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DIAGONALIZATION OF MATRICES OVER REGULAR RINGS 

P. ARA, K.R. GOODEARL, K.C. O'MEARA AND E. PARDO 

ABSTRACT. Square matrices are shown to be diagonalizable over all known classes of (von 
Neumann) regular rings. This diagonalizability is equivalent to a cancellation property for 
finitely generated projective modules which conceivably holds over all regular rings. These 
results are proved in greater generality, namely for matrices and modules over exchange rings, 
where attention is restricted to regular matrices. 

INTRODUCTION 

The aim of this paper is to study the question of diagonalizability for matrices over 
regular rings, and somewhat more generally, for regular matrices over exchange rings. 
The theme of the paper is that diagonalizability properties are equivalent to cancellation 
conditions for finitely generated projective modules. 

Let us say that an m x n matrix A over a ring R admits a diagonal reduction if there 
exist invertible matrices P E GLm(R) and Q E GLn(R) such that P AQ is a diagonal 
matrix. Following Henriksen [11, p. 133], R is called an elementary divisor ring provided all 
square matrices over R admit diagonal reductions. This is less stringent than Kaplansky's 
definition of an elementary divisor ring [12, p. 465], since Kaplansky requires a stronger 
form of diagonal reduction. The central problem we address is the question of whether every 
( von Neumann) regular ring is an elementary divisor ring ( cf. [16, Question 6]). Henriksen 
[11, Theorem 3] has proved that every unit-regular ring is an elementary divisor ring. 

The diagonalizability question for rectangular matrices was answered by Menal and 
Moncasi [15, Theorem 9], who showed that all rectangular matrices over a given regular 
ring R admit diagonal reductions if and only if the finitely generated projective R-modules 
enjoy the following cancellation law: 

REBA"' B. 

This condition does not hold in general: For instance, if 2R "' R =f. 0, the condition fails 
in the case A = B = 0. Further, the stable rank (in the sense of K-theory) of a regular 
ring satisfying the above condition is at most 2 [15, Proposition 8]. 
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We prove that a regular ring R is an elementary divisor ring if its finitely generated 
projective modules satisfy the following cancellation law, which we call separativity: 

A~B. 

In fact, separativity is equivalent to the assumption that all corner rings eRe (for idem
potents e E R) are elementary divisor rings. It can be shown that all known classes of 
regular rings enjoy separativity, and thus are elementary divisor rings. No non-separative 
regular rings are known, and hence it is conceivable that all regular rings are elementary 
divisor rings. In particular, our results make it is easy to exhibit regular elementary divisor 
rings which are not unit-regular, and which do not satisfy the Menal-Moncasi conditions. 
Thus we provide a very strong answer to Henriksen's question whether a regular ring can 
be an elementary divisor ring without being unit-regular [11, Section 3(F)]. Our results 
also provide a large class of regular rings over which all square matrices are diagonalizable, 
but some rectangular matrices are not. The corresponding phenomenon for matrices over 
serial rings was exhibited by Levy in [14]. 

The methods of Menal and Moncasi mix module-theoretic and matrix-theoretic tech
niques, as do those of other work on regular matrices in the literature, such as [7, 8, 9, 10]. 
We were unable to adapt these kinds of methods to the problem of diagonalizing square 
matrices over regular rings. Instead, we work almost entirely in the context of modules 
and homomorphisms. The methods we develop apply equally well to rectangular as to 
square matrices, and they easily yield a new proof of the Menal-Moncasi theorem. 

All our proofs carry over, with no extra effort, to the case of exchange rings ( cf. Section 
1 for the definition), provided we restrict attention to (von Neumann) regular matrices. 
Hence, we derive our main results for regular matrices over exchange rings. 

We consider only unital rings and unital modules. Modules will be right modules unless 
otherwise specified, and homomorphisms will act on the left of their arguments. Our 
notation is standard; see for instance [6]. In particular, we write nA for the direct sum of 
n copies of a module A. 

