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Abstract: The variations between homologous nqcleotide sequences representative of various species . 
are, in part, a consequence of the evolutionary history of these species. Determining the evolutionary tree 

from patterns in the sequences depends on inverting the stochastic processes governing the substitutions 

from their ancestral sequence. We present a number of recent (and some new) results which allow for 

a tree to be reconstructed from the expected frequencies of patterns in its leaf colorations generated 

under various Markov models. We summarise recent work using Hadamard conjugation, which provides 

an analytic relation between the parameters of Kimura's 3ST model on a phylogenetic tree and the 

sequence patterns produced. We give two applications of the theory by describing new properties of the 

popular "maximum parsimony" method for tree reconstruction. 

1 Introduction 

A fundamental problem in biological classification is the following: how can the large and rapidly expand

ing array of DNA and RNA sequences be best exploited to provide an accurate picture of how species 

evolved from common ancestors? It is increasingly recognised that approaches to this question should be 

statistically based [34]. This requires the underlying sequence evolution to be modelled stochastically, 

and a variety of models have been proposed. In this paper we first describe a number of classes of 

such models. We then discuss the fundamental and biologically important "inversion" problem of recon

structing trees uniquely, given only the expected frequencies of their induced leaf colorations (patterns). 

This provides the mathematical basis for statistical approaches to phylogeny reconstruction, where the 

frequencies of patterns in finite length sequences are approximations to these expected frequencies. 

Next we review two important, classical characterisations of phylogenetic trees - as set systems, and 

as distance functions satisfying a "four point condition". In section 2.1 we describe how the second of 

these characterisations allows for the inversion problem to be solved with very few assumptions regarding 

the associated transition matrices. 

We then consider more specific models in which progressively more structure is imposed on the model: 

from insisting that the transition matrices belong to some prescribed semigroup, and special cases of such 

models - Stationary models and Group-based models for which we present new results for these models 

in Theorems 4 and 5. Group-based models include the symmetric model for 2 colors (based on the cyclic 

group C2 ) and an extension of the biologically relevant 3-parameter model due to Kimura [32] which 

corresponds to the group C2 x C2. Recently, it has been shown that both these models (and others based 

on abelian groups, particularly elementary abelian groups) result in a particularly nice and fully invertible 

relationship between a tree and the frequencies of the patterns it induces (see [25], [44] and [49]). This is 

summarized in section 2.2.3 using the characterisation of a phylogenetic tree as a set system from section 

1.2.1. In particular, for the Kimura 3ST model [32], we present a self contained and transparent proof 

of the main inversion theorem from Steel et al. [44], which complements the more abstract approach to 

group-based models (based on discrete Fourier analysis) adopted by Szekely et al. [49] and [44]. We also 

summarize in section 2.3 some recent extensions that allow for a distribution of rates across sites. 

In section 3 we present two new applications of the theory to analyse the popular tree building method 
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based on "maximum parsimony" : ( 1) we show that this method is statistically consistent on four species, 

under Kimura's 3ST model, with a molecular clock, and (2), under the symmetric 2-color model we prove 

the "Bealey Theorem" which bounds the expected number of sites requiring 2,3, ... substitutions on the 

true tree in terms of the expected number requiring O and 1 substitution (regardless of the parameters 

on the underlying tree); an application of this theorem to biological data has already appeared in [36]. 

1.1 General Formulation 

In this section we provide the framework from which we formulate the inversion problem and detail some 

assumptions necessary for this inversion. 

Randomly coloring phylogenetic trees Evolutionary relationships are generally represented by a 

phylogenetic tree, T, that is, a tree whose leaves are labelled (bijectively) by a set S of species and whose 

remaining vertices are unlabelled and of degree at least 3. When all the non-leaf vertices have degree 3 

the tree is said to be fully resolved. If we take a phylogenetic tree T and either distinguish a non-leaf 

vertex by labelling it p, or bisect an edge of T and label the newly created degree 2 vertex p, the resulting 

tree, denoted T+P, is called a rooted phylogenetic tree. In taxonomy, the leaves of T and T+P generally 

represent extant species, the remaining vertices represent ancestral species. The root vertex p in T+P 

represents the most recent common ancestor of the species set S. 

We represent the assignment of characters of biological interest as a coloring of the vertices of T+P. 

Direct the edges of T+P away from p, and for each edge e, we write e as the ordered pair ( u, v) if u lies 

between v and p. Consider the following probability distribution on the set of leaf-colorations of T by 

elements of a set C of c colors. First, assign a color a EC to the root .vertex p with probability 1ra(p). 
Then, randomly color the remaining vertices of T+P recursively, from the root towards the leaves, as 

follows: if e = (u, v) has vertex u assigned a color, say a, and vis yet to be colored, then assign a random 

color f3 to v with probability Pe ( a, {3). Eventually all the vertices of T+P, including the leaves of T+P, 

will be colored, and each such total coloration ( coloration of all the vertices of T+P) x produced in this 

way will have a certain probability. Now, suppose we are given a coloration x of S by C - we call this 

a pattern on S. If we regard S as the set of leaves of T+P then x has an induced marginal probability, 

equal to the sum of the probabilities of that subset of the total colorations which extend X· 

We denote by f x, the probability of generating pattern X, so that 

fx = L 1fx(P) II Pe(x(u), x(v)), (1) 
X e=(u,v) 

where the summation is over all total colorations x which extend x and the product is over all edges of 

T+P. Note that if T+P has w non-leaf vertices there will be cw such extensions. 

For e = ( u, v), an edge of T+P, we will let M ( e) denote throughout the transition matrix M ( e) = 

[pe(a, {3)]. Thus, if we order C as (a1, ... , ac), the rs entry of M(e) is the conditional probability that 

x(v) = a 8 , given that x(u) = ar, Consequently, each row of M(e) sums to 1. As a simple example, 

consider the tree in Fig. 1, together with the indicated 2 x 2 transition matrices and the root distribution 
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1r(p) = (1r1, 1r2). The probability of the pattern x(l) = x(2) = a 1, x(3) = a2, is: 

In our recursive description above of how to generate random patterns based on 1r(p) and {M(e)}, we 

have tacitly assumed that each new coloring of a vertex is dependent only on the color of its immediate 

ancestor. In the interests of precision we now make explicit this assumption. Let -< be a total ordering 

on the vertices of T that respects descendency from the root, so that if e = (u, v), then u-< v (hence for 

example -< may be induced by time). Then in order for (1) to hold, we need only assume the following 

equality of conditional probabilities for each edge e = ( u, v) of T+P, 

(Al) lP [x(v) = al /\ x(w)] = lP [x(v) = aix(u)]. 
w--<v 

Informally, (Al) states that given the state at vertex u, the state assigned to vertex vis conditionally 

independent of the states at all other "earlier" vertices. (Al) implies equation (1) by the well known 

identity in probability theory, for a family of events A1, A2, ... , 

If the tree r+P consisted of a path from p to a single leaf, then (Al) would be precisely the definition 

of a nonhomogeneous Markov chain (see [30], chapter 7). Thus, (Al) defines what one might call a 

"nonhomogeneous Markov tree." 

Inversion A fundamental issue for phylogenetic methodology is the inverse problem, of finding T+P 

and { M ( e)}, or relevant information about these matrices, given just the probabilities of the various 

patterns on S together with certain restrictions on {M(e)}. If {M(e)} is not required exactly, it may 

still be desirable to determine, or to at least place bounds on the "edge lengths" - that is the expected 

number of changes of color on each edge under the assumption that the transition matrix for that edge 

is the result of a continuous-time Markov process (see Remark 2.2.1, below). For stationary models 

(discussed in section 2.2.1) these lengths are proportional to time, so that their determination allows for 

the temporal dating of different evolutionary episodes. As an intermediate step, it would be desirable 

to at least be able to order the vertices of T+P consistently with the temporal order of the evolutionary 

events that such vertices represent (namely the creation of new species from an ancestral species). 

