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1 Introduction 

One of the most powerful principles for solving complex tasks algorithmically is the 
so-called Divide& Conquer Principle. It has been applied successfully for an amazingly 
wide range of problems, from combinatorial optimization to matrix multiplication. Its 
principal idea is to break up a given complex task T appropriately into a reasonable 
number of less complex tasks T1 , ... , Tk so that, by "glueing together" appropriately 
solutions of those less complex tasks, some or even all solutions of the original complex 
task T can be found. 

Whatever problem the original task were to address, it is often possible to rephrase 
it as a task to search for certain maps f E Y x from a (generally) large set X into a 
(generally) much smaller set Y, that is, for maps f : X -+ Y which exhibit a number 
of very particular, well-specified properties. A Divide&Conquer strategy then can be 
applied for such a search problem whenever it is possible to break up the set X into 
subsets X1, ... , Xk (which, of course, may - and in most cases will - be overlapping) 
and to define specific properties regarding maps Ji from the Xi into Y so that (a) it is 
comparatively easy to find (some or all) maps Ji : Xi -+ Y with the desired properties 
and (b) it is possible to construct (some or all) maps f : X -+ Y from (appropriate) 
k-tuples of maps (!1, ... , fk) by concatenation, that is, by putting 

f (x) := fi(x) 

whenever x E Xi, - provided this is well-defined, that is, provided x E Xi n Xj implies 
fi(x) = fj(x) for all i,j E {1, 2, ... , k}. 

For instance, if we try to find a map f : X -+ Y := { ±1} such that, for some 
pregiven matrix C = ( Cij )i,jEX of real numbers, the value of the quadratic function 

C(f) := I: Cijf(i)f (j) 
i,jEX 

is maximized, we may try to find overlapping subsets X 1, X2 ~ X with X1 U X2 = X 
and with an intersection Z := X1 n X 2 such that Cij = Cji = 0 for all i E X1 \Z and 
j E X2 \Zin which case we have 

max ( C(f) : f E {±l}x) = 
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max (01(!*) + 02(!*) + -~ Cijf*(i)f*(j) : f* E {±l}z) 
i,JEZ 

where for any f* E {±l}z the values 0 1(!*) and 02(!*) are defined in terms of the 
following optimization problems: put 

C;, ·= tJ 
{ 

C" 
tJ • 0 

and 

C~. ·= tJ 
{ 

C" 
tJ . 0 

if i,jEX1 and {i,j}<f:.Z 
if i,j E Z 

if i,jEX2 and {i,j}<f:.Z 
if i,j E Z 

and define Ca(!*) (a= 1, 2) by 

Ca(!*) :=max(.~ c0J~(i)f~(j)) 
i,JEXa 

where f~ runs over all extensions off* to Xa, that is, over all maps from Xa. into {±1} 
with J~lz = f*. 

While this gives a handle to actually solve the original optimization problem exactly 
provided that can be done with the three resulting smaller problems, it for sure reduces 
the original search space of cardinality 2#X to a search space of cardinality 2#Z where 
for each point in that small search space two search spaces of cardinality 2#(Xi \Z) and 
2#(X2 \Z), respectively, need to be investigated separately so that altogether the trivial 
upper bound 2#X for the time complexity of the original problem can be replaced by 
the number 2#Z (2#(Xi \Z) + 2#(X2 \Z)) = 2#Xi + 2#X2 of all points in the total "fibered" 
search space 

u ({!! E {±1}X1 
: f{lz = !*} u {J; E {±l}x2 

: 1;1z = !*}). 
/*E{±l}Z 

Yet, even if the three smaller problems cannot be solved exactly, searching heuris­
tically for maps f* : Z -+ {±1} with a large value of L,i,jEZ Cijf*(i)f*(j) and then 
extending them heuristically to maps f~ : Xa -+ Y with large values of 

I: c0f~(i)f~(j) 
i,jEXa 

might lead to good, if not optimal solutions of the original problem ( and this applies 
even if the matrix entries Cij with { i, j} <f:. X1 and { i, j} <f:. X2 are very small compared 
to the other ones but not necessarily equal to 0). 

Clearly, this idea is the starting point for many dynamic programming solutions 
of complex problems, e.g. the spin-glass optimization problem or the ( closely related) 
so-called small parsimonious tree problem (cf. [12],[13),[14]). 

Analysing the idea a bit more systematically suggests to look for a good concept 
of embedding complexity, that is a concept which measures how intricately a given set 
S = S(X) is embedded into a large product set IT Yi - with a generally large index set X 

iEX 
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and generally small Yi - by a family of maps Pi : S --+ Yi ( i E X) or, more precisely, how 
easily the image S(X) of the set S can be described in terms of its projections S(X') 
onto smaller product sets TI Yi where X' runs through appropriate - and hopefully 

iEX' 
quite small - subsets of X. 

In the above example, a natural choice is 

X = X(X, C) := {(i,j) E X 2 Cij #- O} 

for the index set X and 
Y(i,i) := { ±1} {i,j} 

for the individual factor sets Y(i,j) ( ( i, j) E X) into which the search space S := { ±1 }x 
is projected via restriction by 

P(i,j) : s--+ Y(i,j) : f Hf : {i,j}· 

Clearly, defining weight functions 

W(i,j) : Y(i,j) --+ JR 

by 
W(i,j)(g) := Cijg(i)g(j) (g E Y(i,j)) 

on every factor set Y(i,j), the quadratic function C(f) can now be expressed "linearly" 
as a simple sum 

L W(i,j) (P(i,j) (!)) 
(i,j)EX 

of the weights of its projections and could be maximized by independent maximization 
in each component if the image S(X) of S would coincide with the full product set 
TI(i,j)EX Y(i,j)· Yet, even if this ideal situation is not provided by the given data, the above 

assumption Cij = 0 unless { i, j} ~ X1 or { i, j} ~ X 2 implies that an element (g(i,j)) (i,j)EX 

from TI(i,i)EX Y(i,j) is in S(X) if and only if its two projections onto TI(i,j)EXi Y(i,i) and 
TI(i,j)EX2 Y(i,j) - with X0 := X(Xm ClxaxxJ = { (i, j) E X : { i, j} ~ X0 } (a = 1, 2) 
- both are contained in the correspondingly defined subsets S(X1 ) and S(X2 ). And 
it is exactly this simple fact regarding the embedding of S = { ±1 }x into the product 
TI(i,i)EX Y(i,i) on which the above proposal for reducing the given optimization problem 
to a family of considerably less complex problems is based. 

