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QUARTET COMPATIBILITY AND THE QUARTET GRAPH 

STEFAN GRUNEWALD, PETER J. HUMPHRIES, AND CHARLES SEMPLE 

ABSTRACT. A collection P of leaf-labelled trees is compatible if there exists 
a single leaf-labelled tree that displays each of the trees in P. Despite its 
difficulty, determining the compatibility of P is a fundamental task in evolu­
tionary biology. Attractive characterizations in terms of chordal graphs have 
been previously given for this problem as well as for the problems of (i) de­
termining if there is a unique tree that displays each of the trees in P, that is 
'P is definitive and (ii) determining if there is a tree that displays P and has 
the property that every other tree that displays P is a refinement of it, that is 
'P identifies a leaf-labelled tree. In this paper, we describe new characteriza­
tions of each of these problems in terms of edge colourings. Furthermore, for 
an arbitrary leaf-labelled tree 'T, we also determine the minimum number of 
'quartets' required to identify 'T, thus correcting a previously published result. 

1. INTRODUCTION 

A phylogenetic tree T on X is an unrooted tree in which every interior vertex 
has degree at least three and whose leaf set is X. In addition, if all of the interior 
vertices of T have degree three, then T is binary. We call X the label set of T. A 
quartet is a binary phylogenetic tree whose label set has size 4. To illustrate, both 
trees in Fig. 1 are phylogenetic trees with the tree on the right being a quartet. 

Let T and T' be two phylogenetic trees. We say that T' displays T if the label 
set X of T is a subset of the label set X' of T' and the minimal subtree of T' 
connecting the elements in X is a refinement of T, that is T can be obtained 
from this subtree by contracting edges. For example, in Fig. 1, the phylogenetic 
tree on the left displays the phylogenetic tree on the right. If P is a collection of 
phylogenetic trees, then T' displays P if T' displays each of the trees in P, in which 
case P is said to be compatible. Furthermore, if T' is the only such tree (and the 
union of the label sets of the trees in P is X'), then Pis said to be definitive. 

Phylogenetic trees are used in computational biology to represent the evolution­
ary relationships of a set X of extant species. One fundamental way in which such 
trees are inferred is by amalgamating a collection P of smaller phylogenetic trees 
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FIGURE 1. Two phylogenetic trees. 

on overlapping subsets of X into a single parent tree. In this context, two natural 
mathematical problems arise: 

(i) Is P compatible and, if so, 
(ii) is P definitive? 

It is well known that every phylogenetic tree is determined by a collection of quartets 
(see, for example, [8]) and so, in the context of these problems, no generality is loss 
by viewing P as a collection of quartets. We will follow this viewpoint throughout 
the paper. 

The first problem is NP-complete (1, 9), while the complexity of the second 
problem remains open. A variation (and weakening) of (ii) is the following problem: 

(iii) If P is compatible, is there a tree T that displays P and has the property 
that every tree that displays P is a refinement of it? 

If in (iii) there is such a tree T, then we say that P identifies T. Characterizations 
of each of these problems have been previously given in terms of chordal graphs 
(3, 4, 6, 7, 9]. 

In this paper, we introduce the 'quartet graph' and show that these problems can 
also be characterized in terms of edge colourings via this graph. One of the main 
motivations for this paper is that it is hoped that the quartet graph may provide 
new insights not only on the openness of (ii) but also on other quartet problems in 
phylogenetics. In addition to these characterizations, we also determine, for a given 
phylogenetic tree T, the size of a minimum-sized set of quartets that identifies T. 
This corrects a previously published result. 

The paper is organized as follows. In the rest of this section, we formally state 
the main results of this paper. For completeness, Section 2 contains the chordal 
graph characterizations of problems (i)-(iii). Section 3 contains the proofs of the 
characterizations of (i)-(iii) in terms of the quartet graph. The proof of the com­
patibility characterization is algorithmic and thus provides a phylogenetic tree that 
displays the original collection of quartets if this collection is compatible. Section 4 
contains the proof of the minimum number of quartets needed to identify a given 

·- ·~ . 
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FIGURE 2. The quartet graph of {abice, cdjbf, efiad}. 

phylogenetic tree. Throughout the paper, X will always denote a finite set, and 
notation and terminology follows [8]. 

Let q be a quartet with label set { a, b, c, d}. If the path from a to b does not 
intersect the path from c to d, then we denote q by abjcd or, equivalently, cdjab. The 
label set of a collection Q of quartets is the union of the label sets of the quartets in 
Q. For a collection Q of quartets with label set X, we define the quartet graph of 
Q, denoted GQ, as follows. The vertex set of GQ is the set of singletons of X and, 
for each q = ablcd E Q, there is an edge joining {a} and {b}, and an edge joining 
{ c} and { d} each of which is labelled q. Apart from these edges, GQ has no other 
edges. As an example, consider the set 

Q = { ablce, cdlbf, efjad} 

of quartets. The quartet graph of Q is shown in Fig. 2, where, instead of labelling 
the edges with the appropriate element of Q, we have used solid, dashed, and dotted 
lines to represent the edges arising from abjce, cdjbf, and efjad, respectively. 

Each edge of GQ has a partner, in particular, the one which is labelled with the 
same quartet. Another way we could have indicated this is by assigning a distinct 
colour to each quartet in Q, and then assigning this colour to each of the two edges 
corresponding to this quartet. In doing this, we observe that the resulting edge 
colouring of GQ is a proper edge colouring. Under this viewpoint, we say that an 
edge is q-coloured if it is labelled q. Recall that an edge colouring of a graph G is 
an assignment of colours to the edges of G. An edge colouring is proper if no two 
edges incident with the same vertex have the same colour. 

Central to this paper is a particular graphical operation which preserves proper 
edge colourings. This operation, called colour-identification, is described next. Let 
X be a finite set, and let G be an arbitrary graph with no loops and whose vertex 
set V is a partition of X. In other words, X is the disjoint union of the vertices 
of G. Let U be a subset of V. Then the identification of the vertices in U is the 
graph obtained from G by 

(i) deleting every edge in which both end-vertices are in U, and 
(ii) replacing the vertices in U with a single vertex which is the union of the 

elements of U such that if e is incident with exactly one vertex in U, then e 
is now incident with the vertex that is the union of the elements of U (the 
other vertex that e is incident with remains unchanged). 
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FIGURE 3. A complete colour-identification sequence of the quar­
tet graph in Fig. 2. 

If IUI = p, then we call this identification a p-identification. 

• {!} 

Now suppose that the edges of G are coloured and this colouring is proper. 
Furthermore, suppose that U has the property that if e and f are distinct edges of 
G with the same colour, then at most one of these edges is incident with a vertex in 
U. The colour-identification of the vertices in U results in the graph that is obtained 
from G by identifying the vertices in U and, for each edge that joins two vertices in 
U, if there is exactly one other edge with the same colour, then this edge is deleted. 
Observe that, because of the condition imposed on U, the colour-identification 
of U results in a proper edge-coloured graph. Let Go = G, G1, G2, ... , Gk be a 
sequence of graphs, where G; is obtained from G;-1 by a colour-identification for 
all i E {1, 2, ... , k }. We will call such a sequence a colour-identification sequence of 
G. If Gk has no edges, then this sequence is called a complete colour-identification 
sequence of G. 

Example 1.1. Consider the quartet graph GQ shown in Fig. 2, where Q = 
{ ablce, cdlbf, eflad}. Figure 3 illustrates a colour-identification sequence of GQ 
beginning with GQ on the left and ending with the graph consisting of three iso­
lated vertices on the right. Initially, we identify the vertices {a} and { b} to get the 
second graph. The third graph is obtained by identifying { c} and { d} in the second 
graph, while the last graph is obtained from the third graph by identifying { a, b} 
and { c, d}. Since the last graph has no edges, this colour-identification sequence is 
complete. 

Theorem 1.1 is the first main result of this paper. 

Theorem 1.1. Let Q be a collection of quartets. Then Q is compatible if and only 
if there is a complete colour 2-identification sequence of GQ, 

As an illustration of Theorem 1.1, the set of quartets Q = { ablce, cdlbf, eflad} are 
compatible, as there is a complete colour 2-identification sequence of GQ as shown 
in Fig. 3. Indeed, the phylogenetic tree T shown in Fig. l(a) displays Q. 
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To describe the second main result some further definitions are needed. Let T 
be a phylogenetic tree. We denote the set of quartets that are displayed by T by 
Q(T). Let q = abicd E Q(T). An interior edge e = uv ofT is distinguished by q if a 
and bare in separate components of T\u, and c and dare in separate components 
of T\v. Furthermore, relative to T, a subset of Q(T) is distinguishing if every 
element in the subset distinguishes some edge of T. 

