
OBLIQUE DECISION TREES IN TRANSFORMED SPACES

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy in Statistics

at the University of Canterbury

By

Darshana Chitraka Wickramarachchi

School of Mathematics and Statistics

Faculty of Engineering

University of Canterbury

New Zealand

September 2015

ii

Table of Contents

Table of Contents iii

List of Tables vii

List of Figures ix

Abstract xiii

Acknowledgments xvii

1 Introduction 1

1.1 Background . 1

1.2 Data classification . 3

1.2.1 Terminology . 3

1.2.2 What is data classification? 4

1.3 Classification trees . 5

1.4 Categorization of classification trees 7

1.4.1 Axis-parallel versus oblique trees 7

1.4.2 Binary versus non-binary trees 8

1.4.3 Top-down versus bottom-up 8

1.5 Top-down tree induction methodology 9

1.6 Impurity measures . 11

1.7 Tree pruning algorithms . 13

1.7.1 Minimal cost complexity pruning 14

1.8 The best tree . 16

1.8.1 Greedy methods . 18

1.9 Estimation of true misclassification rate, R∗(T) 23

1.10 Oblique decision trees . 27

1.10.1 Time complexity of decision tree induction 28

iii

1.11 Motivation for heuristic methods . 30

1.12 Thesis overview . 31

1.12.1 Objectives of the study . 31

1.12.2 Structure of the thesis . 33

1.13 Thesis outcomes . 34

2 Review - Oblique DT algorithms 35

2.1 Introduction . 35

2.2 Tree induction methods based on optimisation techniques 36

2.3 Tree induction methods based on standard statistical techniques . . . 40

2.4 Tree induction methods based on heuristics 42

2.5 Other tree building methods . 45

2.6 Discussion . 46

3 HHCART: An oblique decision tree 49

3.1 Introduction . 49

3.2 Householder reflection for a two-class problem 50

3.3 Householder matrix . 50

3.3.1 Construction of the Householder matrix 52

3.3.2 Some properties of the Householder matrix 53

3.4 Householder reflection for a multi-class problem 55

3.5 Proposed algorithm . 59

3.5.1 Time complexity of HHCART 62

3.5.2 Space complexity of HHCART 63

3.6 Small samples . 64

3.7 Qualitative feature variables . 65

3.8 Importance of HHCART . 68

3.9 Experiments on real life example sets 69

3.9.1 Comparison of performances of HHCART with other DTs . . 70

3.9.2 Effect of different sampling schemes 74

3.9.3 HHCART performances on example sets having mixed feature

types . 77

3.10 Conclusions and discussion . 78

4 HHCART with massive example sets 81

4.1 Early attempts of decision tree induction for large example sets . . . 81

4.1.1 Disk resident decision tree algorithms 82

4.1.2 Parallel computing architecture 94

4.1.3 Parallel implementation of decision tree algorithms 95

iv

4.2 Other possible work flow distributions 104

4.3 Discussion . 105

5 Alternative vectors 107

5.1 Application of the Householder reflection to GDT 108

5.1.1 Finding the class separating hyperplane of the GDT algorithm 108

5.1.2 Computing ẃ1 when matrix A suffers from rank deficiency . . 110

5.1.3 GDT vs HHGDT . 115

5.2 Experiments on real life datasets . 120

5.2.1 Results of two-stage ordinary CV 124

5.2.2 Results of nested CV . 125

5.2.3 Remarks . 136

5.3 Use of Class Representative Vectors (CRVs) 137

5.4 Experiments on real life data sets . 141

5.5 Conclusions and discussion . 143

6 Bottom-Up approach 147

6.1 Introduction . 147

6.2 Bottom-Up tree induction approach 148

6.2.1 Motivation . 148

6.2.2 Bottom-Up tree induction strategy 149

6.3 Model based clustering . 151

6.3.1 Finite Gaussian Mixture Model (FGMM) 153

6.3.2 Maximum likelihood estimates of a Gaussian mixture model . 153

6.3.3 Determining the number of clusters 157

6.4 Support Vector Machine . 161

6.4.1 Hard margin classification problem 162

6.4.2 Soft margin classification problem 163

6.5 The principle of HHCART in place of SVM 164

6.6 Experiments on real life example sets 165

6.7 Shortcomings of the bottom-up approach 173

6.8 Conclusions and discussion . 174

7 Conclusions and future work 177

7.1 Summary of conclusions . 177

7.2 Future work . 182

A Downloaded datasets used in the analysis 185

A.1 Descriptions of the example sets . 185

v

B Nested CV procedure 191

Bibliography 194

vi

List of Tables

1.1 Terminologies. 4

1.2 Random sample. 19

3.1 Results of HHCART and other DT methods. 72

3.2 Classification accuracies for SRS and STRS sampling schemes. 74

3.3 Class-wise classification accuracies for SRS and STRS sampling schemes. 76

3.4 Results of HHCART and QUEST. 77

4.1 Hypothetical example set. 83

4.2 Constructed feature lists for the example set in Table 4.1. 84

4.3 Frequency table created when reading X1 feature list into the memory. 84

4.4 Hash table. 85

4.5 Segments of X1 and X2 features assigned to processor P1. 98

4.6 Segments of X1 and X2 features assigned to processor P2. 98

4.7 Initial frequency table of feature X1 at processor P1. 99

4.8 Processor level information to construct the hash table. 99

4.9 Hash table for X1. 100

5.1 A hypothetical example set. 112

5.2 Results of two-stage ordinary CV of HHGDT and GDT methods. . . 125

5.3 Results of nested CV of HHGDT and GDT methods. 126

5.4 Accuracies of BS and BUPA example sets. 128

5.5 Results of the first repetition of CV for BUPA. 133

vii

5.6 Results of the second repetition of CV for BUPA. 134

5.7 Results of the first repetition of CV for BS. 134

5.8 Results of the second repetition of CV for BS. 135

5.9 Results of HHCRV, OC1 and OC1-LC methods. 143

6.1 Classification results of SVM and HHBUT when BIC is used to deter-

mine the number of clusters. 168

6.2 Classification results of SVM and HHBUT when CV is used to deter-

mine the number of clusters. 169

6.3 Comparison of the top-down and bottom-up approaches.

Tree Abbreviations: S=SVM, HB=HHBUT, HH(A)=HHCART(A), OC1=OC1,

LC=(OC1-LC), AP=(OC1-AP). 171

6.4 Comparison between HHCART(A) and HHBUT. 172

A.1 Real Data sets with quantitative features 188

A.2 Real Data sets with qualitative and quantitative features 189

viii

List of Figures

1.1 Basic structure of a classification tree. 5

1.2 Feature space partitions. 6

1.3 Scatter plot of examples-two-class problem. 19

1.4 Change in impurity with respect to X1. 20

1.5 Change in impurity with respect to X2. 20

1.6 GDI DT. 21

1.7 Space partition structure for the GDI DT. 22

1.8 BA DT. 22

1.9 Space partition structure for the BA DT. 23

1.10 Induced axis-parallel splits for a training example set with a class boundary

that is not parallel to either feature axes. 27

1.11 Induced oblique split for the training data in Figure 1.10. 28

2.1 Two heuristics used in the Cline algorithm 43

2.2 Orientation of the “low” points (depicted by black colour) in the original

space. “High” points are depicted in red. 45

2.3 Orientation of the “low” points in the transformed space. 46

3.1 Scatter of examples in the original feature space. 51

3.2 Scatter of examples in the transformed space after the Householder Reflection. 51

3.3 Geometry of Householder Reflection. 53

3.4 Split in the Original Space. 55

3.5 Scatter plot of examples belonging to five classes. 56

ix

3.6 Partition Structure at the root node . 57

3.7 Partition Structure at node 2 . 57

3.8 Partition Structure at node 3 . 58

3.9 Partition Structure at node 4 . 58

3.10 Partition Structure at node 9 . 59

3.11 Mechanism of the transformation of the qualitative feature to qualita-

tive feature. 67

4.1 Schematic of Parallel computing Architecture. 94

5.1 Scatter plot of the hypothetical data. 113

5.2 Class 1 and Class 2 clustering hyperplanes. 114

5.3 GDT in two-class classification. 117

5.4 The final partition structure of GDT in solid green lines. 119

5.5 The final partition structure of HHGDT in solid black lines. 119

5.6 Scatter plot of examples belonging to five classes. 120

5.7 Selected angular bisector at the root node. 121

5.8 HHGDT in multiclass classification. 121

5.9 Final unpruned partition structure of GDT. 122

5.10 Final unpruned partition structure of HHGDT. 122

5.11 Variation of accuracy with ε for the two example sets. 127

5.12 Fluctuation of accuracy with ε in each CV fold for BS. 130

5.13 Fluctuation of accuracy with ε in each CV fold for BUPA. 132

5.14 Geometrical view of the proof. 138

5.15 Effect of extreme values on the orientation of data. 140

5.16 Scatter plot and the dominant eigenvector. 141

5.17 Scatter plot and the CRV. 142

6.1 Basic structure of a classification tree. 148

6.2 Feature space partition sequence. 149

6.3 Separation hyperplane found by bottom-up approach. 152

x

6.4 Clusters found and separation. 160

6.5 SVM in separable case. 162

6.6 SVM in non-separable case. 163

6.7 Linearly non-separable terminal nodes. 173

6.8 Overlapped terminal nodes. 174

B.1 Schematic of the nested CV procedure. 192

xi

xii

Abstract

Decision trees (DTs) play a vital role in statistical modelling. Simplicity and inter-

pretability of the solution structure have made the method popular in a wide range

of disciplines. In data classification problems, DTs recursively partition the feature

space into disjoint sub-regions until each sub-region becomes homogeneous with re-

spect to a particular class. Axis parallel splits, the simplest form of splits, partition

the feature space parallel to feature axes. However, for some problem domains DTs

with axis parallel splits can produce complicated boundary structures. As an alterna-

tive, oblique splits are used to partition the feature space potentially simplifying the

boundary structure. Various approaches have been explored to find optimal oblique

splits. One approach is based on optimisation techniques. This is considered the

benchmark approach, however, its major limitation is that the tree induction al-

gorithm is computationally expensive. On the other hand, split finding approaches

based on heuristic arguments have gained popularity and have made improvements on

benchmark methods. This thesis proposes a methodology to induce oblique decision

trees in transformed spaces based on a heuristic argument.

As the first goal of the thesis, a new oblique decision tree algorithm, called HH-

CART (HouseHolder Classification and Regression Tree) is proposed. The proposed

algorithm utilises a series of Householder matrices to reflect the training data at each

non-terminal node during the tree construction. Householder matrices are constructed

using the eigenvectors from each classes’ covariance matrix. Axis parallel splits in the

reflected (or transformed) spaces provide an efficient way of finding oblique splits in

xiii

xiv

the original space. Experimental results show that the accuracy and size of the HH-

CART trees are comparable with some benchmark methods in the literature. The

appealing features of HHCART is that it can handle both qualitative and quantitative

features in the same oblique split, conceptually simple and computationally efficient.

Data mining applications often come with massive example sets and inducing

oblique DTs for such example sets often consumes considerable time. HHCART is a

serial computing memory resident algorithm which may be ineffective when handling

massive example sets. As the second goal of the thesis parallel computing and disk

resident versions of the HHCART algorithm are presented so that HHCART can be

used irrespective of the size of the problem.

HHCART is a flexible algorithm and the eigenvectors defining Householder ma-

trices can be replaced by other vectors deemed effective in oblique split finding. The

third endeavour of this thesis explores this aspect of HHCART. HHCART can be used

with other vectors in order to improve classification results. For example, a normal

vector of the angular bisector, introduced in the Geometric Decision Tree (GDT) algo-

rithm, is used to construct the Householder reflection matrix. The proposed method

produces better results than GDT for some problem domains. In the second case,

Class Representative Vectors are introduced and used to construct Householder reflec-

tion matrices. The results of this experiment show that these oblique trees produce

classification results competitive with those achieved with some benchmark decision

trees.

DTs are constructed using two approaches, namely: top-down and bottom-up.

HHCART is a top-down tree, which is the most common approach. As the fourth

idea of the thesis, the concept of HHCART is used to induce a new DT, HHBUT, using

the bottom-up approach. The bottom-up approach performs cluster analysis prior to

the tree building to identify the terminal nodes. The use of the Bayesian Information

Criterion (BIC) to determine the number of clusters leads to accurate and compact

trees when compared with Cross Validation (CV) based bottom-up trees. We suggest

that HHBUT is a good alternative to the existing bottom-up tree especially when the

xv

number of examples is much higher than the number of features.

xvi

Acknowledgments

In looking back after a three year PhD journey, there are many people to thank who

have helped and supported me in various ways. However, there are some individuals

who have been in the forefront and had a significant impact in bringing me thus far

and I would like to pay tribute to them.

For the last three years, every Thursday I sat with four supervisors around me:

Professor Jennifer Brown, Dr. Blair Robertson, Associate Professor Marco Reale

and Associate Professor Chris Price. I was very lucky to have such a wonderful set of

scholars in my supervisory panel. All their kind advice, guidance, encouragement and

also the freedom they gave me to work on my own imagination helped me immensely

to explore my research interests.

I may have not been able to pursue the PhD at the School of Mathematics and

Statistics at the University of Canterbury if Professor Jennifer Brown had not con-

sented to supervise me. Her guidance helped me in all the time of research. I thank

her for her unwavering support.

I was privileged to have Dr. Blair Robertson as one of my supervisors. I still can

remember that, at an early stage of the PhD, he was ready to help me every time

I knocked on his door. He never let me down. Moreover, his support never faltered

during his tenure at the Department of Statistics, University of Wyoming, USA.

I am deeply indebted to Associate Professor Marco Reale for his tremendous su-

pervision in limitless ways. His discussions were not limited to the subject being

studied. He shared his knowledge and experiences in many areas of Statistics. More-

over, he advised me how to become a good researcher, a good lecturer and, more

xvii

xviii

importantly, how to live a balanced academic life. Truly, he is a remarkable mentor.

Finally, to Associate Professor Chris Price, I extend my profound gratitude for

his fullest support in giving me precious advice, suggestions and insightful comments

in this academic work.

There are many more in the School of Mathematics and Statistics to thank for

the support given me during my life at the School. Special thanks to Dr. Clemency

Montelle and Dr. Miguel Moyers-Gonzalez for being our post-graduate coordinators,

Dr. Patrick W. Saart being my mid-PhD examiner, Dr. Carl Scarrott, Dr. Raazesh

Sainudiin, and Dr. Nuttanan (Nate) Wichitaksorn. I must also thank Paul Brouwers

and Steve Gourdie for taking care of all computer related issues and giving me a

trouble free computing environment. At the same time I would also like to thank all

other department members and post-graduate students who were with me to share

the ups and downs.

It is my pleasure to remember and thank Dr. Sung Eun Bae, Dr. Franois Bissey

and Dr. Celine Cattoen from BlueFern Supercomputing of the University of Can-

terbury who helped me by providing valuable advice on parallel processing and the

comments/suggestions on work flow presented in Chapter 4.

I must also thank the University of Canterbury for awarding me one of the presti-

gious scholarships, the University of Canterbury International Doctoral Scholarship,

for the entire three years period.

Moreover, I would like to thank the University of Sri Jayewardenepura, Sri Lanka,

for granting me paid study leave for 39 months to do my PhD research without any

disturbance.

Last, but not least, I thank my loving wife Chamila and four children Chathuli,

Chamudi, Gayaru and Ganguli for their blessings, patience and understanding through-

out the period. Also I thank my parents and all family members who gave their

blessings and support.

Chapter 1

Introduction

1.1 Background

With the vast development of information technology, scientists have been able to

gather large amounts of data. For example, meteorologists receive an enormous

amount of weather data from satellites and DNA micro-array experiments facilitate

a quantitative study of thousands of genes simultaneously. Parallel to the develop-

ment of data gathering technology, extracting information from the data has become

a challenge. Because information has to be extracted as fast and accurately as pos-

sible, the invention of new methods of data analysis is inevitable. This led to Data

Mining, a new field of study. According to Dahan, Cohen, Rokach, and Maimon

(2014, p. 1), data mining refers to a variety of methods for automatically exploring,

analysing and modelling large data repositories in attempt to identify valid, novel,

useful, and understandable patterns. Data mining provides tools and techniques that

add intelligence to data warehousing and organising.

Hastie, Tibshirani, and Friedman (2009) propose that extracting information, pat-

terns and trends from large amounts of data can be called “learning from data” as an

alias for Statistical Learning. Statistical learning can be categorized into supervised

learning and unsupervised learning. In supervised learning the objective is to develop

1

2 CHAPTER 1. INTRODUCTION

a statistical model to describe the relationship between input variables and a response

variable. In unsupervised learning there is no response variable and hence, the objec-

tive is to describe the relationships among input variables. Statistical learning theory

mainly deals with supervised learning problems.

Supervised learning problems can be considered as two different problems. If the

response variable is quantitative, then the problem is a regression problem and if

the response is qualitative then the problem is a classification problem. There are

many statistical techniques that have been developed to address supervised learning

problems, for example, fitting General Linear Models (Montgomery, Peck, & Vining,

2012) or Generalized Linear Models (Nelder & McCullagh, 1989). These conventional

modelling approaches assume that postulate model, or the assumed relationship be-

tween the conditional expectation of the response and the predictor variables, is to

remain the same all over the predictor variable space (Montgomery et al., 2012) and

(Breiman, Olshen, Friedman, & Stone, 1984). For example, the model:

E(Y |X) = f(X) where f(X) = β0 +

p∑
l=1

βiXi, βi, Xi ∈ R, i = 1, 2, . . . , p,

and X ∈ Rp

(1.1.1)

assumes that E(Y |X) can be modelled (or predicted) as a linear combination of

predictor variables for all X ∈ Rp. However, this homogeneity in the relationship

between E(Y |X) and f(X) and the smoothness of f(X), are rarely met and may vary

in different sub-regions of predictor space especially in higher dimensions (Breiman et

al., 1984). On the other hand, piecewise continuous functions can be fitted to disjoint

sub-regions in the space of X as a solution to the above problem. One such example of

these local methods is k-nearest-neighbour procedure (Hastie et al., 2009). However,

this also fails in higher dimensions due to sparseness of data. For instance, in order

to capture a fraction r of a set of points uniformly distributed in a p-dimensional unit

hypercube, one needs to cover a hypercube of edge length r1/p (Hastie et al., 2009).

CHAPTER 1. INTRODUCTION 3

That is, to capture 10% of points in a 10 dimension hypercube, 80% of the range

in each edge has to be covered and hence, the method is no longer a local. These

consequences are commonly known as the “curse of dimensionality”1 (Breiman et al.,

1984).