Similarly and more generally, associating to any (simple) graph r = (V, E) with 
vertex set V and edge set E ~ { e ~ V : #e = 2}, the embedding of S := { ±1} v into the 
product TieEE{±l}e given, as above, by restriction Pe: S--+ {±lY: f H Jl{e} (e EE), 
one sees easily that the tree width of r can be invoked to provide a good measure for the 
complexity of that particular embedding and, hence, to provide means to solve problems 
related to graphs by dynamic programming procedures based on a Divide&Conquer 
strategy or to evaluate the efficiency of local optimization procedures. 

Yet, we will not delve deeper into the abyss of abstract combinatorial complexity 
theory here. Rather, as promised in the title of this contribution, we will discuss two 
recent and rather successful applications of the Divide&Conquer principle in the molec­
ular sciences - with the intention of (a) just demonstrating once more its wide range of 
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applicability and introducing new fields of exploration and (b) of underlining the well­
known facts that (bl) it is rarely clear at the beginning how to break up efficiently a 
given complex task into manageable subtasks, and that there is no routine all-purpose 
procedure of doing this systematically, and that (b2) even if an efficient way of doing 
this is anticipated, lots of additional efforts are needed to make such an idea really work. 

The examples we want to discuss are the following two: 

• a procedure for fast and complete enumeration of fullerene structures ( cf. [23]) and, 

• an algorithm for fast and reliable simultaneous alignment of sizeable families of 
biomolecular sequences. 

The first example will demonstrate how the Divide&Conquer principle can be used 
to find efficiently all solutions of a complex problem by (a) first solving recursively a 
comparatively simple problem and (b) devising clever ways of glueing together appropri­
ate pairs and triples of solutions of the simpler problem to find solutions of the original 
problem (and (c), of course, establishing beforehand theoretically that every solution 
can be constructed that way). The resulting computer program has already found many 
important applications in Carbon chemistry. 

In the second example, the Divide&Conquer principle is used to generate heuristic 
(suboptimal) solutions for the task of aligning biomolecular RNA-, DNA- or amino­
acid sequences so that phylogenetically and/ or structurally corresponding sites in the 
individual sequences will be recognized by being assembled in just one column provided 
the given sequences are spelled out horizontally, one above the other. This is achieved 
by introducing gaps here or there into these sequences so as to make up for apparent 
inconsistencies between them, in particular to bring them all up to the same length, 
and to maximize overall similarity along the resulting columns. Sequence alignment is 
a fundamental task in string processing, and it is performed as a daily routine around 
the world in all computer laboratories servicing the molecular biosciences. 

It should be noted that while these two algorithms still are quite conventional in 
that they are to be performed either by hand or, better, by a computer and not by the 
molecules themselves these algorithms are designed to analyse, it is not just a presently 
very fashionable and fund-raising idea to consider the molecular processes themselves 
from an algorithmic point of view, that is, as processes which actually perform more 
or less well-defined computations. Indeed, what we see happening presently in the 
molecular sciences is a continuously increasing intermingling of "wet" experimental and 
"dry" algorithmic approaches, each being used to drastically enhance and partly control 
the efficiency of the other, and we, the Mathematical Programming community, should 
better be aware (a) of the enormous potential expansion of the applicability of ideas 
relating traditionally to mathematical computer programming and (b) of the changes 
that that will require and bring about. This is evidenced for instance very clearly by 
the newly emerging field of combinatorial chemistry where Divide&Conquer strategies 
are implemented experimentally right at the heart of even the most basic experimental 
set-up. 
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2 Fullerene Structure Enumeration 

From a purely combinatorial, graphtheoretical point of view, a fullerene isomer structure 
is a finite planar 3-regular graph of all whose faces are exclusively hexagons or pentagons 
(cf.Fig. la). It follows easily from Euler's formula (in conjunction with standard book­
keeping devices) that any such graph must contain exactly 12 pentagons and that the 
number n of its vertices and the number N of its hexagons are related by the formula 

n = 20 + 2 · N. 

Methods for reliable and efficient enumeration of fullerene isomers are presently a much 
discussed topic (cf. [22],[25],[28] [29],[37],[39],[3]). Most of the procedures applied so 
far use a bottom-up strategy: starting from a small subconfiguration, fullerene structures 
are generated by enlarging this subcdnfiguration stepwise in all conceivable ways ( or in 
some particular ways assumed to be sufficient), e.g. by using one or the other variant 
of the so-called spiral algorithm (cf. [28],[39],[3]). These methods often meet prohibitive 
time constraints. So, quite a few implementations try to reduce complexity by shortcuts 
which then endanger reliability. Hence, none of these methods which is fast enough to 
be applicable for more than, say, 80 C-atoms can guarantee complete lists of fullerenes 
while those accepting possibly incomplete lists cannot go much beyond 100 C-atoms. 