Let T be a phylogenetic X-tree that displays a collection Q of quartets on X, 
and let e = uv be an interior edge ofT. We define GQ(u,v) to be the graph with the 
neighbours of v except u as its vertex set where two vertices w1, w2 are adjacent if 
there is a quartet in Q that distinguishes e and contains a leaf of the component of 
T\v containing w; for i E {1, 2}. A set Q of quartets on X specially distinguishes 
a phylogenetic X-tree T if T displays Q and, for every interior edge e = uv of T, 
each of the graphs GQ(u,v) and GQ(v,u) is connected. 

Let Q be a collection of quartets on X, and let Go = GQ, G1, G2, ... , G1 be a 
colour-identification sequence of GQ, Suppose, for some j E {1, 2, ... , 1}, that Gj 
is obtained from Gj-1 by identifying the elements in Uj, If q = AjB is a quartet 
of Q and either A or B is a subset of the union of the elements in Uj, we say that 
q has been identified by Uj, Furthermore, this sequence is minimal if there is no 
complete colour-identification sequence Gfi = GQ, GI_, G~, ... , G~ where k < land 
G\ is obtained from G\_ 1 for all i E {1, 2, ... , 1} by identifying the vertices in Uf 
such that, for all i, the union of the elements in Uf is equal to the union of the 
elements in a subset of {U1, U2 , .•. , U1}. 

Theorem 1. 2. Let Q be a set of quartets on X. Then Q identifies a phylogenetic 
X -tree if and only if the following hold: 

(i) there exists a phylogenetic X-tree T that displays Q and is specially distin­
guished by Q; and 

(ii) if Q' is a subset of Q that specially distinguishes T and is a distinguishing 
subset of Q(T), and q = Al B E Q', then, whenever the last identification in­
volving a quartet in Q' in a complete minimal colour-identification sequence 
of GQ contains A, the choice of which half of all quartets in Q' - { q} is 
identified in this sequence is fixed. 

Provided (i) holds in Theorem 1.2, we remark here that there is always at least 
one complete minimal colour-identification sequence that satisfies the assumption 
conditions in (ii). 

Example 1.2. To illustrate Theorem 1.2, consider Fig. 4 which shows a second 
complete colour-identification sequence of the quartet graph GQ shown in Fig. 2, 
where Q = {abjce,cdjbf,efiad}. As well as the phylogenetic tree T shown in 
Fig. l(a), the phylogenetic tree shown in Fig. 5 also displays Q. Since neither is 
a refinement of the other, Q does not identify any phylogenetic tree. This fact is 
realized by Theorem 1.2 as follows. The set Q itself specially distinguishes T and 
is a distinguishing subset of Q(T). In both sequences, efjad is the last quartet of 
Q involved in an identification and this identification contains { a, d}. Now consider 
the quartet abjce E Q. In the first sequence {a,b} is identified, while in the second 
sequence { c, e} is identified. As the choice of which half of ab ice that is identified 
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FIGURE 4. Another complete colour-identification sequence of the 
quartet graph in Fig. 2. 
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FIGURE 5. Another phylogenetic tree that displays Q. 

in such a sequence is not fixed, it follows by Theorem 1.2 that Q does not identify 
any phylogenetic tree. 

We remark here that the quartet set Q used in Example 1.2 shows that (i) by 
itself in Theorem 1.2 is not sufficient to identify a phylogenetic tree; Q specially 
distinguishes the phylogenetic tree shown in Fig. 5. 

Corollary 1.3. Let Q be a set of quartets on X. Then Q defines a phylogenetic 
X -tree if and only if the following hold: 

(i) there exists a binary phylogenetic X-tree T that displays Q and is distin­
guished by Q; and 

(ii) if Q' is a minimum-sized subset of Q that distinguishes T and q E Q', then, 
whenever the last identification involving a quartet in Q' in a complete 
minimal colour-identification sequence contains a half of q, the choice of 
which half of all quartets in Q' - { q} is identified in this sequence is fixed. 

In the second part of the paper, we consider the problem of determining, for an 
arbitrary phylogenetic tree T, the minimum number of quartets needed to identify 
T. In particular, we establish Theorem 1.4. This corrects [8, Theorem 6.3.9) which 
incorrectly states that the minimum size of such a set is JXJ - 3, where X is the 
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label set of T. For a phylogenetic tree T, let .E(T) denote the set of interior edges 
of T and let q(T) denote the size of a minimum-sized set of quartets that identifies 
T. 

Theorem 1.4. Let T be a phylogenetic X -tree and let Q be a collection of quartets 
that identifies T. Then, for each interior edge e = { u, v} of T with d( u) :S d( v), 
the collection Q contains q(d(u) - 1, d(v) - 1) quartets that distinguish e, where 

q(r,s)= rr(s;l)l 

for all r, s 2: 2. In particular, 

\QI 2: Lq(d(u)- l,d(v)-1). 
eEE 

Moreover, there exists a collection of quartets that identifies T and has size 

q(T) = Lq(d(u)- l,d(v)-1). 
eEE 

We remark here that, despite the incorrectness of [8, Theorem 6.3.9], the subsequent 
corollary [8, Corollary 6.3.10] is still correct (see Theorem 6.8.8 in (8]). 

We complete this section with some preliminaries. A partial split AIB of X is a 
bipartition of a subset of X. If the disjoint union of A and Bis X, then A\B is a 
split of X. A partial split is non-trivial if \A\, \B\ 2: 2. Phylogenetic X-trees give 
rise to splits in the following way. Let T be a phylogenetic X-tree and let e = u1u2 
be an edge of T. Then the split of X corresponding to e is the split X1\X2 where, 
for each i, the set X; is the intersection of X and the vertex set of the component 
of T\e containing u;. The collection of non-trivial splits of Tis denoted by E(T). 
Buneman [2] showed that every phylogenetic tree is determined by its collection of 
non-trivial splits. We say that a partial split A\B of X is displayed by T if there is 
an edge whose deletion results in two components where A is a subset of the vertex 
set of one component and B is a subset of the vertex set of the other component. 
Observe that if A= {a1, a2} and B = {bi, b2}, then T displays A\B if and only if 
it displays the quartet a1a2\b1b2, Consequently, for the purposes of this paper, we 
will often use the quartet notation for such partial splits. 

Let T be a phylogenetic X-tree and let X' be a subset of X. The restriction 
of T to X', denoted by T\X', is the phylogenetic tree that is obtained from the 
minimal subtree of T connecting the elements in X' by suppressing all vertices of 
degree 2. 

Lastly, we call a vertex of a tree a bud if it is not a leaf and all but one of its 
neighbors are leaves. An l-bud is a bud that is adjacent to I leaves. 

2. CHORDAL GRAPH CHARACTERIZATIONS 

In this section we state the chordal graph analogues of Theorems 1.1 and 1.2, 
and Corollary 1.3. We begin with some definitions. 
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The partition intersection graph of a collection Q of quartets, denoted int(Q), is 
the vertex-coloured graph that has vertex set 

LJ {(q,A1),(q,A2)}, 
q=A1IA2EQ 

and an edge joining (q, B) and (q', B') precisely if B n B' is non-empty. Here two 
vertices are the same colour if they share the same first coordinate. 

A graph is chordal if it has no vertex induced cycles with at least four vertices. 
A graph G is a restricted chordal completion of int( Q) if G is a chordal graph that 
can be obtained from int( Q) by only adding edges between vertices whose first 
coordinates are distinct. Note that this maintains the property of a proper vertex 
colouring. Theorem 2.1, the chordal graph analogue of Theorem 1.1, was indicated 
by Buneman [3] and Meacham [6], and formally proved by Steel [9]. 

Theorem 2.1. Let Q be a collection of quartets. Then Q is compatible if and only 
if there is a restricted chordal completion of int( Q). 

A restricted chordal completion G of int( Q) is minimal if, for every non-empty 
subset F of edges of E(G) - E(int(Q)), the graph G\F is not chordal. The next 
theorem is due to Semple and Steel [7]. 

Theorem 2.2. Let Q be a collection of quartets on X. Then there is a unique 
phylogenetic X -tree that displays Q if and only if the following two conditions hold: 

(i) there is a binary phylogenetic X -tree that displays Q and is distinguished 
by Q; and 

(ii) there is a unique minimal restricted chordal completion of int( Q). 

To describe the chordal analogue of Theorem 1.2 requires some further defini­
tions. A quartet is a phylogenetic tree with exactly one interior edge an four leaves. 
More generally, a one-split phylogenetic tree is a phylogenetic tree with exactly one 
interior edge. If the one non-trivial split of this tree is {a1, ... ,ar}l{bt,· .. ,bs}, 
then we will denote this tree by a1 · · · arlb1 · · · bs or, slightly abusing notation, AjB 
where A= {a1, ... ,ar} and B ={bi, ... ,b.}. 

Let T be a phylogenetic X-tree and let e = {u1,u2} be an edge of T. Then e 
is strongly distinguished by a one-split phylogenetic tree A1IA2 if, for each i, the 
following hold: 

(i) A; is a subset of the vertex set of the component of T\e containing u;, and 
(ii) the vertex set of each component of T\ u;, except for the one containing the 

other end vertex of e, contains an element of A;. 

