
Two Applications of the Divide & Conquer
Principle in the Molecular Sciences

G. Brinkman, A.W.M. Dress, S.W. Perrey, J. Stoye

No. 151 March, 1997

I . . .
. . .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/35472977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Two Applications of the Divide&Conquer Principle in
the Molecular Sciences

G. Brinkman, A.W.M. Dress, S.W. Perrey, J. Stoye

March 13, 1997

1 Introduction

One of the most powerful principles for solving complex tasks algorithmically is the
so-called Divide& Conquer Principle. It has been applied successfully for an amazingly
wide range of problems, from combinatorial optimization to matrix multiplication. Its
principal idea is to break up a given complex task T appropriately into a reasonable
number of less complex tasks T1 , ... , Tk so that, by "glueing together" appropriately
solutions of those less complex tasks, some or even all solutions of the original complex
task T can be found.

Whatever problem the original task were to address, it is often possible to rephrase
it as a task to search for certain maps f E Y x from a (generally) large set X into a
(generally) much smaller set Y, that is, for maps f : X -+ Y which exhibit a number
of very particular, well-specified properties. A Divide&Conquer strategy then can be
applied for such a search problem whenever it is possible to break up the set X into
subsets X1, ... , Xk (which, of course, may - and in most cases will - be overlapping)
and to define specific properties regarding maps Ji from the Xi into Y so that (a) it is
comparatively easy to find (some or all) maps Ji : Xi -+ Y with the desired properties
and (b) it is possible to construct (some or all) maps f : X -+ Y from (appropriate)
k-tuples of maps (!1, ... , fk) by concatenation, that is, by putting

f (x) := fi(x)

whenever x E Xi, - provided this is well-defined, that is, provided x E Xi n Xj implies
fi(x) = fj(x) for all i,j E {1, 2, ... , k}.

For instance, if we try to find a map f : X -+ Y := { ±1} such that, for some
pregiven matrix C = (Cij)i,jEX of real numbers, the value of the quadratic function

C(f) := I: Cijf(i)f (j)
i,jEX

is maximized, we may try to find overlapping subsets X 1, X2 ~ X with X1 U X2 = X
and with an intersection Z := X1 n X 2 such that Cij = Cji = 0 for all i E X1 \Z and
j E X2 \Zin which case we have

max (C(f) : f E {±l}x) =

1

max (01(!*) + 02(!*) + -~ Cijf*(i)f*(j) : f* E {±l}z)
i,JEZ

where for any f* E {±l}z the values 0 1(!*) and 02(!*) are defined in terms of the
following optimization problems: put

C;, ·= tJ
{

C"
tJ • 0

and

C~. ·= tJ
{

C"
tJ . 0

if i,jEX1 and {i,j}<f:.Z
if i,j E Z

if i,jEX2 and {i,j}<f:.Z
if i,j E Z

and define Ca(!*) (a= 1, 2) by

Ca(!*) :=max(.~ c0J~(i)f~(j))
i,JEXa

where f~ runs over all extensions off* to Xa, that is, over all maps from Xa. into {±1}
with J~lz = f*.

While this gives a handle to actually solve the original optimization problem exactly
provided that can be done with the three resulting smaller problems, it for sure reduces
the original search space of cardinality 2#X to a search space of cardinality 2#Z where
for each point in that small search space two search spaces of cardinality 2#(Xi \Z) and
2#(X2 \Z), respectively, need to be investigated separately so that altogether the trivial
upper bound 2#X for the time complexity of the original problem can be replaced by
the number 2#Z (2#(Xi \Z) + 2#(X2 \Z)) = 2#Xi + 2#X2 of all points in the total "fibered"
search space

u ({!! E {±1}X1
: f{lz = !*} u {J; E {±l}x2

: 1;1z = !*}).
/*E{±l}Z

Yet, even if the three smaller problems cannot be solved exactly, searching heuris­
tically for maps f* : Z -+ {±1} with a large value of L,i,jEZ Cijf*(i)f*(j) and then
extending them heuristically to maps f~ : Xa -+ Y with large values of

I: c0f~(i)f~(j)
i,jEXa

might lead to good, if not optimal solutions of the original problem (and this applies
even if the matrix entries Cij with { i, j} <f:. X1 and { i, j} <f:. X2 are very small compared
to the other ones but not necessarily equal to 0).

Clearly, this idea is the starting point for many dynamic programming solutions
of complex problems, e.g. the spin-glass optimization problem or the (closely related)
so-called small parsimonious tree problem (cf. [12],[13),[14]).

Analysing the idea a bit more systematically suggests to look for a good concept
of embedding complexity, that is a concept which measures how intricately a given set
S = S(X) is embedded into a large product set IT Yi - with a generally large index set X

iEX

2

and generally small Yi - by a family of maps Pi : S --+ Yi (i E X) or, more precisely, how
easily the image S(X) of the set S can be described in terms of its projections S(X')
onto smaller product sets TI Yi where X' runs through appropriate - and hopefully

iEX'
quite small - subsets of X.

In the above example, a natural choice is

X = X(X, C) := {(i,j) E X 2 Cij #- O}

for the index set X and
Y(i,i) := { ±1} {i,j}

for the individual factor sets Y(i,j) ((i, j) E X) into which the search space S := { ±1 }x
is projected via restriction by

P(i,j) : s--+ Y(i,j) : f Hf : {i,j}·

Clearly, defining weight functions

W(i,j) : Y(i,j) --+ JR

by
W(i,j)(g) := Cijg(i)g(j) (g E Y(i,j))

on every factor set Y(i,j), the quadratic function C(f) can now be expressed "linearly"
as a simple sum

L W(i,j) (P(i,j) (!))
(i,j)EX

of the weights of its projections and could be maximized by independent maximization
in each component if the image S(X) of S would coincide with the full product set
TI(i,j)EX Y(i,j)· Yet, even if this ideal situation is not provided by the given data, the above

assumption Cij = 0 unless { i, j} ~ X1 or { i, j} ~ X 2 implies that an element (g(i,j)) (i,j)EX

from TI(i,i)EX Y(i,j) is in S(X) if and only if its two projections onto TI(i,j)EXi Y(i,i) and
TI(i,j)EX2 Y(i,j) - with X0 := X(Xm ClxaxxJ = { (i, j) E X : { i, j} ~ X0 } (a = 1, 2)
- both are contained in the correspondingly defined subsets S(X1) and S(X2). And
it is exactly this simple fact regarding the embedding of S = { ±1 }x into the product
TI(i,i)EX Y(i,i) on which the above proposal for reducing the given optimization problem
to a family of considerably less complex problems is based.

Similarly and more generally, associating to any (simple) graph r = (V, E) with
vertex set V and edge set E ~ { e ~ V : #e = 2}, the embedding of S := { ±1} v into the
product TieEE{±l}e given, as above, by restriction Pe: S--+ {±lY: f H Jl{e} (e EE),
one sees easily that the tree width of r can be invoked to provide a good measure for the
complexity of that particular embedding and, hence, to provide means to solve problems
related to graphs by dynamic programming procedures based on a Divide&Conquer
strategy or to evaluate the efficiency of local optimization procedures.