It may therefore be remarkable ( cf. [6]) that a top-down Divide&Conquer strategy 
allows to design an algorithm for fullerene enumeration which is absolutely reliable 
- that is, it guarantees complete lists - and simultaneously amazingly efficient: On 
an HP9000/735, a complete enumeration of e.g. all 0 60-structures (of which there are 
1812) needs about 12 seconds: 6.5 seconds for the generation of sufficiently many such 
structures and 5.5 seconds for testing structural isomorphism. For fullerenes with about 
100 atoms, the program appears to be faster by more than 6 orders of magnitude than 
previous (incomplete) ones. 

In our algorithm, the Divide&Conquer strategy is applied using Petrie paths ( cf. [9]) 
to reduce the problem of enumerating all fullerene structures with a given number of 
C-atoms to solving corresponding pairs or triplets of PentHex Puzzles (cf. Fig.land 2): 

A Petrie path in a fullerene is a sequence of edges e1 , e2 , ... , ek such that any two 
consecutive edges ei, ei+1 (i = 1, ... , k - 1) share precisely one vertex (and, hence, they 
also share one face because the graph is 3-regular), while no face is shared by any three 
consecutive edges ei, ei+I, ei+2 (i = 1, ... , k-2). In other words, Petrie paths are zig-zag 
paths along the network of edges provided by a fullerene which, at each vertex they 
meet, turn right or left alternatively. 

It is clear that for each pair e1 , e2 of edges which share precisely one vertex and 
for each k ~ 2, there exists precisely one Petrie path e1 , e2 , ... , ek and that starting 
with an arbitrary such pair e1 , e2 , there must exist a smallest k ~ 2 such that the end 
vertex of ek coincides with one of the vertices which have been met before. In Fig. 1, 
this vertex is indicated by a full circle. If this is the vertex of e where our Petrie path 
started and if ek-I, ek, and e1 do not share a face, we have a closed Jordan Petrie path 
which cuts our spherical fullerene structure into two hemispheres, both of which have a 
zig-zag boundary consisting of precisely k edges (see Fig.la). Otherwise, we may reverse 
our direction and follow the reverse Petrie path starting with e2 and then continuing 
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with e1, eo, e_1, ... , e_z until again, for some l ~ 0, we meet some vertex visited before 
(including, of course, the vertices of e1, e2 , ... , ek), indicated by an open circle. In this 
case the total path e-1, e-1+1, ... , e0 , e1 , ... , ek cuts our spherical fullerene structure in 
precisely three patches, either of the form depicted in Fig.lb or of that depicted in Fig.le. 

In each case, the boundaries of these patches are again zig-zag paths ( that is, the third 
edges emerging from the vertices along the boundary - those which are not followed by 
our path - alternatively stick out of and into the patch) except for at most two localities 
- involving the vertices where our Petrie path met itself in cases 2 and 3 - where at least 
two consecutive vertices at the boundary have their third edge sticking out. Clearly, 
once we know those ( either two or three) whole patches, we can glue them together 
appropriately to regain our fullerene. 

It remains to discuss how the structure of these patches can be (re-)constructed. 
This leads to the concept of PentHex Puzzles: A PentHex Puzzle is given by separating 
a given finite set S of points - called boundary vertices - on a circle into two disjoint 
subsets, say A and B. The associated task is to (re )create fullerene patches by filling 
the disc inside the circle by a planar graph so that this graph contains the circle line, its 
vertices on the circle line are precisely the points in S ( that is, the boundary vertices), 
all of its vertices except those in A have degree 3 while those in A have degree 2, and all 
of its faces are exclusively pentagons or hexagons. Invoking Euler's formula again, one 
easily sees that the number of pentagonal faces in any such patch equals 6 + #B - #A 
- so, we must have #A - #B ~ 6. Obviously, any of the above patches is a solution of 
the PentHex Puzzle defined by its boundary line, with A the set of vertices along the 
boundary where the third edge sticks out of and B those where it sticks into the patch. 
Moreover, the way our patches were constructed in terms of Petrie paths ensures that 
only convex PentHex Puzzles have to be solved, that is, those where no two consecutive 
vertices are in B. 

In cases like that depicted in Fig.la, that is if #A = #B, the structure of such a 
puzzle can be encoded by just one number M ( = #A = #B). 

If #A > #B, the edges with both incident vertices in A divide the boundary into 
j := #A - #B > 0 segments. In this case, the sequence (M1 , M2 , ••• , Mj), denoting 
consecutively the numbers of vertices in Bin these segments, can be used to encode the 
structure of the puzzle (cf. Fig.2). · 

Fortunately, convex PentHex Puzzles can be solved recursively quite easily. In case 
#A= #B =: M, any solution starts with a given number H ~ 0 of inscribed hexagon 
circles, each of length Mand each reproducing the given puzzle in its interior (cf. Fig.3a), 
until the first pentagons are met in which case removing the next inscribed circle of 
pentagons and hexagons leads to a PentHex Puzzle of type ( M1, ... , Mj) with j the 
number of pentagons in that circle ( and M = j + M1 + ... + Mj). And in case #A > #B, 
we can start at an edge with both of its vertices in A and proceed either to the next 
such edge (as indicated in Fig.3b) or until we meet a pentagon (Fig. 3c). Convexity 
guarantees that this will never interfere with other parts of the boundary of the given 
patch. This way, the PentHex Puzzle can be reduced to one with a smaller number of B­
type vertices. The inverse of the described reduction process can be used to construct all 
solutions of convex PentHex Puzzles with - in principle - any given number of hexagons, 
starting from a pentagon or a hexagon. 
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A B A c A B A c 
60: 1 88: 81 738 136: 79 362 
62: 0 90: 99 918 138: 98 541 
64: 0 92: 126 409 140: 121 354 
66: 0 94: 153 493 142: 151 201 