1. EXCHANGE RINGS AND SEPARATIVE CANCELLATION 

Definition. A module M has the exchange property (see [5]) if for every module A and 
any decompositions 

A = M' EB N = E9 Ai 
iEl 

with M' ,..-.., M, there exist submodules Ai~ Ai such that 

A= M' EB (EBA~). 
iEI 

(It follows from the modular law that Ai must be a direct summand of Ai for all i.) 
If the above condition is satisfied whenever the index set is finite, M is said to satisfy 
the finite exchange property. Clearly a finitely generated module satisfies the exchange 
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property if and only if it satisfies the finite exchange property. It should be emphasized 
that the dir;ct sums in the definition of the exchange property are internal direct sums of 
submodules of A. One advantage of the resulting internal direct sum decompositions ( as 
opposed to isomorphisms with external direct sums) rests on the fact that direct summands 
with common complements are isomorphic - e.g., N rv EBiEI A~ above since each of these 
summands of A has M 1 as a complementary summand. 

Definition. Following [18), we say that a ring R is an exchange ring if the module RR 
satisfies the (finite) exchange property. By [18, Corollary 2), this definition is left-right 
symmetric. If R is an exchange ring, then every finitely generated projective R-module has 
the exchange property (by [5, Lemma 3.10), the exchange property passes to finite direct 
sums and to direct summands), and so the endomorphism ring of any such module is an 
exchange ring. 

The class of exchange rings is quite large. It includes all semiregular rings (i.e., rings 
which modulo the Jacobson radical are regular and have idempotent-lifting), all 1r-regular 
rings, and more; see [18, 17]. It also includes all C*-algebras with real rank zero [2). 

Proposition 1.1. Assume that R is an exchange ring. If A1, ... , Am and E1, ... , En are 
B.nitely generated projective R-modules such that A1 EB · · · EB Am rv E1 EB · · · EB En, then · 
there exist decompositions Ai = Ci1 EB··· EB Gin for each i such that C1j EB··· EB Cmj rv Ej 
for each j. 

Proof. This is a special case of [5, Theorem 4.1). (Cf. [6, Theorem 2.8) for the case of 
regular rings.) We give the proof since it is easy and it illustrates the use of the exchange 
property. An obvious induction reduces the problem to the case m = n = 2. 

It suffices to consider the case of an internal direct sum decomposition P = A1 EB A2 = 
E1 EB E2. Since E1 has the exchange property, P = E1 EB C12 EB C22 for some submodules 
Ci2 ~ Ai; moreover, Ai= Ci1 EB Ci2 for some Ci1· Now P = E1 EB (C12 EB C22) = E1 EB E2, 
whence C12 EB C22 ~ E2. Further, P = (C11 EB C21) EB (C12 EB C22) = E1 EB (C12 EB C22), and 
thus C11 EB C21 rv E1. 0 

Definition. Let R be a ring, and let FP( R) denote the class of finitely generated projective 
R-modules. We shall say that R is separative if for all A, E E FP(R), 

A~E. 

(Since the categories of left and right finitely generated projective R-modules are equiv
alent, separativity is a left-right symmetric condition.) In describing alternate forms of 
this condition, it is convenient to use the following notation, adapted from [19, Section 2). 
For modules A and E, we write A ex: E if there exists a positive integer n such that A is 
isomorphic to a direct summand of nE. 

Proposition 1.2. Let R be a ring. The following conditions are equivalent: 
(i) R is separative. 
(ii) For A, EE FP(R), if 2A rv 2E and 3A ~ 3E, then A:::'. E. 
(iii) For A, EE FP(R), if there exists n EN such that nA "'-' nE and (n+l)A ~ (n+l)E, 

then A~ E. 
(iv) For A, E, CE FP(R), if A EB C "'-' E EB C and C ex: A and C ex: E, then A~ E. 
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In case R is an exchange ring, separativity is also equivalent to the following: 
(v) For A, B, CE FP(R), if A EB 2C '.:::::'. B EB 2C, then A EB C rv B EB C. 

· Proof. The implication (iii) ===} (iv) is based on an argument of Kimura and Tsai [13, 
Theorem 1] ( cf. [3, Theorem 2.1.9]). 

(i) ===} (ii). Observe that 2(2A) rv 2(A EBB) ~ 2A EB (A EBB). Then by (i), we have 
2A ~ A EB B. Since 2A rv 2B also, we conclude using (i) again that A rv B. 