Actually, as we shall see, the position of the root in T+P cannot be uniquely established without 

invoking additional assumptions - in taxonomy the inclusion of an additional outgroup species, or the 

imposition of a hypothesis such as the molecular clock ( discussed below) are used to estimate the position 

of the root. Thus, a more reasonable goal is the following: 

• Tree reconstruction problem: Given f = [f xl, or some knowledge of its distribution, find T, and 

information about { M ( e)}. 

5 



In taxonomic applications, f x is usually estimated as the observed proportion of sites in a collection 

of aligned sequences which correspond to X· Provided the sites in the sequence have evolved identically 

and independently (i.i.d.) according to the above model, these estimates will tend, with probability 1, 

to the true probability value as the length of the sequences increases. In taxonomy, with sequences of 

finite length, statistical methods must be appended to a solution of the inversion problem in order to 

determine confidence limits for reconstructed trees (we do not consider these here, see for instance [51]). 

Also in taxonomy the assumption that the sites have an identical distribution satisfying (Al) is often 

violated, however we describe how, for certain models that allow the rate of evolution to vary across 

sites, the inversion problem can still be solved. 

Note that restrictions must be placed on {M(e)} for T to be uniquely described by the fx's. For 

example, with only two colors, putting Pe(a, fJ) = 0 for all edges e, we see that all phylogenetic trees 

induce exactly the same distribution on the set of leaf bicolorations, (namely the degenerate distribution 

which colors all the leaves a with probability 1r a (p)). Similarly, setting Pe ( a, fJ) = 0.5 for all a, fJ, we 

obtain the uniform distribution on the x's. 
A further technical point concerns the occasional practice in taxonomy of grouping the four nucleotide 

bases into the two purine bases and the two pyrimidine bases, thereby replacing 4-colorations of the 

vertices of T+P by 2-colorations; although assumption (Al) may apply for four bases, (Al) may fail when 

the four colors are grouped into pairs. 

1.2 Representations Of Phylogenetic Trees 

In this section we review two fundamental theorems concerning phylogenetic trees, both of which provide 

neat existence and uniqueness results for a tree in terms of an induced structure, and are central to later 

sections. 

1.2.1 A Phylogenetic Tree as a System of Splits 

Normally a phylogenetic tree is thought of as a graph. However, there is a natural way to represent an 

(unrooted) phylogenetic tree on a leaf set S as a collection of subsets of S, and this representation is 

an essential aspect of inversion formulae discussed later. If we take a phylogenetic tree, T, with leaf set 

Sand we delete an edge of T, this disconnects T into two components and thereby partitions S into a 

pair of subsets; this pair is frequently referred to as a split. If we distinguish one element R of S, one of 

the two subsets in a split will not contain R. We select this subset to identify the split. The collection 

of these split identifying subsets for all the edges of the tree T is a collection, O" = O"(T), of nonempty 

subsets of S' = S - { R} which have the following two properties: 

(i) S' E O" and {i} E O",Vi ES', 

(ii) if fJ, fJ* E O" then fJ n fJ* E {fJ, fJ*, 0}. 

Condition (ii) is often expressed by saying that fJ and fJ* are compatible. O"(T) has at most 2jSj - 3 

sets, and this upper bound is achieved precisely if T is fully resolved [9]. For example, for the fully 
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resolved tree 'I'1 , in Fig. 2, taking R = 4, we have 

a('I') = {{1},{2},{3},{1,2,3},{1,2}}. 

Buneman [9] established the fundamental converse result: 

Theorem 1 (Buneman, 1971) Any collection a, of nonempty subsets of S' which satisfy (i) and (ii) 

corresponds to a(T) for a unique unrooted phylogenetic tree 'I' on S. Furthermore this tree can be recovered 

from a in polynomial time. 

Methods for reconstructing 'I' from a include Meacham's "'free popping" method (see [2]), or Gus

field's linear-time method [24]. More generally, Buneman [9] described a natural association of a graph 

to any collection a of subsets of S', and showed that this graph is a tree T precisely if the sets in a are all 

pairwise compatible (in which case a = a('I')). For further details the interested reader should consult 

[8]. Unfortunately, for this construction the number of vertices in the graph can grow exponentially with 

n = ISi. A preferable graphical representation of a - which extends to positively weighted splits - is 

provided by the recently developed split decomposition method [3]. In this representation, 'weakly com

patible' sets of positively weighted splits induce an edge-weighted graph with a small ( order n2) number 

of vertices, and this graph is a tree exactly when the splits are pairwise compatible. 

1.2.2 A Phylogenetic Tree as a Distance Function 

A distance function on Sis a map d: S x S-+ JR~ 0 (the non-negative real numbers) which is symmetric 

(that is d(x,y) = d(y,x) for all x,y ES) and for which d(x,x) = 0 for all x ES. A (rooted or unrooted) 

phylogenetic tree T whose edges are weighted according to non-negative real valued function A, induces 

a distance function d = d('I', A) on the leaf set S by simply letting dij be the sum of A(e) over all edges e 

on the path in T connecting i and j. That is, 

dij = dij('I', A) := L A(e), 
eEP(T;i,j) 

where P(T; i, j) is the path in T connecting leaves i and j. If a distance function d on S can be expressed 

in this way then d is said to be additive on 'I', and A is said to realise d on 'I'. 

Such a d not only satisfies the triangle inequality, it also satisfies a stronger "four point" condition: 

• For any four leaves i, j, k, l, ( not necessarily distinct), 

(2) 

This condition is equivalent to the following: of the three pairwise sums ( dij + dkl, dik + djl and dil + djk) 

two sums are equal and they are at least as large as the other sum. Several independent proofs (see [1] 

for references) have been given of the following fundamental result: 

7 



Theorem 2 (Buneman, 1971) (1) A distance function d on S is additive on some tree if and only if 

d satisfies the four point condition (equation 2). 

(2) If d is additive on some tree, then there exists only one pair (T, A), where T is an unrooted 

phylogenetic tree, and A is a non-negative edge weighting of T, with A( e) > 0 if e is not incident with 

a leaf, and such that A realises d on T. Both T and A can be constructed from d efficiently (i.e. in 

polynomial time). 

Both parts of this theorem have natural analogues when A is allowed to be any real valued function 

defined on the edges of T, or, more generally, where A takes values in a suitably structured abelian 

monoid (for details, see [4]). A useful connection between these two representations of trees - as splits 

and as a distance function - is given by the "isolation index" of a split - for details and extensions the 

interested reader is referred to [3]. 

2 Varieties of Models and their Inversion 

We now describe some of the types of models that arise when additional assumptions are added to the 

Markov property (Al). The most general of these seeks only to avoid the null and random effects, while 

more structured models require some semigroup structure in the stochastic process. In all cases we show 

how the expected frequencies of patterns on S can be used to identify the generating tree uniquely and 

sometimes additional information, such as the "lengths" of the edges. 

2.1 The general model 

As mentioned earlier, even with two colors, and M(e) symmetric for all edges e, it is not always possible 

to recover the unrooted tree T, because if we set both off-diagonal entries in all the matrices M ( e) either 

to O or to 0.5, then every rooted phylogenetic tree T+P induces exactly the same distribution on the set 

of leaf bicolorations. Note that in these cases det(M(e)) = 1 and O respectively, where det(M) denotes 

throughout the determinant of matrix M. In the general model, in addition to (Al), we therefore make 

the following mild ( and biologically reasonable) assumption: 

(A2) for all edges e of T+P, det(M(e)) =J 0, ±1; 1ra(P) =J 0, for all colors a EC. 

It is easily shown that det(M(e)) = 1(-1) {::} M(e) is an even (odd) permutation matrix. The general 

model therefore allows c2 - c parameters in each transition matrix (subject only to non-negativity, the c 

linear stochastic equations, and the inequalities of condition (A2)) and so is of the type of model discussed 

in [7], [13] and (for 2-color characters) [41]. 

Theorem 3 (below) shows that conditions (Al) and (A2) are sufficient for the f x's to uniquely deter

mine T. However as shown in [49], the root p cannot be located on T under assumption (A2) alone. 

Note that (A2) does not require M(e) to be diagonalizable, nor to have all its eigenvalues real. 