20: 1 68: 0 96: 191 839 144: 186 611 
22: 0 70: 1 98: 231 017 146: 225 245 
24: 1 72: 1 100: 285 914 148: 277 930 
26: 1 74: 1 102: 341 658 150: 335 569 
28: 2 76: 2 104: 419 013 152: 404 667 
30: 3 78: 5 106: 497 529 154: 489 646 
32: 6 80: 7 108: 604 217 156: 586 264 
34: 6 82: 9 110: 713 319 158: 697 720 
36: 15 84: 24 112: 860 161 160: 836 497 
38: 17 86: 19 114: 1 008 444 162: 989 495 
40: 40 88: 35 116: 1207119 164: 1170 157 
42: 45 90: 46 118: 1 408 553 166: 1 382 953 
44: 89 92: 86 120: 1674171 168: 1 628 029 
46: 116 94: 134 122: 1 942 929 170: 1 902 265 
48: 199 96: 187 124: 2 295 721 172: 2 234 133 
50: 271 98: 259 126: 2 650 866 174: 2 601 868 
52: 437 100: 450 128: 3 114 236 176: 3 024 383 
54: 580 102: 616 130: 3 580 637 178: 3 516 365 
56: 924 104: 823 132: 4 182 071 180: 4 071 832 
58: 1 205 106: 1 233 134: 4 787 715 182: 4 690 880 
60: 1 812 108: 1 799 136: 5 566 948 184: 5 424 777 
62: 2 385 110: 2 355 138: 6 344 698 186: 6 229 550 
64: 3 465 112: 3 342 140: 7 341 204 188: 7 144 091 
66: 4 478 114: 4 468 142: 8 339 033 190: 8 187 581 
68: 6 332 116: 6 063 144: 9 604 410 192: 9 364 975 
70: 8 149 118: 8 148 146: 10 867 629 194: 10 659 863 
72: 11190 120: 10 774 148: 12 469 092 196: 12 163 298 
74: 14 246 122: 13 977 150: 14 059 173 198: 13 809 901 
76: 19 151 124: 18 769 152: 16 066 024 200: 15 655 672 
78: 24 109 126: 23 589 154: 18 060 973 202: 17 749 388 
80: 31 924 128: 30 683 156: 20 558 765 204: 20 070 486 
82: 39 718 130: 39 393 158: 23 037 593 206: 22 606 939 
84: 51 592 132: 49 878 160: 26 142 839 208: 25 536 557 
86: 63 761 134: 62 372 162: 29 202 540 210: 28 700 677 

Table 1: Numbers of fullerenes and IPR-fullerenes, with numbers of fullerenes with n and IPR­

fullerenes with n + 48 atoms in one row. A stands for the number of vertices, B for the number of 
fullerenes and C for the number of IPR-fullerenes. 

By using an appropriate form of dynamic programming - and lots of care in setting 
it up explicitly, that is, in implementing it (using a sophisticated lexicographic coding 
method to also make sure that the resulting list of fullerene structures never contains 
two structurally isomorphic copies, thereby taking orientation either into account or 
neglecting it), and in using the memory -, we have computed all fullerene structures 
for up to n = 170 atoms, as well as for up to n = 214 atoms those special structures 
which obey the isolated pentagon rule (IPR) - that is, structures where every pentagon 
is surrounded by hexagons, only. 

Table 1 records the number of structures we have found. It seems remarkable that 
for n ~ 38 the number F(n) of all fullerene isomers with n atoms roughly coincides with 
the number FrPR(n + 48) of all IPR-fullerene isomers with n + 48 atoms, and that for 
n divisible by 4 the difference between F(n) and F(n - 2) roughly coincides with the 
difference between F(n + 2) and F(n). 

The method extends easily to fullerene-like molecular cage (and the related patch) 
structures which include quadrangles and/or triangles and it can also be applied (though 
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not simply) to handle those which include heptagons etc. [19) as well as to 4-regular 
planar graphs or even some types of regular graphs of higher genus and further related 
problems (cf. [4),[5]). 

To summarize: Given any fullerene structure, that structure can be broken up into 
two or three convex fullerene patches in several, yet not too many distinct ways, lists 
of possible patches can be generated recursively quite easily by solving the associated 
PentHex Puzzles, and the given - as well as any other such - structure can thus be 
found by glueing together appropriate pairs and triples of patches in all legitimate ways. 

This is surely a not quite canonical way of applying the Divide&Conquer principle 
which is generally used to find one structure, map ( or whatever) out of a virtually very 
large list of such structures, maps (or whatever) rather than to create such a list; yet, 
it has proven to be an amazingly efficient application of that principle, speeding up 
the enumeration process by quite a few orders of magnitude compared with competing 
solutions - and adding reliability regarding the completeness of the lists of obtained 
structures as an extra bonus. 

3 A Fast and Reliable Method for Simultaneous 
Multiple Sequence Alignment 

3.1 The Alignment Problem 

Our second example is a new algorithm for producing close to optimal solutions of the 
multiple sequence alignment problem, called the Divide& Conquer Alignment algorithm 
(DCA, [40)). Multiple sequence alignment is a well-studied but still not satisfactorily 
solved problem in string processing having its most important application in compu­
tational molecular biology. Indeed, many important conclusions to be drawn from the 
sequence of residues in a big biomolecule, that is, of amino acids in a given protein or 
that of nucleotides in a given RNA or DNA molecule, depend crucially on comparing 
that sequence with other such sequences by means of appropriately constructed align­
ments. For example, such alignments are used to detect homologues among sequences 
in genome databases, to study phylogenetic relationships, or to identify structurally or 
functionally important parts of the molecule in question. 