For a collection of Q of quartets on X, let Q(Q) denote the collection of graphs 

{G: there is a phylogenetic X-tree T displaying Q with G = int(Q, T)}, 

where int(Q, T) is the graph that has the same vertex set as int(Q), and an edge 
joining two vertices (q,A) and (q', A') if the vertex sets of the minimal subtrees 
of T connecting the elements in A and A' have a non-empty intersection. Note 
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that if G is a graph in Q(Q), then G is a restricted chordal completion of int(Q). 
There is a partial order ::; on Q(Q) which is obtained by setting G1 ::; G2 for all 
G1, G2 E Q(Q) if the edge set of G1 is a subset of the edge set of G2. Lastly, 
a compatible collection Q of quartets infers a one-split phylogenetic tree if every 
phylogenetic tree that displays Q also displays this one-split tree. Theorem 2.3 was 
established by Bordewich et al. [4]. 

Theorem 2.3. Let Q be a collection of quartets on X. Then Q identifies a phylo­
genetic X-tree if and only if the following conditions hold: 

(i) there is a phylogenetic X -tree that displays Q and, for every edge e of 
this tree, there is a one-split phylogenetic tree inferred by Q that strongly 
distinguishes e; and 

(ii) there is a unique maximal element in Q(Q). 

Remark 1. Note that if Q is a collection of quartets, then int( Q) is the line graph of 
the quartet graph GQ where, for a graph G, the line graph of G has vertex set E( G) 
and two vertices joined by an edge precisely if they are incident with a common 
vertex in G. The vertex colouring of the partition intersection graph corresponds to 
the edge colouring of the quartet graph. However, the characterizations of defining 
and identifying quartet sets described in this section and those ones derived in 
this paper are quite different and we do not use the duality between the partition 
intersection graph and the quartet graph to prove the new results. 

Remark 2. The results stated in this section were originally proved for general 
'characters' (that is, partitions of X) rather than for quartets. The concept of the 
quartet graph can be extended to this more general setup but then hypergraphs have 
to be considered. On the other hand, the phylogenetic information of characters 
can be expressed in terms of quartets thus no generality is loss in restricting our 
attention to quartets in this paper (see [8, Proposition 6.3.11]). 

3. PROOFS OF THEOREMS 1.1 AND 1.2, AND COROLLARY 1.3 

We begin this section with some preliminaries. For IXI 2: 3, the star tree on X, 
denoted Sx, is the phylogenetic X-tree with exactly one interior vertex. Let T and 
T' be two phylogenetic X-trees. We say that T' is a single-refinement of T if T can 
be obtained from T' by contracting exactly one edge. Furthermore, if the vertex of 
T involved in this refinement is p, we also say that T' is a single-refinement of p. 

Let Q be a collection of quartets on X, and suppose Go= GQ, G1, G2, ... , Gk is 
a colour-identification sequence of GQ, Observe that, for all i E {O, 1, ... , k}, the 
union of the vertex sets of G; is a partition of X. Beginning with the star tree S x, 
we next describe the construction of a particular phylogenetic X-tree associated 
with this sequence. 

Label the unique interior vertex of Sx as p. Now G1 is obtained from Go 
by identifying a subset U1 of vertices of Go. Let 'Ii be the phylogenetic X-tree 
obtained from Sx by a single-refinement of p so that the unique non-trivial split 
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of 7i is A1l(X - A1), where A1 is the union of the elements of U1, and pis not 
in the minimal subtree of 7i that contains the elements in A1. Observe that if W 
is the vertex set of a component of 1i.\p, then X n Wis a vertex of G1, and that 
all vertices of G1 can be obtained in this way. Now let q = abjcd be an element of 
Q that is identified by U1. Then either a, b E A1 or c, d E A1. In either case, it 
follows that 7i displays q. Furthermore, the quartets of Q that are displayed by 7i 
are exactly those which are identified by U1. We next show by induction that all 
of these assertions for 7i can be extended in general. 

Suppose that To = Sx, 'Ii, 'T.i., ... , 7;_1 is a sequence of phylogenetic X-trees such 
that the following hold for all j E {1, 2, ... , i - 1}: 

(i) 'Tj is obtained from 'Fj-1 by a single refinement of p so that the unique split 
of E('Fj) - E('Fj-1) is Ai I (X - Aj ), where Aj is the union of the elements 
of the subset Uj of vertices of Gj-1 that are identified to obtain Gj. 

(ii) pis not in the minimal subtree of Tj that contains the elements in Ai. 
(iii) If Wis the vertex set of a component of 'Tj\p, then X n Wis a vertex of 

Gj, Indeed, all vertices of Gj can be obtained in this way. 
(iv) 'Tj displays all of the quartets identified by Ui as well as all of the quartets 

identified by U1 U · · · U Uj-1, but does not display any other quartet of Q. 

Suppose that G; is obtained from G;-1 by identifying the elements in A;. Let 7; 
be the phylogenetic X-tree in which E(7;) = E(T;-1) U {A;j(X - A;)}. Because 
(iii) holds for 7;_1 and G;-1, it follows that 7; is well-defined and that it can be 
obtained from 7;_1 by a single refinement of p with p not in the minimal subtree 
of 7; that contains the elements in A;. Thus (iii) holds for 7; and G;. 

Let A; be the union of the elements in U; and let q = abjcd be a quartet in Q 
that is identified by U;. Then either a and b are elements in distinct members of 
U;, or c and dare elements in distinct members of U;, but not both. Since a, b, c, 
and d are each in distinct components of 7;_1 \p, it now follows by the construction 
of 7; that 7; displays q. Furthermore, since 7; is a refinement of 7;_1, we have that 
7; displays each of the quartets of Q identified by U1 U · · · U U;_1, 

Now let q1 = xyjwz be a quartet of Q that is not identified by U1 U · · · U U;. 
Then, as there is a q'-coloured edge joining x and y, and a q1-coloured edge joining 
w and z, none of x, y, w, and z appear in the same vertex of G;. Therefore, as (iii) 
holds for 7; and G;, the minimal subtree of 7; containing x, y, w, and z is a star 
tree, and so 7; does not display q'. In summary, we have the following proposition. 

Proposition 3.1. Let Q be a collection of quartets on X, and suppose that 

Go=GQ,G1,G2, ... ,Gk 

is a colour-identification sequence of GQ, Let 

To=Sx,'li,'T.i., ... ,T,, 

be the sequence of phylogenetic X -trees, where, for all i E {1, 2, ... , k}, 7; is ob­
tained from 'J-;_1 by a single refinement of p so that the unique split of E(7;) -
E(7;_i) is A;j(X - Ai), where A; is the union of the elements of the subset U; of 
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11 

vertices of G;-1 that are identified to obtain G;. Then, for all i E {1, 2, ... , k}, the 
following hold: 

(i) If W is the vertex set of a component of T;\p, then X n W is a vertex of 
G;. Conversely, if X' is a vertex of G;, then there is a component ofT;\p 
whose vertex set W' has the property that X n W' = X'. 

(ii) T; displays all quartets of Q that are identified by U1 U · · · U U;, but does 
not display any other quartet of Q. 

If <I> denotes a colour-identification sequence of a quartet graph GQ, we will denote 
the sequence of phylogenetic trees described in Proposition 3.1 by r <I>. Furthermore, 
the last tree in r<I> will be denoted by T<1>. To illustrate Proposition 3.1, Fig. 6 
shows the sequence of phylogenetic trees corresponding to the complete colour­
identification sequence shown in Fig. 3. This sequence begins with the star tree on 
{ a, b, c, d, e, !} and ends with the phylogenetic tree T shown in Fig. 1. 

AB a partial converse to Proposition 3.1, suppose that Q is compatible and Tis a 
phylogenetic X-tree that displays Q. It is easily seen that T can be constructed from 
the star tree S x with interior vertex p by continually applying single refinements 
of p. Let To = Sx, 'Ii,~' ... , 'Ii = T be the associated sequence of phylogenetic 
X-trees, where T; is obtained from 'T;-1 by a single refinement of p for all i E 
{1, 2, ... , l}. For all i, let A;J(X - A;) be the unique element in E(T;) - E(T;-1 ). 

Let Go = GQ be the quartet graph of Q. For all i, let G; be the graph obtained 
from G;-1 by identifying the vertices whose disjoint union is A;. We next show 
that, for all i, this identification is a colour-identification of G;-1. Suppose not, 

I 
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and that Gi is the first graph that is not a colour-identification of Gj-1· Then 
there is a quartet q = ablcd in Q such that l{a, b, c, d} n Ail ;:::: 2, where, in the 
case l{a, b, c, d} n Ail= 2, we have {a, b, c, d} n Aj rt { {a, b}, {c, d} }. But then, by 
the construction of T from Sx, it is easily seen that T does not display ablcd; a 
contradiction. Hence Gi is a colour-identification of Gi-l· Now consider Gi, and 
suppose that there is a pair of q-coloured edges in Gi, where q = xylwz E Q. Since 
T displays Q, there is an edge in T that separates the path from x to y and the 
path from w to z. It follows that, for some i, either x, y E A; or w, z E A; and 
so, in G;, the elements x and y or the elements wand z are elements of the same 
vertex. This implies that there is no such pair of q-coloured edges, in particular, 
Gi has no edges. We have now established the following proposition. 