Yet, we will not delve deeper into the abyss of abstract combinatorial complexity
theory here. Rather, as promised in the title of this contribution, we will discuss two
recent and rather successful applications of the Divide&Conquer principle in the molec­
ular sciences - with the intention of (a) just demonstrating once more its wide range of

3

I
i

applicability and introducing new fields of exploration and (b) of underlining the well­
known facts that (bl) it is rarely clear at the beginning how to break up efficiently a
given complex task into manageable subtasks, and that there is no routine all-purpose
procedure of doing this systematically, and that (b2) even if an efficient way of doing
this is anticipated, lots of additional efforts are needed to make such an idea really work.

The examples we want to discuss are the following two:

• a procedure for fast and complete enumeration of fullerene structures (cf. [23]) and,

• an algorithm for fast and reliable simultaneous alignment of sizeable families of
biomolecular sequences.

The first example will demonstrate how the Divide&Conquer principle can be used
to find efficiently all solutions of a complex problem by (a) first solving recursively a
comparatively simple problem and (b) devising clever ways of glueing together appropri­
ate pairs and triples of solutions of the simpler problem to find solutions of the original
problem (and (c), of course, establishing beforehand theoretically that every solution
can be constructed that way). The resulting computer program has already found many
important applications in Carbon chemistry.

In the second example, the Divide&Conquer principle is used to generate heuristic
(suboptimal) solutions for the task of aligning biomolecular RNA-, DNA- or amino­
acid sequences so that phylogenetically and/ or structurally corresponding sites in the
individual sequences will be recognized by being assembled in just one column provided
the given sequences are spelled out horizontally, one above the other. This is achieved
by introducing gaps here or there into these sequences so as to make up for apparent
inconsistencies between them, in particular to bring them all up to the same length,
and to maximize overall similarity along the resulting columns. Sequence alignment is
a fundamental task in string processing, and it is performed as a daily routine around
the world in all computer laboratories servicing the molecular biosciences.

It should be noted that while these two algorithms still are quite conventional in
that they are to be performed either by hand or, better, by a computer and not by the
molecules themselves these algorithms are designed to analyse, it is not just a presently
very fashionable and fund-raising idea to consider the molecular processes themselves
from an algorithmic point of view, that is, as processes which actually perform more
or less well-defined computations. Indeed, what we see happening presently in the
molecular sciences is a continuously increasing intermingling of "wet" experimental and
"dry" algorithmic approaches, each being used to drastically enhance and partly control
the efficiency of the other, and we, the Mathematical Programming community, should
better be aware (a) of the enormous potential expansion of the applicability of ideas
relating traditionally to mathematical computer programming and (b) of the changes
that that will require and bring about. This is evidenced for instance very clearly by
the newly emerging field of combinatorial chemistry where Divide&Conquer strategies
are implemented experimentally right at the heart of even the most basic experimental
set-up.

4

I

!

2 Fullerene Structure Enumeration

From a purely combinatorial, graphtheoretical point of view, a fullerene isomer structure
is a finite planar 3-regular graph of all whose faces are exclusively hexagons or pentagons
(cf.Fig. la). It follows easily from Euler's formula (in conjunction with standard book­
keeping devices) that any such graph must contain exactly 12 pentagons and that the
number n of its vertices and the number N of its hexagons are related by the formula

n = 20 + 2 · N.

Methods for reliable and efficient enumeration of fullerene isomers are presently a much
discussed topic (cf. [22],[25],[28] [29],[37],[39],[3]). Most of the procedures applied so
far use a bottom-up strategy: starting from a small subconfiguration, fullerene structures
are generated by enlarging this subcdnfiguration stepwise in all conceivable ways (or in
some particular ways assumed to be sufficient), e.g. by using one or the other variant
of the so-called spiral algorithm (cf. [28],[39],[3]). These methods often meet prohibitive
time constraints. So, quite a few implementations try to reduce complexity by shortcuts
which then endanger reliability. Hence, none of these methods which is fast enough to
be applicable for more than, say, 80 C-atoms can guarantee complete lists of fullerenes
while those accepting possibly incomplete lists cannot go much beyond 100 C-atoms.

It may therefore be remarkable (cf. [6]) that a top-down Divide&Conquer strategy
allows to design an algorithm for fullerene enumeration which is absolutely reliable
- that is, it guarantees complete lists - and simultaneously amazingly efficient: On
an HP9000/735, a complete enumeration of e.g. all 0 60-structures (of which there are
1812) needs about 12 seconds: 6.5 seconds for the generation of sufficiently many such
structures and 5.5 seconds for testing structural isomorphism. For fullerenes with about
100 atoms, the program appears to be faster by more than 6 orders of magnitude than
previous (incomplete) ones.

In our algorithm, the Divide&Conquer strategy is applied using Petrie paths (cf. [9])
to reduce the problem of enumerating all fullerene structures with a given number of
C-atoms to solving corresponding pairs or triplets of PentHex Puzzles (cf. Fig.land 2):

A Petrie path in a fullerene is a sequence of edges e1 , e2 , ... , ek such that any two
consecutive edges ei, ei+1 (i = 1, ... , k - 1) share precisely one vertex (and, hence, they
also share one face because the graph is 3-regular), while no face is shared by any three
consecutive edges ei, ei+I, ei+2 (i = 1, ... , k-2). In other words, Petrie paths are zig-zag
paths along the network of edges provided by a fullerene which, at each vertex they
meet, turn right or left alternatively.

It is clear that for each pair e1 , e2 of edges which share precisely one vertex and
for each k ~ 2, there exists precisely one Petrie path e1 , e2 , ... , ek and that starting
with an arbitrary such pair e1 , e2 , there must exist a smallest k ~ 2 such that the end
vertex of ek coincides with one of the vertices which have been met before. In Fig. 1,
this vertex is indicated by a full circle. If this is the vertex of e where our Petrie path
started and if ek-I, ek, and e1 do not share a face, we have a closed Jordan Petrie path
which cuts our spherical fullerene structure into two hemispheres, both of which have a
zig-zag boundary consisting of precisely k edges (see Fig.la). Otherwise, we may reverse
our direction and follow the reverse Petrie path starting with e2 and then continuing

5

with e1, eo, e_1, ... , e_z until again, for some l ~ 0, we meet some vertex visited before
(including, of course, the vertices of e1, e2 , ... , ek), indicated by an open circle. In this
case the total path e-1, e-1+1, ... , e0 , e1 , ... , ek cuts our spherical fullerene structure in
precisely three patches, either of the form depicted in Fig.lb or of that depicted in Fig.le.

In each case, the boundaries of these patches are again zig-zag paths (that is, the third
edges emerging from the vertices along the boundary - those which are not followed by
our path - alternatively stick out of and into the patch) except for at most two localities
- involving the vertices where our Petrie path met itself in cases 2 and 3 - where at least
two consecutive vertices at the boundary have their third edge sticking out. Clearly,
once we know those (either two or three) whole patches, we can glue them together
appropriately to regain our fullerene.

It remains to discuss how the structure of these patches can be (re-)constructed.
This leads to the concept of PentHex Puzzles: A PentHex Puzzle is given by separating
a given finite set S of points - called boundary vertices - on a circle into two disjoint
subsets, say A and B. The associated task is to (re)create fullerene patches by filling
the disc inside the circle by a planar graph so that this graph contains the circle line, its
vertices on the circle line are precisely the points in S (that is, the boundary vertices),
all of its vertices except those in A have degree 3 while those in A have degree 2, and all
of its faces are exclusively pentagons or hexagons. Invoking Euler's formula again, one
easily sees that the number of pentagonal faces in any such patch equals 6 + #B - #A
- so, we must have #A - #B ~ 6. Obviously, any of the above patches is a solution of
the PentHex Puzzle defined by its boundary line, with A the set of vertices along the
boundary where the third edge sticks out of and B those where it sticks into the patch.
Moreover, the way our patches were constructed in terms of Petrie paths ensures that
only convex PentHex Puzzles have to be solved, that is, those where no two consecutive
vertices are in B.