(ii) ===} (iii). If n E N such that nA ~ nB and (n + l)A rv (n + l)B, then nA EB A ~ 
nA EBB. It follows that nA EB kA '.:::::'. nA EB kB rv nB EB kB for all k E N. If n > 1, then 
2n - 2 2:: n and so 2(n - l)A rv 2(n - l)B and 3(n - l)A ~ 3(n - l)B. We conclude using 
(ii) that (n - l)A rv (n - l)B. Therefore by induction on n, we obtain A~ B. 

(iii) ===} (iv). Assume that A EB C rv B EB C with kA ~ C EB C' and kB ~ C EB C" for 
some k EN and C', C" E FP(R). We have 

( k + 1 )A rv A EB C EB C' rv B EB C EB C' ~ kA EB B. 

Then (k + 2)A rv (k + l)A EBB rv kA EB 2B, and so on: (k + r)A rv kA EB rB for all r EN. 
By symmetry, (k + r)B ~ kB EB rA for all r E N. In particular, taking r = k we obtain 
2kA rv kA EB kB rv 2kB. Further, (2k + l)A rv kA EB (k + l)A rv 2kA EBB~ (2k + l)B, and I .· 

therefore Arv B using (iii). 
(iv)===} (i). Obvious. 
Now assume that R is an exchange ring. The implication (iv) ===} (v) is obvious. For 

the converse, consider A, B, C E FP( R) such that A EB C rv B EB C while C ex A and C ex B. 
Since C is isomorphic to a direct summand of kA for some k E N, Proposition 1.1 implies 
that C = C1 EB· · · EB Ck where each Ci is isomorphic to a direct summand of A. It suffices to 
cancel the Ci successively from the isomorphism AEB C1 EB··· EB Ck rv B EB C1 EB··· EB Ck, and 
so there is no loss of generality in assuming that C is isomorphic to a direct summand of A. 
Similarly, we may reduce to the case that C is also isomorphic to a direct summand of B. 
Now write A ~ A' EB C and B rv B' EB C for some A', B' E FP( R). Then A' EB 2C rv B' EB 2C 
and so A' EB C rv B' EB C by (v), that is, Arv B. This show~ that (v) ===} (iv). D 

2. CANCELLATION IMPLIES DIAGONALIZATION 

Definition. The standard concept of equivalence for matrices translates into module the
oretic language as follows: homomorphisms f, g : N --+ M are equivalent if g = uf v for 
some automorphisms u E Aut Mand v E Aut N. A homomorphism f : N--+ Mis (von 
Neumann) regular provided f has a generalized inverse, i.e., there exists a homomorphism 
h : M --+ N such that fhf = f. Recall that in this case fh and hf are idempotent 
endomorphisms of M and N respectively, and so im f = im f h is a direct summand of M 
while ker f = ker hf is a direct summand of N. 

The following elementary lemma is perhaps well known, but we were unable to locate a 
reference in the literature. One implication is observed in [4, Definition l.6ff]. 

Lemma 2.1. Let Ji, h : N --+ M be regular homomorphisms. Then Ji and h are equiv
alent if and only if Ji and h have isomorphic kernels, isomorphic images, and isomorphic 
cokernels. 
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Proof. Suppose first that fz = ufi v for some u E Aut M and v E Aut N. First, ker fz = 
ker(fi v) = v--1 (ker Ji), which is isomorphic to ker Ji via v. Second, fzN = ufiN, which is 
isomorphic to fiN via u-1 . Third, M/fzN = M/ufiN, and u-1 induces an isomorphism 
of this module onto M / Ji N. 

Conversely, assume that Ji and h have isomorphic kernels, images, and cokernels. Since 
Ji and fz are regular, there exist decompositions N = Kj ffiI{j and M = Ij ffi]j for j = 1, 2 
where Kj = ker Ji and Ij = imfi. Further, each Kj "'Ij via Jj, and each 1; ~ coker Jj, 

By assumption, K 1 ::::::'. K 2 and K{ ~ K~. Hence, there exists v E Aut N such that 
vK2 = K1 and vK~ = K{, and ker(fi v) = v-1 K1 = K2. After replacing Ji by Ji v, we 
may assume that K1 = K 2 and K{ = K~. We also have 11 "'12 and I{ ~ I~, and so there 
exists u E Aut M such that uI1 = Iz and uI{ = I~. After replacing Ji by ufi, we may 
assume that 11 = 12 and I{ = I~. 