Proposition 3.2. Let Q be a compatible collection of quartets. Then there is a 
complete colour-identification sequence of GQ, 

As before, if T is a phylogenetic tree that displays a set Q of quartets and r 
is a sequence of phylogenetic trees starting with the star tree and ending with T 
as described above, then we will denote the complete colour-identification sequence 
corresponding to r as il>r. 

Proposition 3.3. Let Q be a collection of quartets and let Go = GQ, G1, G2, ... , Gk 
be a colour-identification sequence o/.GQ, Then, for each i E {1,2, ... ,k}, the 
colour-identification that takes G;-1 to G; can be replaced by a sequence of colour 
2-identifications. 

Proof. Suppose that G; is obtained from G;-1 by identifying the vertices in U;, 
where IU;I = p. If p = 2, then we are done. So assume that IPI ;:::: 3 and, for 
induction purposes, that if IU;I is at most p - 1, then G; can be obtained from 
G;-1 by a sequence of colour 2-identifications. Choose two vertices, B and B' 
say, of U;, and consider the graph G;_1 that is obtained by identifying B and 
B'. Since G; is a colour-identification of G;-1, it is easily checked that G;_1 is 
a colour 2-identification of G;-1. Furthermore, G; can be obtained from GL1 by 
the colour-identification which identifies the vertices in (U; - { B, B'}) U (BUB'). 
Since this last identification involves exactly p - 1 vertices, it now follows by the 
induction assumption that we can obtain G; from G;-1 by a sequence of colour 
2-identifications. This completes the proof of the proposition. D 

The next corollary is an immediate consequence of Proposition 3.3. 

Corollary 3.4. Let Q be a collection of quartets on X. Then there is a complete 
colour-identification sequence of GQ if and only if there is a complete colour 2-
identification sequence of GQ, 

The proof of Theorem 1.1 now follows by combining Propositions 3.1 and 3.2, and 
Corollary 3.4. 

To prove Theorem 1.2, we begin with two lemmas. 

Lemma 3.5. Let Q be a collection of quartets on X. If Q identifies a phylogenetic 
X-tree T, then Q specially distinguishes T. 
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Proof. Assume that Q does not specially distinguish T. Let uv be an interior 
edge of T such that GQ(u,v) contains k > 1 components Ci, C2, ... , Ck, We next 
construct a phylogenetic X-tree T' from T that displays Q but is not a refinement 
of T. Delete v and all its incident edges from T. For each i E {1, 2, ... , k }, add an 
edge joining u and the vertex of C; if C; contains exactly one vertex; otherwise add 
a new vertex v; and edges uv; and v;w for every vertex w of C;. It is now easily 
checked that the resulting phylogenetic X-tree T' displays Q. But, clearly, T' is 
not a refinement of T. We conclude that Q specially distinguishes T. D 

Lemma 3.6. Let Q be a compatible collection of quartets on X. 

(i) Let <I> be a complete minimal colour-identification sequence of GQ. Then 
T1p is a minimally refined phylogenetic X -tree that displays Q. 

(ii) Let T be a minimally refined phylogenetic X -tree that displays Q and let r 
be a sequence S x = To, 7i, 'Ti,, ... , 'Ii = T of phylogenetic X -trees in which 
7i is obtained from 'Ii-1 by a single refinement of p for all i E {1, 2, ... , 1}. 
Then the complete colour-identification sequence <I>r is minimal. 

Proof. We first prove (i). Let <I> be the sequence Go = GQ, G1, G2, ... , Gk and, for 
all i, let U; be the set of vertices of G;_1 that are identified to obtain G;. Let T 
be the canonical phylogenetic X-tree corresponding to <I>, and suppose that Tis 
not minimally refined with respect to displaying Q. Then there is an edge, e say, 
of T such that T /e displays Q. Let Sx = To, 'Ii, 'Ti,, ... , T,., = T be the sequence 
of phylogenetic X-trees corresponding to <I>. Because of the way in which T is 
constructed from S x, there is some iteration, i say, where the union of the elements 
in U; is equal to the elements of X in the component ofT\e that avoids p. Let Sx = 
Td, T{, T{, ... , T,:_ 1 be the sequence of phylogenetic trees that is obtained from 
S x = To, 7i, 'Ti, ... , T,., = T by applying the same sequence of single refinements of 
p with the one corresponding to e omitted. Clearly, T\e isomorphic to 7i:_1 . Now 
consider the complete colour-identification sequence Gb = GQ, Gi, G~, ... , G~_1 
corresponding to Sx = Td, T{, T.J., ... , 7i:_ 1 . For all j E {1, 2, ... , k - 1}, let U1 
denote the set of vertices of G1_1 that are identified to obtain G1. It is easily seen 
that, for all j, the union of the elements in U1 is equal to the union of the elements 
in U; for some i. But this contradicts the minimality of <I>. Thus Tis a minimally 
refined phylogenetic X-tree with respect to displaying Q. 

For the proof of (ii), let <I> be the complete colour-identification sequence Go = 
GQ,G1,G2, ... ,G1 corresponding to Sx = To,'Ii,'Ti,, ... ,'Ii = T. Suppose that 
<I> is not minimal. Then there is a complete colour-identification sequence Gb = 
GQ, Gi, G~, ... , G~ of GQ with k < l and, for all i, the union of the elements in 
U[ is equal to the union of the elements in Uj for some j. But this implies that 
the set of splits of the last phylogenetic X-tree T' in the sequence of phylogenetic 
X-trees corresponding to this sequence is a proper subset of the set of splits of T. 
In other words, T is a refinement of T', contradicting the minimality of T. Hence 
<I> is minimal. D 

We now prove Theorem 1.2. 
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Proof of Theorem 1.2. First suppose that Q identifies a phylogenetic tree T. Then, 
by Lemma 3.5, (i) holds. We next show that (ii) holds. Since Q identifies T, 
it follows by Lemma 3.6 that if i[> is any complete minimal colour-identification 
sequence of GQ, then Tit! is isomorphic to T. This fact is implicitly used in the 
proof of this direction of Theorem 1.2. Let Q' be a subset of Q that specially 
distinguishes T and is a distinguishing subset of Q(T), and let q = AIB E Q'. Now 
suppose that in some complete minimal colour-identification sequence i[> of GQ the 
last identification involving a quartet in Q' contains A. Let q' = A'IB' E Q' - {q}, 
and suppose that A' is identified along a q'-coloured edge in il>. 

Let <[>' be any complete minimal colour-identification sequence of GQ such that 
the last identification involving a quartet in Q' contains A. If q and q' distinguish 
the same edge of T, then the same quartet half of both q and q' must be identified 
in any colour-identification sequence of GQ that reconstructs T. This implies that 
A' is identified along a q' -coloured edge in il>'. Assume that q and q' distinguish 
distinct edges of T, and let e be the interior edge of T distinguished by q. Suppose 
that B' is identified along a q' -coloured edge in il>'. Then, as q and q' distinguish 
different edges of T, the quartet half B' is identified strictly before the quartet half 
A is identified in il>'. This means that if e' is the edge of T distinguished by q', 
then in T\e' one component contains the vertices corresponding to the elements in 
B' and the other component contains the vertices corresponding to the elements 
in A' and e. However, the same argument applies to the sequence i[> in which 
A' is identified along a q1-coloured edge and so we also deduce that in T\e' the 
component that contains the vertices in B' also contains e'; a contradiction. Thus 
(ii) holds. 

To prove the converse, suppose that, in the size of its label set, Q is a minimal 
collection of quartets that satisfies (i) and (ii), but does not identify a phylogenetic 
tree. Since T is specially distinguished by Q, the tree T is a minimally refined 
phylogenetic tree that displays Q. Let T' be a minimally refined phylogenetic 
X-tree that displays Q but is not isomorphic to T. 

1.2.1. There are no two elements x, y EX such that each of T and T' have buds 
which are adjacent to both x and y. 

Proof. Suppose that there are such elements x and y in X. Let z be an element 
not in X and let Xz = (X - {x,y}) U {z}. Let 'Tz be the phylogenetic Xz-tree 
that is obtained from T by deleting the vertices x and y, adjoining a new leaf z to 
the bud v neighbouring x and y, and suppressing any resulting vertex of degree 2. 
Let Qz be the collection of quartets obtained from Q by removing any quartet in 
which one half contains both x and y, and then replacing both x and y with z in 
the remaining quartets. We next show that Qz satisfies both (i) and (ii). 