Therefore, alternative methods have been considered for supervised learning. For

example, tree structured models are one kind of non-parametric partition-based pre-

diction models. Tree based models also belong to the class of piecewise continuous

functions. There are two types of tree structured models depending on the context

of the problem. Regression trees are used for regression problems and classification

trees are used for classification problems. In this research, the classification trees are

being dealt with as they are very common in practice. DT applications to medicine

can be found Breiman et al. (1984); Decaestecker et al. (1996); Podgorelec, Kokol,

Stiglic, and Rozman (2002). Bell (1996); Friedl and Brodley (1997); Scull, Franklin,

and Chadwick (2005) use DT for environmental sciences problems. Examples of ap-

plications in engineering are given by Braha and Shmilovici (2003). Moro, Laureano,

and Cortez (2011) and Tirenni, Kaiser, and Herrmann (2007) use DTs in marketing.

The following section introduces data classification and classification trees. Here-

after, DTs refer to classification trees.

1.2 Data classification

1.2.1 Terminology

This thesis uses terms used in DT literature. Some commonly used terms are given

in Table 1.1.

1a phrase due to Bellman (1961)

4 CHAPTER 1. INTRODUCTION

Table 1.1: Terminologies.

Term Description
Example/Set of examples Observation/Sample

Feature variable Predictor/Independent variable
Class variable Response variable

In this thesis, Node and Region are used interchangeably
Node/Region depending on the context. Node represents a region

or a sub-region in a classification tree. Region/Sub-region
is used to refer space/sub-space of the feature space.

Training Data/ Dataset used to build the tree
Learning Data

Test Data Dataset used to test the tree

1.2.2 What is data classification?

Data classification is a process of determining the class, Y , of an example based on

its p features Xi, where i = 1, . . . , p. In this case, the class of an example is given by

a value from a finite set C = {1, 2, 3, ..., C} and the class for the example is assigned

according to the rule, g(x). The rule g(x) is called a classifier.

A classification algorithm is applied to a training set (X1, Y1), (X2, Y2), . . . ,

(Xn, Yn) ∈ X × C where X = {X1, X2, . . . Xn} and constructs a classifier g(x). In

the statistical learning theory paradigm, there are no assumptions made on the space

of X×C, when constructing the classifier g(x). However, some assumptions are made

about the mechanism that generates the training example set and they are:

[1] There exists a joint probability distribution P on X×C, which is unknown but

fixed.

[2] Examples in the training set are independent to each other.

This is different from the Fisher’s paradigm where classification is done by using

maximum likelihood estimation (Fisher discriminant analysis) based on the normality

CHAPTER 1. INTRODUCTION 5

assumption (Vapnik, 2000).

1.3 Classification trees

A classification tree is a tree structured classifier. The typical structure of a binary

classification tree (discussed in Section 1.4) is shown in Figure 1.1. This tree classifies

points as being either Red or Blue and uses two feature variables (X1 and X2). For

this illustration, assume that X1 and X2 are normalised such that 0 ≤ Xi ≤ 1 for

i = 1, 2. A DT consists of terminal nodes and non-terminal nodes. Nodes which

Red

RedBlue

Blue

Test: X1 <= 0.5

Test: X2 <= 0.3

Test: X1<= 0.7

1

2 3

6 7

12
13

Figure 1.1: Basic structure of a classification tree.

have no lower order nodes (child nodes) are called terminal nodes. A node in a tree

represents a sub-region in the feature space. The very first node is called the Root

Node. At each non-terminal node a test or query is carried out. In Figure 1.1, those

nodes are labeled as “Test” and are numbered as 1, 3, and 6. The test (or split) can

use a single feature variable or combination of feature variables as given in Section

1.5. The predicted class of an example is the class label given to the terminal node to

which the example is assigned by the tree. In Figure 1.1 terminal nodes are labeled

as either “Red” or “Blue”. The route which the example travels from root node to

6 CHAPTER 1. INTRODUCTION

its terminal node is called the path. The space partitions corresponding to the above

DT are given in Figure 1.2.

0.3

0.70.5 X1

X2

1

1

Figure 1.2: Feature space partitions.

In the DT shown in Figure 1.1, the split at node 1 divides the data set into two

subsets based on X1 ≤ 0.5. This split is shown in Figure 1.2 by the line X1 = 0.5.

Examples whose X1 value is less than 0.5 go to node 2 and are categorised as “Red”.

The feature space partition corresponding to node 2 is shown in Figure 1.2 by the

rectangular region below X1 = 0.5. The examples whose X1 value is greater than 0.5

go to node 3 and require further splitting. The set of examples come to node 3 and

that satisfy X2 > 0.3 are sent to node 7 and are assigned to the Blue class. The region

corresponding to node 7 is shown in the rectangular region bounded by X1 > 0.5 and

X2 > 0.3 in Figure 1.2. Examples which do not reach node 7 go to node 6 and are

tested on X1 to categorise as “Red” or “Blue”. The rules generated by the DT are

given below:

Rule 1 : If X1 ≤ 0.5, then Class = Red.

Rule 2 : If X1 > 0.5 ∧X2 ≤ 0.3 ∧X1 ≤ 0.7, then Class = Blue.

CHAPTER 1. INTRODUCTION 7

Rule 3 : If X1 > 0.5 ∧X2 ≤ 0.3 ∧X1 > 0.7, then Class = Red.

Rule 4 : If X1 > 0.5 ∧X2 > 0.3, then Class = Blue.

In summary, DTs represent a disjunction of conjunctions of tests on feature vari-

ables. Each path from the root node to a terminal node corresponds to a conjunction

of tests and the tree itself a disjunction of these conjunctions.

1.4 Categorization of classification trees

Tree structured classifiers are categorised in various ways based on characteristics of

a tree induction procedure. Some of the characteristics which this thesis is interested

in are about the way a tree is induced, the type of the splits used and the number of

child nodes per non-terminal node. A brief account of these is given in the following

sections.

1.4.1 Axis-parallel versus oblique trees

Trees which use a single feature variable to split regions are called axis-parallel trees.

On the other hand, trees which use a linear combination of feature variables to split

regions are called oblique trees. Axis-parallel splits are suitable when the class bound-

aries are parallel to the feature axes. Oblique splits are useful when the class bound-

aries can be represented as linear combinations of feature variables. An oblique split

is a generalisation of an axis-parallel split. Finding oblique splits can be more compu-

tationally expensive than searching for axis-parallel splits (Heath, Kasif, & Salzberg,

1993). However, many studies have shown that trees which use oblique splits gener-

ally produce smaller trees with better accuracy compared with axis-parallel trees for

some problem domains (Brodley & Utgoff, 1995; X. B. Li et al., 2003; Murthy, Kasif,

& Salzberg, 1994). Axis-parallel splits can easily be understood, but these trees are

8 CHAPTER 1. INTRODUCTION

in general larger in size (many nodes) and hence, understanding the entire tree would

be difficult. On the contrary, oblique trees may result in shorter trees (fewer nodes),

yet an individual split may be difficult to understand (Brodley & Utgoff, 1995).

1.4.2 Binary versus non-binary trees

In binary trees a region is split into two mutually exclusive sub-regions whereas in non-

binary trees (Utgoff & Brodley, 1991) a region is split into more than two mutually

exclusive sub-regions. Generally splits based on qualitative feature variables, which

have more than two levels, produce non-binary partitions. Since non-binary trees can

make many partitions at a node, the size of the example set decreases rapidly when

going down the tree. However, a non-binary tree can be reduced to a binary tree

(Devroye, Györfi, & Lugosi, 1996). Binary trees are popular because they can easily

be interpreted (especially with axis-parallel splits) as it is a matter of answering a

query of only two possible answers (yes and no) at each node. Furthermore, a split at

a node in a binary tree can generally be formalised by a one dimensional optimisation

problem whereas in a non-binary tree it would be required to solve an optimisation

problem having dimension more than one (Duda, Hart, & Stork, 1999). In this

research, a new oblique binary classification tree induction algorithm is proposed.

Hence the discussion is mostly limited to binary trees.

1.4.3 Top-down versus bottom-up

In the top-down binary tree induction approach, the first split is made such that the

whole training example set is partitioned into two mutually exclusive sets. Then

for each subset, a split is made to divide the subset into two further mutually

exclusive subsets. This process is carried out until a stopping condition is met (see

Section 1.5). In the bottom-up approach, first, terminal nodes are identified using

CHAPTER 1. INTRODUCTION 9

a clustering algorithm where each terminal node contains examples from one class.

Then the clusters are merged one-by-one until one cluster, the root node, reached.

1.5 Top-down tree induction methodology

Consider a classification problem with a training data set D(X, Y) where X = {Xi ∈

Rp : i = 1, 2, . . . , N} . The objective is to find a tree classifier such that:

T (Xi) : Rp → C.

DT induction methods recursively partition the feature space Rp into disjoint sub-

regions until each sub-region becomes homogeneous or near homogeneous with respect

to a particular class in C. A sub-region (or a node) can be partitioned using splits of

one of three forms. The three forms are:

[1] Is Xj ≤ s?

This test is based on one feature variable and is called a univariate split or axis-

parallel split. This creates hyper-rectangular partitions in the feature space.

[2] Is a1X1 + a2X2 + · · ·+ apXp ≤ s?

This test is based on a linear combination of feature variables and is called an

oblique split. This creates polyhedral partitions in the feature space.

[3] Is Ψ(X1, X2, . . . , Xp) ≤ 0? where Ψ(.) is an any function of X1, X2, . . . , Xp.

This general form allows for a non-linear combinations of feature variables.

Tests [1] and [2] are special cases of this form.

where s, ai, Xj ∈ R. Tests [1] and [2] are the most common types of tests used in DT

induction, for example: Breiman et al. (1984), Murthy et al. (1994) and Amasyah and

10 CHAPTER 1. INTRODUCTION

Ersoy (2008). The test [3] is not popular due to its complicated solution structure.

However, several attempts have been made to induce DTs using tests of this form

(Ittner & Schlosser, 1996). A major drawback of non-linear splits is that they need

large example sets for training and tend to over-fit in the lower nodes of the tree

(Y. Li, Dong, & Kothari, 2005). Also the computational effort for finding such splits

is much higher than that of the first two forms of tests.

Once the split is made at a node, it generates two child nodes each of which

is either homogeneous (or near homogeneous) with respect to a particular class or

heterogeneous. If a child node is heterogeneous, then it is split further. This procedure

is recursively applied to a node until at least one of the following conditions is met:

[1] All examples in the node belong to a one class (homogeneous node).

[2] The number of examples in the node is less than a user specified threshold.

[3] Misclassification rate at the node is less than a user specified threshold (near

homogeneous).

These conditions are called stopping rules . If splitting stops due to [2] or [3],

then the resultant child nodes are not necessarily homogeneous. A node which meets

any of above conditions is called a terminal node and is given a class label based on

a criterion. The most common criterion is to use majority rule. In the majority rule,

the class label of the most frequent class in the node is assigned to the terminal node.

However, if there exist a set majority classes, the terminal node is arbitrary given the

label of the lower indexed element of the set. The tree building process finishes if there

are no nodes that require further splitting. A tree in which all the terminal nodes are

homogeneous with respect to a class, is said to be a fully grown tree. A fully grown

tree generally over-fits to the training data (Breiman et al., 1984). Examples that

can easily be classified reside near the root node. The examples that are harder to

CHAPTER 1. INTRODUCTION 11

classify cause the tree to go further and can produce an over-fitted tree (Manwani &

Sastry, 2012). Over-fitted trees are not suitable for predictions (Breiman et al., 1984,

p 61) and hence, tree simplification procedures are applied to reduce over-fitting. This

process is called tree pruning. The aim of pruning is to obtain a smaller tree from

the full tree by eliminating its lower branches that are considered unreliable, based

on misclassification rate. Several tree pruning methods are available and one used

in this study is discussed in Section 1.7. The top-down tree building process finishes

with the pruning process completed.

1.6 Impurity measures

Impurity measures play a vital role in DT induction. They measure the purity or

impurity of a node based on the class probability distribution of the node. Several

different mathematical measures of impurity have been proposed. According to the

literature, the performances of impurity measures on classification results vary with

the DT algorithm. Breiman et al. (1984, p. 38) found that the properties of the final

tree are insensitive to the choice of impurity measure for CART. Mingers (1989b)

found the choice of measure affects the size of a tree but not its accuracy for the

decision tree called, ID3 (Quinlan, 1986). In this section, the impurity measure given

by Breiman et al. (1984) is defined and some impurity measures which are commonly

used in tree induction algorithms are introduced.

Definition 1.6.1. An impurity function is a function φ defined on the all set of

C− tuples of numbers (p1, p2, . . . , pC) satisfying pj ≥ 0, j = 1, 2, . . . ,C and

{
∑C

j=1 pj = 1} with the properties:

[1] The maximum of φ occurs only at the point (1
C
, 1

C
, . . . , 1

C
).

12 CHAPTER 1. INTRODUCTION

[2] The minimum of φ occurs only at points (1, 0, . . . , 0), (0, 1, . . . , 0),

. . . , (0, 0, . . . , 1).

[3] φ is a symmetric function of (p1, p2, . . . , pC).

The impurity measures which are used in this thesis are given below. The other

criteria can be found in Rokach (2008).

[1] Information measure

The use of the information measure for DTs was proposed by Quinlan (1986)

and the function is based on information theory. This is also called as Shanon

Entropy. The function measures the impurity at node t by:

I(t) = −
∑C

k=1 pk log2 pk where log 0 = 0.

[2] Gini Diversity Index (GDI)

GDI was proposed for DTs by Breiman et al. (1984) and measures the impurity

of a node t as:

I(t) = 1−
∑C

k=1 p
2
k.

[3] Twoing Criterion

This measure was also proposed by Breiman et al. (1984). The distinct feature

of this measure is that it directly computes how good the split is. It computes

the difference between the purity of a node (Rt) before it is split and the purity

of two sub-regions obtained after splitting Rt and it is given by:

∆I(t) = pLpR
4

[
∑C

k=1 |p(k|tL)− p(k|tR)|]2

where pL and pR are the proportions of examples that fall into the left and right

nodes respectively and p(k|tL) and p(k|tR) are the proportions of the kth class

examples that fall into the left and right nodes respectively.

[4] Max Minority

Max Minority can be found in Murthy et al. (1994) and the impurity at a node

CHAPTER 1. INTRODUCTION 13

t is define as:

Minority Left =
∑C

k=1,k 6=MaxLk
Li

Minority Right =
∑C

k=1,k 6=MaxRk
Ri

MaxMinority = max(Minority Left,Minority Right)

[5] Sum Minority

This measure can also be found in Murthy et al. (1994) is just the sum of

Minority Left and Minority Right which as defined in [4].

1.7 Tree pruning algorithms

The purpose of tree pruning is to avoid over-fitting. A DT can be pruned while it is

being built or after the tree is fully grown. The former is known as pre-pruning while

the latter is known as post-pruning. The second and third stopping rules mentioned

in Section 1.5 are examples of pre-pruning. However, it is recommended to use post-

pruning rather than pre-pruning (Breiman et al., 1984, p 62). Pre-pruning stops

a node from being split further when a user specified threshold is met. This may

inhibit the chance a desirable split being found at a descendent node. Post-pruning

methods allow the tree to be grown fully and then the tree is pruned upwards. Some

post-pruning methods are listed below:

[1] Minimal Cost-Complexity pruning (Breiman et al., 1984).

[2] Reduced Error pruning (Quinlan, 1987).

[3] Pessimistic pruning (Quinlan, 1987).

[4] Critical value pruning (Mingers, 1987).

Quinlan (1987) and Mingers (1989a) show that pruning methods produce smaller

and more accurate DTs. Comparisons between different pruning methods can be

14 CHAPTER 1. INTRODUCTION

found in Esposito, Malerba, Semeraro, and Kay (1997); Malerba, Esposito, and Se-

meraro (1996); Mingers (1989a); Patil, Wadhai, and Gokhale (2010); Quinlan (1987).

Based on the empirical comparisons between various pruning methods, Mingers

(1989a) concludes that in general the minimal cost complexity pruning consistently

produces lower error rates. In this research, the minimal cost-complexity pruning,

introduced by Breiman et al. (1984) is used. This method is widely used in DT

induction procedures and the following subsection briefly explains how the minimal

cost-complexity pruning algorithm works.

1.7.1 Minimal cost complexity pruning

Minimal Cost Complexity pruning (MCC-Pruning) prunes a tree in two stages. First,

it generates a sequence of sub-trees from a fully grown tree and then selects the

smallest tree with the highest classification accuracy estimated on an independent

test set or cross validation samples. The first stage uses the complexity measure:

Rα(T) = R(T) + α
∣∣∣T̃ ∣∣∣ , (1.7.1)

where T̃ is the set of terminal nodes in the tree T ,
∣∣∣T̃ ∣∣∣ is the cardinality of T̃ and∣∣∣T̃ ∣∣∣ ≥ 1 , R(T) is the re-substitution estimate2 (RSE) of misclassification rate of the

tree T and α ≥ 0 is a scalar. Therefore, the complexity measure is a function of RSE

of misclassification rate and number of terminal nodes in the tree. Consider a branch

Tt rooted from node t. The cost complexity measure of Tt is defined by:

Rα(Tt) = R(Tt) + α
∣∣∣T̃t∣∣∣ , (1.7.2)

where
∣∣∣T̃t∣∣∣ > 1. If all the branches of Tt are pruned, then

∣∣∣T̃t∣∣∣ = 1 and the cost

complexity measure of node t can be defined as:

Rα(t) = R(t) + α. (1.7.3)

2definition is given in Section 1.9

CHAPTER 1. INTRODUCTION 15

Also3:

Rα(Tt) < Rα(t), when α = 0 ∵ R(Tt) < R(t) (1.7.4)

When α increases, both Rα(Tt) and Rα(t) increase. The branch Tt remains in the tree

as long as Rα(Tt) < Rα(t). However, the rate of increase in Rα(Tt) is greater than

that of Rα(t). Therefore, when α increases to α∗ where α∗ = R(t)−R(Tt)

|T̃t|−1
, the two cost

complexities become equal (Rα(Tt) = Rα(t)). Since, the two complexities are equal

and node t is just a one single node, it is preferable to have node t in the tree instead

of having the entire Tt rooted from the node t. Therefore, Tt can be pruned from the

tree at α = α∗.

The MCC-pruning method can be described as follows. First, it considers the full

tree, Tmax. For each non-terminal node in Tmax, α
∗ is computed and the non-terminal

node (t∗1) is selected which minimises the α∗. Then, the branch Tt∗1 rooted from t∗1, is

pruned. The resultant sub-tree then can be defined as T1 = Tmax−Tt∗1 . Now, for each

non-terminal node in T1, α∗ is computed and the non-terminal node (t∗2) is selected

which minimises α∗. The branch Tt∗2 , rooted from t∗2, is then pruned from T1 and the

next sub-tree is defined as T2 = T1− Tt∗2 . The algorithm continues to prune branches

until the final sub-tree contains only the root node. The explicit algorithm for the

first stage of the MCC-pruning is given in Algorithm 1.

