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Abstract 

 

This thesis describes the preparation and study of a wide range of supported gold catalysts 

based on atomically-precise triphenyl phosphine stabilised gold clusters. This selected range of 

ligand-stabilised gold clusters were prepared in attempt to study the effect of increasing cluster 

nuclearity on the electronic and catalytic properties of these materials. A novel far-infrared study 

was conducted on the pure cluster materials in attempt to understand the metal-metal and the 

metal–ligand vibrations, which was also compared to the simulated spectra for each cluster. The 

design and activation of these novel catalysts based on gold clusters was discussed and the factors 

that influence activity were described. A comprehensive photoelectron study of the catalysts was 

conducted in an attempt to understand the electronic structure of the supported gold clusters and 

the effect of various activation conditions have on the electronic structure of the gold clusters. A 

selection of the prepared supported gold catalysts were tested for their catalytic activity for the 

partial oxidation of styrene and the influence of the several activation conditions on the reactivity of 

the catalyst is also examined. In collaboration, the application of a selection of ligand-stabilised gold 

clusters as hydrogen sensors and as catalysts for the photocatalytic generation of hydrogen from 

ethanol is also investigated.  



Abbreviations 

x 
 

 

Abbreviations 

Commonly used abbreviations in this thesis: 

 

AFM  Atomic force microscopy 

ALD   Atomic layer deposition 

ANBF   Australian National Beamline Foundation 

AS   Australian Synchrotron 

BE   Binding energy 

ESD   Electron-stimulated desorption 

FWHM  Full width half-maximum 

HBP   High binding energy peak 

KE   Kinetic energy 

LBP  Low binding energy peak 

PES   Photoemission spectroscopy or Photoelectron spectroscopy 

PVP   Polyvinylpyrrolidone 

SXR    Soft X-Ray Beamline 

TEM   Transmission electron microscopy 

UHV   Ultra high vacuum 

UPS  Ultra-violet spectroscopy 

XPS  X-Ray photoelectron spectroscopy 

RBF  Round bottomed flask 

TBHP  Tert-butyl hydroperoxide 

PTFE   Polytetrafluoroethylene 

RF  Radio Frequency 

DI  Deionised water 
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 Introduction 

 

Overview 

The introductory chapter to this thesis will aim to discuss the motivation for undertaking this 

research; we will define catalysis and then discuss catalytic oxidation reactions. We will then delve in to 

the crux of this dissertation, gold catalysis, where an overview of the important milestones in gold 

chemistry will be examined. The origins of the unique, low temperature oxidation chemistry of gold 

catalysts will be explored; also highlighting aspects of gold chemistry that are stillto be explored. To end 

with, an overview of this dissertation, with a brief summary of each chapter, will be presented.    

Motivation 

The twenty first century is shaping up to be a pivotal period for the global community, with a vast 

array of environmental, energy, resource and population issues being identified as potential flash points 

in the coming century.1 The twentieth century had been characterised by significant growth of the human 

population and by significantly increased exploitation of the available natural resources. Current 

population growth models are predicting further population growth by the end of the current century, 

possibly reaching 12 billion inhabitants by the end of this century.2,3 Global poverty levels have been 

steadily decreasing in the last twenty years, mainly in mainland China, resulting in a growing middle 

class. The increasing size of the middle class has, consequentially, increased the consumption of 

resources and also increased the pressures exerted on the environment.  Parallel to this population 

explosion, there has also been a wide range of technological developments that have also increased the 

efficiencies of agriculture production, energy production and provided new technologies that have 

superficially facilitated this growth to date.4  

1 
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The current economic paradigm is dependent on economic growth, leading to gradual increases 

in the resources required to sustain the economic growth.4 The increasing demands for land to exploit for 

agriculture,  water for irrigation, minerals for high tech applications, is putting us at a tipping where 

there is insufficient resources to sustain this economic growth much longer. The full consequences of 

such exploitation of the environment, and consequently on us, was recognised as early as 1962.5 The 

most pessimistic predictions of the current environmental catastrophe have highlighted:  

 The acidification of the oceans, leading to coral bleaching;6  

 The continued release of greenhouse gases, which have recently tipped the levels of carbon 

dioxide to prehistoric levels (> 400 ppm);7 

 The accelerating loss of ecosystems in every corner of the globe, leading to a significant decrease 

in biodiversity;8,9  

 The effect of man-made pollutes on the environment and on the ecosystem. 

In Jared Diamond’s discussion on the factors influencing the demise of a particular society or 

community, it was argued that a society, which recognises the potentially hazardous consequences of 

their lifestyle, such as over-exploitation of resources or overpopulation of an island, is able to develop 

new methods, technology and behaviour to deal with such issues.10  If we are to avoid many of these 

gloomy predictions, a range of political steps, in parallel to developments in new technologies, need to be 

taken. 

Many small steps have been made to begin to deal with many of these issues such as the Kyoto 

protocol, but politically, many of these issues have become toxic even though the scientific consensus is 

that the effects of climate change will be or are already a significant influence.11 Many European countries 

have introduced strong policies in an attempt to deal with these issues, but as the problems facing us are 

global issues that are interconnected, the solution also needs to be implemented globally. Many chemical 

manufactures from the western sphere have, over the last thirty years, outsourced their production to 

China and other poorly regulated regions.12 In effect, the environmental and pollution issues are being 

exported to the less developed zones of the earth from the developed nations.  

There have been discussions about the need to refocus the global economy towards pseudo 

steady-state type model, or towards a model which favours a larger services industry which is 

significantly less reliant on environmental resources and more reliant on skilled labour.4 Fundamentally 

there is a need to do more with less, to become less dependent on carbon based fuel sources and to 

develop technologies that are more chemically efficient i.e. little or no unusable by-products. False 
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dawns, such as the potential of biofuels as a sustainable source of chemical energy, will need to be 

avoided if progress is be made.13,14 

Hence, there is a massive requirement for new technologies and materials that can only be 

facilitated by catalytic materials.  

Catalysts can be employed in many possible solutions to these issues: 

 for use in alternative energy sources and new conversion technologies e.g. fuel cells and devices 

for photolytic splitting of water, 

 for the large scale production of chemicals with minimal energy input and without 

environmentally damaging side products, 

 for the manufacture of new materials such as polymers with precisely controlled, tailored 

macroscopic properties suited for desired  applications, 

 for the stereospecific synthesis of organic molecules. 

Nanoclusters of metals and metal oxides have been shown to have unique electronic properties, 

different from those of the bulk and unique, single- site catalytic properties.15 Preparation of these 

nanoclusters on supports, especially when they are uniform and/or present in structured arrays, are 

leading to new catalytic properties, including coordinative unsaturation, defects, novel redox properties, 

and precisely controlled acidity and basicity.16 These properties can be varied over wide ranges and 

controlled by selection of the sizes and compositions of the nanoclusters and their interactions with 

supports. Even extremely subtle changes in the electronic structure of a catalyst can trigger large changes 

in its performance, and a major challenge is to tune the catalytic properties by varying the catalyst 

structure on the atomic, and consequently the nanoscale from a bottom up approach.16 
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Nanoparticles and clusters 

As heterogeneous catalysts are dependent on the various size dependant properties of metal 

nanoparticles, the next short section is dedicated to defining and clarifying what is meant by the terms 

nanoparticle, nanocluster and cluster that are found in the literature. Nanoscience concerns itself with 

the study of materials that have at least one dimension in the nano domain, 1 – 100 nm; hence, 

nanoparticles are materials that have all dimensions in the nano domain. The unique properties of 

materials with nanosized dimensions arises from the confinement of the movement of the electrons in 

the material leading to unique electronic properties i.e. quantum size effect. 

 The first description of materials of with nano sized dimensions was by Richard Feynman in a 

1959 talk titled “There’s plenty room at the bottom”.17 This seminal talk was the first to consider that new 

materials could be prepared by direct manipulation of single atoms. Although, a wide range of materials 

have been previously made that would now be considered nanomaterials such as metal colloids, 

polymers and micelles. The properties of a nanoparticle differ significantly from the bulk material in 

numerous ways such as melting point, fluorescence, electrical conductivity, magnetic properties and 

chemical reactivity. The surface area of nanoparticles increases greatly as compared to similar mass of 

the bulk material, increasing the area that is able to react. As particle size is decreased, there is an 

increase in the ratio of the surface atoms to the interior atoms. Consequently, the surface of the material 

becomes much more influential in the chemical properties of the material. The unique properties of 

metal nanoparticles can be tuned by: 

 the surface atoms at the interphase between the nanoparticle and gas/liquid substrate. 

 the core atoms of nanoparticle which can be used to tune the electronic band gap of the material 

 the control of the particle size and organic capping groups. 

The colour of colloidal suspensions of gold nanoparticles have demonstrated substantial size 

dependant properties,  which was first illustrated by Michael Faraday in the 1857 Bakerian lecture, but 

has been exploited for decorative purposes for the staining of glass since Egyptian times. 18 

The benefits of the nano domain are now truly coming to fruition. There is now a tidal wave of 

applications of new technologies and science, based not only on nanoparticles, but also on other one and 

two dimensional nanomaterials such as nanotubes and nanofilms. In recent years, there has been a range 
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of novel applications of metal nanoparticles as cancer treatments, drug delivery vectors, gas sensors, 

computing, and pharmaceuticals. 19: Murty, 2012 #2527 

The exploitation of the nanodomain has been facilitated by recent developments in the synthetic 

methodologies of metal and metal oxide nanoparticles i.e. improved control of composition, size and, 

increasingly, the shape of the nanoparticles.20-23 Nanoparticles can be prepared via a top-down or a 

bottom up method. From the view point of a chemist, metal nanoparticles are typically prepared by the 

reduction of a metal salt in the presence of a capping agent that controls the growth of the nanoparticles, 

in contrast to laser ablation and other physical methods that are characterised top-down procedures.  

The unique size dependant properties of the resultant nanoparticles, prepared in solution, are 

determined by careful control of the reductant, metal precursor, the capping agent and reaction 

conditions. The capping agent consists of a monolayer of organic molecules that stabilise the core and 

hinder the aggregation of the nanoparticles. Further fuctionalisation of the outer layer of the capping 

agent can add another layer of complexity, such as chemical markers, fluorescent tags, and reaction 

functionalities. 

The mechanism for the formation of metal nanoparticles, with precisely controlled dimensions, is 

commonly described by LaMer theory, first introduced to describe the formation of sulfur sols in 1950.24 

In this approach, the formation of a colloidal solution of a stable suspension of an insoluble material in a 

solvent is dominated by concentration-dependant nucleation and subsequent growth processes (i.e. 

Ostwald ripening, agglomeration) that determine the final product. LaMer theory was applied more 

thoroughly to the formation of metal nanoparticles in solution by Sugimoto in 1987, in order to generate 
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monodisperse metal nanoparticle with specific properties. 

 

Figure 1 : Concentration of metal precursor over time for a monodisperse and polydisperse metal 
nanoparticle sample 

During the idealised synthesis of metal nanoparticles, the initial reaction species are formed by 

the reduction of the metal precursor, the concentration of which increases to the point supersaturation. 

At a critical concentration, sudden nucleation occurs leading to a decrease in the concentration of the 

reactive species in solution. At a concentration lower than the nucleation concentration, the reactive 

species now deposit on the surface of nuclei already present, rather than form any new nucleation 

centres, leading to the growth of the particle size. The final phase of the formation of the nanoparticles is 

dominated by diffusive growth so long as the concentration of the reactive species remains above a 

threshold saturation concentration. The presence of a capping agent or passivating agent prevents 

agglomeration, although the nature of this organic compound can influence the particle size of the final 

product. 

  

The unique optical and electronic properties of gold nanoparticles have been shown to be 

significantly size dependant. Hence, by careful tuning of the synthetic conditions it is possible to tune for 

the selected electronic or optical properties required. Whilst gold nanoparticles with large gold core sizes 

have a range of unique optical properties, it is the gold particles with core sizes < 2 nm that are of 

concern to us due to their unique electronic and catalytic properties.  Atomically precise gold clusters 
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with gold cores with < 30 metal atoms have been of interest for catalysis due to their unique electronic 

properties as opposed to larger colloidal gold nanoparticles. Catalytic materials, derived from such small 

metal nanoparticles, can be termed as nanocatalysts, which are currently experiencing explosive growth 

in a wide range of applications in heterogeneous and homogeneous catalysis. Nanocatalysts promise to 

be significantly more efficient catalytic converters for cars, nano-engineered batteries, and provide a 

range of new, cleaner sources of energy such as novel fuel cell technologies. At such small sizes, the active 

sites of these nanocatalysts could be influenced by the presence or absence of a single atom, or contained 

within a nanopore to further influence selectivity.  

Metal clusters 

Metal nanoparticles with < 30 atoms that are atomically precise are often termed as metal 

clusters, often viewed as a specific class of metal nanoparticles, which are commonly stabilised by the 

presence of an organic ligand.  These metal clusters are defined as an atomically precise, discrete 

molecular species that have metal–metal bonding interactions.  The term metal cluster, first used by 

Cotton in 1960, is used to describe a wide range of cluster type materials such as transition metal 

carbonyl clusters, metal halide clusters and molecular clusters.25 For the scope of this dissertation, the 

term metal cluster will refer to ligand stabilised metal clusters. Even though gold nanoparticles have 

been prepared for many years, the synthesis of precisely controlled gold clusters (0.8 nm – 2 nm) is still 

a relatively small area, which has only become of interest in the last decade due to the unique tuneable 

catalytic properties of gold clusters. There are two main classes of gold clusters: 

 Phosphine stabilised gold clusters  

 Thiol stabilised gold clusters 

Gold phosphine stabilised clusters were first prepared in the 1960s, whilst thiol-stabilised gold 

clusters have become a popular choice in recent years. Typically, gold phosphine clusters can be isolated 

as single crystals and characterised by single crystal X-ray crystallography whilst gold-thiol clusters are 

much more difficult to isolate as single crystals, except for one recent example by Jadzinsky et al.26,27 

Recent advances in electrospray ionisation mass spectrometry (ESI-MS) have helped facilitated the 

characterisation of monodisperse gold-thiol clusters. A more complete discussion on ligand-stabilised 

gold clusters will be presented in Chapter 2.  

Interest in heterogeneous catalysis with such small, atomically precise metal clusters supported 

on various supports has dramatically increased in recent years. Nanocatalysts with such small 
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nanostructured features are at the frontier between homogeneous and heterogeneous systems. 

Developing catalysts with such small structural features can lead to significant issues when 

characterising and identifying the active catalytic species in the either gas or liquid phase reactions. 

Investigating the relationship between catalyst structure, reaction rates and selectivity of the elementary 

reaction steps has proved to be very difficult, even with the significant improvements in characterisation 

methods and models in last the twenty years.  

Characterisation of clusters, nanoparticles and supported metal nanoparticles 

The accurate determination of the atomic structure of a novel material is essential for the 

understanding of the properties of the new material, and for the further development of new materials 

and applications in new technologies. Discrete molecules, which can be isolated, can be reliably 

characterised quantitatively by X-ray diffraction or nuclear magnetic resonance which can give average 

atomic distances. However, the characterisation of nanostructured materials is much more difficult due 

to the short-range changes of the structure in the material. The wide range of characterisation methods 

either provides structural details on a specific, local scale (i.e. electron microscopy or atomic force 

microscopy) or on larger, bulk average systems such as photoelectron spectroscopy, X-ray absorption 

spectroscopy.28 Due to the wide range of materials prepared for these studies, no single method of 

characterisation would be able to characterise the discrete gold clusters (0.8–1 nm), the larger gold 

nanoparticles (1.4–2.0 nm) and the supported gold nanoparticles. The techniques which are ideal for 

characterising the small clusters, such as nuclear magnetic resonance (NMR), becomes much less 

effective for gold nanoparticles that have gold core of more than 50 atoms. For the characterisation of the 

nanostructured gold catalysts, no single technique provides a complete structural determination; hence, 

a wide range of methods need to be explored for their suitability with these materials.  

Catalysis 

A catalyst is defined as a material that can lower the activation energy for a thermodynamically 

allowed reaction, resulting in an increase of the reaction rate for one or more possible reaction pathways. 

The un-catalysed reaction route from the substrate (S) to the product (P) goes through a high-energy 

transition state (TS). The catalysed pathway proceeds via a different, lower energy transition state(s), 

which are now possible due to the binding to the catalyst. Catalysis, a term coined by Jöns Berzelius in 
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1836, has been applied for thousands of years in the fermentation process, a prime example of bio-

catalysis.29 

  

Figure 2: Schematic of how a catalyst works 

Early chemists, such as Berzelius, noted certain materials appear to stimulate the reaction of 

other compounds, although the exact mechanism of this catalytic force was still unknown. The earliest 

studies, during the eighteenth and nineteenth centuries, were focused on how metals and metal oxides 

could influence the oxidative decomposition of various organic compounds and gasses. Even at this early 

stage, it was shown that metals would give very different products depending on the reagents used. The 

first practical application for this new catalytic concept was the development of the Davy Lamp, which 

was used as a miner’s safety lamp. The new lamp used had a fine mesh of catalytic material (platinum) 

that surrounded a flame; the wire mesh catalysed the oxidation of the coal gas (CO, methane) in a 

controlled manner. During the development of the Davy lamp, a wide range of metals were shown to be 

inactive such as copper, silver and gold, whilst platinum and palladium were shown to be active.30 

However, catalysis was still not understood at a molecular level. In 1843, Michael Faraday proposed that 

the starting materials have to adsorb simultaneously at the surface; however, it wasn’t until the 

contributions of Ostwald that the definition of a catalyst and its influence on the rates of the chemical 

reaction rather than the thermodynamic equilibrium of the reactants and the products.31   

Since the early twentieth century, nearly all industrial processes are catalysed by a catalyst(s) at 

some point. There are three main types of catalyst: heterogeneous, homogenous and bio-catalysis which 

have been summarised in Table 1. Heterogeneous catalysts are the main type of catalytic material 

employed in the chemical industry, due to their reliability, ease of separation from the products The 

catalyst typically consists of finely divided metal (20 – 100s nm) supported on a metal oxide support 
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material or in some cases a carbon support. In the early examples, the support material could vary from 

crushed animal bones or beach sand; however, the influence of the support on the catalytic reaction 

means that the support material is a precisely controlled facet of the catalyst. 

Homogenous catalysts typically consist of soluble metal complexes, where the selectivity of the 

reaction can be controlled precisely by the chemistry of the ligands. The catalysts are very active and 

selective, but issues of product separation have prevented the wide spread use of these homogenous 

systems in industry.  The most common homogenous process is palladium catalysed cross coupling. 32 

Tethering metal complexes to solid supports have also been shown to hold promise as industrial 

catalysts, but issues with leeching and stability of the catalysts still arise.33 

Bio-catalysts have been used for fermentation by yeast for many generations; other applications 

of enzymes in industry have been limited. In the last decade, the use of algae for applications in the 

production of carbon based fuels has become a massive area of research.34 
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Table 1: Comparison of the three main types of catalytic materials 

Catalyst type: Heterogeneous Homogeneous Bio-catalysis 

Active component  
Metals 
Metal Oxides 

Soluble Metal 
Complexes 

Complex Enzymes  

Active site: 
Poorly defined,  
Surface difficult to study 

 

Well-defined, Discrete 
molecules are easy to 
study 

Well-defined,                       
Discrete molecules 
often difficult to study 

Phase: Gas/Solid or Liquid/Solid Liquid Liquid 

Temperature: High (250 °C – 1000 °C) Low (<250 °C) < 0 °C to 100 °C) 

Selectivity Low High VERY High 

Product 
separation: 

Facile Difficult Problematic 

Catalyst recycle: Simple Difficult Not required 

Cost Relatively cheap Expensive Getting cheaper 

Reaction 
mechanisms: 

Difficult to study Easy to study 
Easy to study for 
models,not so easy in 
in-vivo 

 

In recent years, the boundary between homogenous and heterogeneous catalysts has become 

blurred.35 Unsupported, naked metal clusters in the liquid phase have also been shown to be active for 

range of important industrial reactions; however, whether these materials are classed as homogenous or 

heterogeneous catalysts can be difficult as with homogenous systems, similar issues with product 

separation and catalyst recyclability are encountered.36 Metal clusters, with small nanometer size 

dimensions could prove to be a significant environmental issue due to their small size, and unique 

electronic properties. A range of recent studies have highlighted the possible detrimental size effects of 

nanometer size metal nanoparticles could have on the growth of various agricultural crops.37  The usage 

of such small, reactive materials should be limited untill the affects of these novel materials on the 

environment are more fully understood. However, supported metal clusters on various metal oxide and 

carbon supports can avoid many of these possible detrimental affects on the enviroment. 
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Overall, heterogeneous type catalysts are the primary catalyst in industry due to their high 

tolerance to heat, easy separation and relatively low cost.  The heterogeneous catalysts are still relatively 

poorly understood, due to the complex issues of studying metal/metal oxide surfaces in situ. However, 

there is still great potential for improving heterogeneous systems. In the last twenty years, gold based 

catalysts have shown a range of surprising and novel reactivity in a wide range of systems, such as 

propylene epoxidation, CO oxidation. 38 

Heterogeneous oxidation catalysis 

The catalytic oxidation of organic substrates is an important tool for the fuctionalisation of 

molecules which are of great commercial and synthetic importance such as ketones, aldehydes, esters, 

carboxylic acids and alcohols.38,39 The selective and partial oxidation of the precursor molecules is a key 

requirement for many of these industrial processes; complete oxidation of organic molecules has many 

environmental applications.40 

A common thread throughout recent developments in selective oxidation catalysis has been the 

chemical nature of the source of active oxygen.41 A wide variety of oxygen sources have been explored, as 

summarised in Table 2. Typically, the oxidants used in metal catalysed oxidations have very low active 

oxygen content. Another serious drawback is generation of a large quantity of waste by-products. Hence, 

from an environmental perspective, molecular oxygen is an ideal oxidant because of its high abundance 

and high active oxygen content. However, it has been shown that catalytic processes involving molecular 

oxygen often demonstrate poor product selectivity. Furthermore, there is a limited number of catalysts 

that have been shown to activate molecular oxygen efficiently at industrial scale. Although, silver clusters 

have been used as effective catalysts for the epoxidation of ethylene with only molecular oxygen in 

several large scale industrial plants.42 Hydrogen peroxide is a commonly used oxidant as it only produces 

water as a by-product. Another common oxidant is the so-called sacrificial aldehyde which acts as an 

oxygen transfer agent. This method is relatively safe and benign but does have the disadvantage of 

generating considerable waste.43 
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Table 2: Summary of oxidants for metal catalysed oxidations, comparing calculated active oxygen 
content and typical products (data from reference 43) 

Oxidant Active oxygen content 

(wt. %) 

By-product 

O2 100 % H2O / not present 

O2/Reductant ( i.e. H2) 50 % H2O 

H2O2 47 % H2O 

NaOCl 21.6 % NaCl 

CH3CO3H 21.1 % CH3CO2H 

t-BuOOH 17.8 % t-BuOH 

KHSO5 10.5 % KHSO4 

PhIO 7.3 % PhI 

 

Stoichiometric metal oxidants are still widely used in industry, such as chromates and 

permanganates, leading to large amounts of toxic metal waste. Even with improved methods for reusing 

some of the waste, disposal of such quantities of material is becoming more and more difficult globally 

due to new, more rigid environmental legislation.44,45 One of the major demands that is now faced by 

industry is developing greener methods that are provide environmentally benign and commerically 

viable routes towards a vast array of functionalised products.  

The main heterogeneous oxidation catalysts are typically derived from an active phase such as 

metal nanoparticles immobilised on a support material such as high surface area or porous metal oxide 

supports. One of the main classes of materials that is currently used for catalytic oxidation is a large 

family of titanium silicates that have demonstrated wide applications in epoxide synthesis, hydroxylation 

and oxidation of alkanes. 41,46,47 The heterogeneous titanium (IV) silicate catalysts often use hydrogen 

peroxide as the source of active oxygen. These catalysts are often hydrophobic molecular sieve structure, 

and have demonstrated high catalytic performance and selectivity for oxidations of small linear alkenes. 

Various problems have been encountered when more complex starting materials are used, and issues 

with the high oxophilicity of the early transition metal system and the use of aqueous hydrogen peroxide 

as the terminal oxidant. 48 
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The need for improved routes to various products is ever present; the requirements that need to 

be considered during the design of selective oxidation catalyst are increasing: 

 Atom efficiency; 

 Waste prevention; 

 Energy efficient; 

 Hazard prevention; 

 Few toxic by-products; 

 Recyclability; 

 Safe solvent/solventless reaction. 

With recent advances in synthetic methods for novel porous, nanostructured supports and also 

for metal clusters and nanoparticles, there are many tools for chemists to develop new generations of 

nanocatalysts.  

In the last two decades, a gold rush in catalysis has occurred. New gold based catalysts have 

provided a range of new routes towards selective oxidation of a wide variety of organic substrates which 

have not been previously explored. 

Gold: a surprising catalyst. 

Gold has held an important place in human culture for many thousands of years; it has led to the 

creation and destruction of vast empires and the creation of various gold rushes all over the American 

continent. Gold, often found as lustrous yellow nuggets, may have been the first metal our ancestors 

encountered, possibly as far back as 40,000 years ago.49 Early societies often associated gold with 

various deities, gods and their rulers. The chemical symbol of gold (Au) is derived from the latin aurum 

which is related to the goddess of dawn, Aurora. The alchemical symbol for gold is also the same pagan 

symbol used for the sun. Humans, all around the world, intuitively attribute significant value and power 

to gold. Beyond its industrial and cosmetic uses, gold plays an important function in the economic 

system as a store of value, and it’s an object of speculation. In recent years, speculation has been 

rampant, with hedge funds, mutual funds, exchange-traded funds (E.T.F.s), and individual investors 

bidding the price up from six hundred dollars an ounce in 2007 to a peak of US$1,920.30 in September, 

2011, which has recently decreased to around the US$1400.00 mark. Depending on the source, the gold 

market is calculated to be worth approximately five trillion dollars a year.  
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The chemistry of gold 

Gold has a rich coordination and organometallic chemistry, but was considered to be catalytically 

inactive for many years. Gold is a late transition metal belonging to group 11 of the periodic table, it has a 

doublet 2S ([Xe] 6s1 4f14 5d10) atomic ground state. With an atomic mass of 196.97 amu the electronic 

energy levels of gold are strongly influenced by relativistic effects. The theory of the electronic structure 

of gold, and other heavy elements for which relativity has a qualitative effect on the chemical properties, 

have been the subject of several reviews, most notably by Pyykko.50,51 The relativistic effect arises from 

the fast moving electrons that are directly affected in the low lying core states of the atom; which 

experience the unshielded potential of the nucleus.52 The orbital contraction is almost 20 % for gold, 

which is also the maximum seen for the known, stable elements. Following the same orthogonality 

argument, the outer p-states also contract but d and f level orbitals expand away from the nucleus. For 

the valence states of gold the contraction gives stabilisation of the 6s level and destabilisation of the 5d 

levels. This brings them closer together in energy than would be the case in the absence of relativistic 

effects and so the gold bonding requiring s-d hybridisation is enhanced. 

 

 

Figure 3: The relativistic contraction of the 6s shell in the elements Cs (z = 55) to Fm (z = 100) from reference 
51  

 

Earliest reports of gold catalysis 

Traditionally, gold has been viewed as a poor catalyst as compared to other noble metals. The 

earliest recorded studies of gold being used as a catalyst are in the 1906, where gold plates were studied 

for their potential as for the decomposition of various gases and organic compounds.53 Predictably, the 

gold (as well as silver) reactions were relatively inactive as compared to the other metals investigated in 
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the study (iron, copper, platinum). It wasn’t until the early 1980s that it was realised that supported gold 

nanoparticles were active for a range of chemical reactions under relatively mild conditions.   

In the late 1980s, Haruta et al. showed that small gold nanoparticles supported on a metal oxide 

support, such as titania, iron oxide, or alumina were active for the oxidation of carbon monoxide, at 

temperatures as low as 0 °C.54-56 Concurrently, Hutchings independently demonstrated that supported 

gold on a carbon support was an ideal catalyst for the hydrochlorination of ethyne, forming vinyl chloride 

as the product.57,58 Previously, Bond and his co-workers had observed that gold particles supported over 

boehmite were active for the hydrogenation of alkynes in the presence of an alkene, and also for the 

hydrogenation of unsaturated hydrocarbons. The reactivity of these catalysts was relatively poor as 

compared to other commercially available systems. Since these pioneering catalytic studies, our 

understanding of the factors that influence activity of gold catalysts has improved significantly.  

Supported gold catalysts have now been employed in a wide range of systems, both in the gas- 

and liquid- phases: 

 Low temperature oxidation of carbon monoxide;54 

 Selective  oxidation of propylene to propylene oxide, in the presence of hydrogen;59 

 Selective oxidation of alkenes and alcohols in the liquid phase;60 

 Water gas-shift reaction;61 

 Synthesis of hydrogen peroxide.62 

Homogeneous gold catalysts had also been ignored; however, in 1998 it was shown that gold (I) 

complexes could be used to catalyse the addition of alcohols on to alkynes with high turnover 

frequencies.63 Homogeneous gold catalysis has now developed in to an important tool for the synthesis of 

a wide range of organic target molecules.64 Other examples of homogeneous gold catalysis include 

selective methane oxidation,65 oxidative cross-coupling66 and also the room temperature gold(III)-

catalysed oxidation of sulfides to sulfoxides with a thirty per cent hydrogen peroxide solution.67 Recently, 

an example of a catalyst in the grey area between homogeneous and heterogeneous catalysts was 

reported which involved unsupported gold clusters, with only 3-10 atoms of gold, demonstrating 

turnover numbers of 107 at room temperature for the ester assisted hydration of alkynes and the 

bromination of arenes.68 

In the past two decades, gold catalysis has developed rapidly to such an extent that many have 

viewed it as a gold rush in the field of catalysis.69-71 Many of the lessons that have been learnt designing 
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active gold catalysts, such as the need for gold particles of a specific size and the nature of the interaction 

with the support could lead to more efficient, cost efficient and elegant nanostructured catalysts for the 

chemical industry.71  

The origin of gold catalysis 

In the following section, I will discuss in more detail the two primary factors determining the 

activity of supported gold nanoparticle catalysts and lead in to the nature of the active site of 

heterogeneous gold catalysts. The two main factors, that were identified by Haruta and Hutchings, which 

appear to determine the catalytic activity of heterogeneous gold catalysts are:72 

 The size of the gold nanoparticles; 

 The nature of the support material. 

The early active catalysts, developed by Haruta, comprised of gold nanoparticles with diameters, 

5 nm on oxide supports.  Further development of these catalysts showed that the most active catalysts 

required precisely controlled gold particle dimensions between 2–4 nm. Model systems of gold 

nanoparticles on titania surfaces (110) single-crystal surfaces have linked catalytic activity to the size 

threshold effect associated with the metal to insulator transition of the gold nanoparticles when their size 

falls below 3.5 nm. Hence, precise control of the gold particle size is imperative for the development of 

active catalysts. Recent reports have also highlighted that metallic layers of gold can activate oxygen for 

further oxidation reactions.73  In contrast, if nitrous oxide is used as the source of active oxygen, larger 

particles of gold ( > 10 nm) have been shown to be more active for the oxidation of styrene than smaller 

gold nanoparticles ( 2-5 nm).74  

Hutchings and his co-workers have identified small 10-15 atom gold clusters supported on an iron 

oxide support by HAADF-STEM; which they concluded was responsible for the oxidation of carbon 

monoxide. It is believed that synthetic conditions play an important role in stabilising such small gold 

clusters.75 

In recent years, the major developments in gold catalysis have been in the activation of molecular 

oxygen with atomically precise gold clusters supported on silica, with phosphine or thiol derived 

ligands.76,77 These novel systems have shown that ultra-small gold clusters with particle sizes of around 

1.5 nm can activate molecular oxygen, with no additional sacrificial oxidant, for the partial oxidation of 

styrene and other organic molecules. The origin of the unique activity of such small gold clusters has still 
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not been experimentally confirmed, but the electronic properties of such small, discreet gold clusters has 

been proposed as the site for the generation of the active superoxo species from molecular oxygen.78 

Further developments have shown that thiol stabilised gold clusters on a hydroxyapatite support can also 

selective oxidise styrene to its’ epoxide product with high yields, in the presence of excess tert-

butylhydroperoxide.79 

However, the remarkable catalytic behaviour that is observed might also in part arise from strong 

electronic interaction between the gold and the metal oxide support. A wide range of metal oxide 

supports have been shown to be active and influence the reactivity of the supported gold nanoparticles. 

In particular, titania and iron oxide supports have yielded highly reactivity gold based catalytic 

systems.80-82 This work will be focused on two supports, titania and silica, which have contrasting 

electronic properties that should influence the reactivity of the resulting catalysts.  

The origin of the catalytic effect of heterogeneous gold catalysts is still under debate, a wide range 

of factors have all been considered as playing a key role: 83 

 Interface of gold nanoparticle with the oxide support;84 

 Cationic nature of gold Au3+;84 

 Metallic nature of gold(Au0);85 

 Quantum size effects;86 

 Defects sites and oxygen vacancies on the oxide support;85 

Many of these studies in to the origin of gold catalysis (or indeed any heterogeneous system) 

often involve UHV studies on extended surfaces such as flat substrates of ALD titania or silica with 

deposited gold nanoparticles. There is often a disconnect between such idealised systems and what is 

required for understanding industrial catalysis. Often experiments are limited to simple precursors such 

as carbon monoxide and often what is true for this model system is difficult to apply to other more 

industrial and environmentally more important reactions.   
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Characterisation methods 

The characterisation methods used in this research project are summarised in the table below and 

the application of each method is described. At the start of this project, several of these characterisation 

methods were not available, and only became available at later stage. Several methods, not described 

below, were also explored for their suitability for characterisation of these materials. Near Edge X-Ray 

absorption fine structure (NEXAFS) spectroscopy, was briefly used in an attempt to characterise the 

catalytic materials. The experiments were conducted at the Australian Synchrotron (AS) at the Soft X-

Ray (SXR) Beamline. Unfortunately, as the beamline is designed with a thin layer of gold throughout the 

monochromator; which meant gold NEXAFS could not be conducted. NEXAFS spectroscopy of the 

support material was conducted in an attempt to ascertain whether the gold affects the electronic 

structure of the support material proved to be in vain due to the very low loadings of gold on the surface 

of the support.  

Surface Enhanced Raman Spectroscopy (SERS) was briefly conducted on several supported gold 

clusters, in the hope to observe an enhancement of any species bound to the gold surface. These results 

yielded little to no information on any surface bound species, possibly due to low concentrations of gold 

present on the surface and small size of the gold nanoparticles which don’t have a plasmon resonance at 

such small sizes (<2 nm). The aim of these experiments was to determine whether the cluster ligand 

(triphenylphosphine) was present after the deposition of the cluster on to a support and subsequent 

catalyst annealing was conducted. 
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Table 3; Summary of characterisation methods of clusters 

Analytical Method Information Advantages Disadvantage 

High Resolution TEM 

Particle size 

Particle shape 

Size dispersity 

 

Direct imaging 

Local area characterisation  

May not be representative of whole 

sample. 

Time-consuming. 

Limits to resolution with metal 

clusters, especially  on non-carbon 

substrates. 

 

NMR Presence of impurities 

Cluster identification 

Rapid 

Solution phase 

Bulk Characterisation 

For large nanoparticles , broad 

resonances occur from multiple ligand 

environments and slow exchange on 

NMR timescale 

Far-IR/Terahertz Core – ligand bonds 

Metal- metal bonds  

Bulk characterisation 

Rapid technique 

Limited access 

X-ray Crystallography Atomic structure of 

cluster core and ligands 

Definitive assignment 

of atoms 

Pure, crystalline samples required  

Not a bulk technique. 

Photoelectron 
spectroscopy 

Electronic structure of 

surface of solid material 

Bulk sample analysis 

Quantitative analysis 

UHV conditions 

Sample charging 

Contamination 

Limited access 
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Transmission Electron Microscopy 

Bright field high resolution TEM is a microscopy method by which a beam of high energy 

electrons is transmitted through an ultra-thin sample in ultra-high vacuum. The image of the sample is 

created by the interaction of the electrons that are transmitted through the sample, which is then 

magnified and focused onto a fluorescent screen or a CCD camera. In figure 4, a lens diagram for imaging 

and diffraction modes of a HRTEM is shown. HRTEM is one of the primary methods for characterising 

the structure of metal nanoparticles, where the size and shape of the metal core can be observed. 

  

Figure 4: Lens diagram for bright field HRTEM 

Due to the small size of the gold clusters on the metal oxide support, it was found that typical 

200kV HRTEM was insufficient to image the gold clusters, due to the poor contrast of the gold clusters 

and the metal oxide supports. High angle annular dark field scanning transmission microscopy (HAADF 

STEM) was used to image several samples in attempt to observe any of the unsintered gold clusters on 

the metal oxide supports. High angle annular dark field microscopy excludes the unscattered electron 

beam from the sample image, which can improve the resolution of the images especially for high Z atoms 

such as gold. Scanning transmission electron microscope operates by focusing a narrow beam of 

electrons into a narrow spot which is then scanned over the sample in a raster, a systematic process of 

covering the sample area gradually one line at a time.  Atomic resolution can be achieved in conjunction 

with a high angle detector (as the image of the MNP is enhanced due to the greater number of electrons 

scattered to the high angle by the high Z metal atoms) and aberration correction.  
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Annular dark-field imaging was also employed to observe the sub nanometre gold clusters on the 

supports. An annular dark-field image is formed only by high angle, incoherently scattered electrons 

which are sensitive to variations in the atomic number of the atoms in the sample.  

During HRTEM, elemental analysis can also be conducted in-situ by Energy Dispersive X-Ray 

spectroscopy (EDS). This technique involves a focused, high energy beam of electrons interacting with a 

sample. The incident beam of electrons can excite an electron in an inner shell, which is ejected from the 

shell, creating a hole. An electron from a higher energy, outer shell then fills this hole and the difference 

in energy of the shells is released in the form of an X-ray, which is measured by an energy–dispersive 

spectrometer. Each element has characteristic X-rays with energies corresponding to the diferences in 

energy between different shells, facilating elemental identification. This technique is useful tool to 

confirm the elements present in a sample that is being studied by TEM. It was noted that in the case of  

our samples the gold peaks were not observed due to the very low loading (0.17-0.5 wt%) of gold in the 

samples. 

Typically, for a TEM study a sample is deposited on to a substrate that is relatively transparent to 

electrons; a focused electron beam is passed through the sample which is under ultra-high vacuum. The 

samples of metal clusters/nanoparticles and supported gold nanoparticles on silica and titania were 

deposited onto copper TEM grids that are covered with an amorphous carbon film provided by 

ProSciTech. This thin carbon substrate is designed to minimise the background scattering of electrons; 

several samples were studied on holey carbon films to observe the sample over the holes with no carbon 

film background.  The electrons are absorbed or diffracted by the sample and pass through the substrate. 

The transmitted electrons produce an image through the phosphorescence on a screen below the sample 

or by detection by a CCD camera. Once the image has been optimised for contrast, brightness, the shape 

and size of the metal core can be quantified with sub-nanometer resolution, and measured by Gatan 

digital micrograph software. For these experiments, TEM was conducted on Philips CM-200 electron 

microscope which has a theoretical resolution of 0.45 nm when operated under optimum conditions. 

Although TEM is an ideal technique for the characterisation of most nanoparticle systems, it becomes 

difficult to distinguish between different gold cluster species with core sizes below one nanometer. The 

contrast between the substrate (i.e. amorphous carbon film) and the ultra-small gold clusters is 

significantly lower as compared to the larger gold nanoparticles, which means that larger gold particles 

are much more visible than the atomically precise sub-nanometre gold clusters. When the gold clusters 

are deposited onto the titania or silica supports, the observation of gold clusters or nanoparticles 
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becomes much more difficult as the substrate is now absorbing and diffracting a much higher proportion 

of the electrons as compared to the gold clusters deposited straight onto the amorphous carbon film. 

Overall, this method allowed us to quantify the extent to which agglomeration of the small gold clusters 

was happening.  

Nuclear Magnetic Resonance Spectroscopy 

NMR spectroscopy can be used for the characterisation of gold clusters and nanoparticles; 

however, the nature of the core and ligand shell of the system can add complicate the results. 1H NMR 

has been used to characterise gold clusters and nanoparticles with metal core diameters of less than one 

nanometer up to 2 nm, the resultant spectra displays broadened resonance signals as the particle size 

increases due to the increasing number of magnetic and chemical environments that are experienced by 

the protons of the ligands.87,88 31P NMR is not particularly applicable to larger gold nanoparticles due 

significant broadening of the phosphorous peak and may not be detected in the baseline. However, for 

the atomically precise gold clusters where the proportion of phosphorous to gold is much high as 

compared to the larger nanoparticles, 31P NMR can provide valuable information on the structure, 

allowing us to distinguish between particular cluster species present solution by the associated chemical 

shift of the phosphorous peak from the ligands. Spectra for gold phosphine and thiol clusters are 

typically much simpler than would be expected from the solid-state structure of these materials due the 

soft potential energy surfaces for the structural changes in the gold core.89 Hence, 31P NMR is an essential 

characterisation tool for the various gold phosphine clusters studied in this research. 90,91. For this 

research, 31P and 1H were recorded on a Varian INOVA spectrometer and deuterated solvents were 

sourced from Cambridge Isotopes.  

X-Ray Crystallography 

X-Ray Crystallography is an ideal technique when characterising crystalline materials 

quantitatively, to understand the structure of a material at an atomic level. This method of 

characterisation requires single crystals of a pure material, which often means that the larger gold 

nanoparticles are not able to be characterised by this method. Even with the more atomically precise 

samples, the single crystal sample is often not representative of the bulk sample. For the crystalline 

samples, single crystal X-ray diffraction experiments were recorded on Bruker APEXII area detector 

using graphite monochromised Mo K (= 0.71073 Å) radiation. The crystals of each sample were 
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mounted on a glass fibre under oil.  Intensities were corrected for Lorentzian polarization effects and for 

absorption effects using multiscan methods. Space groups were determined from systematic absences 

and checked for higher symmetry. Structures were solved by direct methods using SHELXS-97 and 

refined with full-matrix least squares on F2using SHELXL-97. All non-hydrogen atoms were refined 

anisotropically. 