Since T displays Q and is specially distinguished by Q, it is clear that 'Tz displays 
Qz and is specially distinguished by Qz, Thus Qz satisfies (i). To show that Qz 
satisfies (ii), let Q~ be a subset of Qz that specially distinguishes 'Tz and is a 
distinguishing subset of Q('Tz), and let qz = AzlBz E Q~. Suppose that il>z is a 
complete minimal colour-identification sequence of GQ, in which one half of q, say 
Az, is in the last identification involving a quartet in Q~. Let i[> be the identification 
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sequence of GQ that is obtained from <I>z by replacing any identification involving 
z with x and y. In case x and y are the two leaves of a 2-bud, then choose the first 
identification in <I> to identify x and y. By considering GQ, and GQ, it is easily 
seen that <I> is a complete colour-identification sequence of GQ. Furthermore, as <I>z 
is a minimal sequence, it is easily checked that <I> is also minimal. 

Because of the way in which T, is obtained from T, we can extend Q~ to a subset 
Q' of Q that specially distinguishes T and is a distinguishing subset of Q(T) by 
replacing every quartet in Q~ that contains z with the quartets of Q from which 
it was originally derived and then adding at most one further quartet of Q so that 
GQ(u,v) is connected, where u is the non-leaf vertex of T adjacent to the bud v. 
Note that if q = AIB is a quartet obtained from qz by replacing z with either x 
or y such that A corresponds to Az, then A is in the last identification involving a 
quartet in Q' in <I>. 

Let <I>~ be an arbitrary complete minimal colour-identification sequence of GQ, 
in which Az is in the last identification involving a quartet in Q~. Let <I>' be 
the complete minimal colour-identification sequence obtained from <I>~ in the way 
described above. If there is a quartet in Q~ such that one half is identified in <I>z 
but the other half is identified in <I>~, then, by construction, there is a quartet in 
Q' such that one half is identified in <I> but the other half is identified in <I>'. This 
contradiction implies that Qz satisfies (ii). 

Now let T; be the phylogenetic Xz-tree that is obtained from T' by deleting 
the vertices x and y, adjoining a new leaf z to the bud neighbouring x and y, and 
suppressing any vertex of degree 2. Since T; displays Qz and it is not a refinement 
of T,, we deduce that, in the size of its label set, Qz is a smaller counterexample 
to the converse. This contradiction completes the proof of (1.2.1). 0 

Let Q' be a subset of Q that specially distinguishes T and is a distinguishing 
subset of Q(T). Let q = ablcd E Q' be a quartet such that the common subpath 
P of the paths from a to c and from b to d in T' has the property that there is 
no quartet xylwz E Q' in which the common subpath of the paths from x to w 
and from y to z in T' is a proper subpath of P. The phylogenetic X-tree obtained 
from T' by identifying all vertices of P displays all quartets in Q' which do not 
distinguish P, that is all quartets ijlkl E Q' for which the path from i to j intersects 
P at precisely one terminal vertex of P and the path from k to l intersects P at 
precisely the other terminal vertex of P. Hence, by Lemma 3.6, there is a complete 
minimal colour-identification sequence that reconstructs T', where ab is in the last 
identification involving a quartet in Q'. By symmetry, this last statement holds if 
we replace ab with ed. Since q E Q', we know that q distinguishes an edge e of T, 
so we can choose q, or more specifically the half ab, to be in the last identification 
of some complete minimal colour-identification sequence <I> of GQ that reconstructs 
T. 

Let r 1 be the vertex of T' in the intersection of the vertex sets of P and the path 
from a to b, and let r2 be the vertex of T' in the intersection of the vertex sets of 
P and the path from c to d. Let Pi and p~ be the neighbours of r1 and r2 in P, 
respectively. Then a and b are in the same component Cf of T'\pi, and c and d are 
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in the same component q of T'\p2. Let Pl and p2 be the vertices of T incident 
with e such that a and b are in the same component C1 of T\p1 , and c and d are 
in the same component C2 of T\p2. Let X1 be the leaves of Ci, and let H be the 
subgraph of GQ, whose vertex set is the set of singleton subsets of X1 and an edge 
joins two vertices precisely if it is identified in <I>. Since Q' specially distinguishes 
T and ab is in the last identification of <I>, all vertices of H whose elements are 
leaves adjacent to the same bud of T are in the same connected component of H. 
By viewing each bud and its adjacent leaves in 0 1 as a single leaf labelled by these 
leaves, it is easily seen that all vertices of H whose elements label leaves adjacent 
to the same bud under this viewpoint are in the same connected component. By 
iterating this argument, we eventually deduce that H is connected. 

Every edge of His also an edge in GQ, and, moreover, all of these edges must be 
contracted either before or simultaneously with ab in <I>. Since H is connected, it 
follows by (ii) holding that all the leaves in 0 1 are also leaves in q. By symmetry, 
this implication also holds for C2 and C~, respectively. Thus each of the elements in 
X - X1 is a leaf in C2, and so P contains only the vertices p1 and p2 (with r1 = p2 
and r2 = p1) and one edge Pj.P2· Hence the edge p1p2 of T' is distinguished by q. 

We next construct a new quartet collection Q1 from Q as follows. Remove 
any quartet whose label set contains at least two elements in X1 and replace any 
element in X1 with x1 in the remaining quartets, where x1 is an element not in 
X1. It is easily checked that the phylogenetic tree 1i obtained from T by replacing 
the minimal subtree containing the elements in X 1 with the leaf x1 displays Q1 
and is specially distinguished by Q1. Furthermore, using the approach described in 
(1.2.1), one can check that Q1 satisfies (ii). Hence, by the minimality of Q in the 
size of X, we have that Q1 identifies 1i. Now the phylogenetic tree T{ obtained 
from T' by replacing the minimal subtree containing the elements in X1 with the 
leaf x1 displays Q1 and is specially distinguished by Q1. This means that T{ is 
a minimally refined tree that displays Q1 and so it is isomorphic to 1i. Since 1i 
has a bud and T{ has the same bud, it follows that there is a bud in T and in T' 
which is adjacent to the same two leaves. This contradiction to (1.2.1) completes 
the proof of the theorem. D 

Proof of Corollary 1.3. Suppose that Q defines a phylogenetic X-tree T. Then it 
is clear that (i) holds. The fact that (ii) holds follows from the first part of the 
proof of Theorem 1.2, where we note, for distinct q, q' E Q', the quartets q and q' 
distinguish different edges of T. 

Now suppose that (i) and (ii) hold. Let Q" be a subset of Q that distinguishes T 
and is a distinguishing subset of Q(T). Then Q" contains a subset Q' of minimum 
size that distinguishes T. Let q' = A'IB' be an element of Q' and let q" = A"IB" 
be an element of Q" - Q' such that q" distinguishes the same edge e of T as 
q'. Without loss of generality we may assume that the paths in T connecting the 
elements in A' and A" contain the same end vertex of e. Let i[> be a minimal 
complete colour-identification sequence of GQ and suppose that A' is the half of 
q1 that is identified in il>. Then it is easily seen that A" is the half of q" that is 
identified in il>. Indeed, A' and A" are identified in the same identification in <I>. 
Thus (ii) holds for any distinguishing subset of Q. It now follows by Theorem 1.2 
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that Q identifies a phylogenetic tree. Since there is a phylogenetic tree T that 
displays Q and is distinguished by Q, we deduce that Q defines T. This completes 
the proof of the corollary. D 

4. MINIMUM IDENTIFYING SETS OF QUARTETS 

The main result of this section is Theorem 1.4. To establish this result, we begin 
by describing some partial split (inference) rules. For a set I: of partial splits, we 
write I: I- AIB if every phylogenetic tree that displays I: also displays AIB. The 
statement EI- AIB is called a partial split rule. The input to the first two rules are 
quartets (see (5]): 

(de) 

(tc) 

{ ab led, abice} I- ablcde; 

{ abide, acidf, bclef} I- abcldef. 

These rules are examples of so-called dyadic and triadic rules, respectively. The 
third rule says that if A1IB1 and A2IB2 are partial splits, A1nA2 i 0, and B1nB2 i 
0, then 

(sc) 

The rule (sc) is "Rule 1" in (6]. Observe that (de) is a special case of (sc). 

The next lemma is obtained by repeated application of (de). The proof is routine 
and omitted. 

Lemma 4.1. Let AIB be a non-trivial partial split of a set X, and let 

Q(AIB) = { aa'lbb' : a, a' EA and b, b' E B}. 

Then Q(AIB) I- AIB, 

Lemma 4.2 generalizes (tc). 

Lemma 4.2. Let E = {A1IB1,A2IB2,AalBa} be a set of partial splits of X such 
that A; n Ai i 0, B; n Bi i 0 for all ii j. Then 

EI- LJ(A; n Ai)I LJ(B; n Bi)· 
ifj ifj 

Proof. By Lemma 4.1, it suffices to show that every q = xylwz, where x, y E 

U,.iA; n Ai) and w, z E U;,.)B; n Bj), is inferred by E. Clearly, this holds if 
x, y E A; and w, z E B; for some i. Therefore assume that this does not happen. 
Then, without loss of generality, we may assume that :z; E A1 n A2, y E A1 n Aa, 
and z E B 2 n Ba. By symmetry, there are two cases to consider depending upon 
whether w E B 1 n B2 or w E B2 n Ba. 