Also, the general model does not make any assumption about the actual process occurring on an edge 

which produces net random transitions of colors between its ends, in particular it does not assume any 
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sort of fixed continuous-time process, let alone a "rate" matrix constant across edges of the tree (as 

in the stationary models discussed below). Since we do not make any further assumption about the 

root distribution 1r(p) or the structure on the family of transition matrices, apart from those properties 

prescribed by (A2), the model is valid for a much wider class of models than is usually considered in 

molecular taxonomy (see [42)). We now describe an analytical result which shows that T can be easily 

and quickly reconstructed from the fx.'s in the general (nonsymmetric) case, with any number of colors, 

under assumptions (Al) and (A2). 

Let G = { a1, ... , ac} be the set of c colors, and for any vertex u of T+P let 7rk ( u) be the probability 

that vertex u is assigned the color ak. (By (Al) this will be a function of 1r(p) and the transition matrices 

on the path from p to u.) Let II(u) =diag[1r1(u), ... , 7rc(u)] (the diagonal matrix with 7rk(u) as its (k, k) 

entry) and for leaves i,j of T+P, let Fij = [fij(k,l)] be the c x c "divergence" matrix with (k,l) entry 

fij(k, l), the probability that leaf i is colored ak and leaf j is colored az. 

Theorem 3 Under the general model, with underlying generating tree T+P, 

<PiJ· := - ln[I det(Fij)I] + 0.5(ln[det(II(i)II(j))]) 
c ' 

(3) 

is a well-defined distance function, which is additive on (and hence defines) T. 

Thus, each phylogenetic tree T (without specifying the placement of its root) is uniquely defined by 

the collection of probabilities of the patterns it induces under assumptions (Al) and (A2), and it can be 

reconstructed from the fij values in polynomial time. The condition 1r a (p) i= 0 can be relaxed for tree 

recovery, although in that case the function ¢ij of (3) is infinite for all pairs of vertices i, j separated by 

p.) 
Variations on the Theorem 3 are due, independently, to Steel [43], Lake [33] and Chang and Hartigan 

[13]. Lake [33] refers to </Jij as "Paralinear distance". Barry and Hartigan [6] defined a similar, but 

different measure, based on the logarithm of the determinant of the conditional (rather than joint) 

probability distribution on the colors of leaves i and j. Consequently, their measure ¢~j does not have 

the tree-like property described for qJij in the following theorem - in fact, as they point out, it is not even 

symmetric with respect to i and j, whereas, from (3), </Jij = </>ji· However, </>ij = ! (¢~j + ¢ji), and in 

[13], Theorem 3 is stated without proof (later provided in [12)). Similar ideas have also been developed, 

independently, in [53]. 

With a finite sample of sites generated by the general model we can only estimate the fij values, 

which suggests the following procedure (provided the number of sites is large): 

• Step 1. For each pair ofleaves i, j, and each k, l = 1, ... , c, estimate fij ( k, l) by setting it equal to 

the proportion of sites in which i and j are colored ak and a 1 respectively. 

• Step 2. Using ( 3), calculate ¢ij for each pair i, j using the entries from step 1. 

• Step 3. Use a suitable distance-based tree reconstruction method, using the ¢ij values from step 2. 
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By a "suitable" method in Step 3 it is desirable to use a method which can be implemented in 

reasonable time, even for large values of n = ISi, and which, as a map from distance functions on S onto 

the subspace of additive distance functions on S has the properties that it: 

• (i) fixes every additive distance function 

• (ii) is continuous in a neighborhood of each additive distance function. 

There are many such methods, one of the earliest being the Buneman retraction [9], which has the 

stronger property of being continuous on the entire space of distance functions ( unlike other methods, 

such as neighbor-joining), see [37] for a proof. 

Under these conditions, and provided the sites evolve i.i.d. such a method will be statistically con

sistent in the following sense: as the number of sites grows, the reconstructed tree will ( with probability 

tending to 1) be the true tree with, perhaps, some additional (short) edges, but the maximum length of 

these "phantom" edges will go to zero (with probability tending to 1) as the number of sites tends to 

infinity. In case the true tree is fully resolved, then these phantom edges eventually disappear entirely 

and the reconstructed phylogenetic tree will actually equal the true tree given sufficient sites (see [12] for 

a discussion of this issue, in relation to maximum likelihood). 

An application of the above procedure to biological data is given in (35], where it is also extended 

with the deletion of a proportion of constant (uniformly colored) sites, under the assumption that this 

proportion represents the number of invariant sites, with the remaining sites evolving i.i.d. 

Theorem 3 can also be used to show that the maximum (average) likelihood method described by 

Barry and Hartigan [7] will identify uniquely the correct tree given sufficient data, under the general 

model, and assuming the underlying tree is fully resolved (for a proof see [12]). A maximum likelihood 

approach may be preferable, particularly from the perspective of statistical efficiency to the above pro

cedure if only a moderate number of sites is available. Indeed the above procedure will not work if any 

of the matrices Fij is singular, which can occur with a small number of sites. In any case it is useful to 

estimate the variance of the <Pij values, and also correct statistical bias (see [5], [22], (35]). 

Once T has been reconstructed, it is natural to ask if the transition matrices M(e) and the root 

distribution 1r(p) can also be recovered from f = [fxl· Of course these parameters apply to r+P, which 

differs from T if p has degree 2, but in this case, by re-rooting T on any other vertex p', it is possible to 

assign a distribution 1r(p') of colors to this vertex, and transition matrices M'(e) to the edges of T+P' in 

such a way that the induced distribution on patterns is precisely f ( and furthermore, 1r(p') and { M' ( e)} 

satisfy (A2) - for details see [47]), and so it is not possible to recover the position of the root just from f. 
Furthermore, the distribution of patterns on pairs of leaves does not suffice to determine the parameters 

{(M'(e)), 1r(p')}, however under certain restrictions on the underlying parameters, the distribution on 

triples of leaves does. These last two results are due to Chang [12] (who extended earlier results confined 

to two-color characters, by Pearl and Tarsi [41]). We now describe additional constraints which are 

frequently imposed upon the family {M(e)}, and the implications these have for the reconstruction 

problem. 
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2.2 Semigroup Models 

Semigroup models assume that the transition matrices M(e) all belong to some prescribed semigroup. An 

example is the general model in which the transition matrices satisfy condition (A2) (det(M(e) cl 0, ±1). 

A (commutative) semigroup of transition matrices arising with c = 2 colors is the family: 

M(e) = [ 1 - p(e) p(e) l 
xp(e) 1 - xp(e) 

where x > 0 is independent of e, and 1 - p(e)(l + x) > 0 (this last constraint is imposed in order for 

det(M(e)) > 0). If x = 1, we obtain the 2-color Neyman model ([39]; see also [10],[17]). 

A number of biologically relevant semigroups for four color models have been studied, for example, 

the six-parameter unbalanced transversion model, see Nguyen and Speed [40]. We now consider two 

important subclasses of semigroup models. 

2.2.1 Stationary Models 

These are based on (Al) and three further assumptions: 

(i) Color changes on edges are described by a continuous time Markov process. 

(ii) The associated intensity matrix R is the same for all edges of the tree. 

(iii) The distribution of colors at the root of the tree is the equilibrium distribution. 

A number of stationary models of relevance to taxonomy have been described and studied by Ro

driguez et al. [42]. Note that conditions (i) - (iii) can be restated as follows: 

Rk 
M(e) = exp(R.\e) =I+ L k'A!, 

k>O ' 

1rR = 0, 

(4) 

(5) 

where Ae > 0 is a parameter associated with edge e and where 1r = [1r1, ... , 7rc], (and where 'lri = 1ri(P) 

for i = 1 ... c). The matrix R is often called the (substitution) rate matrix. A further condition which is 

sometimes imposed is the molecular clock hypothesis which states that the sum of the .\~s on the path in 

T+P from p to any leaf xis the same for all x, and so the .\~s are proportional to time (we do not assume 

this here, except in section 3.1). Condition (5) asserts that the colors at the root are in equilibrium, thus 

the probability distribution of colors at any individual vertex of the tree is also 1r. Note that the rows of 

R sum to O, and since ~j > 0 for i cl j it follows that tr(R) < 0, where "tr" refers to the matrix trace 

function. The condition tr(R) < 0 together with Jacobi's identity (see [21]): 

det(exp(M)) = exp(tr(M)) (6) 

applied to M = R.\e, shows that stationary models satisfy not only the first part of condition (A2) but 

the stronger constraint, 

(A2') 1 > det(M(e)) > 0 for all edges e of T. 
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Stationary processes also lead to transition matrices which form a semigroup, by virtue of the identity: 
I 

exp(R>-e) exp(R>-:) = exp(R(>-e + >-:)). 