Now Ji and h both restrict to isomorphisms of K{ onto 11. There exists w E Aut M 
such that w = 1 on I{ and w = hf1-

1 on 11, and wfi = fz. D 

For any ring Rand any positive integers m, n, we identify the set Mmxn(R) of all m X n 
matrices over R with HomR(nR, mR) in the standard manner. (This is consistent with 
our convention that homomorphisms act on the left of their arguments, and requires that 
we view elements of nR and mR as column vectors.) In the case m = n, this becomes an 
identification of Mn(R) with EndR(nR), and restricts to an identification of GLn(R) with 
AutR(nR). 

Proposition 2.2. Let R be an exchange ring, and let f E Mmxn(R) be regular. 
(a) Suppose that n ~ m. Then f admits a diagonal reduction if and only if the following 

condition holds: 
(*) There are decompositions 

ker f = K1 ffi · · · ffi Kn, imf = 11 ffi · · · ffi Im, coker f = C1 ffi · · · EB Cm 

such that Kj ffi Ij ~ Cj EB Ij ~ R for j = 1, ... , m and Kj ,...., R for j = m + 1, ... , n. 
(b) Suppose that n :S m. Then f admits a diagonal reduction if and only if the following 

condition holds: 
(**) There are decompositions 

ker f = K1 ffi · · · ffi Kn, imf = 11 ffi · · · ffi In, coker f = C1 ffi ···EB Cm 

such that Kj ffi Ij ~ Cj ffi Ij ,...., R for j = 1, ... , n and Cj "'R for j = n + 1, ... , m. 

Proof. Set N = nR = N1 EB·· ·ffiNn and M = mR = M1 ffi· · ·ffiMm where Ni (respectively, 
Mi) is the direct summand of N (respectively, M) generated by the i-th standard basis 
vector. Since f is regular, we can write N = K EB K' and M = I ffi C with K = ker f, 
I = im f, and C "' coker f. Note that I and K have the exchange property. 

(a) Assume first that we have decompositions K = K1 ffi ···EB Kn, I= Ii EB··· ffi Im, 
and C = C1 ffi · · · EB Cm as in (*). Since f maps K' isomorphically onto I, we also have 
K' = K{ EB · · · ffi K:n such that f maps each I{j isomorphically onto Ij. By assumption, 
Kj EB I{j ::::::'. R for j :S m and Kj "' R for j > m, and hence there exists v E GLn(R) 
such that vNj = Kj EB I{j for j :S m and vNj = Kj for j > m. Similarly, there exists 
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u E GLm(R) such that u(Cj EB Ij) = Mj for all j ~ m. Then ufvNj = ufK5 = uij ~ Mj 
for j ~ m and ufvNj = 0 for j > m. It follows that ufv is diagonal. Namely, if v1, ... , Vn 
and µ1, ... , µm are the standard bases for N and M, then there exist r1, ... , rm E R such 
that ufv(vj) = µjrj for j ~ m and ufv(vj) = 0 for j > m. Therefore 

(

r1 

ufv = I 0 

0 

0 0 
0 0 

rm O l) 
Conversely, suppose that ufv is diagonal for some u E Aut Mand v E Aut N. In view of 

Lemma 2.1, it suffices to find decompositions as in (*) for the kernel, image, and cokernel 
of ufv. Hence, we may assume that f is diagonal, that is, f Nj ~ Mj for j ~ m and 
f Nj = 0 for j > m. 

Now M = I EB C = M1 EB··· EB Mm. By the exchange property, each Mi= Mi1 EB Mi2 
such that M = I EB M12 EB · · · EB Mm2. Since the only property required of C is that it be 
a complement for I, there is no loss of generality in assuming that C = M12 EB··· EB Mm2· 
Similarly, since N = I{ EB J{' = N1 EB · · · EB N n, each Ni = Nii EB Ni2 such that N = 
KEBN12 EB·· ·EBNnz, and there is no loss of generality in assuming that I{' = N12EB· · ·EBNnz· 
Note that I{ ~ N11 EB··· EB Nn1 (since both of these submodules of N are complements for 
K'). Hence, there is a decomposition I{ = J{1 EB · · · EB Kn such that Kj rv Nj1 for all j. 
Further, since Nj ~ I{ for j > m (recall that f Nj = 0), we have Nj2 = 0 for j > m. 