In cases like that depicted in Fig.la, that is if #A = #B, the structure of such a
puzzle can be encoded by just one number M (= #A = #B).

If #A > #B, the edges with both incident vertices in A divide the boundary into
j := #A - #B > 0 segments. In this case, the sequence (M1 , M2 , ••• , Mj), denoting
consecutively the numbers of vertices in Bin these segments, can be used to encode the
structure of the puzzle (cf. Fig.2). ·

Fortunately, convex PentHex Puzzles can be solved recursively quite easily. In case
#A= #B =: M, any solution starts with a given number H ~ 0 of inscribed hexagon
circles, each of length Mand each reproducing the given puzzle in its interior (cf. Fig.3a),
until the first pentagons are met in which case removing the next inscribed circle of
pentagons and hexagons leads to a PentHex Puzzle of type (M1, ... , Mj) with j the
number of pentagons in that circle (and M = j + M1 + ... + Mj). And in case #A > #B,
we can start at an edge with both of its vertices in A and proceed either to the next
such edge (as indicated in Fig.3b) or until we meet a pentagon (Fig. 3c). Convexity
guarantees that this will never interfere with other parts of the boundary of the given
patch. This way, the PentHex Puzzle can be reduced to one with a smaller number of B­
type vertices. The inverse of the described reduction process can be used to construct all
solutions of convex PentHex Puzzles with - in principle - any given number of hexagons,
starting from a pentagon or a hexagon.

6

A B A c A B A c
60: 1 88: 81 738 136: 79 362
62: 0 90: 99 918 138: 98 541
64: 0 92: 126 409 140: 121 354
66: 0 94: 153 493 142: 151 201

20: 1 68: 0 96: 191 839 144: 186 611
22: 0 70: 1 98: 231 017 146: 225 245
24: 1 72: 1 100: 285 914 148: 277 930
26: 1 74: 1 102: 341 658 150: 335 569
28: 2 76: 2 104: 419 013 152: 404 667
30: 3 78: 5 106: 497 529 154: 489 646
32: 6 80: 7 108: 604 217 156: 586 264
34: 6 82: 9 110: 713 319 158: 697 720
36: 15 84: 24 112: 860 161 160: 836 497
38: 17 86: 19 114: 1 008 444 162: 989 495
40: 40 88: 35 116: 1207119 164: 1170 157
42: 45 90: 46 118: 1 408 553 166: 1 382 953
44: 89 92: 86 120: 1674171 168: 1 628 029
46: 116 94: 134 122: 1 942 929 170: 1 902 265
48: 199 96: 187 124: 2 295 721 172: 2 234 133
50: 271 98: 259 126: 2 650 866 174: 2 601 868
52: 437 100: 450 128: 3 114 236 176: 3 024 383
54: 580 102: 616 130: 3 580 637 178: 3 516 365
56: 924 104: 823 132: 4 182 071 180: 4 071 832
58: 1 205 106: 1 233 134: 4 787 715 182: 4 690 880
60: 1 812 108: 1 799 136: 5 566 948 184: 5 424 777
62: 2 385 110: 2 355 138: 6 344 698 186: 6 229 550
64: 3 465 112: 3 342 140: 7 341 204 188: 7 144 091
66: 4 478 114: 4 468 142: 8 339 033 190: 8 187 581
68: 6 332 116: 6 063 144: 9 604 410 192: 9 364 975
70: 8 149 118: 8 148 146: 10 867 629 194: 10 659 863
72: 11190 120: 10 774 148: 12 469 092 196: 12 163 298
74: 14 246 122: 13 977 150: 14 059 173 198: 13 809 901
76: 19 151 124: 18 769 152: 16 066 024 200: 15 655 672
78: 24 109 126: 23 589 154: 18 060 973 202: 17 749 388
80: 31 924 128: 30 683 156: 20 558 765 204: 20 070 486
82: 39 718 130: 39 393 158: 23 037 593 206: 22 606 939
84: 51 592 132: 49 878 160: 26 142 839 208: 25 536 557
86: 63 761 134: 62 372 162: 29 202 540 210: 28 700 677

Table 1: Numbers of fullerenes and IPR-fullerenes, with numbers of fullerenes with n and IPR­

fullerenes with n + 48 atoms in one row. A stands for the number of vertices, B for the number of
fullerenes and C for the number of IPR-fullerenes.

By using an appropriate form of dynamic programming - and lots of care in setting
it up explicitly, that is, in implementing it (using a sophisticated lexicographic coding
method to also make sure that the resulting list of fullerene structures never contains
two structurally isomorphic copies, thereby taking orientation either into account or
neglecting it), and in using the memory -, we have computed all fullerene structures
for up to n = 170 atoms, as well as for up to n = 214 atoms those special structures
which obey the isolated pentagon rule (IPR) - that is, structures where every pentagon
is surrounded by hexagons, only.

Table 1 records the number of structures we have found. It seems remarkable that
for n ~ 38 the number F(n) of all fullerene isomers with n atoms roughly coincides with
the number FrPR(n + 48) of all IPR-fullerene isomers with n + 48 atoms, and that for
n divisible by 4 the difference between F(n) and F(n - 2) roughly coincides with the
difference between F(n + 2) and F(n).

The method extends easily to fullerene-like molecular cage (and the related patch)
structures which include quadrangles and/or triangles and it can also be applied (though

7

not simply) to handle those which include heptagons etc. [19) as well as to 4-regular
planar graphs or even some types of regular graphs of higher genus and further related
problems (cf. [4),[5]).

To summarize: Given any fullerene structure, that structure can be broken up into
two or three convex fullerene patches in several, yet not too many distinct ways, lists
of possible patches can be generated recursively quite easily by solving the associated
PentHex Puzzles, and the given - as well as any other such - structure can thus be
found by glueing together appropriate pairs and triples of patches in all legitimate ways.

This is surely a not quite canonical way of applying the Divide&Conquer principle
which is generally used to find one structure, map (or whatever) out of a virtually very
large list of such structures, maps (or whatever) rather than to create such a list; yet,
it has proven to be an amazingly efficient application of that principle, speeding up
the enumeration process by quite a few orders of magnitude compared with competing
solutions - and adding reliability regarding the completeness of the lists of obtained
structures as an extra bonus.

3 A Fast and Reliable Method for Simultaneous
Multiple Sequence Alignment

3.1 The Alignment Problem

Our second example is a new algorithm for producing close to optimal solutions of the
multiple sequence alignment problem, called the Divide& Conquer Alignment algorithm
(DCA, [40)). Multiple sequence alignment is a well-studied but still not satisfactorily
solved problem in string processing having its most important application in compu­
tational molecular biology. Indeed, many important conclusions to be drawn from the
sequence of residues in a big biomolecule, that is, of amino acids in a given protein or
that of nucleotides in a given RNA or DNA molecule, depend crucially on comparing
that sequence with other such sequences by means of appropriately constructed align­
ments. For example, such alignments are used to detect homologues among sequences
in genome databases, to study phylogenetic relationships, or to identify structurally or
functionally important parts of the molecule in question.