An important class of stationary models are the reversible models, which assume in addition that IIR is 

symmetric, where II is the diagonal matrix diag[1r1, ... , 1r c]. This condition implies that the Markov chain 

with transition matrix M(e) is reversible (see [42]). Examples of reversible models are the symmetric 

models for which R = Rt (which implies that 1r1 = ... = 7fc = i; the converse is true only for two colors). 

More generally, the matrices corresponding to reversible models are precisely the matrices R which can 

be obtained by multiplying the row i (i = 1, ... c) of a symmetric rate matrix Q by Xi > 0. Thus, for 

four colors, each reversible model is defined by 9 free parameters ( or 6 if we specify 7f), and with only 

two colors every stationary model is reversible. In the latter (2-color) case the set of transition matrices 

forms the semigroup described at the beginning of section 3. If we write the corresponding rate matrix 

as: 

[ 
-1 1 l R=(l+x)-1 ,x>O, 
x -x 

(so that 7f = [i~x, i!x] and R2 = -R), then M(e) =I+ (1 - exp(->-e))R. 

Dissimilarity A common measure of the difference between two species i and j is the proportion of 

sites in a collection of aligned sequences at which the two species differ (proportional to the Hamming 

distance between the sequences). Let Pij denote the probability that leaves i and j are differently colored 

(which can be estimated from the sequences by the Hamming distance). Note that Pij = 1 - tr(Fij)· In 

theorem 3 we derived from Fij a measure which was "tree-like" (that is, satisfied the four point condition); 

in theorem 4 we show that such a tree-like measure can be calculated just from Pij· This is relevant in 

biology where Pij is sometimes estimated from dissimilarity values and where the full divergence matrix 

Fij may not be available. Of particular interest is the relationship between Pij and the expected number 

of color changes ("substitutions") occurring on the path joining leaves i and j for a stationary model. 

We denote this quantity by Oij. Clearly, 

(7) 
eEP(T+P ;i,j) 

where Oe is the expected number of color changes occurring on edge e. 

Thus, Oij (but not Pij) satisfies the four point condition described in equation 2, so that determining 

the Oij values allows for T to be reconstructed, along with its "true" edge lengths (in terms of the expected 

number of substitutions). For a stationary model, we have, from [6] or [42]: 

(8) 

The main result from Rodriguez et al. [42] is that for a certain class of stationary models (including all 

reversible models and all models for which 7f is the uniform distribution), Oij can be calculated from the 
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divergence matrix Fij (discussed in theorem 3) and II= diag(1r1, ... , 1rc] (which can in turn be estimated, 

for stationary models, from Fij)· Their result states that: 

8ij = -tr(II ln[II-1 Fij]) 

where for a matrix M, ln(M] = - :Ek>o (I-{:1)k , provided this sum converges. (Actually, Rodriguez et 

al. [42] assume a molecular clock, though their proof can easily be modified so as to apply without this 

assumption.) 

In the special case where the root distribution 1r is the uniform distribution, 7rk = i, then it is easy 

to show that 8ij = <Pij, where <Pij is the additive quantity described in Theorem 3 (see (23]). Thus, 

in this special case, not only can T be found, but in addition, for each edge, the expected number of 

substitutions ( the "edge length") can be found. We now .describe an invertible relationship between 8ij 

and Pij· 

Theorem 4 For a stationary reversible model, 

(1) 

Pij = 1 - tr ( II exp ( tr(~ik) R)) . (9) 

(2) Equation (9) is invertible 

(3) If the reve'rsible stationary model applies to just two colors, a, (3, then letting 1 = 21ro.1rf3, we have 

( 
Pij) 8ij = -, ln 1 - 1 . 

Proof (1) We have Fij = MfIIMj, where II= diag(1r1, ... , 7rc], and for x = i, j, 

II exp(RAe) = exp(RAx), 
eEP(T+P;v,x) 

where 

eEP(T+P;v,x) 

and where v denote the most recent common ancestor of i and j (the last vertex common to the paths 

in T+P from p to i and to j). Now, since Rtrr = ITR, we have MfII = IIMi so that, 

c5 .. 
1- Pij = tr(IIMiMj) = tr(IIexp(R(Ai + Aj)) = tr(IIexp(_tr(i~R) R)), 

from (7) and (8), giving (9). 

(2) By the spectral theory for reversible Markov chains [38], (pp. 32-34) one can write 
r 

Pij = 1 - L ake-!3k0ii, 
k=l 

where ak 2:'.: 0 and :Ek ak = 1, and f3k 2:'.: 0 with at least one /3j > 0 (provided R =I 0). Thus Pij is a 

strictly monotone increasing function of 8ij and so is invertible. 

(3) Since there are just two colors, we can (as described above) scale R so that R 2 = -R, and hence 

exp(AR) =I+ (1- exp(-A))R, which makes the inversion of (9) straightforward. 
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Remark 2.2.1 Suppose that for an edge e = (u, v) of T+P, M(e) is described by a continuous-time 

Markov process (so that we could write M(e) = exp(R>.e)) but that the distribution 1r = 1r(u) of colors 

at u is not necessarily the equilibrium distribution (so that 1rR =!= 0). In this case the expected number 

of substitutions on edge e is Oe = -tr[Vln(M(e))] with V = diag[v1, ... ,vc), where Vi= fci<Pi(t)c).t, and 

for which [ef>1(t), · · ·, ef>c(t)] = 1rexp(tln[M(e)]). Thus, Oe is determined by M(e) and 1r (i.e. without 

knowing Rand >.e separately). If 1r is the equilibrium vector, we recover (8). For two colors we can find 

Oe explicitly: 

where P = Pi2 + P21 and where Pij = Pe(i,j). 

2.2.2 Group based models 

If we regard C as a group under some operation (written here multiplicatively), a group-based model 

places the following constraint on the transition matrices: 

(Gl) Pe(a,/3) = he(a-1/3) for all edges e of T+P, 

where he: Ci-+ [O, 1] is defined for each edge e of T+P. 

Thus, in a group-based model, we can think of a random group element g(p) being assigned to p 

according to the distribution 1r = 1r(p) and a random group element g( e) being assigned independently 

to each edge e of T+P (according to the distributions he)· Each leaf i is then colored by the product (in 

the group) of g(p)g(e1) · · · g(ek) where e1, ... , ek is the directed path from p to i. It can be checked that 

the set of all transition matrices satisfying ( G 1) for a particular group structure on C forms a semigroup, 

so that the set of group-based models are indeed a subset of the semigroup models. 

When C is a finite abelian group, Szekely et al. [49) used discrete Fourier analysis to describe a 

relationship which gives the pattern probabilities in terms of the underlying tree with its associated 

functions he, and which is invertible under various restrictions on the he's. Of particular interest are 

the elementary abelian 2-groups, C~. These correspond to the 2-color Neyman model [10), [17), [39) 

(described at the beginning of section 2.2) when k = 1, and to an extended version of Kimura's 3ST 

model [32) (described in 2.2.3 below) allowing different rate matrices on different edges, when k = 2. 

Note that for a C~-based model, the associated transition matrices form the multiplication table of the 

group Ct since Pe(a,/3) = he(a-1/3) = he(a/3). 