Consequently, establishing fast and reliable tools for sequence alignment is one of the 
most fundamental tasks in present day computational biology, enjoying an abundance 
of publications and software contributions (see [32), [8), or [48)). 

The overall strategy one has to follow for producing reliable alignments is quite 
obvious: by inserting gaps here and there into the sequences one wants to align, one 
tries to come up with sequences of equal length so that the sequence entries at each 
site - that is, in each column when the (aligned) sequences themselves are spelled out 
horizontally, one below the other - exhibit a biologically meaningful diversity, possibly of 
not too large a degree, which can be interpreted in a coherent way. For example, one may 
head for a phylogenetic interpretation implying that the sequence entries at a given site 
have evolved from a common ancestor entry, or for a structural interpretation implying 
that the aligned residues are placed at similar locations within the folded molecule. 
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Consequently, because it is the similarity of sequence patterns which is supposed 
to signal phylogenetic and/or structural kinship between the sequences, the aim of 
sequence-alignment procedures is to maximize overall similarity. Thus, all that is re­
quired is 

• specifying in a quantifyable way the term overall similarity, and 

• constructing algorithms which produce alignments which maximize that overall 
similarity or, if this turns out to be too time consuming, at least exhibit a rather 
high degree of that similarity. 

While the first task needs input from biology as well as from mathematical modelling, 
the second task is a purely mathematical one. Unfortunately, many ideas relating to the 
first task cannot be tested, and important structural parameters suggested by these ideas 
cannot be evaluated easily unless the second task has been dealt with appropriately. 

To tackle that second task, the starting point is clearly to find good methods for 
aligning two sequences - that is, for pairwise alignment - and algorithms for solving 
this problem were developed successfully already a quarter of a century ago ([33],[47]). 
These algorithms follow the well known dynamic programming method. However, their 
natural and straightforward generalizations to three or more sequences (together with 
the natural extension of quantifying overall similarity in terms of the so-called sum­
of-pairs score, see below) quickly run into prohibitive memory and time constraints as 
number or length of sequences increase. Therefore, almost all techniques for aligning 
larger sets of sequences are based on first performing a series of pairwise alignments 
( using, if necessary, appropriate adaptations of the standard algorithm aligning profiles 
of sequences rather than sequences) and then constructing a multiple alignment in a 
"hill-climbing" manner (see for example [11],[30] for reviews). However, these methods 
(e.g. CLUSTAL [44], DFALIGN [16], GENALIGN [27], MULTAL [43]) though fast, can 
be used with some reservation only for the following two reasons: they easily run into 
local, but not necessarily global optima, - a risk, which is inherent in any hill-climbing 
method - and they often do not even accept a well-defined optimality criterion for 
multiple sequence alignment. 

In order to circumvent these problems, one has to stick to the original task of try­
ing to construct high quality simultaneous alignments. In the late eighties, significant 
progress with this technique was made by CARRILLO and LIPMAN [7]: it became possi­
ble to align simultaneously and optimally up to between six and eight protein sequences 
(of medium length and comparatively high pairwise similarity) in some minutes. This 
was achieved by cutting down the (high-dimensional) search space used in dynamic 
programming, by considering projections of precalculated heuristic alignments onto the 
(two-dimensional) "boundaries" of that space. Yet, even when implementing this idea 
using highly sophisticated implementation techniques, the resulting program, called MSA, 
often requires more time and/ or memory space than available when ever it has to deal 
with larger data sets [18]. 

Hence, for dealing with such cases, we propose a new procedure based on a simple 
but amazingly efficient heuristics which we have called the Divide& Conquer Alignment 
algorithm, DCA ([15],[45],[42]). 
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The general idea of DCA is rather simple: Each of the sequences is cut in two by 
cutting it just behind a suitable slicing site somewhere close to its midpoint. This way, 
the problem of aligning one family of (long) sequences is divided into the two prob­
lems of aligning two families of (shorter) sequences, the prefix and the suffix sequences. 
This procedure is re-iterated until the sequences are sufficiently short so that they can 
be aligned optimally by MSA. Finally, the resulting short alignments are concatenated, 
yielding a multiple alignment of the original sequences. 

Of course, the main difficulty with this approach is how to identify those slicing-site 
combinations which lead to an optimal or - at least - close to optimal alignment. Here, 
a heuristic based on so-called secondary-charge matrices which are used for quantifying 
the compatibility of slicing sites in distinct sequences proved to be successful. Several 
ways of speeding up the search for these slicing sites are possible some of which are 
implemented already. They also will be discussed below. 

3.2 A Formal Set-Up: The Weighted Sum of Pairs Score for 
Multiple Sequence Alignment 

Next, we define multiple alignments formally and we describe the basic principles of 
evaluating quantitatively the quality of a given multiple alignment (for further reference 
see [ll],[38), and (48]). 

Suppose that we are given a family S = (s1, ... , sk) of k sequences: 

where each sequence entry Bij represents a letter from a given finite alphabet A. An 
alignment of the sequences Sis a matrix M = (mij)i$i$k,l$j$N where 

• mij EAU { - }, with '-' denoting the gap letter supposed not to be contained in 
A, 

• the rows mz := mn ... mlN of M considered as sequences of symbols from AU{-}, 
reproduce the sequences Sz upon elimination of the gap letters (1 ::; l ::; k), 

• the matrix M has no column, only containing gaps. 

For example, one alignment of S = {s1 , s2} with s1 = GTATGCCG and s2 = GTGTCGG is 
given by the matrix 

and another one is given by 

M ·= (GT AT G CC G -) 
. GTGT--CGG ' 

M ' ·- (GT AT G CC - G) 
.- G - - T GT C G G . 