Consequently, establishing fast and reliable tools for sequence alignment is one of the
most fundamental tasks in present day computational biology, enjoying an abundance
of publications and software contributions (see [32), [8), or [48)).

The overall strategy one has to follow for producing reliable alignments is quite
obvious: by inserting gaps here and there into the sequences one wants to align, one
tries to come up with sequences of equal length so that the sequence entries at each
site - that is, in each column when the (aligned) sequences themselves are spelled out
horizontally, one below the other - exhibit a biologically meaningful diversity, possibly of
not too large a degree, which can be interpreted in a coherent way. For example, one may
head for a phylogenetic interpretation implying that the sequence entries at a given site
have evolved from a common ancestor entry, or for a structural interpretation implying
that the aligned residues are placed at similar locations within the folded molecule.

8

Consequently, because it is the similarity of sequence patterns which is supposed
to signal phylogenetic and/or structural kinship between the sequences, the aim of
sequence-alignment procedures is to maximize overall similarity. Thus, all that is re­
quired is

• specifying in a quantifyable way the term overall similarity, and

• constructing algorithms which produce alignments which maximize that overall
similarity or, if this turns out to be too time consuming, at least exhibit a rather
high degree of that similarity.

While the first task needs input from biology as well as from mathematical modelling,
the second task is a purely mathematical one. Unfortunately, many ideas relating to the
first task cannot be tested, and important structural parameters suggested by these ideas
cannot be evaluated easily unless the second task has been dealt with appropriately.

To tackle that second task, the starting point is clearly to find good methods for
aligning two sequences - that is, for pairwise alignment - and algorithms for solving
this problem were developed successfully already a quarter of a century ago ([33],[47]).
These algorithms follow the well known dynamic programming method. However, their
natural and straightforward generalizations to three or more sequences (together with
the natural extension of quantifying overall similarity in terms of the so-called sum­
of-pairs score, see below) quickly run into prohibitive memory and time constraints as
number or length of sequences increase. Therefore, almost all techniques for aligning
larger sets of sequences are based on first performing a series of pairwise alignments
(using, if necessary, appropriate adaptations of the standard algorithm aligning profiles
of sequences rather than sequences) and then constructing a multiple alignment in a
"hill-climbing" manner (see for example [11],[30] for reviews). However, these methods
(e.g. CLUSTAL [44], DFALIGN [16], GENALIGN [27], MULTAL [43]) though fast, can
be used with some reservation only for the following two reasons: they easily run into
local, but not necessarily global optima, - a risk, which is inherent in any hill-climbing
method - and they often do not even accept a well-defined optimality criterion for
multiple sequence alignment.

In order to circumvent these problems, one has to stick to the original task of try­
ing to construct high quality simultaneous alignments. In the late eighties, significant
progress with this technique was made by CARRILLO and LIPMAN [7]: it became possi­
ble to align simultaneously and optimally up to between six and eight protein sequences
(of medium length and comparatively high pairwise similarity) in some minutes. This
was achieved by cutting down the (high-dimensional) search space used in dynamic
programming, by considering projections of precalculated heuristic alignments onto the
(two-dimensional) "boundaries" of that space. Yet, even when implementing this idea
using highly sophisticated implementation techniques, the resulting program, called MSA,
often requires more time and/ or memory space than available when ever it has to deal
with larger data sets [18].

Hence, for dealing with such cases, we propose a new procedure based on a simple
but amazingly efficient heuristics which we have called the Divide& Conquer Alignment
algorithm, DCA ([15],[45],[42]).

9

The general idea of DCA is rather simple: Each of the sequences is cut in two by
cutting it just behind a suitable slicing site somewhere close to its midpoint. This way,
the problem of aligning one family of (long) sequences is divided into the two prob­
lems of aligning two families of (shorter) sequences, the prefix and the suffix sequences.
This procedure is re-iterated until the sequences are sufficiently short so that they can
be aligned optimally by MSA. Finally, the resulting short alignments are concatenated,
yielding a multiple alignment of the original sequences.

Of course, the main difficulty with this approach is how to identify those slicing-site
combinations which lead to an optimal or - at least - close to optimal alignment. Here,
a heuristic based on so-called secondary-charge matrices which are used for quantifying
the compatibility of slicing sites in distinct sequences proved to be successful. Several
ways of speeding up the search for these slicing sites are possible some of which are
implemented already. They also will be discussed below.

3.2 A Formal Set-Up: The Weighted Sum of Pairs Score for
Multiple Sequence Alignment

Next, we define multiple alignments formally and we describe the basic principles of
evaluating quantitatively the quality of a given multiple alignment (for further reference
see [ll],[38), and (48]).

Suppose that we are given a family S = (s1, ... , sk) of k sequences:

where each sequence entry Bij represents a letter from a given finite alphabet A. An
alignment of the sequences Sis a matrix M = (mij)iik,ljN where

• mij EAU { - }, with '-' denoting the gap letter supposed not to be contained in
A,

• the rows mz := mn ... mlN of M considered as sequences of symbols from AU{-},
reproduce the sequences Sz upon elimination of the gap letters (1 ::; l ::; k),

• the matrix M has no column, only containing gaps.

For example, one alignment of S = {s1 , s2} with s1 = GTATGCCG and s2 = GTGTCGG is
given by the matrix

and another one is given by

M ·= (GT AT G CC G -)
. GTGT--CGG '

M ' ·- (GT AT G CC - G)
.- G - - T GT C G G .

We denote the set of all alignments of S by M8 . Assume that we are given a pairwise
distance

d: (Au{-})2-+ lR

10

(the distances given e.g. by a substitution cost matrix (cf. [10]) with appropriately
chosen gap penalties1 d(a, -) for all a E A). For each pair of rows mp, mq in an
alignment ME Ms, define

N

Wmp,mq := L d(mpi, mqi),
i=l

and denote by Wapt(Sp, Sq) the minimum of Wmp,mq, taken over all alignments M.
The weighted sum of pairs score for an alignment M E Ms relative to a given family

of (generally non-negative) weight parameters ap,q (l :s; p < q :s; k) is defined by

w(M) := L ap,q · Wmp,mq·
1$p<q$k

The multiple alignment problem that we aim to solve is to search for matrices M E Ms
whose weighted sum of pairs score w(M) is small.

The logic for introducing the weight parameters apq (from which procedures for
choosing them appropriately are to be deduced) is the following one: In general, any set
of related biological sequences contains some sequences which are more closely related
to one another than to the remaining ones, and highlighting their similarity might often
be more important than forcing them to independently conform to the patterns of the
other sequences. On the other hand, as almost any sample of sequences is biased in one
way or the other (even, most probably, the sample provided by Nature itself), a perhaps
overrepresented subset of highly similar sequences in a data set should not be allowed
through its sheer size to force all the other sequences to conform to its patterns. Boths
goals, highlighting similarity between closely related sequences and discounting overrep­
resentation of certain subclasses of sequences can (hopefully) be achieved by choosing
appropriate weight factors,- one might even consider using homology-dependent dis­
tance scores for each given pair of sequences.

As mentioned above, optimizing w(M) can be solved in principle by straightforward
dynamic programming (cf. [33, 38]). However, this is possible only in theory at present:
in practice, the space and time requirements for dynamic programming, even in its most
sophisticated forms, make it virtually impossible to deal with, say, five not highly homol­
ogous sequences of length approximately 1000. However, such tasks present themselves
easily when dealing with problems from biological sequence analysis.