Definition Consider the following equivalence relation on patterns on S: XI is equivalent to x2, if, for 

some element g E C, and all leaves i E S, 

x1(i) = x2(i)g, 

where multiplication is carried out in the group. Each equivalence class of patterns is called a quotient 

pattern, and the probability of a quotient pattern x* denoted f ;. = f ;. (T+P, h, 1r(p)) is the probability 
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of generating any pattern in the class (the sum of fx over all patterns x in x*), where h := {he}, Let 

r be an arbitrary leaf of T. Note that the quotient patterns on S are in 1-1 correspondence with the 

patterns on S' = S- {r }; simply choose a color a, and map each pattern x on S' to the equivalence class 

of the pattern Xa, where XaJS' = X and Xa(r) = a. 
By taking the quotient patterns for the C~-based models we factor out the influence of the distribution 

1r(p) of the root p and of its location on T. This result, which is formalized in the following theorem, is 

central to the next section, by allowing all calculations to be carried out on the unrooted tree T, rather 

than T+P. For each edge e of T, let h~ : Gt-+ [O, 1] agree with he if e appears in T+P, otherwise if there 

is an edge e of T that is bisected to form two edges e1, e2 in T+P (i.e. in case p has degree 2) let h~ be 

the convolution of he1 and he2 , that is: 

h~(g) = E he1 (x)he2 (x- 1g) 
xEC 

Let f ;. (T, h', 1r') be the probability of generating the quotient pattern x* under the model described 

above, when the root of the tree Tis taken to be leaf r, with associated color distribution 1r', and where 

h' := {h~}. 

Theorem 5 Let 1r' be any distribution of colors at leaf r. Then, 

f~· (T, h', 1r') = f~· (T+P, h, 1r(p)). 

{Thus f* is independent of the distribution 1r(p) of the colors at the root p, and of its location in T.) 

Proof Let g(p) (resp. g'(r)) denote the random element of G = G~ assigned top (resp. r) under 1r(p) 

(resp. 1r'). Let g(e) (resp. g'(e)) denote the random element of G assigned to edge e according to the 

distrbution he (resp. h~), and let x(i) (resp. x'(i)) be the induced random color of leaf i, for i ES' by 

(T+P, h, 1r(p)) (resp. (T, h', 1r')). We have, 

x(i) = g(p) x II g(e). 
eEP(T+P;p,i) 

For i ES', let Zi := x(i)x(r). Then, 

Zi = g(p) x II g(e) x (g(p) x II g(e)) = II g(e), 
eEP(T+P;p,i) eEP(T+P;p,r) eEP(T+P;i,r) 

(10) 

since G~ is abelian and x 2 = 1 in this group. Similarly, for i ES', if we let Zf := x'(i)x'(r) = x'(i)g'(r) 

we have 

z: = II g'(e). (11) 
eEP(T;i,r) 

It follows from equations 10 and 11 and the definition of h~ that the random vectors Z := [Zi : i E S'] 

and Z' := [Zf : i E S'J have the same distribution. Now, the probability of any quotient pattern x* under 
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(T+P,h,1r(p)) (resp. under (T,h',1r')) is simply the probability that zi (resp. ZD equals xo(i)xo(r) for 

all i E S', where xo is any pattern on S in the equivalence class x*. Since Z and Z' have the same 

distribution, we obtain the desired equality. 

2.2.3 Inverting the extended Kimura 3ST model 

Kimura [32] introduced a model he called the "three substitution-type (3ST) model", where he assigned 

three rate parameters for nucleotide subsitutions, a for the rate of transitions, and /3 and I for the two 

types of transversions. (The type I transversions (of rate /3) are A +-+ T(U) and G +-+ C, and the type 

II (of rate 1) are A +-+ G and T(U) +-+ C.) He denotes P, Q and Ras the probabilities of each of these 

substitutions between homologous sites of two sequences, descended from a common ancestral sequence 

over a time interval t. This set of nucleotide substitution types forms the Klein four group 02 x 02, writing 

the element ( 1, -1) to correspond to a transition, ( -1, 1) and ( -1, -1) to correspond to transversions of 

type I and II respectively, together with (1, 1) representing no substitution [15]. 

Under Kimura's stationary model the expected number of substitutions is 

1 
K = - 4 ln[(l - 2P- 2Q)(l - 2P- 2R)(l - 2Q - 2R)], (12) 

which is the sum of three components, being the expected numbers of each of the three substitution 

types, 

Q+- 2at = -:! ln [(1 - 2P - 2Q)(l - 2P - 2R)/(1 - 2Q - 2R)], 

Q-+ = 2/3t = -:! ln [(1 - 2P - 2Q)(l - 2Q - 2R)/(1 - 2P - 2R)], (13) 
Q __ 2,t = -:! ln[(l- 2P - 2R)(l - 2Q- 2R)/(1 - 2P- 2Q)], 

writing Q+- for the expected number of changes corresponding to (1, -1) etc. 

We show below (equation 20) that equations (13) are easily inverted, so that the probabilities can 

be expressed as functions of the Qij components. These Qij components are linear with time for fixed 

rates under the stationary model, so they represent additive parameters for successive edges of a tree 

T+P. From Theorem 5 we recall that the nucleotide differences at the leaves of T+P are independent of 

the root location and its color distribution, so we can apply our analysis to the associated unrooted tree 

T. We will refer to the Qij components as "edge lengths" for each of the edges of T. In [44], [29] we 

considered the following generalisation of Kimura's 3ST model. 

For each edge e of T ( with n leaves), we can specify three probabilities P +- ( e), P _+ ( e) and p __ ( e), 

( analogous to Kimura's P, Q and R), for the substitutions of each type across e. These will be determined 

from three edge length parameters Q+-(e), Q-+(e) and Q __ (e). (Under a stationary model these Q(e) 

values will be the expected numbers of changes of each type along edge e, but the relationship between 

the P(e) and Q(e) values does not depend on the assumption of stationarity). 

Our spectral analysis [29] relates the set of quotient patterns at the leaves of the tree with the three 

edge lengths Qij(e) for each edge of the tree, using elements of the Hadamard matrix H2n-2, (Hk is a 

square matrix of 2k rows, whose entries are +1 or -1, obtained by taking the k-fold Kronecker product 

of H1 = [ l l ] , so Hk = [ Hk-l Hk-I ] , and H-;;1 = 2-k Hk.) 
1 -1 Hk-1 -Hk-1 
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Once the edge lengths are known for all the edges of T, we are able to determine the probabilities of 

the quotient patterns at the leaves of T, which by Theorem 5, is independent of the root distribution. 

For each pair of subsets a, (3 of S' = S - {r} let Sa() be the probability of the occurrence of the quotient 

pattern with 

a= {i E S'l(x(r)-1x(i))i = -1}, (3 = {i E S'l(x(r)-1x(i))2 = -1}. 

(The suffixes refer to the first and second components of the elements of V = C2 x C2. Thus s00 is the 

probability that all the leaves have the same color.) 

We will refer to the vector (for a suitable ordering) s of probabilities as the sequence spectrum. These 

4n-l probabilities are functions of the 3 x k edge length parameters, where k ~ 2n - 3 is the number of 

edges of T. However, for convenience, we embed these 3k values in another vector of 4n-l entries, called 

the edge length spectrum q, also indexed by pairs of subsets of S'. Let E(T) be the set of edges of T. For 

the edge e = ea E E(T), (a~ S') which induces the split a, S - a on the leaves of T, let 

q0a = Q+-(e), qa0 = Q-+(e), qaa = Q __ (e). 

We do this for each edge e E E(T). Set 

Q00 = - I: (Q+-(e) + Q_+(e) + Q __ (e)), 
eEE(T) 

and set all the remaining qa() entries to 0. (Thus L.a,{3c;,S' Qa{3 = 0 and the positive entries of the edge 

length spectrum define T.) 

Theorem 6 [44] 

(14) 

where the exponential function is applied to each component of the vector individually. 

The proof of this theorem is based on a more general result in [44), [50] and [49] using group theory. 

Below we will give an outline of a proof which interprets some useful intermediate terms. However we 

will first introduce some useful corollaries. 

Inverting equation(14) we obtain the edge length spectrum as a function of the sequence spectrum. 

Theorem 7 

(15) 

where the logarithmic function is applied to each component of the vector individually. 