Photoelectron Spectroscopy 

Photoelectron spectroscopy (PES) or X-ray Photoelectron spectroscopy (XPS) is a surface 

characterisation technique that is used determine the presence of various elements present on a surface 

and allowed  the chemical shift of various elements can be determined. A more detailed description of 

this technique is presented in chapter 5. Overall, PES is an ideal technique to characterise 

nanostructured materials that have unique electronic properties that differ from the bulk form to of the 

element.92 When compared to TEM, PES facilitates the analysis of a much larger area; hence, the 

information gleamed by PES is representative of the electronic structure as an average of the whole 

sample rather than as several localised areas. For this research, PES is an ideal technique for the study of 

the unique properties of the small gold clusters and nanoparticles, including when they are deposited on 

to various support material. The electronic interaction of the particles with the supports and the extent to 

which the gold particles have aggregated on the surface can be determined and in conjunction with TEM 

data can start to help us understand the reactivity of these samples.93 Photoelectron spectroscopy 

experiments were conducted at the Australian Synchrotron at the Soft X-Ray Beamline under the 

guidance of Dr. Lars Thompsen.   

Scope of this dissertation 

Overall, it is hoped that some of the work presented will contribute to a greater understanding of 

the chemistry of gold based catalysts. The central idea of this dissertation was to study effect of 

decreasing size of the gold particles supported on silica on the catalytic chemistry. The study was limited 

to support immobilised materials as these systems are more relevant for industrial applications and have 

significantly less environmental risk associated with them than with naked metal clusters and other 

molecular species.  
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Chapter 2 describes the initial work taken to prepare a range of gold clusters and nanoparticles 

which were all stabilised by the same organic protecting group or ligand: triphenyl phosphine. The gold 

clusters and nanoparticles were prepared by the reduction of a gold(I) precursor and further purification, 

all synthetic procedures were optimised to maximise yields and to ensure the purity of the clusters. The 

systems chosen for this study were Au8(PPh3)8(NO3)2 , Au9(PPh3)8(NO3)3 , Au11(PPh3)8(NO3)3  and also 

the much larger 1.5 nm gold phosphine nanoparticle system. Several thiol based systems were also briefly 

studied but due to the lack of ESI-MS characterisation facilities, it was decided that this project would be 

focused initially on phosphine stabilised gold clusters. The choice of these clusters ensures that the effect 

of the addition of a single gold atom on the electronic properties of the cluster can be studied. The 

detailed characterisation of these clusters by NMR, TEM, ESI-MS, X-ray crystallography, HAADF-STEM, 

and by EXAFS spectroscopy is described.  

In addition to confirming the structure and purity of this range of gold clusters, a series of 

experiments on the far-infrared properties of these clusters was also conducted in collaboration with 

Jason Alvino and Dr. Greg Metha from the University of Adelaide at the Far-Infrared Beamline at the 

Australian Synchrotron. Chapter 3 details the first report on the vibrational structure of pure, ligand 

stabilised gold clusters, and a comparison between the experimental spectra to simulated spectra that 

were generated by Jason.  

Chapter 4 describes the design and preparation of the catalysts involved in this study. A wide 

range of factors influencing the reactivity of the catalysts were identified and controlled during the 

preparation. Evonik P-25 titania and fumed silica supports were chosen as supports for this study. To 

improve to deposition characteristics of the gold clusters on to the titania support, acid washing of the 

titania support was also conducted.  

One of the main factors that can influence the reactivity of supported metal particles is the 

loading of the metal on the support material. For this study a relatively low loading of 1 % by weight of 

gold was chosen in an attempt to minimise particle sintering which contrasts to the standard gold 

catalysts which vary from 3 -10 % by weight of gold. Post –deposition modification of the supported gold 

clusters was conducted under a wide range of temperatures and conditions, in an attempt to compare the 

effect of these various treatments on the electronic structure of the materials. HRTEM was used to 

characterise these materials; however, due to small size of the gold clusters (~ 1 nm) it often proved 

difficult to observe these particles on our in-house microscope. Several samples were examined by 

HAADF-STEM at the Monash University in Australia, which confirmed the presence of gold cluster with 
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particle sizes < 1 nm.  Due to our limited access to such this microscopic technique, we also employed 

high resolution photoelectron spectroscopy to conduct a more systematic study of the materials prepared 

in this chapter.   

Chapter 5 discusses a large, systematic photoelectron spectroscopy study on the supported gold 

clusters, which was performed at the Soft X-ray Beamline at the Australian Synchrotron. Due to 

insulating nature of the support materials, extensive developments on the sample preparation method 

were required to minimise sample charging. However, the silica samples proved too difficult to 

characterise under the high intensity of the synchrotron source. The effects of post-deposition treatments  

were investigated by comparison of untreated samples with analogues that have treated at various 

temperatures and atmospheres. The final fate of the triphenyl phosphine ligands after post-deposition 

treatments was also a focus for this chapter. 

Chapter 6 reports on the catalytic behaviour of the supported gold phosphine clusters for the 

oxidation of styrene. A wide range of conditions were examined with differing post-deposition 

treatments and sources of active oxygen. The chapter describes the initial considerations and 

development of the catalytic set-up for this lab. The experimental results are then discussed in context of 

other reports of catalytic oxidation of styrene by supported gold clusters.  

In chapter 7, the results from two collaborative projects are discussed, which employed the gold 

phosphine clusters and supported gold clusters prepared in this work for other applications. 

Au9(PPh3)8(NO3)3 clusters were deposited on various tungsten oxide supports and employed as hydrogen 

gas sensors at RMIT, Australia. Samples of the silica and titania supported samples were also examine 

for activity in catalytic reduction of alcohols at the University of Auckland, NZ.  
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Preparation of ligand stabilised gold clusters 

 

Ligand protected metal clusters 

A cluster is a class of material that is typically defined as a small aggregation or grouping of a 

sub-unit. From the view point of a chemist, a cluster is a small array of similar atoms that occupy a 

niche between a molecule and a bulk material. More recently, the term ‘cluster’ has been used to 

refer to compounds that contain expressly metal-metal bonds.1 There are two main classes of metal 

cluster   naked clusters and ligand stabilised clusters. A naked cluster has no ligand stabilisation and 

is often generated and studied under high vacuum conditions. In comparison, ligand stabilised 

clusters are typically prepared by wet chemistry and the metal core is surrounded by a shroud of 

organic ligands which stabilise the cluster by both steric and electronic means. For metal clusters, 

common ligands include carbon monoxide, alkenes, isocyanides, halides, and hydrides. For main 

group clusters, the most common ligand is hydride.  

 

Figure 5; Examples of chemical clusters; A) pentaborane, B) iron carbonyl, and C) [Ge9]4- 

 

2 

A B 

C 



Chapter 2 — Preparation of ligand stabilised gold clusters 

- 33 - 
 

In Figure 5, several examples of chemical clusters are presented, such as pentaborane, iron 

carbonyl and the zintl ion [Ge9]4-. Several examples of high nuclearity metal clusters have been well 

characterised, such as Au102(S-pC6H4COOH)44, Au55(PPh3)12Cl6, and Pd561BiPy60OAc180.2-4 Although 

these giant metal clusters are still molecular in nature, they have properties that are almost metallic 

in nature i.e. embryonic metals. These clusters now have nanometer size dimensions, which means 

the small clusters are also classified as nanoparticles. At these size dimensions, the difference 

between the types of metal clusters can become blurred. Some systems have also been classed as 

metal colloids, which is defined as a stabilised solution of metal nanoparticles. 

The properties of ligand stabilised clusters and nanoparticles depend on several distinct 

structural components; 

 The metal core, where the number and type of metal atoms can significantly alter the 

electronic properties of the metal particles 

 The ligand shell, which is bound to the metal core and inhibit particle growth 

 The ligand fuctionalisation, which is regulated by the terminating groups on the ligand which 

in turn controls interactions with the solvent  

From the view point of a chemist, the main distinction between metal nanoparticles and 

metal clusters is that metal clusters are atomically precise and can be characterised by single crystal 

X-ray crystallography to determine the exact position of ligands and chirality of the metal core in the 

solid state. In comparison, metal nanoparticles is a more general term for metal particle systems 

that have a particle size distribution and this is controlled by the various synthetic conditions and 

the capping agents used. In recent years, the interplay of size, shape and composition of metal 

nanoparticle cores has been shown to have an important role in the novel optical, catalytic and 

electronic properties, leading to potential applications in a wide range of industries.  
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Phosphine and thiol stabilised gold clusters 

Molecular gold clusters have recently been shown to be of significant interest in a wide range 

of applications due to their size-dependant chemical and physical properties.5,6 Gold nanoparticles 

have been known for their unique optical properties for many years; however, the unique properties 

of gold clusters in the 1 nm size range have only become apparent in recent years.  

Phosphine- and thiol-stabilised gold clusters constitute the two main classes of the 

chemically synthesised gold clusters. Using chemical tools, a wide range of characteristics of these 

clusters can be controlled such as the specific number and type of metal atoms in the core 

(nuclearity and composition), core symmetry, type and number of ligands and type and numbers of 

counter ions. The optical and electronic behaviour of these clusters has been shown to be sensitive to 

both the core size and ligand type; increasing size of the cluster leads to increasing metallic 

behaviour of the cluster. 7 There have been an extensive number of studies correlating the observed 

characteristics of the clusters to theoretical models but many of these recent studies have mainly 

focused on gas-phase systems and ignore the influence or fate of the cluster ligands.   

The earliest ligand stabilised gold clusters were prepared by Malatesta et al. in 1966 by the 

reduction of phosphine stabilised gold halide salts with sodium borohydride in ethanol.8 Further 

developments led to the isolation and characterisation of Au11(PPH3)7(SCN)3  and a wide range of 

other phosphine-stabilised gold clusters.9-12 Gradually, with improved characterisation methods, the 

structure of these materials was explored more fully using single crystal X-ray crystallography and 

photoelectron spectroscopy.13-16 Due to the unique reactivity of these clusters, ligand exchange in 

solution is relatively facile, and an undecagold cluster has shown promise for potential applications 

in cell recognition after ligand exchange reaction with tRNA.17 ,18  

Most of the phosphine clusters prepared by the reduction of gold salts have a general 

formula of [Au11L7X3], with several examples of nonagold and octagold clusters have also been 

observed.19 20 The undecagold cluster typically has a skeletal structure with C3v structure, which has 

been observed in many structurally related systems.10,15,21,22 The stability of these compounds with 

this specific structure has been explained by the presence of central icosahedron motif cementing 

overall structure and by a noble-gas superatom analogy.23 The superatom electronic theory has 

recently been applied to metal clusters and has successfully predicted the stability and chemistry for 
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a range of metal clusters and nanoparticles.24,25 For metal clusters, the valence electrons of the 

cluster can delocalise to the ligands, which facilities the possibility for the cluster to attain the noble-

gas electronic configuration; forming the stable maximum valence compound.26 The stability of the 

phosphine stabilised undecaclusters is attributed to the closing of the eight electron gap between the 

HOMO and LUMO. 26 DFT calculations have shown that the HOMO-LUMO gap is 2.1 eV for the 

Au11(PPh3)8Cl3 cluster have also confirmed the unique stability of these clusters. For the smaller, 

nonagold and octagold cluster typically prepared by the reduction of a larger gold phosphine 

precursor, the HOMO-LUMO has been calculated to slightly smaller than the dodecagold cluster, 

which has been also shown experimentally cyclic voltammetry data20,23 

Over the past two decades, thiol stabilised gold nanoparticles and atomically precise thiolate 

gold clusters have become popular systems due to significant advances in synthetic methodologies 

and characterisation techniques. Relatively monodisperse gold thiol nanoparticles (~2–5 nm) were 

prepared by Brust et al. in high yield, where a gold precursor is reduced in an aqueous solution and 

then transferred by phase transfer catalyst to a toluene layer in which an alkane thiol capping group 

is present to stabilise the gold particles.27 This biphasic method significantly improved the size 

control of the gold particles and opened new possibilities for the preparation of functionalised gold 

nanoparticles. Previous methods for gold nanoparticles typically involved preparation of gold citrate 

nanoparticles, followed by subsequent ligand exchange with the desired capping agent often yielding 

polydisperse nanoparticles.28,29 More recently, preparation of atomically precise gold thiolate 

clusters, Aun(SR)m, has been aided by improvements in characterisation methods such as electro 

spray ionisation – mass spectrometry and X-ray crystallography. These developments have led to 

the synthesis, isolation and structural characterisation of the largest ligand stabilised gold cluster 

Au102(S-pC6H4COOH)44 as well as the smaller Au25(S-CH2CH2Ph)18 cluster. 23,30-32 In the case of the 

larger Au102 cluster, the AuIS-pC6H4COOH moieties have been shown to hydrogen bond extensively 

which leads to important intra cluster interactions that lead to the formation of crystals. There has 

been a range of other gold thiol-protected clusters published that has been characterised by 

electrospray mass spectroscopy (ESI-MS), which limits the structurally damage done to the cluster, 

allowing the cluster size and ligand shell to be approximated. 33 The stability of the thiolate gold 

clusters has been attributed to the unique AuI-SR outer shell which forms a layer around a smaller 

electron rich gold core.23,33 



Chapter 2 — Preparation of ligand stabilised gold clusters 

- 36 - 
 

Synthesis of phosphine stabilised gold clusters 

For this study, the focus was on the preparation and use of several phosphine stabilised gold 

clusters. Some of the early work did initially explore the preparation and crystallisation of several 

thiolate gold clusters. However, it was found that the yields of these clusters were relatively poor and 

that without easy access to ESI-MS from the beginning of this project, characterisation of the 

thiolate clusters proved to be difficult. The first synthesis of Au102(S-pC6H4COOH)44 has only 

recently been published and even then the yields have been poor.3 Recent progress by the Levi-

Kalisman on Au102(S-pC6H4COOH)44 preparation has significantly improved yields but lies beyond 

the scope of this project.30 

In comparison to the thiolate gold clusters, triphenyl phosphine stabilised clusters have been 

prepared and structurally characterised often with relatively high yields; ranging from Au2(PPh3)2 

up to the larger Au13(PPh3)10Cl3 cluster.34 Larger phosphine stabilised gold nanoparticles have been 

prepared with a core nuclearity greater than 55 gold atoms.4 These embryonic metals, as they are 

dubbed by Gunter Schmid, have similar dimensions to Au102(S-pC6H4COOH)44 which is known to 

have significantly metal characteristics.23 The characterisation of this Au55 cluster has been disputed 

due to several characterisation inconsistencies; investigations by transmission electron microscopy, 

photoelectron spectroscopy and X-Ray scattering methods have shown that the sample is 

polydisperse.35 More robust methods for the synthesis of gold phosphine nanoparticles have been 

developed, which employ a similar biphasic system as the Brust methodology, yielding nanoparticles 

with a very narrow size distribution (1.4 nm σ = 0.7 nm).36 

The focus of this study was to prepare a small series of atomically precise gold clusters. 

Au11(PPh3)8(Cl)3, Au9(PPh3)8(NO3)3, Au8(PPh3)8(NO3)2 and the 1.4 nm gold phosphine 

nanoparticle system were chosen as the target clusters for this study, because each cluster has the 

same ligand and the cluster size range will hopefully illuminate any size effects during catalysis. 

 

Wet chemical preparations of metal nanoparticles and clusters are prepared by a bottom up 

approach, where metal salts are reduced in the presence of a ligand or capping agent. The ligand 
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used for this series of clusters and nanoparticles was always triphenylphosphine and this was not 

varied throughout this study.  

In general, metal nanoparticle preparations employ the reduction of various metal salts in 

the presence of an appropriate passivating agent, but can lead to low yields of the desired particle 

size, mainly due to poor control of complex kinetic and thermodynamic controls of the reaction. 

Recent studies have also shown how the particle size distribution of the product can also be 

dependent on local concentrations of precursor, reducing agent and capping agent. 37,38 Other issues 

can arise due to problems with separation and isolation of the target product with the desired 

characteristics from either larger particles or excess organic ligands. Common methods of 

purification of metal nanoparticles involve 1) repeated solvent washes, which selectively remove by-

products, inorganic salts, and undesirable particle sizes, 2) centrifugation, 3) crystallisation and 4) 

size exclusion chromatography. For the larger nanoparticles, solvent washes can be useful for 

removing unwanted particles sizes through the significant differences in solubility. However with 

particles with less than 50 atoms, the separation process can be much more difficult due to similar 

solubility properties of the product and precursors. Detailed description of the synthetic procedures 

used to make Au-containing precursors used in catalyst fabrication are given below. No modification 

of the procedures reported earlier was attempted, unless otherwise specified. 

HAuCl4 

Tetrachloroauric acid was prepared, in house, by dissolving high purity gold (99.999%, 5 g) 

in a mixture of nitric acid (15 mL) and hydrochloric acid (30 mL), which was stirred for twenty four 

hours.39 The dissolved gold was then dried under reduced pressure, which resulted in deep orange 

crystals. The solid was then dissolved in concentrated hydrochloric acid (10 mL). The heated sample 

volume was reduced to 2 mL, before orange crystals of the pure product formed upon cooling to 

room temperature.  

Au(PPh3)Cl  

The synthesis protocol was adapted from the procedure described by Malatesta et al.8 

Triphenylphosphine (2.65 g, 10.10 mmol) in ethanol (75 mL) was added rapidly to a stirred (500 

rpm) solution of tetrachloroauric acid (2.010 g, 5.102 mmol) in ethanol (20 mL). The yellow colour 

of solution disappeared immediately upon addition of triphenylphosphine and a white precipitate 
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formed. The resulting solution was stirred vigorously (1000 rpm) for a further 15 minutes to ensure 

the reaction went to completion. The reaction mixture was centrifuged (5 min, 5000 rpm) to collect 

the solid white product. The product was washed three times with hot ethanol (3 × 20 mL) on a 

sintered glass funnel filter (porosity 3). The remaining solid was dissolved in chloroform (30 mL), 

filtered and the solvent removed under reduced pressure. The crude product was dried in a vacuum 

desiccator. The product was recrystallized from a mixture of dichloromethane and methanol using 

vapour diffusion resulting in needle-like white crystals.  

Yield: 2.250 g, 90 %. 31P NMR (chloroform, 25 °C); δ 33.5 ppm referenced to H3PO4 

Au(PPh3)NO3 

Au(PPh3)NO3 was synthesised according to a protocol described by Mueting et al.40 A solution 

of AgNO3 (3.430 g, 20.191 mmol) in ethanol (130 mL) was added rapidly to a solution of Au(PPh3)Cl 

(3.973 g, 8.042 mmol) in chloroform (50 mL). The reaction was left to stir for 1 h in a reaction vessel 

covered with aluminium foil. The AgCl precipitate was removed by filtration on a sintered glass 

funnel filter (porosity 3) and the filtrate was dried in a rotary evaporator without heating. The crude 

product was washed with ethanol (3 × 50 mL). The solid was then dissolved in dichloromethane (50 

mL) to which ethanol (150 mL) was later added. The solution was then bubbled thoroughly with a 

flow of nitrogen for 2 hours to remove the dichloromethane. The resulting white crystals were 

collected by filtration, washed with cold ethanol (3 × 5 mL) and cold diethyl ether (3 × 5 mL). The 

product was stored in a freezer in the absence of light. 

Yield: 3.648 g, 87 %. 31P NMR (chloroform, 25 °C); δ 25.2 ppm referenced to H3PO4 

1.5 nm Au nanoparticle 

“Au101” or Au101[P(C6H5)3]21Cl5 stabilized by triphenylphosphine was prepared according to a 

protocol described by Hutchison et al.36,41 Tetraoctylammonium bromide (1.40 g, 2.56 mmol) was 

added to a solution of tetrachloroauric acid (1 g, 2.54 mmol) in ultrapure water (60 mL) and toluene 

(60 mL). After 5 minutes of vigorous stirring at 1000 rpm, triphenylphosphine (2.3 g, 8.76 mmol) 

was added to the biphasic system. After 10 minutes of vigorous stirring, a solution of freshly 

dissolved sodium borohydride (2.0 g, 52.9 mmol) in ultrapure water was rapidly added to the 

reaction mixture. The reaction mixture was left to stir at 600 rpm for a further 3 hours, at which 

point the organic layer was separated and washed with saturated solution of NaCl in ultrapure water 
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(2 × 50 mL) and then ultrapure water (3 × 50 mL). The organic layer was separated, filtered and 

dried under reduced pressure. The resulting solid was dissolved in chloroform (35 mL) to which 

pentane (300 mL) was added slowly with gentle swirling and the mixture allowed to stand 

overnight. The precipitate was collected by filtration on a sintered glass funnel filter (porosity 4) and 

washed with series of solvent mixtures as follows: 

 2 ×100 mL hexanes followed by 100 mL 2: 3 MeOH: H2O) 

 2 ×100 mL hexanes followed by 100 mL 1: 1 MeOH: H2O) 

 2 x 150 mL 3: 1 pentane: chloroform 

 2 x 150 mL 2: 1 pentane: chloroform 

 2 x 150 mL 1: 1 pentane: chloroform 

The solvent washes are used to remove by-products, Au(PPh3)Cl and the phase transfer 

reagent. The effectiveness of the purification steps was monitored by 1H NMR. The remaining solid 

was dissolved in dichloromethane (30 mL) and filtered through to remove any insoluble by-

products. Removal of the solvent of the filtrate on a rotary evaporator afforded the pure product as a 

fine black powder.  

Yield: 200 – 250 mg. This cluster was characterised by HR TEM and purity was confirmed 

by 1H NMR in CDCl3 

 

 

Figure 6; Schematic of 1.5 nm gold nanoparticle preparation 
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The gold nanoparticles prepared by this method are reproducible; however, yields 

occasionally varied.  The samples were found to be more consistent if the purification steps of these 

nanoparticles were conducted by centrifugation rather than filtering. The nanoparticles are 

relatively unstable in solution due the high lability of the triphenylphosphine in dichloromethane; 

hence by centrifuging the samples we further minimise the time the nanoparticles are in solution.  

Au11(PPh3)8Cl3 

Au11(PPh3)8Cl3 was synthesised according to a modified protocol described by Hutchison et 

al. 42 A solution of NaBH4 (0.075 g, 1.97 mmol) in ethanol (5 mL) was added dropwise to a stirred 

suspension of Au(PPh3)Cl (1.0 g, 2.02 mmol) in ethanol (50 mL). The reaction mixture was left to 

stir for 2 hours, after which time it was poured into hexanes (1 L) and the product was allowed to 

precipitate overnight. The precipitate was collected using a sintered glass filter funnel (porosity 4). It 

was then washed with hexanes (4 × 15 mL), 1:1 (v/v) mixture of CH2Cl2: hexanes (4 ×15 mL), and 3:1 

(v/v) mixture of CH2Cl2: hexanes (1 × 10 mL). The solid remaining on the filter was dissolved in 

dichloromethane (20 mL) and filtered through to remove any insoluble by-products. The crude 

product was obtained upon removal of solvent on a rotary evaporator. It was recrystallized from a 

mixture of dichloromethane and diethyl ether by vapour diffusion at 4 °C resulting in deep red 

platelets.  

Yield: 155 mg, 17.5% 31P NMR (chloroform, 25 °C); δ 52.2 ppm referenced to H3PO4 

 

Figure 7: Schematic of the preparation of Au11(PPh3)8Cl3 
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The ligand stabilised undecagold cluster has been investigated in the literature for several 

decades now due to the unique optical and electronic properties, and more recently the versatile 

methods for functionalising the ligand shell. The earliest reports of an undecagold cluster come from 

Maletsta et al., where an undecagold product was identified from the reduction of the 

monophosphine gold precursor. However, it was not until the works of Mingos and Van der Velden 

in 1980 that the undecagold cluster was fully characterised and mechanistic insights to the reaction 

mechanism were discussed. More recently, the potential of undecagold for applications in the 

targeted labelling of biological structures have been highlighted by the preparation water soluble 

derivatives of the undecagold cluster by ligand exchange reactions. Many of these early undecagold 

clusters had a range of derivatized phosphine ligands and counter ions, and employed more exotic 

reducing reagents (TiIV), which often limited the reproducibility of the preparations. 

Recently, the Hutchison group have shown that the triphenylphosphine stabilised 

undecagold cluster can be produced in small batches with average yields (20-30%). Recent 

publications have also highlighted that several polymorphs of the undecagold cluster are also 

generated. Previously in the literature Au11(PR3)7 and Au11(PR3)8 are often used interchangeably, 

however the Hutchison et al. highlighted that careful tuning of the conditions such as precursor 

concentration and solvent choice can improve the product selectivity in micro capillary reaction 

systems.  

Structural characterisation of the undecagold cluster shows the cluster stability derives from 

optimised surface passivation by the triphenyl phosphine ligands. The low yield of the undecagold 

cluster is due to the formation of much larger colloidal gold nanoparticles, which are removed by 

solvent washes and subsequent crystallisation.  

Au9(PPh3)8(NO3)3 

Au9(PPh3)8(NO3)3 was synthesised following the protocol described by Wen et al. 43 A 

solution of NaBH4 (0.072 g, 1.92 mmol) in ethanol (92 mL) was added to the magnetically stirred 

solution of Au(PPh3)NO3 (4.0 g, 7.6 mmol) in ethanol (160 mL). The solution became deep red 

within two hours, at which point the solution was filtered to remove insoluble impurities and the 

solvent removed on a rotary evaporator. The solid so obtained was dissolved in 20 mL CH2Cl2 and 

filtered through a sintered glass filter funnel (porosity 3). Removal of solvent on rotary evaporator 

yielded the product as a black precipitate, which was washed with 50 mL of THF. Upon washing, the 
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solid became dark green. The solid was further washed with THF (3 × 50 mL) and hexanes (3 × 50 

mL). The precipitate was crystallized from methanol by slow diffusion of diethyl ether at 4 °C. Dark 

green crystals formed within ca. 5 days.  

Yield 1.24 g, 36 %.  31P NMR (chloroform, 25 °C); δ 56.8 ppm referenced to H3PO4 

Au(PPH
3
)Cl

AgNO3 2 eq.

CHCl3/EtOH
1hr

Au(PPH
3
)NO

3

NaBH4 0.2 eq.

Ethanol
Room temperature
2hrs

   

 

Figure 8: Schematic of Au9(PPh3)8(NO3)3 preparation 
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Au8(PPh3)8(NO3)2 

Au8(PPh3)8(NO3)2 was synthesised following the protocol described by Van der Velden et 

al..  

Au9(PPh3)7(NO3)3 (1.48 g, 0.36 mmol) and PPh3 (0.96 g, 3.66 mmol, 10-fold excess) were 

mixed in 20 mL of CH2Cl2. The resulting deep red solution was stirred for a further 30 minutes. The 

crude product was precipitated by addition of 200 mL of toluene, isolated by filtration on a glass frit 

(porosity 3), washed alternately with toluene (3 × 20 mL) and hot hexanes (3 × 20 mL) and dried. 

The red product was crystallized from CH2Cl2 by slow diffusion of diethyl ether at 4 °C. Deep red 

crystals formed within ca. 4 days. The crystallization was repeated several times to remove excess 

triphenylphosphine.  

Yield: 1.38 g, 88 %.  31P NMR (chloroform, 25 °C); δ 58.2 ppm referenced to H3PO4 
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Au9(PPh3)8(NO3)3

PPh3 10 eq.

Toluene
30 minutes

  

 

Figure 9: Schematic of Au8(PPh3)8(NO3)2  preparation 

Characterisation of the gold phosphine clusters 

All the clusters prepared were high purity and free from unreacted reagents. The presence of 

larger gold particles will influence chemistry of the clusters in small amounts; hence, further 

characterisation methods were used to confirm the purity of the clusters prepared for this study.  

Electron microscopy of gold clusters 

High resolution transmission electron microscopy (HRTEM) was conducted at the 

Department of mechanical engineering, University of Canterbury on a 200 kV Philips CM-200. 

HRTEM can provide a range of useful information on the structure of the material of interest using 
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electron diffraction, however due to the nature of the nanoparticles being investigated in this study; 

we are only able to discern the particle size from the images. For such small particles, there is no 

long range order, meaning that electron diffraction yields no information of use.  

At 200 kV, the resolution is calculated to be 7 Å, however for measurement of particle size 

the particle size was limited to 1 nm, due to issues of contrast of the nanoparticles on the carbon film 

and the quality of the electron beam. The samples of the clusters were typically dissolved in solvent 

at very low concentrations, typically 0.5 mg in 1 mL of solvent, 10 µL is then dispensed onto an 

amorphous carbon film supported on a copper grid. For Au101, the solution of the cluster was used 

immediately as the cluster can rapidly agglomerate in solution due to the lability of the 

triphenylphosphine ligand. For the smaller clusters, methanol was used as the solvent of choice as 

the cluster was completely soluble and the solvent was easily removed in vacuum. Once the cluster 

solution was deposited on to the amorphous carbon support, the sample was dried under vacuum 

for an hour prior to loading into the sample holder of the TEM. Overall, the clusters proved difficult 

to observe against the amorphous carbon despite the high gold content. 

  

 

Figure 10; HRTEM of Au101 nanoparticles deposited on to amorphous carbon film supported on a 
300 mesh cooper grid, and the particle size count of the nanoparticles. 

The larger Au101 nanoparticles were found to have an average particle size ( ̅) of 1.5 nm with 

a standard deviation (σ) of 0.95 nm. A several batches of Au101 were prepared, the particle size was 

found to vary by 0.4 nm and with a slight increase in σ. If the sample was left in a solution for an 

hour before depositing on to the carbon film, the population of larger nanoparticles increased 
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significantly. All manipulations of Au101 were carried out rapidly ensuring that the nanoparticles did 

not aggregate significantly during analysis and deposition on to the support. These results compare 

well with literature reports of the gold nanoparticles produce by the same method.36  

HRTEM of the smaller gold phosphine proved to be much more difficult. The diameter of the 

gold core of the smaller clusters can be measured from the crystal structure data to be 

approximately 0.84 nm – 0.9 nm, which is just above the theoretical limit of the Philips C-200 TEM 

at the Universit of Canterbury. It was not possible to get accurate particle size counts for these 

clusters for several reasons; dispersion of the clusters on the amorphous carbon, thickeness of the 

amorphous carbon film and also under a prolonged exposure to the electron beam, up to an hour, 

the gold particles were observed to sinter, forming much larger gold nanoparticles, between 2 – 6 

nm in diameter. This agglomeration is assumed to occur due to loss of the triphenylphosphine 

ligands under the high energy electron beam and the ultra-high vacuum conditions. 

For the atomically precise gold phosphine clusters, the measured gold cluster size compares 

with other literature examples of TEM analysis of such small gold clusters. 20,44  
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Aberration corrected ADF-STEM 

A small range of samples was also examined by angular dark field scanning transmission 

electron microscopy (ADF-STEM), which yielded higer resolution images of the gold clusters. The 

only cluster examined was Au9(PPh3)8(NO3)3, to confirm the monodispersity of the phosphine 

stabilsed cluster. The cluster sample was prepared for microscopy and analysed by Sherry Chang, at 

the University of Monash, Australia, on a Double-corrected FEI Titan 80-300 FEGTEM. The 

samples were prepared in a similar method to the HRTEM samples above, a small amount of the 

cluster is dissolved in high purity methanol, of which, a small droplet was deposited on agar holey 

carbon film, and subsequently dried under nitrogen gas.  

 

Figure 11; ADF-STEM images of Au9(PPh3)8(NO3)3 on an amorphous carbon film. 

At first, the samples were prepared at similar concentrations to the HRTEM samples, which 

resulted in the carbon film being completely covered with small gold clusters. At cluster 

concentrations seen in Figure 8 (1 mg per 10 ml), the sample appears to be polydisperse, where the 

smallest particles are ~ 0.8/0.9 nm, whilst there does appear to be larger particles of up to ~ 2 nm. 

Initially, this was an indication that there may be issues of contamination from by-products of the 

reaction. However, as the 31P NMR data show only one peak present, which was assigned to the 

phosphorous bound to the cluster, other possible explanations were explored. Under these 

experimental conditions, the 300 kV electron beam under high vacuum can induce desorption of the 

triphenyl phosphine ligands; this could then lead to the aggregation of the clusters, forming the 

10 nm 5 nm 
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larger gold nanoparticles. Alternatively, this concentration the gold cluster may include small, 

soluble crystallites, which give the observed bimodal distribution in the particle size.  

 

Figure 12; ADF-STEM of lower concentration of Au9(PPh3)8(NO3)3 cluster on an amorphous 
carbon film  

 

Figure 13; Higher resolution image of Au9(PPh3)8(NO3)3, showing the presence of single gold 
atoms ( Yellow circle) along with the gold cluster ( Red circle) 

  

5 nm 

5 nm 
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A sample with a significantly lower concentration of the cluster (1 grain per 6 mL of MeOH) 

was examined, where the gold clusters was mono-disperse, with a typical size of ~0.8 nm (Figure 

14). However, there appears to be a small proportion of single gold atoms present on the surface, 

which was attributed to beam induce damage from the incident electrons. At these concentrations, 

the beam damaged results in the formation of single gold atoms at the surface; whilst at the higher 

concentrations of gold cluster, it results in the formation of larger gold nanoparticles. 

Alternatively, the single gold atoms could be derived from the mono gold phosphine starting 

material which was reduced controllably to form the cluster. However, 31P NMR does not give any 

indication that the mono-nuclear species are present in the any of the purified batches of 

Au9(PPh3)8(NO3)3 that were prepared during this work. From both the 200 kV HRTEM and 300 kV 

AFD-STEM experiments, we did observe the growth of the gold clusters forming slightly larger 

nanoparticles, which we attributed to damage from the incident electrons that removed the 

stabilising triphenylphosphine ligands and resulted in the agglomeration of the cluster, possibly by a 

Ostwald ripening mechanism due to the presence of single gold atoms on the surface. 

EXAFS of the phosphine stabilised gold clusters 

 

 

In Figure 15 , the results from an EXAFS study of s the pure unsupported gold clusters (Au8 

and AUu9) is displayed with a simulation of the expected results also overalyed. The data were 

collected by Dr. Greg Metha and co-workers at the ANBF Beamline in March 2012, while the same 

samples were concurrently being investigated at the soft X-Ray Beamline at the Australian 

Figure 15; Experimental EXAFS data (black) and the XFit fit (red) for the (a) Au8(PPh3)8(NO3)2 
cluster and the (b) Au9(PPh3)8(NO3)3 cluster. The fit window was limit to 3Å. 
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synchrotron. The clusters were modeled using the Xfit software program, based upon the DFT-

optimised structures from the X- ray crystal structure. The number of fitting parameters was 

reduced to simplify the calculations, meaning only the gold and phosphorous atoms were modeled, 

based on the assumption that only the heavy atoms significantly scatter the electrons. 

Au8(PPh3)7](NO3)2 and Au9(PPh3)8](NO3)3 were analysed in detail, whilst for investigations on the 

Au11 cluster was not conducted due to issues in the separation of (Au11(PPh3)8Cl3  and Au11(PPh3)7Cl3) 

at the time of the experiment.  Previous EXAFS studies on these gold clusters are similar to the 

results that were attained in this study.45 Overall, the two clusters that were studied had peaks 

between 1.6–2.1 Å, which were attributed to the Au–P bonds and the other major peaks between 

2.5–3.0 Å were attributed Au-Au bonds. The two clusters have similar spectra both differ slightly. 

The model of the DFT optimized cluster is in good agreement with data, which is shown in Figure 

16. 

 

Figure 16; Overlay of the DFT optimized crystal structure (green) and the XFit structure (blue) for 
(a) Au8(PPh3)8(NO3)2 and (b) Au9(PPh3)8(NO3)3. 

 

 

 

 

 

 

 

  

(a) Au8 (b) Au9 
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Summary 

Overall, a selected range of ligand stabilised gold clusters have been prepared and 

characterised in detail, ensuring the atomic precision for each of the clusters. These studies have 

focused on the preparation of the phosphine stabilised gold clusters as opposed the more recent 

thiolate gold clusters. This reason for this focus was to allow characterization by single crystal X-ray 

crystallography. There are very few thiolate clusters that have been successfully analysed by 

crystallography. The combination of crystallography and the surface chemistry of phosphine 

stabilised gold clusters has been the primary focus of this project.   

Bridge 

In the following chapter, this series of gold clusters, prepared in this chapter, were 

characterised by far-infrared spectroscopy (Far-IR) to further understand their vibrational 

structure; in attempt to elucidate the origin of the catalytic activity of small gold clusters. There are 

very few far-IR studies on ligand-stabilised metal clusters due to limited availability of far-IR photon 

sources. The following chapter describes the initial steps towards the studying phosphine stabilised 

gold clusters at the far-IR spectroscopy Beamline at the Australian Synchrotron. 
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 Far-infrared studies of gold clusters  

 

Objectives 

This chapter will describe the far-infrared spectroscopy of atomically-precise gold phosphine 

clusters and a comparison will be made with calculated spectra that were conducted by Jason Alvino 

and Dr. Gregory Metha at the University of Adelaide. Despite our extensive search through the 

literature, we have been unable to identify far-infrared studies of these small chemically-prepared 

gold clusters stabilised by ligands. It is hoped that the understanding of the catalytic properites of 

small gold clusters maybe futher improved by undertaking these far-IR studies, which should 

illuminate the nature of the metal–core vibrations and metal–ligand vibrations.  

Introduction  

Vibrational spectroscopy has been used for the characterisation of materials and chemical 

compounds for many decades, such as infrared (IR) and Raman spectroscopy, which can easily 

study the vibrational frequency range of 350–3500 cm-1. In the region of the mid–IR, we can garner 

a range of information on the vibrational structure and the key functional groups present in a wide 

range of inorganic and organic compounds that are produced by chemical synthesis. However, this 

region of electromagnetic spectrum is known to be insensitive to the structure and bonding of the 

metal–metal bonds in the core of metal clusters and nanoparticles, and also insensitive to the nature 

of the metal–ligand interactions. In the context of the study of metal clusters, the important 

vibrational modes of metal–metal and metal–ligands interactions actually appear in the far-IR (10–

400 cm-1). Up untill recently, access to the far-IR region has been limited due a lack of adequate 

photon sources that can achieve the required wavelength, particularly below 100 cm-1
.
1
 Recent 

3 
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advances in terahertz spectroscopy have facilitated a renaissance in far–IR spectroscopy, 

particularly in the field of nanoparticles.  

 

Figure 17: Terahertz band in the electromagnetic spectrum 

Structural determination of isolated metal clusters often involves the use of vibrational 

spectroscopy, especially when other techniques may not be suitable for structure determination such 

as NMR,XPS,EELS or XANES.2 Over the last two decades, isolated gas-phase metal clusters have 

been generated in molecular beams or special ion traps and subsequently characterised by far–IR 

spectroscopy; however, the synthetic control of particle size and shape of these metal clusters was 

limited.3 In recent years, there have been significant improvements in mass selected gas-phase 

clusters, which are monodisperse. These clusters are typically embedded in a rare gas matrix and 

various Raman/far-IR spectra can be obtained in situ and compared with simulated spectra.3  In the 

last decade, Fielicke and his co-workers have conducted a range of pioneering studies into the far-IR 

properties of isolated metal clusters in the gas-phase.2-5  A wide range of different metal clusters 

have been generated and studied such as silicon,6 vanadium,7 rhodium,5 niobium8 and gold.4 The 

far–IR spectrum of the metal cluster is dependent on the number of metal atoms in the metal core, 

the charge of the cluster and also the 3-dimensional shape of the cluster in the gas phase.   

Prior to Fielicke’s work on the vibrational spectroscopy of gas-phase gold clusters, there have 

been very few studies on the vibrational structure of small gold clusters. Many studies on gas-phase 
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gold clusters have focused on elucidating their electronic structure using EELS, XPS, and XANES.9,10 

Fielicke et al. studied the far–IR spectra of size-specific gold clusters prepared in the gas-phase by 

laser ablation, using the FELIX tunable IR-free electron laser to elucidate the low-frequency gold-

gold vibrations. The metal clusters were detected by time-of-flight mass spectromery, and in 

conjuction with DFT calculations, the IR-active cluster vibrational modes were identified. A wide 

range of gas-phase gold clusters were experimentally identified and modelled such as the neutral 

tetrahedral Au20 cluster, the neutral Au19 and Au7 clusters.4 The gold-gold core vibrations were 

observed between 60 and 180 cm-1. This study highlighted that vibrational spectra of small neutral 

gold clusters is dependent on size and shape of the clusters.  In parallel, several mixed gold cluster 

systems were also explored such as yttrium-doped gold clusters in the gas-phase, which displayed 

different behaviour to the pure gold clusters. For the AunY clusters, it was noted that the clusters 

demonstrated a 3-D shape rather than a 2-D shape that was observed for the pure gold systems.11 

The authors concluded that the presence of a dopant metal in the gold cluster possibly enhanced the 

thermodynamic stability of the gold clusters, stabilising previously unstable 3-D shapes of pure gold 

clusters.11 How the presence of dopants affects gold nanoparticle based catalysts has still not been 

fully studied in depth. Although, the presence of bismuth has been previously shown to improve the 

reactivity and the lifetime of supported gold nanoparticles on carbon.12 Gold-palladium mixed metal 

nanoparticles have also shown promise as commerically viable oxidation catalysts.13 

Although ligand–stabilised gold clusters and nanoparticles have been prepared for many 

years, there have been very few far-IR studies conducted on these materials. The absence of detailed 

far-IR studies on these and other analogous materials could largely be due to the limited availablity 

of high-quality spectrometers that can readily access the necessary range of frequencies required. In 

the literature, far-IR spectroscopy has often been employed to confirm the presence or absence of 

the desried ligands or capping agents. Brust et al. prepared a wide range of thiol stabilised gold 

nanoparticles (> 2 nm) with a narrow particle size distrubution.14 FTIR spectroscopy was used to 

investigate the effect of different capping agents that were used.14 The absence of the S-H vibrational 

mode was used as spectroscopic evidence for attachment of the thiol capping groups, such p-

mercaptophenol via the thiol functionality. More recently, Creutz et al. investigated the nature of the 

gold-thiolate bond and the adsorption of thiol-containing capping groups on both two dimensional 

self-assembled monolayers and three dimensional monolayer-protected nanoparticles.15 By using far 

infrared spectroscopy rather than mid-infrared region, Creutz et al. attempted to elucidate the 
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chemistry of the nanoparticle and thiolate ligand interaction. Various gold nanoparticle assemblies 

were prepared by the reduction HAuCl4 with sodium borohydride under biphasic conditions as 

described by Brust,14 using a variety of different capping agents with different alkane chain lengths, 

which were deposited on to polyethylene films for spectroscopic studies.  