3.3 The Divide&Conquer Approach

How does the DCA procedure attack this problem? As mentioned already above, given a
family of sequences s1, ... , sk of length n1, ... , nk, respectively, each of these sequences is
to be cut just behind an appropriately chosen slicing site somewhere near to its midpoint.
This way, the original alignment problem is reduced to the two subproblems of aligning
the two resulting families of prefix and suffix subsequences, respectively. These will
be handled by the same procedure in a recursive manner. The recursion stops when

1 More sophisticated gap-penalty functions have been considered, e.g. the so-called affine gap penalty,
which works for pairwise as well as for multiple sequence alignment [1] [17].

11

a certain stopping criterion is fulfilled. The remaining subsequence families are then
aligned by MSA [24],[18), and the resulting alignments are concatenated.

The main problem is to find a k-tuple of ideal slicing sites (c1, c2, ... , ck) (with
0 < cp :::; np for p = 1, ... , k) so that the simple concatenation of the two optimal align­
ments of the prefix sequences s1 (:::; c1), s2(::; c2), ... , sk(::; ck) and the suffix sequences
s1 (> c1), s2 (> c2), ... , sk (> ck) forms an optimal alignment of the original sequences2.

Obviously, for any fixed site c\ (0 :::; c1 :::; n1), there exists a (k - 1)-tuple of slic­
ing sites (c2(c\), ... , ck(c1)), such that (c1, c2(c1),,.,, ck(c1)) forms an optimal k-tuple.
Unfortunately, finding exactly these sites requires approximately as much time as solv­
ing the original optimization problem directly. So, of course, this is not the method of
choice.

Instead, we aim to find C-optimal slicing sites which can be computed in terms of
pairwise sequence comparisons, only. More precisely, we use the dynamic programming
procedure to compute, for all pairs of sequences (sp, sq), and for all slicing sites Cp of Sp
and Cq of sq the secondary charge Csv,sq [cp, cq] defined by

which quantifies the additional charge imposed by forcing the alignment of Sp and Sq
to optimally align sp(::; cp) and sq(::; cq) as well as Sp(> cp) and Sq(> cq), rather than
aligning Sp and Sq optimally. The calculation of the matrices Csv,sq can be performed by
computing forward and reverse matrices in a similar way as described in [21),[31), [46].
Note that there exists, for every fixed cp, at least one vertex cq(cp) with Csp,sq[cp, cq(cp)] =
O which can be computed easily from any optimal pairwise alignment of Sp and Sq, The
problem multiple alignments have to face, is that cq (ep(c1)) might not coincide with
cq (c1), that is, that given pairwise optimal alignments may be incompatible with each
other - much in analogy to frustrated systems considered in statistical physics.

To search for good k-tuples of slicing sites, we define the multiple additional charge
C(c1, ... , ck) imposed by slicing the sequences at any given k-tuple of slicing sites
(c1, ... , ck) as a weighted sum of secondary charges over all projections (cp, cq), that
is, we put

C(c1, c2, ... , ck) := L ap,q · Csp,sq[Cp, Cq],
1::;p<q::;k

where the ap,q are the same sequence-dependent weight factors as above.
Our proposition is now that using as the preferred slicing-site combinations those

C-optimal k-tuples that minimize - for a given fixed slicing site c1 of s1 - the value
C(c1, c2, ... , ck) over all slicing sites c2, ... , ck of s2, ... , sk, respectively, will result in
very good, if not optimal multiple alignments because, this way, the mutual frustration
is distributed as fairly as possible.

In conclusion, this leads to the following general procedure:
Algorithm DCA (s1, s2 , ••. , sk, L)

If miniE{l,2, ... ,k} { ni} :::; L

2Here, sp(~ cp) denotes the prefix subsequence of Sp with indices running from 1 to cp and sp(> cp)
denotes the suffix subsequence of Sp with indices running from cp + 1 to np, 1 ~ p ~ k.

12

then return the optimal alignment of s1, s2, ... , sk (using e.g. MSA);
else return the concatenation of

DCA(81(s c1), s2(s c2), ... , sk(S ck), L)
and DCA(s1(> c1), s2(> c2), ... , 8k(> ck), L);

where (c1, c2, ... , ck) := calc-cut(s1, s2, ... , sk)·

In the following section, we describe how to realize the subroutine calc-cut which com­
putes a k-tuple of C-optimal slicing sites.

3.4 Efficiently Calculating the Slicing Sites

In a naive implementation, the search calc-cut for C-optimal slicing sites (c1, c2, ... , ck)
needs time O(k2n2 + nk-1), where n is the length of the longest of the sequences
s1, s2, ... , sk: the computation of all pairwise secondary matrices takes O(k2n2) time
and, for given i\, all possible combinations of c2, ... , ck have to be checked to find the
tuple that minimizes C in altogether O(nk-l) single steps.

We reduce this running time and the required memory (which is of order O(k2n2)

for the naive version) by first precalculating an estimate C for

Copt(c\; 81, ... '8k) := min 0((\, C2, ... 'ck)·
c2, ... ,ck

This allows us to prune the search space enormously: Because the multiple additional
cost C(i\, c2, ... , ck) is defined as a sum of non-negative numbers, it is possible to exclude
any tuple of slicing sites (<\, c2, ... , ck), whenever one of the summands is larger than
the minimum C found so far. In particular, for fixed c1, no Cq with a 1,q • C51 ,sq [c1, cq] 2:: C
can ever lead to a smaller sum C.

With this in mind, a C-optimal tuple of slicing sites can be calculated as follows:

Function calc-cut (81 , s2, ... , 8k)
1. Reorder s1, 82, ... , sk so that 81 is the longest of all sequences in question.

2. Fix c1 := IT l;

3. calculate and save rows rowf~q[j] := Cs1,sq[c1,j] (2 Sq S k, 1 S j S nq);

4. locate slicing sites c2, ... , ck such that rowf~q[cq] = 0 (2 s q s k);

5. calculate the estimate 3

c := L ap,q . Csp,Sq [cp, Cq] = L ap,q. Csp,Sq [cp, Cq],
1$p<q$k 2$p<q$k

6. Calculate lower and upper bounds lq and Uq such that a1,q · rowf~q[j] 2:: C for all j <
lq and for all j > uq (2 S q S k). The intermediate segment rowf~q[lq], ... , rowf~q[uq]
forms the relevant part of each row rowf!q·

3Some additional approaches have been developed which work by using (i:i, c2 , ... , ck) as the starting
points and then sucessively minimize C(c1, c2, ... , ck) over some Ci (i E {2, ... , n}) while keeping the
other slicing sites Cj (j =/:- i) fixed. This leads to significantly smaller estimates for C than the one
described above [35).

13

7. Given these bounds, compute and save the relevant parts of the matrices Csp,sq,
defined by Csp,sq[cp,cq], with lp s; Cps; Up and lq s; Cq s; Uq,

8. Search for better slicing-site combinations (c1, c2 , .•• , ck) within the relevant parts
of the rows rowtq and the matrices Csp,sq. Thereby, the sum C can be computed
step by step and the search can be stopped, if an intermediate result is larger than
c.

During this final search, better values for C may be obtained, too, so that, with decreas­
ing values of C, the relevant part of the rows rowf~q can possibly be further reduced,
diminishing the search space even more.

