting 
degree-2 vertex. Let F1 = F-{Sk}· As O is an ordering of F, it follows that 01 = (Sp, S1, S2, ... , Sk-1) 
is an ordering of F1. Now observe that the workings of TEMPORALHYBRID applied to ('Ii, T{, 01) and 
applied to (T, T', 0) up to considering Skare identical. This observation is used in the rest of the proof. 

Since I01I < JOI, it follows by the induction assumption that TEMPORALHYBRID('Ii, T{, 01) either 
returns, up to isomorphism, a unique temporal hybridization network, Nk-1 say, that displays 'Ii and 
T{, and preserves 01 or returns a statement indicating that there is no such network. First suppose 
that TEMPORALHYBRID('Ii, T{, 01) returns the latter. If there is a temporal hybridization network that 
displays T and T', and preserves 0, let v be the vertex of N that corresponds to the root of Sk, Then by 
deleting v and its incident arcs or the parent arc of v, depending on whether vis a hybridization vertex or 
a tree vertex, respectively, and contracting any resulting degree-2 vertices apart from the root, we have 
a temporal hybridization network that displays T1 and T{, and preserves 01; a contradiction. Thus, if 
TEMPORALHYBRID(T, T', 0) returns a statement that there is no such network prior to considering Sk, 
then it returns correctly. Therefore, we may suppose that TEMPORALHYBRID('Ii, T{, 01) returns Nk-1· 
By the observation at the end of the last paragraph, this means that Nk-1 is constructed immediately 
prior to considering Skin TEMPORALHYBRID(T, T 1

, 0). 

If TEMPORALHYBRrn(T, T', 0) returns a statement indicating that there is no appropriate network, 
then, because of the uniqueness of Nk-1 and the fact that (i) and (ii) in Step 3 of the algorithm are 
necessary conditions for the placement of Sk, the algorithm performs correctly. On the other hand, if 
TEMPORALHYBRID(T, T', 0) returns a network N, it follows by (i) and (ii) in Step 3 that N displays T 
and T', and N is temporal and preserves O. Furthermore, let e and e1 denote the arcs of Nk- l that are 
subdivided in the attachment of Sk· By (ii) in Step 3, no hybridization vertex is a descendant of either 
e or e1

, so the choice of e and e1 is unique. By the uniqueness of Nk-1, it follows that N is the unique 
temporal hybridization network that displays T and T 1

, and preserves O. Note that this argument also 
holds if e = e1 in which case Sk is attached by a single arc. This completes the proof of the theorem. 

We saw earlier that, for two rooted binary phylogenetic X-trees, there may not exist a temporal 
hybridization network on X that displays both trees. In general, how does one decide such an outcome 
for two rooted binary phylogenetic X-trees T and T'? Of course, by con~idering all orderings of all 
acyclic-agreement forests for T and T', we can repeatedly use TEMPORALHYBRID to decide whether or 
not such a hybridization network exists. While still exponential in time, we can do much better than 
this as shown by the next proposition. 

For two rooted binary phylogenetic X-trees T and T', an acyclic-agreement forest F = 
{Sp,S1, ... ,Sk} of T and T' is trivial if \.C(Sp)\ = 3 and each of S1, .. ,,Sk consists of an isolated 
vertex. Provided Sp is the first coordinate, any (k + 1)-tuple of Fis an ordering of F. The next propo­
sition shows that it is sufficient to consider each such ordering of F to decide whether or not there exists 
a temporal hybridization network that displays T and T'. 
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Proposition 43 Let T and T' be two rooted binary phylogenetic X-trees, and let JXJ = n. Deciding 
whether there is a temporal hybridization network on X that displays T and T' takes at most time 
O(n! · p(a)), where p(a) is the polynomial running time of the algorithm TEMPORALHYBRID. 