Vibrational modes were observed in the range of 170 cm–270 cm-1 were attributed to the Au-

S stretch; this observation was consistent with the proposed Au(I)-bridged thiolate structure that 

has been proposed for the much smaller thiolate clusters.16,17 The gold–gold vibrations were not 

detected for many of the samples in this study except for the C12 and C18 alkane thiol stabilised 

nanoparticles. The gold–gold vibration modes were observed at 88 cm-1 and 89 cm-1 respectively, 

which was consistent with the author’s predictions for the 2 nm gold thiol nanoparticles. The 

discussion of this gold peak was limited as the peak did not occur in all the nanoparticle samples 

studied. There have also been a few reports on chemically synthesised, atomically precise gold 

phosphine clusters which demonstrated a strong metal-ligand vibration appearing at 450 cm-1. 

However, more detailed study of the weaker, low frequency vibrations has been largely focused on 

the highly symetical metal carbonyl clusters (Ru3(CO)12). 

More recently, gold-thiolate clusters have been shown to be active for several catalytic 

reactions, which have precisely known gold core nuclearity from ESI-MS data. To date, there have 

been no known far-IR studies on chemically-prepared gold-thiolate clusters. Although in recent 

months a density functional theory study of the vibrational modes of small thiolate-gold clusters 

(Aun, n= 4,12,18,19,20,24) has been published.18 The calculated IR spectra for each cluster were 

shown to be characteristic for each cluster, akin to fingerprint. The dominant peak that was 

observed in the far-IR arose due to the gold-sulfur vibrational mode typically around 250 cm-1. The 

gold-gold core vibrations were found between 60 cm-1 up to 200 cm-1, but were relatively small as 

compared to dominant gold–sulfur vibrational modes. The position of the gold core vibrations was 

dependent on the size and charge of the cluster.  

The work described in this chapter was initally focused on obtaining reliable and 

reproducible far-IR spectra of several gold-phosphine clusters as prepared in chapter 2 and then 

identifying the low frequency vibrational modes by comaprison with DFT calculations, which were 

conducted by Jason Alvino and Dr. Gregory Metha at the University of Adelaide. The spectra of each 

cluster were obtained over multiple visits to the Far-IR beamline at the Australian Synchtrotron, 
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under the guidance Dr. Dominique Appadoo between Novemebr 2010 and June 2012.  The 

optimised methodology for acquiring spectra of phosphine-stabilised gold clusters (Au8, Au9) will be 

described and the resulting spectra were comapred with DFT vibrational frequency calculations of 

the whole cluster with phosphine ligands, which allowed key features of the far-IR spectra to be 

assiged specific vibrational modes. It is hoped that this work can be the foundation for a range of 

further studies in to mixed gold clusters, also lead in to a comparative study with thiol/thiolate 

stabilised gold clusters and also for studies in gas-phase catalysis of gold clusters. 

Experimental 

Spectra were collected at the high resolution Far-Infrared Beamline at the Australian 

Synchrotron, where measurements were conducted on a Brüker IFS 125/HR Fourier Transform 

(FT) spectrometer between the wavelengths of 5 cm-1 to 650 cm-1,at 1 cm-1 resolution utilising the 

synchrotron light source (200 mA in top-up mode), a 6 micron thick multilayer Mylar beamsplitter, 

in combination with a Si bolometer detector; the bolometer was equipped with a 800 cm-1 far-IR 

cut-on cold-filter consisting of a 13 micron PE film overlaid with 6 micron diamond scatter layer. 

Samples were recorded at room temperature and also at 77 K. Samples were prepared by pressing 

50 mg of pure powdered cluster material into a pellet.  

 

Figure 18; The Far-IR beamline at the Australian Synchrotron, and the Brüker IFS 125/HR FT 
spectrometer 
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Samples of the relevant pure gold clusters and precursors were prepared according to the 

descriptions in Chapter 2. Previous studies have used small metal nanoparticles prepared by gas-

evaporation methods or laser ablation, were typically deposited in to a  Teflon, polyethylene or alkali 

halides matrix.19,20 Kin and Schmid have reported on the far-IR of the ligand stabilised cluster 

Au55(PPh3)12Cl6,, which was prepared for Far-IR measurements by dispersion of the gold cluster in a 

cesium iodide (CsI) medium. The Au55/CsI mxture was ground repeatedly, ensuring uniform particle 

distribution and then compressed to form a 10mm pellet.  

Initially, the samples were prepared by adding 5 mgs of the pure dried cluster to 50 mgs of 

powdered INDUCOS polyethylene powder, which was maintained in dry cabinet.  However, it was 

found that pellet of the pure clusters alone were required to attain high quality spectra. The sample 

of pure clusters were ground into a fine homogeneous powder and then pressed into a 10 mm disk.  

A nitrogen cooled cryostat was used to mount the sample, which was able to load three samples 

concurrently. The pressed disc of the pure clusters were placed over the sampling hole and fixed in 

to position gently, ensuring the sample disk is not broken and to prevent cross-contamination 

between the different samples.  The cryostat sample holder was allowed to warm up to room 

temperature under dry instrument grade air before samples were removed to prevent condensation 

of water on to the samples.  

   

 

Figure 19; Samples were prepared with a pellet press and subsequently loaded on to the LN2 cryostat 
sample holder 
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The mono gold compound, Au(PPh3)Cl, was initially used to confirm the accuracy of the 

spectrometer and to validate the sample preparation methodology. The early experiments involved 

preparing the samples in a polyethylene support; however, several issues came to light with regards 

to small peaks and variable backgrounds. The variation of the polyethylene background was 

attributed to slight variation in thickness of the press pellet sample and also absorption of ambient 

moisture. Hence, comparison of the spectra of phosphine stabilised gold clusters proved difficult. 

Pressed pellets of the pure gold compounds (50 mg) were prepared, with no polyethylene 

background, which was found to solve these issues. Although the samples were delicate, spectra 

could easily be measured.  The spectra of monogold sample were also measured at 77 K rather than 

a room temperature, and very little observable differences were noted between the two 

temperatures. The spectra of Au(PPh3)Cl in Figure 20 was also found to be in agreement with earlier 

reported data.21 

 

Figure 20: Absorption spectra of Au(PPh3)Cl at room temperature, and 77K , as well as a 5 % 
loaded sample in Inducos polyethylene at room temperature. 
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The simulation of the spectra for the Au9(PPh3)8(NO3)2 and the Au8(PPH3)8(NO3)2 clusters 

was conducted by Jason Alvino and Dr. Gregory Metha at the University of Adelaide, Australia. The 

geometry optimisation and harmonic vibrational frequency calculations of the gold cluster 

compounds, included all phosphine ligands, were undertaken using the M06 density functional in 

the Gaussian 09 suite of programs.22,23 The starting geometries of the gold clusters were taken from 

crystal structures obtained from X-ray diffraction patterns of the synthesised clusters. All counter 

ions were removed, with the appropriate number of electrons removed from the calculations to 

balance the charge. All atoms were treated using the LanL2DZ basis set and related Effective Core 

Potentials (ECP).24 All optimisations were performed with no symmetry constraints, i.e. in the C1 

point group. For the Au9 cluster, the optimised geometry was followed by a harmonic frequency 

calculation to confirm that the geometry was a true minimum with no imaginary frequencies. For 

the Au8 cluster, the geometry was optimised to a stationary point with three low-frequency 

imaginary frequencies (42.6, 30.8, and 26.1 cm-1). Inspection of the imaginary modes reveal that 

they correspond to slight rotations of phenyl groups and despite numerous attempts at re-

optimisation using finer grid sizes and alternative minimization algorithms we were unable to 

eliminate them.  In light of the small magnitude and local nature of these vibrations, it was 

concluded that they do not adversely impact on our assessment of the core cluster vibrations, which 

are of primary interest here. To obtain the predicted IR spectra, each stick spectrum is convoluted 

with a Gaussian line shape function with 8 cm full width at half maximum using the GaussView 5 

program.  
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Results and discussion 

The experimental far-IR spectra for Au11, Au9, and Au8 is shown in Figure 21; where they all 

demonstrate a strong absorbance above 430 cm-1 and another broad absorption with little or no 

features below 140 cm-1. In the case of the Au8 and Au9 clusters, the spectra display distinct, sharp 

peaks around 180 cm-1 and 260 cm-1. The large absorbance at 430 cm-1 was attriubuted to the P−Ph3 

stretching frequencies, which was also observed in the spectrum of the pure triphenyl phosphine 

ligand that was also conducted in parallel as a control sample. Above 440 cm-1, it was observed that 

100 % absorption was reached in many samples. As the spectra were taken on pressed pure cluster 

sample pellets, there was no easy solution to this issue without adding issues with background 

substraction and moisture contaimination. By using the pure cluster, we maximised the intensity of 

the gold core and gold-phosphine stretches, which were of primary interest in this study.  

In the case of the Au11, the spectrum does not have the distinct sharp peaks as the other two 

clusters. The broad absorbance at 185 cm-1 can be attributed to the gold cluster core. We attributed 

the broadening of the gold core peak to possible presence of multiple Au11 by-products from the 

preparation.  Although NMR had confirmed the high purity of the Au11(PPh3)8(Cl3) cluster; however, 

recent reports have highlighted that other ennagold cluster products are also generated that are 

difficult to distinguish from our target cluster, such as Au11(PPh3)7(Cl2), possibly leading to the 

observed broadening of the gold core peak(s). During the synthesis of the ennagold cluster, it has 

been shown to be difficult to separate the two different products.25 Other larger metal nanoparticle 

products are also generated during the prepartion of this compound, which would result in a large 

broad absorbance.  
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Figure 21: Comparison of the far-IR spectra for Au11, Au9 and Au8 collected at the Infrared 
Beamline at the Australian Synchrotron.  

Comparison of experimental and simulated spectra  

 

Figure 22: A comparison of the simulated (dotted line) and the experimental (solid line) far-IR 
spectrum of the Au9(PPh3)8(NO3)3; inset, X-ray crystal structures and DFT optimised structures of the 
Au9(PPh3)8(NO3)3 with the ligands omitted for clarity.  
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Table 4: Summary table of all calculated contributing transitions for the Au9(PPH3)8 cluster, and 
the assignment to their predicted spectral shifts. 

# 

Peak 

(cm-1) 

Contributing 
vibrations 

(cm-1) 

IR intensity 
(km mol-1) 

% Au 

motion 

% P 

motion 

Assigned 

(cm-1) 

Mode 

Description 

1 121 

116.0 2.1 1.9 1.7 

  

119.3 2.7 6.0 2.4 

120.0 2.0 5.6 2.3 

122.9 4.6 3.6 1.7 

2 141 140.9 7.2 8.3 5.8 157.2 Au core distortion 

3 170 

162.8 11.2 8.1 4.6 

177.4 Au core distortion 

170.1 28.0 17.7 3.3 

4 185 185.2 11.2 17.7 1.7 196.7 Au core distortion 

5 211 

210.7 2.0 0 1.1 

216.5 Ph Rock 

211.0 3.2 0 0.8 

6 224 

217.6 2.7 0 1.2 

219.8 Ph Rock 

222.2 2.3 0 0.7 

223.7 5.6 0 0.7 

224.2 3.1 0 1.4 

7 253 

248.9 6.6 0 1.0 

251.7 PPh3 Distortion 

251.6 6.2 0 0.8 

252.2 3.2 0 0.6 

253.9 9.9 0 0.9 

8 
411 

(shoulder) 

411.8 0.9 0 1.0 

396.8 Ph Twist 

412.2 0.7 0 1.0 

9 426 

424.5 1.5 0 3.2 

430.0 Ph Twist 

424.6 1.9 0 3.0 

425.4 3.6 0 4.7 

425.5 1.9 0 2.5 

10 447 435.2-448.8 Avg. 8.1 Avg. 0 Avg. 13.0 447.9 PPh3 Distortion 
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In Figure 22, a comparison of the experimental and calculated spectra for the Au9 cluster is 

shown. The optimised structure for the gold cluster is superimposed on the correspoinding crystal 

structure, with the organic phenyl ligands omitted to improve the clarity of the structure. The 

superimposed structures are shown to be very similar, highlighting the likeness of the crystal 

structure bond geometries to the isolated “gas-phase” structure that was modelled. In Table 4, a list 

of the calculated vibrational modes up to 450 cm-1 is presented, which have passed two selection 

criteria; To distinguish between the normal vibrational modes of the gold cluster vibrations from 

other low frequency modes, the normal coordinate motions that involve motion of the gold and 

phosporous atoms have been identified, which appear as a percentage of the total non-mass-

weighted atomic motion (i.e. % Au and % P). In addition, the list of peaks include any normal mode 

that has significant infrared intensity of >1 km mol-1. These modes are listed individually or as a 

group of peaks and numbered accordingly. The peaks are numbered from sequentially at low energy 

and are the relevant peaks are labelled in Figure 22.  

As previously dicussed, the intense peak (# 10) at 440 cm-1 correspounds to the P-Ph3 

vibrations. The high number of ligands bound to the core which each have three similar P-Ph bonds, 

accounts for the high intensity of the peak. In addtion, a small shoulder at 430 cm-1 (#9) is also 

observed which is attributed to a group of four similar transions resulting from Ph-twisting 

distortions. At 396.8 cm-1, a strong absorbance is observed; however, the calculations predicted a 

much weaker feature at a similar energy. The higher intensity of this peak is attributed to a 

combination of two normal modes in the Au9 cluster, involving phenyl groups twisting vibrations. In 

the calculated spectrum of the Au9 cluster, peaks found at 253 cm-1 (#7),224 cm-1 (#6), 211 cm-1 (#5) 

are all caused by PPh3 distortions such as PPh3 rocking. The experimental spectrum matches this 

series of peaks well with the observed absorbances at 251 cm-1, 219.8 cm-1, 216.5 cm-1. The 

experimentally observed peaks at 196.7 cm-1 and 177.4 cm-1 are matched by the predicted peaks at 

185 cm-1 (#4) and 170 cm-1 (#3). These absorbances are due to the gold core vibrations, which is 

confirmed by the % gold motion. The smaller absorbance at 157.2 cm-1 is also due to vibrations of the 

central atom of the gold core, which is also predicted by the model (#2). The calculated transitions 

at 121 cm-1 (#1)  are not experimentally observed, which are predicted occur due to large amplitube 

motions spanning multiple ligands, but have very low intensities. Due to the nature of the samples, 

pressed pellets of crystalline Au9 cluster, these modes are difficult to observe due to their low 

intensity.  
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Figure 23: A comparison of the simulated (dotted line) and the experimental (solid line) far-IR 
spectrum of the Au8(PPh3)8(NO3)2; inset, X-ray crystal structures and DFT optimised structures of the 
Au8(PPh3)8(NO3)2 with the ligands omitted for clarity. 

In Figure 23, the simulated and experimental spectra for the Au8(PPH3)8(NO3)2 cluster is 

presented and  

Table 5 summarises the calculated vibrational modes. As with the Au9 cluster, the large 

absorbance found 436.7 cm-1, which is also found in the simulated spectrum (#8), is attributed to 

ligand P-Ph vibrations. Distinct peak at 398.2 cm-1 due to phenyl group twisting. Although the 

intensity is found to be larger for the observed experimental spectrum which is simlar to Au9. The 

observed Au8 spectrum has strong absorbances at 258.9 cm-1 and at 181.9 cm-1, as well as a weaker 

and broader transition at 217.8 cm-1. The simulated peaks found at 250 cm-1 (#5), 166 cm-1 (#3) and 

216 cm-1 (#4) are found fit well with both relative intensity and energy. The origin of these peaks is 

due to the rocking of the phenyl groups. At lower energy, the intense gold core vibrations are found. 

The calculated peak is found at 166 cm-1, which was assigned to the experimental observed peak at 

182 cm-1. From the normal calculated mode analysis conducted by Jason Alvino and co-workers, the 

predicted transitions of the Au8 cluster, found at 165 cm-1 and 166 cm-1, involve the largest combined 

motion of the metal core atoms (approximately 20 % gold motion). When comparing this set of data 

with the gas-phase work condcuted on Au7 –Kr clusters reported by Fielicke  et al.., simliar 

frequencies for the bare Au7 cluster are observed.4 The authors observed three peaks at 165 cm-1, 186 
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cm-1, and 201 cm-1 which were attrubuted to the cluster core having Cs-planar structure made of five 

equilateral triangle and the three vibrational peaks were associated to the various delocalised 

motions of all the gold atoms in the cluster. The simlarity in the observed absorbance peaks could 

indicate that the two types of cluster systems have similar bond strengths despite having different 

geometric strucutres. 

Table 5: Summary table of all calculated contributing transitions for the Au8(PPH3)8 cluster, and 
the assignment to the predicted spectral shifts. 

# 
Peak 

(cm-1) 

Contributing 
vibrations 

(cm-1) 

IR intensity 
(km mol-1) 

% Au 

motion 

% P 

motion 

Assigned 

(cm-1) 

Mode 

Description 

1 122 

119.1 3.4 5.2 4.6 

  
121.1 1.7 3.8 3.9 

122.2 2.0 3.2 3.5 

124.4 1.9 4.8 4.3 

2 131 131.1 9.3 7.5 5.6   

3 148 

142.6 2.9 10.7 5.2 

  147.4 1.7 12.7 5.0 

148.7 1.9 12.6 4.8 

4 166 

165.1 23.9 20.3 2.7 

181.8 Au core distortion 166.4 23.9 20.2 2.9 

171.6 3.2 16.7 1.6 

5 216 

210.3 1.5 0 0.8 

217.9 Ph Rock 

210.9 1.7 0 1.4 

214.5 2.8 0 1.2 

215.8 1.2 0 1.3 

217.0 1.6 0 1.5 

219.1 1.8 0 1.3 

6 250 

247.4 4.1 0 1.1 

258.9 Ph Rock 

248.3 3.8 0 0.9 

249.4 4.1 0 1.2 

249.9 3.3 0 1.3 

250.2 1.7 0 1.4 

251.7 3.1 0 1.0 

253.1 3.9 0 1.3 

7 
411 

(shoulder) 

410.5 0.5 0 1.9 
398.2 Ph Twist 

411.5 0.4 0 0.7 

8 441 428.9-445.8 Avg. 3.9 Avg. 0 Avg.13% 436.3 PPh3 Distortion 
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Summary 

In this brief chapter, the first detailed synchrotron study of the far-IR spectra of chemically 

synthesised phosphine stabilised gold clusters is presented. Metal core and metal–ligand transitions 

were identified and compared to DFT simulated spectra that were conducted at the University of 

Adelaide.  The difference in spectra was attributed to the fact that the simulation of the clusters was 

conducted on an isolated, gas-phase cluster, whilst the spectra were collected from a pressed pellet 

of a crystalline cluster sample. There were no obvious size-dependent changes in the observed 

vibrational modes of the gold core and the gold phosphine ligands. The gold core vibrations 

presented as broad peaks between 80 cm-1 to 180 cm-1 for the Au8 and Au9 samples; whilst the gold-

phosphine vibrations were observed at around 150 cm-1
 to 440 cm-1

. The larger Au11 sample proved 

difficult to acquire a clear spectrum, possibly due to the presence of two Au11 products with slightly 

different structures or due to contamination with larger gold nanoparticles. Investigations on the 

larger Au101 nanoparticle samples were attempted but issues with preparing a pure pressed pellet of 

such nanoparticles prevented any further studies from being carried out. Overall, it was 

demonstrated that far-IR spectra of ligand stabilised gold clusters could be acquired and that each 

cluster had a unique spectrum.  

These initial steps have provided a platform for further investigations into the effect of 

adding heteroatoms to the metal core and the subsequent changes to the structure of the system. As 

this thesis has been limited to using triphenyl phosphine as the ligand of all the clusters, the 

interplay of the ligand with the metal core should be studied in much more detail, particularly as 

recent reports have highlighted the importance of the ligand during catalysis. Other less sterically 

demanding phosphine and thiols ligands would provide a fruitful avenue for further research. As 

this study was focused with pressed pellets of sample, other sample preparation methods should 

also be investigated such liquid-phase and grazing incident methods, in attempt to study the 

possible catalytic intermediates found at the gold cluster surface.   
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Objectives 

In this chapter, the preparation of gold catalysts based upon gold phosphine clusters is 

described. There are several important factors that contribute toward the design of these active, 

nanostructured catalysts. The goal of the work described in this chapter is to design a range of model 

active catalysts that can help discern the effect of gold cluster and nanoparticle size on the reactivity 

and structure of the resultant catalytic material. Many studies have been reported of small gold 

nanoparticles on flat substrates, such as anatase (111) and silica (110), which are ideal as model 

catalytic studies on extended surfaces and for elucidating the origins of the catalytic behaviour. This 

chapter will describe the preparation of gold catalysts derived from powders of silica and titania 

rather than flat substrates. These model catalysts are more suited towards catalytic studies in the 

liquid phase.   

Preparation of active heterogeneous catalysts 

In the chemical industry, a typical heterogeneous catalytic reaction occurs at the surface of a 

solid interphase with either the liquid or gas phase. The catalytically active material rapidly forms 

and breaks a range of bonds with the various precursors and intermediates to form the eventual 

target product(s). The importance of catalysts to our present global economy cannot be understated: 

world demand for catalysts is approximately US$15 billion per annum which is predicted to rise by 6 

% annually due increased demand from South American and Asian economies. These materials are 

the backbone of the chemical products industry which is worth upwards of US$10 trillion; many of 

4 
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these products would not be possible or economically viable without the variety of catalytic 

materials currently available.1  

These catalytic materials are often very high surface area materials, which helps increase the 

total area of the active components of the catalyst. Metal nanoparticles dispersed on a metal oxide 

support are one of the most common types of heterogeneous catalysts for oxidation reactions.2 Due 

to the complex nature of metal oxide surfaces and their interaction with metal nanoparticles, it is 

often very difficult to identify the active site(s) of the reaction. For gold based catalysts, the activity 

increases significantly as the gold particle size falls below three nanometres.3 It is believed that a 

combination of the unique electronic properties of gold particles below two nanometres and high 

surface area of such small gold particles contributes to the observed activity in various modal 

catalytic systems. For gold – titania systems, the formation of the active oxygen species is believed to 

occur at the interface of the gold particles and the titania support material.4 Experimental evidence 

for these intermediate species is hard to come by because of the transient nature of the 

intermediates. In contrast, gold – silica systems have not been studied as extensively as gold titania; 

however, recent studies have shown that very small gold clusters supported on silica or 

hydroxyapatite can activate molecular oxygen with no radical initiators.5,6 This difference in 

reactivity between the two support types has not been explained; mainly due to the difficulty in 

obtaining in situ experimental data on the active species present in solution.  

It has been observed that unsupported, naked metal nanoparticles in solution will precipitate 

from the solvent under ambient conditions, such as the Au101 nanoparticles prepared in Chapter 2. 

Supported metal nanoparticles are much more resilient to particle agglomeration due to their 

interaction with the support material.2 Metal oxide materials are also known to be catalytically 

active for a wide range of oxidation reactions (i.e. titanium silicates, zeolites); therefore they can be 

viewed as co-catalysts in their own right.7 The addition of metal nanoparticles can significantly 

increase the reactivity of the catalyst and influence the selectivity of the final products.8 

The formation of small metal nanoparticles is thermodynamically unfavourable due 

significantly higher surface energies that increase as the particle size decreases. There is a large 

thermodynamic driving force to decrease the surface energy of the system, through the sintering of 

these small particles to form larger more stable particles which have a much smaller surface areas. 

Many heterogeneous catalytic reactions are conducted at high temperatures (<100 °C), which 
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promotes the sintering of the small metal particles on the surface of the substrate, decreasing the 

activity of the catalyst. This sintering process can occur through several mechanisms, such as 

particle – particle agglomeration and also by a form of Ostwald ripening, were sparingly soluble 

atomic gold species are preferentially transferred to larger particles. Understanding the factors that 

influence particle sintering on various substrates is an important aspect to designing active catalysts, 

especially for gold based systems; which have a very narrow particle size window within which they 

are active. 9 It is also important to note that not all heterogeneously catalysed chemical reactions are 

dependent on the particle size; recently various cross coupling reactions catalysed by supported gold 

particles have been shown to be more active with larger gold nanoparticles (≈ 20 nm).10 

The main factors that control the susceptibility of the metal nanoparticles towards 

agglomeration are: 

Nature of the support 

There are a wide range of metal oxide materials that can be employed as a support such as 

alumina, silica, titania, ceria, magnesium oxide and titanium silicates. In recent years, 

nanostructured, porous materials have become increasingly popular, due to the possibilities of site 

isolation of individual metal nanoparticles in a single pore, preventing particle agglomeration. The 

support can interact electronically with the metal nanoparticles, with the strength of the interaction 

dependent upon various factors such as molecular orbital considerations, surface charges, presence 

of organic capping reagents and preparation conditions. Silica is considered to be a relatively 

electronically inert support material for gold nanoparticles as opposed to titania supports which 

interact significantly with the gold nanoparticles. This effect can be experimentally observed by 

photoelectron spectroscopy, by the chemical shifts of the elemental peaks. Various polymorphs of 

the metal oxides materials exist which can impact on the catalytic performance. At elevated 

temperatures (> 500°C), a phase change between the various polymorphs can be induced in the 

support material. The two primary phases of titania, anatase and rutile, have been shown to have 

very different surface chemistries, which means that the metal nanoparticles sinter at different 

temperatures depending on the phase initially present during deposition at ambient conditions. The 

interaction between the metal nanoparticle (or metal salts) and the support is dominated by the 

interaction with species present at the surface of the support.  
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Surface fuctionalisation 

There are many examples of fuctionalisation of supports with various thiols, silanes or other 

organic groups in an attempt to influence the agglomeration of metal nanoparticles on the surface. 

The fuctionalisation of the support is intended to form a favourable interaction with the metal 

nanoparticles and hence prevent particle sintering. The fuctionalisation of the support can affect the 

interaction of the support with the solvent and activation of other reagents during the reaction. 

There are several examples of silica functionalised with Au[N-(SiMe3)2]4  moieties, upon treatment 

under hydrogen at 300°C led to the formation of small, well dispersed gold nanoparticles (2.0 nm) 

supported on SiMe3. The modified support resulted in a catalyst that was active for the selective 

oxidation of stilbene, which was more resistant to particle agglomeration when compared to the 

non-functionalised control silica support samples with deposited gold nanoparticles of comparable 

sizes.11 

There is also interest growing in the fuctionalisation of the catalyst, after deposition and 

activation of the catalyst has been conducted. The post-fuctionalisation of the catalyst, by treatment 

with acids/base, or various silanes or organic groups, has been shown to significantly influence the 

reactivity of the systems as a well as product selectivity.12,13 

Activation conditions 

The preparation of heterogeneous catalyst from metal oxides or zeolites often involves an 

activation step which often involves high temperature treatment, which can significantly influence 

the extent to which the metal particles sinter, and consequently, influence the activity of the 

resultant catalysts. The high temperature treatment is designed to anneal the active metal 

nanoparticles to the support.  The activation atmosphere has also been shown to exert a major 

influence on the stability of metal nanoparticles on the surface.14,15  Reducing (H2) and oxidising (air, 

O2) atmospheres have all been employed; the choice of which depends on the target reaction. Often 

organic stabilising groups need to be removed; which require high temperature treatment under air 

or oxygen to decompose the organic groups.16 
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The primary methods, by which supported metal nanoparticle catalysts are fabricated, are 

termed impregnation, co-precipitation, adsorption and deposition. These preparative methods 

involve the reduction of the metal precursors, which have been deposited on the support material, 

followed by the formation of metal nanoparticles on the surface. These methods are relatively 

inexpensive and effective routes towards preparing active supported metal nanoparticle catalysts. A 

wide range of synthetic conditions can be used to control the metal particle size distribution, 

electronic and surface properties of the final product. A brief outline of the main synthetic 

procedures will now be presented and then a comparison between the use of preformed metal 

clusters and nanoparticles as precursors to will be discussed. The discussion will be concluded with 

an overview of some common methods for the synthesising heterogeneous gold catalysts.  

Impregnation 

Impregnation is the synthetic method which consists of the porous support material being 

saturated in a solution of the metal salt precursor of the active phase (i.e. cobalt chloride, 

tetrachloroauric acid). This preparative method is dependent on the interaction of the surface of the 

support and the precursor species. Ion exchange with the acidic hydrogen ions of the surface 

hydroxyl groups or the relative concentration of the precursor on the surface to the concentration of 

the surface functional groups can influence the resultant catalytic material.  

Two distinct impregnation methodologies exist;  

 Dry impregnation: Also known as pore-volume impregnation, involves introducing a volume 

of the precursor solution that is equal to or less than the volume of the pores of the support 

material. This method is dependent on the retention of the precursor species with in the 

pores prior to annealing. The main advantage of this method is that metal loading can be 

easily controlled, but the resultant catalyst may not be entirely uniform. Regions of the 

support material that have larger pores will absorb larger volumes of the precursor solution, 

which can lead to increased metal particle size.  

 Wet impregnation: In contrast, when the volume of metal precursor solution is in excess of 

that required to fill the pores of the support, the technique is known as wet impregnation. 

The specific interactions of the precursor and the support play a much more important role 

for the formation of the active catalyst. The solute concentration is typically much less than 
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during the dry impregnation process which can cause significantly inhomogeneity of the 

resultant material.  

Several factors are important during the impregnation process: 

 Transportation of the soluble precursors to the surface of support material;  

 If the support is porous, diffusion of the solutes in to the pores needs to occur; 

 Interaction of the solute with the surface of the surface.  

The drying process can also significantly affect the activity of the resultant catalytic material. 

Certain conditions can lead to the formation of metal nanoparticles with a wide particle size 

distribution or a porous material in which the catalytically active material has become concentrated 

at the mouth of the pores. During the drying process, the solvent is removed under elevated 

temperature or under reduced pressure, leading to a decrease in the volume of the solvent on the 

surface or in the pores. As the volume decreases, this makes the precursor oversaturated and 

precipitation occurs. Rapid evaporation is generally preferred as it favours rapid supersaturation, 

causing the rapid formation of well-dispersed nuclei of metal nanoparticles analogous to the 

formation of monodisperse solution phase metal nanoparticles. Other factors that influence 

resultant catalyst: 

 Nature of the solvent (boiling point, dielectric charge, viscosity etc.) 

 Nature of the precursor (solubility etc.)  

Once the desired dried material has been attained, further activation steps may be required. 

These additional activation steps involve annealing the metal crystallites to the surface at high 

temperature, calcination under air or oxygen, removal of moisture or any decomposition products 

(nitrates) or reduction the metal salt to achieve the desired metal nanoparticles particle. These steps 

can induce sintering of the metal nanoparticles due to the high temperatures and presence of either 

hydrogen or oxygen gas. 

Adsorption  

 

Adsorption is defined as the selective removal of metal salts or metal ion species from their 

solution by a process of either physisorption or chemical bonding with sites on the support.17 

Depending upon the strength of adsorption of the adsorbing species, the concentration of the active 
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material through the catalyst particle may be varied and controlled. This technique has been widely 

used in the preparation of industrial catalysts as it permits a greater degree of control over the 

dispersion and distribution of the active species on the support. In some systems, however, the 

weight of the active component that can be incorporated into the support is limited.  

Co-precipitation 

The preparation of supported catalysts by the co-precipitation of metal ions with the support 

ions usually produces an intimate mixing of catalysts and support.17 An example of this technique is 

the co-precipitation of metal ions with aluminium ions to produce a precipitated alumina gel 

containing the metal hydroxide.2 This precipitate when calcined produces a refractory support with 

active component dispersed throughout the bulk as well as at the surface. However, in the 

preparation of multi-component catalysts, it is possible under improper conditions to obtain a 

heterogeneous product because of the different solubility products of the constituents. Variants of 

this methodology can involve deposition-precipitation routes, than often require accurate control of 

pH and other conditions to yield highly loaded active catalysts.  

Deposition of preformed metal nanoparticles 

For the study of model catalytic systems, it is often beneficial to pre-form the active metal 

nanoparticles or metal clusters; which are then deposited on to the chosen support. In recent years, 

metal clusters have grown in popularity due to their unique size dependent properties.18 Metal 

clusters have previously proven difficult to fully exploit as high performance catalysts, but in recent 

years, with the advent of site-isolated porous zeolites as supports for metal clusters, the research 

into catalysis by ligand stabilised clusters has grown. Deposition of preformed metal nanoparticles 

or clusters typically on to the desired support occurs in solution, where a solution of the preformed 

particles is added to a suspension of the support and stirred for a certain time.19-21 The active metal 

particles can have a strong bonding interaction with the support or the sample volume is decreased 

under reduced pressure to supersaturate the metal particles and deposit them onto the surface. 

Activation of these supported metal particle systems requires the removal of the stabilising organic 

group that surrounds the metal nanoparticle. Common capping agents for metal nanoparticles 

include polyvinylpyrrolidone and polymeric species or carbonyl ligands in the case of the smaller 

metal clusters.22 Catalyst derived from carbonyl stabilised transition metal clusters are easily 
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activated under mild temperatures (150- 250 °C) in a vacuum, whilst many organic ligands are 

calcined under oxygen at temperatures greater than 300 °C, to burn the carbon material.23-25 As the 

activation procedures involve high temperatures, metal particle sintering is again an issue; hence 

site isolating supports have become an important development in the heterogeneous catalysis due to 

their ability to physically prevent agglomeration of metal cluster or nanoparticles.26 Heterogeneous 

catalysts derived from such small metal clusters, with carbonyl or other ligands could truly be 

classed as nanostructured catalysts; however there is a whole range of challenges ahead that need to 

solved before such catalysts used in common use in industrial processes.27,28 

Preparation of active heterogeneous gold catalysts 

The earliest examples of gold catalysis did not show remarkable conversions or selectivities 

using gold-silica catalysts prepared via the precipitation method. In recent years, the remarkable 

attention that gold-titania heterogeneous catalysts have received due to their excellent reactivities 

for the oxidation of carbon monoxide and direct selective epoxidation of propylene with hydrogen 

can be traced to the unique chemistry of the –OH moiety on the titania surface.4,29-31 Gold-based 

catalysts have also been shown to be effective for low temperature carbon monoxide oxidation, down 

to 75 K, the water gas shift reaction and also for various photocatalytic reactions.32-34 The gold 

catalyst preparation favoured by Haruta is a deposition-precipitation method performed at a fixed 

pH buffered with ammonia or sodium carbonate.35,36 Tetrachloroauric acid precursor is used, but 

due to the high chloride content, subsequent washes with a solution of ammonia are required. This 

method typically produces gold particles with relatively narrow size distribution, where the gold 

particle size is influenced by the pH of solution.37,38  

Since the first report by Haruta of gold-titania catalysts which were active for heterogeneous 

catalysis, a range of other synthetic methodologies have been developed with various degrees of 

success.39 Many these methods offer a degree of control of the gold particle size, but there are other 

variables influencing their relative susceptibility to particle sintering and catalytic activity.  

Impregnation method: Using tetrachloroauric acid as the gold precursor, a wide range of 

supports can be impregnated and calcined to form active gold catalysts. However, the high 

concentration of chloride ions present on the surface from the precursor causes a range of 

complications. The presence of the chloride ions on the surface of the support increases the 
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susceptibility of the gold nanoparticles towards sintering and decreases the lifetime of the catalysts. 

Under optimised conditions, relatively small gold nanoparticles (3-5 nm) can be produced.40 

The cation/anion adsorption method involves the adsorption of gold cations (from 

[Au(en)2]3+) at a fixed pH ( typically pH = 9) at 80 °C. With increasing adsorption time, the gold 

loading gradually increases along with the average gold particle size (2-5 nm). This relatively simple 

method of preparation does not control the gold particle size as the gold loading is increased.41 

Deposition-precipitation with urea: Deposition–precipitation with urea is a method that was 

developed first to deposit high metal loadings of supported nickel and copper catalysts by Geus.42 

This method involves the gradual decomposition of urea in solution, due to the reaction temperature 

being at 80 °C, which results in the production of hydroxide ions which gradually increase the pH of 

the solution.  The progressive change of the pH facilitates the gradual precipitation of the gold 

precursor onto the support, rather than variable local increases in pH, which affects the 

heterogeneity of the resultant catalyst. The major benefit of this urea method is that significantly 

higher loadings of gold can be achieved (up to ~ 8%); other methods struggle to achieve more than 3 

% by weight of gold. Small gold particles with very narrow size distributions can be achieved.43 

One of the main issues that have arisen with gold catalysts is that it can be difficult to 

reproduce results from different groups and that the systems are very sensitive to the synthetic 

conditions. It has been noted by Hutchings that two gold-iron oxide catalysts prepared under 

identical conditions except for which oven was used for calcining the catalysts lead to two catalysts 

with remarkably different activities. One sample prepared under a static air atmosphere was 

completely inactive whilst the sample prepared in a convection oven was active for carbon monoxide 

oxidation.44 HRTEM studies on both samples indicated that the inactive sample actually had smaller 

gold nanoparticles (7.4 nm) present than the active sample (8.3 nm). The difference in reactivities 

was attributed to the presence of small gold clusters, consisting of less than twelve atoms of gold 

which could only be observed by HAADF-STEM which provided atomic resolution.44 
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Experimental 

For this research project, the focus will be on understanding the nature of small gold 

phosphine clusters and nanoparticles on two distinct supports, fumed silica and titania. Several 

unexplored novel methods for the activation of these nanostructured gold catalysts were also 

developed and their resulting electronic properties will be studied by photoelectron spectroscopy in 

detail.  

Materials  

All basic laboratory chemicals (solvents etc., AR grade) have been purchased from 

established suppliers, such as Sigma-Aldrich, and used without further purification. Evonik TiO2 P-

25 aeroxide (CAS-No 13463-67-7) was purchased from Chemiplas NZ. P-25 aeroxide is a titania 

photocatalyst that is widely used due to its very high reactivity in a wide range of photocatalytic 

reactions, in recent years it has become the de-facto reference titania support material for a wide 

range of systems. P-25 consists of a mixture of anatase and rutile crystallites with particle sizes 

between 20–50 nm, with a typical ratio of 70:30 or 80:20, the exact ratio is known to vary slightly 

between different batches.45 Recent reports have also shown that a small amount of amorphous 

titania can also be present. Individual samples of rutile and anatase support materials were also 

purchased for our final photoelectron spectroscopy studies, in an attempt to determine whether 

there is any detectable difference in the electronic structure of supported gold clusters on rutile or 

anatase. The individual anatase and rutile samples were prepared in similar method to the Evonik 

P-25, but have slightly higher specific surface areas. 

Fumed silica was used also used as a support material and was purchased from Sigma 

Aldrich (99.99%). Fumed silica is typically prepared by flame pyrolysis of silicon tetrachloride in 

electric arc at 3000 °C, which results in the formation of amorphous silica particles with branched 

chain-like clusters of particles. Fumed silica is an ideal support material for applications in 

heterogeneous catalysis due to its high surface area relative to other commercial sources of silica. 

Particle sizes for fumed silica are reported to be approximately between 7–10 nm, however the 

particles form branched chain like structures that have dimensions between 50–100 nm. The 
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specific surface area of the fumed silica is reported as 395 m2/g, which is much greater than 50 m2/g 

for the Evonik P-25.  

These two metal oxide support materials were chosen as the initial support materials for this 

research project as they have been previously shown to be active in a wide range of catalytic 

reactions. The difference in electronic properties of the support materials and their subsequent 

electronic interaction with nanoparticles of gold has been shown be important for the reactivity of 

the subsequent catalysts. 

Deposition of clusters onto the support 

The synthesis of the Aun clusters (n = 8, 9, 11, 101) has been described in the previous 

chapter. The target gold loading for this experiment was 0.5 % by weight of gold, which is 

significantly less than the reported values for the gold reference catalyst. This low loading was 

chosen to minimise the effect of cluster sintering on the surface of the support during the activation 

process and also during the reaction. It was also calculated that at these loadings that the coverage 

of the support by the cluster is just under one monolayer. Lower levels of gold loadings were also 

prepared for study, with 0.05 % by weight of gold; however, due to such small amounts of gold 

present it proved too difficult to study the catalytic activity and the photoelectron spectra at the 

Australian Synchrotron of these samples. At such low levels of gold, the gold 4f peaks proved to be 

very difficult to distinguish from the background even after extending the data collection time. 

Previous preparations of gold based catalysts have involved much higher loadings of gold 

due to the differing surface areas of the support materials, variation of gold nanoparticle size and the 

need for high levels of gold during the synthetic process. Several more recent studies have also 

moved towards using much less gold on the support, mainly to minimise the effect of nanoparticle 

sintering. 

The support materials (SiO2 and TiO2) were pre-treated prior to deposition by heating under 

vacuum at 200°C, stirred, in a Schlenk tube connected to a vacuum manifold line for two hours. Two 

grams of each support was then weighed and loaded into an acid cleaned Schlenk tube. Each batch 

of catalyst was limited to two grams, due to difficulties in stirring larger amounts of the supports in 

the Schlenk tubes. The samples were put under vacuum whilst the cluster solutions were prepared to 

ensure the supports were dry. 
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For each of the Aun clusters (n = 8, 9, 11), the amounts required to achieve the 0.5 % loading 

of gold were accurately calculated according the molecular formula of the crystal structure of each 

cluster. A solution of the cluster (20 mg) in methanol (30 mL) was prepared and allowed to stir for 

thirty minutes, ensuring that the cluster had fully dissolved. Such a dilute solution was used for 

deposition to guarantee that as few nanocrystals of the cluster as possible remained in the solution. 

Whilst the cluster was being stirred, a suspension of the support was prepared by adding methanol 

(50 mL) and stirring under nitrogen. The cluster solution was then rapidly added to the stirred 

support suspension. The stirred mixture was briefly purged by alternating between vacuum and 

nitrogen three times; finally the suspension was left stirring under nitrogen. The titania samples 

were wrapped with aluminium foil to minimise exposure to ambient light. For the silica samples, it 

was observed that after several hours of stirring, the solution was much less coloured and the 

previously white silica support material was a yellow/orange colour, indicating the cluster was now 

bound to the support material. In the case of the titania samples, the solution was still significantly 

coloured, indicating that the cluster was present in solution rather than on the support. The 

contrasting observations are possibly due to the slightly more acidic nature of the silica support 

material as compared to the titania. The suspensions were left to stir overnight.  

For the silica samples, the suspension was allowed to settle for thirty minutes, and the clear 

methanol solvent was removed by syringe, leaving the wet, unactivated, supported cluster. The 

samples were then dried under vacuum for 4 hours, resulting in a fine yellow/orange powder, which 

were stored under nitrogen at - 20°C in the absence of light. Whilst the solvent was removed under 

vacuum, care was taken to avoid contamination of the Schlenk line with the resulting dry powder.  