Let a E A2 n Aa and b E B1 n Ba. If w E B1 n B2, then, as xylwb E Q(A1IB1), 
xalwz E Q(A2IB2), and yalzb E Q(AalBa), it follows by (tc) that 

{ xylwb, xalwz, yalzb} I- xyalwzb. 
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Hence, in this case, q is inferred by E. 

If w E B2 n B3, then xajwz E Q(A2IB2) and yajwz E Q(A3jB3). Therefore, 
by (de), E infers xyajwz which in turn infers q. This completes the proof of the 
lemma. D 

Analogous to a collection of phylogenetic trees, a collection E of partial splits 
identifies a phylogenetic tree T if T displays E and all phylogenetic trees that 
display E are refinements of T. 

Lemma 4.3. Let T be a one-split phylogenetic tree in which the unique non-trivial 
split is AjB with A= {a1,a2, .. ,,ar} and B = {b1,b2, ... ,b.}. Then, for non­
negative integers m and n with r ::::; 2m - 1 ands ::::; 2n - 1, the 2-element collection 

E = { a1 · · · amlb1 · · · bn, ar-m+l • · · arlbs-n+l · · · bs} 

of partial splits together with the collection 

Q = {a;am+ilbjbn+j: 1::::; i::::; r-m, 1::::; j::::; s-n} 

of quartets identifies T. 

Proof. Let 

and 
B' = {b1, ... , bn} n {bs-n+1, ... , b.}. 

Since r ::::; 2m - 1 and s ::::; 2n - 1, it follows that both A' and B' are non-empty. 
Therefore, by Lemma 4.2, the two partial splits in E together with the quartet 
a;am+ilbibn+i infer the partial split 

(1) 

for all i and j. Furthermore, by repeated applications of (sc), the partial splits of 
the form (1) infer (A' U { a;, am+i} )IE for all i. Repeatedly using (sc) again, these 
last partial splits infer AjB. It now follows that the partial splits in E together 
with the quartets in Q identify T. D 

For a one-split phylogenetic tree T whose non-trivial split is AIB, we will denote 
the size of a minimum-sized set of quartets that identifies T by q(r, s), where r = IAI 
ands= jBj. Much of the work in proving Theorem 1.4 goes into proving the next 
lemma, a special case of that theorem. 

Lemma 4.4. Let T be a one-split phylogenetic X -tree in which the only non-trivial 
split is AIB with IAI = r and IBI = s, where 2::::; r::::; s. Then 

( ) - fr(s-1)1 
q r,s - 1--2- . 

Proof. Throughout the proof, we will assume that A = { a1, a2, ... , ar} and B = 
{b1, b2, ... , b.}. We first show that q(r, s) ~ rr<•; 1l l 

.... 
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Suppose that Q is a set of quartets that identifies T with [ Q[ < r(s;-l), and 
consider the quartet graph GQ, Since Q identifies T, no edge in GQ joins a singleton 
of A to a singleton of B, and, in view of Lemma 3.5, GQ consists of two components 
whose vertex sets are the set of singletons of A and the set of singletons of B. 
Furthermore, if q E Q, then there is a q-coloured edge joining a pair of singletons 
of A and a q-coloured edge joining a pair of singletons of B. 

Since [QI< r(s;-l) and r:::; s, there is a vertex {a} CA that is incident with at 
most s - 2 differently coloured edges. 

Let Ga be the subgraph of Gq that is obtained by deleting all of the singletons 
of A and deleting all edges whose colour is not that of any coloured edge incident 
with {a} in GQ, Hence, Ga has s vertices and at mosts - 2 edges and is therefore 
disconnected. Let C1, ... , Ck be the components of Ga. Now consider the colour­
identification sequence i[> of GQ = Go in which we make the following identifications: 

(i) For 1 :::; i :::; k, identify the vertices in C; of G;-1 to obtain G; if C; contains 
at least two vertices; 

(ii) identify {a} together with the set of vertices whose union is B to obtain 
Gk+1i 

It is easily checked that i[> is a complete colour-identification sequence for Q. By 
Proposition 3.1, Tip displays Q. But, as Ga is disconnected, the construction of 
Tip beginning with Sx and using i[> implies that Tip displays a quartet ab1[b2b3 or 
a1a2[ab1 where a1, a2 EA and b1, b2, ba E B. Thus Tip is not a refinement of T, and 
so Q does not identify T. We conclude that q(r, s) :::>: rr<s;-1l1, 

We next show that q(r, s) :::; rr<s;-1)1 for all r and s. We begin with the case 
r= 2. 

4.4.1. For alls, we have q(2, s):::; r2<s;-1ll = s - 1. 

Proof. Here A[B = { a1, a2} I { b1, b2, ... , bs} and it follows by repeated applications 
of (sc) that the collection 

Q = { a1a2[b1b;: i E {2, ... , s}} 

of quartets identifies T. As [Q[ = s - 1, the inequality holds for r = 2. D 

4.4.2. Let Qr be the collection 

{a;aj[b;bj: 1:::; i < j:::; r} 

of quartets. If r s, then Qr identifies T. In particular, for all r, we have 

( ) < r(r-1) q r,r _ 
2 

. 

Proof. First note that [Qr[ = (;) = r(r;-l). The proof is by induction on r. Clearly, 
the result holds for r = 2. Now suppose that r :::>: 3 and that the result holds for all 
smaller values of r. Then the partial split a1 · · · ar-1 [b1 · · · br-1 can be identified by 
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Qr-1· By (tc), the quartets in Qr-1 and Qr - Qr-1 infer each of the partial splits 
in 

{aiajarlb;bjbr: 1 Si< j < r}. 
Moreover, by repeatedly applying (sc), we deduce that the elements in this set infer 
a1 · · · arlb1 · · · br. D 

4.4.3. For all r and alls with rs s s 2r - 2, we have q(r, s) s rr<•;1>1. 

Proof. The proof is by induction on r. If r = 2, then the result holds by (4.4.1). 
Now suppose that r 2: 3, and that the result holds for all smaller values of r. There 
are seven cases to consider. 

Case 1. s = 2l - 1 for some integer l 2: 2. 

By Lemma 4.3, the 2-element collection 

~1 = { a1 · · · azlb1 · · · b1, ar-l+l · · · arlbz · · · bs} 

of partial splits together with the collection 

Q1 = { a;az+dbjbl+i : 1 S i S r - l, 1 S j S l - 1} 

of quartets identify T. By the induction assumption, each partial split in ~1 can be 
identified by a collection of 1

<
1
;

1> quartets. Furthermore, Q1 contains (r - l)(l - 1) 
quartets. Thus 

q(r,s) S l(l - l) + (r - l)(l- l) 

r(s - 1) 
2 

Case 2. r = 4k - 2 and s = 2l for some integers k 2: 2 and l 2: 3. 

By Lemma 4.3, the 2-element collection 

~2 = {a1 · ··a2klb1 · · ·b1+1,a2k-1 ···arlb1 · · ·bs} 

of partial splits together with the collection 

Qz = { a;a2k+;lbibl+i+l : 1 Si S 2k - 2, 1 S j S l - 1} 

of quartets identify T. By the induction assumption, each partial split in ~ 2 can 
be identified by a collection of kl quartets. Without loss of generality, we may 
assume that these last collections share the quartet a2k-1a2klb1b1+1· Furthermore, 
Qz contains (2k - 2)(l - 1) quartets. Thus 

q(r, s) S (2kl - 1) + (2k - 2)(l -1) 

r(s - 1) 
2 

Case 3. r = 4k - 3 and s = 2l for some integers k 2: 2 and l 2: 3. 

By Lemma 4.3, the 2-element collection 

~3 = { a1 · · · a2klb1 · · · b1+1, azk-2 · · · arlbz · · · bs} 
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of partial splits together with the collection 

Q3 = {a;a2k+ilbjbl+i+l: 1 Si S 2k-3, 1 S j S l -1} 

of quartets identify T. By the induction assumption, each partial split in ~3 can 
be identified by a collection of kl quartets. Without loss of generality, we may 
assume that these last collections share the quartet a2k-1a2klb1b1+1· Furthermore, 
Q3 contains (2k - 3)(1- 1) quartets. Thus 

q(r, s) S (2kl - 1) + (2k - 3)(1- 1) 

=rr(s;l)l· 
Case 4. r = 4k and s = 41 for some positive integers k 2 1 and l 2 1. 