Proof Suppose there is a temporal hybridization network N on X that displays T and T'. Let X = 
{a1, a2, ... , an}, We next construct an ordering of a trivial forest of T and T', that is preserved by N. 
Select an element of X so that its parent is a tree vertex and does not have a hybridization vertex as 
a descendant. If this is not possible, then, as N is acyclic, there exists a hybridization vertex whose 
child is an element of X and whose parents have no hybridization vertex as a descendant. Without 
loss of generality, we may assume that the selected element is an. If the parent of an is a tree vertex, 
then delete the parent arc of an and contract the resulting degree-2 vertex. Since the parent of an 
has no hybridization vertex as a descendant, the resulting network is again a hybridization network. If 
the parent of an is a hybridization vertex, then delete the parent vertex of an and its three incident 
arcs, and contract the resulting degree-2 vertices. By property (iv) in the definition of a reticulation 
network, it is easily checked that the arcs incident with the contracted degree-2 vertices are tree arcs, 
and thus, the resulting network is again a hybridization network. Furthermore, in both cases, the resulting 
hybridization network is temporal as N is temporal. Selecting another vertex and continuing in this way, 
we eventually select (in order) the vertices an, an-1, ... , a3 say. This gives a trivial forest :F of T and 
T', where the label set of the root component is {p, a1, a2} and the remaining components consist of 
isolated vertices labeled a3, a4, ... , an, Furthermore, the tuple beginning with the root component and 
followed (in order) by the components whose label sets are {a3}, {a4}, ... , {an} is an ordering('.) of :F 
and, by construction, N preserves('.). Now, by Theorem 42, calling TEMPORALHYBRrn(T, T', CJ) returns 
N. Thus to decide whether or not there is a temporal hybridization network on X that displays T and 
T', it suffices to consider all possible acyclic-agreement forests of T and T' that are trivial. Since there 
are G) · (n - 2)! = !n! such forests, the proposition now follows. 

While the above approach is not fast because of the number of orderings to consider, we can do much 
better in practice if we restrict our attention to maximum-acyclic-agreement forests. We do this in the 
next section. 

4.3 Minimal temporal hybridization networks 

To provide an indication of the significance of hybridization, biologists are often interested in reconstruct­
ing (temporal) hybridization networks that explain the ancestral history of the species under considera­
tion and simultaneously minimize the number of hybridization events. This minimum number provides 
a lower bound on the number of such events, thus it gives an indication of the role that hybridization 
has had on the evolution of the present-day species. In this section, we consider an approach to this task 
with the view of constructing hybridization networks that are temporal. 

Let T and T' be two rooted phylogenetic X-trees. A (temporal) hybridization network N that 
displays T and T' is minimal if h(N) = ma(T, T'). Since we are using a combinatorial framework 
to calculate the number of hybridization events, it is likely that there exist several maximum-acyclic­
agreement forests for T and T'. For example, for the grass (Poaceae) data set that has been analyzed 
in [3], the associated gene loci for 12 gene tree pairs, the minimum number of hybridization events, and 
the number of maximum-acyclic-agreement forests are given in Table 1. This data set was originally 
provided by [8] and contains DNA sequences for the six genetic loci ndhF, phyB, rbcL, rpoC2, waxy, and 
ITS. For each locus, up to 65 taxa were sequenced and a maximum likelihood gene tree was reconstructed 
(for details, see [3) and references therein). 
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Table 1 Results for the Poaceae data set. 

Pairwise combination Hybridization # MAAFsa #MAAFs with a 
number h(T, T') proper root 

component 
ndhF phyB 14 2268 0 
ndhF rbcL 13 48 0 
ndhF rpo02 12 27 0 
ndhF waxy g 396 18 
phyB rbcL 4 4 4 
phyB rpo02 7 1 0 
phyB waxy 3 6 6 
phyB ITS 8 g g 
rbcL rpo02 13 g 0 
rbcL waxy 7 35 0 

rpo02 waxy 1 1 1 
waxy ITS 8 18 0 

a Abbreviation for maximum-acyclic-agreement forests. 

A natural way to decide whether there exists a minimal temporal hybridization network for two rooted 
binary phylogenetic X-trees T and T 1 is to apply TEMPORALHYBRID to all orderings of each maximum­
acyclic-agreement forest for T and T 1

• However, since the number of maximum-acyclic-agreement forests 
can still be quite large (see Table 1), we next establish a quick test that significantly reduces the number 
of such forests that one needs to consider. 

To describe the test, we need one further definition. Let :F be an acyclic-agreement forest for two 
rooted binary phylogenetic X-trees T and 7 1

, and let Sp be the root component of :F. If the roots of 
T(£p - {p}) and T' (£p - {p}) coincide with the original roots of T and T 1

, respectively, Sp is said to 
be proper. 