The algorithm outputs a sequence of decreasing size sub-trees T1 � T2 �

. . . {root node}. In the second stage the objective is to select an optimal sub-tree

(a sub-tree which minimises the estimated misclassification rate) from the sequence.

Two approaches are suggested to estimate the misclassification rate by Breiman et

al. (1984): (a) the use of the independent test sample, and (b) the use of cross val-

idation samples. In this research, the independent test sample approach is used to

estimate the misclassification rate of the tree to select the optimal sub-tree. Hence,

the same independent test set (or pruning set) is fed through each Ti and the smallest

3see (Breiman et al., 1984, p 68)

16 CHAPTER 1. INTRODUCTION

initialization;
Define T =Tree;
Define Tmax = The fully grown tree;
Define i = 1 . Temporary counter;
T = Tmax;
while T 6= Root Node do

For each non-terminal node in T , compute its α value;
Select the branch Tt∗i which produces the smallest α (that is α∗) and prune

it from the T ;
Let Ti = T − Tt∗i ;

i = i+ 1;
Let T = Ti;

end

Algorithm 1: Overview of Minimal Cost-Complexity pruning algorithm - First
stage

tree that minimises the misclassification rate on the independent test set is selected.

Furthermore, Breiman et al. (1984) introduces c-standard error (c-SE) rule to se-

lect the optimal sub-tree. Let q∗ be the estimated minimum misclassification rate.

The standard error of q∗ is
√
q∗(1− q∗)/nts where nts is the size of the test sample.

The c-SE rule selects the optimal tree, Tk0 where k0 is the maximum k satisfying

R(Tk0) ≤ q∗ + c
√
q∗(1− q∗)/nts. In this research a 0-SE rule is used.

1.8 The best tree

As in the conventional modelling approach, the aim is to obtain the most parsimonious

classification tree model for the data. That is, to obtain the smallest tree that has

the minimum true misclassification rate R∗(T) (see the Definition 1.8.1). The

size of the tree is measured in terms of the number of terminal nodes in the tree. We

call this tree “the best tree”.

Definition 1.8.1. Let (X, Y), where X ∈ Rp and Y ∈ C, be an example

CHAPTER 1. INTRODUCTION 17

drawn randomly from a population and independent of the training set. Then

R∗(T) = p(T (X) 6= Y).

1.8.0.1 Finding the best tree

The procedure for finding the best tree from a learning sample can be summarised as

follows:

[1] Draw a random sample from the population concerned.

[2] Construct all possible trees for the sample.

[3] Classify a very large (virtually infinite) sample from the population (or ideally

the population itself) using each tree and obtain R∗(T) for each tree 4.

[4] Select the smallest tree which minimises the R∗(T).

Finding all possible trees for the sample is an impracticable task. Therefore, greedy

divide and conquer algorithms are used to approximate the best tree. The principle of

divide and conquer algorithms is to partition the feature space recursively into sub-

regions until each sub-region satisfies at least one of the stopping rules mentioned

in Section 1.5. The problem is how to divide the feature space. It can be divided

either using axis-parallel splits or oblique splits. For a particular region having n,

p-dimensional examples, the total number of all possible axis-parallel splits is (n− 1)p.

However, it cannot be predetermined which split leads to the Best Approximate (BA)

tree. Therefore, the best split in the region (locally optimal) is used to split the region.

This approach is called the greedy approach. The problem now reduces to how the

best split is selected in each region. A popular method is searching for the split that

minimises an impurity function. It can be shown that the impurity of a region before

4In practice, R∗(T) usually is unobservable. Therefore, the estimated misclassification rate R(T)
is used and the estimation procedure of R∗(T) is given in the Section 1.9.

18 CHAPTER 1. INTRODUCTION

it is split will be greater than, or equal to, the weighted sum of impurities of the

two sub-regions generated after the split (Breiman et al., 1984, p. 126). Therefore,

the split which maximises the reduction in impurity, defined in equation (1.8.1), is

selected as the best split at the node.

∆I(t) = I(t)− pLI(tL)− pRI(tR), (1.8.1)

where I(t) is the impurity of node t and pL and pR are proportions of examples in

left and right child nodes respectively. Greedy approaches do not guarantee that the

induced tree is the best approximate tree. There can be situations where non-optimal

splits produce a better tree than a tree obtained through the best splits at each node.

This is illustrated below using axis-parallel splits.

1.8.1 Greedy methods

Greedy methods find locally optimal splits at each node with the hope of finding the

globally optimal tree. The major drawback of this approach is illustrated using an

axis-parallel DT. Consider the two dimensional, two-class classification problem given

in Table 1.2.

The scatter plot of the data is given in Figure 1.3. It can be seen that axis-

parallel splits are suitable for feature space partitioning. Hence, an axis-parallel DT

is constructed using the GDI impurity measure. The axis-parallel algorithm starts

to search along the X1 axis and then the X2 axis to find the best split at the first

node. The best split is the one that maximises the impurity reduction given in

equation (1.8.1). The impurity reduction for each split along X1 axis and X2 axis are

given in Figure 1.4 and Figure 1.5 respectively. The impurity reduction, ∆I(t), of each

split along the ith axis is computed for
Xi

j+Xi
(j+1)

2
, i = 1, 2 and j = 1, 2, . . . , (n − 1),

where X i
j is the jth value of ith feature which is sorted in ascending order. At

X1 = 4.55, the impurity reduction attains its maximum of 0.1636. The line X1=4.55

CHAPTER 1. INTRODUCTION 19

Table 1.2: Random sample.

Y X1 X2 Y X1 X2 Y X1 X2

1 1.8 4.9 1 1.5 4.8 1 1.25 5.2
1 3 4.75 1 3.5 5.2 1 1.9 2.7
1 2 2 1 4.1 2.3 1 4.2 2.45
1 2.3 2.65 1 4.5 5.6 1 3.75 2.6
1 2.5 2.5 1 4 2.7 1 3.7 2.4
1 5 4.8 2 1.3 3.4 2 1.5 2.9
2 2.4 3.3 2 2.7 4 2 3 4.2
2 3.9 3.9 2 3.8 2.9 2 4.8 2.9
2 4.9 2 2 5.5 1.7 2 5 2.1
2 6.3 2.6 2 5.7 2.5 2 5.4 1.8
2 4.6 2.1 2 4.8 3.1 2 5.9 3.3
2 5.7 3.2

63.6

6

3

X1

X2

Figure 1.3: Scatter plot of examples-two-class problem.

20 CHAPTER 1. INTRODUCTION

4.55 X1

Im
p

u
ri

ty
 R

e
d

u
ct

io
n

Figure 1.4: Change in impurity with respect to X1.

2.8 4.5

Im
p

u
ri

ty
 R

e
d

u
ct

io
n

X2

Figure 1.5: Change in impurity with respect to X2.

CHAPTER 1. INTRODUCTION 21

is selected to split the region first. The tree building process continues as mentioned

in the Section 1.5 until the tree is fully grown. The final unpruned tree (GDI-tree) and

the corresponding feature space partitions (GDI-Partitions) are given in Figure 1.6

and Figure 1.7 respectively. With reference to Figure 1.6 and Figure 1.7 there are five

X1 q 4.55

X2 q 2.8

l X2 q 4.75

ll

X2 q 4.05

ll

Figure 1.6: GDI DT.

terminal nodes - five homogeneous regions using axis-parallel splits. However, had the

split at X2 = 2.8 been chosen as the first split, where the reduction in impurity is only

0.015018 (see Figure 1.5) a smaller tree would have been obtained. The resultant DT

(BA-tree) and the corresponding feature space partition (BA-partitions) are given in

Figure 1.8 and Figure 1.9 respectively. The BA-tree has only 4 terminal nodes while

the greedy method produces a tree with 5 terminal nodes. The BA tree also classifies

examples perfectly. Therefore, the BA tree would have been the best approximated

tree for the best tree. This illustrates the fact that non-optimal splits may lead to

a better tree. However, to improve greedy algorithms a lookahead approach beyond

one or few levels has been proposed by Sarkar, Chakrabarti, Ghose, and DeSarkar

22 CHAPTER 1. INTRODUCTION

4.55

4.475

2.8

4.05

Figure 1.7: Space partition structure for the GDI DT.

X2 q 2.8

X1 q 4.4

ll

X2 q 4.475

l l

Figure 1.8: BA DT.

CHAPTER 1. INTRODUCTION 23

4.475

4.4

2.8

Figure 1.9: Space partition structure for the BA DT.

(1994) and Murthy and Salzberg (1995a).

1.9 Estimation of true misclassification rate, R∗(T)

Breiman et al. (1984) present three estimators for R∗(T), the true misclassification

rate of the final tree. A brief description of these methods is given below. The

indicator function denoted by I(.) takes value one if the argument is true, otherwise

it is zero.

[1] Re-substitution estimate R(T)

Let the training sample of the tree be given by (Xi, Yi), where Xi ∈ Rp and Yi ∈

C, for i = 1 . . . n. Then R(T) is defined as:

R(T) =
1

n

n∑
i=1

I(T (Xi) 6= Yi). (1.9.1)

24 CHAPTER 1. INTRODUCTION

R(T) is an optimistic estimator of R∗(T) as it is computed using the training

set. However, if there is no additional sample to use as a test sample, then R(T)

is used as an estimator of R∗(T).

[2] Test sample estimate Rts(T)

Let the test sample, which is independent of the learning sample but drawn

from the same probability distribution as of the training sample, be given by

(Xi, Yi), where Xi ∈ Rp and Yi ∈ C, for i = 1 . . . n . Then Rts(T) is defined as:

Rts(T) =
1

n

n∑
i=1

I(T (Xi) 6= Yi). (1.9.2)

Generally, the independent test sample is obtained by drawing a portion q of

examples randomly from the learning sample. Conventionally, 10%, 20% or

30% is assigned to q. Therefore, the training sample should be large enough to

guarantee that the tree is reliably trained and tested.

[3] v-Fold Cross-Validation (CV) estimate R(cv)(T)

If the sample is not sufficiently large to split into training and testing samples,

then a v-fold CV method is preferred. In this procedure, the example set is

divided into v nearly equal size (nv) disjoint partitions randomly and for each

partition (hold-out partition), the remaining v − 1 partitions are used for the

tree building while the hold-out partition, (hv), is used for the testing. Then

Rcv(T) is defined as:

Rcv(T) =
1

n

v∑
j=1

∑
(Xi,Yi)∈hj

I(T (Xi) 6= Yi). (1.9.3)

The advantage of this method is that it uses the entire sample to estimate R∗(T).

Conventionally, 5 or 10 is assigned to v. In the experiments of this research, R(cv)(T)

is used to estimate the accuracy of the classifier.

CHAPTER 1. INTRODUCTION 25

Variants of CV procedure can be found elsewhere in the literature. Each method

has its own unique approach to estimate the accuracy and their performances differ

depending on the context. For example, Monte Carlo CV is recommended over ordi-

nary CV to determine the number of components in a finite mixture model (Smyth,

1996). A brief description of each of the method is given below.

[1] Ordinary CV

As explained above, in v-fold cross validation, the example set is divided into

v disjoint partitions. For each v, the model is built using v − 1 partitions and

tested on the remaining partition. The leave-one-out CV is a specific version

of ordinary CV where v = n. However, the accuracy estimates of leave-one-out

CV suffer from high variance (Smyth, 1996) and hence, v = 5 or v = 10 is the

usual choice. However, in some cases leave-one-out is very useful, for exam-

ple, with time series data as it may not weaker or disrupt the autocorrelation

structure (Ancona et al., 2005). The experiments conducted in Chapter 3 use

the ordinary CV procedure. However, Varma and Simon (2006) show that the

ordinary CV procedure tends to produce optimistic estimates when it is applied

to the situation where the parameter estimation5 is performed simultaneously

with the accuracy estimation. This happens as follows. For each parameter

value or each combination of the parameter values, the v-fold ordinary CV pro-

cedure is used to estimate the accuracy. The optimal parameter value or the

optimal combination of the parameter values is then determined by maximis-

ing the CV accuracy. Let amax be the maximum accuracy. The full example

set is then used to build the classifier with the optimal parameter value or the

combination of the parameter values found and the estimated accuracy of the

classifier is taken as amax. Krstajic, Buturovic, Leahy, and Thomas (2014) state

that choosing amax as the estimated value for the accuracy is a common mistake

5parameters which required to train the classifier and they are called tuning parameters.

26 CHAPTER 1. INTRODUCTION

in classification and regression model selection and assessment. Therefore, in

this research (Chapter 5 and Chapter 6) the two-stage CV procedure is used to

estimate the accuracy while estimating the tuning parameters of classifiers.

[2] Monte Carlo CV (MCCV)

In this method, examples are partitioned into M (usually between 20-50) dis-

joint test and training subsets where a test set is a fraction β (usually taken as

0.5) of the overall data. The marked difference between v-fold CV and MCCV,

is that the M test sets in MCCV are not disjoint. It is assumed that MCCV

estimates are generally unbiased as they are computed from the average of M ,

generally large, estimates (Smyth, 1996).

[3] Nested or double CV

This procedure is particularly useful when the model selection is done simulta-

neously with the parameter estimation. It is noted by Varma and Simon (2006)

that ordinary CV in this situation produces optimistic biased classification ac-

curacy estimates. Thus Varma and Simon (2006) proposed nested CV while

Filzmoser, Liebmann, and Varmuza (2009) proposed the repeated nested CV

procedure also called the repeated double CV. The procedure for the nested CV

is given in Appendix B. This procedure is used in the experiments carried out

in Chapter 5.

[4] Two-stage ordinary CV

This procedure is also used by some researchers when the model selection is

done parallel to the parameters’ estimation. First, a v1-fold ordinary CV is

run to select the optimum parameter values. Then another v2-fold CV is run,

separately to the first CV, using the optimum values of the parameters to esti-

mate the classification accuracy. This method is used by (Manwani & Sastry,

2012) to estimate the classification accuracy of their classifiers. Some of the

CHAPTER 1. INTRODUCTION 27

experiments in Chapter 5 and Chapter 6 use this CV procedure to estimate the

classification accuracy.

1.10 Oblique decision trees

One of the advantages of axis-parallel DTs is that they are conceptually simple, in

that, the class determination phenomenon can easily be understood. The axis-parallel

splits are desirable when the class boundaries are parallel to feature axes. However,

if the decision boundaries are not parallel to feature axes, axis-parallel splits can

complicate the boundary structure, even in simple problems. This fact is illustrated

in Figure 1.10, where two-classes are classified using the information contained in two

feature variables.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

X1

X2

Figure 1.10: Induced axis-parallel splits for a training example set with a class boundary
that is not parallel to either feature axes.

The oblique split simplifies the boundary structure (see Figure 1.11) and hence,

28 CHAPTER 1. INTRODUCTION

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

X1

X2

Figure 1.11: Induced oblique split for the training data in Figure 1.10.

simplifies the tree. Oblique splits also help in increasing the prediction accuracy of the

tree model. However, the interpretablility of the solution can be difficult with oblique

splits (X. B. Li et al., 2003). The major problem of inducing oblique trees is the

computational effort required to find the best split at a node. The time complexity

of axis-parallel and oblique splits is discussed in the following section.

1.10.1 Time complexity of decision tree induction

Time complexity of DT induction algorithms is one of the important characteristics

when assessing DTs. Even with the recent development of computer power, some

algorithms take much longer to build a DT with large training samples. Therefore,

Lim, Loh, and Shih (2000) state that there may be an advantage of using quicker

algorithms for large example sets even if the slower algorithms possess slightly better

classification accuracy.

CHAPTER 1. INTRODUCTION 29

The complexity of DT induction algorithms has been analysed in many ways.

Hyafil and Rivest (1976) studied the complexity for constructing the optimal binary

tree while Murthy et al. (1994) derive the upper bound for the complexity of the best

split at a node. Others, Amasyah and Ersoy (2008) for example, have considered the

total training time of the DT.

Here the time complexity of finding the best axis-parallel and the best oblique

split is discussed. Assume a set of n, p-dimensional examples. The best split is the

split which maximises the impurity reduction given in equation (1.8.1). The best axis-

parallel split can be found by exhaustively searching all possible axis-parallel splits at

the node. Hence, the impurity function has to be evaluated at (n−1) positions along

each dimension giving a total number of evaluations of p(n−1). Furthermore, at each

evaluation O(n) work has to be done to evaluate the impurity function. Therefore,

the order of complexity for finding the best split at a node by axis-parallel method is

O(n2p), if the examples are not sorted. However, Murthy et al. (1994) show that, for

the same configuration, the order of complexity for finding the best oblique split at a

node is O(2pn
(
n
p

)
). Heath et al. (1993) show that the problem of finding an optimal

oblique split is NP-complete and hence, no polynomial time algorithm is possible for

reasonable values of n and p. Another way of looking at the complexity of inducing

oblique DT is given below.

Searching for the “Best axis-parallel Tree”6 can be interpreted as finding the glob-

ally optimal solution. Axis-parallel algorithms approximate the global solution

through a series of local optimum solutions. Here, the local optimum solution is

referred to as the optimum split at a node. However, as seen in Figure 1.4, the opti-

mal split at the node is chosen such that it maximises the node level impurity

reduction function globally7.

6if the class boundaries are parallel to feature axes.
7Section 1.8 shows that this may not be an ideal split

30 CHAPTER 1. INTRODUCTION

Oblique DTs are also induced under the same mechanism where the “Best Oblique

Tree” is approximated by maximising the impurity reduction function at each node.

However, an exhaustive search is impossible due to the large number of possible

oblique splits. Therefore, the search for the node level global maximum of the impurity

reduction function is conducted using various optimisation algorithms which do not

necessarily guarantee convergence to the global solution. Hence, in contrast to axis-

parallel splits, the oblique split at a node is usually only an approximation to the best

oblique split at the node.

1.11 Motivation for heuristic methods

Since, searching for the best oblique split at a non-terminal node is harder, inducing

the best oblique tree can be extremely difficult. However, researchers have derived

with various techniques to induce oblique DTs. These techniques differ in the way

they search for the best split at a node. Some of the algorithms use optimisation

methods8 (Breiman et al., 1984) and (Heath et al., 1993), some use heuristic ar-

guments (Amasyah & Ersoy, 2008) and (Manwani & Sastry, 2012), while other use

genetic and evolutionary methods (Cantu-Paz & Kamath, 2003) and standard statis-

tical techniques (Gama & Brazdil, 1999). Each of these methods has its own benefits

and drawbacks and detailed explanations of the methods which are important to this

research are given in Chapter 2. We define the approach of a heuristic argument as

follows:

Definition 1.11.1. In the heuristic approach the structure of class boundaries is

assumed before observing the example set.