Obviously, the worst case time and space complexity of this approach still remains of
the order of O(k2n2+nk-l) and O(k2n2), respectively, for the (very improbable) case that
the bounds li and ui can never be increased or decreased, respectively. But for biological
sequences, the effect is enormous: For calculating the first tuple of slicing sites in the
recursion (which takes far the longest time of all slicing-site computations) replacing
n by the length r := maxp=2, ... ,k{ Up - lp + 1} of the longest of the remaining relevant
parts of the rows, usually results in a reduction of at least two orders of magnitude per
sequence (for small k), yielding memory savings for the matrices by several orders of
magnitude and reducing the expected time and space complexity to O(k2n2 + rk-l) and
O(kn + k2r2

), respectively, (cf. [41]).

3.5 Further Improvements

To speed up the procedure for still larger k, an additional preprocessing step can be
used: To determine, say, the slicing site ck of sk, the optimal additional charge of
any subfamily s~ := s1, s;, ... , s~ of our sequences not including sequence sk can be
used to compute a better estimate for those values of 0 81 ,sk [c1, ck] which need further
consideration: Clearly, for every slicing site ck of sk we have

for all possible slicing sites c2, ... , ck-l of s2, ... , sk-l· Hence, we can exclude a slicing
site ck from further consideration if for some such family s~, s;, ... , s~ and some upper
bound C of Copt(c1; s1, ... , sk), we have

a1,k · Cs1 ,sk[c1, ck] ~ C - Copt(c1; s~, ... , s~),

as this implies Cs; C(c1, c2, ... , ck) for all slicing sites c2, ... , ck-1 of s2, ... , sk-l·
Using this principle to its fullest extent would require computing 3 = (~) times the

optimal slicing sites for three sequences in case of altogether four sequences, 6 = (~)

times the optimal slicing sites for three and - based on that - 4 = (!) times the optimal
slicing sites for four sequences in case of altogether five sequences, and so on. Hence,
for k sequences,

2k-l _ k _ l = (k - 1) (k - 1) (k - 1)
2 + 3 + ... + k-2

14

additional optimal slicing-site combinations for 3, 4, ... , k - 1 sequences would have to
be computed. Clearly, this would always be worth the trouble if the average rate a by
which - at each step - the average length a of the relevant part of each sequence in
question is reduced, is just (a - 1) / a: indeed, if a < (a - 1) / a, then

k-2 (k - 1) . . k-2 (k - 1) . L . (ai-1. a)i < L . (a. a)i < (1 +a. at-1 :::; ak-1.
i=2 'l, i=2 2

In addition, computing the optimal slicing-site combination 1\, ... , c,,, for a fixed
slicing site c1 of s1 and any given sequence family s~ := s1, s~, ... , s~ may also help to
improve the estimates C for Copt(c1; s~, ... , s~, s~+1) for each new sequence s~+l in view
of

K,

Copt(c1; s~,,,,, s~, s~+l) :::; Copt(c1; s~,,,,, s~) + L O!p,1,,+1Cs~,s~+l [cp, c,,,+1]
p=l

for each slicing site c,,,+1 of s~+1 ·
And finally, the variety of optimal slicing sites coming up in such a computation may

also be useful for evaluating the rate of mutual frustration as well as the reliability and
the quality of the slicing sites finally chosen and of the alignment(s) resulting from that
choice.

A different approach to the time problem (which can, of course, be combined with
the one outlined just above) is motivated by the regular shape of the matrices Csp,sq.
It utilizes the observation that the entries in a row of a secondary charge matrix from
left to right generally start with rather high values, decrease almost monotonically for a
long time, reach the value zero at the slicing site corresponding to an optimal pairwise
alignment, and then increase almost monotonically again to high values. Thus, for
each row i, lp :::; i :::; up, of the secondary charge Csp,sq, we can define lower and upper
monotony bounds Lsp,sq [i) and Usp,sq [i], given by the formulae:

Lsp,sq[i] ·- min{ j E {lq + 1, ... ,uq} I Csp,sq[i,j) > Csp,sq[i,j -1) },

Usp,sq[i] := max{ j E {lp, ... ,up -1} I Csp,sq[i,j] > Csp,sq[i,j + 1] },

When determining the q-th slicing site Cq, 2 :::; q :::; k, for already fixed sites c1, c2 , •.. , cq-l,
any value of the cp-th row in the matrix Csp,sq, 1 :::; p < q, leading to a sum

c = L O!p,p' . Csp,sp, [cp, Cpl l + L O!p,q . Csp,Sq [cp, Cq]
1$p<p' <q 1::;p<q

larger than C, with cq < min1:::;p<q Lsp,sq [cpl, thus gives a sum larger than C for every
c~ :::; cq, A corresponding statement holds for U.

With this approach, we were able to speed up DCA by a factor of 2. For more
than 8 sequences, the improvement was even better: it is possible to align up to twelve
sufficiently related sequences (e.g. the homology family of a protein) in rather moderate
time spans (often just a few seconds, sometimes some minutes).

An addition to be tested soon is to compute, for each row i (lp :::; i :::; up) in Csp,sq
and each j between Lsp,sq [i) and Usp,sq [i] the values

lf,1 := min{ Csp,sq [i, j'] I lq :::; j' :::; j}

15

and
uf} := min{ Csp,sq[i,j'] Ji~ j' ~ 'Uq}

and to stop going left (or right) with cq whenever an appropriate sum including ap,q • lf}
(or ap,q • uU, respectively) rather than ap,q • Csp,sq [i, j) exceeds the given bound. On the
expense of some more storage requirements, it can be hoped that again a considerable
speed up will be achieved this way.

3.6 Performance of DCA

We have tested DCA thoroughly, using families of related random sequences as well as
real biological data. The following are the main results of the evaluation:

• The memory usage of DCA is in the magnitude required for standard pairwise
alignments (about 30 megabytes for twelve sequences of average length 250 - and
just 16 times that much for an average length 1000) (cf. [45],[41]).

• Compared to previous simultaneous alignment methods, the program is very fast
(about 40 seconds for twelve sequences of average length 250) (cf. [42]).

• The alignments are of a very high quality, in mathematical as well as in biological
terms. For none of the analyzed random sequence families for which the opti­
mal score could be computed using MSA, the sum-of-pairs score of the alignment
computed with DCA differs by more than 0.3 percent from the optimal score
[41). Applied to biological sequences, DCA can compete with the best alignment
methods currently available (cf. [20],[36]).

• Due to the simultaneity, the computed alignments are also very well suited as
an unbiased starting point for the reconstruction of evolutionary relationships
(cf. [34]).

• Because DCA approximates the optimal score very closely, new ways of testing and
validating alternative choices for multiple alignment score functions are possible.

• Due to the stable interdependence of the parameters of DCA and its performance,
the behavior of the program is transparent to the user.

In conclusion, we have shown that - although the multiple sequence alignment problem
has been a much studied subject over the last decades - the systematic application of the
well-known Divide&Conquer principle opens the way to a new, efficient, and effective
simultaneous multiple sequence alignment algorithm.

Acknowledgement

This paper was written while the second and the third named author were hosted
by the Biomathematics Research Centre at the Mathematics Department, University of
Canterbury, New Zealand, which is gratefully acknowledged.

16

I

References

[1] S.F. Altschul. Gap Costs for Multiple Sequence Alignment. J. Theor. Biol. 138,
pages 297-309, 1989.

[2] S.F. Altschul, R.J. Carroll, and D.J. Lipman. Weights for Data Related by a Tree.
J. Mol. Biol., 207, pages 647-653, 1989.