We denote the set of all alignments of S by M8 . Assume that we are given a pairwise 
distance 

d: (Au{-} )2-+ lR 
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( the distances given e.g. by a substitution cost matrix ( cf. [10]) with appropriately 
chosen gap penalties1 d(a, -) for all a E A). For each pair of rows mp, mq in an 
alignment ME Ms, define 

N 

Wmp,mq := L d(mpi, mqi), 
i=l 

and denote by Wapt(Sp, Sq) the minimum of Wmp,mq, taken over all alignments M. 
The weighted sum of pairs score for an alignment M E Ms relative to a given family 

of (generally non-negative) weight parameters ap,q (l :s; p < q :s; k) is defined by 

w(M) := L ap,q · Wmp,mq· 
1$p<q$k 

The multiple alignment problem that we aim to solve is to search for matrices M E Ms 
whose weighted sum of pairs score w(M) is small. 

The logic for introducing the weight parameters apq (from which procedures for 
choosing them appropriately are to be deduced) is the following one: In general, any set 
of related biological sequences contains some sequences which are more closely related 
to one another than to the remaining ones, and highlighting their similarity might often 
be more important than forcing them to independently conform to the patterns of the 
other sequences. On the other hand, as almost any sample of sequences is biased in one 
way or the other (even, most probably, the sample provided by Nature itself), a perhaps 
overrepresented subset of highly similar sequences in a data set should not be allowed 
through its sheer size to force all the other sequences to conform to its patterns. Boths 
goals, highlighting similarity between closely related sequences and discounting overrep­
resentation of certain subclasses of sequences can (hopefully) be achieved by choosing 
appropriate weight factors,- one might even consider using homology-dependent dis­
tance scores for each given pair of sequences. 

As mentioned above, optimizing w(M) can be solved in principle by straightforward 
dynamic programming (cf. [33, 38]). However, this is possible only in theory at present: 
in practice, the space and time requirements for dynamic programming, even in its most 
sophisticated forms, make it virtually impossible to deal with, say, five not highly homol­
ogous sequences of length approximately 1000. However, such tasks present themselves 
easily when dealing with problems from biological sequence analysis. 

3.3 The Divide&Conquer Approach 

How does the DCA procedure attack this problem? As mentioned already above, given a 
family of sequences s1, ... , sk of length n1, ... , nk, respectively, each of these sequences is 
to be cut just behind an appropriately chosen slicing site somewhere near to its midpoint. 
This way, the original alignment problem is reduced to the two subproblems of aligning 
the two resulting families of prefix and suffix subsequences, respectively. These will 
be handled by the same procedure in a recursive manner. The recursion stops when 

1 More sophisticated gap-penalty functions have been considered, e.g. the so-called affine gap penalty, 
which works for pairwise as well as for multiple sequence alignment [1] [17]. 
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a certain stopping criterion is fulfilled. The remaining subsequence families are then 
aligned by MSA [24],[18), and the resulting alignments are concatenated. 

The main problem is to find a k-tuple of ideal slicing sites (c1, c2, ... , ck) (with 
0 < cp :::; np for p = 1, ... , k) so that the simple concatenation of the two optimal align­
ments of the prefix sequences s1 (:::; c1), s2(::; c2), ... , sk(::; ck) and the suffix sequences 
s1 ( > c1), s2 ( > c2), ... , sk ( > ck) forms an optimal alignment of the original sequences2. 

Obviously, for any fixed site c\ (0 :::; c1 :::; n1), there exists a (k - 1)-tuple of slic­
ing sites (c2(c\), ... , ck(c1)), such that (c1, c2(c1),,.,, ck(c1)) forms an optimal k-tuple. 
Unfortunately, finding exactly these sites requires approximately as much time as solv­
ing the original optimization problem directly. So, of course, this is not the method of 
choice. 

Instead, we aim to find C-optimal slicing sites which can be computed in terms of 
pairwise sequence comparisons, only. More precisely, we use the dynamic programming 
procedure to compute, for all pairs of sequences (sp, sq), and for all slicing sites Cp of Sp 
and Cq of sq the secondary charge Csv,sq [ cp, cq] defined by 

which quantifies the additional charge imposed by forcing the alignment of Sp and Sq 
to optimally align sp(::; cp) and sq(::; cq) as well as Sp(> cp) and Sq(> cq), rather than 
aligning Sp and Sq optimally. The calculation of the matrices Csv,sq can be performed by 
computing forward and reverse matrices in a similar way as described in [21),[31), [46]. 
Note that there exists, for every fixed cp, at least one vertex cq(cp) with Csp,sq[cp, cq(cp)] = 
O which can be computed easily from any optimal pairwise alignment of Sp and Sq, The 
problem multiple alignments have to face, is that cq (ep(c1)) might not coincide with 
cq (c1), that is, that given pairwise optimal alignments may be incompatible with each 
other - much in analogy to frustrated systems considered in statistical physics. 

To search for good k-tuples of slicing sites, we define the multiple additional charge 
C(c1, ... , ck) imposed by slicing the sequences at any given k-tuple of slicing sites 
(c1, ... , ck) as a weighted sum of secondary charges over all projections (cp, cq), that 
is, we put 

C(c1, c2, ... , ck) := L ap,q · Csp,sq[Cp, Cq], 
1::;p<q::;k 

where the ap,q are the same sequence-dependent weight factors as above. 
Our proposition is now that using as the preferred slicing-site combinations those 

C-optimal k-tuples that minimize - for a given fixed slicing site c1 of s1 - the value 
C(c1, c2, ... , ck) over all slicing sites c2, ... , ck of s2, ... , sk, respectively, will result in 
very good, if not optimal multiple alignments because, this way, the mutual frustration 
is distributed as fairly as possible. 