8Hill climbing, Simulated annealing etc

CHAPTER 1. INTRODUCTION 31

If the structural assumption in Definition 1.11.1 is true, DTs based on heuris-

tic arguments produce accurate and smaller trees. In the recent development of

the oblique DT algorithm methodologies, it is evident that DTs based on heuristic

arguments (Amasyah & Ersoy, 2008; Manwani & Sastry, 2012) have gained consider-

able attraction compared with the DTs based on optimisation techniques. Results of

these methods, in general, show there is no apparent difference between the average

accuracy and average tree size compared with the results of DTs induced using opti-

misation algorithms. However, the computer intensiveness of heuristic algorithms is

usually lower than the optimisation algorithms. Moreover, Hyafil and Rivest (1976)

stated that there is no efficient algorithm for constructing optimal binary trees and

hence, they were motivated to find efficient heuristics for constructing near-optimal

DTs. Following these recent developments, in this research, a new heuristic algorithm

is proposed to induce oblique DTs.

In summary, axis-parallel splits are computationally inexpensive but often produce

complicated trees. On the other hand, oblique splits can produce simple trees but

are computationally expensive. In this research, our aim is to find an alternative

approach to produce computationally inexpensive oblique trees that are accurate and

have relatively small trees.

1.12 Thesis overview

1.12.1 Objectives of the study

[1] It is evident that it is much harder to find an oblique split than an axis-parallel

split that minimises impurity function. Because the search for the optimal split

is time consuming, the time taken to generate a full tree can be excessive. In

this research, the first objective is to present a heuristic algorithm (HHCART)

32 CHAPTER 1. INTRODUCTION

to construct a computationally efficient oblique DT. The approach is to use axis-

parallel splits, the simplest form of splits, in transformed feature spaces. These

splits will be oblique in the original space. Transformed spaces are constructed

using Householder matrices defined on the eigenvectors of classes’ covariance

matrices. This approach avoids searching for oblique splits in the original feature

space.

[2] Data mining applications often come with massive example sets and inducing

oblique DTs for such example sets often consumes considerable time. As the

second objective, the HHCART algorithm is modified in two ways to handle

massive example sets namely: (a) disk resident algorithm, and (b) parallel

computing algorithm.

[3] The HHCART algorithm can use alternative vectors in place of eigenvectors

of classes’ covariance matrices to construct transformed feature spaces. These

alternative vectors can be found in other DT methods provided in the literature.

Therefore, we explore the possibilities of incorporating these alternative vectors

into the HHCART algorithm and thereby investigate their performances on

classification tasks.

[4] Even though top-down designs have been predominately used for DT induction,

recently a Bottom-Up method has been proposed. This method uses cluster

analysis followed by Support Vector Machine (SVM) to determine separating

hyperplanes. We explore this methodology by replacing the SVM approach with

the hyperplane generation method in the HHCART algorithm.

CHAPTER 1. INTRODUCTION 33

1.12.2 Structure of the thesis

Chapter 2 of the thesis is dedicated to the literature review on DT induction algo-

rithms. A detailed description is given on algorithms, some of which are used in this

thesis to compare the proposed methods. A brief summary of other DT methods are

presented to fulfil our literature survey.

Chapter 3 presents the proposed methodology. The complete description of the

proposed heuristic argument and the detailed algorithm are given. This chapter also

includes the derivation of the time and space complexities of the proposed method-

ology. Finally, the performance of the method is compared to some benchmark DT

methods in the literature.

Chapter 4 shows how the proposed method can be modified to work with massive

example sets. First, the disk resident version of the HHCART algorithm is introduced

and then the parallelised version of HHCART is introduced to work in a parallel

computing environment.

Use of alternative vectors in the proposed method is given in Chapter 5. Some of

the alternative vectors are obtained from existing DT methods. Hence brief descrip-

tions of those methods are also given in Chapter 5. Classification results on real data

sets are obtained and compared with some existing DTs. Moreover, some alternative

methods require tuning parameters to be estimated prior to the tree building. In this

study, two CV methods are used for estimation and the properties of two estimators

are discussed.

Chapter 6 introduces the bottom-up tree construction of the proposed method.

Brief descriptions of model based clustering methods and the Expectation-

Maximisation (EM) algorithm are given for proper understanding of the existing

bottom-up tree induction approach. The existing Bottom-Up Tree Induction Frame-

work (BUTIF) uses Support Vector Machine (SVM) to find separating hyperplanes.

Hence, SVM is also introduced.

34 CHAPTER 1. INTRODUCTION

Chapter 7 reviews the thesis with a discussion and a conclusion.

1.13 Thesis outcomes

[1] The novel DT algorithm presented in the Chapter 3 was submitted to the Special

Issues of the Journal of Computational Statistics and Data Analysis under the

title of “HHCART: An Oblique DT” and now it is under revision.

[2] The outcome of Chapter 5 is submitted to the journal of IEEE Transactions on

Cybernetics Part B under the title of “HHCART with alternative vectors”.

[3] A manuscript based on the results of the bottom-up method, which is presented

in Chapter 6, is in preparation.

[4] Based on the preliminary results obtained, an abstract was presented at the

Canterbury Statistics Open Day 2012 under the title of “Oblique DTs using

HouseHolder Reflection”.

[5] An abstract was presented on the partial results of Chapter 3 at the Joint

Conference of the NZ Statistical Association and Operations Research Society

of NZ 2014 under the title of “Oblique DT induction with HHCART”. The

presentation was mostly focused on highlighting the ability of HHCART to

handle both qualitative and quantitative features in the same oblique split.

[6] Based on this study’s literature review, an abstract was presented at the Can-

terbury Statistics Day-Research 2014 under the title of “The Use of DTs in

Statistical Data Classification”.

Chapter 2

Literature review - oblique decision
tree induction algorithms

2.1 Introduction

In this chapter, a concise survey of top-down oblique DT induction methods is pre-

sented. The decision tree algorithm presented in this thesis follows the feature space

partitioning concept of the CARTopt algorithms (Robertson, Price, & Reale, 2013,

2014) which were specifically designed to find a minimiser of a non-smooth function.

A detailed description of partitioning strategy used in CARTopt is given in this Chap-

ter and Chapter 3. Though the other early methods are not directly relevant to the

principal methodology proposed in this thesis, some of them are briefly illustrated in

this Chapter because:

[1] The results of those methods are used to compare the performance of the pro-

posed methodology.

[2] Some early methods have shown some resemblance to the proposed methodology

because in both cases artificial features are created.

[3] It is interesting to show the current trend in the DT induction methodologies.

35

36 CHAPTER 2. REVIEW - OBLIQUE DT ALGORITHMS

The common top-down DT induction approach works in two stages. The first stage

builds a fully grown tree and the second stage prunes the tree to avoid the over-fitting

of the tree. However, some tree induction algorithms use pre-pruning techniques so

that pruning is done while the tree is being built. The main task of the tree growing

stage is to search for the best split. Choosing a search method for the best oblique

split is crucial in DT induction because the time efficiency of the tree building process

depends heavily on it. Therefore, in this research the oblique DT induction methods

are categorised using the best split search method. Three categories are defined:

induction algorithms that use optimisation techniques, standard statistical techniques

and those that use heuristical arguments.

2.2 Tree induction methods based on optimisation

techniques

CART-LC (Breiman et al., 1984) uses a deterministic hill climbing algorithm to search

for the best split at a non-terminal node. At each non-terminal node, the algorithm

perturbs each coefficient of the hyperplane until the algorithm finds a split that pro-

duces the maximum impurity reduction. To reduce the risk of a local minimum

being found, each perturbation starts from three different pre-specified locations. A

backward feature elimination process is also carried out to delete irrelevant features

from the split. The CART-LC algorithm, implemented in OC1 system (Murthy &

Salzberg, n.d.), is used in Chapter 3 for comparison purposes.

Heath et al. (1993) introduced a randomisation approach called Simulated An-

nealing DT (SADT) which uses the simulated annealing optimisation algorithm to

search for the best split. At each non-terminal node, an initial hyperplane is set such

that it is not parallel to any feature axis. Next, the algorithm picks one coefficient

CHAPTER 2. REVIEW - OBLIQUE DT ALGORITHMS 37

at a time randomly and adds a random quantity δ : δ ∼ U(−0.5, 0.5). The resulting

hyperplane is then tested using an impurity measure and if the impurity reduction1

∆I is negative, then the new hyperplane split is always accepted. If ∆I is positive,

then the new hyperplane is accepted with a probability e−∆I/T , where T > 0. Ini-

tially T is set large so that when ∆I is small compared with T , the probability of

accepting a worse hyperplane is approximately equal to 1. However, T is gradually

decreased and hence, the probability of choosing a worse hyperplane tends to zero.

This process is repeated until there is no further reduction in impurity. A distinct

feature of this algorithm is that a series of locally optimal decisions is not necessarily

made. Accepting a worse split from time to time can potentially lead to a globally

optimal tree. The main disadvantage of the algorithm is the time taken to find the

best split. In some cases it may require the evaluation of the tens of thousands of

hyperplanes before finding an optimal split (Murthy et al., 1994).

Murthy et al. (1994) combine the concept of CART-LC and SADT to introduce a

new oblique DT methodology called OC1. First, it uses a deterministic hill climbing

algorithm to perturb the hyperplane until a local minimum of an impurity function

is found. The hyperplane is then perturbed randomly to potentially leave the local

minimum. These two steps are performed several times. Each time, the algorithm

starts with a different initial guess. One of the initial guesses is the best axis-parallel

split. Random hyperplanes are also used as initial guesses. Since each initial guess

potentially converges to a different hyperplane, the one that maximises the impurity

reduction is taken as the splitting hyperplane. Murthy et al. (1994) show that the

time complexity at each non-terminal node for OC1 in the worst case scenario is

O (pn2 log n) provided that Max-Minority or Sum-Minority impurity measures are

used. For other functions, obtaining a similar upper bound is an open question

1∆I = I(New-Hyperplane)− I(Old-Hyperplane)

38 CHAPTER 2. REVIEW - OBLIQUE DT ALGORITHMS

Define ∆I . Impurity reduction (see Section 1.8.1) ;
Define ai: The ith coefficient of the hyperplane. ;
Define h0: The best axis-parallel hyperplane at node t. ;
∆(I) = Impurity reduction due to h0.;
for J=1:20 do . Restart loop, OC1 default is 20 restarts: Loop4

repeat . Loop3
while ∆I > 0 do . Loop2

for i=1:p do . Loop1
Perturb ai using the hill climbing algorithm. ;

end
Compute ∆I of the split found from the hill climbing algorithm.;

end
Let hj1 be the hyperplane given by the hill climbing algorithm. ;
Perturb hj1 to a random direction, say hj2. ;
Compute ∆I = ∆I(hj2)−∆I(hj1).

until ∆I < 0;
hj = The best hyperplane found at the jth iteration.;
∆Ij= Impurity reduction of hj.;

end
ht = hargmaxj∆Ij

Algorithm 2: Overview of the OC1 algorithm at a single node

(Murthy et al., 1994). Furthermore, the amount of work that OC1 does at a non-

terminal node is mostly depends on the number of times that OC1 evaluates the

impurity function to find the best split at a non-terminal node. The number of

impurity function evaluations made by OC1 can be derived as follows. Consider the

basic split finding algorithm of OC1 given in Algorithm 2.

[1] OC1 starts with the best axis-parallel split. Hence, the number of impurity

function evaluations to find the best axis-parallel split is np.

[2] Loop1 (the inner-most loop) in Algorithm 2: To perturb one coefficient, the

impurity function has to be evaluated n times2 hence, for p coefficients the

total number of evaluations is np.

2see Murthy et al. (1994)

CHAPTER 2. REVIEW - OBLIQUE DT ALGORITHMS 39

[3] Loop2 in Algorithm 2: Let γ be the number of times that OC1 executes Loop2.

Hence, the total number of impurity function evaluations at the exit of Loop2

is γnp.

[4] Loop3 in Algorithm 2: Let β be the number of times that OC1 executes Loop3.

Hence, the total number of impurity function evaluations at the exit of Loop3

is βγnp.

[5] Loop4 in Algorithm 2: OC1 executes Loop1-Loop3 20 times which is the default

value. Hence, the total number of impurity function evaluations at the exit of

Loop4 is 20βγnp.

Therefore, the total number of function evaluation of OC1 is 20βγnp in the worst

case scenario. Moreover, Murthy et al. (1994) state that the number of hyperplane

evaluations at most will be n if Max-Minority or Sum-Minority impurity measures

are used and this will be equivalent to 20βγ. Hence, the total number of hyperplane

evaluations required by OC1 in the worst case scenario is n2p if Max-Minority or Sum-

Minority impurity measures are used. The OC1 algorithm is used in the experiments

of this thesis.

One feature of both the SADT and OC1 algorithms is that they can construct

different DTs on different runs using the same learning sample. Therefore, it is

possible to run these algorithms multiple times and pick a tree which produces the

minimum misclassification rate. However, realising this advantage is tough when the

learning sample contains a large number of examples and features.

40 CHAPTER 2. REVIEW - OBLIQUE DT ALGORITHMS

2.3 Tree induction methods based on standard sta-

tistical techniques

Various oblique DT induction algorithms have been explored using standard statisti-

cal techniques. Most of the algorithms use various forms of Fisher’s linear discriminant

function to find the separating hyperplane. However, some algorithms induce non-

binary DTs (Hu, Deng, & Sui, 2009; Kim & Loh, 2001, 2003; Loh & Vanichsetakul,

1988).

An oblique DT called Ltree is introduced by Gama and Brazdil (1999) which

combines the splitting mechanism of axis-parallel DTs (C4.5, Quinlan (1993)) with

Linear Discriminant Functions (LDF) to induce oblique DTs. At each non-terminal

node, LDF3, a new set of features are constructed from the features available at that

node. Axis-parallel splits are then searched along the original and the new features.

If the split found involves one of the new features, then the decision boundary is

oblique in the original feature space. One of the distinct features of this algorithm is

that new features are propagated down through the tree to be considered for splitting

lower nodes. The argument is as follows. Each LDF generates one new feature and

is capable of discriminating only one class. If one of the new features is selected

at a particular node, then it discriminates only one of the classes. The other new

features which are capable of discriminating other classes could be useful in lower

nodes, therefore, new features are propagated down the tree. This approach can be

viewed as an attempt to better explore the feature space by considering more splitting

directions.

The Linear Discriminant and Tabu Search (LDTS) algorithm (X. B. Li et al.,

2003) builds an oblique DT using linear discriminant functions as splitting hyper-

planes. At each non-terminal node, a set of new feature variables is constructed

3number of LDF = (number of classes at the node) - 1

CHAPTER 2. REVIEW - OBLIQUE DT ALGORITHMS 41

based on linear discriminant functions that are computed using all, or a subset, of

the feature variables. Then, the best discriminant function (the one which reduces

the impurity function the most) is selected as the splitting hyperplane at the node.

Since the number of subsets of feature variables grows exponentially with the number

of features, Tabu search (Glover, 1986) is used to select the best combination. The

distinct feature of LDTS is that it may use the full set of the features or subset of

them to construct discriminant functions whereas other methods use only the full set

of features.

Kolakowska and Malina (2005) use Fisher’s Linear Discriminant Function (FLDF)

to construct oblique DTs. Three different DT induction algorithms were proposed

which use FLDF in various forms. The algorithms differ in the way they separate the

classes at each non-terminal node. For example, one algorithm separates one class

from the rest while another algorithm divides classes into two distinct groups. The

third is a general case of the second one as two groups are no longer distinct and

hence, one class may be in the both groups.

Quick Unbiased Efficient Statistical Tree (QUEST) (Loh & Shih, 1997) uses Lin-

ear Discriminant Analysis (LDA) to find the best split at each node and hence there

is no requirement for searching for the best split. QUEST’s axis-parallel tree begins

by performing an ANOVA test at each non-terminal node to select the best feature.

LDA is then applied to the selected feature to find the best splitting point. QUEST’s

oblique DT simply applies LDA on all the features to find the best splitting hyper-

plane. For multi-class problems, QUEST groups the classes into two super-classes

using the k-means clustering algorithm. Furthermore, QUEST is able to find oblique

splits which are a linear combination of qualitative and quantitative features. First,

each qualitative feature is transformed into a quantitative feature and then LDA is

applied to the full set of features to find the separating hyperplane. The method for

the transformation is used in this research to handle both types of features in the

42 CHAPTER 2. REVIEW - OBLIQUE DT ALGORITHMS

same oblique split.

Very recently, López-Chau, Cervantes, López-Garćıa, and Lamont (2013) pro-

posed Fisher’s DT (FDT) for two-class classification problems. At each non-terminal

node, all the examples are projected onto a vector ω obtained by the Fisher’s linear

discriminant analysis and an axis-parallel search is carried out along ω. The DT

induction is efficient because the search for the best split is limited to one dimension

at each non-terminal node.

2.4 Tree induction methods based on heuristics

Henrichon and Fu (1969) introduced a tree type classifier for multivariate multi-class

classification problems. For each dimension, the example set is divided into K dis-

joint regions, where K is a pre-specified value. Each region is given a class label such

that it minimises the misclassification cost. Then the adjacent regions with similar

classes are joined. The boundaries of the regions are then perturbed and joined to

adjacent regions where the improvement of classification accuracy is obtained. Finally

the empirical classification statistic (Score), a function of the number of misclassified

examples, is computed to evaluate the goodness of the partitions obtained. From the

partitions obtained along each dimension, the one which minimises the Score statistic

is selected to split the feature space. The same procedure is then repeated in each

sub-region of the partition until no further partitioning is possible. Each split in the

algorithm is axis-parallel and the tree is non-binary. Apart from original feature vari-

ables, the authors suggest using new feature variables called transgenerated features

for partitioning the feature space. One of the suggestions from the authors for a

transgenerated feature is to construct a new feature of the form xTdi where di is the

eigenvector corresponding to the maximum eigenvalue associated with the covariance

matrix of the ith class and x is the feature vector. These splits are oblique in the

CHAPTER 2. REVIEW - OBLIQUE DT ALGORITHMS 43

original feature space.

Another heuristic family of algorithms developed by Amasyah and Ersoy (2008),

called Cline, were originally developed for 2-class problems. The Cline family has

a number of different heuristic methods to determine separating hyperplanes. Two

of the methods are highlighted here. Other methods can be found in Amasyah and

Ersoy (2008).

[1] The splitting hyperplane is one which passes through the mid point of the line

(AB) joining the mean of two classes and perpendicular to AB. This is given in

Figure 2.1a.

[2] The line AB is one joining the two nearest points of the two different classes

(see Figure 2.1b). The splitting hyperplane is one which goes through the mid

point of AB and is perpendicular to the Linear Discriminant Line of the two

classes.

a b

A

B

LDL

A

B

Figure 2.1: Two heuristics used in the Cline algorithm

According to the authors the best version, called ClineMix, tries several methods

to find the best splitting hyperplane at each node. However, extending ClineMix

to multi-class problems is time consuming. ClineMix uses a one-versus-one method

where it constructs several classifiers each to distinguish one class from another class.