Since f maps I{' isomorphically onto I, we have I = I1 EB · · · EB Im with each Ij = 
JNj2 rv Nj2· Note that f Nj2 ~ JNj ~ Mj for all j ~ m. Since JNj2 is a direct summand 
of I, which is a direct summand of M, it follows that f Nj2 is also a direct summand of 

.Mj, say Mj = f Nj2 EB Fj. Now 

Since C and Fi EB · · · EB Fm are both complements for I in M, they must be isomorphic. 
Thus C = C1 EB · · · EB Cm with each Cj rv Fj. Finally, we have 

and 

for j = 1, ... , m and Kj rv Nj1 = Nj1 EB Nj2 = Nj l'V R for j = m + 1, ... , n. Therefore(*) 
is proved. 

(b) The proof is an easy modification of the proof of part (a), and is left to the reader. D 

Definition. Consider decompositions nR l'V I{ EB I and mR l'V I EB C, with n 2: m. Just 
for the purposes of the next few proofs, let us define a diagonal refinement of the given 
decompositions to be a set of decompositions I{ = K1 EB··· EB Kn, I= I1 EB··· EB Im, and 
C = C1 EB··· EB Cm such that Kj EB Ij l'V Cj EB Ij l'V R for j ~ m and Kj ~ R for j > m. 

Lemma 2.3. Let R be an exchange ring. Consider decompositions nR ~ !{ EB I and 
mR l'V I EB C with n 2: m, and suppose that I{ l'V !{* EB X and C ,...._, C* EB X for some 



DIAGONALIZATION OF MATRICES OVER REGULAR RINGS 7 

modules]{*, C*, X. If the decompositions nR,....., ]{* EB (I EB X) and mR '.::::'. (I EB X) EB C* 
have a diagonal refinement, so do the original decompositions nR ~ K EB I and mR ~ I EB C. 

Proof. By assumption, there is a diagonal refinement 

K* = K{ EB··· EB K~, C* = c; EB ... EB c:n. 

By Proposition 1.1, I= I1 EB · · · EB Im and X = X1 EB ···EB Xm with Ij EB Xj ~ IJ for all 
j :S m. We can then write decompositions 

and C ,....., ( C{ EB X 1) EB .. · EB ( C~ EB X m). Together with the decomposition I = I1 EB· · · EB Im, 
this provides the desired diagonal refinement. D 

We can now show that diagonalizability of square matrices follows from separativity, 
and in fact from a somewhat weaker cancellation law. Recall that an R-module A is a 
generator (in the category of R-modules) provided R is isomorphic to a direct summand 
of nA for some n, that is, Rex A in the notation of Section 1. 

Theorem 2.4. Let R be an exchange ring, and assume that 2R EB A ,....., R EBB implies 
R EB A ~ B for any finitely generated projective R-modules A and B such that B is a 
generator. Then every regular square matrix over R admits a diagonal reduction. 

Proof. In view of Proposition 2.2, it suffices to show that every decomposition nR ~ 
I{ EB I,....., I EB C (with n 2:: 2) has a diagonal refinement. 

By Proposition 1.1, K = X1 EB X2 and I = Y1 EB Yz such that X1 EB Y1 ,....., I and 
X 2 EB Y2 ~ C. In view of Lemma 2.3, it suffices to find a diagonal refinement for the 
decompositions nR,....., X1 EB (I EB X2),....., (I EB X2) EB Yz. Hence, we may replace K, I, C by 
X 1 , I EB X 2, Yz. Thus there is no loss of generality in assuming that ]{ is isomorphic to a 
direct summand of I, whence nR is isomorphic to a direct summand of 2I. In particular, 
I is now a generator. 

Since nR EB C ,....., I{ EB I EB C ~ (n - l)R EB (R EB I<) with R EB I{ a generator, our 
cancellation hypothesis (applied n-1 times) implies that REBC ~ REBK. By Proposition 
1.1, R = R1 EB R2 and C = Z1 EB Zz such that R1 EB Z1 ,....., R and R2 EB Z2 ,....., K. In 
view of Lemma 2.3, it now suffices to find a diagonal refinement for the decompositions 
nR,....., Rz EB (I EB Z2),....., (I EB Z2) EB Z1. Since R1 EB Rz ~ R1 EB Z1 ~ R, we may now assume 
that W EB I{ ~ W EB C ~ R for some W. 