In conclusion, this leads to the following general procedure: 
Algorithm DCA ( s1, s2 , ••. , sk, L) 

If miniE{l,2, ... ,k} { ni} :::; L 

2Here, sp(~ cp) denotes the prefix subsequence of Sp with indices running from 1 to cp and sp(> cp) 
denotes the suffix subsequence of Sp with indices running from cp + 1 to np, 1 ~ p ~ k. 
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then return the optimal alignment of s1, s2, ... , sk (using e.g. MSA); 
else return the concatenation of 

DCA(81(s c1), s2(s c2), ... , sk(S ck), L) 
and DCA(s1(> c1), s2(> c2), ... , 8k(> ck), L); 

where (c1, c2, ... , ck) := calc-cut(s1, s2, ... , sk)· 

In the following section, we describe how to realize the subroutine calc-cut which com­
putes a k-tuple of C-optimal slicing sites. 

3.4 Efficiently Calculating the Slicing Sites 

In a naive implementation, the search calc-cut for C-optimal slicing sites (c1, c2, ... , ck) 
needs time O(k2n2 + nk-1), where n is the length of the longest of the sequences 
s1, s2, ... , sk: the computation of all pairwise secondary matrices takes O(k2n2) time 
and, for given i\, all possible combinations of c2, ... , ck have to be checked to find the 
tuple that minimizes C in altogether O(nk-l) single steps. 

We reduce this running time and the required memory (which is of order O(k2n2 ) 

for the naive version) by first precalculating an estimate C for 

Copt(c\; 81, ... '8k) := min 0((\, C2, ... 'ck)· 
c2, ... ,ck 

This allows us to prune the search space enormously: Because the multiple additional 
cost C(i\, c2, ... , ck) is defined as a sum of non-negative numbers, it is possible to exclude 
any tuple of slicing sites (<\, c2, ... , ck), whenever one of the summands is larger than 
the minimum C found so far. In particular, for fixed c1, no Cq with a 1,q • C51 ,sq [c1, cq] 2:: C 
can ever lead to a smaller sum C. 

With this in mind, a C-optimal tuple of slicing sites can be calculated as follows: 

Function calc-cut ( 81 , s2, ... , 8k) 
1. Reorder s1, 82, ... , sk so that 81 is the longest of all sequences in question. 

2. Fix c1 := IT l; 

3. calculate and save rows rowf~q[j] := Cs1,sq[c1,j] (2 Sq S k, 1 S j S nq); 

4. locate slicing sites c2, ... , ck such that rowf~q[cq] = 0 (2 s q s k); 

5. calculate the estimate 3 

c := L ap,q . Csp,Sq [cp, Cq] = L ap,q. Csp,Sq [cp, Cq], 
1$p<q$k 2$p<q$k 

6. Calculate lower and upper bounds lq and Uq such that a1,q · rowf~q[j] 2:: C for all j < 
lq and for all j > uq (2 S q S k). The intermediate segment rowf~q[lq], ... , rowf~q[uq] 
forms the relevant part of each row rowf!q· 

3Some additional approaches have been developed which work by using (i:i, c2 , ... , ck) as the starting 
points and then sucessively minimize C(c1, c2, ... , ck) over some Ci (i E {2, ... , n}) while keeping the 
other slicing sites Cj (j =/:- i) fixed. This leads to significantly smaller estimates for C than the one 
described above [35). 
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7. Given these bounds, compute and save the relevant parts of the matrices Csp,sq, 
defined by Csp,sq[cp,cq], with lp s; Cps; Up and lq s; Cq s; Uq, 

8. Search for better slicing-site combinations (c1, c2 , .•• , ck) within the relevant parts 
of the rows rowtq and the matrices Csp,sq. Thereby, the sum C can be computed 
step by step and the search can be stopped, if an intermediate result is larger than 
c. 

During this final search, better values for C may be obtained, too, so that, with decreas­
ing values of C, the relevant part of the rows rowf~q can possibly be further reduced, 
diminishing the search space even more. 

Obviously, the worst case time and space complexity of this approach still remains of 
the order of O(k2n2+nk-l) and O(k2n2), respectively, for the (very improbable) case that 
the bounds li and ui can never be increased or decreased, respectively. But for biological 
sequences, the effect is enormous: For calculating the first tuple of slicing sites in the 
recursion (which takes far the longest time of all slicing-site computations) replacing 
n by the length r := maxp=2, ... ,k{ Up - lp + 1} of the longest of the remaining relevant 
parts of the rows, usually results in a reduction of at least two orders of magnitude per 
sequence (for small k), yielding memory savings for the matrices by several orders of 
magnitude and reducing the expected time and space complexity to O(k2n2 + rk-l) and 
O(kn + k2r2

), respectively, (cf. [41]). 

3.5 Further Improvements 

To speed up the procedure for still larger k, an additional preprocessing step can be 
used: To determine, say, the slicing site ck of sk, the optimal additional charge of 
any subfamily s~ := s1, s;, ... , s~ of our sequences not including sequence sk can be 
used to compute a better estimate for those values of 0 81 ,sk [c1, ck] which need further 
consideration: Clearly, for every slicing site ck of sk we have 

for all possible slicing sites c2, ... , ck-l of s2, ... , sk-l· Hence, we can exclude a slicing 
site ck from further consideration if for some such family s~, s;, ... , s~ and some upper 
bound C of Copt(c1; s1, ... , sk), we have 

a1,k · Cs1 ,sk[c1, ck] ~ C - Copt(c1; s~, ... , s~), 

as this implies Cs; C(c1, c2, ... , ck) for all slicing sites c2, ... , ck-1 of s2, ... , sk-l· 
Using this principle to its fullest extent would require computing 3 = (~) times the 

optimal slicing sites for three sequences in case of altogether four sequences, 6 = (~) 

times the optimal slicing sites for three and - based on that - 4 = (!) times the optimal 
slicing sites for four sequences in case of altogether five sequences, and so on. Hence, 
for k sequences, 