44 CHAPTER 2. REVIEW - OBLIQUE DT ALGORITHMS

More specifically, if there are C classes then the Cline algorithm constructs
(
C
2

)
clas-

sifiers. Because of the way that the heuristics work, the requirement for evaluating

an impurity function vanishes.

Geometric DT (GDT) is another oblique DT that exploits the geometric structure

of the data (Manwani & Sastry, 2012). For a two-class classification problem, the al-

gorithm generates two clustering hyperplanes, one for each class. Loosely speaking,

each clustering hyperplane tries to minimise the distance to examples in one class

while maximising the distance to examples in the other class. The separating hyper-

plane is found by calculating the angular bisector of the two clustering hyperplanes.

Since there are two angular bisectors, the one that minimizes an impurity measure

is chosen as the splitting hyperplane. For a multi-class classification problem, the

authors suggest forming two super-classes where one super-class contains the class

which has the most examples and the remaining examples from the other classes are

grouped into the other super-class. GDT does not require a search procedure to select

splitting hyperplanes. At each non-terminal node it only requires two evaluations of

an impurity function. An algorithm proposed in this research is used to improve the

performance of GDT. A detailed description of GDT is therefore given in Chapter 5.

The CARTopt algorithm introduced by (Robertson et al., 2013), uses a two-class

oblique DT to find a minimiser of a non-smooth function f(x) where x ∈ Rn. Initially,

the examples in Rn are labelled (or classified) into two classes: “high” and “low”

depending on their value of f(x). One of the main tasks of the CARTopt algorithm is

to identify a rectangular region which contains the most “low” points. The authors use

axis-parallel partitions to identify the rectangular region. However, if the orientation

of the “low” points is not aligned with the coordinate axes, the axis-parallel partitions

will approximate the entire rectangular region by a series of small rectangular regions.

This is illustrated in Figure 2.2 which is extracted from Robertson et al. (2013). To

simplify the partition structure, Robertson et al. (2013) use a transformation, by

CHAPTER 2. REVIEW - OBLIQUE DT ALGORITHMS 45

Figure 2.2: Orientation of the “low” points (depicted by black colour) in the original space.
“High” points are depicted in red.

which the orientation of the “low” points becomes parallel to one of the coordinate

axes in the transformed space. The axis-parallel splits can then be searched in the

transformed space to find the rectangular partition structure which contains the “low”

points. This is illustrated in Figure 2.3 (Robertson et al., 2013). The transformation

is done using the Householder matrix and further details of the Householder matrix

and the transformation are discussed in Chapter 3. In this study, the concept used

in the CARTopt algorithm to create partitions is extended in a number of ways to

develop a complete oblique DT for statistical data classification.

2.5 Other tree building methods

In addition to the above methods, numerous oblique DT induction algorithms have

been proposed with various split selection methods. Some of the algorithms use

46 CHAPTER 2. REVIEW - OBLIQUE DT ALGORITHMS

Figure 2.3: Orientation of the “low” points in the transformed space.

Support Vector Machines to partition the feature space (N. Li, Zhao, Chen, Meng,

& Zhang, 2009). Neural Network algorithms are also used in DT inductions (Yildiz

& Alpaydin, 2000) whereas fuzzy logic is used in Olaru and Wehenkel (2003). DTs

based on evolutionary and genetic algorithms have been proposed in (Cantu-Paz &

Kamath, 2003) and (Kretowski, 2004). Use of Linear Programming in constructing

DTs was explored by (Bennett, 1992).

2.6 Discussion

DT induction algorithms have been explored since the late 1960’s. However, the first

major oblique DT was proposed by Breiman et al. (1984). Early oblique tree induc-

tion methods are mostly based on optimisation algorithms to find the best split. The

DT induction methodology was also influenced by the development of artificial neu-

ral networks, evolutionary and genetic algorithms. Heuristic methods and standard

CHAPTER 2. REVIEW - OBLIQUE DT ALGORITHMS 47

statistical techniques have been continuously explored by researchers especially over

the last three decades. The results obtained show that there is no apparent differ-

ence between heuristic and non-heuristic methods with respect to the performance

measures such as accuracy and tree size. Although standard statistical methods are

computationally cheap, they rely on assumptions which may not be valid or justified.

LDA assumes equal covariance matrices for example. On the other hand, heuristic

methods are gaining popularity. They usually do not require statistical assumptions

and are fast. Some of the algorithms do not require the evaluation of an impurity

function. Moreover, Section 1.8.1 demonstrates that locally optimal solutions do not

always lead to globally optimal solutions. Hence, spending more time searching for

the best split at a node in general may not be beneficial (Iyengar, 1999) or possible.

In fact, finding the best oblique split is a NP-complete problem (Heath et al., 1993).

Therefore, building oblique DTs using heuristic methods is justifiable when trading

off accuracy of the tree with time complexity. This fact leads the author to propose

a new oblique DT induction methodology based on a heuristic method which is fully

explained in the next chapter.

48 CHAPTER 2. REVIEW - OBLIQUE DT ALGORITHMS

Chapter 3

HHCART: An oblique decision tree

3.1 Introduction

This chapter presents a detailed description of a novel proposed method, which is

a comprehensive extension of the work of Robertson et al. (2013). In this study,

the method used in the CARTopt algorithm to construct feature space partitions is

extended in a number of ways to develop a complete oblique DT called HHCART

(HouseHolder Classification and Regression Tree). First, CARTopt is designed to

classify two classes whereas HHCART can handle multi-class classification problems.

Second, CARTopt reflects the training examples only at the root node whereas

HHCART performs reflections at each non-terminal node during tree construction.

This is an important part of the proposed algorithm particularly for multi-class

data classification. Finally, CARTopt deals only with quantitative features whereas

HHCART is capable of finding oblique splits which can be linear combinations

of both quantitative and qualitative features. This step enables HHCART to be

applied in an any feature space and hence, broadens the applicability of the algorithm.

49

50 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

3.2 Householder reflection for a two-class problem

Chapter 2 introduced the concept used in the CARTopt algorithm to create a partition

for a two-class problem. In this section, the same concept is explained from the oblique

DT point of view. Consider the two dimensional, two-class classification problem

shown in Figure 3.1. Here the direction of the separating hyperplane can be taken

as the most stretched direction of either class. The most stretched direction of each

class is given by the dominant eigenvector of its class covariance matrix S defined as:

Definition 3.2.1. Let x1,x2, . . . ,xn be p dimensional feature vectors where

xi = (xi1, xi2, . . . , xip)
T . The estimated covariance matrix is then given by:

S =
1

(n− 1)

n∑
i=1

(xi − x̄)(xi − x̄)T , (3.2.1)

where x̄ = (x1 + x2 + · · ·+ xn)/n is the mean vector.

Since there are two classes, two dominant eigenvectors can be found (called d1 and

d2), one for each class. In the illustration, a hyperplane which is parallel to either d1

or d2 can be a candidate direction for a separating hyperplane of the classes. Hence,

one of these eigenvectors (d1 say) is reflected such that it becomes parallel to one of

the coordinate axes (for example, e1). Consequently, the orientation of the separating

hyperplane also becomes parallel to e1 in the reflected space. The scatter of examples

in the reflected space is shown in Figure 3.2. Now the separating hyperplane can be

found by performing axis-parallel splits along the e2 direction in the reflected space.

3.3 Householder matrix

The reflection of a set of examples is the key idea in the HHCART algorithm. The

examples are reflected using a Householder matrix, which is used by Robertson et

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 51

−10 −5 0 5 10 15 20
−4

−2

0

2

4

6

8

10

12

14

16

X1

X
2

1

2

sss
s
ss

ss
s
ssssssss s

s
ss

s
s

s

s
s
ssss

l

ll

l
ll

l

l
l

llll

lll
ll

l

l

l
l
l
ll
ll

l
ll

l

Figure 3.1: Scatter of examples in the original feature space.

−25 −20 −15 −10 −5 0 5 10
−2

0

2

4

6

8

10

TX1

T
X

2

1

2

s

sss
s

ss
s

ss
s

s

ss
s

s

s
s
ss

sssss

s

s

s

s

s

l

ll
l
l

l

l

l

ll
l l

l

l

ll
l
l

ll
l

l
l

ll
l

l

l

l

l

l

Figure 3.2: Scatter of examples in the transformed space after the Householder Reflection.

52 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

al. (2013) to induce space partitions. It can be defined for a p-dimensional space

as follows. Let d1 be the normalized dominant eigenvector of class 1 examples and

e1p×1 = (1, 0, . . . , 0)T be a basis vector. Hence, both the vectors have the same norm.

There exists an orthogonal symmetric matrix Hp×p (where p is the number of features)

such that

e1 = Hd1 where

H = I− 2uuT where u =
e1 − d1

‖e1 − d1‖2

.
(3.3.1)

3.3.1 Construction of the Householder matrix

In this section, the construction of the Householder matrix is explained. Let d1 be

the vector to be reflected using the matrix H such that e1 = Hd1. Vectors d1 and

e1 are shown in Figure 3.3. Vector e1 can be written as an addition of two vectors,

e1 = d1 + ũ, where ũ = e1 − d1. According to Figure 3.3, AB = ‖d1‖ cos θ and

AC = 2AB because e1 is the reflection of d1. Therefore,

ũ = 2
∥∥d1
∥∥ ũ

‖ũ‖
cos θ.

Hence,

e1 = d1 + 2
∥∥d1
∥∥ ũ

‖ũ‖
cos θ.

Since, d1 · ũ = ‖d1‖ ‖ũ‖ cos(π − θ), we have:

cos θ = − d1 · ũ
‖d1‖ ‖ũ‖

and,

e1 = d1 − 2
∥∥d1
∥∥ ũ

‖ũ‖
d1 · ũ
‖d1‖ ‖ũ‖

e1 = d1 − 2ũ
ũTd1

‖ũ‖2 . (3.3.2a)

Since ũ = e1−d1, equation (3.3.1) gives ũ = ‖ũ‖u. Therefore, ũ in equation (3.3.2a)

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 53

is substituted by ‖ũ‖u to give:

e1 =
(
I− 2uuT

)
d1.

That is, H =
(
I− 2uuT

)
.

Figure 3.3: Geometry of Householder Reflection.

3.3.2 Some properties of the Householder matrix

Matrix H is symmetric as:

HT = (I− 2uuT)T = I− 2uuT = H. (3.3.3)

Matrix H is orthogonal as:

HTH = (I− 2uuT)T (I− 2uuT)

= I− 2uuT − 2uuT + 4(uuT)TuuT

= I.

(3.3.4)

54 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

Since, the Householder matrix is symmetric and orthogonal, a point in the trans-

formed space can be mapped back to the original space at a minimal cost. Let x

be a point in the original space. Define the transformed point x̂ = Hx. Multiplying

both sides by H gives Hx̂ = HHx. Since H is orthogonal and symmetric, HT = H−1.

Therefore, HH=I where I is an identity matrix. Therefore, Hx̂ = x.

Let Dn×p be the training example set. The reflected example set D̂n×p is obtained

using D̂ = DH. The mechanism of the Householder reflection is that it makes a vector

d1 parallel to e1 by a reflection through the plane perpendicular to vector e1 − d1.

The resultant Householder matrix is given by:

H =



d1
1 d1

2 d1
3 . . . d1

p

d1
2 1− (d12)2

1−d11
−d12d13
1−d11

. . .
−d12d1p
1−d11

d1
3

−d13d12
1−d11

1− (d13)2

1−d11
. . .

−d13d1p
1−d11

...
...

...
. . .

...

d1
p

−d1pd12
1−d11

−d1pd13
1−d11

. . . 1− (d1p)2

1−d11


where d1

i , i = 1, . . . , p is ith component of d1.

Each column of H represents the direction of a coordinate axis in the reflected space.

axis-parallel splits are searched along these axes and the best split found is oblique

in the original space. The resultant oblique split found for the problem illustrated

in Figure 3.1 is shown in Figure 3.4. It is found, by a simulation study, not only

parallelising the dominant eigenvectors to e1, but also parallelising non-dominant

eigenvectors to e1 increases the performances of the tree. Consequently, it creates

new reflected spaces to search, which may contain better splits. Hence, the axis-

parallel search space is enhanced by using all possible eigenvectors for reflections.

For a p-dimensional classification problem with C classes there are Cp eigenvectors

to be considered for the Householder reflection. However, this increases the time

complexity of tree induction, but gives an opportunity to produce more accurate and

compact trees. In some instances, the orientation of an eigenvector may be parallel to

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 55

−10 −5 0 5 10 15 20
−4

−2

0

2

4

6

8

10

12

14

16

X1

X
2

1

2
s

s

s
ssssssss

s

s
ss

sss
s

s

sss
sss

s
ss

s

l
ll

l
ll

lll

l
ll

l
l
l

lll

lllll

l

l

l

l

l
ll
l

Figure 3.4: Split in the Original Space.

a feature axis in the original feature space. When this happens, the transformation

is not required and hence, the best separating hyperplane is found by performing

axis-parallel splits in the original space.

3.4 Householder reflection for a multi-class

problem

In this section, an illustration is given to show how the proposed method partitions

the two dimensional feature space for a multi-class classification problem. A two

dimensional five-class example set, which can be linearly separated, was generated by

the author. All possible eigenvectors are computed. For instance, at the root node

10 eigenvectors can be found (2 for each class). For each eigenvector, a Householder

matrix is computed and the reflection is performed. axis-parallel splits are then

carried out in each of the reflected spaces. Therefore, it is possible to find the best

56 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

split in a reflected space which is created from a non-dominant eigenvector. The

scatter plot of the data is given in Figure 3.5. The following figures (Figure 3.6 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

1
2
3
4
5

Figure 3.5: Scatter plot of examples belonging to five classes.

Figure 3.10) illustrate how multi-class classification is performed by the algorithm.

The information provided below for each figure, contains:

[1] Node: Node in which the split is carried out.

[2] Space: The space which gives the best split.

[3] Child nodes: Child nodes of the split. The status (terminal or non-terminal) of

the node is given in the parentheses.

[4] Hyperplane: The equation of the hyperplane in the original space.

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 57

−1.2 −1 −0.8 −0.6 −0.4 −0.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

X1

X
2

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

1

2

3

4

5

ba Re�ected Space Original Space

Figure 3.6: Partition Structure at the root node
Space: Defined by the non-dominant eigenvector of group one examples.
Child Nodes: 2 (Non-Terminal) and 3 (Non-Terminal)
Hyperplane: −0.7231X1 − 0.6907X2 + 0.3835 = 0

ba

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

X1

X
2

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

1

2

3

4

5

Re ected Space Original Space

Figure 3.7: Partition Structure at node 2
Space: Defined by the non-dominant eigenvector of group two examples.
Child Nodes: 4 (Non-Terminal) and 5 (Terminal)
Hyperplane: −0.7757X1 + 0.6371X2 − 0.1227 = 0

58 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

ba

−0.38 −0.36 −0.34 −0.32 −0.3 −0.28 −0.26 −0.24 −0.22 −0.2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X1

X
2

1

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

1

2

3

4

5

Re ected Space Original Space

Figure 3.8: Partition Structure at node 3
Space: Defined by the dominant eigenvector of group one examples.
Child Nodes: 6 (Terminal) and 7 (Terminal)
Hyperplane: −0.6907X1 + 0.7321X2 + 0.0311 = 0

ba

−0.85 −0.8 −0.75 −0.7 −0.65 −0.6 −0.55 −0.5 −0.45 −0.4
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

X1

X
2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

1

2

3

4

5

Re ected Space Original Space

Figure 3.9: Partition Structure at node 4
Space: Defined by the non-dominant eigenvector of group four examples.
Child Nodes: 8 (Terminal) and 9 (Non-Terminal)
Hyperplane: −0.6584X1 − 0.7527X2 + 0.7108 = 0

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 59

ba

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

X1

X
2

3

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

1

2

3

4

5

Re ected Space Original Space

Figure 3.10: Partition Structure at node 9
Space: Defined by the non-dominant eigenvector of group three examples.
Child Nodes: 18 (Terminal) and 19 (Terminal)
Hyperplane: −0.7757X1 + 0.6311X2 + 0.0804 = 0

3.5 Proposed algorithm

Here the complete algorithm of HHCART is explained. Two versions of HHCART

are proposed: (a) HHCART(A) is based on all possible eigenvectors of all classes,

and (b) HHCART(D) is based on only the dominant eigenvector of each class. For

any given non-terminal node t, let Dt and Ct be the set of examples and classes

available at that node respectively. At node t, HHCART(A) finds all eigenvectors of

the estimated covariance matrix for each class whereas HHCART(D) finds only the

dominant eigenvector of each class. A Householder matrix is constructed for each

eigenvector. Then Dt is reflected using each Householder matrix and axis-parallel

splits are performed along each coordinate axis in the reflected space. The best

axis-parallel split is chosen as the separating hyperplane at node t. However, if an

eigenvector is already parallel to any of the feature axes, no reflection is done and

hence, axis-parallel splits are searched in the original space. The hyperplane found

by the search divides node t into two child nodes. The algorithm is recursively run

on all child nodes until each child node satisfies either:

60 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

[1] The misclassification rate at the child node is not greater than a user specified

threshold (MisRate); or

[2] The number of examples in the node is less than or equal to a user specified

threshold (MinParent).

In both algorithms, the reflection is done if an eigenvector is not parallel to any

feature axis. However, there may be a situation where the eigenvector is almost par-

allel to a feature axis and hence, the reflection may not be beneficial. Therefore,

another parameter τ is introduced to the algorithms which can be used as a thresh-

old to determine the parallelism between eigenvector and a feature axis. That is if

‖e− d‖ ≤ τ , where e and d are a basis vector and an eigenvector respectively, no

reflection is done and axis-parallel splits are searched in the original space. In the

experiments τ was set to 0.05 arbitrarily. However, the user can choose any small

positive value or use a separate CV procedure to estimate the optimal value for τ .

An overview of HHCART(A) algorithm at node t is given in Algorithm 3. The

time complexity at a node for HHCART(A) in the worst case is O(Cp2(p+ n log n))

(see Section 3.5.1 for the derivation). However, if HHCART(D) is used then the time

complexity reduces to O(Cnp(p+ log n)).

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 61

Data: Input: Examples at node t, called Dt, Minparent, MisRate, and τ >= 0.
initialization;
Define Nt = Number of examples in Dt;
Define mpt = misclassification rate at node t;
Define Ct = number of classes at node t;
Define p = number of features;
∆(Imax) = 0;
ht = empty;
if (Nt > Minparent) and (MisRate < mpt) then

for i=1:Ct do
Extract the examples that belong to the ith class in Dt, called Di;
Compute the normalized eigenvectors and eigenvalues of the estimated
covariance matrix for Di;

((d1i, λ1i), . . . (dpi, λpi))
for j=1:p do

if λji 6= 0 then
if ‖e1 − dji‖ ≤ τ or ‖e2 − dji‖ ≤ τ or . . . or ‖ep − dji‖ ≤ τ then

Hji
t = I, the Identity matrix;

else

Construct the Householder matrix Hji
t using dji ;

end

Reflect Dt : D̂t = Dt ∗Hji
t ;

Find the best axis-parallel hyperplane split, called hjit ;

if impurity reduction of hjit > ∆(Imax) then

Replace ht with hjit , the best hyperplane found so far;

Replace ∆(Imax) with the impurity reduction of hjit
end

end

end

end

end

Algorithm 3: Overview of HHCART(A) algorithm at a single node

62 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

3.5.1 Time complexity of HHCART

The maximal time complexity at a node of HHCART(A) and HHCART(D) is derived.