If we index the entries of the Hadamard matrix Hn-1 by the subsets of S', we find the entry 

(16) 
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and then equations 14 and 15 can be usefully expressed ([29]) as 

Sa(3 = nl-l L haa'h(3(3' exp ( L ha'a"h(3'(3"qa"(3") , Va, (3 ~ S', 4 
a' ,(3' <;S' a" ,(311 <;S' 

(17) 

and 

qa(3 = ;_1 L haa1 h(3(3' ln ( L ha'a"h(3'(3"Sa"(3") , Va, (3 ~ S'. (18) 
4 

a' ,(31 <; S' a" ,(311 <; S' 

In particular, with n = 2, theorem 6 gives us the relationship between the s and q vectors for 

a single edge e. Let P++(e) be the probability that the endpoints of e have the same coloration (so 

I:i,jE{+l,-l} Pij = 1), and let Q++(e) = -K (so I:i,jE{+l,-l} Qij = 0), then with 

P(e) = 

P++ 

P+
P_+ 
p __ 

= s, and Q(e) = 

Q++ 

Q+

Q-+ 
Q __ 

=q, 

(19) 

(It is useful also to note that the entries in H2P(e) are the eigenvalues of the transition matrix of 

nucleotide substitution across e.) 

Proof of Theorem 6 

For any set X of edges of T, let x(X) = ITe=(u,v)EX x(u)-1x(v). (As x(u)-1 = x(u), the orientation of e 

is irrelevant.) For i,j E {+1, -1} let Pij(X) be the probability that x(X) = (i,j), and let P(X) be the 

vector of Pij(X) values. Then, by equation 19 (which may easily be proved directly without recourse to 

Theorem 6) we have 

P(X) = H21 exp(H2Q(X)), (20) 

where Q(X) = I:eEX Q(e). 

For any subset a ~ S' we define a path set Ila as the disjoint union (symmetric difference) of the set 

of edges in the paths from vertices i E a to r in T. The set ta of leaf labels of Ila is an even ordered 

subset of S, in particular 

{ 
a h I I is even ta= w en a . 
a U {r} is odd 

We can determine the totality of substitutions across the edges of Ila by examining the product of the 

colors at the leaves. Pij (Ila) is the probability that ITuEt, x( u) = ( i, j), which can be readily computed 

using equation (20). 

We find by induction [26] that an edge ea, belongs to path set Ila -¢:=::} haa' = -1. Thus 

q(na) = I::: 
hCtCt/=-1 

-(qa'0 +@a1 + qa'a') 

qa'0 

q0a' 
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Consider the general term of p = H q: 

Pa/3 = (Hq)a/3 = I: haa1 h1313,qa1/31 • 

a1 ,/31 r:_;s1 

All the terms of this sum are zero, except for q00 and the three edge lengths for each edge in E(T). Thus 

Pa/3 = @0 + I: (haa1 qa'0 + h13a1@a1 + h'Ya'qa'a' ), 
eo.1EE(T) 

where 1 =av (3 is the disjoint union of a and (3. However, as -q00 is the sum of all the other q terms, 

we find 

Pa/3 = -2[Q-+(IIa) + Q+-(II13) + Q __ (II'Y)]. (22) 

We now rearrange the terms of equation (22), noting that Ila can be partitioned into XU Z, II13 can 

be partitioned into Y U Z, and II'Y can be partitioned into X U Y, where X = Ila - II13, Y = II13 - Ila 

and Z = Ila n II13. Hence equation (22) can be expressed as 

Pa/3 = -2([Q-+(X) + Q __ (X)] + [Q+-(Y) + Q __ (Y)] + [Q-+(Z) + Q+-(Z)]). (23) 

Taking the exponential we obtain the product of three terms. The first term is 

exp(-2[Q+-(X) + Q--(X)]) = [P++(X) - P-+(X) + P+-(X) - p __ (X)] 

by equation 15, which we can write as 

exp(-2[Q+-(X) + Q __ (X)]) = L aPab(X). 
a,bE{-,+} 

Likewise we can express the other two terms as 

exp(-2[Q+-(Y) + Q __ (Y)]) = L dPcd(Y), 
c,dE{-,+} 

· exp(-2[Q+-(Z) + Q __ (Z)]) = L ef Pe1(Z). 
e,/E{-,+} 

The three sets X, Y and Z are each disjoint, so the probabilities can be multiplied together to give 

(expHq)a/3 = (I:a,bE{-,+}aPab(x)) x (I:c,dE{-,+}dPcd(Y)) x (I:e,/E{-,+}ef Pe1(Z)), 

= I:a,b,c,d,e,IE{-,+} adef Pab(X)Pcd(Y)Pet(Z), 

- I:a,d,e,/E{-,+} adef Pa*(X)P*d(Y)Pe1(Z), 

where we write PM(X) = Pa-(X) + Pa+(X), etc. The terms of s which contribute to 

are the terms sa'/3' where 

ha'(a-/3) = a, h/3'(/3-a) = d, ha'(an/3) = e, and h13,(an/3) = f. 
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Hence, noting that ha'(a-f3)hcx'(anf3) = ho.a' and hf3'(f3-a)ha'(anf3) = hf3f3': 

* 
(expHq)a/3= L Lhaa'hf3f31 Ba1f3', 

a,d,e,/E{l,-1} 

where the inner sum I:* is over all pairs of subsets a', /3' which satisfy equation 24 for the given values 

of a, /3, a, d, e, f. These conditions ensure that all 16 sign combinations from equation 24 are met, so 

changing the order of summation, we sum over all pairs of subsets to obtain 

from which the theorem follows. 

(expHq)a/3 = L haa'hf3f3'Sa'f3', 
a1 ,f31<:;;_S1 

(25) 

0 

We had initially applied spectral analysis to the two-color Neyman model [26], which is described 

at the start of section 2.2. This case can be obtained from theorem 6 by setting the probability of all 

transversions to 0. Then we are able to express the results in a simpler manner, where we write Sa for 

Sar/J and qa for qar/J so both become vectors of 2n-l components indexed by the subsets of S'. 

Theorem 8 {26] 

and 

These equations can also be interpreted in terms of pathsets where for f3 ~ S' let 

(26) 

which we define as the length of II/3. (Under a stationary model P/3 is the expected number of changes 

along the edges of pathset II/3.) Thus from theorem (8), 

s, = L h/3, exp(p/3)· 
/3<:;;_S' 

2.3 An extension: Variable rates across sequence sites 

(27) 

Suppose that the substitution process is according to the generalised Kimura 3ST model, but is proceeding 

at different rates across the sites. For convenience, we let C(T) = U,Eu(T) {,0, 0,, 11 }. Recall that for 

(} E C(T) (with associated I E <Y(T)), qe is the expected number of one of the three types of substitution 

(considered by Kimura) on the edge(s) of T which induce the split (,, S - ,) in T. Suppose that this 
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quantity varies from site to site in the sequences: then let q9(j) denote the expected value of qo at site 

j. We consider the more general model specified by the condition: 

qo (j) can be written in the form qo x Aj 

Here Aj can be thought of as the rate at which substitutions occur at site j, and qo is the average ( over all 

the sites) of the expected number of the particular type of substitution on the edge of T corresponding 

to e, divided by the average value of the Aj 's. This type of "geometric" scaling model is also considered 

by Chang [11]. 
Let µ(x) = i I;f=1 exp(x>.j), the average value of the numbers exp(x>.j) (averaged over all sites 

j). Thus, if the rate parameters Aj are drawn independently according to some distribution, then µ(x) 
is approximated by the moment generating function of this distribution. Now, Aj is positive for all j, 

and so µ(x) is monotone increasing, and therefore has a unique left functional inverse, µ-1(x), so that 

µ-1(µ(x)) = x, 'v'x E ~. Lets be the average value of the sequence spectrum across the sites. Then we 

have the following result, where µ and µ-1 are applied componentwise on vectors. 