2k-l _ k _ l = (k - 1) (k - 1) (k - 1) 
2 + 3 + ... + k-2 
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additional optimal slicing-site combinations for 3, 4, ... , k - 1 sequences would have to 
be computed. Clearly, this would always be worth the trouble if the average rate a by 
which - at each step - the average length a of the relevant part of each sequence in 
question is reduced, is just ( a - 1) / a: indeed, if a < ( a - 1) / a, then 

k-2 (k - 1) . . k-2 (k - 1) . L . (ai-1. a)i < L . (a. a)i < (1 +a. at-1 :::; ak-1. 
i=2 'l, i=2 2 

In addition, computing the optimal slicing-site combination 1\, ... , c,,, for a fixed 
slicing site c1 of s1 and any given sequence family s~ := s1, s~, ... , s~ may also help to 
improve the estimates C for Copt(c1; s~, ... , s~, s~+1) for each new sequence s~+l in view 
of 

K, 

Copt(c1; s~,,,,, s~, s~+l) :::; Copt(c1; s~,,,,, s~) + L O!p,1,,+1Cs~,s~+l [cp, c,,,+1] 
p=l 

for each slicing site c,,,+1 of s~+1 · 
And finally, the variety of optimal slicing sites coming up in such a computation may 

also be useful for evaluating the rate of mutual frustration as well as the reliability and 
the quality of the slicing sites finally chosen and of the alignment(s) resulting from that 
choice. 

A different approach to the time problem (which can, of course, be combined with 
the one outlined just above) is motivated by the regular shape of the matrices Csp,sq. 
It utilizes the observation that the entries in a row of a secondary charge matrix from 
left to right generally start with rather high values, decrease almost monotonically for a 
long time, reach the value zero at the slicing site corresponding to an optimal pairwise 
alignment, and then increase almost monotonically again to high values. Thus, for 
each row i, lp :::; i :::; up, of the secondary charge Csp,sq, we can define lower and upper 
monotony bounds Lsp,sq [i) and Usp,sq [i], given by the formulae: 

Lsp,sq[i] ·- min{ j E {lq + 1, ... ,uq} I Csp,sq[i,j) > Csp,sq[i,j -1) }, 

Usp,sq[i] := max{ j E {lp, ... ,up -1} I Csp,sq[i,j] > Csp,sq[i,j + 1] }, 

When determining the q-th slicing site Cq, 2 :::; q :::; k, for already fixed sites c1, c2 , •.. , cq-l, 
any value of the cp-th row in the matrix Csp,sq, 1 :::; p < q, leading to a sum 

c = L O!p,p' . Csp,sp, [cp, Cpl l + L O!p,q . Csp,Sq [cp, Cq] 
1$p<p' <q 1::;p<q 

larger than C, with cq < min1:::;p<q Lsp,sq [cpl, thus gives a sum larger than C for every 
c~ :::; cq, A corresponding statement holds for U. 

With this approach, we were able to speed up DCA by a factor of 2. For more 
than 8 sequences, the improvement was even better: it is possible to align up to twelve 
sufficiently related sequences ( e.g. the homology family of a protein) in rather moderate 
time spans (often just a few seconds, sometimes some minutes). 

An addition to be tested soon is to compute, for each row i (lp :::; i :::; up) in Csp,sq 
and each j between Lsp,sq [i) and Usp,sq [i] the values 

lf,1 := min{ Csp,sq [i, j'] I lq :::; j' :::; j} 
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and 
uf} := min{ Csp,sq[i,j'] Ji~ j' ~ 'Uq} 

and to stop going left ( or right) with cq whenever an appropriate sum including ap,q • lf} 
( or ap,q • uU, respectively) rather than ap,q • Csp,sq [i, j) exceeds the given bound. On the 
expense of some more storage requirements, it can be hoped that again a considerable 
speed up will be achieved this way. 

3.6 Performance of DCA 

We have tested DCA thoroughly, using families of related random sequences as well as 
real biological data. The following are the main results of the evaluation: 

• The memory usage of DCA is in the magnitude required for standard pairwise 
alignments ( about 30 megabytes for twelve sequences of average length 250 - and 
just 16 times that much for an average length 1000) (cf. [45],[41]). 

• Compared to previous simultaneous alignment methods, the program is very fast 
(about 40 seconds for twelve sequences of average length 250) (cf. [42]). 

• The alignments are of a very high quality, in mathematical as well as in biological 
terms. For none of the analyzed random sequence families for which the opti­
mal score could be computed using MSA, the sum-of-pairs score of the alignment 
computed with DCA differs by more than 0.3 percent from the optimal score 
[41). Applied to biological sequences, DCA can compete with the best alignment 
methods currently available (cf. [20],[36]). 

• Due to the simultaneity, the computed alignments are also very well suited as 
an unbiased starting point for the reconstruction of evolutionary relationships 
(cf. [34]). 

• Because DCA approximates the optimal score very closely, new ways of testing and 
validating alternative choices for multiple alignment score functions are possible. 

• Due to the stable interdependence of the parameters of DCA and its performance, 
the behavior of the program is transparent to the user. 

In conclusion, we have shown that - although the multiple sequence alignment problem 
has been a much studied subject over the last decades - the systematic application of the 
well-known Divide&Conquer principle opens the way to a new, efficient, and effective 
simultaneous multiple sequence alignment algorithm. 
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