Assume there are n examples with p quantitative features and C classes at the node.

[1] HHCART(A) and HHCART(D) - Complexity for constructing estimated

covariance matrix for one class of examples is O(np2). For C classes the com-

plexity is O(Cnp2).

[2] HHCART(A) - Complexity of the complete eigenanalysis for one class of

examples is O(p3). For C classes the complexity is O(Cp3).

HHCART(D) - Complexity for finding the dominant eigenvector for one class

of examples is O(p2). For C classes the complexity is O(Cp2).

[3] HHCART(A) - Complexity for the reflection of n examples using one House-

holder matrix is O(np). Since, there are Cp Householder matrices the Com-

plexity is O(Cnp2).

HHCART(D) - Complexity for the reflection of n examples using one House-

holder matrix is O(np). For C Householder matrices the complexity is O(Cnp).

[4] HHCART(A) - Complexity of finding the best axis-parallel splits for one re-

flected space is O(p(n + n log n). That is, along one dimension, sorting the

examples takes O(n log n) time and impurity function evaluation takes max-

imum of O(n) time. Hence, the total time along p dimension (one reflected

space) is O(p(n+n log n)). Since, there are Cp reflected spaces the Complexity

is O(cp2(n+ n log n)) = O(cp2n(1 + log n)) = O(cp2n log n).

HHCART(D) - Complexity of finding the best axis-parallel splits for one re-

flected space is O(p(n + n log n). For C classes the complexity is O(Cp(n +

n log n) = O(pn(1 + log n) = O(Cpn log n).

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 63

[5] HHCART(A) - The maximal time complexity at a node is therefore:

O(Cnp2)+O(Cp3) +O(Cnp2) +O(Cp2n log n) = O(Cp2(p+ n log n)).

HHCART(D) - The maximal time complexity at a node is therefore:

O(Cnp2)+ O(Cp2) +O(Cnp) +O(Cpn log n) = O(Cnp(p+ log n)).

The number of impurity function evaluations at a non-terminal node is Cnp2 for

HHCART(A) whereas for HHCART(D) it is Cnp. These figures are significantly

smaller than the number of impurity function evaluations required by OC1, n2p, in

the worst case scenario if Max-Minority or Sum-Minority impurity measures are used.

3.5.2 Space complexity of HHCART

The maximal space complexity of HHCART is derived. Both algorithms, HH-

CART(A) and HHCART(D), have the same space complexity. Here too, n, p and C

have the same meaning as in Subsection 3.5.1.

[1] The space required for storing the entire example set is O(np).

[2] The space required for the examples in one transformed space O(np). There are

Cp transformed spaces. However, axis-parallel splits are performed sequentially.

Therefore, once the search of one transformed space is completed examples in

that space can be deleted. Hence, the space complexity remains at O(np).

[3] The final decision tree holds some information at each node. The largest tree

has n nodes and each node holds: (a) the class label, (b) the class distribution

vector (C-dimensional), and (c) status of the node: whether terminal or non-

terminal node. All this information requires the maximal space complexity of

O(nC). Each non-terminal node holds a p-dimensional coefficient vector of the

separating hyperplane and there is a maximum of n − 2 non-terminal nodes1.

1for binary trees with minimum node size is 2.

64 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

Hence, the space requirement for holding the hyperplanes is p(n− 2) .

[4] Therefore, the total space complexity of HHCART is: O(np) + O(np) + O(nC)

+ p(n− 2) = O(np) +O(nC) = O(np).

3.6 Small samples

As the tree grows, the number of examples at each node usually becomes small. This

raises two questions to be answered: (a) Is it worthwhile searching for an oblique split

rather than an axis-parallel split? (b) Covariance matrices tend to be singular with

small samples.

The first problem is common for any oblique decision tree. In the OC1 algorithm,

Murthy et al. (1994) suggest using oblique splits if the number of examples at that

node is greater than twice the number of feature variables. The second problem is

specific to those algorithms which use matrix operations, for example eigen analysis or

the inverse of matrix, to find oblique splits. Manwani and Sastry (2012) introduced a

different computation procedure for small samples and it is given in Subsection 5.1.2

in Chapter 5.

The effect of a small sample for HHCART is as follows:

[1] Lack of information in eigenvectors with zero eigenvalues from a singular co-

variance matrix.

[2] Eigenvectors are not informative for those classes having only one example or

several examples with the same feature vector.

The first problem can be solved without modifying the method because the reflec-

tion is done using available eigenvectors. For the second problem, those classes are

disregarded from eigenanalysis. However, if all the classes suffer from this problem

axis-parallel splits are performed.

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 65

3.7 Qualitative feature variables

Many practical data classification problems often contain a mixture of quantitative

and qualitative feature variables. Since the class discriminatory information may be

contained in both types of feature variables, an effective classifier should be able to

handle both types of features in the classification process. For a qualitative feature

variable X, the form of the split is given by X ∈ A where A is a non-empty subset of

values taken by X. If a qualitative feature has M non-empty levels, then 2M−1 − 1

splits are possible. axis-parallel algorithms which consider qualitative splits can be

found in Quinlan (1986).

Incorporating qualitative features in oblique splits has not been thoroughly ex-

plored. The QUEST algorithm (Loh & Shih, 1997) is capable of finding oblique splits

with both qualitative and quantitative features. QUEST transforms each unordered

qualitative feature variable into a new ordered quantitative feature, called CRIMCO-

ORD. Each level of an unordered qualitative feature is mapped to an ordered value

called a CRIMCOORD value. The CRIMCOORD algorithm is briefly explained be-

low and the exact algorithm can be found in (Loh & Shih, 1997).

Let X be a qualitative feature taking values in the set {1, 2, . . . L} and the class

variable Y ∈ C = {1, 2, 3, ...,C}. Each level of X is first transformed into an L-

dimensional dummy vector v = {v1, v2, . . . , vL} as follows:

For i = 1, . . . , L, vi =

{
1 X = i

0 otherwise.
(3.7.1)

Let vji be the ith observed value of v in the jth response class and define the

mean vector of class j and the grand mean vector as v̄j = N−1
j

∑Nj

i=1 vji and v̄ =

N−1
∑C

j=1

∑Nj

i=1 vji respectively. Then the between sum of squares matrix B and the

66 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

within sum of squares matrix W can be computed as:

B =
C∑
j=1

Nj(v̄
j − v̄)(v̄j − v̄)T , (3.7.2a)

W =
C∑
j=1

Nj∑
i=1

(vji − v̄j)(vji − v̄j)T , (3.7.2b)

respectvely and the total sum of square matrix T can be computed as T= B + W,

specifically:

T =
C∑
j=1

Nj∑
i=1

(vji − v̄)(vji − v̄)T . (3.7.2c)

The idea is to find a vector (a say) to project v which maximises the between sum

of squares of projected scores (aTBa) while minimising the within sum of squares of

projected scores (aTWa). More precisely, the aim is to find:

a∗ = arg max
a

aTBa

aTWa
. (3.7.3)

The solution to the optimisation problem given in equation (3.7.3) is the eigen-

vector corresponding to the maximum eigenvalue of W−1B when W is a full rank

matrix. The solution to equation (3.7.3) is also given by T−1B when W is a full rank

matrix (Loh & Shih, 1997). However, in this setting T and W are not in full rank.

Therfore, a special computational method is needed to compute a∗. The precise al-

gorithm to compute a∗ is given in Loh and Shih (1997). Let the vector a∗ be the

solution to equation (3.7.3) and hence, the largest discriminate coordinate, CRIM-

COORD. Finally, each level of the qualitative feature is mapped to a real value by

a∗Tvi. Figure 3.11 depicts the mechanism of the transformation. Assume a quali-

tative feature has two levels and hence, two dummy vectors are constructed: Level

1 - (1, 0)T , Level 2 - (0, 1)T . Also, assume that there are two classes so that two

mean vectors can be computed and denoted by v̄1 and v̄2. The grand mean vector

is denoted by v̄. The distances showed in the figure are defined as D1 = a∗TBa∗

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 67

and d11 + d12 + d21 + d22 = a∗TWa∗. The vector a∗ tries to find the direction which

maximises the between sum of squares of projected dummy vectors while minimising

the within sum of squares of projected dummy vectors. The projected values of v1

and v2 along the a∗ vector are given by v
′
1 and v

′
2 respectively. Therefore Level 1 and

Level 2 dummy vectors are replaced by v
′
1 and v

′
2 respectively.

Figure 3.11: Mechanism of the transformation of the qualitative feature to qualitative
feature.

The size of the example set at lower nodes decreases as the tree grows further.

For smaller example sets, a qualitative feature may contain only one level. In these

situations, the qualitative feature does not contain class discriminative information

and hence, in the HHCART algorithm, the level of the qualitative feature is mapped

to the value zero.

A significant property of the method is that it assigns zero for a level of a qual-

itative feature even if it is not in the learning sample. To realise this, the set of all

possible values of the qualitative feature needs to be known beforehand. However,

this enables the handling of qualitative levels that will appear in future examples but

which are absent from the learning examples.

68 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

The same CRIMCOORD algorithm (proposed in Loh and Shih (1997)) is im-

plemented in the HHCART algorithm to induce oblique splits which contain both

qualitative and quantitative features. At each node, a new quantitative feature is

constructed for each qualitative feature by mapping the levels to its CRIMCOORD.

These new quantitative features are then amalgamated with the existing quantitative

features in the example set. The HHCART algorithm can then be applied to find the

best oblique split. At each node the CRIMCOORD value corresponding to each level

of each qualitative feature is stored. When predicting, the level of each qualitative

feature of an unclassified observation is replaced by the corresponding CRIMCOORD

attached to each node along its path.

3.8 Importance of HHCART

HHCART possesses some important features which are useful in effective data clas-

sifications. These are summarised below:

[1] As discussed in Chapter 2, optimization algorithms based DTs take considerable

time to find the best split at a node. For example, SADT and OC1 algorithms

iterate many times until a locally optimal point of ∆(I) is found. However,

HHCART uses axis-parallel splits and hence, an exhaustive search for the global

minimum can be performed. Therefore, HHCART is a good alternative to those

algorithms which uses optimization techniques to find the best split at a non-

terminal node.

[2] The other advantage of HHCART is the ease in implementation of the algo-

rithm. In the HHCART algorithm, only the axis-parallel splits are to be imple-

mented. Optimisation algorithm based DTs use optimisation techniques, such

as hill-climbing, simulated annealing. The implementation of these algorithms

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 69

is relatively harder compared with HHCART.

[3] With the ever increasing size of example sets serial computers face challenges

such as: (a) memory limitations, and (b) inability to induce DTs in a reasonable

time. Therefore, DT induction in a parallel computing architecture has been

explored. Three induction strategies are proposed in parallel computing and it

is shown that axis-parallel splits can be implemented using all of the strategies.

Therefore, HHCART can also be parallelised using these three strategies be-

cause, axis-parallel splits are searched in the transformed spaces. However, Op-

timization algorithms based DT induction methods and even some DTs based

on heuristic arguments are difficult to parallelise due to the inherent nature

of the tree building algorithms. Hence, HHCART is a flexible tree building

method which can be implemented under any computing architecture. Paral-

lel computing architecture and the parallel version of HHCART is discussed in

Chapter 4.

[4] As mentioned in Section 3.7, HHCART can handle both qualitative and quanti-

tative features in the same oblique split which makes it useful in a diverse range

of applications.

3.9 Experiments on real life example sets

Three sets of experiments are performed. In the first experiment, the performances of

HHCART on real data sets, given in Appendix A, are compared with benchmark DTs.

Five-fold cross validations (CVs) are used to estimate the classification accuracy. For

each fold, 10% of the training set was used exclusively for pruning. Then 10, 5-

fold CVs are used to estimate the accuracy and the size of the tree (number of

terminal nodes). Therefore, to estimate accuracy and tree size the average over ten

70 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

runs was used. The 5-fold CV samples are obtained using Simple Random Sampling

(SRS). Therefore, the original class distributions in the example set may not be

properly represented in the test and training sets. Thus, in the second experiment,

the classification accuracy of HHCART based on Simple Random Sampling CV (SRS

CV) is compared with Stratified Random Sampling CV (STRS CV). Finally, in the

last experiment, HHCART is tested on example sets in which the feature space is

comprised of both qualitative and quantitative features. For all experiments, data sets

are downloaded from UCI repository (Lichman (2013), http://archive.ics.uci.edu/ml)

and are given in Table A.1 in Appendix A.

3.9.1 Comparison of performances of HHCART with other

DTs

In this section, the HHCART algorithm is compared with OC1, OC1-LC (OC1’s

version of Breiman’s linear combination methods) and OC1-AP (OC1 version of axis-

parallel splits). All of these methods are available in the OC1 system which is freely

available at http://salzberg-lab.org/software. However, the backward feature elimina-

tion process of Breiman’s CART-LC method is not included in OC1-LC and hence,

is somewhat different from the original method. For the HHCART algorithm, Min-

Parent, MisRate and τ was set to 2, 0 and 0.05 respectively. For OC1, OC1-LC and

OC1-AP MinParent was set to 2. All algorithms used the Twoing rule as the measure

of impurity (Breiman et al., 1984) and cost complexity pruning (Breiman et al., 1984)

with zero standard error. For OC1, the number of restarts and jumps were set to 20

and 5 (default values) respectively.

The Shuttle example set comes with its own training set containing 43500 examples

and a test set with 14500 examples. Therefore, instead of performing a cross validation

experiment, 10 trees were induced, each using 90% of training examples for induction

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 71

and the remaining 10% for pruning. The accuracy of all the trees was estimated using

the Shuttle data test set. Since, approximately 80% of the examples belong to class 1,

the aim is to achieve an accuracy between 99−99.9% (Lichman, 2013). All experiment

results are reported in Table 3.1 along with respective standard deviations.

72 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

Table 3.1: Results of HHCART and other DT methods.

example DT Avg. Acc. Avg. Size example DT Avg. Acc. Avg. Size
set set

BS HHCART(A) 93.7± 1.3 7.9± 1.7 PIND HHCART(A) 72.2± 2.0 9.1± 5.1
HHCART(D) 88.3± 1.7 12.2± 3.5 HHCART(D) 72.9± 1.3 10.8± 4.4
OC1 91.9± 0.9 8.7± 3.4 OC1 73.4± 1.0 9.2± 5.4
OC1-AP 78.2± 1.3 37.5± 16.8 OC1-AP 73.6± 1.4 15.9± 8.7
OC1-LC 84.3± 1.5 12.6± 6.5 OC1-LC 72.8± 1.8 11.4± 9.6

BH HHCART(A) 83.3± 0.9 6.5± 2.1 SHUT HHCART(A) 99.94± 0.02 25.4± 5.9
HHCART(D) 83.0± 0.7 9.9± 2.6 HHCART(D) 99.94± 0.05 26.1± 4.9
OC1 82.2± 1.2 9.3± 3.4 OC1 99.95± 0.03 32.6± 7.71
OC1-AP 82.0± 0.7 13.0± 5.3 OC1-AP 99.97± 0.02 26.5± 5.6
OC1-LC 81.5± 1.3 10.6± 6.0 OC1-LC 88.4± 7.07 44.7± 42.4

BC HHCART(A) 97.0± 0.3 2.4± 0.6 WINE HHCART(A) 91.3± 1.6 3.4± 0.3
HHCART(D) 97.0± 0.3 2.6± 1.1 HHCART(D) 88.7± 3.1 4.5± 0.6
OC1 95.4± 0.5 3.3± 1.4 OC1 89.2± 2.1 3.5± 0.3
OC1-AP 94.0± 0.8 8.3± 3.3 OC1-AP 89.2± 4.6 4.6± 0.6
OC1-LC 95.5± 0.6 3.4± 1.6 OC1-LC 89.4± 2.7 3.8± 0.6

BUPA HHCART(A) 64.1± 2.6 6.5± 1.5 LET HHCART(A) 82.1± 0.3 759.2± 88.1
HHCART(D) 62.4± 2.5 8.6± 3.1 HHCART(D) 83.1± 0.3 1135.9± 122
OC1 66.9± 2.2 8.9± 6.1 OC1 83.6± 0.4 1197.2± 88.9
OC1-AP 64.7± 2.5 13.2± 10.5 OC1-AP 86.3± 0.3 1611.7± 60.0
OC1-LC 64.4± 2.4 8.9± 3.6 OC1-LC 84.5± 0.2 1332.6± 146.3

GLS HHCART(A) 60.3± 3.0 8.5± 3.0 SUR HHCART(A) 73.5± 1.5 5.3± 2.7
HHCART(D) 61.9± 3.0 10.1± 2.3 HHCART(D) 72.8± 1.0 5.0± 2.4
OC1 61.1± 3.5 10.8± 4.3 OC1 71.0± 2.1 6.4± 3.5
OC1-AP 64.6± 3.9 14.6± 8.7 OC1-AP 71.9± 1.5 10.7± 6.5
OC1-LC 67.4± 2.0 12.0± 3.6 OC1-LC 70.2± 2.4 8.1± 4.4

HRT HHCART(A) 74.1± 2.9 4.5± 1.7 CLI HHCART(A) 91.7± 1.0 2.4± 0.9
HHCART(D) 75.8± 2.8 7.8± 2.6 HHCART(D) 91.8± 0.7 3.6± 1.1
OC1 77.1± 2.5 3.6± 1.0 OC1 91.5± 0.9 3.1± 0.9
OC1-AP 76.3± 2.3 6.7± 2.4 OC1-AP 91.5± 0.9 4.0± 1.6
OC1-LC 76.3± 2.5 4.0± 1.1 OC1-LC 92.9± 0.7 4.1± 1.5

BNK HHCART(A) 99.4± 0.2 3.0± 0.3 SEED HHCART(A) 90.4± 1.4 3.9± 0.8
HHCART(D) 99.1± 0.3 3.6± 0.5 HHCART(D) 89.7± 2.8 3.9± 0.8
OC1 98.6± 0.4 6.3± 1.2 OC1 92.9± 1.8 3.6± 0.6
OC1-AP 97.4± 1.0 14.7± 2.1 OC1-AP 88.8± 1.1 3.8± 0.9
OC1-LC 97.9± 2.1 6.6± 1.5 OC1-LC 88.4± 1.1 3.8± 0.7

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 73

Table 3.1 shows the average accuracies and the average tree sizes of 10, 5-fold

CVs along with the respective standard deviation. The oblique splits reduced the

average tree size for most of the example sets while increasing the accuracy. First, the

HHCART(A) algorithm is compared with the other DTs except HHCART(D). The

average accuracy of HHCART(A) is significantly (more than 2 standard deviations)

higher than all the other methods tested for the BC example set except for OC1-LC.