Theorem 9 {46} For the extended 3ST model with underlying tree T and arbitrary root distribution, we 

have: 

(28) 

and 

H -1 -l(H -) q = 2n-2µ 2n-2S , (29) 

Examples: (1) In the case that all the sites evolve at the same rate (=>. ), we have µ(x) = exp(>.x), 

giving µ- 1 (x) = ± ln(x), and so theorem 7 is just a special case of theorem 9. 
( ) k-1 k 

(2) Jin & Nei [31] suggest that the gamma distribution f (x) = exp -~(k) v , x > O, may approximate 

the distribution of the Aj, In this case, µ(x) = (v~xf so that µ-1(x) = v(l - ef>k(x)), where ef>k(x) = 

x-l/k and so 
' 

(e1 - (H2L2¢>k(H2n-2s)t
13 

= 0 <==} a(3 ¢ C(T) U {00}, 

where e1 = [1, 0, 0, 0, ... jl. 

Remarks (1) Theorem 9 shows that, provided the distribution of rates across sites is known, then T 

can be recovered from s. Indeed this holds under certain conditions, even if the distribution ( or s) is 

not known exactly, but suitably constrained [47]. However if the distribution is variable, it is possible 

for all trees to give identical s values (and hence render consistent tree reconstruction impossible by any 

method) by suitable choices of distributions and edge parameters for each tree (for details, see [47]). 

(2) In the case of a stationary model, a distribution of rates across sites is modelled by taking the 

rate matrix for the process at site j to be R x Aj. In that case, provided R forms a reversible model, the 

transformation 
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(where, µ-1 is as above, but applied to matrices, and Fij is the divergence matrix described in section 

2.1) is additive on the true tree, and recovers the underlying unrooted tree (for details see [52) or [23]). 

3 Applications 

Theorems 6, 7 and 8 describe correspondences between the edge length spectrum and the sequence 

spectrum under the two or four color models described. From the edge length spectrum, the tree T can 

be identified. There are a number of applications that can be made from these relationships, which we 

now list. 

Firstly, for the analysis of sequence data, we use an observed set of frequencies s of patterns from 

sequence data as an estimate of the probabilities s, then provided the logarithms exist, theorems 7 and 

8 can be used to calculate an estimate 1 = H-1 ln(Hs) of the edge length spectrum. We refer to this 

transformation of the observed data as a Hadamard conjugation and to I as the conjugate spectrum. 

Various fitting procedures can be used to estimate T from 1 . In [26] we introduce a least squares 

procedure called the closest tree procedure. This procedure estimates the edge length spectrum, q, from 

which s = H-1 exp(H1 ) can be calculated and compared to the observed frequencies s; see [29) for 

an application to biological data. Alternatively, as the entries of I represent "corrected" lengths, a 

traditional method, for example maximum parsimony, can be applied [45). 

Another application of Theorems 6, 7 and 8 is the derivation and classification of all the "phylogenetic 

invariants" (polynomial functions of the pattern probabilities which for some associated phylogenetic tree 

take the value O for any choices of the matrices M(e)). Furthermore, one can classify all linear invariants 

for various submodels of the Kimura 3ST model, and the 2-color Neyman model (both with and without 

a molcular clock). In particular, the dimensions of the vector space of linear invariants for these models 

can be conveniently detailed by formulae that in some cases just involve the number of leaves ( n) and 

Fibonacci numbers. (For details on linear invariants see [20) and [28), and for the classification of nonlinear 

invariants for the Kimura 3ST model, see [46) and [15)). 

A third application of theorems 6 and 8 is to analyse various phylogenetic tree building methods. We 

can generate sample sequence frequencies from a known tree T and specified edge lengths. Samples can 

then be used to test the accuracy of the method. Sometimes methods are inconsistent under a particular 

model of sequence generation, that is the methods do not improve with accuracy as the sampling error 

is reduced by using longer sequences, leading to the situation that the incorrect tree is always found 

when the sampling error is zero. Felsenstein [18) showed that the popular maximum parsimony method 

(applied to s) can be inconsistent, even under the 2-color Neyman model with only four taxa. In his 

example the molecular clock hypothesis was violated. In [27] the Hadamard conjugation was used to 

show that for the 2-color Neyman model under the molecular clock hypothesis, maximum parsimony 

must be consistent for four taxa, but it can be inconsistent with five or more taxa. As an illustration of 
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the usefulness of theorem 6 we show below that maximum parsimony on s is also consistent with four 

taxa under Kimura's 3ST model and the molecular clock. 

3.1 Consistency of maximum parsimony on four colors and four taxa with the molec
ular clock hypothesis 

Let T+P be a fully resolved phylogenetic tree on leaf set S = {1, 2, 3, 4}. We may assume that the 

associated unrooted phylogenetic tree T is the tree T1 shown in Fig. 2; the other two unrooted fully 

resolved phylogenetic trees on leaf set S are also shown as T2 and T3 . 

Suppose we have a phylogenetic tree Ton leaf set S, together with a collection of aligned sequences, 

one for each species in a set S, and thereby inducing a collection of patterns on S. For each site the Fitch 

length [19] is the minimum number of edges of T which must be assigned differently colored ends in any 

extension of the leaf coloration (of the pattern induced by the site) to all vertices of T. The parsimony 

length for Tis the sum of these Fitch lengths over all the sites. We define the length of T, l(T), to be the 

average of the Fitch length over all sites. The maximum parsimony tree is the unrooted fully resolved 

tree T with the smallest parsimony length and hence the tree for which l(T) is minimal. Hence for a set 

of four taxa, T1 is the maximum parsimony tree{:::=::} l(T1) < l(T2) and l(T1) < l(T3). 

Theorem 6 gives the expected frequency of sites with pattern ( a, /3) as SafJ. For a given tree T, and 

i.i.d. sequence site evolution, the expected length f (T) is the expected value of l (T) under the extended 

Kimura 3ST model, and so is the sum, over all patterns (a, /3), of SafJ times the Fitch length for that 

pattern on T. Most patterns have the same Fitch length on each tree, and for trees on four taxa the 

differences between their expected lengths are a combination of the frequencies of only 6 of the 64 terms. 

Hence for example with a= {1, 2}, /3 = {1, 3} and 1 = {2, 3}, 

(30) 

Thus T1 is the maximum parsimony tree {:::=::} 

and 

(s0a +Sa©+ Saa) - (s0.,. + s.,.0 + sn) > 0. 

The molecular clock hypothesis states that a "time scale" can be applied to the edges of T+P, so 

that the expected numbers of color changes on an edge are proportional to this time. Specifically 

for each vertex v, we assign a parameter "time" t(v). (Biologically this refers to the historical time 

that the bifurcation event at v occurred.) For each edge ea = ( u, v) of T+P we define the time span 

ta= lt(u) - t(v)I. (Thus the sum of the time spans on the path from p to any leaf is constant.) For the 

edge efJ = (w, x) of T where w and x are adjacent top in T+P, we define tfJ = l2t(p) - t(w) - t(x)I. 

In Kimura's 3ST model of nucleotide evolution this implies that there are three parameters, >.1, >-2, 
A3 > 0 so for each edge ea of T, 
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to give the edge length spectrum for T. 

Theorem 10 Maximum parsimony is consistent under Kimura's 3ST model for four taxa with the molec

ular clock hypothesis. 

Proof There are two cases to consider: (1) the root pis on the central edge e{l,2} of T1 or (2) the root 

p is on one of the pendant edges, e{1,2,3}, say. 

In case (1), the molecular clock hypothesis implies that there are three independent time parameters 

ti, t2, and t3, where t1 = t{l} = t{2}, t2 = t{3} = t{l,2,3}, and t3 = t{1,2} 2'.: it1 - t2i, Applying theorem 6 

to ( 30) we can show 

1 
8 L exp (-2(b + c)(t1 + t2)) [1 - exp (-2(b + c)t3)] [1 + exp (-4a(t1 + t2))] 

a,b,c 

1 """" 2 + 
16 

Lt [exp(-2(b + c)t1) - exp(-2(b + c)t2)] 
a,b,c 

1 """" 2 + 
16 

Lt exp(-4a(t1 + t2)) [exp(-2(bt1 + ct2)) - exp(-2(bt2 + ct1))] , 
a,b,c 

where the sums are over the three even permutations (a, b, c) of (A1, A2·, A3). As each of the exponentials 

lie in the interval (0, 1), each term in the sums is positive, and l(T2) > l(T1), As t{l} = t{2} we can 

interchange vertices 1 and 2 to find f(T3) = l(T2). Hence T1 has the smallest expected length. 