After stirring the titania samples overnight, the methanol solvent was still coloured from the 

dissolved cluster, which indicated that the cluster was not fully deposited on to the titania. In 

contrast to the silica samples, the titania suspensions were dried under vacuum via a Schlenk line 

without removing the methanol via syringe. In this way, any unsupported gold cluster was forced on 

to the titania as the solvent volume was decreased and cluster concentration in the methanol 

increased. The samples were kept under vacuum for four hours to ensure the samples were dried, 

resulting in light, pale, orange powders which were stored under nitrogen at - 20°C in the absence of 

light. 
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For the Au101 cluster, the method for deposition of this cluster differed slightly such that 

dichloromethane was used as the solvent and the cluster was stirred for only 10 minutes prior to 

addition to the stirred suspension of the support in dichloromethane. This was due to the instability 

of the larger gold phosphine cluster in the dichloromethane solvent because of the lability of the 

phosphine ligand. For the silica supported samples, the cluster was found to stick to the silica very 

well and then sample was dried in a similar fashion to the other cluster. However, in the case of the 

titania samples, the mixture of support and cluster was only stirred for two hours before the mixture 

was dried under vacuum. These differences in the deposition procedure were designed to minimise 

any possible agglomeration of the Au101 clusters in solution. Due to the increase in particle size of the 

Au101 cluster as compared to the smaller (< 1 nm), more atomically precise clusters, the colour of the 

resulting powders differed significantly. The silica sample is a deep pink colour, whilst the titania 

sample was a darker violet colour.  

When compared to the standard gold titania reference catalysts, which consists of gold 

nanoparticles generated on P-25 titania via a deposition-precipitation method, the colour of the 

supported gold phosphine cluster on P-25 (pale orange) differs significantly from the intense purple 

colour of the reference sample. The contrasting colours was initially attributed to the lower loading 

in the systems used in this study; however, upon exposure to ambient light conditions for 24 hours, 

the titania supported gold phosphine cluster sample changed from the initial orange colour to a 

pale, purple colour. The silica supported samples appeared to be much less sensitive to ambient 

light, as no colour change was observed. Previous studies have shown that gold based catalysts to be 

sensitive to their storage conditions such as light, air and moisture. For this study as all samples 

were stored under nitrogen at - 20°C, samples were equilibrated to the ambient temperature prior to 

manipulations too minimise condensation. Exposure to light was minimised as much as possible, 

particularly for the titania supported samples, a known photocatalyst. 

Activation of supported gold clusters 

The activation step for preparing heterogeneous catalyst is an essential step in the process of 

making active catalysts. The activation protocols can vary significantly between different researchers 

and laboratories and often involve high temperature treatment (300 – 900 °C) of the pre-catalyst 

under a specific atmosphere of either hydrogen, oxygen or air. Gold catalysts have even been shown 
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to be very sensitive to the flow of the atmosphere, which can affect the presence of sub 1 nm particles 

on the surface of the iron oxide surface.  

For this project, a range of activation methods were studied that hopefully allowed us to 

improve the activity or at the very least begin to understand the nature of the catalytic behaviour of 

the supported small gold clusters. Due to the nature of the small clusters, high temperature methods 

would cause significant agglomeration of the clusters on the surface, whilst a low temperature 

regime was predicted to result in an inactive catalyst. A moderate temperature of 200 °C was chosen 

and was found to yield catalytically active species for this study.  

Heat treatment, follows the protocol described by M. Turner et al.6 Typically, the supported 

cluster on SiO2 or TiO2 (ca. 500 mg) in a Schlenk tube was stirred (1000 rpm) and heated at 200 °C 

(oil bath) under vacuum for 2 hours. The sample was then removed from the oil bath and allowed to 

cool to room temperature under reduced pressure. The material obtained in this way was stored in a 

refrigerated Schlenk tube under N2 and in the absence of light. 

Calcination, a common method for activation supported metal nanoparticle catalysts, is a 

method whereby the pre-catalyst is treated with either air or oxygen at elevated temperatures. 

Typically, the supported cluster on SiO2 or TiO2 (ca. 500 mg) in a Schlenk tube was stirred (1000 

rpm) under vacuum, and then filled with dried air (BOC gases, instrument grade). The sample was 

stirred at 200 °C for 2 hours. The sample was allowed to cool to room temperature, and was then 

stored in a refrigerated Schlenk tube under N2 and in the absence of light. Extended calcination of 

some samples was also conducted to ascertain the fate of the gold cluster after exposure to the 

calcination conditions at 200 °C for an extended amount of time. Under similar conditions as 

described above, a sample of the precatalyst was calcined at 200 °C for twelve hours and stored 

under in a refrigerated Schlenk tube under N2 and in the absence of light. Milder calcination 

temperatures were also explored at 100 °C briefly as a comparison to this temperature for 

photoelectron studies. 

Calcination at 400 °C was also conducted in a tube furnace. The supported cluster on SiO2 

or TiO2 (ca. 500 mg) was loaded into a quartz boat and loaded into dual zone tube furnace, which 

was set to heat the sample at 400 °C under static atmospheric oxygen for two hours. The higher 

temperature was expected remove much more of the triphenylphosphine ligand but lead to more 

gold particle sintering.  
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A selection of novel activation methods were also investigated for their potential in preparing 

nanostructured gold catalysts.  

Refluxing or Washing the precatalyst in a suitable solvent that will preferentially remove 

the organic ligand, but leave the metal nanoparticle attached to the surface of the support. This 

solvent treatment (washing) was first undertaken by J. A. Lopez-Sanchez et al.46 where PVP 

stabilised gold particles were deposited on to acid washed titania, heated in ethanol solvent at 80 °C 

to remove the PVP polymer, leaving the naked metal nanoparticles on the surface of the titania 

support. In this system, very little aggregation of the gold particles occurred, and the catalysts were 

active for the oxidation of carbon monoxide and benzyl alcohol. For this research, toluene was used 

as the solvent to remove the triphenyl phosphine ligands. The gold clusters are sparingly soluble in 

toluene whilst the phosphine ligand is soluble. The larger Au101 system is more soluble in toluene, 

but the triphenyl phosphine is very labile in solution. Typically, the magnetically stirred (1000 rpm) 

suspension of the supported cluster on TiO2 (ca. 500 mg) in toluene (50 mL) was heated to 100 °C 

for 2 hours. The solid was then recovered using centrifugation (10 min, 5000 rpm). The solid was 

then washed three times with toluene (50 mL) by forming a suspension using a Vortex agitator 

followed by centrifugation (10 min, 5000 rpm) to recover the solid, which was then dried under 

reduced pressure. The material obtained in this way was stored in a refrigerated Schlenk tube under 

nitrogen and in the absence of light. Some calcined (mild) samples were also treated by washing of 

the samples in toluene at 100 °C in an attempt to understand the effect of such treatments and the 

effect of such catalytic-like conditions on the samples.  

Ozone treatment of the precatalysts was briefly investigated due to the possibility of 

oxidatively removing any organic residues from the surface at room temperature.47,48 A pre-dried 

sample (ca. 300 mg) was loaded in to a Schlenk tube attached to an ozone generator at the glass tap 

with a tube connector at the top of flask to facilitate the flow of gas. A gentle of flow of ozone was 

introduced, whilst the powder sample was stirred gently at 600 rpm for two hours. For both silica 

and titania samples, the observed colour of samples changed rapidly under exposure to the ozone, 

which was attributed to the formation of gold (III) oxide on the surface.  The first titania supported 

samples treated by ozone demonstrated sensitivity to light due to the return of the light purple 

colour which was attributed to gold clusters and nanoparticles on the surface. This reversal could be 
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attributed to photoreduction of the gold oxide species back to Au0. Subsequent samples were 

protected from light and stored in a refrigerated Schlenk tube under nitrogen. 

Characterisation of the supported gold clusters 

HRTEM of the supported gold clusters on various support materials showed that the gold 

nanoparticles were present, with a particle size distribution between 2 nm and 5 nm, with several 

systems showing a greater degree of gold cluster sintering. Gold particles below 1.5 nm proved 

difficult to observe as the crystalline nature of the support materials hindered identification of the 

smaller particles, unlike the unsupported gold clusters on amorphous carbon. The low loading of the 

supported clusters (0.5 %) as compared to common literature catalysts (1–8 %) meant the 

population of gold nanoparticles was relatively low. The most robust method for depositing the 

samples on to the copper grids, supplied by Pro-Sci-tech, was to suspend a small amount of the 

powder sample (< 1 mg) in diethyl ether (2 mL) and swirl the sample vigorously. Using a 

micropipette, 20 µL of the suspension was deposited onto a copper grid. The samples was initially 

dried under a gentle flow of nitrogen, and then dried under vacuum in a small glass vial with a 

rubber septum. Early work used methanol, acetone and occasionally toluene to form a suspension to 

deposit the catalysts on to the grid; however, it was observed in several instances that the gold 

clusters were deposited on the amorphous carbon rather than on the support material. This 

occurred in the case of the titania supported gold phosphine clusters where methanol was used to 

deposit the untreated supported clusters. To deal with this issue, toluene was employed for the 

preparation of the TEM samples; however, due its higher boiling point it proved difficult to dry the 

samples. Finally, diethyl ether was settled upon as the solvent to suspend the sample in, as it results 

in well dispersed samples and solubility issues are avoided for the untreated samples. Significant 

delays were also encountered due to the damage that was incurred to the Philips CM-200 TEM 

during the Canterbury earthquakes, and once repairs were complete, effect of the constant seismic 

activity reduced the resolution that could be achieved. 

A small selection of samples were also studied by aberration corrected HAADF STEM, which 

further highlighted that the titania and silica supports had a significantly greater coverage of the sub 

1 nm phosphine clusters than was initially observed by HRTEM at the University of Canterbury. Due 
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to the limits of HRTEM, such smaller gold clusters were not observed; however, the extent of cluster 

sintering can be gauged by HRTEM. 

Table 6: Summary of HRTEM particle counts for supported gold clusters 

  Fumed 

SiO2  P-25 TiO2 

Cluster 

Activation 

method 

 ̅ 

nm σ 

 ̅ 

nm σ 

Au101 

Untreated 1.8 0.8 2.3 0.8 

Heated treated 
@ 200 °C 2.3 1.3 3.2 1.7 

Calcined @ 
200 °C 3.4 1.5 3.8 2.3 

Calcined @ 
400 °C 4.7 2.6 5.3 3.5 

Au9(PPh3)8(NO3)3 

 

Untreated – – – – 

Heated treated 
@ 200 °C 1.8 1.0 2.4 1.7 

Calcined @ 
200 °C 2.6 1.6 3.1 2.1 

Calcined @ 
400 °C 3.5 2.2 4.8 2.8 

Au8(PPh3)8(NO3)2 

 

Untreated – – – – 

Heated treated 
@ 200 °C 1.9 0.9 2.2 1.4 

Calcined @ 
200 °C 2.7 1.9 3.6 2.7 

Calcined @ 
400 °C 4.1 2.1 5.2 3.4 

Au11(PPh3)8(NO3)3 

 

Untreated – – – – 

Heated treated 
@ 200 °C 2.1 0.8 2.7 1.4 

 

Supported Au101 nanoparticles  

The untreated, as deposited samples, proved difficult to confirm the presence of the gold 

phosphine clusters which have a gold core diameter of approximately 0.8 nm; however, the Au101 

nanoparticles which had a larger particle diameter, proved to be much easier to observe and 

measure. The P-25 titania samples were shown to be sensitive to photo induced gold reduction, 

which resulted in significant sintering of the gold clusters on the titania support upon prolonged 

exposure to ambient light. In contrast to the titania support, the silica supported clusters proved to 

be very stable under ambient light conditions. The samples were stored under nitrogen in a Schlenk 
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tube at -20 °C, and wrapped in aluminium foil to ensure that the samples were not significantly 

affected by light. 

The untreated Au101 samples had a similar gold nanoparticle size as compared to the 

unsupported gold nanoparticle samples, although there does appear to be slight increase in particle 

size for P-25 titania sample, which could be attributed to small amounts of photoinduced reduction 

of the gold. 

Upon heat treatment at 200 °C under vacuum, particle agglomeration due to the elevated 

temperature was observed on both silica and titania supports. An analogous system using Au101 on 

fumed silica under similar conditions reported particles sizes of approximately 1.5 nm, which is 

slightly lower than our observations. The differences may have their origin in slightly different 

manipulations of the materials, or the superior resolution of the HRTEM used in that study 

improved the detection of the smaller (< 1.5 nm) particles which we struggled to detect for the 

reasons reported above. The titania supported sample appeared to have significantly higher 

population of larger (> 2 nm) particles present than the silica samples. The reason for the larger 

particles present on the titania support when compared to the silica support was due to the poor 

interaction of these small cationic gold phosphine clusters with the titania.  

Under these conditions, it is expected that the metal core will anneal to the surface of the 

support material. Under an oxygen atmosphere, the organic capping groups are expected to 

decompose. In recent years, there have been several reports on the effect of the differing 

atmospheric conditions could have on the catalyst. Under oxygen, it was shown that the gold 

nanoparticles are more susceptible to sintering even at relatively mild conditions. Behm et al. 

showed that gold catalysts could be active after treatment at moderate temperatures under 

hydrogen, where sintering of the gold particles was less than under an oxygen atmosphere.  
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Figure 24; Representative TEM images (1) and the corresponding particle size distribution (2) for Au101 
supported on fumed silica 

 

Untreated Sample 

Heated treated @200 °C 

Calcined @200 °C 

Calcined @400 °C 
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Figure 25: Representative TEM images and the corresponding particle size distribution for Au101 
supported on P-25 titania. 

Calcined @400 °C 

Calcined @ 200 °C 

Heat treated @ 200 °C 

Untreated 
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Figure 26: Aberration corrected STEM of Au101 on TiO2, (A) Untreated, (B) Heat treated at 200 °C 
for two hours. 

4 nm 
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Figure 27: Aberration corrected STEM of Au101 on acid-washed TiO2, treated by refluxing in 
toluene at 100 °C for two hours 

  

4

 nm 

4 nm 
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Supported Au9(PPh3)8(NO3)3 

 

Figure 28: Representative TEM images (1) and the corresponding particle size distribution for A) 
Au9 on fumed silica 

Untreated 

Heat treated @ 200 °C 

Calcined @ 200 °C 

Calcined @ 400 °C 
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Figure 29: Representative TEM images and the corresponding particle size distribution for Au9 
on P-25 titania 

Untreated 

Calcined @ 200 °C 

Calcined @ 400 °C 

Heat treated @ 200 °C 
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Supported Au8(PPh3)8(NO3)2 

      

Figure 30: Representative TEM images (1) and the corresponding particle size distribution for A) 
Au8 on fumed silica 

20 nm  

Untreated 

Calcined @ 200 °C 

Heat treated @ 200 °C 

Calcined @ 400 °C 
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Figure 31: Representative TEM images (1) and the corresponding particle size distribution for A) 
Au8 on P25 titania 

Calcined @ 200 °C 

Heat treated @ 200 °C 

Calcined @ 400 °C 

Untreated 
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Figure 32: Aberration corrected STEM of heat treated Au8 supported on P-25 titania 

 

Summary 

Overall, a large range of nanostructured gold based catalysts were produced, which have gold 

particle sizes down to < 1 nm. The gold particles were to shown to agglomerate differently depending 

on the type of activation procedure employed. A selection of atomically precise gold phosphine 

clusters and nanoparticles were deposited on two supports, fumed silica and P-25 titania. The 

identification of the small gold clusters (< 1nm) on the support material by high resolution 

transmission electron microscope was difficult, due to the small size of the gold particles, and due to 

the greater diffraction of the electron beam by the support material as compared to the flat 

amorphous carbon thin film. Gold particles supported on titania were also observed to be sensitive 

to ambient light, leading to photoinduced sintering of the gold particles. Acid washing of the titania 

was also used in an attempt to control the photosensitivity of these catalysts. Typically, the silica 

supported samples were characterised as a light yellow material, changing to slight mauve colour 

after activation, whilst the titania supported gold nanoparticles resulted in a light purple material 

that deepened in colour after activation. 

A range of activation procedures were investigated and briefly characterised by electron 

microscopy but due to the limited ability to identify the ultra-small gold clusters(<1.4nm), a more 

systematic analysis by HRTEM could not be achieved. The primary conditions that were 

investigated were conducted at a relatively low temperature of 200 °C under various atmospheric 



Chapter 4— Preparation of supported gold phosphine clusters 

- 99 - 
 

conditions. The presence of oxygen during the activation steps as compared to activation under a 

vacuum was also studied, which showed that the supported gold particles sinter readily on both 

silica and titania. Solvent induced removal of the phosphine ligands was also investigated, but this 

appeared to produce inactive catalysts which demonstrated significant particle agglomeration. 

Several higher temperature procedures were also studied at 400 °C, which led to greater particle 

agglomeration on both silica and titania supports. A range of novel, mild activation conditions were 

also prepared for further study by photoelectron spectroscopy. 

EXFAS experiments were also conducted by Jason Alvino on a handful of samples prepared 

at the University of Canterbury. These experiments confirmed that aggregation of the gold particles 

on the surface was occurring. Several samples were studied by HAADF-STEM, which showed that 

the atomically precise clusters were well dispersed on the surfaces of both titania and silica 

supports. STEM highlighted that in many samples in which aggregation had occurred, there was still 

significant proportion of the atomically precise gold clusters present; hence, HRTEM experiments 

were only able to confirm the extent of particle agglomeration. 

Further work is warranted on correlating the observed colour changes of the silica based 

catalysts to the increase in particle size.  

Bridge 

Overall, electron microscope characterisation of these nanostructured materials proved to be 

difficult. Observation of the larger, agglomerated gold particles (> 1.5 nm) was possible by TEM but 

confirmation of the presence of smaller gold particles was elusive. Although the HAADF-STEM data 

on several samples illustrated the presence or even complete absence of the gold clusters, we were 

unable to complete a comprehensive survey of these nanocatalysts by HAADF-STEM. In an attempt 

to further understand these results, detailed photoelectron spectroscopy experiments were 

conducted on a wide range of these materials. Photoelectron spectroscopy experiments were mainly 

conducted at the Soft X-Ray Beamline at the Australian Synchrotron, but several preliminary 

experiments were conducted on a lab based XPS machine. Photoelectron spectroscopy is a 

technique that can provide detailed electronic data on a wide range of samples, and is also very 

important for understanding the nature of the gold catalysts. A detailed electronic study on gold 
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based catalysts, supported on titania and silica powders rather than flat substrates, derived from 

such small gold clusters has not been previously conducted. The following chapter discusses many of 

the trials and tribulations of studying these materials by photoelectron spectroscopy. 
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Photoelectron spectroscopy of supported gold phosphine 
clusters 

Objectives  

Supported metal nanoparticles play an indispensable role in the chemical industry acting as 

catalysts during the production of target compounds. Understanding the electronic properties of supported 

metal nanoparticles is essential for improving the selectivity, reactivity and lifetime of a catalyst; which in 

turn will improve the efficiency of many industrial processes. 

The chemistry of gold is still in its infancy, and there is a lot of potential for supported gold 

nanoparticles to provide novel routes to commercially important products, and as catalysts for the 

conversion of hazardous waste into more environmentally benign products. Studies into the nature of gold 

particles on various substrates were first conducted in earnest in the 1980s by Wertheim et al., who focused 

on the ultrahigh vacuum (UHV) deposition of gold particles onto various carbonaceous substrates. Over the 

last twenty years, there has been significant interest in the nature of gold nanoparticles on a wide range of 

metal-oxide and carbonaceous supports and discussion about their contrasting natures. Photoelectron 

spectroscopy is an important tool for the exploration of the chemistry of the surface of such material. 

In this chapter, I will highlight the electronic nature of precisely controlled gold clusters deposited 

on various support materials. Previously reported studies of supported gold nanoparticles typically have 

looked at particles with dimensions of between 2–5 nm in diameter with a polydispersity around 1–4 nm 

depending on the synthetic procedure used. By using a range of gold clusters with precisely known 

nuclearity and ligand shell, we can develop a bottom-up picture of how the electronic properties of gold 

particles change with increasing size on various support materials and conditioning procedures. The 

objectives of this chapter are to investigate: 

 The surface chemistry of gold clusters on titania, silica and carbon 

 The effect of cluster core size  

 The effect of cluster loading on the support 

 Compare and contrast gold clusters supported on flat substrates and powdered substrates 

 The effect of activation process on the electronic properties of the supported gold clusters 

 The various oxygen and titania electronic environments 

5 
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Introduction 

Technique 

The first detailed studies into the electronic nature of gold began in the early 1920s. However, it was 

not until the development of X-ray photoelectron spectroscopy (XPS) during the 1950s by Kai Siegbahn that 

the electronic properties of metals were probed in a systematic way.1 Metal clusters had to wait until the late 

1970s and early 1980s for their physical and electronic properties to be explored in earnest. During these 

years, there was a flurry of publications on metal and metal-oxide clusters on various substrates, typically 

generated under UHV conditions. An overview of this vast area was provided by Egelhoff, who presented 

the main theoretical principals and origins for the binding energy shifts seen for many systems, including 

metal clusters.2  

Photoelectron spectroscopy (PES) is a technique that is used extensively to study the elemental 

composition of a surface, and which yields quantitative data about elements on the surface. Furthermore, a 

small shift in the photoelectron peak conveys information about the chemical environment of an element. 

The technique is based on the principle of the photoelectron effect; that an electron can be emitted from a 

solid due to the absorption of sufficient energy from electromagnetic radiation with short wavelengths. The 

first observations of the photoelectron effect were reported by H. Hertz in 1887,3 however his observations 

were not fully explained until Albert Einstein described the quantisation of electromagnetic radiation in 

1905, for which he received the Nobel prize in 1921.4 The photoelectron effect was not truly exploited for 

spectroscopy until the late fifties, when Kai Siegbahn developed a high-resolution photoemission 

spectrometer. Throughout the sixties and seventies, the technique and methodology were improved to such 

an extent that the technique is now an indispensable tool for probing the surface and electronic properties 

of a wide variety of materials. Early work by Siegbahn used an X-ray tube as a source of photons (XPS), but 

subsequent variations on this set-up using extreme ultra-violet (UV) and synchrotron sources have also 

been developed. 

PES measures the kinetic energy of an electron after it has been ejected by an incident photon of 

known energy under UHV conditions. The binding energies of the electrons can then be determined from 

the relationship between the incident photon and photoelectron, as described by;  

 

Ek = ħω – Eb – Φ 

Equation 1: Relationship between the incident photon and the photoelectron 
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where Ek is the kinetic energy of the photoelectron, ħω is the energy of the incident photon; Eb is the 

energy by which the photoelectron is bound to the parent atom and Φ is the work-function of the solid. This 

relationship was first described by Rutherford in 1914.5 

 

 

 

A typical PES experiment is illustrated in Figure 34A. There are three distinct phases as illustrated 

in Figure 35B; 1) photoexcitation of the electron, 2) transport of the electron to the surface and 3) 

penetration the photoelectron through the surface into the vacuum.  
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During each step, there are a number of factors that influence the final kinetic energy of the 

photoelectron.  

 The initial photon energy dictates the penetration depth from which electrons are liberated.  

 Electrons have a small escape depth, which means that the photoelectron is representative of the 

surface characteristics of the material, not the bulk properties. However, the initial photon energy 

also dictates the surface sensitivity of the experiment. 

 As the electron escapes, there may be several elastic or inelastic scattering events, which contribute 

to the background signal.  

 Once the photoelectron has been lost to the vacuum, an electron hole remains. This means the 

material is now different from its initial state. The final state of the material can make it difficult to 

infer the electronic properties of a material.  

During PES experiments, the loss of photoelectrons results in a residual positive charge being 

generated on the surface of the sample. If the sample is a good electrical conductor, and in contact with an 

electron source (such as the body of the spectrometer) the charge is easily neutralised due to a flow of 

electrons to the sample. In contrast, for samples that are electrically insulating, neutralisation does not 

occur fast enough and the sample acquires a positive charge.6 The equilibrium potential on the surface of 

samples is also dependent on secondary electrons which are emitted from the samples as well as from the 

surroundings. 

This build-up of positive charge on the sample surface can be seen in changes in the position and 

shapes of the peaks in the spectra. By ensuring that the sample does not accumulate charge, the peak width 

is narrower and experiment resolution is maximised. PES resolution is a direct function of peak width 

(expressed as FWHM), narrower lines generally mean higher spectral resolution.7 To counteract the effects, 

a flood gun can be employed to bombard the sample with secondary electrons that neutralise the sample.8 

By removing the effects of charging, the spectral shifts are diminished significantly (typically < 10 eV) and 

peak distortion is minimised. However, the use of a flood gun can also cause some issues that should be 

considered prior to analysis. It has been shown that the use of flood gun can induce significant changes in 

samples morphology and electronics. A more recent study by Goodman have also used a flood gun to induce 

the removal of the organic ligands from gold phosphine cluster deposited onto TiO2.9 

In addition to using a flood gun, a reference is also required to calibrate the spectra. The reference 

peak must be one that and is recognisably distinct and originates from a species that is commonly present 

and is in electrical equilibrium with the sample; typically adventitious carbon is used.10 Many organic 

components of samples may undergo rapid irreversible changes under the conditions of a PES experiment. 

A 
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These changes can be caused by the need to reduce the interfacial energy of a system.7 When choosing a 

reference it imperative that the peak is stable under experimental conditions.  

The core level binding energy (BE) is defined as a difference in total energies between the ground 

state and the excited state of the system of interest. Core level binding energy shift is then defined as a 

secondary contribution to this energy of the peak. This second contribution can be broken in to two parts; 

the initial and final state contributions to the BE shift. This theoretical approach is used to model BE shifts 

as it is computationally more efficient than a total energy approach.2 Binding energy shifts can also be 

viewed as a shift from the elemental binding energy of the element of interest.11 Binding-energy shifts of 

core-level electrons were first detected by XPS in 1958, where copper (I) oxide was observed and 

distinguished from elemental form of copper.12 It is now possible today to use core-level binding-energy 

shifts to identify a wide range of chemical species present on surfaces, which have important applications in 

polymer science, catalysis, nanomaterials and biotechnology. The BE shift in photoelectron electron 

spectroscopy can be viewed as analogous chemical shift seen in nuclear magnetic resonance (NMR), which 

allows fine details in the electronic structure of a molecular structure to be distinguished due to small 

chemical shifts associated with different magnetic environment for spin ½ nuclei in a system.7 XPS is a 

powerful tool that can be used to identify not only the elements present in the upper surface layers of a 

material, but is also an important tool for exploring the chemistry at the surface. Recent advance in ambient 

pressure PES promise a range of new applications of XPS under more relevant conditions 

For photoelectron experiments, there are several sources of photons which used such as Al K X-ray 

source (1486.7 eV), Mg X-ray source (1253 eV) and also synchrotron radiation (0-2500 eV). From this early 

work with a lab based Mg source, it became apparent that resolution and signal to noise ratio would need to 

be improved and that the use of a flood gun should be minimised to ensure that beam-induced sample 

damage is limited. By using a synchrotron source of photons, many of these problems can be overcome. 

Synchrotron radiation is generated when electrons moving at relativistic speeds are accelerated by a 

magnetic field. Modern-day (third-generation) synchrotrons are typically composed of multiple linear 

sections interspersed with various magnetic structures that are used to control the light being generated: 

bending magnets, undulators and wigglers. As synchrotron radiation is a continuous source (between 100 – 

2500 eV at the Australian Synchrotron), it is possible to tune the wavelength to match the cross-section of 

the elements of interest and thereby improve the surface sensitivity of the experiment. The response factor 

of an element is dependent on the energy of the incident photon energy; in the case of phosphorous the 

response factor increases significantly with decreasing photon energy (Figure 36). Hence, by choosing a 
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lower photon energy, the surface sensitivity and specific element sensitivity can be significantly improved 

for the elements of interest in this study. 

 These photoelectron experiments were conducted at the Soft X-ray Beamline at the Australian 

Synchrotron, in collaboration with Dr. Lars Thomsen (Australian Synchrotron), Dr. Greg Metha (University 

of Adelaide) and Dr. Gunther Anderson (Flinders University) 

 

 

Figure 36: Elemental cross section for gold 4f and phosphorous 2p orbitals from reference 13  

 

Photoelectron properties of supported gold particles 

Early studies on gold  

Although the pioneering work on gold catalysis was undertaken by Haruta and Hutchings in the late 

1980s, it was the work of Wertheim that was focused on the electronic properties and binding energies 

shifts of gold clusters and nanoparticles during the early part of the eighties.14 These experiments typically 

consisted of the synthesis of polydisperse gold nanoparticles under UHV conditions by vaporising a gold 

source and depositing onto various types of amorphous carbon in situ i.e. the gold clusters were generated 

under UHV conditions and deposited on to various carbon substrates for analysis by PES rather than 

prepared by wet chemical methods. A shift to higher binding energies was usually observed for small 

clusters with poor electronic interaction with the carbon substrates.14-16  
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Whilst there is general agreement that the size and the electronic structure of the active components 

of the nanoparticles plays a critical role in catalytic processes, systematic studies revealing the electronic 

structure of chemically synthesized gold clusters for use as catalysts are still scarce. For this reason, PES is 

an important tool in identifying the electronic effects at play.17 For various gold systems, many studies have 

focussed on the 4f7/2 spin orbital of gold, since it provides a convenient and sensitive measure of the 

electronic state of gold. The valence orbitals, where the binding energy is between .1 eV to 15 eV, can be very 

difficult to study when multiple elements are present in a sample such as titanium, silicon, oxygen and 

carbon, due to the difficulty in the definitive assignment of the peaks.   

The oxidation state of an element is a significant factor in determining the positions of its PES 

peaks. The position of the gold 4f7/2 peak is used to calibrate the energy scale for PES experiments. The 

literal gold standard is bulk gold (i.e. Au0), in which the 4f7/2 peak is defined as having an energy of 84.0 eV 

with a 3.67 eV separation to the 4f5/2 peak.  Upon oxidation to Au2O3, the 4f7/2 peak shifts into the range 

85.8 – 86.2 eV, depending upon the substrate.18,19 The thickness of the gold oxide layer have been estimated 

to be between 0.75 nm18 and 3.3 nm,19 providing the 4f7/2 peak position values for the macroscopic layer of 

gold oxide surface (cf. nanoparticles of Au2O3). Additionally, initial- and final-state effects determine the 

peak position and the full-width-at-half-maximum (FWHM) of the peaks, both of which depend on the 

element forming the cluster, its size and its interaction with the substrate.20 Changes in the electronic 

structure associated with reducing the size of the nanoparticle (cf. the bulk metal) and changes to the 

interaction with the substrate contribute to the initial state effects.20 After excitation, the metal 

nanoparticles stay in a charged state for a certain period of time, the length of which depends on the size of 

the cluster and the conductivity of the substrate. This is typically referred to as a final-state effect.20 

Therefore, the peak position and FWHM can provide information that is of fundamental importance for 

understanding the electronic structure of metal nanoparticles, whether they are prepared via gas-phase 

deposition or by wet-chemical methods. However, interpreting these changes in the peak positions as 

initial- or final-state effects based on experimental evidence can be difficult, as it is in the case of gold.20,21 

In the present work, only changes in peak positions and shapes will be considered and they will not be 

interpreted as initial- or final-state effects. 

Studies on small ligand-stabilised gold clusters 

As the importance of the catalytic properties of gold became more apparent since these early 

experiments on the electronics of gold clusters, studies into the origin on this new catalytic ability of gold 

particles were conducted.22-25 A significant proportion of these studies have focused on the deposition of 

gold particles onto flat substrates under UHV conditions, which, at that time, offered limited size control of 
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the particles. Some studies had limited direct evidence of the particles size. More recently, with improved 

methodologies and technologies, mass-selected clusters have been deposited directly onto substrates and 

analysed by XPS and by Ultra-violet photoelectron spectroscopy (UPS), which allows the study of the 

valence orbitals.26 These improvements have led to detailed studies on the effect of cluster charge and 

nuclearity on the activity of gold clusters for the activation of oxygen and carbon monoxide.27,28  

As previously discussed in chapter 2, ligand-stabilised metal clusters occupy a niche position in both 

catalysis and nanoparticle research areas due to their unique electronic and catalytic properties that are 

dependent on the number and type of metal atoms. Some of the larger clusters can have properties that are 

almost metallic in nature, could viewed as embryonic metals.29 It has only been during the last 20 years that 

ligand-stabilised clusters have been used as heterogeneous catalysts.30 These systems have typically been 

used as models for molecular catalysts, which provide important insights for further developments in the 

selectivity and reactivity of industrial catalysts. The main disadvantage to supported clusters as catalysts is 

the issue of particle agglomeration on the surface during the activation of the catalyst during the reaction.31 

Although metal clusters are still viewed as model systems, there has been much progress with systems that 

involve site-isolation of the metal clusters, which inhibits sintering of the catalyst during the activation 

procedure and during the catalytic runs.32,33 These systems typically involve highly porous silicate or zeolite-

type supports that prevent sintering by segregating the individual clusters inside the pores of the 

support.31,34 

Carbonyl-stabilised clusters have been used as precursors for a wide range of catalysts. Metal 

carbonyl chemistry has now been well established for many decades, and methodologies for the preparation 

of metal carbonyls is well documented in the literature.31 The carbonyl group is a very labile ligand that can 

be removed under vacuum at slightly elevated temperatures as compared to higher-temperature methods 

for removing an organic periphery. The reactivity of the catalyst, derived from a metal carbonyl cluster 

precursor, can often depend on how effective the decarbonylation was, the temperature at which the 

activation was conducted, the presence of hydrogen or oxygen and the strength of the interaction with the 

support material. Although carbonyl-type systems have proven useful for the preparation of model 

molecular catalysts, there is a wide range of clusters with a vast array of differing organic ligands. The 

ligands are often phosphines, thiols and even arsines.31 These strongly bound ligands can often remain 

intact once the cluster is adsorbed on to the support material and then require treatment to activate the 

systems. Reports on these activation conditions vary significantly on the effectiveness of each procedure for 

activation. The ultimate fate of the ligands is also rarely considered.31 Examination of the resultant catalysts 

by photoelectron spectroscopy can not only yield information on the metal oxidation state, but also reveal 
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what became of the ligands and other stabilised reagents. Due to issues with sensitivity and charging of the 

sample, it can often prove difficult to distinguish between small amounts of ligand from the background. 

Hence, by using synchrotron radiation, it may be possible to uncover whether small amounts of ligands 

remain on surface of the activated catalyst. 

Recent studies on the electronic properties of supported small gold particles 

Over the last decade there have been a number of studies of sub-monolayer gold films i.e. gold 

clusters deposited onto various substrates and of chemically synthesised clusters in various matrices. A 

large variety of results has been reported. The difficulty with finding a unifying thread between these 

studies is the uncertainty in particle size, particularly below 1 nm, where exact size determination is 

difficult. Over the next few pages, a succinct summary of the literature on PES studies on supported 

organometallic gold clusters will be presented with several comparisons to UHV studies of sub-monolayer 

gold films. Several reports from the early 1980s on the PES of organometallic clusters are only briefly 

discussed as experimental methodologies and techniques have advanced significantly. 

 The earliest PES study of supported organometallic gold clusters was reported by Goodman et al., 

where the [Au6(PPh3)6][BF4]2 cluster was used as the gold source.9 The cluster was deposited by a solution 

deposition method on to a flat surface of a titania (110) crystal. Electron-stimulated desorption (ESD) was 

performed to remove the organic ligands, which involves bombarding the sample with electrons to remove 

the phosphine ligands and clean the surface of the sample. Cluster agglomeration on the surface was 

prevented by pre-treatment of the surface by sonication in acetone. XPS results revealed that the Au 4f7/2 

peak shifted from 83.9 eV to 84.3 eV after treatment with ESD. This shift is believed to be caused by 

increased screening of electrons due to the removal of the ligands.9 It should be noted that these XPS 

studies were conducted using a lab based Mg Kα source with hv = 1253.6eV; the elemental cross-section is 

quite low for gold and phosphorous at this photon energy. As a result, it proved difficult to confirm what the 

ultimate fate of the phosphorous was as a result of ESD treatment. By using a synchrotron source, the 

photon energy for the experiment can be chosen to significantly improve the elemental response. The 

experiments also relied on repetitive scans on the same spot (up to 475 sweeps) to gain improved signal to 

noise ratio, which could have induced significant beam damage. The report does not say whether scanning 

tunnelling microscopy (STM) was conducted after the XPS experiments, which would confirm whether any 

beam-induced particle sintering occurred. The Au 4f peaks were fitted with a Gaussian line shape and the 

background subtraction was conducted using a cumulative function. Recently, more rigorous background 

correction methodologies and curve-fitting procedures have become more accessible, such as the improved 

Shirley background correction,35 Tougaard background correction36 and Voigt function based peak fitting.37 
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It should also be noted that, from a visual inspection of the XPS spectra presented, that the gold 4f peak has 

shifted by +0.4eV upon treatment by ESD, and the FWHM also increases, as does the peak asymmetry. 

Goodman et al. have also demonstrated how the catalytic activity of gold is strongly dependent upon 

the particle size and the appearance of non-metallic properties of the gold particles.23 This early study 

focused on using STM to probe the reactivity of gold particles (1 nm – 6 nm) on cleaned titania (110) 

surfaces and the effect of catalytic conditions. Preliminary XPS studies were also conducted on the samples 

with a lab-based photon source. The main peak reported was the Ti 2p, which highlighted that the small 

shoulder peak attributed to Ti3+ (458 eV) disappeared due to exposure to carbon monoxide and oxygen, 

whilst the area of the Ti4+ ( 460 eV) peak increased. This subtle shift in peak intensities highlighted the 

electronic interaction between the titania support and the support gold particles. 

The thermal stability of gold nanoparticles on a cleaned flat titania (110) was investigated in detail 

by Behm et al.,24 where the stability of gold nanoparticles with sizes ranging from 2.5 – 4 nm in diameter 

under various conditions (oxygen, air and UHV) were characterised by XPS and AFM.24,38 It was found that 

under UHV conditions the particles were stable to annealing at 400°C. In the presence of 50 mbar of 

oxygen, the nanoparticles were stable at room temperature; however, after annealing at 400°C, the particles 

were found to have sintered significantly. It is believed that gold nanoparticles sinter by an atomic 

mechanism (or Ostwald ripening) as proposed by Campbell.39 In contrast, annealing under a hydrogen 

atmosphere at 200°C had little or no effect on the structure of the gold nanoparticles on titania surface. It 

was surmised that oxygen has a significant influence on the stability of gold based catalysts, and that this 

effect becomes more significant at elevated temperatures. It was also demonstrated that gold nanoparticle 

sintering increases substantially under UHV conditions at 500°C. The gold nanoparticles were shown to 

have a binding energy of approximately 84.3 – 84.4 eV, and a second peak appears at 85.7 eV, which can 

tentatively attributed to gold hydroxide species forming on the surface.40  

These recent studies by Behm38 and Campbell39,41 have been aimed at understanding the driving 

force behind the sintering of gold particles on oxidised titania surfaces and developing improved 

methodologies to activate gold-based catalysts under mild conditions. Behm has shown the potential of 

activating gold based systems under a reducing atmosphere using gold nanoparticles generated by a 

modified deposition-precipitation procedure.25 In this system a gold salt was added to a suspension of 

titania (20 – 25 nm particles) and then reduced to form gold nanoparticles. Two contrasting conditioning 

procedures were compared; 

 calcination at 400°C under a 10% O2/N2 for 30 minutes 

 annealing at 200 °C under H2/N2 



Chapter 5— Photoelectron spectroscopy of supported gold phosphine clusters 

114 
 

The reactivity of the resultant catalysts was shown to be significantly greater for the system that was 

annealed under hydrogen rather than oxygen. 

Büttner et al. evaporated gold onto pristine highly ordered pyrolytic graphite (HOPG) and defect-

rich HOPG, to form sub-monolayer layers of surface gold, which was bombarded with argon ions to 

removed organic impurities. No peak shifts were found on the ordered surface, whereas gold on the defect-

rich HOPG showed peak shifts of up to +1.5 eV, with appearance of multiple peaks and peak broadening.42 

The authors attribute the peak shift and broadening to the preferential formation of gold particles at the 

defect sites, which occur in a much higher number on the HOPG exposed to argon bombardment. Kitsudo 

et al. evaporated gold onto graphite and various metal oxides.43 The gold peaks did not shift on the graphite 

and nickel oxide (001) substrates. However, peak shifts of up to +0.4 eV were observed on SrTiO3, 

Al2Ox/NiAl (110), titania and nickel oxide (111) at sub-monolayer gold coverage. Importantly, on both 

SrTiO3 and graphite the FWHM of the gold peak decreased slightly with increasing particle size. Lykhach et 

al. evaporated gold on Nb2O5/Nb, Nb2O5/W and NbO/Nb surfaces.44 They found shifts in the gold peak 

position of up to +0.7 eV, with the largest shifts observed for the smallest Au coverage i.e. the smallest gold 

nanoparticles. Lim et al. evaporated gold on SiO2/Si and observed shifts of the gold peak of up to +1 eV. 

Again, the largest shift corresponded to the smallest amount of gold evaporated. Exposure to atomic oxygen 

leads to the appearance of a second peak at about 86 eV, attributed to the formation of Au2O3.
45 

Methods for depositing size-selected clusters, produced under gas-phase conditions, have been 

known for over a decade. Di Cenzo et al. collected the photoelectron spectra for gas-phase size-selected Aun 

clusters, deposited on amorphous carbon. For clusters with n = 5, 7, 27 and 33 they observed shifts of +0.7, 

+0.6, +0.5 and +0.5 eV, respectively for the Au 4f7/2 peak, with FWHM being broader for the smaller 

clusters.46 Cox et al. reported Au 4f7/2 XPS data for gas-phase, size-selected, positively charged clusters 

deposited on silica (natural oxide layer on Si (100)-wafers). They observed shifts of +0.8-1.0 eV for Aun (n = 

1-7).47 More recently, Lim et al. have published a series of papers where mass-selected Au cluster anions of 

up to 20 atoms were deposited onto SiO2/Si surfaces and the samples were subsequently exposed to atomic 

oxygen.45,48-50 Although peak widths of 1.5 eV were observed, in addition to Au0 peaks, the clusters also 

exhibited features attributed to AuIII, which were shifted by +1.5 eV with respect to bulk gold. Interestingly, 

an even–odd effect was observed, whereby the odd-numbered clusters appeared inert towards oxidation 

and exhibited small AuIII peaks, particularly so for Au5, Au7 and Au13 clusters. These workers also deposited 

the same gold clusters on sputter-damaged HOPG, which increased the number of defects present on the 

surface. In this case, only Au8 showed any ability to act as catalytic oxidant after oxygen treatment. Small 

gold peak shifts of +0.1 eV to +0.2 eV were observed relative to bulk gold. 
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XPS studies have also been performed on chemically synthesised, ligand-protected gold species; 

from monoatomic Au compounds (e.g. Au(PPh3)(NO3)), to atomically precise Au clusters (e.g. 