For all other example sets, except for LET, the average accuracy of HHCART(A) is

not significantly different from that of OC1.

The average tree sizes of HHCART(A) are consistently smaller than the average

tree sizes of the other methods except for the HRT, SUR and SEED example sets.

Therefore, the performance of HHCART(A) with respect to accuracy and tree size is

better than the other methods for the BS, BH, BC, WINE and BNK datasets.

Nine of the 14 example sets have at least eight features. For six of these relatively

high dimensional data sets, the performance of HHCART(A) is comparable with

OC1 and OC1-LC. Hence, we can conclude that the proposed method works well in

relatively high dimensional feature spaces provided that p < n.

For all the datasets except BS and WINE, HHCART(D) performs as well as

HHCART(A) in terms of average accuracy. Also, the tree sizes of HHCART(D) are

comparable with those produced by HHCART(A) except for the BS, BH, BUPA,

HRT, WINE and LET example sets. The performance of HHCART(D) is similar to

OC1 with respect to both the accuracy and tree size for all the datasets except the

BS, HRT and BUPA datasets.

The time complexity of HHCART(A) is higher than that of HHCART(D) by a

factor of O(p). Results show that HHCART(D) produces DTs with similar accuracies

and sizes as HHCART(A) and OC1 for most of the datasets. Hence, HHCART(D)

would be a more efficient method to use for higher dimensional problems.

74 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

3.9.2 Effect of different sampling schemes

The HHCART algorithm is run on 10×5-fold CV samples which are created using

SRS and Stratified Random Sampling (STRS) schemes. In the STRS CV setting, the

training, test and a 10% pruning set is created. Estimated classification accuracies

due to both sampling schemes are given in Table 3.2. The OC1 classifiers cannot

be used in this situation as they are designed to work only on CV based on SRS.

The SHUT example set comes with its own training set and it is found that the class

proportions of test set and training set are almost the same.

Moreover, using the same 10×5-fold CV samples created above, the effect of the

two different schemes on the class-wise accuracy is investigated and the results are

given in Table 3.3.

Table 3.2: Classification accuracies for SRS and STRS sampling schemes.

SRS CV STRS CV

example set Accuracy Tree Size Accuracy Tree Size
BS 92.8 ± 1.3 7.4 ± 1.3 93.2 ± 1.4 8.4 ± 2.2
BH 83.4 ± 1.2 7 ± 2.9 83.1 ± 1.2 6.7 ± 3.1
BC 96.8 ± 0.9 2.3 ± 0.4 96.9 ± .3 2.7 ± 0.7
BUPA 63.8 ± 2.6 7.6 ± 1.5 66.1 ± 2.6 8.0 ± 3.6
GLS 60.9 ± 3.8 8.6 ± 3.2 63.3 ± 2.8 9.8 ± 2.3
HRT 74.3 ± 3.5 5.3 ± 2.1 75.2 ± 1.7 5.3 ± 1.2
PIND 72.6 ± 1.9 11.7 ± 6.6 73.5 ± 1.0 9.1 ± 4.7
SHUT 99.93 ± 0.02 26.2 ± 1.7 99.93 ± .02 28.3 ± 1.3
WINE 91.4± 1.8 3.4± 0.3 90.6± 1.5 3.3± 0.3
LET 82.9 ± 0.1 771.8 ± 92.1 82.8 ± 0.3 763.6 ± 90.2
SUR 73.1 ± 1.2 3.3 ± 1.9 72.6 ± 1.9 5.9 ± 2.7
CLI 91.7 ± 1.0 2.9 ± 1.7 91.8 ± 0.8 2.9 ± 1.1
BNK 99.1 ± 0.2 2.96 ± 0.3 99.4 ± 0.2 3.0 ± 0.3
SEED 90.4 ± 1.3 3.96 ± 0.8 91.6 ± 1.2 4.0 ± 0.6

It is clear from the results given in Table 3.2 that the average accuracies are more

or less the same in both sampling schemes. Although STRS CV results show a slight

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 75

increase in the accuracy, it is not significant. However, in most of the cases, the

average tree size is larger for the STRS CV based tree construction. Although the

increments are not statistically significant2, there is a notable increase in average tree

size for BS, GLS and SUR example sets compared to the increments of the other

example sets. It can be seen from Table 3.3 that the class distributions for each of

these example sets are highly imbalanced. Therefore, the CV samples, based on SRS,

may under-represent the minority classes in the training set and consequently, the

number of terminal nodes (pure regions in the feature space) required to classify those

classes may not be found by the tree. In contrast, CV samples based on STRS have

proper representation in the training sets and hence, these trees can have additional

nodes for minority classes than the trees based on SRS.

Table 3.3 shows class-wise accuracies for both the sampling schemes. The SRS and

STRS columns show the percentage of correct classifications for each class for CVs

based on SRS and STRS respectively. In the STRS column, the parenthesised data

shows the increase in the accuracy for the minority class. Note that this information

is recorded only for those example sets for which class imbalance is present. Most

of the example sets have imbalanced class distributions except for BH, LET, BNT,

and SED. For those class imbalance example sets, CV STRS based trees have a

higher classification accuracy for the minority classes than that of SRS CV trees.

However, minority classes always have lower accuracy than other classes irrespective

of the sampling scheme. When considering increments of classification accuracies

for each minority class, almost all classes have gained at least 4% accuracy and in

some cases it has risen up to 10% except for the CLI example set. Overall, there

is an approximately 4% increment in the classification accuracy for minority classes

due to the STRS CV scheme. Here, the increments of 12.3%, 17.8 % (both in the

GLS example set) and 25.0% (in the SHUT example set) are omitted due to too few

2under 5% level of significance, if normality assumed

76 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

Table 3.3: Class-wise classification accuracies for SRS and STRS sampling schemes.

example set SRS STRS Class example set SRS STRS Class
size size

BS 66.1 71.0 (4.9) 49 LET 91.0 90.1 789
95.1 95.6 288 76.1 76.2 766
94.9 94.7 288 84.6 84.2 736

BH 83.0 85.2 246 79.5 79.9 805
83.8 81.0 260 79.5 79.5 768

BC 96.3 96.5 444 80.2 79.5 775
97.7 97.6 239 77.9 76.9 773

BUPA 44.8 49.6 (4.8) 145 70.9 70.1 734
77.6 78.1 200 87.6 87.9 755

GLS 72.1 72.7 70 85.9 85.6 747
64.1 63.7 76 77.0 76.8 739
7.6 9.4 (1.8) 17 88.4 88.0 761
32.3 44.6 (12.3) 13 90.4 91.1 792
30.0 47.8 (17.8) 9 85.3 85.2 783
79.0 84.1 (5.1) 29 77.7 77.8 753

HRT 80.1 78.2 150 84.1 84.3 803
67.1 71.4 (4.3) 120 81.8 82.5 783

PIND 83.8 83.9 500 75.8 75.5 758
52.4 54.0 (1.6) 268 77.2 77.6 748

SHUT 100.0 100.0 11478 85.0 84.9 796
85.0 90.0 (5.0) 13 86.8 87.1 813
97.0 99.0 (2.0) 39 87.5 87.6 764
100.0 100.0 2155 91.0 90.8 752
100.0 100.0 809 80.3 80.9 787
45.0 70.0 (25.0) 4 85.5 85.6 786
100.0 100.0 2 86.0 86.0 734

WINE 93.0 91.9 59 BNK 99.4 99.3 762
87.7 87.0 71 99.4 99.7 610
94.8 94.4 48

SED 86.7 88.0 70
SUR 95.8 91.9 225 95.7 96.4 70

10.0 19.1 (9.1) 81 88.7 90.3 70
CLI 28.7 27.2 (-1.5) 46

97.6 97.9 494

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 77

examples in the respective classes.

3.9.3 HHCART performances on example sets having mixed

feature types

Experiments were performed to study the performance of the HHCART methods

when the training example set contains both qualitative and quantitative features.

QUEST (Loh & Shih, 1997) was used for comparison purposes since OC1, OC1-AP,

and OC1-LC were not designed to handle oblique splits containing both types of

features. Ten, 5-fold cross validations were used in the experiments and the average

accuracies and tree sizes (over ten cross validations) are reported in Table 3.4. The

Income example set comes with its own training and testing set of 30162 and 15060

examples respectively. Ten trees were induced, each using 90% of the training exam-

ples and the remaining 10% for pruning. The accuracy of all the trees were estimated

using the same test set.

QUEST uses the following parameter setting: estimated prior, unit misclassifica-

tion cost, zero standard error for pruning, linear splits, linear discriminant analysis

for the split point and the minimum node size for splitting is 2. The HHCART

algorithms were implemented as given in Subsection 3.9.1.

Table 3.4: Results of HHCART and QUEST.

example set Decision Tree Avg. Acc. Avg. Size

Income HHCART(A) 85.1± 0.2 32.7± 12.9
HHCART(D) 85.5± 0.2 59.5± 19.7
QUEST 83.9± 0.2 68.0± 23.1

Bank HHCART(A) 90.2± 0.12 22.58± 11.94
HHCART(D) 90.4± 0.07 44.4± 14.19
QUEST 90.1± 0.1 27.0± 15.2

StatLog HHCART(A) 85.1± 0.9 5.6± 1.9
HHCART(D) 85.8± 0.7 6.5± 3.0
QUEST 85.65± 0.92 6.08± 3.6

For the Income example set, HHCART(A)’s performance is significantly (more

78 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

than 2 standard deviations) better than QUEST both in terms of the average ac-

curacy and average tree size. For the other two datasets, HHCART(A) produces

comparable accuracies with smaller trees. These results also suggest that the HH-

CART algorithms perform well in relatively high dimensions. Though HHCART(D)

produces larger trees compared with HHCART(A), its classification accuracy is com-

parable with HHCART(A).

3.10 Conclusions and discussion

This chapter presents a novel algorithm, HHCART, for data classification. The pro-

posed algorithm captures the orientation of examples belonging to each class by means

of eigenvectors. Each eigenvector is then made parallel to the e1 direction using

a Householder matrix and axis-parallel splits are conducted in the reflected space.

These splits are oblique in the original feature space. The proposed method can in-

duce an oblique split with less computational effort than some existing benchmark

methods such as CART-LC (Breiman et al., 1984), OC1 (Murthy et al., 1994) without

losing the accuracy and simplicity of the tree. Two versions of HHCART have been

presented: HHCART(A) uses all possible eigenvectors of the estimated covariance

matrices of respective classes whereas HHCART(D) uses only the dominant eigen-

vector of each class. The empirical results show that HHCART induces better trees,

in terms of accuracy and the tree size, than that of other DT algorithms for most

of the problem domains. The algorithm is designed to convert qualitative features

into quantitative features and thereby HHCART is capable of handling both quali-

tative and quantitative features in the same oblique split. This enables HHCART to

work in a wide range of real life data classification problems. Moreover, the effects of

the imbalance classes on final tree accuracy and class-wise accuracy were empirically

studied. The classification accuracy for the minority class always stays low compared

CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE 79

to that of the majority classes. However, the use of CV based on stratified random

sampling can raise the classification accuracy of the minority classes on average by

4%.

In HHCART, the creation of new feature (or artificial feature) spaces using the

Householder reflection can be viewed as an attempt to expand the search space. In

the literature (see Chapter 2), it can be found that many DT methods try to expand

the feature space to find better splits. For example, the methods based on statistical

techniques try to explore new search spaces by creating artificial features. However,

the way these new features are created is different from what is implemented in the

HHCART algorithm. For example, Henrichon and Fu (1969) propose using the dom-

inant eigenvector of each class as artificial features. This differs from HHCART as

follows: (a) HHCART uses all possible eigenvectors of each class, and (b) HHCART

creates a new feature space for each eigenvector. Moreover, OC1 uses the hill climbing

algorithm and a randomisation procedure in turn to find a better split. Furthermore,

it uses different initial locations to start the hill climbing algorithm. All these strate-

gies help OC1 to expand the search space. However, the feature space expansion and

the way HHCART finds splits is computationally cheaper than that of OC1. There-

fore, the empirical results and the reduction in time complexity of HHCART show

that the proposed algorithm is a good alternative for optimisation based tree building

algorithms.

80 CHAPTER 3. HHCART: AN OBLIQUE DECISION TREE

Chapter 4

HHCART with massive example
sets

The DT algorithms discussed so far, including the work of this thesis, are based on a

serial computing memory resident approach. In order to build a decision tree, these

algorithms need the full example set to be entirely loaded into the computer memory,

(hence memory resident), and the algorithm executes each instruction sequentially,

(hence serial). However, this approach may not be feasible when such an algorithm

is applied to massive example sets. Two solutions are proposed in the literature: (a)

Disk resident decision tree algorithms, and (b) Parallel implementation of decision

tree algorithms. This chapter briefly presents some early work in this regard and

shows how HHCART can be modified accordingly.

4.1 Early attempts of decision tree induction for

large example sets

Data mining applications often come with massive data sets (Srivastava A, Han,

Kumar, & Singh, 2002). Inducing oblique decision trees for such data sets using

conventional methods, for example CART, OC1, SADT, can consume considerable

81

82 CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS

time. Consequently various attempts have been made to increase the efficiency of

tree growing algorithms including the work of this thesis. The conventional and new

methods are based on a memory resident, serial computing approach. However, it has

come to a point where none of these methods are effective enough to cater to the ever

increasing size of data. Decision tree induction algorithms face two challenges in the

presence of massive example sets. First, the size of the example set often exceeds the

capacity of the memory and hence, memory resident algorithms become impractical

to implement. Thus, disk resident algorithms have been proposed. Second, as the

number of examples increases, even searching for the best axis-parallel split takes ex-

cessive time. However, with the invention of parallel computing architecture, parallel

decision tree algorithms have been introduced and are widely used to solve large scale

classification problems.

4.1.1 Disk resident decision tree algorithms

Mehta, Agrawal, and Rissanen (1996) propose an axis-parallel decision tree algorithm,

SLIQ, for disk resident data. However, SLIQ still requires that some information

resides in memory, so it assumes that the capacity of the memory is large enough to

store the data. The results show that the algorithm scales well with a large number

of examples and features. SPRINT (Shafer, Agrawal, & Methta, 1996), is an axis-

parallel algorithm which removes all memory restrictions of SLIQ. For each feature,

SPRINT initially creates a separate structure called a feature list which comprises

the feature values, their class labels and the example numbers (or record numbers).

Table 4.1 shows the hypothetical example set and Table 4.2 shows the two feature lists

constructed. Feature lists are maintained in the disk and they are sorted according

to the feature values. The initial feature lists correspond to the root node of the

decision tree. All feature lists are read sequentially from the disk and for each feature

CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS 83

Table 4.1: Hypothetical example set.

Example No. Y X1 X2

1 1 10 5
2 2 6 8
3 2 7 7
4 1 15 10
5 1 9 12
6 1 12 14
7 2 11 16
8 2 4 10
9 1 15 1
10 1 14 15

list, one row at a time is read into the memory. A separate node level frequency table

for each feature list is maintained in the memory and is updated as each row is read

into the memory from the feature list being processed. Frequency tables are created

when the node is created. For example, Table 4.3a shows the initial frequency table of

feature X1 (before the first record is read from the feature list given in Table 4.2a) and

Table 4.3b shows the updated frequency table after X1 = 10 record is read. At each

update of the frequency table, the Gini index, a measure of impurity, is calculated. At

the end of the reading, the best split for the feature is saved and the frequency table

is deleted before processing the next feature list. Once all the features are processed,

the best split at the node can be found. The above steps are given in Algorithm 4.

Each feature list is then partitioned according to the best split found. The feature

which gives the best split can easily be partitioned by reading the feature values

again into the memory and applying the split test. This creates two child feature lists

corresponding to the feature being processed, one for the left node and the other for

the right node and are stored in the disk. At the same time the example number and

the node (left or right), to which the example has been sent by the test, are written

in a separate table called a hash table. The hash table is used to split the other

84 CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS

Table 4.2: Constructed feature lists for the example set in Table 4.1.

(a) Feature list for X1.

Example No. Y X1

8 2 4
2 2 6
3 2 7
5 1 9
1 1 10
7 2 11
6 1 12
10 1 14
4 1 15
9 1 15

(b) Feature list for X2.

Example No. Y X2

9 1 1
1 1 5
3 2 7
2 2 8
4 1 10
8 2 10
5 1 12
6 1 14
10 1 15
7 2 16

Table 4.3: Frequency table created when reading X1 feature list into the memory.

(a) Frequency table of X1 at the beginning.

Y=1 Y=2

X1 < 4 0 0
X1 > 4 6 4

(b) Frequency table after reading X1 = 10.

Y=1 Y=2

X1 ≤ 10 2 3
X1 > 10 4 1

feature lists. Assume that X1 = 8 gives the best split for the node. The hash table

created is given in Table 4.4 where 2 and 3 are the left and right nodes respectively.

Algorithm 5 outlines these steps. The rest of the feature lists are split as follows: (a)

for each feature list, records are read into the memory one at a time; (b) for each

record, its observation number is mapped to the hash table and the corresponding

node is obtained; (c) if the node is the left node, then the record is written to the left

child feature list or otherwise to the right child feature list of that feature; and (d) at

each new node, a new frequency table for each feature list is created and initialised

as given in Table 4.3a. These steps are given in Algorithm 6.

These three algorithms are executed sequentially at each node until the node

becomes homogeneous. The SPRINT algorithm is modified in this research to develop

CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS 85

Table 4.4: Hash table.

Example No. Node

8 2
2 2
3 2
5 3
1 3
7 3
6 3
10 3
4 3
9 3

the disk resident version of HHCART and is given in Subsection 4.1.1.1.

4.1.1.1 The disk resident implementation of HHCART

The methodology for disk resident version of HHCART is proposed. Therefore, even

if there is no parallel computing facility available, HHCART can still be used with

massive example sets. Let Dt be the example set at a non-terminal node t and define

the class variable Y ∈ {1, 2, . . . , C}. The steps of the basic HHCART algorithm at

node t are given below.

[1] Convert all qualitative features to respective CRIMCOORDs.

[2] Partition Dt based on the class labels. Let Di
t be the example set belonging to

ith class at node t. Then, Dt =
⋃C
i=1 D

i
t.

[3] Compute covariance matrix for each Di
t, where i = 1, 2, . . . , C.

[4] Perform eigen analysis on each covariance matrix (there are C covariance ma-

trices).