Proposition 44 Let T and T' be two rooted binary phylogenetic X-trees, and let :F be a maximum­
acyclic-agreement forest of T and T' with root component Sp, Let O be an ordering of :F. If Sp is not 
proper, then TEMPORALHYBRID applied to (T, T', 0) returns a statement indicating that there is no 
temporal hybridization network on X that displays T and T', and preserves O. In particular, there is no 
minimal temporal hybridization network on X that displays T and T', and preserves O. 

Proof Suppose that Sp is not proper, and consider TEMPORALHYBRID applied to (T, T 1
, 0). If this ap­

plication returns a hybridization network N, then, as :Fis maximum, N has exactly l:FI -1 hybridization 
vertices and so, at each iteration i, two (distinct) new arcs are used to adjoin Si to Ni-1· Now, at some 
iteration i, the component Si gets adjoined to Ni-1 via an arc that is incident with a new vertex that 
subdivides the arc ending in the vertex labeled p. But this mean that wherever the second new arc is 
placed to adjoin Si to Ni-1 we contradict (ii) in Step 3. Thus, by Theorem 42, there is no temporal 
hybridization network on X that displays T and T 1

, and preserves O. The proposition now follows. 

By checking which maximum-acyclic-agreement forests for a given pair of gene trees have a proper 
root component, the number of such forests that can yield a minimal temporal hybridization network 
can be reduced significantly. For example, in reference to Table 1, the highest number of maximum­
acyclic-agreement forests for a pair of trees is 2268. However, as shown in the last column, none of these 
forests has a proper root component. Hence, for the first pair of gene trees (ndhF and phyB) in this 
table, there is no minimal temporal hybridization network that displays the two trees. Moreover, for 
the 12 analyzed gene tree pairs of the grass data set, at most 18 maximum-acyclic-agreement forests 
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need to be checked in order to determine whether any associated ordering leads to a minimal temporal 
hybridization network for the gene trees under consideration. In general, we can check in time O(rkl · 
p( a)) if a minimal temporal hybridization network exists, where r is the number of maximum-acyclic­
agreement forests (with a proper root component) for a pair of trees, each such forest consists of k + 1 
components, and p(a) is the polynomial running time of the algorithm TEMPORALHYBRID. Note that kl 
is an upper bound on the number of orderings that are associated with a maximum-acyclic-agreement 
forest containing k+ 1 components. Furthermore, we are assuming here that we have the list of maximum­
acyclic-agreement forests with a proper root component. Such a list can be found by using the recently 
implemented extended version (unpublished) of the fixed-parameter algorithm HYBRIDINTERLEAVE [6, 
7]. Despite the theoretical exponential time of calculating this list, the practical running times presented 
in [7] essentially show that computing maximum-acyclic-agreement forests is remarkably quick for many 
biological instances. 

5 Summary 

In the first part of this paper, we showed that ADDTAXA-the decision problem associated with deter­
mining the minimum number of taxa to add to a reticulation network so that the resulting network has 
a temporal representation-is an NP-complete problem. However, in establishing the result, this deter­
mination comes down to finding the minimum number of vertices to delete so that the associated critical 
graph is acyclic. In practice, we expect this graph to be relatively small for many biological instances 
and thus even brute-force algorithms might be feasible. 

In the second part of this paper, we presented the polynomial-time algorithm TEMPORALHYBRID. 
This algorithm takes as input two rooted binary phylogenetic X-trees T and T' and an ordering O of an 
associated acyclic-agreement forest, and outputs a temporal hybridization network that displays T and 
T' and preserves 0, or the statement that no such network exists. As many biological studies consider 
the reconstruction of minimal hybridization networks to provide an indication of the significance of 
hybridization in evolution, we focused our attention to the potentially exponential-time task of finding a 
temporal hybridization network whose number of hybridization vertices is minimized in the last section. 
By using a simple and quick check prior to the application of TEMPORALHYBRID, we showed that­
applied to a grass data set-the number of maximum-acyclic-agreement forests that need to be considered 
for finding a minimal temporal hybridization network is significantly reduced and that most inferred 
minimal hybridization networks are not temporal. 
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