Au8(PPh3)8(NO3)3), to larger, less precise, nanoparticles spanning the size range from ca. 1.5 nm (“Au101”)51 

and above. Yuan et al. have deposited Au(PPh3)(NO3) on Ti(OH)4 and titania and observed a gold 4f7/2 peak 

with a binding energy of 85.5 eV in the first case and 84.8 eV in the latter case, attributing the difference to 

interactions of the clusters with the substrate.52 Very early XPS studies by Battistoni et al. investigated Au1 

Au4, Au8, Au9 and Au11 clusters stabilised by triphenylphosphine ligands.53,54 Samples deposited from 

alcohol solutions onto a polished steel sample plate showed Au binding energies that were 0.7 to 1.7 eV 

higher than for bulk gold, which depended upon the number of ligands and the counter ions. By analysing 

the different peak shapes, it was concluded that Au9 and Au11 cluster possess centred polyhedral geometries 

with a central metal atom involved only in metal-metal bonds. Van Attekum and co-workers similarly 

published an XPS analyses of chemically synthesised Au8, Au9 and Au11 clusters stabilised by tri-

arylphosphine ligands.55 The clusters were evaporated onto graphite substrates from solutions in 

dichloromethane. All clusters exhibited a single Au 4f7/2 peaks with widths of 1.5 eV. Only kinetic energy 

values were presented and calibrated relative to the phosphorous peak; however, the phosphorous peak 

could be subject to a chemical shift so the peak positions may not be reliable. Boyen et al. used XPS to 

investigate a series of gold nanoparticles made using polymers as stabilizing agents, with metal core sizes 

ranging from 2.9 down to 0.8 nm deposited on silicon. Following removal of stabilizers by treatment, first 

with oxygen and subsequently with hydrogen plasma, the authors found peak shifts of up to +0.5 eV at their 

smallest cluster size.56 The same authors found that phosphine stabilized 1.4-nm (similar size as Au101)51 

nanoparticles show an Au 4f7/2 peak at 84.2 eV after oxygen/hydrogen plasma treatment. Ono et al. 

reported results for polymer-stabilised gold particles with peak positions of about 85 eV for 1.5-nm gold and 

about 87 eV for oxidised 1.5 nm gold-clusters on both titania and silica substrates following treatment at 

150 K with oxygen plasma only.57 Upon heating, they observed very fast decomposition of gold oxide species 

(within 6 min at 350 K) for the nanoparticles supported on titania, which was in stark contrast to much 

greater stability in the case of silica-supported gold oxide species. More recently, Turner et al. found the Au 

4f7/2 peak of 1.5-nm gold clusters deposited on boron nitride at a binding energy of 85.1 eV.58 The electronic 

influence of the ligands stabilising the clusters was highlighted by Tsukuda et al.59 In their work, these PVP-

40 stabilised gold nanoparticles had a binding energy of 82.7 eV for the 4f7/2 peak, which contrasts with the 

thiol stabilised Au36 cluster, which has a4f7/2  binding energy of 84.6 eV. This significant drop is attributed to 

the electronic donation from the carbonyl moiety of the pyrolidine monomer. It should be noted that the 

cationic nature of the PVP-stabilised gold nanoparticles could also be the result of final-state effects due 

excess amount of polymer being present.  
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In summary, smaller clusters tend to exhibit higher binding energy shifts, with the binding energy 

converging to the bulk value of 84.0 eV for larger sizes.43,46,56,60,61 In many cases the FWHM also shows an 

increase with decreasing cluster size. 62 The shift, however, also strongly depends on the substrate. For 

“inert” substrates such as HOPG and pure Si, only small shifts, <0.1 eV, are typically observed. SiO2 surfaces 

tend to shift the peaks by ~0.2 eV to higher energy. Highly interacting surfaces such as CeO2, TiO2, SrTiO3, 

Al2O3 and NiO (111) can induce shifts up to 1.5 eV.  

Experimental  

I. Preliminary XPS experiments 

Our first PES experiments of supported gold phosphine clusters were conducted by Dimitri Murzin 

at the University of Turku in Finland. XPS measurements were carried out in a PHI Quantum 2000 

Scanning ESCA Microprobe spectrometer with Al K X-ray source with a photon energy of 1486.7 eV. 

Samples were analysed as powders deposited on double-sided carbon tape which was purchased from 3M 

and sample charging was compensated by using a flood gun. From this early work, it became apparent that 

resolution and signal to noise ratio would need to be improved and that the use of a flood gun should be 

minimised to ensure that beam-induced sample damage is limited.  

II. Photoelectron experiments at the Soft X-Ray Beamline  

 

Our first experiments at the SXR facility were hampered due to issues of sample charging, which 

were overcome in subsequent visits by depositing the titania samples thinly on P-doped silica wafers that 

were then attached on to the backing plate of the sample holder with carbon tape. Sample preparation was 

found to be an important factor for acquiring quality data. In the case of the silica samples, sample charging 

was unable to be overcome by several sample preparation techniques. Modified experimental set-ups were 

used with the expectation that the lower intensity of photon beam would decrease the magnitude of the 

sample charging; however, suitable resolution of the small gold peak proved difficult to achieve. The focus 

of the PES experiments detailed in the results section will be on the titania supported samples  

These early experiments were conducted at a photon energy of 700 eV. For a typical catalyst sample, 

1 mg of sample was suspended in methanol (5 mL) and sonicated briefly to ensure a homogenous 

suspension. For the unconditioned samples it was necessary to use a solvent that would not remove the 
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cluster from the substrate (typically hexane or toluene). One drop (~20 µL) of each sample was deposited 

onto a cleaned 6 mm × 6 mm silicon (Si) wafer and air dried.  Up to 10 samples were then affixed by 

double-sided copper tape onto a gold-plated backing plate and the XPS spectra were recorded using a 

SPECS Phoibos 150 hemispherical electron analyser with the photon energy set to 650 eV. The photon 

energy was modified from 700 eV, in order to shift the silicon and oxygen Auger peaks to positions that did 

not interfere with the photoelectron peaks of interest for our study. No sample cleaning with Ar+ sputtering 

or sample annealing under UHV conditions were undertaken as this can lead to significantly different 

results.23,63 This is believed to be due to partially reduced surface regions, which can alter binding energy 

shifts and the chemical reactivity of the surface. The beam was adjusted to yield an irradiation spot size of  

600 μm, yielding an X-ray photon flux of approximately 1012 photons mm2 s1, conditions that have 

recently been shown to not induce thermal damage to samples of NaAuCl4.64 XPS spectra were recorded by 

scanning the electron analyzer in 0.05 eV increments from 200 to 70 eV to observe signals from C, O, Si, P, 

Ti and Au. The electron analyzer pass energy was set to 10 eV, yielding an instrumental kinetic energy 

resolution of 295 meV.65 Scans were repeated several times to ensure that no photon-induced changes were 

occurring to the samples. Spectra were calibrated using the Au 4f7/2 peak (84.0 eV) of the gold reference 

bar, which was located permanently in the analyser chamber. The sample sensitivity to the intense source 

photons was tested by designing a scan protocol that involved seventeen high resolution short scans of the 

peak of interest enabling detection of any shift in peak position due to beam damage. The raw data were 

then summed together for analysis. 

III. Preparation of the reference samples and recording of the reference spectra 

Samples for measuring photoelectron reference spectra of the gold cluster were prepared by drop 

casting two droplets of a 1 mg/cm3 isopropanol solution of the Aun cluster on a silicon wafer covered with 10 

nm of atomic layer deposited (ALD) titania. The solution was left drying in air. The photoelectron spectra of 

the reference samples were recorded using a non-monochromatic Mg-K radiation and a Phoibos 100 

electron energy analyser from SPECS in a vacuum chamber with a base pressure of ~10-10 mbar. 

IV Data analysis I: Background correction 

The photoelectron peaks are superimposed on a rather high and strongly structured background, so 

to produce the background-free line shape, one has to remove the assumed contribution due to inelastic 

scattering.35 Inelastic scattering occurs when the kinetic energy of incident particle (electron in this case) is 

altered by the scattering process. The main contribution to this background is due to energy loss processes, 

roughly categorized as extrinsic (occurring away from the emitting atomic centre, through the response of 
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the loosely bound electrons to the probing electron) and intrinsic (occurring in the close vicinity of the 

emitting atomic centre through the response of the core).  

 

 

It is generally accepted that a linear background underestimates significantly the “true background” 

at the high-energy side of a peak while the opposite is true at lower binding energy. The Shirley method 

assumes that the background at any energy to be due to inelastic scattering of electrons of higher kinetic 

energy and is thus proportional to the integrated photoelectron current intensity for higher kinetic energy 

electrons.36 Another aspect is the criterion of the goodness of fit of the background. Originally Shirley said: 

Figure 37: An example of the fitted gold 4f peaks of the supported Au9 spectra: A) the untreated 
cluster, B) the washed and C) the calcined cluster. High Binding Energy peak (HBP) and Low Binding Energy 
peak (LBP) 
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“In making the correction it was observed that the spectrum returned to a constant level at kinetic energies 

below those of the valence bands.”66 The classic Shirley background assumes two background regions with 

constant intensity on both sides of the peak. It has also been argued that the plasmon losses and 

asymmetric broadening may be misinterpreted as part of the inelastic background, which may affect the 

curve fitting process.67 An improved Shirley background was applied to remove the electron-scattering 

background and maintain the inherent line shape from the raw data as described Vegh.36,68 

V Data Analysis II: Curve fitting  

All XPS spectra were fitted in the following manner after the background was corrected. A pseudo-

Voigt function composed of the sum of Gaussian (30%) and Lorentzian (70%) components was used and all 

peak positions were allowed to vary using nonlinear least-squares minimization.69 For the Au 4f spin-orbit 

peaks (i.e. 4f7/2 and 4f5/2), energy splitting was fixed at 3.67 eV, while for the P 2p doublet a splitting of 0.84 

eV was used. The energy difference between the high binding energy peaks (HBP) to the lower binding 

energy peak (LBP) is fixed due to spin-orbit coupling.  All spectra were fitted with the least number of peaks 

allowing a variation of the FWHM. The FWHMs of the bands associated with a single species however were 

kept constant. This means that a gold spectrum was fitted with two sets of 4f7/2 and 4f5/2 doublets, the 

FWHM within a single doublet was kept constant but was allowed to differ between the doublets.36,68,69  
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Equation 2:  Pseudo–Voigt function (   ) consisting of the sum of Gaussian (  ) (30%) and Lorentzian 
(  ) (70%) components,   is the parameter which mixes the two functions. 

Cross sections were calculated according to Yeh and Lindau using the photoionization cross section 

and the asymmetry parameter.13 The angle between the direction of the incident synchrotron radiation and 

the emission of the electrons (direction from the target to the detector) was 125º. The angle between the 

emission of the electrons and the plane span of the polarisation vector of the X-ray and the direction of the 

synchrotron radiation was 0º. 

VI. Data Analysis III: Normalisation of the gold intensity 

The gold signal needed to be normalised against the silicon dioxide of signal, as the prepared sample 

was inhomogeneous,   according to 
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Equation 3: Calculation for normalisation of gold intensity 

  
22 SiO,OSiO,SiSi,SiAu

norm

Au III1II    

where
norm

AuI  is the normalised gold intensity, AuI  is the relative gold intensity, 
Si,SiI  the relative 

intensity of silicon in the silicon substrate, 
2SiO,SiI
 
the relative intensity of silicon in the native SiO2 layer at 

the surface of the Si wafers and 
2SiO,OI  the relative intensity of the oxygen of the silicon dioxide layer 

covering the silicon substrate. Relative intensity means that the intensity element is normalised by its 

photo-ionisation cross section and divided by the sum of the intensities of all elements detected. Thus 

 
22 SiO,OSiO,SiSi,Si III    and   

22 SiO,OSiO,SiSi,Si III1  , respectively, represent the fractions of the surface 

not covered or covered by titania particles. The uncertainty of the normalisation procedure is the largest 

contribution to the error bar of the gold intensity in Figure 54B 

VII. Data analysis IV: Relative intensity of the phosphorous spectra 

For the quantitative analysis of the phosphorous intensity only the phosphorous-to-gold ratio has 

been considered. The ratio is calculated as  

Equation 4: Calculation for the relative intensity of the phosphorous spectra 

AuP

ratio

AuP III    

where  PI  is the phosphorous intensity and AuI  the gold intensity. 

  



Chapter 5— Photoelectron spectroscopy of supported gold phosphine clusters 

121 
 

VIII. Survey Scan 

 

  

Figure 38: Survey scan of a supported Au9 cluster supported on acid washed titania. The peaks of interest 
have been identified, of which high resolution scans were conducted after a survey scan was conducted. 
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Results and Discussion 

Preliminary experiments 

Preliminary XPS experiments were conducted on a lab-based machine (PHI Quantum 2000 

Scanning ESCA). Spectra were taken of the gold 4f, silicon 2p, titanium 2p, oxygen 1s and carbon 1s regions 

for a few select samples. The carbon signal is attributed primarily to the carbon tape that the samples were 

deposited upon. For the gold clusters on silica samples, the gold 4f signal is derived from the gold 

phosphine cluster. The gold loading on average for most of these early samples was 0.5 %; for several lower-

loaded samples (0.1 % loading) a gold peak was not detected. The silicon signal is mainly attributed to the 

amorphous silicon support and is found at 103.43 eV (Si4+ 2p1/2.). For the silicon-supported samples, the 

oxygen peak at 532.73 eV (O 1s) is mainly due to the oxygen bound to the silicon, whilst for the titania-

supported samples the oxygen peaks were at 530.95 eV (adsorbed H20) and at 529.79 eV, the latter being 

attributed to oxygen from the titania support. There was no detectable signal for phosphorous which was 

assumed to be bound to the cluster. There are several possible reasons for the absence of the phosphorous 

signal, the most likely of which is that the amount of phosphorous present was below the detection limits of 

the instrument. Another significant experimental factor that may explain the absence of a phosphorous 

peak was the use of an electron flood gun, which can induce significant loss of organic ligands as shown by 

Goodman and workers.9 Figure 39 shows a typical survey scan of each of the peaks of interest for sample of 

0.5 % Au9/SiO2, heat treated at 200 OC under vacuum for 2 hours. 

 

  
Figure 40: XPS survey scans of the elements present, performed with a photon 

energy of 1486.7 eV, of Au 9/SiO2 heat treated at 200OC under vacuum  
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 Figure 41A suggests that there is only one gold species present with a 4f7/2 binding energy of 83.7 

eV, which is slightly lower than bulk gold (84.0 eV) indicating slight anionic (Au-) character of the gold 

present on the surface. A BE shift to lower binding energy can be attributed to particles with dimension 

smaller than 2 nm, due the larger electron density localised on the surface on the cluster and the poor 

electronic interaction between the support and the cluster. In Figure 42B, the sample 0.5 % Au11/SiO2 

(untreated, as deposited) indicates a cationic contribution to the gold signal of 85.6 eV, which is lower than 

the binding energy corresponding to Au3+. In this sample the FWHM of the peak at 83.8 eV is 2.18 eV, 

which is larger than that observed in samples where only one gold peak is required for curve fitting (e.g. 

1.86 eV observed the 0.5 % Au9/SiO2). However, the resolution limit of this lab-based spectrometer is 0.55 

eV in high resolution mode. When two or more species are identified the peaks become broader than is 

observed in samples with only one contribution. 

 

 

 

  

Figure 43: A comparison of the photoelectron gold 4f peak of A) Au9/SiO2 0.5% B) Au11/SiO2 0.5% C) 
Au55/SiO2 0.5% D) Au55/TiO2 0.5%, conducted on lab based XPS machine. All samples were heated at 200°C 
under vacuum for two hours. 
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In Figure 44C, for the sample 0.5 % Au55/SiO2, heat treated @ 200°C under vacuum, there is only 

one gold species detected with a binding energy of 83.6 eV. For these silica-supported gold cluster samples, 

the gold 4f peak shows the presence of anionic gold (Au-) with a binding energy lower than that of metallic 

gold (84.0 eV).  A BE shift to lower binding energy can be attributed to particles with dimension smaller 

than 2 nm, due the larger electron density localised on the surface on the cluster and the poor electronic 

interaction between the support and the cluster. In Figure 45D, the sample 0.5 % Au55/TiO2, the gold 4f7/2 

peak is shifted to a binding energy of 83.21eV which indicates a much more anionic nature than for Au/SiO2 

samples, and is assumed to be caused by increased electronic interaction with the support and due to small 

size of the gold particles on the surface. 

Overall, these preliminary studies of this small selection of nanostructured gold catalysts highlighted 

a number of issues. The low gold loadings of these samples (≈ 0.5 %), as compared to many other supported 

metal nanoparticle catalysts (> 1 %), can make data collection difficult due issues with detection limits of a 

lab based machine. Increasing the amount of sample can lead to significant sample charging; hence the 

balance between sample charging and getting a signal for the gold peak can be difficult to achieve. In 

addition, the small amount of charging, due to the electrically insulating nature of silica, required a flood 

gun to neutralise the charge. From these experiments it is not clear if the presence of the anionic gold 

species is an initial- or final- state effect. 

Samples were studied on the SXR at the Australian Synchrotron, in an attempt to deal with issues of 

sensitivity. 

High resolution studies at 650 eV 

Spectra have been taken at the gold 4f, phosphorous 2p, silicon 2p, titanium 2p, carbon 2s and 

oxygen 1s regions for Aun clusters deposited on titania nanoparticles and from a gold reference sample at 

the SXR beamline at the Australian Synchrotron. The majority of carbon on the samples is either from the 

triphenylphosphine ligands of the gold cluster or adventitious hydrocarbons. In either case, we assigned the 

C 1s peak to 285.0 eV and used it for calibrating the peak positions of other elements. This is justified 

because adventitious hydrocarbons display very stable C 1s peak position and are present in all samples 

exposed to air (and not cleaned by sputtering etc. prior to XPS measurements).70 The titanium signal is 

exclusively due to the titania nanoparticles and is found at 459.0 ± 0.1 eV. The silicon signals are due to the 

silicon wafer substrate and found at 99.2 ± 0.1 eV (Si) and 103.1 ± 0.1 eV (SiO2). The oxygen signals are 

mostly due to titanium dioxide (530.3 ± 0.1 eV) and silicon dioxide (532.4 ± 0.1 eV). Gold signals due to 

clusters are found between 83.7 and 86.1 eV. Phosphorous signals, from the ligands, are found at 131.8 ± 0.1 
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eV and 133.0 ± 0.2 eV. The Au and P signals are used for quantitative analysis. At the energy calibration 

used here, Au 4f7/2 signal of bulk gold is usually found at within a range of ± 0.2 eV 84.0 eV,70-73 and this 

value is used here to determine the shift between the Au 4f7/2 signal of the gold clusters and the bulk gold 

binding energy. The invariance of the titanium and silicon signals relative to the gold reference is less than 

0.05 eV, indicating that there is no charging of the samples or instability in the beam, which meant that no 

flood gun was required during the measurements.  

 The Au 4f spectra for the Au8, Au9, Au11 and Au101 clusters supported on acid-washed Evonik P-25 

titania are shown in Figure 46 for untreated (i.e. as deposited) clusters (Figure 46A), samples washed after 

deposition (Figure 51A) and calcined samples (Figure 54) 

Untreated samples on acid washed titania 

In the spectra of the untreated samples, the gold peaks shift towards higher binding energies with 

decreasing number of atoms in the metal cluster. All four spectra can be fitted with two peaks, one each for 

the Au 4f7/2 and Au 4f5/2 components. The Au4f7/2 peak positions and FWHMs are shown in Figure 46B 

(which will be discussed below, these peaks are referred to as the gold low binding peak, Au-LBP). The 

positions of all peaks except for Au101 are at a higher binding energy than that of metallic gold.  

 

Figure 46: A) XPS spectra of untreated Aun and B) 4f7/2 binding position of the Au LBP and FWHM of the 
peaks 

The FWHMs of Au8, Au9 and Au11 are the same within experimental error but all are larger than that 

for Au101. Shifts in the peak position and an increase in the FWHM of the XPS signal of particles consisting 

of a small number of metal atoms have been attributed, in a number of cases, to finite-size effects and 
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depend on the element constituting the nano-sized object, as well as the substrate on which they are 

deposited.43,74 In the case of gold, peak shifts up to +1.5 eV,75 +0.7 eV,14,76 and +1.1 eV have been previously 

reported. In all cases, an increase of the FWHM relative to that of bulk gold signal has also been reported. 

Thus, we attribute the shift of the gold peak position to the decrease in size of the gold cluster. The peak 

positions relative to the bulk gold Au4f7/2 found here are +1.1 eV for Au8 and Au9, +0.7 eV for Au11 and -0.1 

eV for Au101.  

 

Figure 47: the peak position of the gold clusters in the reference spectra are shown 

The positions of Au 4f7/2 peaks of the untreated samples are very close to the peak positions of the 

reference spectra, with in 0.2 eV, as shown in Figure 47. Thus it can be concluded that the clusters, as 

deposited, are not affected by the titania substrate. The position of the Au 4f7/2 peaks both of the untreated 

gold clusters and the reference samples are in the range of the Au 4f7/2 position reported for nanosized gold. 

For example, Battistoni et al. using the same approach to energy calibration, reported that for 

Au9(PPh3)8(NO3)3 deposited on titania substrate the Au 4f7/2 was at 85.2 eV.77 The position of the gold peak 

is shown as a function N1/3, where N is the number of gold atoms in Figure 48A.  N1/3 is intended as a proxy 

of the cluster diameter although for very small values of N, this approximation is only rough). The graph 

has similarities to the 1/d relation found for gold nanoparticles by Boyen et al.78 To the best of our 

knowledge, there is only one previous gold XPS study of a chemically prepared, atomically precise gold 

cluster deposited on titania. Chusuei et al. using a similar binding energy calibration as used here, observed 

a binding energy of 83.9 eV for Au6(PPh3)6(BF4 )2 deposited onto a TiO2 (110) surface, which is significantly 

lower than the values we observed.9 
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Figure 48: A) the Au-LBP position and FWHM of the untreated clusters are shown as a function of the 
diameter  

and B) P 1S spectra of the untreated clusters 

In Figure 48, the phosphorous spectra of the untreated Au8, Au9 and Au11 cluster samples are shown. 

The phosphorous spectra from the Au101 samples were too weak to reliably separate the spectrum from the 

background and hence are not shown. The spectra are fitted with two peaks, one at 131.8 eV, which is 

referred to as the phosphorous low binding energy peak (P-LBP), and another at 133.1 (± 0.2) eV, which is 

referred to as the phosphorous high binding energy peak (P-HBP). The position of the P-LBP is the same as 

that found in the reference samples and as reported by Battistoni et al.77 We can attribute the P-HBP to 

oxidised phosphorous which will be justified below.  

Figure 49: Ratio of the intensity of A) the P-LBP and B) the P-HBP 

A B 
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Figure 49A and Figure 49B show the ratios of the P-LBP and P-HBP, relative to the sum of the Au 

4f7/2 signal. It can be seen that the P-LBP in the untreated samples is the dominant peak (i.e. intensity in 5A 

> 5B for all untreated clusters) but also that the sum of both ratios (Figure 50) is close to unity. In the 

spectrum of AuPPh3Cl, only the P-LBP is observed with an intensity ratio between phosphorous and gold 

very close to 1:1. Hence, the P-LBP in Figure 48 is attributed to phosphorous of the ligands bound to gold. 

Higher binding energies of phosphorous (similar to that of P-HBP) are found for compounds with 

phosphorous bound to oxygen.79 Hence, it is concluded that in the case of the untreated support-

immobilised clusters, there is about one ligand per gold atom and that the nature of the bond between the 

phosphorous of the ligand and the gold is very similar to that in AuPPh3Cl  

 

Figure 50: The P-HBP and P-LBP relative to the sum of the intensity of the respective Au peaks (i.e. both 
Au-LBP and Au-HBP). 

Refluxed/Washed samples 

As previously described, this method of activation involves stirring a suspension of the supported 

cluster in toluene for two hours at 100 °C which is then followed by centrifugation and drying. This method 

is hoped to selectively remove the ligands that are bound to the cluster whilst leaving the naked metal core 

on the surface of the acid washed titania. In the Au 4f spectra of the washed samples (Figure 51A) it is 

necessary to fit a second, higher energy, gold doublet for Au8, Au9 and Au11 (hereafter referred to as Au-

HBP). Figure 51B shows that the Au-LBP peak positions relative to bulk Au 4f7/2 are +0.8 eV for Au8 and 

Au9, +1.0 eV for Au11 and -0.1 eV for Au101 and only marginally different to those of the untreated samples. 

The FWHMs are the same within the experimental error as those for the Au-LBP in the untreated samples. 

The Au-HBP is found at +1.6 eV for Au8, at +1.9 eV for Au9, +2.1 eV for Au11. No Au-HBP peak is found for 

Au101. This binding energy is very similar to that of Au2O3 thin films which shows a shift in binding energy of 
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1.8 to 2.1 eV.80-82 Ono et al. have reported shifts in binding energies from about 85 eV to about 87 eV, when 

exposing 1.5 nm sized gold clusters supported on TiO2 and on SiO2 to oxygen plasma (i.e.  about 3 eV higher 

binding energy than bulk gold).83 It is worth noting that Au101 also has a size of about 1.5 nm. Lim et al. 

reported that gold peaks from gas-phase deposited Aun (n= 3-20) clusters on silica after exposure to atomic 

oxygen are found at about 86 eV with a shift of about 2 eV relative to the unexposed sample, which was 

attributed to the formation of gold oxide.82 

 

Figure 51: A) washed Aun spectra and B) position of the Au LBP and FWHM of the peaks 

 Figure 51 shows the intensity of both the Au-LBP and Au-HBP. The intensities have been 

normalised as outlined above and then divided by the intensity of the untreated samples. In general, the 

total intensity of the peaks is lower than that of the untreated samples (i.e. ratio < 1). Furthermore, it can be 

seen that in case of Au8 and Au9 the intensity of the Au-LBP is larger than that of the Au-HBP, while this is 

reversed for Au11. 

 

Figure 52: Ratio of the intensity of the Au-LBP and Au-HBP of the washed cluster relative to the intensity 
of the Au peak of the untreated cluster. 
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As both the position and the FWHM of the Au-LBP are similar to that of the untreated clusters, it 

can be concluded that a significant portion of the gold clusters is not significantly altered in its size and 

chemical state by the treatment. We attribute the appearance of the Au-HBP to the formation of Au-O 

bonds involving the gold atoms of the cluster cores as the chemical shifts are significantly larger than that of 

the untreated clusters. We do not attribute it to fully oxidised gold clusters as the shift in peak position 

relative to the untreated samples is +0.8 to +1.1 eV and, thus, significantly less than the +2 eV shifts 

reported by others.83,84 Whether the shift is due to the formation of partially oxidised gold clusters or due to 

a strong interaction of the flat (2D), “raft-like” gold cluster core with the TiO2 support cannot be 

distinguished. Earlier reports suggest that XPS spectra of the ultra-small “raft-like” metal clusters can be 

strongly affected due to metal-support interactions.85 However, it has to be noted that previously oxidation 

of gold clusters has only been achieved by using a strong oxidising agent.80-82 In contrast, we have heated 

the samples to 100 ºC in toluene which is not a strong oxidising environment for the clusters. Hence, the 

oxidation of the gold with oxygen due to the traces of air dissolved in the liquid phase seems to be less likely 

than the formation of Au-O bonds with oxygen of the titania surface. For the latter, some of the ligands of 

the gold cluster have to be removed to allow for the formation of Au-O bonds. Removal of the ligands is 

considered as being required in the activation of the clusters for catalysis.31 To the best of our knowledge, 

this report provides the first ever evidence of the formation of Au-O bonds between metal cores of 

chemically synthesised atomically precise clusters and material of oxide support due to the removal of 

ligands induced by mild treatment. The removal of ligands also assists in shift to higher binding energy as 

ligands are electron donors. 

Alternatively, it could be argued that the Au-HBP is due to the formation of bulk gold oxide after 

agglomeration of the gold clusters. We consider this option as unlikely for the same reason as before, that  

the applied treatment is not a strong enough oxidising treatment to form an oxide layer on bulk gold. 

Therefore, the overall reduction in gold intensity has to be interpreted as removal of clusters from the 

surface through the washing procedure. 

The Au101 clusters show a peak at the same position and with the same FWHM as the untreated 

sample but with a very significant reduction in intensity. Therefore, it seems that the washing process 

removes Au101 clusters from the sample but does not change the chemical state of the Au101 cluster core. It 

has to be noted that Au101 clusters are easiest to remove by washing. 
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Figure 53: P 1S spectra of the washed clusters 

In Figure 53, the P spectra of the washed Au8, Au9 and Au11 cluster samples are shown. The spectra 

show peaks with the same position and FWHM as the untreated samples. Figure 49A and B show the ratio 

of the P-LBP and P-HBP, respectively, relative to the sum of the Au 4f7/2 signal. It can be seen that in the 

washed samples the P-LBP is the dominant form, which is similar to the spectra of the untreated samples as 

can be seen in Figure 50. The sum of both ratios is close to unity for the Au8 and Au9 clusters but is around 

1.3 for the Au11 cluster. In the latter case, however, we ascribe this to relatively large uncertainty in peak 

area. 

It could be argued that for the formation of Au-O bonds some ligands have to be removed and hence 

the P/Au intensity should decrease which is not observed in the data. However, the uncertainty of the 

phosphorous signal is too large to allow for the conclusion that this is a contradiction. 

Heat treated samples at 200 °C under vacuum 

The Au 4f spectra of the heat treated samples are shown in Figure 54A. Again, it is clear that two 

doublets are required to fit the experimental spectra. Figure 54B shows that the positions of the Au-LBP 

found here relative to bulk Au4f7/2 are 0.0 eV for Au8, +0.2 eV for Au9 and Au11 and -0.1 eV for Au101 and 

thus are only marginally different to that of bulk gold. The FWHM for these peaks is ca. 1.2 eV, which is 

smaller than those of the untreated and the washed samples.  
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Figure 54: A) Heat treated Aun spectra and B) position of the Au LBP and FWHM of the peaks 

Based on the trend of the untreated samples (Figure 46B and Figure 54B), we attribute the decrease 

in binding energy of the Au-LBP after heat treatment to agglomeration of the clusters. The change in the 

gold binding energy allows us to conclude that the size of the agglomerated clusters is only marginally 

smaller than that of untreated Au101, which is also reflected in the FWHMs as they are only little larger than 

that of Au101. The Au-HBP relative to bulk Au4f7/2 is found at +1.4 eV for Au8, +1.5 eV for Au9 and Au11 and 

+0.8 eV for Au101. The FWHM of these peaks is 1.5 to 1.6 eV and is similar to that of ultra-small untreated 

support-immobilised clusters. In the same way as for the washed samples, we attribute the Au-HBP to the 

formation of Au-O bonds involving the gold atoms of the cluster cores as the chemical shift is similar to, but 

slightly (0.2 to 0.6 eV) smaller than, that of the washed samples. In this case, the peak positions are too low 

in binding energy for assigning these peaks to either fully oxidised gold clusters or oxidised bulk gold. Here 

again, we  cannot pinpoint whether the shift is due to the formation of partially oxidised gold clusters or due 

to a strong interaction of the flat (2D), “raft-like” gold cluster cores with the TiO2 support. Heating at 200 

ºC in low vacuum is a somewhat harsher environment than the washing procedure, but still cannot be 

considered as a strong oxidising treatment comparable to oxygen plasma. Also, gold oxide has been found 

to be instable at temperatures applied here. Hence, also in this case the oxidation of the gold with oxygen 

from the gas phase is unlikely and the formation of Au-O bonds with oxygen of the titania surface has to be 

considered as being much more likely. The shifts are slightly reduced relative to the washed samples. The 

reason could be some degree of agglomeration of the clusters that have formed Au-O bonds under higher 

temperature conditions.  
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Figure 55: Ratio of the intensity of the Au-LBP and Au-HBP of the heat treated cluster relative to the 
intensity of the Au peak of the untreated cluster 

The total intensity of gold is significantly reduced compared to the untreated sample as can be seen 

in Figure 46B, with the Au-HBP being more intense than the Au-LBP. Different to washing, heat treatment 

could not remove clusters from the support; hence, the amount of gold in the sample must be the same as 

for the untreated samples. Thus, the decrease in gold intensity can only be attributed to agglomeration of 

the gold cores of the clusters. An increase in gold particle size means that the signal of the gold from the 

side of the cluster closer to the substrate is attenuated due to the limited mean free path of the 

photoelectrons. As the amount of gold on the sample is constant, the total gold intensity decreases. This 

interpretation is supported by the fact that the position of the Au-LBP is close to 84eV. 

 

Figure 56: P 1S spectra of the calcined clusters 
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Figure 56 shows the phosphorous spectra of the calcined Au8, Au9 and Au11 cluster samples. The 

spectra clearly illustrate a shift in the peak position compared to the spectra of the untreated samples from 

the P-LBP to the P-HBP position. A similar shift of the phosphorous peak has been reported earlier after 

heat treatment of Au(PPh3)(NO3) on TiO2.52 Based on XPS results and 31PNMR by Yuan et al. assigned the 

change of their sample to either the formation of species where phosphine is bound to a larger metal 

particle, i.e. the formation of gold clusters surrounded by triphenylphosphine ligands, or the oxidation of 

phosphorous. Based on our results presented here, we can rule out the first possibility as the untreated Aun 

clusters show a lower binding energy of the phosphorous. Hence, we ascribe the P-HBP to oxidised 

phosphorous species which is also supported by the peak position of phosphorous in phosphorous doped 

titania.85,86 Noteworthy, the ratio of the P-LBP and the P-HBP to the sum of the gold 4f signal (Figure 50) 

has almost entirely shifted to the P-HBP peak for the Au8 and Au11 clusters and to some extent for the Au9 

cluster. The sum of both ratios is larger than unity for the Au8 and Au11 clusters. This finding can be 

explained by gold clusters agglomerating into larger particles during heat treatment, consistent with the 

Au-LBP signal shifting to lower binding energy and the overall decrease in total gold peak intensity. The 

extraneous ligand P moves elsewhere onto the surface and becomes oxidised or bound to the titania surface 

resulting in an increase in the P-HBP signal (Figure 49B).The formation of larger gold particles should 

reduce the gold signal due to the limited electron mean free path leading to an increase in the total P:Au 

ratio (see Figure 50C) and also to an increase in the P-HBP signal (seeFigure 49B). The amount of “ligand-

like” phosphine species (P-LBP) is reduced by ca. 50 % due to the maintained presence of a fraction of the 

non-agglomerated clusters even in calcined samples (see Figure 5A). This interpretation is supported for 

Au8 and Au11 by the changes in the phosphorous signal shown in Figure 50: The P-HBP and P-LBP relative 

to the sum of the intensity of the respective Au peaks (i.e. both Au-LBP and Au-HBP). To a lesser degree the 

interpretation is also supported for Au9. However, the removal of the ligands from the cluster and their 

oxidation seems to be less efficient for the Au9 compared to Au8 and Au11 as the P-LBP is stronger in the 

case of Au9 compared to Au8 and Au11. In summary, it can be concluded that the phosphorous of the ligands 

oxidises during heat treatment and, thus, most likely is removed from the clusters but remains in an 

oxidised form on the surface as triphenyl phosphine oxide. 

Detailed study of titania 

Although, gold clusters supported on acid-washed Evonik P-25 titania are resistant to particle 

sintering, catalytic investigations showed that these samples were ineffective for the oxidation of alkenes. 

To understand the chemistry of gold clusters supported on untreated titania, it was decided to attempt this 

distinguish the difference between gold cluster supported on anatase or rutile.  P-25 titania comprises a 
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mixture of anatase (≈ 70 %), rutile (≈ 25 %) and also an amorphous phase (≈ 5 %).87 The individual 

supports were ordered with similar particle sizes, but with a slightly higher measured surface area (≈ 150 

m2/g). Therefore, the gold loading was decreased to make the surface coverage of these samples comparable 

to the Evonik P-25 samples that were used for catalysis, rather than 0.5 % by weight of gold, 0.17 % loading 

was used. The study was limited to the Au8, Au9 and Au101 clusters as yields of the Au11were relatively low. 

Unfortunately, photoelectron samples of the rutile samples yielded small contamination of zinc in these 

samples. The zinc 2p overlapped with the gold 4f peak, which prevented any detailed analysis of the gold 

present on these samples. In the case of anatase samples, samples also proved to be sensitive to ambient 

light conditions; hence exposure was minimised as much as possible. Photoelectron studies were conducted 

under the same conditions as the acid-washed samples. Further spectra were also collected at 400 eV, in the 

hope of increasing the response of the phosphorous peak. Overall, the contrast to the acid washed   P-25 

samples was stark; the gold clusters appear to readily sinter on the surface of the untreated anatase surface 

to form slightly larger particles.  

Untreated anatase 

 

Figure 57; Summary of gold 4f peak of untreated gold clusters deposited on anatase 

The untreated clusters supported on anatase appear to show the presence of multiple contributions 

to the gold peak. In comparison to the acid-washed system, the gold 4f peak was fitted with two peaks for 

the atomically precise Au8 and Au9 samples whilst in the case of the larger Au101 only one main peak with a 

small shoulder was fitted. In Figure 58B, it is apparent that the peak positions for the higher energy binding 

peak are at 85.25 eV (Au8), 85.31 eV (Au9) and 85.15 eV (Au101), whilst for the lower energy binding energy 

peak is at 83.7 for all of these clusters. The lower binding energy peak is slightly lower than that of metallic 

gold (84 .0 eV) which indicates slight anionic characteristic of the small particles (< 3 nm) on the anatase 

Au8 

Au9 

Au101 
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surface. The increasing metallic nature of the gold peak is apparent as the gold cluster size is increased. The 

two small clusters demonstrate significantly more agglomeration of the small cluster forming slightly larger 

nanoparticles, which contrasts starkly with acid washed system that has only one main peak between 85.1 

and 85.4 eV for the same clusters.  

The relative ratio of the HBP to the LBP deviates significantly from expected values based on the 

atomically precise molecular clusters to the colloidal Au101 which is made apparent in Figure 59. It is 

apparent that the HB peak accounts for approximately 60 % of the total intensity of the gold 4f peak in the 

case of the atomically precise clusters. In contrast to these ultra-small, atomically precise clusters in the 

case of the colloidal Au101 the HB peak only contributes 15 % to the total Au 4f peak intensity. The presence 

of the HB peak in the latter case could be attributed to the small amount of sub 1 nm particles which may be 

detected under STEM. Alternatively, this peak can be attributed to the small proportion of Au101 colloid 

metal cores interacting with the anatase support.  

Another possible explanation for the variation of HB/LB peak intensity ratio is due to the portion of 

atoms that are interacting with the support. For the atomically precise clusters which have a proportionally 

greater number of surface gold atoms, the HB peak contribution to the intensity of the gold 4f peak is 

greater.  

The samples in Figure 60 were prepared with a gold loading of 0.17% by weight of gold, in addition 

samples with half loading( 0.7 %) was also prepared in attempt to see if a lower loading will prevent gold 

cluster agglomeration. However, the results show very similar results for lower loadings samples which 

were also untreated. 

 

Figure 61; Relative intensity ratio of HB and LB peak for each cluster untreated on anatase 
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Figure 62; Phosphorous 1s Spectra for untreated samples A) Spectra and B) peak positions and FWHM 

The phosphorous peak for the untreated samples was more difficult to attain. Multiple samples 

spots were used to achieve the best signal; however, the response was much less than expected especially 

when compared to the untreated acid-washed samples. For the Au9 sample, a relatively well defined 

phosphorous peak was observed at 133.2 eV, and a slight peak at around 131 eV. In the case of Au8 and Au101 

sample, the HBP was also observed at 133.1 and 133.4 eV respectively. The LB peak for these samples was 

fitted at 132.8 eV for Au8 and 130.8 eV Au101. The fitting of the small LB peak proved to be difficult and may 

be an artefact of the fitting process rather than represent the physical presence of phosphorous at this 

binding energy. The LB Peak was previously attributed to gold cluster bound phosphorous in the untreated 

samples on acid-washed titania, due to the “intact-like” cluster. The LB FWHM of Au8 sample is much 

broader than that of the other two clusters, which may arise due to issues with the peak fitting process and 

such low amounts of phosphorous present in these samples. If these spectra are representative of the 

electronic structure of these samples, the sintering of the clusters may be caused by a photoinduced reaction 

of the phosphorous ligands with the support, which may be more reactive with smaller gold clusters. The 

reaction may lead to oxidation of the triphenylphosphine ligand to triphenylphosphine oxide which would 

easily dissociate from the gold cluster. 

Calcined under Oxygen  

The gold clusters on anatase were treated at 200°C under an oxygen atmosphere, which resulted in 

significant changes in the electronic structure of the gold 4f peaks for each sample as compared with the 

untreated samples on anatase (Figure 63). For the Au8 cluster supported on anatase, the Au 4f 7/5 peak was 

again fitted with two curves, however there are some differences with the peak positioning and FWHM. The 

HB peak is positioned at 85.38 eV as opposed to 85.25 eV for the untreated sample, and the FWHM has 
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also increased from 1.54 eV to 2.2 eV. The LB peak is positioned at 83.74 eV with a FWHM of 0.96 eV, 

although the peak position has not changed when compared to the untreated sample, the FWHM has 

narrowed significantly from 1.43 eV for the untreated sample. In the case of the supported Au9 cluster, the 

higher binding peak is positioned at 85.40 eV with a FWHM of 2.0 eV As with the smaller Au8 cluster, there 

is a slight shift of the HB peak to higher binding energies (~ 85.40 eV).The FWHM maximum of the HB 

peak has increased from 1.4 eV in the case of the untreated sample.  The LB peak is positioned at 83.74 eV 

with a FWHM of 1.0 eV where a decrease in the FWHM from 1.4 eV is observed, which is similar to both 

Au8 and Au101 cases. The HB peak for Au101 is found at 85.42 eV with FWHM of 2.5 eV after the oxygen 

treatment. The HB peak has shifted slightly by 0.27 eV and the FWHM has increased from 1.8 eV. The LB 

peak is found at 83.8 eV with a FWHM of 0.96 eV, which is 0.1 eV higher than both Au8 and Au9, which 

illustrates the increased metallic character of the larger Au101 particles.  