By Lemma 4.3, the 2-element collection 

~4 = { a1 · · · a2k+1 lb1 · · · b21+1, a2k · · · arlb21 · · · b,} 

of partial splits together with the collection 

Q4 = {a;a2k+i+1lbjb2l+i+l: 1 Si S 2k-1, 1 S j S 21-1} 

of quartets identifies T. By the induction assumption, each partial split in ~4 can 
be identified by a collection of (2k + 1 )I quartets. Without loss of generality, we may 
assume that these last collections share the quartet a2ka2k+1 lb21b21+l· Furthermore, 
Q4 contains (2k - 1)(21- 1) quartets. Thus 

q(r, s) S (2(2k + 1)1- 1) + (2k - 1)(21- 1) 

r(s - 1) 
2 

Case 5, r = 4k - 1 ands= 41 for some integers k 2 1 and I 2 1. 

By Lemma 4.3, the 2-element collection 

~5 = {a1 · · ·a2k+1lb1 · · ·b21+1,a2k-l '··arlb21 · · ·b,} 

of partial splits together with the collection 

Q5 = { a;a2k+i+llbjb21+j+l : 1 Si S 2k - 2, 1 S j S 21 - 1} 

of quartets identifies T. By the induction assumption, each partial split in ~5 can 
be identified by a collection of (2k + 1 )I quartets. Without loss of generality, we may 
assume that these last collections share the quartet a2ka2k+1 lb21b2l+1 · Furthermore, 
Q5 contains (2k - 2)(21- 1) quartets. Thus 

q(r, s) S (2(2k + 1)1 - 1) + (2k - 2)(21- 1) 

=rr(s;l)l· 
Case 6. r = 4k and s = 41 - 2 for integers k 2 1 and I 2 2. 

This case includes an anomaly. In particular, when l = 2, that is (r, s) = (4, 6). We 
will prove this subcase first before proving Case 6 in general. 

~<·, :.,:-: :,·a'• .. '~ 
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Let 

and 

Q1 = { a1a2lb1b2, a1aslb1b3, a2aslb2b3 }, 

Q2 = {a2aslb4bs,a2a4lb4b6,a3a4lbsb6}, 

Q3 = { a1a2lbsb4, a3a4lbsb4, a1a4lb1bs, a1a4lb2b6 }. 

By (tc), Q1 and Q2 infer the partial splits a1a2aslb1b2b3 and a2a3a4lb4bsb6, respec­
tively. Furthermore, together with Q3, these partial splits infer a1a2Jb1b2b3b4 and 
a3a4Jb3b4bsb6 by (sc). By (tc), the partial splits a1a2Jb1b4, a2a4Jb4bs a1a4lb1bs infer 
a1a2a4Jb1b4b5. Similarly, by (tc), we infer 

a1a2a4Jb2b4b6, a1a3a4Jb1bsbs, a1a3a4lb2bsb6, 

In turn, again using (tc), we infer 

a1a2aslbsb4bs, a1a2aslbsb4b6, a2a3a4lb1bsb4, a2a3a4lb2b3b4. 

The last eight partial splits now infer a1a2JB, a2aslB, and a3a4JB which, by (sc), 
infers AJB. Thus q( 4, 6) ::; 10 = 4<

6
;

1l. 

Now assume that k 2 2 and I 2 3. By Lemma 4.3, the 2-element collection 

E6 = { a1 · · · a2k+2Jb1 · · · b21+1, a2k-l · · · arJb21-2 · · · bs} 

of partial splits together with the collection 

Q6 = { a;a2k+i+2 lbjb21+j+l : 1 ::; i ::; 2k - 2, 1 ::; j ::; 21 - 3} 

of quartets identifies T. By the induction assumption, each partial split in E6 can 
be identified by a collection of (2k + 2)1 quartets. Consider one of these partial 
splits, say a1 · · · a2k+2 I b1 · · · b21+1 · Since the size of the larger side is 21 + 1 2 7 and 
odd, we may make up the set of (2k + 2)1 quartets that identify this partial split 
as in Case 1, where, by (4.4.2), we may assume that this set contains 

{ a2k-1a2klb21-2b21-1, a2k-1a2k+1 lb21-2b21, a2ka2k+1 Jb21-1 b21, 

a2k-1a2k+2Jb21-2b21+1, a2ka2k+2lb21-1 b21+1, a2k+1 a2k+2 lb21b21+1 }. 

Similarly, we may assume the set of (2k + 2)1 quartets that identifies the other 
partial split in E6 also contains the six quartets in this set. Since Q6 contains 
(2k - 2)(21 - 3) quartets, it now follows that 

q(r, s) ::; 2(2k + 2)1 - 6 + (2k - 2)(21- 3) 

r(s - 1) 
2 

Case 7. r = 4k - 1 ands= 41- 2 for some integers k 2 1 and 12 2. 

By Lemma 4.3, the 2-element collection 

E7 = {a1 · · ·a2klb1 · · · b21,a2k · · ·arJb21-1 · · · bs} 

of partial splits together with the collection 

Q7 = {a;a2k+;lbjb21+j: 1::; i::; 2k-1, 1::; j::; 21-2} 
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of quartets identifies T. By the induction assumption, each partial split in E7 

can be identified by a collection of k(21 - 1) quartets. Furthermore, Q7 contains 
(2k - 1)(21- 2) quartets. Thus 

q(r, s) S 2k(21- 1) + (2k - 1)(21- 2) 

= rr(s;l)l · 

Combining Cases 1-7, we conclude that q(r, s) S 1r<•;1i1 whenever r S s S 
2r- 2. D 

We complete the proof of Lemma 4.4 by showing that, for any fixed r, the result 
holds for alls with r s s. By (4.4.3), the result holds whenever s S 2r - 2. Now 
assume that s > 2r - 2 and that the result holds for all smaller values of s. 

Consider the 2-element collection 

E= {a1···arlb1···br,a1···arlbr···bs} 

of partial splits. Observe that, ass> 2r- 2, we have J{ a1, ... , ar }J S J{br, ... , b.}J. 
By a single application of (sc), E infers AJB. Furthermore, by (4.4.2), the first 
partial split in E can be identified by a collection of r(r;l) quartets and, by the 
induction assumption, the second partial split in E can be identified by a collection 
of lr(s;r)l quartets. Hence 

q(r,s) s r(r; 1) + rr(s; r)l 

= I r(s; 1)1 · 
Running over all values of r, we deduce that 

q(r, s) S I r(s; 1)1 
for all r and alls with 2 Sr S s. This completes the proof of the proposition. D 

The next lemma is an immediate consequence of the definition of identify. 

Lemma 4.5. Let T be a one-split phylogenetic X -tree in which the only non-trivial 
split is AJB, and suppose that T displays a collection Q of quartets. If Q does not 
identify T, then there is a phylogenetic X -tree that displays Q, but for which AIB 
is not a split. 

At last we prove Theorem 1.4. 

Proof of Theorem 1.4. First suppose that for some interior edge e = { u, v} of T, the 
subset Qe of Q containing exactly the quartets that distinguish e has the property 
that 

IQel < q(d(u) - l,d(v)-1). 
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Suppose the neighbours of u that are not v are u1, u2, . .. , Ur and the neighbours 
of v that are not u are v1, v2, . .. , v,. Let T. denote the phylogenetic tree that is 
the minimal subtree of T containing the vertices in { u1, ... , Ur, v1, ... , v,}. Fur­
thermore, let Pe be the collection of quartets obtained from Q. by replacing each 
quartet, aa'lbb' say, with uiuj lvkvl, where Ui is on the path from u to a, Uj is on 
the path from u to a', Vk is on the path from v to b, and vi is on the path from v 
to b'. Since T displays Q., it follows that T. displays P •. However, because of the 
cardinality of Q., it follows by Lemma 4.4 that Pe does not identify T.. 

By Lemma 4.5, there is a phylogenetic tree T.,' with label set { u1, ... , Ur, v1, ... , v,} 
that displays Pe but does not contain the split { u1, ... , Ur }I { v1, ... , v,}. Let T' be 
the phylogenetic X-tree that is obtained by adjoining, for all i, the maximal sub­
tree of T that contains u; and not u to T.,' by identifying the two common vertices, 
namely u; and by adjoining, for all j, the maximal subtree of T that contains Vj 
and not v to T: by identifying the two common vertices, namely Vj. Clearly, T' 
displays Q •. Moreover, it is easily seen by the construction of T' that every quartet 
in Q - Q. is also displayed by T'. Since T' does not contain the split of T induced 
by e, we deduce that Q does not identify T. This contradiction means that, for ev­
ery interior edge e = { u, v}, the collection Q contains q( d( u) - 1, d( v) - 1) quartets 
that distinguish e. Thus 

IQI 2 L q(d(u) - l,d(v)-1). 
eEE 

We prove the second part of the theorem by induction on the number m of interior 
edges of T. If m = 1 and the unique interior edge is { u, v}, then, by Lemma 4.4, 
there exists a collection of quartets of size q(d(u) - l,d(v) - 1) that identifies T. 
Now assume that m 2 2 and that the result holds for every phylogenetic tree with 
m - 1 interior edges. 