In case (2), with the root on edge e{l,2,3}, the molecular clock hypothesis implies that there are three 

independent time parameters t1, t2, and t3, where t1 = t{l} = t{2}, t2 = t{l,2,3}, and t3 = t{i,2} and 

t{3} = t1 + t3 ::; t2. Hence from (30) 

1 
16 

L exp(-4(b + c)t1) [1 - exp(-4(b + c)t3)] 

1 + 
16 

L exp(-4at1 - 2(b + c)(t1 + t2 + t3)) 

x [1 - exp(-4at3)] [exp(-4bti) + exp(-4ct1)], 

where again the sums are over the three even permutations (a, b, c) of (A1, A2, A3). As in case (1), each 

of the exponentials lie in the interval (0, 1), so each term in the sums is positive, and l(T2) > l(T1), As 

t{l} = t{2} interchanging vertices 1 and 2 gives l(T3 ) = l(T2). Hence T1 has the smallest expected length. 

Thus, in both cases, as the sequence length tends to infinity, the probability that the maximum 

parsimony tree is the true tree tends to 1. This is the condition for statistical consistency. 

D 

We now provide a second application of Hadamard conjugation to the analysis of the maximum 

parsimony method. 
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3.2 A Poisson-style bound for the histogram of Fitch lengths under the 2-color 
Neyman model. 

Suppose the underlying phylogenetic tree Tis fully resolved. For a site that evolves on T, the Fitch length 

of this site on T will always be less than or equal to the true number of substitutions that occurred on 

T in creating the pattern observed at the leaves. Thus if the substitution probability on all the edges 

of the tree is small we would expect the histogram of the numbers of sites versus their Fitch length to 

fall off rapidly as the Fitch length increases, since a site with a large Fitch length must have required a 

large number of (improbable) substitutions. Unfortunately with real data we do not have the privilege of 

viewing the substitution probabilities, but we would still like to make predictions regarding the histogram 

of Fitch lengths. Here we show that just the first two entries of this histogram (i.e. the expected number 

of sites of Fitch length O (constant sites) and Fitch length 1) place constraints on the rate of decay of 

the remainder of the histogram - regardless of the unknown parameters on the underlying tree, when 

the sites evolve under the 2-color Neyman model (described at the start of section 2.2). For sequences 

in which some sites are invariant ( cannot undergo substitution) while the remaining sites evolve i.i.d. 

according to the 2-color Neyman model, theorem 11 predicts a lower bound on the number of invariant 

sites (see [36] for an application). 

Let P[k] denote the probability of generating under the 2-color Neyman model on tree T+P, a pattern 

with Fitch length k on T, and let P*[k] := ~j?_k P[j], the probability of generating under the 2-color 

Neyman model on tree T+P, a pattern having Fitch length at least k on T. Letµ= J1bJ12 • 

Theorem 11 
j-1 

P*[k] ~ P[l] L ~-
'>k J, J_ 

Proof First note that since T is fully resolved, and we may assume p has degree 2, T+P must have 

precisely 2n - 2 edges, where n = ISi, Let R[k] denote the probability that there are exactly k edges of 

T+P on which a color change occurs under the 2-color Neyman model. Let E(T+P) be the set of edges of 

T+P. Thus, 

R[j] = L (rr Pe IT (1- Pe)) , 
U:JUJ=j eEU eEE(T+P)-U 

(31) 

where Pe is the probability of a color change on edge e, and the first summation is over all subsets U of 

edges of T+P of cardinality j. Let 

then, by (31), 

v= I: ~ 
eEE(T+P) l - Pe ' 

vi 
R[l] = R[O]v, and R[j] ~ R[0] 1 . 

J. 
(32) 

A pattern of Fitch length 1 on T is always generated whenever exactly one edge of T+P has a color 

change (under the model), thus P[l] ~ R[l]; also, a pattern with Fitch length at least k on T requires 
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at least k edges to have color changes on T+P in its generation (under the model) so P*[k] ~ I:j2:k R[j]. 
Combining these two inequalities with the two inequalities in (32), we deduce that 

P[l] 2: R[O]v, (33) 

j j-l 

P*[k] ~ R[O] L ~' ~ P[l] L ~· 
">k J. ">k J. J_ J_ 

(34) 

We claim: 

P[0]2 ~ R[O] (35) 

The theorem then follows; since combining (33) and (35), gives v ~ ;(bJ~ , which together with (34) gives 

the theorem. 

We now proceed to establish (35). For each edge e of T+P, let qe := -! ln(l - 2pe), then, 

R[O] = II (1 - Pe) = II 
eEE(T+P) eEE(T+P) 

1 - exp(-2qe) 1 
2 = 22n-2 L II exp(-2qe), 

Ur;;_E(T+P) eEU 

where the summation is over all subsets U of the 2n - 2 edges of T+P. Thus, 

R[O] = 22~_2 L exp (-2 L qe). 
ur;;,E(T+P) eEU 

(36) 

We now invoke theorem 8. First let e1 and e2 denote the two edges of T+P incident with p. For 

a E O'(T), let qcx = qe, if (a, S - a) is the split obtained from T+P by deleting an edge e =f. ei, e2, and set 

qcx = qe1 + qe2 otherwise. Extending qcx to all subsets a of S' following the terminology of equation (27), 

P[O] is just s0 for T with this associated vector q. Thus, from theorem 8, 

1 
P[O] = s0 = n-l L exp(p,B), 

2 
(3CS' 

where P/3 is given in equation 26. Thus, 

2 1 """' P[O] = 22n-2 L.J exp(p,8 + P/3' ), 
/3,/3' r;;,s' 

and so that, from equation 26 

where n = ISi and Il,B, II~ are pathsets as defined in the proof of theorem 6. 

(37) 

Now, for any rooted fully resolved tree T+P there is a bijection w from 281 x 281 to the set of subsets 

of E(T+P) (the edge set of T+P) such that '11((3, (3') is a subset of Pf3 U Pf3,, \:/(3, (3' ES' (such a bijection 

can be constructed recursively). This bijection shows that each summation term in (37) is less than a 

corresponding summation term in (36), hence P[0]2 ~ R[O], as required, completing the proof. 

0 
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4 Conclusion 

Under very few restrictions on the stochastic process of character substitution on a phylogenetic tree 

T+P, the discrete structure of T can be recovered from the expected frequencies of colorings at its leaves. 

This is important for phylogenetic inference, as it shows that for sufficient data, the tree is potentially 

recoverable from observable sequence data. The assumption that sites evolve at identical rates can be 

weakened and the conclusion is still valid in some cases. However the invertible relationships are between 

probabilities; any real data will be from finite samples and hence the effects of sampling need to be 

considered. These issues have recently begun to be seriously addressed, see [14], [16], [51]. It is apparent 

that the edge lengths must not be too small, or too large, as in that case, errors induced by sampling 

can be dominant. There are of course other potential complications influencing the accuracy of such 

inference, such as the validity of the i.i.d. assumption and the possibility of data error. 

The other main focus of this paper has been Hadamard conjugation, and its applications. It is likely 

that many more applications of this technique can be found, particularly for analysing the performance 

of different phylogenetic methods under suitable models. 
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Captions for figures 

i ES: 1 2 3 

x(i) : 

Figure 1 A simple example of a non-homogeneous Markov tree on two colors a1, a2 with distribution 

1r(p) at the root vertex p, and an associated pattern x on leaf set S = {1, 2, 3}. 
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2 4 3 4 4 3 

e{2} e{l,2,3} 
e{1,2} e{l,3} e{2,3} 

e{1} 
e{s} 

1 3 1 2 1 2 
T1 T2 Ts 

Figure 2 Three unrooted, fully resolved phylogenetic trees T 1,T2,T3 on leaf set S = {1,2,3,4}, with 

the edges indexed by subsets of S' = {1, 2, 3}. 
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