[3] S.J. Austin, P.W. Fowler, P. Hansen, D.E. Manolopoulos, and M. Zheng. Fullerene
Isomers of C60 , Kekule Counts versus Stability. Chem. Phys. Letters, 228:478-484,
1994.

[4] D. Babic, G. Brinkmann, and A. Dress. Topological Resonance Energy of
Fullerenes. in preparation, 1997.

[5] G. Brinkmann. The Combinatorial Enumeration of Tube-Type Fullerenes and
Fullerene Caps. in preparation, 1997.

[6] G. Brinkmann and A.W.M. Dress. A Constructive Enumeration of Fullerenes. To
appear in Journal of Algorithms, 1997.

[7] H. Carrillo and D. Lipman. The Multiple Sequence Alignment Problem in Biology.
SIAM J. Appl. Math., 48(5), pages 1073-1082, 1988.

[8] S.C. Chan, A.KC. Wong, and D.K.Y. Chiu. A Survey of Multiple Sequence Com­
parison Methods. Bull. Math. Biol., 54(4), pages 563-598, 1992.

[9] H.S.M. Coxeter. Regular Polytopes. Dover Publications, Inc, 1973.

[10] M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A Model of Evolutionary Change in
Proteins. In M.O. Dayhoff, editor, Atlas of Protein Sequences and Structure, volume
5, suppl. 3, pages 345-352. National Biomedical Research Foundation, Washington,
D.C., 1979.

[11] R.F. Doolittle. Molecular Evolution: Computer Analysis of Protein and Nucleic
Acid Sequences. Methods in Enzymology 183, Academic Press, San Diego, 1990.

[12] A.W.M. Dress and M. Kruger. Parsimonious Phylogenetic Trees in Metric Spaces
and Simulated Annealing. Adv. in Appl.Math. 8, pages 8-37, 1987.

[13] A.W.M. Dress. On the Computational Complexity of Composite Systems. Pro­
ceedings of the IX. Sitges Conference in Theoret. Physics, Sitges 1986, Springer
Lecture Notes 268, pages 377-388, 1987.

[14] A.W.M. Dress. Computing Spin-Glass Hamiltonians. Manuscript, Bielefeld, 1986.

[15] A.W.M Dress, G. Fullen, and S.W. Perrey. A Divide and Conquer Approach to
Multiple Alignment. In Proc. of the Third Conference on Intelligent Systems for
Molecular Biology1 ISMB 95, pages 107-113. AAAI Press, Menlo Park, CA, USA,
1995.

17

I

!

[16] D.-F. Feng and R.F. Doolittle. Progressive Sequence Alignment as a Prerequisite
to Correct Phylogenetic Trees. J. Mol. Evol. 21, pages 112-125, 1987.

[17] 0. Gotoh. An Improved Algorithm for Matching Biological Sequences. J. Mol.
Biol. 162, pages 705-708, 1981.

[18] S.K. Gupta, J.D. Kececioglu, and A.A. Schaffer. Improving the Practical Space and
Time Efficiency of the Shortest-Paths Approach to Sum-of-Pairs Multiple Sequence
Alignment. J. Comp. Biol. 2(3), pages 459-472, 1995.

[19] T. Harmuth. Die Generierung simpler, 3-regularer planarer, zusammenhangender
Graphen mit vorgegebenen FlachengroBen. Diplomarbeit, Universitat Bielefeld,
1997.

[20] R.E. Hickson, C. Simon and S.W. Perrey. An Evaluation of Multiple Sequence
Alignment Programs Using an rRNA Data Set. submitted, 1997.

[21] D.S. Hirschberg. A Linear Space Algorithm for Computing Maximal Common
Subsequences. Communications of the ACM, 18(6), pages 341-343, 1975.

[22] D.J. Klein and X. Liu. Elemental Carbon Isomerism. In International Journal
of Quantum Chemistry, Quantum Chemistry Symposium 28, pages 501-523. John
Wiley & Sons, 1994.

[23] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, and R.E. Smalley. C60 : Buck­
minsterfullerene. Nature, 318, pages 162-163, 1985.

[24] D.J. Lipman, S.F. Altschul, and J.D. Kececioglu. A Tool for Multiple Sequence
Alignment. Proc. Natl. Acad. Sci. USA, 86, pages 4412-4415, 1989.

[25] X. Liu, D.J. Klein, T.G. Schmalz, and W.A. Seitz. Sixty-Atom Carbon Cages.
Journal of Computational Chemistry, 12(10), pages 1265-1269, 1991.

[26] J. Malkevitch. Polytopal graphs. In L.W. Beineke and R.J. Wilson, editors, Selected
Topics in Graph Theory, vol.3, pages 169-188. 1988.

[27] H.M. Martinez. A Flexible Multiple Sequence Alignment Program. Nucl. Acids
Res. 16, pages 1683-1691, 1988.

[28] D.E. Manolopoulos and P.W. Fowler. An Atlas of Fullerenes. Oxford University
Press, 1995.

[29] D.E. Manolopoulos, J.C. May, and S.E. Down. Theoretical Studies of the Fullerenes:
C34 to C70 • Chemical Physics letters, 181, No 2,3, pages 105-111, 1991.

[30] M.A. McClure, T.K. Vasi, and W.M. Fitch. Comparative Analysis of Multiple
Protein-Sequence Alignment Methods. J. Mol. Biol. Evol., 11(4), pages 571-592,
1994.

[31] E.W. Myers and W. Miller. Optimal Alignments in Linear Space. CABIOS, 4(1),
pages 11-17, 1988.

18

[32) E.W. Myers. An Overview of Sequence Comparison Algorithms in Molecular Bi­
ology. Technical Report TR 91-29, University of Arizona, Tucson, Department of
Computer Science, 1991.

[33) S.B. Needleman and C.D. Wunsch. A General Method Applicable to the Search for
Similarities in the Amino Acid Sequence of Two Proteins. J. Mol. Biol., 48, pages
443-453, 1970.

[34] S.W. Perrey, M.D. Hendy, and R.E. Hickson. Evaluating the Bias of Multiple
Sequence Alignment Methods for Phylogenetic Tree Reconstruction. Manuscript,
Christchurch, 1997.

[35) S.W. Perrey and J. Stoye. Fast Approximation to the NP-hard Problem of Multi­
ple Sequence Alignment. Information and Mathematical Sciences Reports, Series
B:96/06 (ISSN 1171-7637), May 1996.

[36] S.W. Perrey, J. Stoye, V. Moulton, and A.W.M. Dress. The Simultaneous Align­
ment of Sequences Using the Divide and Conquer Approach. submitted, 1997.

[37] Chih-Han Sah. Combinatorial Construction of Fullerene Structures. Croatica Chem­
ica Acta, pages 1-12, 1993.

[38) D. Sankoff and J.B. Kruskal, editors. Time Warps, String Edits, and Macro­
molecules: The Theory and Practice of Sequence Comparison. Addison Wesley,
Reading, Mass., 1983.

[39) T.G. Schmalz, W.A. Seitz, D.J. Klein, and G.E. Hite. Elemental Carbon cages. J.
Amer. Chem. Soc., 110, pages 1113-1127, 1988.

[40) J. Stoye. Divide and Conquer Multiple Sequence Alignment.
http: //bibiserv. techfak. uni-bielefeld. de/dca/, 1996.