  

 Figure 64; Summary of gold 4f peak of calcined under 200°C under oxygen gold clusters deposited on 
anatase 

The relative intensities of the HB peak and LB peak change significantly after treatment with oxygen 

at 200OC as shown in Figure 65 especially for the atomically precise Au8 and Au9 supported samples. This 

increase in relative intensity of the HB peak as compared to LB peak may be indicative of oxidation of the 

gold clusters rather than just simple aggregation of the clusters on the surface. After annealing, the samples 

appear less susceptible to photoinduced aggregation of the clusters.  The Au101 seems to undergo little 

change as far as intensities are concerned, but there is a slight shift in HB - peak and -FWHM which may be 

caused by oxidation of some of the smaller particles on the surface.  
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Figure 66: Relative Au 4f7/2intensity ratio of HB and LB peak for each cluster oxygen treated on anatase 
(left) and untreated samples (right) 

 

Figure 67: Phosphorous 1s Spectra for calcined at 200°C under oxygen samples A) Spectra and B) peak 
positions and FWHM 
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The phosphorous peak for each of the calcined samples was detected for each cluster, even for the 

low loaded samples (0.08%), which contrast significantly with the untreated samples. Overall the 

phosphorous samples for the calcined samples had a main HB peak, detected at 133.29 eV (Au8), 133.25 eV 

(Au9) and 133.35 eV (Au101), when treated at 200 °C under oxygen which was attributed to the oxidised 

phosphorous bound to the surface of the sample. This is compares well with the heat treated samples on 

acid washed titania, in that the triphenyl phosphine ligand is now fully oxidised to triphenyl phosphine 

oxide and remains on the surface. The issue that remains is why the phosphorous signal was so difficult to 

observe for the untreated anatase samples; physical sample issues, data collection issues such as charging 

or peak fitting issues may be the cause.  

Calcined with oxygen and hydrogen 

 

Figure 68: Summary of gold 4f peak of calcined at 200°C under oxygen/hydrogen gold clusters deposited 
on anatase 

Following the oxygen treatment at 200°C, the samples were heated further under a reducing 

atmosphere of hydrogen for two hours at 200°C in a similar method to Behm.24 This resulted in further 

changes in the electronic structure of the gold peak. Overall, only one peak was required for peak fitting in 

contrast to the untreated and oxygen treatment, which required two peaks. For the Au8 and Au9 samples, 

the peak was located at 83.69 eV and 83.65 eV respectively with FWHMs of 0.96 eV and 1.1 eV. If compared 

with the LB-peak of the oxygen treated samples, there is a shift of around 0.5eV- 0.7 eV to a lower binding 

energy in the case of the Au8 and Au9 cluster, which is within the experimental error of 0.1 eV.  These small 
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values for the gold peak indicates that the gold clusters have agglomerate but that the gold present on the 

surface is not fully metallic in nature. In contrast, the Au4f7/5 peak of the supported Au101 differs in that the 

peak position increases from 83.98 eV, which is akin to that of metallic gold (84.00 eV). Overall, it is 

difficult to ascertain whether the sintering of the cluster is purely due to the increased time at elevated 

temperatures alone or due the reducing atmosphere of the hydrogen.  

   

Figure 69: Phosphorous 1s Spectra for calcined at 200°C under oxygen/hydrogen samples A) Spectra and 
B) peak positions and FWHM 

The phosphorus peak which has been treated under O2/H2 show for each sample was fitted with two 

peaks except in the case of Au9. From visual inspection of the Au8 and Au101, the LB peak is just an artefact 

of the fitting procedure and the low amounts of phosphorous present on the surface. The main, HB peak 

(HB peak for Au8 and Au101 was found at 133.3 eV and at 133.7 eV for Au101) is representative of the oxidised 

form of the triphenylphosphine ligand present on the support material. It may have expected that there 

would have been a change in the peak position; however, as samples were not stored under Ar/N2 during 

the trip to the Australian Synchrotron the phosphine may have re-oxidised under ambient conditions. In 

the case of Au8, it is apparent that a low intensity LB peak is detected at a lower binding energy, which may 

be indicative that some of the phosphorous has been reduced back to the triphenyl phosphine. 
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Preliminary comparison of other possible modes of activation  

 

Figure 70: Plot of peak positions and FWHM for A) Au9 on anatase treated under a selection of modified 
treatment conditions and B) Au101 on anatase treated under a selection of modified treatment conditions 

 

Figure 71: Spectra of gold clusters on anatase treated under a selection of high temperature treatment 
conditions  

In an effort to investigate other novel routes towards activating supported gold cluster towards 

catalysis, a range of alternative routes of activating these systems were investigated.  
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Figure 72 and Figure 73  shows the photoelectron results of a series of treatments on 0.17 % Au9 and 

Au101 on anatase;  

 2 hours at 400 °C 

 12 hours at 200 °C 

 2 hours under a flow of ozone 

 Heat treatment under 200 °C 

These routes are designed to examine how increases in time and temperature can influence the 

electronic structure of the system. Ozone treatment was aimed at oxidatively removing the ligands, which 

has only recently been used for catalyst activation.88 

In the case of the Au101¸ sintering of the gold particles occurs under treatments at 400 °C, 12 hours 

and also under heat treatment. This is evidenced by the presence of only a single peak at 83.7 eV; the 

presence of the second peak at 83.7 eV is an artefact of the fitting program for calcination under 400 °C. In 

the case of the ozone, the broadening HB peak at 84.8 eV indicates the formation of gold oxide on the 

surface.89 In comparison, the supported Au9 cluster on anatase under this range of treatments has a more 

varied electronic structure than Au101. Under milder treatments of 200 °C, the HB peak present at 85.3 eV 

indicates the presence of small clusters on the surface. The LB peak further indicates that a certain degree 

of cluster agglomeration has occurred, possibly due to exposure to light. Ozone treatment again results in 

the formation of gold oxide on the surface with a similar broad peak at 84.9 eV, although there is only one 

peak fitted to the Au9 spectrum as opposed to the Au101 treated by ozone which has a second LB peak at 83.7 

eV, indicating the presence of larger gold nanoparticles.  

  

Figure 74: Au9 on anatase treated under a selection of mild conditions A) Spectra and B) plot of peak 
positions and FWHM 
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In Figure 75, the photoelectron spectra of Au9 on anatase (0.17 %) conditioned under a range of 

mild treatments that are intend to perturb the ligand sphere are shown.  The toluene washed sample, which 

was refluxed in toluene for two hours, filtered and dried under reduced pressure, is done under similar 

conditions as the previously described toluene-wash on the acid washed titania. The spectrum is fitted with 

a single peak with a binding energy of 84.96 eV and FWHM of 2.34 eV, which indicates the possible 

formation of gold oxide, similar to the acid washed samples.80-82 Compared to the untreated sample there is 

significant peak broadening occurring. 

In the case of the mild calcination procedure, where the untreated sample was heated under vacuum 

at 100 oC for two hours under air, there is a slight shift of the HB peak from 85.2 eV (untreated) to 85.6 eV. 

There is also an increase of the FWHM to 1.42 eV for the HB peak. The second LB peak has increased to 

83.9 eV, which may indicate increased metallic nature of gold nanoparticles on the surface. This low 

temperature regime indicates again that the gold oxide particles forming. Gold (III) oxide readily 

decomposes at approximately 160 oC; these mild treatments which don’t come close to this temperature. 

Washing the calcined samples with toluene results in a significantly smaller gold 4f peak, which indicates 

gold has been physically removed from the surface of the anatase to the solvent. The main peak present in 

this sample is at 83.8 eV, indicating that the only gold present on the surface is agglomerated to form 

metallic gold nanoparticles.   
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Conclusions 

Investigations were conducted into chemically synthesised atomically precise gold clusters 

deposited on titania supports using photoelectron spectroscopy. Subsequent to their deposition onto titania 

support, the gold clusters have been treated with washing and calcination to remove the phosphine ligands 

from the gold cluster core. Photoelectron spectroscopy has been used as a tool to determine changes in the 

chemical nature, composition, and to estimate changes in the size of the gold clusters.  

On acid-treated titania supports, it was observed that the as deposited, untreated clusters remain 

virtually unchanged and can be described as ultra-small clusters with decreasing size from Au101 to Au8, as 

indicated by positions and widths of the gold and phosphorus peaks in photoelectron spectroscopy spectra. 

The peak positions in the gold photoelectron spectroscopy spectra shift systematically in agreement with 

the size of the clusters determined by x-ray diffraction immediately after their synthesis. 

Washing of the support-immobilised cluster with toluene at 100°C leads to the removal of a fraction 

of the clusters from the titania surface. Of those clusters left on the titania surface some remain virtually 

unchanged. The other fraction shows formation of Au-O bonds, most likely to the oxygen of the titania 

surface or the formation of gold oxide particles on the surface. No significant agglomeration or successful 

complete removal of phosphine ligands from the clusters could be inferred from observed photoelectron 

spectroscopy spectra.  

Heat treatment of the support-immobilised clusters has two effects. First, the ultra-small clusters 

aggregate forming slightly larger gold particles still protected by phosphine ligands. The average size of the 

aggregated clusters can be estimated to be marginally smaller than that of the untreated Au101. Second, a 

fraction of gold clusters forms Au-O bonds, most likely to the oxygen of the titania surface, which coincides 

with the loss of phosphine ligands and formation of oxidised phosphorous species. 

Immobilised gold clusters on non-acid treated anatase support results gold clusters that are more 

susceptible to agglomeration than the acid-washed titania supported samples as evidenced to the 

photoelectron peak similar to metallic gold. The peak positions in the gold photoelectron peak do not 

appear to be dependent on the cluster precursor as observed for the acid-washed titania samples. It was 

concluded that the samples are susceptible to photoinduced particle sintering; possible due to support 

induced oxidation of the triphenyl phosphine ligands.  

Calcination under oxygen and subsequent treatment under hydrogen at 200 °C leads to the gold 

photoelectron peaks that are more metallic gold in nature than was observed with the acid-washed 
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treatment under oxygen. In the case of the atomically precise gold clusters, a slightly less pronounced HB 

peak indicating a small amount of un-sintered gold cluster is present.   

A small range of alternative catalyst activation treatments were also investigated for the potential for 

decreasing the extent of cluster sintering. Further investigation with STEM would give a better idea about 

the presence of smaller sub nanometer clusters. HRTEM, as discussed previously, could only indicate the 

extent to which the small gold clusters have aggregated.    

Silica supported gold clusters were also studied but due to the extent of sample charging that could 

not be avoided , studies on this support proved fruitless. A range of sample preparation routes were 

discussed that decreased sample charging; however, charging was unable to be avoided.  As silica supported 

gold clusters have been shown to be of interest for oxygen-only oxidation of alkenes, solving the issue of 

sample charging is imperative. Other experimental routes such as NEXAFS/XANES should also be explored 

for their potential as tools to explore the electronic structure of silica supported gold clusters. 

Bridge 

Following this systematic electronic study of supported gold clusters and nanoparticles on titania 

supports, a series of catalytic studies will be detailed on the wide range of silica and titania catalysts.  
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Catalytic behaviour of supported gold 
phosphine clusters 

Objectives 

Oxidation of alkenes, either at the double bond or at the adjacent allylic positions, 

can be undertaken by using a wide range of oxidants, such as potassium permanganate, 

osmium tetraoxide, ozone, iodine, peroxy acids or ruthenium tetraoxide.1,2 Catalytic 

oxidation of organic compounds using many transition metals as catalysts has been known 

for over a century.2 The selective, partial oxidation of organic substrates is an important 

chemical transformation for production of both bulk and fine chemicals. The more efficient 

and environmentally benign reactions are increasingly being sought after due to the ever 

increasing costs for the production of organic molecules.3 New catalytic routes to common 

reagents and to novel chemical products are being investigated with a focus on their 

commercial viability, as rising costs of commodities and starting materials is making well-

established and commonly used by industrial routes less profitable. Since the earliest reports 

by Haruta of the potential of supported gold nanoparticles for the oxidation of carbon 

monoxide and subsequent reports of selective partial oxidation using gold catalysts, the use 

of gold for oxidation of organic compounds has increasingly drawn more attention.4,5 

In this chapter, supported gold phosphine clusters were examined for their 

effectiveness for the partial oxidation of styrene under selected catalytic conditions. Each 

catalyst was investigated under various conditions of oxygen and/or the radical initiator tert-

butyl hydrogen peroxide (TBHP). Our early experiments were focused on the development of 

robust and reliable methodology for oxidising alkenes in the liquid phase. Partial oxidation 

of styrene was chosen as an ideal model reaction to compare the reactivity of a large series of 

novel catalysts based on phosphine stabilised gold clusters and colloids. Styrene provides a 

range of challenges as a substrate in the catalytic oxidation, such as the control of product 

selectivity, due to wide of range of possible oxidation products.6 

  

6 
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In the following pages, I will endeavour to discuss how the catalytic methodology was 

developed initially and then discuss the catalytic results under the standardised system. The 

comparison to the literature will be in general limited to heterogeneous systems that involve 

a metal oxide support. This chapter will attempt to: 

 Illuminate the reactivity of supported gold clusters under three distinct catalytic 

conditions 

 Compare the reactivity of gold clusters on two contrasting support materials (support 

effect) 

 Compare the reactivity of catalysts made using gold clusters with of different 

nuclearity (size effect) 

 Compare the effect of different catalyst activation methods on the reactivity 

(activation effect) 

 Relate the electronic structure of the supported clusters to the observed reactivity. 

Introduction 

Alkene oxidation reactions are important chemical transformations in the laboratory, 

as well as in the chemical industry. Alkenes are often viewed as having latent functionality, 

which can be revealed under the right reaction conditions, at the appropriate stage during a 

multi-step process, with the desired functionality.7 One of the issues encountered in alkene 

oxidation reactions is the control of product selectivity, and often, the reaction can involve 

stoichiometric amounts of reactants. In the fine and bulk chemical synthesis,8 there is a 

significant demand for various terminal alcohols that can be formed from alkenes which is 

termed anti-Markovnikov alkene hydration. A common method for forming terminal 

alcohols involves hydroboration/oxidation which generates hydration products with anti-

Markovnikov regioselectivity.9 This is a two-step process which requires stoichiometric 

amounts of borane reagents and generates boron-containing waste that is difficult to recycle. 

Furthermore, the peroxides used in the oxidation step raise safety and environmental 

concerns for large-scale industrial production. Most recently, Dong et al. have demonstrated 

a combined catalytic system that yields anti-Markovnikov alkene hydration products, which 

is based on a two-catalyst cooperative system involving an palladium-catalysed oxidation 

cycle followed by a reduction cycle enabled by ruthenium-based catalyst.10 
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Epoxidation 

 

Epoxides are commercially important class of chemical intermediates in the 

production of a wide range of fine chemicals via various metal-catalysed oxidations of 

alkenes. They can easily be transformed in to a large variety of compounds by regioselective 

ring opening reactions.11 Catalytic epoxidation of alkenes in the presence of molecular 

oxygen and hydrogen peroxide has attracted a lot of attention in recent years, due to the 

possible elegant and environmentally benign routes to a wide range of compounds.2 The 

environmental benefits are mainly due to the high content of active oxygen in hydrogen 

peroxide and comparably few toxic by-products (water as the primary by-product in the case 

of hydrogen peroxide). Currently, one of the most common industrial routes for the 

production of simple epoxides is the chlorohydrin process, which is used to produce epoxides 

such as propylene oxide by the reaction with chlorine in the presence of sodium hydroxide (

 

Figure 76). Typically for each tonne of propylene oxide produced there are two tonnes 

of sodium chloride and 0.1 tonnes of 1,2-dichloropropane produced as by-products.2 Due to 

such large quantities of by-products being produced, greener methods for epoxidation of 

alkenes are being investigated as replacement for such inefficient industrial processes such 

as the chlorohydrin process and other stoichiometric methods. 

 

 

Figure 76: The chlorohydrin process for the production of epoxides. 
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In recent decades, a range of new methods involving various early transition metals 

have shown great potential as selective oxidation/epoxidation catalysts. In certain cases, new 

routes to propylene oxide which involve a TiIV/SiO2 heterogeneous catalyst (TS-1), using 

ethylbenzene hydroperoxide as an oxidant, have been incorporated into new industrial 

plants.2,12 The latest generation of propylene oxide production plants are based on hydrogen 

peroxide as an oxidant or on recycling of cumene by the reduction of the co-product, cumyl 

alcohol with hydrogen concurrently. Direct epoxidation of propene with oxygen and 

hydrogen by heterogeneous gold catalysts is a promising process for propylene oxide 

synthesis, due to the simplicity of one-step reaction in gas phase.13-15  

 In parallel to the recent developments of heterogeneous epoxidation, asymmetric 

homogeneous catalysts have been improved significantly. Organometallic complexes with 

titanium (IV) and vanadium (V) have proven to be very selective for the epoxidation for a 

wide range of allylic alcohols. The Sharpless-Katsuki asymmetric epoxidation catalyst system 

is a well-known and historically significant catalyst, which proceeds via a dimeric 

organometallic complex from titanium isopropoxide in addition with a tartrate ester.16 Tert-

butyl hydroperoxide is used as an oxidant during this process, as it is relatively safe and 

facile to use at the lab scale and improves the selectivity for the epoxide product.17 Recently, 

there have several further developments with similar vanadium complexes containing chiral 

salen ligands, which have demonstrated improved reactivity for a wider range of substrates, 

enhanced enantioselectivity and greater tolerance of water to such an extent that aqueous 

tert-butyl hydroperoxide can be used.18 19 

Although these homogeneous catalysts have found great use for synthesis of various 

fine chemicals on a relatively small scale, homogeneous catalysts suffer from a common 

problem – difficulty in separating catalyst and products, which leads to poor recycling of the 

catalyst material, contamination of products. Support immobilisation of homogeneous 

catalysts has been attempted through ion exchange, adsorption, covalent linkage, 

encapsulation, and substitution, depending on the nature of the metals and supports.20 Some 

of these immobilized homogeneous systems have displayed significant disadvantages, such 
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as rapid loss in activity after immobilization, leaching of the catalytically active species, poor 

thermal stability, and poor recyclability. 

The catalyst, either homogeneous or heterogeneous, in essence has two distinct 

functions: 

 To generate the necessary active oxygen species for the desired reactivity 

 To activate the organic substrate towards the desired product(s) 

To tune these two separate aspects independently has proven difficult. 

It was shown by DFT calculations that small gold clusters (Au13, Au55) can readily 

adsorb molecular oxygen; however, the activation of oxygen was shown to be difficult. The 

generation of the active oxygen species was shown to occur at the junction of the small gold 

clusters and the metal oxide supports.24 Many gold-titania catalysts have gold particle sizes of 

2-5 nm which have similar electronic properties to bulk gold; hence, the activation of oxygen 

does not occur. Recent studies have shown that small ligand stabilised gold cluster supported 

on silica were active for the oxidation of styrene and other organic compounds with only 

molecular oxygen.21,22 

The following section will provide a detailed summary on the current state of the 

selective partial catalytic oxidation of alkenes in the liquid phase by gold-based catalysts and 

other related catalyst systems, as the vast majority of the reported examples of gold-

catalysed alkene oxidation have been achieved using heterogeneous catalyst systems.23 Since 

the initial discovery of the catalytic activity of gold nanoparticles supported on metal oxide 

supports by Haruta et al., gold-based heterogeneous catalysts have become increasingly 

important.24 The potential of supported gold catalysts for the liquid phase oxidation of 

organic compounds has only been demonstrated in the last decade. Finally, it should be 

noted that there have been several very recent examples of unsupported gold nanoparticles 

being catalytically active for several reactions.25-27 

Hughes et al. demonstrated that gold nanoparticles supported on carbon can be used 

for alkene oxidation and that under the right conditions the epoxide product can be 

generated in significant yields.28 This study focused on the nanocrystalline gold with a broad 

particle size distribution (5- 50 nm), which was prepared by the reduction of tetrachloroauric 
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acid on a graphitic support in the presence of formaldehyde. This study focused on the 

oxidation of cyclohexene with various metal loadings (0.5 and 1 wt. %) of the Au/C catalyst. 

When the oxidation of cyclohexene was carried out in polar solvents (water, methanol, and 

tetrahydrofuran), the reaction yielded only the total oxidation products, such as carbon 

dioxide, formic acid and oxalic acid. Although conversions were much lower for the 

methanol and tetrahydrofuran systems as opposed to the aqueous system in which full 

conversion of the cyclohexene was observed. Following on from these results, a wide range of 

nonpolar solvents were employed which showed significantly improved selectivity for C6 

products. Typically, conversions of around 10-30 % were achieved with moderate selectivity 

for C6 products. It was also shown that for the reaction to take place an initiator is required 

(either hydrogen peroxide or tert-butyl hydrogen peroxide). The highest selectivity for the 

cyclohexene oxide product (50%) was observed when aromatic solvents i.e. 1,2,3,5-

tetramethylbenzene was used in combination with 1% Au/graphite as the catalyst. The strong 

solvent effect in such catalytic processes was later re-emphasised in the work by Valarie 

Caps, which showed that for the world gold council standard Au/TiO2 catalyst the increase  

in the number of methyl groups within the structure of aromatic solvent can significantly 

increase the reactivity due the proposed radical type mechanism.29 Further work by Hughes 

et al. showed that the initial product formed was the epoxide with other products being 

formed due to subsequent oxidations of epoxide.28 Kinetic isotope studies, in which 

deuterated toluene was used, did not show any significant change in the rate of the reaction, 

which indicates that nonpolar solvents similar to toluene do not participate in the rate 

determining step of the reaction, by acting as sacrificial source of hydrogen. This contrasts 

significantly with the need to use sacrificial hydrogen in the gas phase oxidation of carbon 

monoxide and propene.13 Furthermore, Hughes et al. highlighted the sensitivity of gold-

based catalysts to the presence of dopants.28 The addition bismuth, as bismuth nitrate, to the 

catalyst was shown to significantly increase the yield of C6 products (97.8%). Even with 

approximately 60 % loss of the bismuth dopant after the first run of the experiment, the 

catalyst was shown to be similarly effective over multiple runs. This observation emphasising 

that even tiny amounts of dopants can have a significant effect on selectivity of a catalyst. 

Gold supported on titania has become the prevalent system for the studies on alkene 

oxidation in both the gas and liquid phase. Titania supports have been known to have a 
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much more noticeable electronic interaction with metal nanoparticles, which contrasts 

significantly with the inert carbon supports previously discussed. Caps et al. provided the 

first detailed proposal on the reaction mechanism for the oxidation of trans stilbene by the 

world gold council reference gold-titania catalyst.29 The world gold council reference catalyst 

consists of gold nanoparticles supported on P-25 titania, prepared by precipitation-

deposition method, with a gold loading of 1.5 % , a mean particle size of 3.9 nm ( ± 1.5 nm).30 

This stereoselective epoxidation of stilbene in the presence of 5 mol % of TBHP yielded 53 % 

of the epoxide product in the methylcyclohexane (MCH) solvent. Use of other solvents was 

also explored but did not result in improvement of the catalysts’ selectivity, when compared 

to MCH. A free radical chain mechanism was proposed to explain the observed reactivity, in 

which the MCH peroxy radical is generated by hydrogen abstraction involving the gold 

nanoparticles. Further work by Caps et al. has also highlighted the importance of the support 

structure (i.e. porocity, chemical functionalities at the surface) and the effects of various 

preparative procedures, mentioned in chapter 4 on the effectiveness of the gold based titania 

catalysts.31,32 Citrate functionalised titania nanocrystallites were investigated for their 

effectives for the oxidation of stilbene, and the studies highlighted the importance of surface 

fuctionalisation of the titania support.31 

Earlier work by Patil et al. investigated the selective oxidation of styrene by several 

gold - titania catalysts prepared by several modified deposition-precipitation methods. The 

gold loading varied significantly from 1 to 6 %, with relatively large particle sizes (5 to 20 

nm) depending on the gold loading and preparation. TBHP was used as the active oxygen 

source, yielding moderate amounts of the styrene oxide product.33,34 As the large amounts 

TBHP were used in this system, there is very little need for small particles of gold for high 

catalytic activity, when compared to the previously described systems. With improved size of 

control of the gold particles, by decreasing the gold loading, it may be possible to decrease 

the mean particle diameter and improve reactivity significantly. 

Turner et al. reported the first cluster-based gold catalyst systems supported on silica 

and BN being employed in the liquid phase oxidation of styrene.21 Gold phosphine cluster, 

Au101, was deposited on fumed silica and also boron nitride, and heat treated at 200 °C. The 

gold loading for these systems was approximately 0.6 % by weight of gold, with an average 
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gold particle size of 1.7 nm. These cluster-based gold catalysts show surprising reactivity for 

styrene oxidation, in toluene with only molecular oxygen being used as the source of oxygen. 

The gold cluster based catalysts showed conversion of around 20-30 % with high selectivity 

for the benzaldehyde product. It is postulated that the main product is the epoxide, which is 

then further converted to other products. Comparisons between other gold nanoparticle 

preparations which generate increased particle sizes, such as the PVP-stabilised gold 

nanoparticle (3 nm), microemulsion (4 nm) and incipient wetness (≥ 30 nm) were also 

conducted. These catalysts showed little to no reactivity compared to the cluster-based 

catalysts under similar conditions. Previously, there have only been a handful of examples of 

supported gold catalysts on silica, and these examples have often required other sources of 

active oxygen. Some of the earliest examples of gold catalysis were of the hydrogenation of 

various alkenes and aromatic substrates by gold-silica catalyst, which showed moderate 

activity at high temperatures and pressures.35 However, the catalysis potential of silica 

supported gold catalysts has largely been ignored when compared to the success of the 

titania supported gold catalysts pioneered by Haruta. 36,37 It should be highlighted that in 

this study the loading of gold on the support material is only 0.6 % as compared to the World 

Gold Council (WGC) reference catalysts, which are much higher loaded and have larger 

mean gold particle diameter e.g. WGC AU-TiO2 (1.5 wt. % of gold, 3.9 nm ±1.7nm) WGC Au-

Fe2O3(4.4 wt. % of gold, 4.0 nm ±0.9 nm), WGC Au-C(1 wt. % of gold, 10 nm ±0.9 nm).38 

Recently, several gold cluster-based catalytic systems have been developed on silica 

supports and investigated by Rongchao Jin. Since the biphasic alkane thiol method for the 

preparation of gold nanoparticles with tuneable size and functionality, a wide range of 

thiolate stabilised gold clusters have been prepared.39,40 Various supported gold thiolate 

clusters were studied for reactivitity in the presence of oxygen, catalytic amounts of tert-

butyl hydroperoxide (TBHP), and excess amounts of TBHP.41 The catalysts used in these 

studies were prepared by stirring a solution of the gold thiolate clusters (i.e. 

Au25(SCH2CH2Ph)18, Au38(SCH2CH2Ph)24, Au144(SCH2CH2Ph)60) in a slurry of fumed silica in 

dichloromethane. The samples were subsequently activated at 200 °C under vacuum. HR 

TEM analysis of the supported gold sample was unable determine exact particle size, due to 

the small cluster sizes and distinguishing from the silica support. A size effect was observed 

where the smaller gold thiolate clusters were more effective for the conversion of styrene 
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with only molecular oxygen; whilst in the presence of catalytic amounts of TBHP much 

higher reactivity was observed in all cases. The size of cluster appears to have less of an effect 

in the presence of TBHP. The effect of  calcination under vacuum was also investigated and 

shown to increase the reactivity of the silica supported gold clusters by approximately 6-10 % 

for the two smaller clusters, whilst in the case of the larger Au144(SCH2CH2Ph)60,  the 

reactivity decreased. Observed drop in reactivity was explained by  the Au particle sintering 

which has decreased the ability of the cluster for oxygen activation. Three different catalytic 

methods were also compared for all the clusters, where the order of reactivity was TBHP only 

> Catalytic amounts of TBHP with O2 as a main source of oxygen > oxygen only. 

The proposed mechanism for the selective oxidation of styrene by gold thiolate 

cluster in all three systems goes by the common peroxo intermediate Au25-O2 species, which 

is generated in all systems (i.e. TBHP, TBHP/O2, O2), shown in Figure 77. Existence of such  

peroxo species was suggested by several computational studies of these catalysts in the gas 

and liquid phase.42 The activation of the oxygen is assumed to occur due to the electron rich 

Au13 core, and the Au12 shell which also activates the styrene nucleophile. Subsequent 

rearrangements and dissociation of the intermediates leads to three different possible 

products that were seen in the reaction.41,43 It should be noted that the proposed mechanism 

for this gold thiolate clusters assumes that no cluster sintering occurs, ignores the effect of 

the silica support and the fact that larger particles of gold have been shown to oxidise styrene 

in several previous reports.34,44,45 
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Figure 77; Proposed mechanism for the oxidation styrene by gold thiolate clusters 
reproduced from reference 41 

 

Tsukuda et al. has recently shown that gold thiolate cluster immobilised on a 

hydroxyapatite support as a catalyst could lead to high conversions of styrene with high 

yields of the epoxide product using a high excess of anhydrous TBHP as the oxidant.46,47 It 

was proposed that the hydroxyapatite could be an ideal support material for the gold thiolate 

cluster (Au25), due to the strong electrostatic interaction of the cluster with the PO4
3- moiety 

of the support which could prevent sintering of the cluster on the support. Specifically, 

catalytic reactions were conducted using 0.5 wt. % Au loaded sample of the gold cluster on 

the hydroxyapatite support, which was calcined at 300 °C under vacuum for two hours 

resulting in formation of Au particles with dimensions of between 1.2–1.5 nm according to 

HRTEM data. The oxidation of styrene was conducted in anhydrous tolunene and TBHP in 

test tubes at 80 °C. Dry toluene was shown to be essential for high yields of the epoxide 

product. Importantly, oxidation of toluene to benzaldehyde was also observed. The geometry 

and electronics of various modified supports were also shown to have an influence on the 

product selectivity. Further work in the presence of only molecular oxygen showed similar 

reactivity when compared to the gold phosphine cluster supported on silica.21 
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In contrast to this “smaller is better” idea for gold catalysis, Lambert et al. also 

highlighted that if nitrogen dioxide can also be used as the source of active oxygen for alkene 

oxidation reactions.48 The authors were able to show that larger gold nanoparticles can 

catalyse the oxidation of styrene in the presence of nitrogen dioxide under mild conditions in 

toluene (100°C). Gold nanoparticles were prepared by a microemulsion technique and then 

deposited on to carbon support, which ensured that little or no support interaction as 

influencing the reactivity. The supported gold particles were dried at 85°C, the particle size 

was shown to be between 10-25 nm (σ = 16 nm). Under similar reaction conditions, it was 

shown that the large gold particles were not catalytically active towards oxidation of alkenes 

with oxygen alone, but under a 2 % nitrogen dioxide atmosphere moderate conversion of 

styrene with moderate selectivity towards the epoxide product was observed. 

In summary, selective partial oxidation of styrene and related alkenes was catalysed 

by a range of supported gold nanoparticles in the liquid phase. A wide range of factors have 

been shown to influence the activity and product selectivity: 

 Oxidant source 

 Gold particle size 

 Gold loading 

 Support type and morphology 

 Activation treatments 

 Reaction conditions 

In the case of gold catalysts, using molecular oxygen as oxidant necessitates the 

design of catalysts with precise particle size of less than 1.5 nm, with better control over 

nanoparticle sintering, and a well understood support material than enhances selectivity of 

the formation of desired products. To date, it has been shown that there is a lot of potential 

for gold-based systems for the liquid phase partial oxidation of various alkene substrates. 

However, achieving precise control over morphology of model catalysts remains a major 

challenge. Hence, understanding of the activity and selectivity of these systems has proven 

elusive. 
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Experimental  

I. Catalytic batch reactors 

There are a wide range of methods available to assess the properties of new catalysts, 

such as continuously stirred tank reactors (CSTR), fluidised bed reactors and gradient free 

recycle reactors, which can be used for gas or liquid phase investigations.49 CSTR and 

fluidised bed reactors are ideal for further development of promising catalysts. Fluidised bed 

reactors are ideal for multiphase chemical reactions, where components from different 

phases undergo transformations at the surface of a solid, heterogeneous catalyst.  

 

The initial focus of this research project was to develop various batch reactors in 

which a wide range of catalysts that were produced in our laboratory and obtained from 

various collaborators could be compared comprehensively against each other. A batch 

reactor typically consists of sealed vessel, a method to stir or agitate the solution or 

suspension and a source of heat, usually with a feedback loop temperature control. Due to 

mass transfer limitations, the rate of stirring can significantly affect the activity of the 

catalyst, which needs to be suspended evenly throughout the solution.  

Figure 78; Schematic representation of A) continuously stirred tank reactor and B) fluidised bed reactor 
A B 



Chapter 6— Catalytic behaviour of supported gold phosphine clusters 

164 
 

A Parr mini reactor series 4835 was inherited by our research group which was 

equipped with a digital pressure readout, isomantle heater controlled using internally 

submerged thermocouple using programmable digital temperature controller. The Parr 

reactor was modified in house to improve stirring rates from a maximum of 900 rpm to a 

calculated maximum of 1750 rpm. The reactor was connected to the in-house built gas 

manifold system which allowed a selection of gases (O2, H2, CO, C2H4) to be used during 

catalytic testing and running reactions under constant pressure using constant top-up mode. 

The reactor was made of type 316 stainless steel, which was corrosion resistant, but contains 

small amounts of nickel and chromium; hence, Teflon reactor cups were made and fitted for 

the reactor vessel with an aim to ensuring reproducibility of obtained results, due to better 

washing, avoiding cross-contamination and poisoning effects.  

Sealed batch pressure reactors were produced in house using 316 stainless steel, 

comparable to the Parr reactor design. These were also fitted with Teflon liners, stirred 

magnetically with good control over stirring rate up to 700 rpm using normal magnetic 

stirring bars or up to 1200 rpm using rare-earth containing magnetic stirring bars. These 

reactors were heated using hotplate-stirrers with temperature control via feedback loop 

involving internally submerged thermocouple and microprocessor driven temperature 

controllers which allowed maintaining target temperature with precision of 1 °C. Glass batch 

reactors were used for ambient pressure experiments to increase productivity, which 

involved several iterations to optimise this system to achieve reproducibility. Our first design 

of catalytic testing system involving glass batch reactors involved a two-necked round 

bottomed flask (RBF) fitted with a jacketed condenser which had extra internal water-cooled 

spiral, with the gas flow introduced directly into the stirred liquid through the second neck 

via Pasteur pipette in the first instance. Later, a glass inlet tube fitted with a silica frit was 

used for better dispersion of gas. The outlet bubbler was connected to the top of the 

condenser to monitor flow. The oxygen gas was then slowly bubbled through the solution of 

the substrate (ca. 1 mL per min) with an aim to improve the oxygen saturation in the solvent 

(i.e. toluene).50 These systems were heated using oil baths on hotplates with digital control of 

the temperature with precision to 1 °C. Once increased numbers of hotplate-stirrers were 

available, parallel catalytic tests were conducted. Ensuring that the gas flow was consistent 

for each glass batch reactor proved difficult as multiple reaction vessels were connected to a 
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single gas cylinder.  However, it was found that the loss of solvent at elevated temperatures 

and high stirring rates was a significant issue to be aware of - in certain cases five to seven 

grams (out of total of 16.9 g) of solvent was lost. Attaching bubbler filled with limewater 

allowed to perform a qualitative check for carbon dioxide to prove that total oxidation of the 

reaction mixture was not occurring. Despite improving the seal at the ground glass joints, 

solvent loss remained an issue that kept recurring. After this method was abandoned, the gas 

inlet was moved to the top of the jacketed condenser connected to a single necked RBF, 

ensuring that the vessel was charged with an adequate supply of oxygen. Issues with slight 

solvent loss still reoccurred, which was assumed to be due to the elevated temperatures and 

high stirring rate. Eventually, it was found that Schlenk tube connected a vacuum double 

manifold proved adequate for running catalytic testing 

II. Materials 

Styrene (99.9 %, ReagentPlus®), cyclohexene (99.9 %, ReagentPlus®), cyclohexane 

(99.9 %, ReagentPlus®) were purchased from Sigma Aldrich. Styrene was filtered through 

activated basic alumina to remove the tert-butyl catechol inhibitor prior to use. Toluene 

(HPLC grade) was dried using an in-house solvent drying system which was fabricated by 

Nick Oliver according to literature methodology.51 Tert-butyl hydrogen peroxide (TBHP) was 

used in later experiments as a source of activated oxygen. TBHP was purchased as Luperox® 

70 % solution in water from Sigma Aldrich, and was then further purified by azeotropic 

distillation using a Dean Stark apparatus to yield an anhydrous solution of TBHP in toluene 

with a concentration no greater than 4 M. The exact concentration was estimated using 1H 

NMR.17 All gases are of instrument grade (99.9+ %) and were sourced from BOC. All 

glassware was cleaned in a caustic base bath consisting of potassium hydroxide in 

isopropanol/water (2:1), followed by washing in aqua regia, subsequently washing in 

distilled water and acetone, and finally dried in a glassware oven at 120°C or above 

overnight. 

III. Experimental procedures 

A 60 mM stock solution of styrene in toluene was prepared on a 500 mL scale. The 

stock solution was found to be stable from polymer formation due to the low concentration 
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of styrene in toluene and was stored at 4 °C in the absence of the catechol inhibitor in the 

refrigerator. 

Oxygen only reactions 

Stainless steel sealed pressure vessels were used for the catalytic tests under mild (5 

bar) pressures of oxygen. Several modified versions of the mechanical stirrer attachment 

used in Parr reactor system were designed and fabricated in house to ensure homogenous 

stirring of the reaction. PTFE cups were also designed and made in house to minimise 

contamination of the reactor by the variety of catalysts investigated. Initially, the reactor 

cleaned vigorously by sonication with surfactant, scrubbed and then polished on a lath. The 

inlet ports and mechanical stirrer were disassembled for further cleaning. The reactor was 

tested for leaks and blank reactions were conducted to ensure that the catalyst 

contamination was eliminated.  

Between catalytic runs, the detachable body of the Parr reactor was cleaned by 

sonication with surfactant and subsequent copious washing with distilled water and acetone, 

followed by drying in air. The stirrer was detached from the reactor head and cleaned by 

sonication and solvent washes as described above. The PTFE cup was cleaned by sonication 

and solvent washes as described above. 

In a typical catalytic test a PTFE liner was charged with a solution of styrene (60 mM, 

20 mL) in toluene and the appropriate catalyst (100 mg ± 1 mg). The PTFE cup was then 

loaded in to the Parr pressure vessel and Parr reactor was assembled and sealed to ensure no 

loss of solvent or oxygen for the duration of the reaction.  The vessel was first purged with 

argon (40 psi) three times whilst being stirred at a rate of 500 rpm. The reactor was checked 

for leaks by sealing the vessel with ca. 400 psi of argon and monitoring the digital pressure 

readout for any pressure change over a ten minute period. Subsequently, the vessel was 

vented, flushed three times with oxygen (75 psi) each time keeping a fresh potion of oxygen 

for a total of five minutes and then charged with oxygen at a pressure of 75 psi (5.1 bar). 

Once the reactor has been sealed with oxygen, the system was heated to 100 °C while stirring 

at a rate of 500 rpm. Once the reactor has reached the target temperature, the reaction 

mixture was stirred at 1000 rpm and left for 18 hours (typically, overnight). After this period 

the stirring was stopped and the heating mantle was removed and replaced with an ice-water 
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bath in order to ensure complete condensation of liquid inside the reactor prior to venting. 

Once the temperature has reached 20 °C, the reactor was vented, dismantled and the PTFE 

cup was removed. The reaction mixture was then centrifuged in a 50 mL falcon tube (PET) 

and the supernatant was stored at 4 °C (if required) prior analysis by gas chromatography. 

The washed and dried sample of a catalyst after reaction was stored at room temperature in a 

glass vial wrapped in tin foil for further analysis. 

Catalytic amounts of tert-butyl hydroperoxide 

Styrene solution (60 mM, 20 mL) was added to Schlenk tube containing magnetic 

stirrer bar and connected to a vacuum double manifold (Schlenk line), 5 mol. % (relative to 

styrene) of the TBHP  (15 mg) as solution of known concentration in toluene was also added 

to the reaction flask. The flask was sealed, purged three times by vacuum/oxygen cycle and 

charged with oxygen under atmospheric pressure, whilst a stirred oil bath was preheated 

heated to 100 °C. Once the oil bath reached target temperature and stabilised the catalysis 

sample (100 mg) was quickly added and the Schlenk flask was lowered into the oil bath and 

stirred vigorously at 1000 rpm for 18 hours under an oxygen atmosphere. The Schlenk flask 

was lowered sufficiently that the oil bath heats all volume of the reaction mixture and that 

the stirring was stable and continuous. To prevent any possible solvent loss, the reaction 

vessel was additionally sealed using Teflon tape. Once the reaction was completed, the 

reaction mixture was cooled in an ice bath and the sample was then centrifuged as soon as 

possible.  The supernatant is stored at 4°C for analysis by gas chromatography, whilst the 

catalyst is stored wrapped in tin foil for further analysis. 

Excess tert-butyl hydroperoxide 

The reactions in which TBHP was used as the primary source of active oxygen, the 

procedure was similar except the quantity of TBHP added was increased to 600 mg, which 

ensures the molar amount of TBHP was 200 % rather 5% of styrene. 

IV. Analytical techniques 

Gas chromatography (GC) was the technique of choice for the analysis of the reaction 

mixtures, which can be used for the separation and analysis of a wide range of volatile 
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compounds. Gas chromatography is a separation technique in which the components of a 

sample are distributed between two phases. One of these phases is a stationary bed with a 

large surface area and the other phase is a carrier gas that flows through the capillary column 

containing stationary phase. A sample is typically injected via the pre-heated injection port 

where it is vaporised and subsequently carried by the carrier gas phase (Helium) through the 

high surface area stationary phase or column. The different components of the sample 

equilibrate independently into the liquid (stationary) phasewhich is dependent on the 

temperature of the column at any given time. The components separate along the column 

due to differences in their relative vapour pressures and their different affinities for the 

material of stationary column.  

 

Figure 79; Schematic diagram of a gas chromatograph 

There is a wide range of detectors that are used for the detection of various analytes. 

The flame ionisation detector (FID) was used for quantitative analysis of reaction product 

mixtures in the reported here study. The detection using mass spectrometer (MS) was also 

used for samples that generated unknown products.52 The FID detector is a popular detector 

that ionises the analytes to generate a signal.  The analytes are typically burned in a small 

oxo-hydrogen flame (temperature) producing ions. These ions are collected and form a 

current that is used as the output signal. In the absence of an analytes the ionisation is 

negligible and is typically derived from traces of impurities (due to previous usage) eluted by 

the carrier gas from the column and from the impurities in the carrier gas and gasses used to 

generate flame. Low ionisation in the absence of analytes gives rise to an excellent flat 

background. 
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The injection port immediately before the FID detector was kept at 270 °C, to prevent 

the condensation of water and of high boiling analytes. FID is a very sensitive detector, (min 

detection sensitivity of ≈ 50 ppm) which is ideal for the detection of all organic compounds 

which burn in the oxo-hydrogen flame. The FID signal is proportional to the carbon content 

in the analyte, which gives the detector a large window of analyte concentrations within 

which the concentration of analyte is related to the peak area in a linear fashion. 