At this point, we have 2REB (n-2)REB W,....., ]{ EB I EB W,....., REB I. Since I is a generator, 
it follows from our hypothesis that ( n - 1 )R EB W ~ I. Therefore the decompositions 

K = K EB O EB · · · EB 0, I ,....., W EB R EB · .. EB R, 

form a diagonal refinement for the decompositions nR ~ I{ EB I,....., I EB C. D 

Of course, when R is regular all matrices over Rare regular ( cf. [6, Theorem 1. 7]), and 
we obtain our main result: 
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Theorem ~.5. If R is a separative regular ring, then every square matrix over R admits 
a diagonal reduction. D 

Theorem 2.5 conceivably applies to all regular rings, since no non-separative regular 
rings are known. (In fact, no non-separative-exchange rings are known.) As a particular 
application of the theorem, we note the following result of Moncasi and the second author: 

Corollary 2.6. [16, Teorema 2.19] Square matrices admit diagonal reductions over any 
right self-injective regular ring R. 

Proof. It is known that 2A ,.-..., 2B implies A ,.-..., B for A, B E FP(R) [6,· Theorem 10.34]. 
Hence, R is separative. D 

We mention that the class of separative regular rings includes all unit-regular rings, all 
right or left ~0 -continuous regular rings [1, Theorem 2.13], and all regular rings satisfying 
general comparability [6, Theorem 8.16]. It is not difficult to show that this class is closed 
under taking corners, finite matrix rings, arbitrary direct products, direct limits, and factor 
rings. It is also closed under extensions in the sense that if R is a regular ring with an ideal 
I such that R/ I and eRe are separative for all idempotents e EI, then R is separative [2]. 

We now turn to diagonal reduction for non-square matrices. This will lead, in the next 
section, to the promised generalization of the Menal-Moncasi theorem. 

Proposition 2.7. Let R be an exchange ring, and let f E Mmxn(R) be regular. 
(a) nR EB coker f ~ mR EB ker f. 
(b) Suppose that n > m. Then f admits a diagonal reduction if and only if ker f ,.-..., 

(n - m)R ffi coker f. 
( c) Suppose that n < m. Then f admits a diagonal reduction if and only if coker f ,.-..., 

(m - n)R EB ker f. 
Proof. Write nR = K EB K' and mR = I EB C where, as usual, K = ker f, I= imf, and 
C ,.-..., coker f. 

( a) Since K' :::::'. I via f, we have nR ,.-..., K EB I, whence nR EB C C:! K ffi I ffi C ,.-..., K EB mR. 
(b) ( ===} ): By Proposition 2.2, there exists a diagonal refinement 

I= 11 EB··· EB Im, 

For j :s; m, we have Kj EB Ij ,.-..., Cj EB Ij ~ R, whence Kj EB R ,.-..., Kj EB lj EB Cj ,.-..., Cj EB R. 
Consequently, 

K1 ffi · · · EB Km ffi R ,.-..., C1 EB K2 EB · · · ffi Km EB R ,.-..., C1 EB C2 EB K3 EB · · · EB Km EB R 

:::::'. · · · ,.-..., C1 EB · · · ffi Cm EB R = C EB R. 

Since n > m and Kj ,.-..., R for j > m, we thus obtain 

K ,.-..., K1 EB .. · EB Km EB (n - m)R ,.-..., C EB (n - m)R. 

( ~ ): By Proposition 2.2, it suffices to find a diagonal refinement for the decompositions 
nR "' K ffi I and mR = I EB C. We have K ,.-..., ( n - m )R ffi C by assumption, and so Lemma 
2.3 shows that it is enough to find a diagonal refinement for the decompositions 

nR ,.-..., (n - m)R EB (I ffi C) and mR ,.-..., (I EB C) EB 0. 

) ' 

I 
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However, this is easy: take 

(n - m)R:::::. 0 EB· .. EBO EB R EB··· EB R, I EB C ,..., R EB · · · EB R, 0 = 0 EB··· EB 0. 

( c) This is very similar to (b), and is left to the reader. D 

Theorem 2.8. Let R be an exchange ring, and assume that 2R EB A ,..._, R EBB implies 
R EB A :::::. B for any finitely generated projective R-modules A and B. Then every regular 
matrix over R admits a diagonal reduction. 