Let e = { u, v} be an interior edge of T such that u is a bud of T. First assume 
that d(u) ~ d(v). Let r = d(u) - 1 ands= d(v) -1. Furthermore, let a1, · · · , ar 
be the leaves of T adjacent to u, and let b1, · · · , b, be leaves of T such that, 
for all distinct i and j, the path from b; to bj contains v, but not u. Let T' = 
Tl(X - { a2, · · · , ar} ). Now T' is a phylogenetic tree with precisely m - 1 interior 
edges, and so by our induction assumption T' can be identified by a collection Q' 
of quartets of size q(T'). 

Let Q. be a minimum-sized set of quartets that identifies the one-split phyloge­
netic tree whose non-trivial split is a1 · · · arlb1 · · · b,. By Lemma 4.4, IQel = q(r, s). 
Consider Q. U Q'. Clearly, T displays Q. U Q'. Let T" be a phylogenetic tree that 
displays Q. U Q'. Since Q' identifies T', we have that T"l(X - {a2, ... ,ar}) is a 
refinement of T'. Using this fact and the fact that T" displays Q., it is easily seen 
that T" displays the partial split a1 · · · ar lb1 · · · b,. It now follows that Q. U Q' 
identifies T. Moreover, 

IQ. U Q'I = q(d(u) - 1, d(v) -1) + q(T') = q(T). 

The same argument holds if d(v) < d(u). This completes the proof of the theorem. 
D 
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Recall that q(T) denotes the size of a minimum-sized set of quartets that iden­
tifies a phylogenetic tree T. We end this section with two results that determine, 
for all n, those phylogenetic trees T with n leaves for which q(T) is minimized and 
maximized. 

Proposition 4.6. Let T be a phylogenetic X -tree with n leaves and at least one 
interior edge. Then q(T):::: n - 3. Moreover, q(T) = n - 3 if and only if 

(i) T has exactly one interior edge and contains a 2-bud or two 3-buds; or 
(ii) T has at least two interior edges and every vertex with degree at least four 

is a bud. 

Proof. First suppose that T has exactly one interior edge { u, v}. Let r = d( u )-1 :::: 
2 and s = d(v) - 1 :::: 2. Without loss of generality, we may assume that r ::::; s. 
Then, by Theorem 1.4, 

fr(s-1)1 q(T) = q(r, s) = 
1

-
2
- . 

It is easily checked that q(T) :::: r + s - 3. Furthermore, a routine check also shows 
that q(T) = r + s - 3 if and only if r = 2 or s = 3. As r + s - 3 = n - 3, the 
proposition holds over all phylogenetic trees with exactly one interior edge. 

Next we show that the proposition holds in general. The proof is by induction 
on n. Clearly, the result holds if n = 4. Let T be a phylogenetic tree with n 
leaves, where n :::: 5, and suppose that q(T) is of minimum size. Suppose that the 
proposition holds for all phylogenetic trees T' with fewer leaves for which q(T') is 
of minimum size. Since we already know that the result holds if T has exactly one 
interior edge, we may assume that T has at least two interior edges. Since every 
binary phylogenetic tree with n leaves is defined by n-3 quartets (see, for example, 
[8]), q(T) ::::; n - 3. Let w be a bud of T of maximum size. Let j be the size of this 
bud, let x1 , x2 , .. . , Xj denote the leaves adjacent to w, let v be the non-leaf vertex 
adjacent to w, and let T' be the restriction of T to X - { Xj }. By the induction 
assumption, q(T') :::: (n - 1) - 3 = n - 4. We consider two cases: a) j :::: 3 and 
b) j = 2. 

Consider a). If d(w) ::::; d(v), then, by Theorem 1.4, 

q(T) - q(T') = q(j, d(v) - 1) - q(j - 1, d(v) - 1) 

= rj(d(v1-2)1-r(j-l)(i(v)-2)1 

:::: 1. 

Therefore 

(2) q(T) :::: q(T') + 1 :::: n - 4 + 1 = n - 3. 

Since q(T) ::=:; n - 3, it follows that equality holds throughout (2) and so q(T) = 
n - 3 and q(T') = n - 4. Since T has at least two interior edges and k :::: 3, 
the phylogenetic tree T' has at least two interior edges and so, by the induction 
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assumption, (ii) holds for T'. Hence (ii) holds for T. A similar argument also shows 
that (ii) holds for T if d(w) > d(v). 

Now consider b). Here every bud of T has size two. Note that, in this case, 
d(w) ~ d(v). By Theorem 1.4, 

q(T) - q(T') = q(2, d(v) - 1) = d(v) - 2 ~ 1. 

Arguing as in (i), we now deduce that q(T) = n-3 and q(T') = n-4. This implies 
that d(v) - 2 = 1 and so d(v) = 3. If T' has at least two interior edges, then (ii) 
holds for T' and so (ii) holds for T. Furthermore, if T' has exactly one interior 
edge, then T' is a quartet and again it follows that (ii) holds for T. This completes 
the proof of the proposition. D 

For two non-negative integers k and l with k + l ~ 3, we will denote by T? the 
phylogenetic tree with k + 2l leaves that has an interior vertex adjacent to k leaves 
while all other l neighbours are 2-buds. 

Theorem 4. 7. Let T be a phylogenetic X -tree with n leaves. Then q(T) ~ 

l (I - 1)2 J. Moreover, q(T) = l (I - 1)2j if and only if Tis isomorphic to 

(i) 7;n-2 if n is even, or 
(ii) 7in-l or 'It-3 if n is odd. 

Proof. First note that, for 1 ~ k ~ 3, a routine check using Theorem 1.4 shows 

that q(7,,n-k) = l (I - 1)2 J. In other words, q(7;n-2) = (I - 1) 2 if n is even and 

q(7i.n-l) = q(7an-3 ) = (n-l)jn- 3
) if n is odd. The proof is by induction on n. A 

simple check shows that the result holds if n E { 4, 5}. Let T be a phylogenetic tree 
with n leaves, where n ~ 6, and suppose that q(T) is of maximum size. Note that 

(3) q(T) ~ l G -1 rJ . 
Suppose that the theorem holds for all phylogenetic trees T' with fewer leaves for 
which q(T') is of minimum size. Say T has exactly one interior edge. Then one 
of the interior vertices is an j-bud with j ~ I and the other interior vertex is an 
(n - j)-bud. Consequently, by Theorem 1.4, 

q(T)=~j(n-j-l)~~(n;l)2 < lG-1)2j 
as n ~ 6. It now follows that T has at least two interior edges, which also means 
that T has no adjacent buds. 

Let w be a bud of T of maximum size and let k be the size of this bud. Let 
xi, x2, ... , Xk denote the leaves adjacent tow, let v be the non-leaf vertex adjacent 
tow, and let T' be the restriction of T to X - { xk}· By the induction assumption, 

q(T') ~ l (n21 
- 1) 2 J. Combining this with (3), we deduce that 

(4) q(T)-q(T') ~ rn;31 · 
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First suppose k ~ 3. Then, by Theorem 1.4, q(T) - q(T') = q(k, d( v) - 1) -
q(k - 1, d(v) - 1) and a routine check shows that q(T) - q(T') ::::; ~· Together 
with (4), this implies that d(v) ~ n - 2 if n is even and d(v) ~ n - 3 if n is odd. 
Since T has at least two interior edges and w is adjacent to k ~ 3 leaves, this is 
only possible if n is odd, k = 3, and v is adjacent to n - 5 leaves and a 2-bud. 
Assuming n is odd, n ~ 7 and so, by Theorem 1.4, 

5 (n - l)(n - 3) 
q(T)=q(2,n-4)+q(3,n-4)= 2(n-5) < 

4 
; 

a contradiction. 

Now suppose that k = 2. By Theorem 1.4, q(T) - q(T') = q(2, d(v) - 1) 
d(v) - 2. Therefore, by (4), d(v) ~ nil. Assume that T has an interior vertex 
v' =p v such that v' is adjacent to a bud. Then, as v is adjacent to a bud, there are 
at least d( v) ~ ~ leaves e of T for which v' is not contained in the path from 
e to v. Interchanging v and v' in this argument, we also deduce that there are at 
least d( v) ~ ~ leaves e of T for which v is not contained in the path from e to 
v'. Hence T has at least n + 1 leaves; a contradiction. 

It follows from the above arguments that T has exactly one interior vertex that is 
not a bud and all buds are 2-buds. Thus, for some k, we have that T is isomorphic 
to 7icn-k. Now 

(7.n-k) = n - k (2 n + k - 1) 
q k 2 q ' 2 

= n;k (n;k -z) 
1 

= 4(n - 2 + (k - 2))(n - 2 - (k - 2)) 

and, since k and n must have the same parity, q(7icn-k) is maximum for k = 2 if n 
is even and fork E {1, 3} if n is odd. This completes the proof of the theorem. D 
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