Table 7; Summary of the optimised settings for the Shimadzu GC-2010 for analysis of 
styrene reactions 

Inlet Column Detector 

Temperature 270 °C 
Restek Rxi -5sil-5ms 

30 m, 0.25 ID, 0.25 µm film thickness 
Flame Ionising Detector (FID) 

Injection 

Volume 
1 mL 

Column Flow 1 mL/min Temperature 270 °C 

Carrier Gas Helium Column Temperature Sampling time 280 mS 

Split Ratio 100 Temp. Initial 95 °C – 3 min Hydrogen 40 mL/min 

Purge flow 5 mL/min Ramping rate + 20 °C per min Air 400 mL/min 

  Temp. Final 250°C – 20 min Helium 30 mL/min 

 

The signal generated is a distribution or peak whose shape is approximated as being 

Gaussian or normal in ideal circumstances. When the peak presents with non-symmetrical 

shapes, this can indicates there is an undesirable interaction with the stationary phase (fused 

silica in the Restek Rxi -5sil-5ms column). Peak broadening typically indicates that the mass 

transfer through the column is too slow. The shape of the peaks for the key components of 

the reaction mixture were optimised so that all of the peaks of interest were as symmetric as 

possible by carefully selecting the temperature profile of the gas chromatography oven, flow-

rates of carrier gas, injection temperatures and volume of sample analysed. . 

Table 7 gives values of the key parameters which were used on the Shimadzu GC-

2010- FID giving rise to the optimum peak shape and separation. All of the key components 

of the reaction mixtures eluted within 10 minutes. However, several catalytic samples 

contained some much larger products that eluted much later compared to the typical low 

molecular weight partial oxidation products of styrene. Although exact chemical nature of 

these fractions remains elusive one could hypothesise that these are oligomers of styrene 

and/or highly functionalized with hydroxyl- or carboxy-functional groups molecules. As a 
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result, the gas chromatography method was adapted to include a period of temperature 

ramping to 250 °C, which resulted in the detection of several fractions corresponding to 

larger polyarene products. These heavier products were detected only very occasionally, yet 

the additional high temperature ramp was used to ensure that the column remained clean of 

any organic compounds. Column conditioning was undertaken after analysis of every 

hundred samples to ensure that the column performance was consistent.  

Table 8: Summary of retention times for analytes of interest 

 

 

Quantification by GC-FID 

The magnitude of the signal generated by FID detector is proportional to the amount 

of analyte that is burned, which allows gas chromatography to be employed for quantitative 

analysis. Multiple methods are available for quantitative analysis by GC, such as 

normalisation of peak areas, use of internal standard and external standards etc. Early 

quantitative analysis of the reaction mixtures was performed using external standard 

method, where a known amount of a standard is added to known volume of reaction mixture 

collected after the catalytic test was finished. Later quantitative analysis of the reaction 

mixtures was performed by the internal standard method, where a known amount of a 

standard is added to each reaction mixture (usually as part of the stock solution of styrene) 

before the start of reaction. Several calibration mixtures with known amounts of the 

reactions products were prepared with the internal standard and analysed in parallel to the 

reaction mixtures. This allows accurate quantification of the amounts of products contained 

in the reaction to be determined by plotting the ratio of the peak area of the product and 

internal standard against the concentration. Decane was used as an internal standard 

because it was eluted with a similar retention time as the key products but was not consumed 

during the catalytic reaction. Another benefit of using internal (cf. external) standard was 

Compound Styrene Benzaldehyde Decane Benzyl OH Styrene 

oxide 

Acetophenone Benzoic 

Acid 

Retention 

Time minutes 
3.93 5.22 6.03 7.17 8.09 8.58 18.01 
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that the solvent loss that affected the early reactions could be observed easily by comparing 

the ratio of the areas of the solvent vs. internal standard peaks in calibration samples and in 

samples after reaction. 

It was found that the area normalisation method was sufficient to calculate the 

conversion of styrene and yields of each product. This calculation is based on the assumption 

that the percentage of the area of a peak is equal to the weight percentage of the analyte. This 

methodology is semi–quantitative, but due to the similarity of the response factors of each of 

the main products produced yields similar results to the internal standard method that was 

also used initially.  

   
  

∑(  )
      

Equation 5; Area normalisation calculation for product  X, Ax is the area of peak X , which 
divided by the total area of all products  

This method for this series of reactions proves reliable because: 

 All products are eluted 

 All products are detected 

 All products have similar response factors  

A more reliable method than the area normalisation procedure is to obtain the 

relative response factors, f, which eliminates any issues arising from variations in response 

factors. This procedure involves the use of a standard to which the response factors of all the 

products are compared to enabling precise calculation of relative response factors for each 

product. 

       (
  

  
) (

  

  
) 

Equation 6; Equation for calculating the relative response factor (fx) of compound X, 
where fs is the response factor of the standard, As and Ax are the areas of the standard and a 
product and Wx/Ws is the weight ratio of a product to the standard. 
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To calculate the yields of each product in a reaction sample, the peak area is 

multiplied by its corresponding relative response factor and then the percentage yield is 

calculated in s similar fashion to area normalization method discussed before.  

   
    

∑(    )
      

As similar product yields were being achieved by the area normalisation method the 

internal standard method for quantifying the amount of products was not employed. Decane 

was constantly used as an internal standard for the ensuring the solvent loss due to leaks was 

monitored.  

Quantification by gas chromatography is a well-known, reliable technique for the 

analysis of wide range organic compounds. To ensure that the results are repeatable and 

reliable, each sample was analysed three times. It was found that although the peak areas did 

vary by up to 5 % in consecutive analyses  of the same sample (suggesting that the injection 

volume was controlled to about this level) the relative amounts of the target products varied 

only marginally (< 1 %). Weekly column conditioning and injection port maintenance was 

carried to ensure that the sample repeatability was guaranteed. Calculating the yields of each 

compound with relative response factors requires that the standard sample is run in parallel 

to the catalytic samples. 

V. GC-MS 

GC-MS seperates organic components of the reaction mixture in the same fashion as 

GC-FID; however, rather than detecting organic components by burning the sample in a 

hydrogen–oxygen flame, the sample is identified by a quadrupole time of flight mass 

spectroscope, allowing the products of the reaction sample to be identified by their mass 

spectrum; which can be compared to a library of known spectra on the NIST database. 

Shimadzu GCMS-QP2010 Plus was used for GC-MS analysis. Typically, only selected few 

samples were analysed using GC-MS in cases when there were significant product peaks that 

were unidentified such olgiomers of styrene.  
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Results  

The results of catalytic testing of a wide series of gold cluster-based catalysts are 

presented in the following pages. The series of catalysts studied encompass materials made 

via immobilisation of a range of atomically precise chemically synthesised gold clusters on a 

range of commercially available supports, termed “as made”, followed by activation using 

selected range of different treatments aimed at removal of organic protecting layer. 

Experimental results are discussed in the light of effects of the specific cluster used in 

preparation of the catalyst, type of support material, and observed changes due to activation 

treatments. Comparison to a range of relevant literature examples is presented with an aim 

to highlight differences and similarities in effects of various factors on the catalytic activity of 

gold-based catalysts. The catalytic studies discussed in this chapter are focused on the partial 

oxidation of styrene using three optimised catalytic testing methods that have been discussed 

in detail in the previous section. Our early experiments initially focused on the development 

of various methods for selective oxidation of a small range of alkene substrates, such as 

cyclohexene, styrene and monoterpene citral. However, due to the limited resources initially 

available, the focus of this work was on the selective oxidation of styrene. Toluene was used 

as the solvent, as it has been shown that selectivity towards epoxide can be quite high in 

toluene, despite the lower activity as compared to acetonitrile and methylcyclohexene 

systems.44,47 Toluene has also been shown to be particularly good for stabilising the tert-

butoxy radical that can be generated in the reaction when TBHP is used, although other 

solvents can have better radical stabilisation.53 A wide range of control reactions were 

conducted to ensure that the observed catalytic activity is due to the supported gold clusters 

rather than due to the TBHP alone or combination of the pure support material and TBHP.  
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Figure 80; Common oxidation products of styrene; benzaldehyde, benzyl alcohol, styrene 
oxide, acetophenone, styrene glycol and benzoic acid. 

Recent reports have also shown that toluene could be oxidised by oxygen in the 

presence of the supported gold and gold palladium  catalysts at 160 °C.54 However, under the 

conditions of these reactions conducted at 100 °C rather than 160 °C, no oxidation of toluene 

is observed in the presence of oxygen and catalysts used in this study. Importantly, no 

toluene oxidation occurs even in the presence of large amounts of TBHP under catalytic 

testing conditions used in this study. This observation is consistent with literature reports on 

the stability of TBHP in toluene at elevated temperatures.17  

All reactions were conducted in duplicate. Typically differences in styrene 

conversions were within 3 % between two catalytic tests performed under the same 

conditions. The source of the error could be variability of mass measurement and transfer of 

catalysts, styrene and TBHP solutions, variability in stirring rates, possible inhomogeneity of 

the heterogeneous catalyst and variability in the times of heating up to the target 

temperature and quenching. A range of control reactions were conducted, as summarised in 

Table 9, demonstrating that the silica support material should has little or no activity for the 

oxidation of styrene under experimental conditions used in this study. However, the Evonik 

titania P-25 system showed moderate activity for styrene oxidation, which has been 

previously reported in the literature, particularly in the presence of TBHP.   
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Table 9: Summary of control reactions of both fumed silica and titania under various 
treatments and reaction conditions 

  

Substrate Oxidant Treatment 

 

Conversion 

(%) 

O H

 

HO H

 

O

 

O

 

Minor 

products  

Fumed SiO2 
O2            

5 Bar 

Calcined@ 

200°, Air 
– – – – – – 

Fumed SiO2 O2            

 5 Bar 

Heat treated @ 

200°C 
– – – – – – 

Fumed SiO2 5 % TBHP 
Calcined@ 

200°, Air 
– – – – – – 

Fumed SiO2 5 % TBHP 
Heat treated @ 

200°C 
– – – – – – 

Fumed SiO2 XS TBHP 
Calcined@ 

200°, Air 
Trace Trace – – Trace – 

Fumed SiO2 XS TBHP 
Heat treated @ 

200°C 
Trace Trace – – Trace – 

P-25 titania 
O2             

5 Bar 

Calcined@ 

200°, Air 
– – – – – Trace 

P-25 titania O2             

5 Bar 

Heat treated @ 

200°C 
– – – – – Trace 

P-25 titania 5 % TBHP 
Calcined@ 

200°, Air 
< 1 % 87.5 % 7.1 % – Trace Trace 

P-25 titania 5 % TBHP 
Heat treated @ 

200°C 
< 1 % 91.2 % 5.2 % Trace Trace Trace 

P-25 titania XS TBHP 
Calcined@ 

200°, Air 
6.4 % 23.1% < 1 % Trace < 1 % 

Acid 

71.2% 
4.1 % 

P-25 titania XS TBHP 
Heat treated @ 

200°C 
7.9 % 22.5 % 3.5 % Trace < 1% 

Acid 

65.1 % 
7.2 % 
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Supported Au101 cluster 

Table 10 presents a summary of results for the oxidation of styrene using catalysts 

based on support-immobilised Au101 cluster.  The results will be compared and discussed in 

groups based on the reaction conditions with performance of catalysts compared across the 

range of supports and conditions used here and in context of previously published results. 

The oxidation of styrene can result in a wide range of possible catalytic products as 

illustrated in Figure 80; Common oxidation products of styrene, with some of the potential 

products being probable intermediates during the formation of the major products. In 

particular, the epoxide moiety, prised for its value as reactive functional group, can easily be 

converted to other products, making highly selective production of the epoxide a major 

challenge. 

Results of catalytic tests using pure oxygen alone as an oxidant 

Under moderate pressure of oxygen (5 bar), for both silica and titania samples the 

conversion of styrene was not significant (approximately 1 %) in the Parr batch reactors. In 

the case of the untreated samples, there was no reaction detected in the case of the titania 

supported gold phosphine cluster. This observation correlates well with previously published 

work which have shown that gold supported on titania requires a radical initiator for the 

oxidation of styrene to occur.44 In the case of the untreated silica supported samples, there is 

a small amount of benzaldehyde detected as product with some trace amounts of benzyl 

alcohol. The untreated samples, which were refluxed in toluene in an attempted to remove 

the ligands under milder conditions, showed similar reactivity to the untreated samples, 

shown in Table 11. A recent report by Lopez- Sanchez et al. had demonstrated that by 

refluxing the supported gold nanoparticles in a solvent, which will solubilise the ligand or 

capping agent, one can produce active supported gold catalysts.55 To prove successful 

removal of organic protecting layer by refluxing of the untreated catalyst in toluene, the 

supernatant obtained by centrifugation of the mixture was analysed by GC-MS confirming 

the presence of the small amounts of triphenylphosphine. The resulting supported gold 

clusters demonstrated slight increase in reactivity as compared to their corresponding 

untreated analogues. Further work on this method for developing active heterogeneous 
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catalysts could involve refluxing the supported nanoparticles under an inert (N2, Ar) 

oxidising (O2) or reducing (H2) atmosphere.  

Table 10; Summary of results of catalytic tests using Au101 gold phosphine cluster (1.5 nm Au core) 
supported on fumed silica and Evonik P-25 titania.  

Catalyst Oxidant 
Activation 

conditions 

Conversion 

(%) 

O H

 

HO H

 

O

 

O

 

Minor products  

Au101         

Fumed SiO2 

O2           

5 Bar 
Untreated < 1 % 98 % Trace – – – 

Au101        

P-25 TiO2 

O2              

5 Bar 
Untreated – Trace – – – – 

Au101         

Fumed SiO2 

O2          

5 Bar 

Calcined @ 

200°, Air 
1.5 % 99% – – – – 

Au101            

P-25 TiO2 

O2            

5 Bar 

Calcined @ 

200°, Air 
< 1 % 99 % 

T

race 
– – – 

Au101         

Fumed SiO2 

O2            

5 Bar 

Heat treated @ 

200°C 
7.8 % 86.5 

1

3.2 
– – Trace 

Au101              

P-25 TiO2 

O2            

5 Bar 

Heat treated @ 

200°C 
2.5 % 98 % – – – Trace 

Au101         

Fumed SiO2 
5% TBHP Untreated 2.7 % 74 % 

1

1.6 % 
3.4 %  ≈  10 % 

Au101             

P-25 TiO2 
5% TBHP Untreated < 1 % 82 % 

1

5 % 
– – Trace 

Au101         

Fumed SiO2 
5% TBHP 

Calcined @ 

200°, Air 
7.9 % 77.5 % 

1

0.4 % 
7.5 % 3.2 % Trace 

Au101              

P-25 TiO2 
5% TBHP 

Calcined @ 

200°, Air 
12.6 % 64.7% 

9

.2 % 
3.1 % Trace ≈ 20% 

Au101         

Fumed SiO2 
5% TBHP 

Heat treated @ 

200°C 
13.2 % 73.5 % 

1

3.8 % 
8.3  % – ≈ 3 % 

Au101             

P-25 TiO2 
5% TBHP 

Heat treated @ 

200°C 
11.5  % 39.9 % 

5

9.2 % 
< 1 % – – 

Au101         

Fumed SiO2 
XS TBHP Untreated < 1 % 99 % Trace – – – 

Au101              

P-25 TiO2 
XS TBHP Untreated 34 .6 % 62.6 % 8.5 % 2.2 % 5.2 % Acid 17.5 % ≈ 5 % 

Au101         

Fumed SiO2 
XS TBHP 

Calcined @ 

200°, Air 
32 .4 % 43.2 % 3.5 % 1.7 % 6.5 % 12.7 % 10 % 

Au101             

P-25 TiO2 
XS TBHP 

Calcined @ 

200°, Air 
38.7 % 65.7 % 9.3 % Trace 3.0 % 20 % 10 % 

Au101         

Fumed SiO2 
XS TBHP 

Heat treated @ 

200°C 
46.3 % 38.8 % 4.6 % 4.5 % 9.7 % 23.5% 20% 

Au101             

P-25 TiO2 
XS TBHP 

Heat treated @ 

200°C 
36.5 % 56.7 % 9 % 1.7 % 6.6 % 19.8%  5 % 



Chapter 6— Catalytic behaviour of supported gold phosphine clusters 

178 
 

Table 11; Summary of catalytic results of refluxed supported gold clusters 

Catalyst Oxidant 
Activation 

conditions 

 

Conversion 

(%) 

O H

 

HO H

 

O

 

O

 

Minor 

products  

Au101         

Fumed 

SiO2 

O2 

5 Bar 
Refluxed <1 % 98 % Trace – – – 

Au101             

P-25 TiO2 
O2 

5 Bar 
Refluxed – trace – – – – 

Au101         

Fumed 

SiO2 

5 %  

TBHP 
Refluxed 2.3 % 69.7 % 17.8 % 5.4 % 6.1 % – 

Au101              

P-25 TiO2 
5 % 

TBHP 
Refluxed 1.3 % 86.3 % 12.5 % – Trace – 

Upon calcination of the support-immobilised clusters under air at 200 °C for two 

hours as previously described in chapter two, the conversion marginally increased in 

reactions catalysed by both SiO2- and TiO2- supported clusters with benzaldehyde as the only 

detectable product. The silica supported gold clusters appeared to be slightly more active 

than the titania supported sample. The minor increase in reactivity as compared to the 

untreated samples can be attributed to the calcination procedure, which partially removes 

the organic ligands from the surface of the gold clusters.  

Results of the catalytic tests under ambient oxygen pressure with TBHP as 

initiator 

In the presence of catalytic amounts of tert-butylhydroperoxide (5 mol %), the 

supported gold clusters appear to be more active for the oxidation styrene as compared to 

the reactions carried out without initiator under pure oxygen.  In the case of the untreated 

supported gold samples, the observed styrene conversion was 2.7% and < 1% respectively for 

the silica and titania systems. The use of silica-supported catalyst resulted in formation of an 

increased amount of benzyl alcohol (11.6 %) with small, yet detectable amounts of the 

epoxide products also present. Whilst for the titania-supported sample, benzaldehyde was 

the only detected product. When compared to the control experiments (Table 9), the pure P-

25 titania appears to be more active in the presence of TBHP (5 mol %), than the untreated 

supported gold phosphine cluster on P-25 titania. Upon calcination at 200 °C, the reactivity 

of Au101-based catalysts moderately increased while the selectivity differed somewhat when 

compared to the oxygen only system. The silica sample showed a styrene conversion of 7.9 %, 
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with a slight increase in selectivity for the benzyl alcohol (10.4 %), acetophenone (3.2 %) and 

the epoxide (7.5%) products. On the other hand, the calcination of the titania sample 

resulted in a catalyst which had a conversion of 12.6 %, with benzaldehyde as the major 

product (64.7 %). Trace amounts of other products were also detected. In contrast to the 

calcined system, the heat treated samples yielded catalysts that differed in product 

selectivity. Although the styrene conversion is similar, benzyl alcohol (59.2 %) is the primary 

product for the titania supported gold system, with benzaldehyde (40 %) as the minor 

product and trace amounts of the epoxide product are also detected. However, for the silica 

supported samples, benzaldehyde (73.5 %) continued to be the major product, with benzyl 

alcohol (13.8 %) and benzyl oxide (8.3 %) as minor products. 

It was observed that the activation conditions can significantly influence the 

reactivity and selectivity of the reaction. The untreated samples have shown very limited 

reactivity and benzaldehyde is the major product. In the presence TBHP (5mol %), the 

reactivity increases considerably in the case of activated catalysts. When TBHP is used as the 

catalytic initiator for the reaction at low molar percentages (5 mol %),  it is assumed that the 

reaction goes by the free radical mechanism as proposed by Valarie Caps, in which the 

solvent forms a peroxy radical which is involved in the formation of carbon – oxygen bond in 

the substrate (in this case styrene). 44 Caps proposed this mechanism as an explanation for 

the reactivity of titania supported gold clusters, which have been shown to be active selective 

for epoxide and ketone products of analogous stilbene system. In the case of the silica 

supported samples, a similar mechanism can be applied in the presence of initiating 

amounts of TBHP. 

Results of the catalytic tests under ambient oxygen pressure in the presence of 

excess TBHP 

The reactivity of the supported gold phosphine clusters in the presence of excess of 

TBHP significantly increased as compared to the previous reaction conditions. In the case of 

the titania-supported clusters the reaction is only slightly influenced by the nature of the 

metal on the surface of the catalyst. TBHP was able to further oxidise the benzaldehyde to 

the benzoic acid product (≈ 20 %), although aldehyde was still the major product which 

contrasts greatly with the controls in which the benzoic acid product is the primary product. 
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The acid product was identified by GC-MS and confirmed by comparison against a benzoic 

acid standard using GC-FID. A range of other trace products, including several polyarene 

products, were identified by GC-MS. Presence of these minor products indicates that 

competing radical polymerisation side reaction occurs under these conditions in contrast to 

results observed under milder conditions earlier. However, none of these minor products 

was produced in significant quantities as compared to the key partial oxidation products. In 

the case of the silica supported samples, only the activated catalysts showed any activity 

which was comparable to the titania samples. The untreated sample showed no reactivity, 

which is in stark contrast with the untreated titania catalysts, which showed some reactivity.  

Supported Au9(PPh3)8(NO3)3 

Results of catalytic tests using pure oxygen alone as an oxidant 

Under moderate pressure of oxygen (5 bar), Au9-SiO2 samples were the only catalysts 

showing at least some conversion, with benzaldehyde as the major product again. However, 

in the most cases the sub-1% conversions obtained using Au9-SiO2 catalysts are comparable 

to performance of the pure support (control). The presence of the triphenyl phosphine 

ligands appears to have a minor effect on reactivity, when compared to the control reactions.  

Upon calcining under relatively mild conditions (200 °C) in air, the Au9-SiO2 system 

becomes inactive towards oxidation of styrene. This is in stark contrast with the highest 

conversion (4.5%) for the Au9 series of catalysts observed under O2 only conditions for the 

material, which was heat treated under vacuum. Although the conversion is not high, the 

contrast with the calcined system is important to note. Extensive batch reactor cleaning was 

conducted, which has been described in the experimental section and several control 

reactions were conducted before and after reaction of concern, to confirm that the observed 

reactivity of the Au9-SiO2 samples was not caused by the presence of any contamination. 

Several different batches were also tested to ensure the reproducibility of the reaction which 

yielded similar results (2.6 % and 5.3 % for the untreated and heat treated samples 

respectively). We have shown that there is a small but significant difference in particle size in 

materials after these two different treatments i.e. the mean particle size was shown to be 1.8 

nm for the heat treated system as opposed to 2.7 nm for the calcined system. The difference 

in particle size will lead to the significant difference in reactivity, due to the significant size 
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dependence for gold based catalysis. Although as discussed before the difficulty in 

distinguishing between the support material and the ultra-small gold clusters which have 

resisted agglomeration can give some uncertainty to these results.  

Table 12; Summary of results for Au9(PPh3)8(NO3)3  supported on fumed silica and P-25 
titania. Reaction conditions are described in detail in the experimental section of this chapter. 

 

Catalyst 

 

Oxidant 

 

Activation 

conditions 

 

Conversion 

(%) 

O H

 

HO H

 

O

 

O

 

Minor products  

Au9                 

P-25 TiO2 
O2             

5 Bar 
Untreated – – – – – – 

Au9           

Fumed SiO2 
O2 

5 Bar 
Untreated 3.2 % 94.5 % 

 

Trace  
– – 

Trace 

Phosphine oxide 

Au9             

P-25 TiO2 
O2 

5 Bar 

Calcined @ 

200°, Air 
< 1 % 96.2 % 2.7 % 

– – 
Trace 

Au9           

Fumed SiO2 
O2 

5 Bar 

Calcined @ 

200°, Air 
< 1 % 78.3 % 18.7 % 

– – 
Trace 

Au9                

P-25 TiO2 
O2 

5 Bar 

Heat treated 

@ 200°C 
< 1 % 92.6 % 6.4 % 

– – 
Trace 

Au9           

Fumed SiO2 
O2 

5 Bar 

Heat treated 

@ 200°C 
4.5 % 71. 4 % 17.42 % 

– – 
≈ 7 % 

Au9                

P-25 TiO2 
O2  

5 Bar 

Calcined @ 

400°C, Air 
< 1 % 96.7 % 1.3 % 

– – 
Trace 

Au9           

Fumed SiO2 
O2  

5 Bar 

Calcined @ 

400°C, Air 
< 1 % 89.5 % Trace 

– – 
≈  6 % 

Au9                

 P-25 TiO2 
5% TBHP Untreated 1.5 % 91.2 % 6.8 % 

– – 
Trace 

Au9           

Fumed SiO2 
5% TBHP 

Untreated 4.2 %  76.8 % 15.7 % 
– 

Trace ≈ 7.5 % 

Au9              

P-25 TiO2 
5% TBHP Calcined @ 

200°, Air 
10.6 % 64.3 % 22.8 % 4.6 % 7.5 %  Trace 

Au9           

Fumed SiO2 
5% TBHP Calcined @ 

200°, Air 
< 1 % 99 % – – – Trace 

Au9              

P-25 TiO2 
5% TBHP Heat treated 

@ 200°C 
12.5 % 29.4 % 64.5 % 2.5 % 1.2 % Trace 

Au9           

Fumed SiO2 
5% TBHP 

Heat treated 

@ 200°C 
15.5 % 81.1 % 11.81 % – 6.4 % ≈ 4 % 

Au9            

P-25 TiO2 
5% TBHP 

Calcined @ 

400°, Air 
3.6 % 86.4 % 11.2 % Trace 2.7 % Trace 

Au9           

Fumed SiO2 
5% TBHP 

Calcined @ 

400°, Air 
11. 5 % 61.3 % 17.3 % 3.5 % 9.1 % ≈ 8 % 

Au9               

P-25 TiO2 
XS TBHP Untreated 37.3 % 68.2 % 16.2 % 2.4 % 6.3 % 

Acid 

7.8 % 
≈ 6 % 

Au9           

Fumed SiO2 
XS TBHP Untreated ≈ 1 % Trace 97 % – – – – 

Au9             

P-25 TiO2 
XS TBHP 

Calcined @ 

200°, Air 
72.1 % 35.1 % 17.2 % 2.4 % 4.5 % 

Acid 

29.4 % 
≈11% 

Au9           

Fumed SiO2 
XS TBHP 

Calcined @ 

200°, Air 
54.3 % 47.7% 7.8 % Trace 19 % 

Acid 

23.5 % 
Trace 

Au9              

P-25 TiO2 
XS TBHP 

Heat treated 

@ 200°C 
65.1 % 41.1 % 22.1% 3.6 % 8.1 % 

Acid 

33.6 % 
≈ 7 % 

Au9           

Fumed SiO2 
XS TBHP 

Heat treated 

@ 200°C 
63.8 % 56.8 % 13.3 % Trace 19.6 % 

Acid 

4 .0 % 
≈ 5% 
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As evidenced by the HRTEM, the calcined catalyst system does have a smaller 

population of small gold clusters (< 2 nm) present, as compared to the samples heated under 

vacuum. It can be difficult to ascribe directly whether the reactivity is due to the particle size 

alone or to the structure of the cluster species on the specific surface after activation. For 

example, Turner et al. described the reactivity of gold phosphine clusters support on various 

inert supports  to the unique size of the gold clusters ( 1.7 nm), which was proposed as the 

site on which molecular oxygen is activated.21  

The untreated titania samples were completely inactive, no products were detected, 

in addition, the reactivity of the activated samples (calcined and heat treated) was 

insignificant (<1 %). The activation of molecular oxygen with titania supported gold is known 

to require a radical initiator for the reaction to occur in the liquid phase; which corresponds 

well with the observations in these studies.56 Multiple repeats with different batches of 

titania supported gold clusters were conducted, similar reactivity was observed.   

Results of the catalytic tests under ambient oxygen pressure with TBHP as 

initiator 

The reactivity of the supported gold clusters was radically different than oxygen only 

system upon addition of 5 mol % of TBHP to the reaction. Both untreated samples increased 

in activity, almost doubling in the case of the silica supported nonagold sample to 4.2 %. The 

catalysts calcined in oxygen differed markedly in the presence of catalytic amounts of TBHP, 

where the silica sample showed very little reactivity, and the titania sample increased in 

activity as compared to the untreated sample and the oxygen only system. 

The heat treated silica sample was much more active than the sample calcined at 200 

°C; however, the 400 °C calcined sample shows significantly more activity than the lower 

temperature sample. The higher temperature results in a more active catalyst due to the fact 

the triphenyl phosphine ligands are removed and the surface bound gold is more accessible 

by the substrates. For the heat treated sample, the observed activity could be a result of an 

anionic gold cluster species that is generated under a low oxygen atmosphere at high 

temperature. Due to issues of charging for photoelectron spectroscopy, the presence or 

absence of this species for the silica samples could not be confirmed conclusively.  
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In contrast, the titania supported nonagold clusters had very similar activity to each 

other.  The presence of small gold nanoparticles (< 3 nm) ensured that the systems are still 

active for styrene oxidation with catalytic amounts of TBHP, despite the observed larger 

nanoparticles present in TEM. However, the product selectivity contrasts significantly with 

other reported systems. Patil et al. previously showed moderate selectivity for the epoxide 

product with several gold titania catalyst, with a high gold loading (1–6 %) and large particle 

size (2– 10 nm).  

Results of the catalytic tests under ambient oxygen pressure in the presence of 

excess TBHP 

When TBHP is used as the only source of oxidant, the activity for each catalyst 

increased, except in the case of the untreated nonagold cluster on silica, which was 

completely inactive. The corresponding titania sample was active, although significantly less 

than the activated samples, which correlates well with literature reports that titania supports 

and mesoporous titania materials are active for a various catalytic oxidation reactions, 

including styrene. In addition to the benzaldehyde, there was a approximately 25%-35% 

yield of the benzoic acid product in all systems except for the heat treated silica sample 

which only yielded 4 % benzoic acid.  
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Supported Au8(PPH3)8(NO3)2 

 

Table 13; Summary of results for Au8 supported on fumed silica and P-25 titania 

 

Catalyst 

 

Oxidant 

 

Activation 

conditions 

 

Conversion 

(%) 

O H

 

HO H

 

O

 

O

 

Minor products  

Au8                  

P-25 TiO2 
O2               

5 Bar 
Untreated Trace 99 % Trace – – – 

Au8          

Fumed SiO2 
O2               

5 Bar 
Untreated 2.1 % 92 % 11.5 % – – Trace 

Au8                  

P-25 TiO2 
O2               

5 Bar 

Calcined @ 

200°, Air 
– Trace – – – – 

Au8          

Fumed SiO2 
O2               

5 Bar 

Calcined @ 

200°, Air 
< 1 % 99 % Trace – – – 

Au8                  

P-25 TiO2 
O2               

5 Bar 

Heat treated 

@ 200°C 
< 1 % Trace – – – – 

Au8          

Fumed SiO2 
O2               

5 Bar 

Heat treated 

@ 200°C 
3.7 % 91 % 3.1 % 2.5 % 1.7 % Trace 

Au8                  

P-25 TiO2 
O2               

5 Bar 

Calcined @ 

400°, Air 
< 1 % 99 % Trace – – – 

Au8          

Fumed SiO2 
O2              

5 Bar 

Calcined @ 

400°, Air 
2.2 % 97.0 % Trace – – Trace 

Au8                  

P-25 TiO2 
5% TBHP Untreated < 1 % 93.1 % 4.3 % – 2.1 % – 

Au8          

Fumed SiO2 
5% TBHP Untreated 2.4 % 82.2  % 11.6 % – – Trace 

Au8                  

P-25 TiO2 
5% TBHP 

Calcined @ 

200°, Air 
16.2 % 68.4 % 16.8 % 5.2 % 8.1% Trace 

Au8          

Fumed SiO2 
5% TBHP 

Calcined @ 

200°, Air 
9.8 % 84.6 % 8.3 % Trace 5.2 % ≈ 4 % 

Au8               

P-25 TiO2 
5% TBHP 

Heat treated 

@ 200°C 
14.5 % 27.8 % 43.6 % 13.2 % 7.0 % ≈ 7 % 

Au8          

Fumed SiO2 
5% TBHP 

Heat treated 

@ 200°C 
17.4 % 32 .4 % 56.1 %  < 1 % 6.8 % Trace 

Au8                 

P-25 TiO2 
XS TBHP Untreated 32.5% 73.2 % 12.0 % 1.6 % 7.8 % 

Acid 

2.4 % 
≈  4 % 

Au8          

Fumed SiO2 
XS TBHP Untreated ≈ 1 % Trace 98 % – – – Trace 

Au8                  

P-25 TiO2 
XS TBHP 

Calcined @ 

200°, Air 
76.7 % 42.5 % 11.4 % ≈ 1% 3.6 % 

Acid 

31.2 % 
8 % 

Au8          

Fumed SiO2 
XS TBHP 

Calcined @ 

200°, Air 
47.9 % 47.7 % 7.8 % Trace 19.1 % 

Acid 

23.5 % 
Trace 

Au8                  

P-25 TiO2 
XS TBHP 

Heat treated 

@ 200°C 
63.9 % 46% 6.5 % Trace 3.3 % 

Acid 

36.4 % 
≈ 6 % 

Au8          

Fumed SiO2 
XS TBHP 

Heat treated 

@ 200°C 
61.8 % 74.4 % 12.0 % 1.8 % 4.1 % 

Acid 

4.7% 
≈ 5 % 
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Results of catalytic tests using pure oxygen alone as an oxidant 

Untreated Au8 clusters don’t demonstrate any significant activity, which is similar to 

what was observed for the Au9 and Au101 systems in the presence of only oxygen. Although, 

for the silica supported sample there is around a noticeable 2% conversion of the styrene, 

forming benezaldehyde as the only detectable product. The Au8 samples treated by 

calcination at 200 °C showed no activity at all for any support, whilst the Au8-silica sample 

treated by heat treatment at 200 °C showed a slight increase in conversion in styrene (3.7%).  

Increasing the calcination temperature to 400 °C, slightly increases the activity of the silica 

supported au8 sample to around 2%.  As expected there is no reaction observed for any of 

the titania samples.  

 

Results of the catalytic tests under ambient oxygen pressure with TBHP as 

initiator 

In the presence of catalytic amounts of TBHP, the reactivity of the titania supported 

gold clusters has increased significantly as compared to the oxygen system. Although for the 

untreated samples we don’t see much conversion, upon calcination at 200 C, the titania 

supported sample is much more reactive with 16 % conversion of the styrene starting 

material. The main product formed is benazldehyde (68 %), with small amounts of benzyl 

alcohol, acetophenone and styrene oxide formed. In contrast, the conversion for silica 

supported Au8 sample is 10 %, with a higher selectivity for the benazldehyde product. No 

styrene oxide product was formed for the silica sample. The heat-treated silica sample 

contrast significantly with the calcined sample, the styrene conversion increases to around 17 

%, with much higher selectivity for the benzyl alcohol product (56 %). The heat treated 

titania sample demonstrated similar conversions of styrene; however, the main product of 

the reaction is now benzyl alcohol. A range of polymeric by-products were also formed. 
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Results of the catalytic tests under ambient oxygen pressure in the presence of 

excess TBHP 

As with the Au9 and Au101 systems, when TBHP is employed as the primary oxidant 

the styrene conversion increased significantly.  Benzaldehyde was the main product for the 

untreated titania sample, whilst no significant amount of the benzoic acid product was 

formed which was observed for the other treated titania samples. This trend was also 

observed for other gold clusters, which indicates that the presence of the gold cluster after 

post-depositon treatment improves the catalytic oxidation of the catalysts.  The calcined 

titania sample was observed to have a styrene conversion of around 76 %, which contrasted 

with the heat treated sample, which demonstrated a 64 % conversion. A similar product 

selectivty was observed for each reaction. In contrast, the silica supported samples were not 

observed to as reactive as the titania samples. The calcined sample showed a moderate 

styrene conversion around 50 %, with a 48 % yield of benzaldehyde. As with the Au9 system, 

the calcined Au8-silica sample also produces a small amount of the benzoic acid product 

(24%). The heat treated silica sample did not yield benzoic acid, which was typically 

observed when excess TBHP was used; along with benzaldehyde, acetphone was the other 

main product.  
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Support pre-treatment 

Table 14; Gold phosphine clusters supported on acid washed P-25 titania 

Catalyst Oxidant 
Activation 

conditions 

 

Conversion 

(%) 

O H

 

HO H

 

O

 

O

 

Styrene 

oligomers  

Au101                 
P-25 TiO2 

O2           

5 Bar 
Untreated 82.0 % < 1 % Trace – – >97 % 

Au101                 
P-25 TiO2 

5 % TBHP Untreated 97.6 % < 1 % Trace – – > 97 % 

Au101                 
P-25 TiO2 

O2 

5 Bar 

Heat treated 

@ 200°C 
84.6 % < 1 % Trace – Trace > 97 % 

Au101                 
P-25 TiO2 

5 % TBHP 
Heat treated 

@ 200°C 
98.1 % < 1 % < 1 % Trace Trace > 97 % 

Au9                 
P-25 TiO2 

O2 

5 Bar 
Untreated 89.3 % < 1 % Trace – – > 97 % 

Au9                 
P-25 TiO2 

5 % 

TBHP 
Untreated 98.5 % < 1 % < 1 % – – 

> 97 % 

Au9               
P-25 TiO2 

O2 

5 Bar 

Heat treated 

@ 200°C 
93.2 % < 1 % Trace – – 

> 97 % 

Au9              
P-25 TiO2 

5 % 

TBHP 

Heat treated 

@ 200°C 
99.0 % < 1 % < 1 % Trace Trace 

> 97 % 

Au8                 
P-25 TiO2 

O2 

5 Bar 
Untreated 90.7 % < 1 % Trace – – 

> 97 % 

Au8                 
P-25 TiO2 

5 % 

TBHP 
Untreated 97.2 % < 1 % < 1 % – – 

> 97 % 

Au8                 
P-25 TiO2 

O2 

5 Bar 

Heat treated 

@ 200°C 
95.8 % < 1 % < 1 % – – 

> 97 % 

Au8                 
P-25 TiO2 

5 %TBHP 
Heat treated 

@ 200°C 
99.0 % < 1 % < 1 % Trace Trace 

> 97 % 

 

In an attempt to improve the reactivity and selectivity of the titania supported gold clusters, 

slight modifications of the P-25 titania support material were undertaken and applied to the 

styrene oxidation reaction. Unmodified P-25 titania demonstrated slightly light sensitivity 

due light generated by light that can induce particle sintering. The P-25 support was washed 

with a 1 M solution of sulphuric acid as previously described by Lopez- Sanchez et al., and 

the cluster deposited and activated as described in chapter two.55 The acid washing of the 

titania increases coverage of the sulfonated (i.e. acidic) surface functionality, which was 
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shown to decrease the amount of agglomeration of the gold clusters on the surface due to the 

high temperature activation conditions and light. 

The acid washed titania support samples showed very high reactivity but did not yield 

any expected oxidation products. The reactions were conducted under mild pressure of 

oxygen (5 bar) as well as in the presence of 5 mol % of the TBHP radical initiator. All the 

catalysts showed similar activity and selectivity, producing a wide range of styrene oligomers 

which proved difficult to isolate and characterise due to the similarity of individual products. 

Specifically, the GC-FID detected a wide range of products that eluted much slower than the 

typical oxidation products (normally between five and nine minutes). Approximately one 

hundred different product peaks were detected that appeared with the retention times 

ranging from eleven minutes to thirty minutes. An intense column conditioning programme 

was introduced to ensure that the peaks were not caused by other sources (e.g. impurities 

introduced due to earlier runs etc.), which would ensure that the observed peaks were 

coming from the reaction.  The reaction samples were further analysed by GC-MS in attempt 

to identify the products with the help of MS. However, distinguishing between such 

similarly-structured products eluded us due to poor column separation resulting in failure to 

isolate each product fraction. Further attempts of characterising the oligo- or polymeric 

products were aimed at isolation of individual fractions by HPLC which was more 

appropriate for this proposed type of heavier molecular weight products. However, research 

in this direction was hampered and eventually had to be cancelled due to damage incurred 

due to the earthquakes and associated delays.  

The catechol inhibitor, which is added (4-5 ppm) to styrene, prevents the radical 

polymerisation during storage. In the typical tests this inhibitor was removed by filtration 

through dried basic alumina. Once the catechol is removed, the styrene is diluted in toluene 

and stored in a dried volumetric flask at 4 °C in the dark. However, since oligomerization 

appeared to take place in the case of clusters supported on acid washed TiO2, I have 

attempted study of the reactions involving the acid washed supported gold clusters were 

conducted in the presence of the catechol inhibitor in attempt to reduce the extent of the 

polymerisation reaction and allow formation of smaller partial oxidation products. The 
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conversion of styrene decreased slightly by approximately 7–9 %, with a slight increase in the 

yields for benzaldehyde and benzyl alcohol, in the presence of the TBHP initiator. 

 

Figure 81; Tert butylcatechol is used to prevent styrene from undergoing radical 
polymerisation 

 

Several reaction solutions were degased and purged with argon. The aim of this 

additional step prior to setting up the reaction vessels was to improve the accuracy of the 

catalytic timing. However, it was observed when the samples were taken from the reaction 

prior to the addition of oxygen that the reaction had already begun. This observation 

confirmed that the reaction was being driven by the acid washed titania solely.    