Proof. Theorem 2.4 immediately implies that every regular square matrix over R admits 
a diagonal reduction. It follows from our hypotheses that nR EB C ,.._, mR EB I{ implies 
(n - m)R EB C ,..._, K for n > m and any finitely generated projective R-modules C and K. 
Hence, Proposition 2. 7 implies that regular m x n matrices over R admit diagonal reduction 
for all n > m. Finally, diagonal reduction for regular m x n matrices with n < m likewise 
follows from Proposition 2.7. D 

3. DIAGONALIZATION IMPLIES CANCELLATION 

The cancellation condition used in Theorem 2.8 actually characterizes diagonalizability 
of regular matrices over exchange rings, as follows. 

Theorem 3.1. For an exchange ring R, the following conditions are equivalent: 
(a) Every regular matrix over R admits a diagonal reduction. 
(b) Every 1 x 2 regular matrix over R admits a diagonal reduction. 
( c) Every 2 x 1 regular matrix over R admits a diagonal reduction. 
( cl) 2R EB A ~ R EBB implies REBA ,.._, B for any finitely generated projective R-modules 

A and B. 

Proof. We have (d)===;,(a) by Theorem 2.8, and (a)===;-(b),(c) a priori. 
(b )====:;,( cl): Apply Proposition 1.1 to the given isomorphism 2R EB A ,..._, R EBB. Thus, 

there exist decompositions 2R = N1 EB Nz and A= A1 EB Az such that N1 EB A1 rv Rand 
Nz EB Az ~ B. Write R = M1 EB Mz with M1 D< N1 and Mz rv A1. Since N1 ~ M1, there is 
a regular homomorphism f : 2R --t R such that ker f = N 2 and f maps N 1 isomorphically 
onto M 1 . Note that M 2 D< coker f. We identify f with a regular 1 x 2 matrix, which 
admits a diagonal reduction by assumption. Consequently, Proposition 2. 7 implies that 
R EB coker f rv ker f, that is, R EB Mz rv Nz. Therefore 

(c)===;-(d): This is proved in the same manner as the implication above. D 

Kaplansky defined a ring R to be right (left) Hermite provided every 1 x 2 (2 x 1) matrix 
over R admits a diagonal reduction [12, p. 465]. Thus the specialization of Theorem 3.1 to 
the case of a regular ring yields a new proof of the following version of the Menal-Moncasi 
theorem: 
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Theorem 3.2. [15, Theorem 9] For a regular ring R, the following conditions are equiv
alent: 

(a) Every matrix over R admits a diagonal reduction. 
(b) R is right Hermite. 
( c) R is left Hermite. 
( d) 2R EB A ,....., REBE implies REBA ,....., E for any finitely generated projective R-modules 

A and E. D 

It is easy to find regular rings which are not Hermite, for instance because Hermite 
regular rings have stable range at most 2 [15, Proposition 8]. To give a more specific 
example, let R be any nonzero right self-injective regular ring which is purely infinite in 
the sense of [6], that is, 2R ,....., R. (For instance, the endomorphism ring of any infinite 
dimensional vector space has these properties.) Since 2R EBO ~ R EBO while R EB O ~ 0, 
Theorem 3.2 shows that R is not Hermite. In fact, it follows from Proposition 2. 7 that 
the 1 x 2 matrix corresponding to any isomorphism 2R ----+ R cannot admit a diagonal 
reduction. On the other hand, all square matrices over R admit diagonal reductions, by 
Corollary 2.6. Therefore the class of regular rings exhibits the same distinction between 
diagonalizability of square and rectangular matrices that Levy proved for serial rings [14]. 

We conclude by proving that separativity for an exchange ring R is in fact characterized 
by diagonalizability of square matrices. However, the characterization involves square 
matrices not only over R but also over corner rings eRe, where e is any idempotent in 
R. For this purpose, we recall a few standard observations about the relations between 
projective modules over Rand eRe. First, if A E FP(R), then Ae E FP(eRe). Conversely, 
if EE FP(eRe), then E@eRe eR E FP(R), and (E@eRe eR)e,....., E. However, if A E FP(R), 
then Ae @eRe eR need not be isomorphic to A; in fact, Ae @eRe eR,....., A if and only if A is 
isomorphic to a direct summand of n( eR) for some n. 