[41] J. Stoye, S.W. Perrey, and A.W.M. Dress. Improving the Divide-and-Conquer
Approach to Sum-of-Pairs Multiple Sequence Alignment. Appl. Math. Lett., 1997.
To appear.

[42) J. Stoye. Divide-and-Conquer Multiple Sequence Alignment. Dissertation, Tech­
nische Fakultat der Universitat Bielefeld, 1997.

[43] W.R. Taylor. Identification of Protein Sequence Homology by Consensus Template
Alignment. J. Mol. Biol. 188, pages 233-258

[44) J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: Improving the Sen­
sitivity of Progressive Multiple Sequence Alignment through Sequence Weighting,
Position-specific Gap Penalties and Weight Matrix Choice. Nucl. Acids Res., 22,
pages 4673-4680, 1994.

[45] U. Tonges, S.W. Perrey, J. Stoye, and A.W.M. Dress. A General Method for Fast
Multiple Sequence Alignment. Gene, 172, pages GC33-GC41, 1996.

19

[46) M. Vingron and P. Argos. Motif Recognition and Alignment for Many Sequences
by Comparison of Dotmatrices. J. Mol. Biol. 218, pages 33-43, 1991.

[47] R.A. Wagner and M.J. Fischer. The String-to-String Correction Problem. Journal
of the ACM, 21(1), pages 168-173, 1974.

[48) M.S. Waterman. Introduction to Computational Biology. Maps Sequences and
Genomes. Chapman & Hall, London, UK, 1995.

20

I

I

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 21; only even numbered pages
 Trim: none
 Shift: move right by 22.68 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1207
 245
 Fixed
 Right
 22.6772
 0.0000

 Even
 2
 SubDoc
 21

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 1
 21
 19
 10

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -2.75, 560.97 Width 603.99 Height 280.95 points
 Mask co-ordinates: Horizontal, vertical offset 413.64, 398.99 Width 78.70 Height 39.35 points
 Mask co-ordinates: Horizontal, vertical offset 543.59, -0.01 Width 80.53 Height 585.69 points
 Mask co-ordinates: Horizontal, vertical offset -15.56, -0.01 Width 559.15 Height 344.09 points
 Mask co-ordinates: Horizontal, vertical offset -2.75, 340.42 Width 99.75 Height 258.07 points
 Origin: bottom left

 1
 0
 BL

 Both
 3
 CurrentPage
 47

 CurrentAVDoc

 -2.7454 560.9717 603.9931 280.9483 413.6438 398.9917 78.7021 39.351 543.5938 -0.0098 80.5324 585.6903 -15.5574 -0.0098 559.1512 344.093 -2.7454 340.4227 99.7504 258.0698

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 21
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -9.15, 808.06 Width 610.40 Height 33.86 points
 Mask co-ordinates: Horizontal, vertical offset 557.32, -0.01 Width 43.01 Height 828.20 points
 Origin: bottom left

 1
 0
 BL

 Both
 3
 AllDoc
 47

 CurrentAVDoc

 -9.1514 808.0598 610.3991 33.8602 557.3209 -0.0098 43.0117 828.2027

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 21
 20
 21

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 460.32, 571.04 Width 45.76 Height 48.50 points
 Mask co-ordinates: Horizontal, vertical offset 346.84, 56.73 Width 43.01 Height 34.78 points
 Mask co-ordinates: Horizontal, vertical offset 127.20, 744.00 Width 269.05 Height 69.55 points
 Origin: bottom left

 1
 0
 BL

 Both
 3
 CurrentPage
 47

 CurrentAVDoc

 460.316 571.0383 45.757 48.5025 346.8385 56.729 43.0117 34.7753 127.2046 743.9999 269.0515 69.5507

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 1
 21
 1
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 420.05, 723.87 Width 9.15 Height 12.81 points
 Mask co-ordinates: Horizontal, vertical offset 401.75, 550.91 Width 59.48 Height 36.61 points
 Origin: bottom left

 1
 0
 BL

 Both
 3
 CurrentPage
 47

 CurrentAVDoc

 420.0498 723.8668 9.1514 12.812 401.7469 550.9052 59.4842 36.6056

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 21
 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 531.70, 576.53 Width 27.45 Height 37.52 points
 Origin: bottom left

 1
 0
 BL

 Both
 3
 CurrentPage
 47

 CurrentAVDoc

 531.697 576.5291 27.4543 37.5208

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 4
 21
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 93.34, 690.92 Width 14.64 Height 35.69 points
 Origin: bottom left

 1
 0
 BL

 Both
 3
 CurrentPage
 47

 CurrentAVDoc

 93.3444 690.9217 14.6423 35.6905

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 7
 21
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 465.81, 472.20 Width 51.25 Height 19.22 points
 Origin: bottom left

 1
 0
 BL

 Both
 3
 CurrentPage
 47

 CurrentAVDoc

 465.8068 472.203 51.248 19.218

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 8
 21
 8
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 259.90, 766.88 Width 9.15 Height 10.98 points
 Origin: bottom left

 1
 0
 BL

 Both
 3
 CurrentPage
 47

 CurrentAVDoc

 259.9001 766.8785 9.1514 10.9817

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 10
 21
 10
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 289.18, 775.11 Width 264.48 Height 55.82 points
 Origin: bottom left

 1
 0
 BL

 Both
 3
 CurrentPage
 47

 CurrentAVDoc

 289.1846 775.1147 264.4758 55.8236

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 11
 21
 11
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 59.48, 671.70 Width 12.81 Height 7.32 points
 Origin: bottom left

 1
 0
 BL

 Both
 3
 CurrentPage
 47

 CurrentAVDoc

 59.4842 671.7037 12.812 7.3212

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 12
 21
 12
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 268.14, 777.86 Width 273.63 Height 55.82 points
 Origin: bottom left

 1
 0
 BL

 Both
 3
 CurrentPage
 47

 CurrentAVDoc

 268.1364 777.8602 273.6272 55.8236

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 15
 21
 15
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 472.21, 478.61 Width 11.90 Height 13.73 points
 Mask co-ordinates: Horizontal, vertical offset 502.41, 518.88 Width 4.58 Height 21.05 points
 Origin: bottom left

 1
 0
 BL

 Both
 3
 CurrentPage
 47

 CurrentAVDoc

 472.2128 478.609 11.8969 13.7271 502.4125 518.8752 4.5757 21.0483

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 19
 21
 19
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 339.52, 146.41 Width 7.32 Height 3.66 points
 Origin: bottom left

 1
 0
 BL

 Both
 3
 CurrentPage
 47

 CurrentAVDoc

 339.5174 146.4127 7.3211 3.6606

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 19
 21
 19
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 21 to page 21
 Mask co-ordinates: Left bottom (89.68 789.76) Right top (173.88 828.19) points

 0
 89.6838 789.757 173.8768 828.1929

 21
 SubDoc
 21

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 20
 21
 20
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 20 to page 20
 Mask co-ordinates: Left bottom (507.19 657.98) Right top (539.22 703.73) points

 0
 507.1895 657.9766 539.2195 703.7336

 20
 SubDoc
 20

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 20
 21
 19
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 20 to page 20
 Mask co-ordinates: Left bottom (29.49 712.89) Right top (44.13 728.44) points

 0
 29.4859 712.8851 44.1281 728.4425

 20
 SubDoc
 20

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 20
 21
 19
 1

 1

 HistoryList_V1
 qi2base