As the products were not of interest to us as partial oxidation products, other starting 

substrates were investigated to demonstrate that the acid washed supports could be 

employed as oxidation catalysts in other circumstances. With this in mind, styrene oxide and 

benzyl alcohol were used as substrates instead of styrene in toluene (60 mM). Au9 on acid 

washed P-25 and Au101 Acid washed P-25, which were heated at 200 °C in vacuum, showed 

surprisingly high yields (> 95 %) of the aldehyde product from the styrene oxide precursor 

with no polyarene products present at all. In the case of benzyl alcohol, much lower reactivity 

was observed which may be due to absence of a weak base which is known to require for 

benzyl alcohol oxidation. Further investigations in to the possibilty of the oxidation of 

substituted alkenes (i.e. cyclohexene, citral), which are more stable to radical polymerisation 

than styrene; a well-known polymer precursor should be undertaken. The main issue with 

styrene as a model oxidation substrate is the sensitivity to polymerisation; however, it is a 

useful reaction which can highlight the selectivity or lack thereof for anti-Markonikov 

products of a catalyst.  
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Discussion 

Overall, the titania supported clusters are not catalytically active for the oxidation of 

styrene when oxygen is used as the only source of active oxygen. This trend compares well 

with other literature examples of titania supported gold nanoparticle.30,32,44 In the case of the 

silica supported samples, moderate conversions of styrene were observed, even for the 

untreated samples. When compared to the analogous Au55 by Tuner et al., the observed 

conversions are about half that observed in this study.21 This lower reactivity could be 

attributed to the slightly lower gold loadings of the catalysts. In addition, the oxygen only 

reactions produced only small amounts of the styrene oxide product unlike the Au55 which 

produced noticeably more (>10 % yield in some cases) The poor reactivity of the titania 

supported sample can be explained by the lack of radical initiator that was earlier postulated 

to be required for the activation molecular oxygen by a radical produced from the toluene 

solvent.44 The calcined silica system was expected to be significantly more active for the 

oxidation of styrene in the presence of oxygen only. 

In the presence of catalytic amounts of TBHP (5 mol %), the reactivity of the titania 

supported samples increases significantly. The conversions in this study are not high when 

compared to other literature reports; this is attributed to the relatively low gold loadings of 

the catalysts and also comparatively higher concentration of the styrene solution.( 60mM vs 

1mM) 29,32  In contrast to these literature reports on styrene and stilbene oxidation, we never 

achieved any high yields of styrene oxide product of any significance. We can attribute this to 

nature of the solvent, toluene, which was employed for this array of reactions. It has been 

proposed that the degree of methylation of the solvent could improve the selectivity for the 

epoxide product, by further stabilising the radicals present during the reaction.  

In the presence of a threefold excess of the TBHP, we were expecting to observe an 

increase in the epoxide yield akin to the observations of by Liu et al., highlighted that a Au25 

thiolate cluster supported on a hydroxyapatite which was activated at 200°C selectively 

oxidises styrene efficiently to the epoxide product in the presence of excess TBHP.47 In 

contrast, we observed moderate yields of both benzaldehyde and benzoic acid whilst for the 

heat treated silica supported samples yielded acetophenone rather than benzoic acid. 
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Although the authors don’t discuss the origins of this selectivity in mechanistic detail, the 

nature of the support and cluster ligand shell could explain observed differences in the 

reactivity with catalysts studied here.   

What dictates the final electronic structure of the active components of these silica 

based catalysts have not yet been studied in detail. We have previously shown that silica 

based systems are difficult to analyse by photoelectron spectroscopy without the aid of a 

flood gun to neutralise the sample. Yet, resulting electron bombardment can also 

significantly damage the sample as was demonstrated by Goodman et al., who used an 

electron stimulated desorption (ESD) to strip ligands of gold phosphine cluster (i.e. Au6) 

deposited onto a flat titania (110) substrate.57 Finally, our early attempts to use XPS for 

studies of porous silica-based catalysts were complicated by very low signal intensity, due to 

the gold species being mainly located deep inside the pores.  TEM results, from chapter four, 

also showed that for the heat treated samples on silica, the average observed particle size is 

2.3 nm whilst for calcined samples the particle size is 3.4 nm. For the titania samples, the 

measured particle size for the Au101 samples was 3.2 nm for the heat treated sample and 3.8 

nm for the calcined sample. The presence of oxygen, during the activation steps, appears to 

affect the electronic structure of the materials and also the degree of particle sintering; as 

well as the reactivity of the catalyst.  

Recent reports by Turner et al. showed that certain silica supported gold phosphine 

clusters can activate molecular oxygen for the catalytic oxidation of styrene. However, the 

method of activation of their catalytic material involved the heating of untreated supported 

gold cluster in mild vacuum at 200 °C, similar to the method that has been designated as the 

“heat treatment” at 200 C in my study. The difference in observed reactivity could be 

explained by the differences in the morphology of the catalysts arising due differences in 

partial pressure of oxygen during thermal treatment, as particle aggregation is very 

significantly affected by the chemical atmosphere during thermal activation. The calcination 

under oxygen-rich conditions used in current study was aimed to facilitate ligand removal 

via oxidation. Hence, such treatment used in this study is expected to lead to increased 

aggregation of the gold particles present on the surface of support.  
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The supported gold clusters, which were heat treated at 200°C under a mild vacuum, 

show a moderate rise in conversion of styrene. For Au101–TiO2 sample, conversion increases 

to ≈ 2.5 % with benzaldehyde again present as the only major product detected. In the case of 

Au101–SiO2, the conversion increases to 7.8 % with both benzaldehyde and benzyl alcohol 

present as products. The reactivity for the heat treated sample is more akin to the previously 

reported reactivity of gold cluster supported on silica and BN.21 The contrast between the two 

thermal activation conditions indicates that the active species that are formed under vacuum 

are more active for the styrene oxidation under an oxygen atmosphere as compared to the 

calcination under air at the same temperature. It has been proposed that small gold clusters 

on silica are able to activate molecular oxygen to form oxygen adatoms on the surface of the 

active catalyst, which also forms a weak interaction with the styrene precursor.21  

One of the big impediments to the performance of this series of catalysts was likely 

the triphenylphosphine ligand that was used to stabilise each of the clusters/nanoparticles. 

We observed by XPS that after treatment; heat treatment of calcination, the phosphorous 

peak was still observed, likely indicating that the triphenyl phosphine is still present on the 

surface. The treatment processes do improve the reactivity of the catalysts as compared to 

the untreated samples by rearranging the ligand shell. We briefly investigated the possibility 

of washing the ligands from the surface of the catalysts by refluxing under mild 

temperatures; however, the resulting materials were relatively inactive for styrene oxidation. 

55 When comparing this series of catalysts to the thiol stabilised gold cluster catalysts, it is 

noticeable that the alkyl thiol ligands are much less sterically bulky which possibly accounts 

for the higher reported reactivity in similar reactions.22,58   

However, there are other avenues for achieving good selectivity and reactivity using 

phosphine stabilised clusters. One of the benefits of the phosphine gold clusters is their 

relative ease of preparation and characterisation as compared to the thiol gold clusters which 

often need ESI-MS to confirm the present of specific cluster nuclearities. A post-deposition 

reflux with a less sterically bulky ligand that can displace the bulky but labile triphenyl 

phosphine may help remedy this possibly issues. In addition, careful choice of electronic 

properties of the substituting ligand may also prove beneficial to the new catalytic material. 
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Overall, it is was not possible to discern which effect was contributing to the reactivity 

of the different treatments;  particle aggregation , rearrangement of the triphenyl phosphine 

ligand and formation of different oxygen species on the surface all could influence the 

reactivity of the catalysts in some way. A comparison to extended surface systems would help 

illuminate which factors have a greater influence on the reactivity of these material, as would 

a more comprehensive STEM study on these materials 

 

Conclusion 

In this chapter, various methods for catalytic oxidation were developed and used to 

study a matrix of supported gold clusters on silica and titania. Developments of the catalytic 

work was hindered due  to solvent loss in reactions set-ups that involved a flow of air or 

oxygen through the reaction, investigations in to the effect of the inhibitors present in 

starting reagents and other interruptions. Early studies focused on optimising the set-up for 

working under mild pressures of oxygen and understanding the limits of reaction set-up.  

The catalysts involved in these studies were prepared with low loadings (0.5 % by weight) as 

compared to other reported catalysts, where the reported metal loadings ranged from one to 

ten per cent. Styrene was chosen as a model substrate for catalytic investigations, due to the 

importance of the controlled partial oxidation of terminal alkenes for fine chemical 

synthesis. 

The crux of this work was to attempt to understand the effect of cluster size and 

activation conditions on the reactivity of the catalytic system. There is no observable 

advantage to employing atomically precise gold phosphine over the larger Au101 nanoparticles 

in the reactions studied in this chapter. Overall, benzaldehyde was formed as the main 

product formed in most the reactions with slight variation in the amounts of other by-

products formed, which was not dependant on the supported cluster used.  More focused 

kinetic studies may help illuminate avenues for controlling the product selectivity.  

Attempts to understand the light sensitivity of the titania supported gold clusters by 

prewashing the P-25 titania support with sulphuric acid yielded an active support for the 
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formation of styrene oligomers. The acidic surface functionality is known to modify the 

photocatalytic behaviour of the support, as well impeding nanoparticle sintering. Gold 

supported on the acid washed support didn’t appear to greatly alter the polymerisation 

activity of the titania support, which after a 24 hour period had consumed all the styrene. 

However, when either styrene oxide or benzyl alcohol was used as the starting material, 

benzaldehyde was formed as the major product when gold supported on the acid washed 

supports was used. This acid washed supports should be investigated for catalytic activity in 

other systems where the radical polymerisation is not a competing side reaction.   

Overall, the reactivity was seemingly low for this series of catalysts as compared to 

previous literature reports. To a certain extent, this can be explained by the use of lower 

loadings of gold cluster on the support material, a shorter run time for the catalytic reactions 

(16 hour as opposed to 18/24 hours) and possibly the presence of phosphine in the system. 

In certain cases, the pure support material was more active for gold oxidation than some of 

the gold containing samples which were not activated. The presence of the triphenyl 

phosphine ligands on the surface of the cluster, which we previously demonstrated was 

present on the surface was having a deactivating effect for the oxidation reaction. 

 

Bridge 

The following chapter will discuss the other areas that some supported gold 

phosphine clusters prepared in this thesis were used by our collaborators for other 

applications besides oxidation catalysis. In some systems, small gold clusters did prove 

advantageous over larger gold nanoparticle systems.    
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    Further applications of supported gold clusters 

 

 

 

 

Ligand-stabilised metal clusters have a wide range of novel applications in a vast 

array disciplines due to their incredibly high surface area and unique size-dependent 

properties, which can be altered by the presence or absence of a single metal atom. There are 

many reviews on the potential uses of metal clusters and nanoparticles in cancer detection 

and treatment, as catalysts for new energy sources and as the building blocks for a range of 

new novel materials and for environmental amelioration.1-4 In the previous chapter, we have 

shown that ligand-stabilised gold clusters on metal oxide supports are catalytically active for 

the oxidation of styrene. In collaboration with our international colleagues, we have also 

shown that these small gold clusters can be active for the photocatalytic production of 

hydrogen and as the active phase in photochromic gas sensors.  

Hydrogen gas sensors based on gold clusters 

Overview 

In collaboration with Professor Wojtek Wlodarski at RMIT University in Melbourne, 

gold phosphine clusters were investigated for their applications in photochromic hydrogen 

gas sensors. Samples of gold clusters deposited on tungsten oxide powders and samples of 

the pure unsupported gold clusters were prepared at the University of Canterbury, New 

Zealand. The gas sensing performance testing was conducted at RMIT, Melbourne, Australia 

Hydrogen-based energy sources are currently being investigated as alternatives to the 

carbon based energy sources currently used.5 As an energy source, there are wide range of 

benefits to hydrogen when compared to oil, such as benign by-products and plentiful supply 

in the form of water. With recent advances in the field of photocatalytic water splitting,6,7 

7 
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there is a need for improved methods for the detection of low concentrations of hydrogen 

gas, which has several associated potential risks such as a wide explosive concentration 

range, low ignition energy, large flame propagation velocity.8 Metal oxide materials have 

shown great potential as gasochromic sensors for hydrogen, where the optical properties of 

the metal oxides, such as ZnO, TiO2 or WO3 vary due to the injection/ejection of ions or 

electrons in the films.9 However, metal nanoparticles, such as platinum, palladium, copper 

and silver, are required as catalysts to improve the performance, reversibility, and selectivity 

of these metal oxide films as hydrogen sensors and fuel cells.10-12 For this study, tungsten 

oxide was used as the metal oxide sensing layer on which gold clusters were deposited. 

Tungsten trioxide, an n-type semiconductor, is known to react with various gases. Therefore, 

a wide range of potential applications in photovoltaics, electrochromic devices and in water 

splitting have been demonstrated.13-16 Despite the improvements in hydrogen sensing the 

nature of the active site and the mechanism for the reaction on the surface of the sensor 

material is still poorly understood.17 Gold supported on WO3 has been shown to be an 

excellent sensor for a wide range of gases such as hydrogen and hydrogen sulfide. The 

gasochromic transition of Au/WO3 from transparent to a coloured state has been proposed 

to occur by dissociative chemisorption of molecular hydrogen onto the gold particles which 

reduces the hydrogen, forming hydrogen ions and releasing electrons in to the metal oxide 

layer. This results in the reduction of the  of W6+ (transparent) centre in the WO3 crystal 

lattice to W5+ (blue colour) and the formation of water vapour from the combination of 2H+ 

with surface bound O2− ions produced by the reduction of W6+ to W5+: 

The reverse reaction occurs when hydrogen gas is purged from the system at elevated 

temperatures with synthetic air, restoring the stoichiometry of theWO3, i.e.W5+   W6+. 

 

 

 

It has been shown that Au/WO3 based systems can significantly outperform 

comparable Pt/WO3 sensors.18 Gold systems have been shown to be giving an improved 

response and improved detection limits have also been achieved.18-21 The cause of the 

W2O5 + H2O       W2O6 + H2 
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improved sensor performance has not been conclusively proven, but it has been proposed 

that the gold nanoparticles which interact with the metal oxide support at the interface with 

gold where activation (or dissociation) of the hydrogen and other gases occurs, which aligns 

well with the proposed mechanism for the activation of supported gold particles on 

titania.21,22  

The benefits of using noble metal nanoparticles, supported on tungsten oxide films, 

are illustrated in Figure 82. The absorbance spectrum of tungsten oxide films (500 nm thick) 

is shown without and with gold catalyst, as shown in Figure 82A. The supported gold clusters 

slightly shift the spectrum towards the blue region while also increasing the magnitude of the 

absorbance (Figure 82A) 

 

Figure 82: A) Absorbance versus optical wavelength of sputtered WO3 coated with ligand-
stabilised gold clusters on quartz substrates as compared to only sputtered WO3; B) Estimated 
optical band gap of sputtered WO3 (3.36 eV) and Au/WO3 (3.00 eV) This data was collected by 
Muhammad Z. Ahmad at RMIT, Melbourne 

 

The alteration in the absorbance spectra of the WO3 films coated with the gold 

clusters demonstrates the modification of the optical band gap of the films. The optical band 

gap of the sputtered tungsten oxide films was estimated with reference to their absorbance 

spectra measured at room temperature according to the Tauc method.23,24 The band gap 

estimation curves, which were derived from the films absorbance spectra, are shown in 

Figure 82B. Using the Tauc method, the band gap is the value where the tangent to the curve 

intersects the band gap energy axis as shown by the extrapolation of the dashed lines in the 

figure. As shown in Figure 82B, the optical band gap of the tungsten oxide layer reduces after 

deposition and subsequent annealing of the gold clusters. The optical band gap of the single 

layer sputtered WO3 was found to be 3.36 eV; this value is within the range of 3.00 – 3.40 eV 

A B 
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reported in the literature.25 Upon deposition of the gold layer, the band gaps reduced to 3.00 

eV, possibly due to the formation of the gold oxide interaction with the support, as recently 

proposed.26 

Overall, there has been tremendous momentum in the fabrication of novel sensor 

materials in recent years; however, further development of these model systems with 

nanostructured morphologies is required to improve reversibility, repeatability, selectivity 

and lifetimes of these sensor materials.  Our collaborative research was aimed at using 

atomically precise ligand-stabilised gold clusters as the active species supported on a variety 

of nanostructured tungsten oxide materials (i.e. nanofilms, nanoparticles and nanofibres).  

In the following pages, I will summarise some of our recent results of supported 

[Au9(PPh3)8](NO3)3 on tungsten oxide nanofilms. 

Hydrogen gas-sensing experiments 

The performance of two nanostructured sensors, termed S1 and S2, for the detection 

of hydrogen gas, from room temperature to 450 °C, was conducted on the experimental set-

up outlined in Figure 82. A constant gas flow of 200 sccm was maintained by the mass flow 

controllers in the enclosed test chamber during the sensor experiments. An external heater 

(connected to a thermocouple for in-situ measurements) was employed throughout the test 

to vary the operating temperatures of the sensors, as shown in Figure 83B. A computerized 

gas calibration system was used for to adjust the hydrogen concentrations (in v/v %) to 0.06, 

0.13, 0.25, 0.50, 0.75, and 1.00 balanced in synthetic air.  

 The ideal operational temperatures were identified by exposing each sensor (S1 and 

S2) to hydrogen (0.06 v/v %) balanced in synthetic air during a series of on/off cycles, with a 

cycle step duration (either on or off) of 180 seconds at room temperature. Upon completion, 

the temperature was increased stepwise at an interval of 50 °C for the next measurement. 
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Figure 83: Hydrogen sensing performance of various nanostructured layers was 
conducted at RMIT, Melbourne Australia on a set- up illustrated above (a) Gas testing setup: (b) 
sketch of test chamber, and (c) Au/WO3 based sensor on gold interdigitated electrode 

During the cycles at the optimised temperature for each sensor (S1 and S2), the 

sensors were exposed to gaseous hydrogen balanced in synthetic air of various 

concentrations. These concentrations were chosen based on a 25 % decrease from the 

highest obtainable hydrogen concentration (1 %) to 0.25 % and followed by a 50 % decrease 

from 0.25 % to 0.13 % and 0.13 % to 0.06 %, respectively. A computer with data logger 

software was used to log the data in real time. The sensor response (S) was calculated 

according to the equation S = Ra/Rg, where Ra and Rg are the resistance of the sensor in air 

and hydrogen–synthetic air mixture, respectively.  

Preparation of photochromic sensor 

Gold interdigitated electrode (IDT) was prepared according to the method previously 

described by Wlodarski at RMIT.26 The IDT was cleaned with acetone, methanol, and de-

ionized (DI) water and blow-dried with nitrogen (N2) prior to deposition of the tungsten 

oxide layer by radio-frequency (RF) sputtering. The RF sputtering deposition parameters 

used to obtain ca. 500 nm WO3-film are given in Table 15. 

  

A 

B 

C 
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Table 15: Deposition parameters for WO3 film by RF sputtering. 

Tungsten 

target 

purity 

Sample 

target 

distance 

(mm) 

Base 

pressure 

(Torr) 

Pressure 

during 

deposition 

(Torr) 

Gas (%) 

Substrate 

temperature 

(C) 

RF 

power 

(W) 

Thickness 

(nm) 

99.95% 70 10
5

 2  10
2 Ar (10) 

O2 (90) 
300 80 500 

 

The gold IDT with the annealed RF sputtered tungsten trioxide film were dip-coated 

using solutions of [Au9(PPh3)8](NO3)3 clusters in methanol at two different concentrations: 

0.01 and 0.1 mg/mL, giving rise to series of samples codenamed S1 and S2 respectively. The 

samples were dipped into the gold cluster solution for thirty minutes, quickly followed by 

blow-drying under nitrogen. 

The samples of as-immobilised Au9 clusters on WO3 films were annealed in static air 

at 400 °C for two hours with a temperature ramp up/down of 2 °C/min. This activation 

process was analogous to the calcination of the previous titania and silica samples. The high 

temperature activation process is expected to sinter the particles as was observed with our 

previous results. Once completed, the annealed samples (S1 and S2) were attached to gold 

contact ribbons using silver paste and resin (1:1 ratio). A subsequent heat treatment at 100 

°C (hot plate) for 15 – 20 minutes solidified the paste between the electrodes and the IDT.   



Chapter 7 — Further applications of supported gold clusters 

205 
 

Characterisation of the photochromic sensors 

Scanning Electron Microscopy (SEM) images were obtained using a FEI Nova 

NanoSEM. SEM imaging revealed the presence of WO3 nanostructures with the average size 

of ca. 50 nm in the images of the pure, RF-sputtered WO3 films thin film after annealing to 

400 C. SEM images of the WO3 films modified with Au clusters (after annealing) suggest 

presence of relatively large gold nanoparticles of their aggregates sparsely and reasonably 

uniformly scattered at the surface. Although SEM is clearly not ideal for imaging ultra-small 

atomically precise clusters, such as nonagold cluster used in this study, it is useful 

nevertheless as a non-destructive technique which allows imaging over large areas.  

 

Figure 84; SEM images of A) RF sputtered WO3 thin film after annealing to 400 °C prior 
to gold cluster deposition. Inset: higher magnification image of the WO3 film highlighting its 
nanostructured nature with approximately 50 nm average size of the crystallite; B) Large Au 
nanoparticles (white spots) dispersed on WO3 thin films after deposition and calcination; C) & D) 
HRTEM images of < 5 nm Au nanoparticles on WO3 support. 

 

HRTEM images show a significant proportion of the sub-5 nm gold nanoclusters on 

WO3 support (in addition to rather large Au particles observed earlier by SEM. Imaging of 

ultra-small gold clusters on oxide supports using conventional HRTEM becomes 

progressively more challenging as particle sizes decrease due to the instrumental limitations 

(

a) 

(

b) 
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B 
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and difficulties associated with diminishing differences in contrast between particles and 

support. The inset of Figure 4a shows a zoomed-in image on a selected area with 

selected sub-5 nm gold nanoclusters highlighted. 

Photoelectron spectroscopy of gold clusters on tungsten oxide films 

X-ray photoelectron spectroscopy (XPS) data was collected at room temperature 

using Cu Kα radiation (λ= 1.54178 Å) by Dr. Günther Anderson on a lab based machine at 

Flinders University, Australia. The ultra-high vacuum apparatus, built by SPECS (Berlin, 

Germany), is equipped with a non-monochromatic X-ray source for Mg and Al Kα radiation. 

The spectra of the electrons emitted from the samples are recorded with a hemispherical 

Phoibos 100 energy analyser from SPECS. High resolution XP spectra were collected using 

pass energy of 10 eV. The angle between the X-ray irradiation and the analyser is 54˚. The 

base pressure of the UHV chamber was the 10-10 mbar range.  

Peak analysis was performed in a fashion comparable to the photoelectron data from 

chapter 5. 

 

 

 

 

Figure 85; XPS spectra of Au/WO3 annealed samples (a) tungsten 4f spectra, (b) gold 4f 
spectra, (c) oxygen 1s spectra. Energy scale has been calibrated with first carbon peak which is 
attributed to adventitious carbon. S1 is low concentration sample (0.01) while S2 is the higher 
concentration sample (0.1) 
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The binding energy (BE) of the tungsten 4f7/2 peak was observed to be at 36.2 ± 0.1 

for the S1 and S2 samples prior to the calcination of the deposited gold layers, which is similar 

to reported literature values.27 This value correlates to a mixture both of orthorhombic and 

monoclinic phases of tungsten trioxide. However, the BE of the tungsten 4f7/2 of the 

calcinated, tested S1 and S2 samples has a minute shift of -0.3 eV. This shift to 35.7 8± 0.1 eV 

could be due to loss of oxygen during the second annealing. Similar peak positions have been 

reported for WO3 deposited employing various techniques, such as thermal evaporation,28 

chemical vapour deposition,29 and sputtering (RF and DC).30 This shift could be influenced 

by the film thickness as well as by band-bending that occurs due to WO3–gold interaction at 

high metal loadings.17 It is well known that exposure of the WO3 thin films to at elevated 

temperature (> 350 °C) leads to higher peak intensity, which is due to the removal of 

adventitious carbon,31 however, it is the broadening of peaks that is associated with the 

change in stoichiometry of the sample surface.32 Formation of the oxygen vacancies can be 

ruled out as one of the dominant factors for materials for films with good gas sensing 

capabilities.33 

The peak for the O 1s core level in the high resolution photoelectron spectra of the 

tested and untested S1 and S2 samples, Figure 85, was observed at 531.0 eV for untested 

samples shifting to 530.6 eV after hydrogen sensing testing, which involved exposure to high 

temperature. Values of the O 1s binding energy reported in the literature vary from 530.7 to 

530.4 eV, with variations explained by the thickness, specific nature of materials as well as 

their preparation (conditions of annealing, temperature and duration etc.).32 A small 

shoulder centred at about 532.1 eV is observed in the as-deposited and 400 °C annealed 

films. This shoulder becomes more pronounced when the film is annealed at temperature 

higher than 400 °C. This peak was attributed to an oxide species present directly on the 

surface of the sensor. 

In the Au spectra, the observed peak position shift could be due to the sintering of a 

certain proportion of the total population of the gold clusters into larger particles, as alluded 

to by SEM and TEM, due to the high temperature regime of the experiment and the 

annealing process. Importantly, detection of ultra-small Au clusters using bulk surface 

sensitive XPS techniques is challenging when larger Au particles account for a significant 
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proportion of total gold atomic percentage and contrast with metal oxide materials.34 

Diffusion of the gold into the depth of the 500 nm thick WO3 film upon testing at elevated 

temperatures might account for the observed diminution of the intensity in case of S1 series 

samples. 

Performance of nanostructured gold hydrogen sensors  

 

Figure 86: Response of S1 and S2 sensors to hydrogen exposure (0.06 v/v% in air) in the 
wide range of temperatures (100 – 400 °C). 

Figure 87 summarises the hydrogen sensing performance of the nanostructured 

Au/WO3–based sensors, S1 and S2. The response (S) towards hydrogen is shown for 

temperatures between 100 °C and 400 °C, because of the poor response at low (< 100 °C) 

and at high (> 400 °C) temperatures. τ90% is defined as the time needed to achieve 90% of 

the maximum change in Figure 86B. We have selected 300 and 350 °C as optimal higher 

range temperatures for systematic testing of S1 and S2 sensors respectively. Although lower 

temperature may be ideal in terms of response magnitude, at around 150 °C, slower response 

times are observed at these conditions.  
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Figure 88: Dynamic performance of the nanostructured Au/WO3–based sensor A) S1 
towards H2 of various concentrations at the optimized operating temperature (300 °C); B) sensor 

S2 towards H2 of various concentrations at the optimized operating temperature (350 °C).  

 

In Figure 88, the S1 and S2 sensors were systematically tested towards a wider, 

industrially relevant range of hydrogen concentrations at the optimal operating 

temperatures, illustrating the dynamic response of the Au/WO3–based sensor S1 at the 

optimized operating temperature of 300 °C in Figure 88A and sensor S2 at its optimized 

operating temperature in Figure 88B. 

In Figure 86A, the highest magnitude of response of S1 sensor to hydrogen occurred 

at 150 °C. However, at this operating temperature poor response and recovery(τ90%)  time of 

over 500 s were observed (Figure 86B); hence, 350 °C was preferred as the optimized sensor 

operating temperature, which showed faster response and recovery times very close to 

complete return of the signal to the baseline level upon switching off the hydrogen flow. The 

dynamic response of S1 to various hydrogen concentrations at the optimized operating 

temperature is shown in Figure 88A. At this temperature, the Au/WO3–based sensor S1 

showed excellent performance upon exposure to hydrogen at six different concentrations 

(0.06, 0.13, 0.25, 0.5, 0.75, and 1%). Specifically, pronounced decrease in resistance of up to 

90% or more accompanied hydrogen exposure. 

Figure 88B demonstrated the dynamic performance of the Au/WO3–based sensor S2 

which also demonstrates significant responses to hydrogen in the range of tested 

concentrations. Interestingly, the Au/WO3–based sensor S2 has lower starting levels of 

resistance. The S2 sensor, (the higher concentration samples) may have a higher loading of 

the small Au9 cluster, but because of the calcination process the agglomeration of the clusters 

A

  

B

  



Chapter 7 — Further applications of supported gold clusters 

210 
 

resulted in greater amount of particle sintering. These larger particles were much less 

effective for catalysing the activation of hydrogen at the surface of the sensor. Au/WO3–

based sensor S1 demonstrates much greater relative decreases in resistance (cf. S2) indicating 

that in this case “less is more” when it comes to the effect of Au loading on observed dynamic 

performance of sensors.  

 

Figure 89: Response towards hydrogen Vs. concentration range of 0.06 – 1 v/v% for the S1 
and S2 as well as the RF sputtered WO3 (as comparison) at their respective optimized operating 
temperatures 

  

The experimental data of the sensor response (S) versus hydrogen concentrations at 

their respective optimized operating temperatures shows that sensor made with low 

quantities demonstrated  far superior relative response when compared to the control WO3 

film and higher quantities of gold(S2), shown in Figure 89. It was noted that the 

experimentally observed trends displayed a linear dependence on hydrogen concentrations 

throughout the investigated range. This plot confirms that the higher loaded S2 had a 

diminished response at temperatures above 200 °C, which was attributed to cluster sintering 

at elevated temperatures. At high operating temperatures (>150 °C), the issue of humidity 

was ignored as water desorption was found to occur at a faster rate 35. Importantly, the 

sensor response of S1 was approximately three times greater than the response of S2. On 

comparing the slope coefficients of the fitting equations, it was observed that the rate of 
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increase in the S1 response towards hydrogen is approximately 2.5 higher than the response 

of S2. The linear correlation between sensor response and concentration of H2, as seen in 

Figure 89, can be perfectly fitted by the typical relationship observed for metal oxide sensors  

S(response) = A(gas concentration)B, 

where A and B are defined as a constant typical of the sensing element i.e. hydrogen 

and B values are usually 1 or 1/2, respectively.36,37 These constants could also depend on the 

charge of the surface species and the stoichiometry of the involved reactions.38  

Summary  

This collaborative project aimed to show the potential of small, atomically precise 

gold clusters in sensors for hydrogen gas. Preliminary results showed that this approach 

could be successful in the fabrication of reversible, low-temperature devices as hydrogen 

sensors. By employing chemically synthesised, atomically precise Au nanoclusters deposited 

onto WO3 nanostructured thin film, we have demonstrated proof of concept fabrication for a 

series of H2 sensors. Promising performance was shown for an industrially important range 

of hydrogen concentrations, 0.06 – 1 %. Lower concentrations of gold cluster on the surface 

yielded a device that outperformed a device with a tenfold increase of gold cluster present on 

the surface. Characterisation of samples by electron microscopy and XPS showed 

agglomeration of the clusters occurred; further work on a low temperature sensing regime is 

warranted in an attempt to distinguish the effect of the un-sintered cluster from the observed  

larger ( ≈ 5 nm) nanoparticles. Both sensors showed temperature dependent, high relative 

responses towards hydrogen at various concentrations tested. Finally, the sensors reported 

here are promising for industrial applications due to their excellent stability and 

reproducibility. Further investigations into the performance of these sensors in the presence 

of other competing gases is required to assess the potential of these devices in practical, real-

world applications  

There are still many aspects of these devices, however, that still need to be 

investigated in more depth. A sensor designed with larger gold nanoparticles (> 5nm) is 

needed to compare with S1 and S2 to confirm or exclude the size effect of the small gold 

clusters.  From a mechanistic viewpoint, there is little information on the interaction of gold 
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cluster or nanoparticles with hydrogen. The effect of the triphenyl phosphine ligand should 

also be investigated, as there is potential for the ligand to co-ordinate and interfere with or 

promote the activation of hydrogen in the sensor device. Post-fabrication modification of the 

surface with acid or base may also be an interesting avenue to pursue toward further 

optimisation of these devices. 

Photocatalytic hydrogen production from ethanol 

Photocatalytic hydrogen production from organic compounds is proving to be a 

promising route for energy production.6 Photocatalysts based upon supported metal 

nanoparticles on a semi-conductor, such as titania and zinc oxide, have been shown to active 

for photocatalytic hydrogen production.39 Recent work by Murdoch et al. highlighted gold 

nanoparticles with size range of 2-30 nm on titania are very active for the production of 

hydrogen from ethanol.40 The reactivity of these photocatalysts appeared to be dependent on 

the morphology and dimensions of the titania support and less sensitive to the gold 

nanoparticles size. The photocatalytic reaction involves the excitation of the semi-conductor 

support by photons of equal or higher energy than the band-gap energy.  The photoexcitation 

produces electron-hole pairs that can react with the adsorbed chemical species on the 

surface. The supported metal nanoparticles help to trap the photo-excited electrons from the 

conduction band and transfer them to the adsorbed species.41  

A small selection of our gold cluster catalysts, supported on Evonik P-25 titania, were 

tested for their photocatalytic activity for hydrogen production from ethanol. 

Experimental set-up 

The photocatalytic reactions were conducted by Dr. Jeff Waterhouse at the University 

of Auckland. The photocatalytic reactions were conducted in a liquid slurry reactor under 

nitrogen with ethanol (30 mL) and our supplied catalysts (20 mg). The catalysts were pre-

reduced under hydrogen at 673 K at 1 atm. UV-light source consisted of a concentric set of 

six tubular lamps, with 15 W power and a wavelength of 350 nm position approximately 5 cm 

from the reactor.  Analysis of the reaction products was conducted with two gas 
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chromatographs equipped with thermal conductivity detectors. Preliminary photocatalytic 

results 

Table 16 presents a summary of the results from the photocatalytic tested conducted 

at the University of Auckland. These preliminary tests were conducted to ascertain whether 

there is any improvement in reactivity when using small ligand-stabilised gold clusters. 

Previous reports by Murdoch et al.  investigated a range of gold catalysts supported on 

anatase and rutile.40 It was observed that the optimal size of the gold nanoparticles was 

around 12 nm, and the reaction rate was independent of the gold particle size above 12 nm. 

In addition, gold nanoparticles supported on anatase were found to be two orders of 

magnitude higher than that of rutile supported catalysts. In comparison, Evonik P-25 titania 

consists of a mixture of anatase and rutile was used as the support material for this series of 

catalysts.42 The control reactions with the P-25 support demonstrated moderate reaction 

rates, upon acid washing with 1 m sulfuric acid, the reaction rate decreased significantly. 

This can be attributed to the fact that the surface charge of surface is an important 

contributing factor to the generation of surface radicals.43 

Table 16: Summary of results of photocatalytic production of hydrogen of supported gold 
clusters on titania. 

Sample Rate (µmol min-1) Day 1 Rate (µmol min-1) Day 2 

Evonik P-25 TiO2 
 

4.17 × 10-3 - 

Evonik P-25 TiO2 

Acid Washed 
 

4.69 × 10-4 - 

Au101-TiO2 
Refluxed at 100˚C 

for 2 hours 

1.23 × 10-2 1.62 × 10-2 

Au1015-TiO2(Acid 
Washed) Refluxed at 
100˚C for 2 

4.27 × 10-3 6.98× 10-3 

Au101-TiO2  
0.05% Calcined 

1.34 × 10-2 - 

Au9-TiO2  
0.5% Unheated 

2.49 × 10-3 - 

Au9-TiO2  
0.5% Heated at 

200ºC 

3.56 × 10-3 - 

Au9-TiO2  
0.5% Calcined at 

200ºC 

6.12 × 10-3 - 
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The deposition of the Au9 cluster appears not to increases the reaction rate, even after 

various activation procedures are applied.  The calcination of the P-25 supported Au9  cluster 

appears to have the highest reactivity as compared to the heat treated and untreated Au9 

catalytic samples. TEM and photoelectron studies of the similar samples indicated that 

calcination under air leads to more cluster sintering on the support. The higher reaction rate 

of the calcined Au9 sample can be attributed to the presence of these larger gold particles. 

In the case of the supported Au101 nanoparticles, the reaction rate is much greater for 

the Au101 supported on P-25 titania as compared to the acid washed system, which were 

activated by refluxing at 100 °C for two hours. These samples were also tested for two days; 

and the reactivity doesn’t decrease on the second day of testing. A sample was prepared with 

ten times less gold as compared to the 0.5 % typically used for our series of catalysts. At the 

lower loading, the catalyst appears to have similar reactivity to the higher loaded refluxed 

sample.  

Overall, these preliminary results indicate that the supported Au9 does not show any 

significant increase in reactivity. The larger Au101 nanoparticles supported on titania appear 

to be more reactive than the smaller Au9 clusters. The surface charge of the titania support 

also appears to influence the subsequent photocatalytic activity. Acid-washing of the titania 

support decreases the photocatalytic reactivity. Overall, these preliminary results don’t 

provide any evidence that small gold cluster would advantageous for photocatalytic 

production of hydrogen as compared to the recent study by Murdoch et al. which indicated 

that the optimum gold nanoparticle size for this reaction was around 12 nm. More detailed 

comparisons with larger gold nanoparticles supported on anatase with comparable gold 

loadings would provide a better picture of how active our catalysts are. Further 

investigations in to the effectiveness of such small gold clusters should attempt to modify the 

organic ligand. The large, bulky triphenyl phosphine ligand in this system was largely 

ignored but photoelectron studies have shown that the ligand is present on the surface. 

Various ligand exchange protocols with thiols ligands could help remove the sterically bulky 

ligand and improve reactivity.  
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Concluding summary and further research 

 

 In this thesis, a series of investigations into chemistry of 

supported, ligand-stabilised gold clusters were conducted. A range of 

phosphine stabilised gold clusters were prepared with differing core nuclearities, and were 

characterised in detail. In particular, it was hoped that with improved control of the gold 

particle size that a distinct particle size effect would be observed for the catalytic oxidation of 

styrene. A comprehensive study of the electronic structure of the supported gold clusters on 

titania was conducted, in an effort to understand the effect of various post-deposition 

treatments had on the electronic structure of the supported gold particles.  

In chapter 2, the preparation and characterisation of the atomically precise ligand-

stabilised gold clusters was described in detail. The first high resolution far-infrared 

spectroscopy study of the metal-metal vibrations and metal-ligand vibrations of ligand 

stabilised gold clusters is presented in chapter 3. In these experiments, the vibrational modes 

of interest were identified by comparison to their simulated spectrum which was calculated 

by Jason Alvino and Dr. Gregory Metha at the University of Adelaide. These preliminary 

studies showed that the far-IR spectroscopy could be used to characterise cluster materials, 

however, due the strength of the vibrational modes of interest studies on supported gold 

clusters was not possible. Further studies on the binding of molecular oxygen with the gold 

clusters may provide a route for identifying the potential active intermediates and transition-

states that so far have only been postulated in the literature for ligand stabilised gold clusters  

Chapter 4 described the preparation of heterogeneous catalyts derived from ligand 

protected gold clusters. A range of supports and actviation conditions were employed to 

generate active heterogeneous catalysts using gold clusters. The nature of the support and 

type of post-deposition treatment used were discussed and explored. The materials were 

characterised by HRTEM, which failed to show gold particles smaller than 1.3~1.5 nm 

accurately, mainly due to the contrast with the metal oxide supports. STEM experiments in 

Australia on several samples highlighted that in many samples, the population of ~ 1nm was 

much greater than what was shown by HRTEM  

8 
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As microscopy of these materials proved difficult to accurately detail the particle size 

of the gold particles, electronic properties of the heterogeneous gold catalysts were studied 

using X-Ray photoelectron spectroscopy in chapter 5. This surface sensitve technique 

provided a range of details on the gold metal oxidation state and also the range of particle 

sizes present on the surface of the support. Using this bulk sample spectroscopic technique, 

we were able to do a series of systematic studies, particularly on the titania supported 

samples. Due to excessive sample charging of the silica samples, a comparative study was not 

completed.  

Finally, chapter 6 discussed the catalytic behaviour of the supported gold clusters for 

the catalytic oxidation of styrene. A select range of catalysts and reaction conditions with 

various sources of active oxygen were chosen for this study. The reactivity of the catalysts 

was shown to be dependent on the source of active oxygen, either molecular oxygen or 

organic peroxide. The small phosphine clusters (Au8 and Au9) should very similar reactivity 

but differed slightly from the larger Au101 nanoparticle system. It was concluded that for the 

catalytic oxidation of styrene under these reactions conditions, adding a single atom of gold 

does not make an appreciable difference to the reaction selectivity, until bulk material 

characteristics become more dominant as the particle size is increased.  

In addition, chapter 7 details the further applications of the gold phosphine clusters 

as hydrogen sensors and as catalysts for the catalytic reduction of alcohol to form hydrogen 

gas. Overall, the small Au9 phosphine cluster demonstrated potential as active, reversible 

hydrogen sensors, when deposited on tungsten trioxide substrates. One area of research that 

we regretfully did not have the time to pursue was the post-deposition ligand exchange of the 

supported gold clusters. In this thesis, we purposely used triphenyl phosphine as the ligand 

for all of the clusters. We showed in this work that after various activation treatments that 

the triphenyl phosphine was still present on the surface of the catalyst. By using a ligand that 

is a stronger donor such as trimethyl phosphine or even an alkyl thiol, we could remove the 

sterically bulky triphenyl phosphine under the right reaction conditions through a ligand 

substitution from the surface of the metal oxide support.  

The nature of the surface charge of the support was not explored in the depth 

throughout this work; however, modification of the surface charge of the support after 
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deposition of the gold clusters may also influence the subsequent catalytic activity of the 

supported gold clusters. A wash treatment of the supported gold clusters, with either acid or 

base, would lead to different reactivity and also differing cluster sintering kinetics, which has 

been reported upon previously in various extended surfaces systems. This avenue for 

research was put on hold due to the difficulty in characterising the surface charge of these 

materials with adequate equipment, even with synchrotron based XPS and NEXAFS.  

Although this thesis was largely concerned with supported phosphine clusters, the 

unsupported gold phosphine clusters should also be investigated for their catalytic potential. 

Recent reports of naked gold cluster consisting of thirteen atoms of gold have shown 

moderate turnover frequencies. The clusters used in this thesis, with stericly bulky triphenyl 

phosphine, will in all likelyhood not show significant activity without some sort of ligand 

exchange with a less stericlly bulky ligand or capping group. In addition, the environmental 

impact of using such small particles of gold or any metal should also be an important 

consideration for any further commercial applications. Mixed metal nanoparticles or cluster 

of gold are also potential area of further interest, particularly with lanthanides and actinides 

due to their interesting oxidation chemistry. The chemistry of these mixed metal particles is 

has only just begun to be explored in detail in UHV systems, there are very few reports on 

the wet-chemical preparation of similar system. 

 The potential applications of gold based catalysts or devices in industry are still to be 

exploited fully. Though there are several examples of gold catalysts being employed for large 

scale epoxidation; more extensive use of gold based systems is limited by several factors such 

as thermal stability, selectivity and cost. Many of these issues should rapidly be solved over 

the upcoming years, which should make gold based systems an attractive option for 

applications as industrial catalysts and devices. In conclusion, the recent gold rush in 

chemistry has generated a range of new catalytic routes towards chemical targets, new 

possibilities for sensors, and range of potential applications in medicine.  If the gold is to 

deliver on its many promises, the gulf between many model-extended surface studies and 

industrially relevant catalysts needs to be bridged.  This thesis attempted to bridge some of 

that gap and also showed that gold based devices have the potential for applications in 

industry.  