Proposition 3.3. Assume that R is an exchange ring, and that all regular matrices in 
M2(R) admit diagonal reductions. If A, E, C are finitely generated projective R-modules 
such that A EB C ,....., E EB C and R is isomorphic to direct summands of both A and E, then 
A~B. 

Proof. We are given that A,....., REBA' and E ,....., REBE' for some A', E'. Further, CEBC',....., nR 
for some C' and some n EN. Hence, it suffices to show that (n+ l)REBA' '.:::::'. (n+ l)REBE' 
implies R EB A' "' R EB E' for any finitely generated projective R-modules A' and E'. By 
an obvious induction on n, this reduces to the case n = 2. 

Therefore, assume that 2R EB A' "' 2R EB E'. Set M = 2R. Since M EB A' "' M EB E', 
Proposition 1.1 implies that there exist decompositions M = C11 EB C12 and A' = C21 EB C22 
such that C11 EB C21 ,....., M and C12 EB C22 ~ E'. It suffices to show that R EB C12 ,....., R EB C21, 
since then REBE''.:::::'. REBC12EBC22 ~ REBC21 EBC22,....., REBA'. Thus, we have decompositions 
M = ]{ EB K' = 1 EB C with ]{ = C12 and K' = Cn while 1 ~ Cn and C '.:::::'. C21, and it 
suffices to show that R EB ]{ ,....., R EB C. 

As usual, we identify M2(R) with EndR(M). Since I{' = C11 ,....., 1, there is a regular 
matrix f E M2(R) such that ker f = ]{ and f maps K' isomorphically onto 1; then C,....., 
coker f. By hypothesis, f admits a diagonal reduction. We then obtain decompositions 
I{ = K1 EB K2, 1 = 11 EB 12, and C = C1 EB C2 as in condition (*) of Proposition 2.2. 
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Therefore 

Theorem 3.4. An exchange ring R is separative if and only if for all idempotents e E R, 
every regular matrix in M2(eRe) admits a diagonal reduction. 

Proof. Assume first that R is separative, and let e be an idempotent in R. If A and B 
are any finitely generated projective right eRe-modules such that 2A {'-.) A EBB {'-.) 2B, then 
A ®eRe eR and B ®eRe eR are finitely generated projective right R-modules such that 

2(A ®eRe eR) {'-.) (A ®eRe eR) EB (B ®eRe eR) {'-.) 2(B ®eRe eR). 

Since R is separative, A®eReeR ~ B®eReeR, and thus A{'-.) (A®eRe eR)e ~ (B®eReeR)e {'-.) 
B. This shows that eRe is separative, and therefore Theorem 2.4 implies that all regular 
square matrices over eRe admit diagonal reductions. 

Conversely, assume that all regular matrices in each M2( eRe) admit diagonal reductions. 
We shall show that for any idempotent e E R and any A, B E F P( R), the implication 

2(eR) EB A~ 2(eR) EBB ===;, eR EB A{'-.) eR EBB 

holds. It follows that for all A, B, CE FP(R), if 2C EB A{'-.) 2C EBB, then C EB A{'-.) C EBB 
( use the fact that C ~ e1 R EB· · · EB enR for some idempotents e1, ... , en E R [ 6, Proposition 
2.6]). Therefore R is separative by Proposition 1.2. 

Thus, suppose that 2( eR) EB A ::'. 2( eR) EB B for some idempotent e E R and some 
A,B E FP(R). By Proposition 1.1, there exist decompositions 2(eR) = Cu EB C12 and 
A= C21 EB C22 such that Cu EB C21 {'-.) 2(eR) and C12 EB C22 ~ B. Now 

and so 2(eRe) EB C12e ~ 2(eRe) EB C21e. In view of Proposition 3.3 (applied over the ring 
eRe), it follows that eReEBC12e {'-.) eReEBC21e. Since C12 and C21 are isomorphic to direct 
summands of 2( eR), we obtain 

eR EB C12 ~ (eRe EB C12e) ®eRe eR {'-.) (eRe EB C21e) ®eRe eR,....., eR EB C21, 

and therefore eR EBB ,....., eR EB C12 EB C22 ~ eR EB C21 EB C22 {'-.) eR EB A, as desired. D 

If one could show that all regular 2 x 2 matrices over all exchange rings ( or over all 
regular rings) admit diagonal reductions, Theorem 3.4 would then imply that all exchange 
rings ( or all regular rings) are separative. 
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