86 CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS

Define PV =∞, ∆(I) = 0;
p = number of features;
for i=1:p do

PV =∞ a temporary variable;
RC = 1 the record counter;
open feature list(FLi) corresponding to featurei;

Read RCth record of ith FLi;
while NOT End Of File do

xi,RC = RCth feature value;
Update the frequency table;
Calculate Gini index and the impurity reduction ;
if impurity reduction > ∆(I) then

BSP = (xiRC + PV)/2 ;
SF = featurei ;
∆(I) = impurity reduction;

end
PV = xi,RC ;
RC = RC + 1;

Read RCth record of ith feature list ;

end
Delete frequency table from the memory;

end

Algorithm 4: The procedure used by SPRINT to find the best split.

[5] For each eigenvector (there are Cp eigenvectors altogether and p is the number

of features), construct a Householder matrix. Let Hij
t be the Householder matrix

defined by the jth eigenvector of ith class at node t.

[6] Transform Dt based on each Householder matrix and construct transformed

spaces. Let D̂ij
t be the transformed example set based on Hij

t matrix.

[7] Perform axis-parallel searches in all transformed spaces. There are Cp trans-

formed spaces.

[8] Find the best split at the node and divide Dt according to the best split found.

CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS 87

Open SF list, RC = 1
Read RCth record of SF list ;
while NOT End Of File do

xi,RC = RCth feature value;
if xi,RC ≤ BSP then

write xi,RC to the left node SFleft list;
append the hash table with the observation number and the left node
number;

else
write xi,RC to the right node SFright list;
append the hash table with the observation number and the right node
number;

end

end

Algorithm 5: The procedure used by SPRINT to split the feature giving the
best split. SF and BSP are defined in Algorithm 6.

[9] Recursively apply step 1 to step 8 until each child node meets one of the stopping

criteria specified in Section 3.5.

Since the HHCART algorithm uses axis-parallel splits in the transformed spaces,

the split finding mechanism of the SPRINT algorithm can easily be utilised to find

the best split in HHCART. However, HHCART has some additional work to do (step

1 to 6 in the above list) before it proceeds to axis-parallel splits. Let Mm and Md be

the memory capacity of the machine and the memory requirement of Dt respectively.

Assume that Md >> Mm and hence, Dt cannot be loaded into the memory as a whole.

Therefore, Dt is read into the memory in blocks and thus, the number of blocks K,

for Dt, is defined as

K =

⌈
Md

Mm

⌉
(4.1.1)

One of the important characteristics of HHCART is its ability to handle both qual-

itative and quantitative features in the same oblique split. Qualitative features are

88 CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS

for i=1:p do
Create left frequency table (LFREQ) and right frequency table (RFREQ).
if Featurei 6= SF then

Read RCth record of Featurei list ;
while NOT End Of File do

Get the Node Number corresponding to the observation number
from the hash table
if Node Number is a left node then

Write RCth record of Featurei list to left node Featurei list;
update LFREQ;

else
Write RCth record of Featurei list to right node Featurei list;
update RFREQ;

end

end

end

end

Algorithm 6: The procedure used by SPRINT to split features.

first transformed into new variables called CRIMCOORDs and they are then amal-

gamated with existing quantitative features before constructing covariance matri-

ces. The CRIMCOORD transformation methodology, based on Loh and Shih (1997),

is given in Section 3.7 and requires the entire feature to be loaded into the mem-

ory. Therefore, it cannot be used in the disk resident version of HHCART. A new

methodology is proposed to compute CRIMCOORDs, which does not require the

feature to be fully loaded into the memory as a whole but which guarantees the same

CRIMCOORDs as those given in Loh and Shih (1997). The proposed CRIMCOORD

construction methodology is given below:

Let X be a qualitative feature taking values in the set {1, 2, . . . , L} and the class

variable Y ∈ C = {1, 2, 3, ...,C}. Assume the number of levels of X is known. In

the most general case, we assume that the entire X feature cannot be read into the

memory as a whole and hence, it is proposed to read X in blocks. Let the number of

CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS 89

blocks be Kq (usually Kq << K, where K is defined in equation (4.1.1)). Assume that

the mth block of X and Y are read into the memory where m = 1, . . . , Kq. Each level

of X is first transformed into an L-dimensional dummy vector vimj = {ṽ1, ṽ2, . . . , ṽL}

as:

For l = 1, . . . , L, ṽl =

{
1 if X = l

0 otherwise.
(4.1.2)

where vimj is the jth dummy vector of the ith response class of the mth block. The

CRIMCOORD construction procedure requires computation of matrices B, W and T

which are defined in equations (3.7.2a), (3.7.2b) and (3.7.2c) respectively. However,

these definitions cannot be used for the disk resident version as some of the quantities

in these equations are not available until the entire feature is read into the memory.

Therefore, a new formulation of the same matrices is defined and they are given below.

Let v̄i and v̄im be the mean dummy vector of the ith response class and mean

dummy vector of the ith response class in the mth block respectively. Also, let nim be

the number of examples of ith response class in the mth block. Then:

W =
C∑
i=1

Kq∑
m=1

ni
m∑

j=1

(vimj − v̄i)(vimj − v̄i)T

=
C∑
i=1

Kq∑
m=1

ni
m∑

j=1

[
(vimj − v̄im)− (v̄i − v̄im)

] [
(vimj − v̄im)− (v̄i − v̄im)

]T
=

C∑
i=1

Kq∑
m=1

ni
m∑

j=1

[
(vimj − v̄im)(vimj − v̄im)T + (v̄i − v̄im)(v̄i − v̄im)T

]
(4.1.3a)

Therefore,

W =
C∑
i=1

Kq∑
m=1

γim +
C∑
i=1

Kq∑
m=1

nim(v̄i − v̄im)(v̄i − v̄im)T (4.1.3b)

where γim =
∑ni

m
j=1(vimj − v̄im)(vimj − v̄im)T .

90 CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS

Also:

B =
C∑
i=1

Kq∑
m=1

ni
m∑

j=1

(v̄i − v̄)(v̄i − v̄)T

=
C∑
i=1

ni(v̄i − v̄)(v̄i − v̄)T

(4.1.4a)

and

T = B + W (4.1.4b)

where ni is the number of examples in the ith response class.

CRIMCOORD is the eigenvector, a∗, corresponding to the maximum eigenvalue

of T−B, where B and T are defined in equations (4.1.4a), (4.1.4b) respectively and

T− is the generalised inverse of T. What follows is the proposed disk resident version

of HHCART at node t:

[1] Convert all qualitative features to respective CRIMCOORD features: The fol-

lowing steps explain the construction of the CRIMCOORD for one qualitative

feature X for the disk resident version of HHCART.

[i] Read mth block of X and Y , where m = 1, . . . , Kq.

[ii] Each value (actually a level of the qualitative variable) of mth block of

X, is transformed into an L-dimensional dummy vector, vimj, as given in

function 4.1.2.

[iii] Calculate γim, (see equation (4.1.3b)) and v̄im, defined as

v̄im = 1
ni
m

∑ni
m
j=1 vimj, for each response class of the mth block and

store it in the memory along with nim.

CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS 91

[iv] Once all Kq blocks have been read, compute the following quantities.

v̄i =
1

ni

Kq∑
m=1

nimv̄im, where ni =

Kq∑
m=1

nim

v̄ =
1

n

C∑
i=1

niv̄i, where n =
C∑
i=1

ni

Hence, W, B and T as given in equations (4.1.3b), (4.1.4a) and (4.1.4b)

can be computed respectively.

[v] Compute a∗ as the eigenvector corresponding to the maximum eigenvalue

of T−B, where T− is the generalised inverse of T.

[vi] Now the CRIMCOORD value of vimj can be computed by the dot product

of two vectors, vimj · a∗, and each CRIMCOORD value is written to Dt

against the corresponding example.

[vii] CRIMCOORD value corresponding to the each level of X is written and

maintained in a separate file. When predicting, the level of X of an unclas-

sified observation is replaced by the corresponding CRIMCOORD, which

is stored in the file.

[viii] Repeat steps [i] - [vii] to construct CRIMCOORD for each qualitative

feature at node t.

[2] After step 1, Dt contains quantitative features and CRIMCOORD for each

qualitative feature. Partition Dt based on the class label: This step can easily

be implemented by reading K example blocks into the memory one at a time

and then writing the examples belonging to each class into a separate file,

CLASS_FILEi, where i = 1, 2, . . . , C, in the disk.

[3] Read each CLASS_FILEi, where i = 1, 2, . . . , C into the memory and compute

covariance matrix for each class. We take the most general case by assuming

92 CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS

the CLASS_FILEi is too large to fit into the memory. Therefore, read K example

blocks one at a time into the memory and at each time compute; x̄ik, the mean

vector of the kth block of the ith class:

x̄ik =

∑ni
k
j=1 xikj
nik

and

Wi
k =

ni
k∑

j=1

(xikj − x̄ik)(x
i
kj − x̄ik)

T

where xikj is jth feature vector of ith response class of the kth block and nik is the

number of examples in the kth block in the ith class. Once all K blocks have

been read, compute the quantities:

x̄i =
K∑
k=1

nikx̄
i
k

ni
, where ni =

K∑
k=1

nik

To give

Bi =
K∑
k=1

nik(x̄
i
k − x̄i)(x̄ik − x̄i)T

Wi =
K∑
k=1

Wi
k

The covariance matrix for ith class can be written:

COV(X i) =
Ti

(n− 1)

where, Ti =
K∑
k=1

ni
k∑

j=1

(xikj − x̄i)(xikj − x̄i)T and n =
C∑
i=1

ni

It can be shown that Ti = Bi + Wi (Johnson & Wichern, 2002) and hence, the

covariance matrix of the complete example set of class i can be reproduced as,

Cov(X i) =
(Bi + Wi)

(n− 1)

[4] Perform eigen analysis on each covariance matrix, COV(X i).

CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS 93

[5] For each eigenvector, construct a Householder matrix, Hij
t .

[6] Transform Dt based on each Householder matrix and construct transformed

spaces. The transformed example set, ijth transformed space, using Hij
t , is

defined by D̂ij
t = DtH

ij
t .

Since the entire Dt cannot be read into the memory, it is proposed that again

reading blockwise and let Dbt be the bth block of Dt. Once Dbt read into the

memory, the transformed values, D̂ij
bt can be obtained by DbtH

ij
t and D̂ij

bt is ap-

pended into a separate file, TRANSDATA_FILEij. After the bth block is processed,

TRANSDATA_FILEij contains, D̂ij
t , the entire transformed example set at node t

corresponding to Hij
t .

[7] In order to perform axis-parallel search, apply the split finding method of the

SPRINT algorithm on TRANSDATA_FILEij to find the best split in the ijth trans-

formed space. Delete TRANSDATA_FILEij once the best split is found. Repeat

steps 5 to 6, for each Hij
t to find the best split at node t and apply the SPRINT

splitting mechanism to partition the node based on the best split found.

[8] At each non-terminal node, perform steps 1-7 repeatedly until one of stopping

criteria specified in Section 3.5 is met.

The major drawback of the proposed algorithm is that it requires frequent access to

the disk for writing and reading. For example, feature lists have to be read from the

disk during splitting and have to be write at the creation of new nodes. Furthermore,

new set of files have to be created at each node. For example, Ct (the number of

classes at the node t) number of files are needed to store the examples belonging to

each class at node t whereas feature lists are created at the creation of new nodes.

The top-down DT induction algorithm builds a tree in two steps. First, it builds

the tree until each node becomes homogeneous (or near homogeneous) with respect

94 CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS

to a particular class and second, it prunes the tree upward to reduce over-fitting. In

the second stage, no matter how large the dataset is, it is reasonable to assume that

the induced tree can be loaded into the memory for pruning. Therefore, in this work

the tree pruning for massive example sets is not discussed.

4.1.2 Parallel computing architecture

Serial computing has been shown to be inefficient for solving large scale data mining

problems Kufrin (1997); V, Grama, Gupta, and Karypis (1994). Therefore, to avoid

this situation, some efforts were made to utilize parallel computing architecture to

handle challenging data mining applications including decision tree algorithms (Ben-

Haim & Tom-Tov, 2010; Joshi, Karypis, & Kumar, 1998). In parallel computing,

multiple processors are used to solve the computational task. Figure 4.1 illustrates

how a problem is solved in a parallel computing environment. Initially the prob-

Figure 4.1: Schematic of Parallel computing Architecture.

CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS 95

lem is divided into disjoint parts that can be solved simultaneously. Each part is

then processed by an individual processor (slave processor) simultaneously. Parallel

computing architecture can be classified in following ways:

[1] Single Instruction, Multiple Data (SIMD)

All processing units execute the same instruction at any given clock cycle and

each processing unit can operate on a different data element.

[2] Multiple Instruction, Single Data (MISD)

Each processing unit operates on the data independently via separate instruc-

tion streams and a single data stream is fed into multiple processing units.

[3] Multiple Instruction, Multiple Data (MIMD)

Every processor can execute a different instruction stream and every processor

can work with a different data stream.

Further discussion of parallel computing architecture can be found in V et al.

(1994). The following section briefly introduces the early attempts of DT construction

in a parallel computing environment. The main processor is called a master processor

and subordinate processors are called slave processors or processors. The master

processor maintains the status of all the slave processors in the system and distributes

the work to all the slave processors. Moreover, the operating system runs only on the

master processor.

4.1.3 Parallel implementation of decision tree algorithms

Amado, Gama, and Silva (2001) present three strategies for implementing parallel

decision trees, namely: (a) data parallelism, (b) task parallelism, and (c) hybrid

parallelism. In data parallelism, the example set is partitioned into disjoint subsets

and each subset is assigned to a separate processor. The partitioning of the example

96 CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS

set is done in two ways: (a) horizontal partitioning, and (b) vertical partitioning.

In the horizontal partitioning the training set is partitioned evenly into R disjoint

subsets, where R is equal to the number of processors, and each subset is assigned to

one of the processors. Possible splits at each processor are sent to other processors

for evaluation and processors then communicate to find the best split at the node.

However, this method can suffer from high communication load specially for the

nodes having less number of examples. In the vertical partitioning, the example set

is partitioned on features. Each feature or a set of features is assigned to a processor

and the processor-level best split is found for each processor. The best split for the

node is then found by communicating the processor-level best splits among processors.

This strategy may suffer from load load balancing as nodes responsible for continuous

features have higher work load than the nodes working on qualitative features.

In the task parallelism, the entire dataset is assigned to a single processor to

find the best split at the root node. From there onwards, each partition (or node)

of the example set is assigned to a separate processor until the number of nodes

equal the number of processors. When this happens, each processor proceeds with

the construction of the decision sub-trees rooted at the node of its assignment. The

major drawback of this strategy is unequal load balancing in processors. It is common

in some problems for terminal nodes to appear in the early stages of the tree and

that the processors responsible for these nodes remain idle afterwards. In all of

these strategies, basically the example set is partitioned and distributed among the

processors. At each processor, the same set of instructions are carried out. Therefore,

each of these strategies can be implemented under Single Instruction Multiple Data

architecture.

Hybrid parallelism combines both data and task parallelism strategies to overcome

the drawbacks of each strategy. For the nodes having large number of examples are

split according to the data parallelism while the nodes having fewer examples are

CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS 97

processed according to the task parallelism. More specifically, a node having fewer

examples is assigned to a processor to build a sub tree rooted at the node.

Various algorithms have been proposed to construct decision trees in parallel com-

puting architecture using above three strategies. Examples for horizontal data parti-

tioning parallel algorithms can be found in: Amado et al. (2001); Joshi et al. (1998);

Kufrin (1997); Shafer et al. (1996); Srivastava A et al. (2002); Yıldız and Dikmen

(2007). The vertical data partitioning strategy is used by Yıldız and Dikmen (2007)

while DTs based on task parallelism can be found in Srivastava A et al. (2002); Yıldız

and Dikmen (2007). Robertson et al. (2014); Sreenivas, Alsabti, and Ranka (1999);

Srivastava A et al. (2002) use hybrid parallelism, the combination of task and data

parallelism.

In parallelising HHCART, we follow the SPRINT algorithm given in Shafer et

al. (1996). Shafer et al. (1996) show that SPRINT scales well with the size of the

example set and Joshi et al. (1998) state that the parallel formulation of continuous

features in SPRINT is efficient. HHCART can handle both qualitative and quanti-

tative features in the same oblique split. However, HHCART converts all qualitative

features into quantitative features (CRIMCOORDS) therefore, it actually works only

with quantitative features. Hence, HHCART is parallelised using SPRINT parallel

algorithm which is explained below.

The parallel version of SPRINT (Shafer et al., 1996) uses a horizontal data par-

titioning approach where it assumes that each processor has its own private memory

and disk. Initially, the training example set is distributed evenly over slave proces-

sors. Each processor then constructs a local feature list (feature lists are introduced

in Subsection 4.1.1) for each feature. The key point is that SPRINT requires each

local feature list to be a contiguous sorted section of the entire (global) feature list.

That is, the first processor has the lowest values of the feature, the second has the

next set of lower values of the feature and the last processor contains the highest

98 CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS

values of the feature. For this, SPRINT uses the parallel sorting algorithm given in

DeWitt, Naughton, and Schneider (1991). As an example, the distributed feature

lists for the features given in Table 4.2, over two processors, are given in Table 4.5

and Table 4.6. Each processor has a contiguous sorted section of each feature list.

Table 4.5: Segments of X1 and X2 features assigned to processor P1.

P1 Processor

Example No. Y X1 Example No. Y X2
8 2 4 9 1 1
2 2 6 1 1 5
3 2 7 3 2 7
5 1 9 2 2 8
1 1 10 4 1 10

Table 4.6: Segments of X1 and X2 features assigned to processor P2.

P2 Processor

Example No. Y X1 Example No. Y X2
7 2 11 8 2 10
6 1 12 5 1 12

10 1 14 6 1 14
4 1 15 10 1 15
9 1 15 7 2 16

Also, the processor level frequency tables (frequency tables are introduced in Sub-

section 4.1.1) are constructed for each feature list at the time of the parallel sorting.

It is important to note that, for each feature, the frequencies in the table reflect the

global count rather than the local count. This is accomplished by creating the fre-

quency table when the node is created. As an example, the initial frequency table

for feature X1 in processor P1 is given in Table 4.7. In each processor, the feature

lists are read and the frequency tables are updated accordingly as in the SPRINT

serial version. At each update of each frequency table the corresponding impurity is

CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS 99

Table 4.7: Initial frequency table of feature X1 at processor P1.

Y=1 Y=2

X1 ≤ 4 0 1
X1 > 4 6 3

computed. At the end of the reading, each processor has the local best split for each

feature and they are communicated among processors to find the best split at the

node. Once the best split is found, the splitting is done in the following way. Each

processor is responsible for splitting its feature lists. The feature giving the best split

(say winning-feature) is split first and at the same time the information (example

number and the node) needed to create the hash table (see Table 4.4) is gathered.

Assume that the best split occurs at X1 = 8. The information collected to construct

the hash table is given in Table 4.8a and Table 4.8b where node 2 and 3 denotes the

left and right child nodes respectively. Thus, after splitting winning-feature, the in-

formation is exchanged with all other processors. After the exchange, each processor

constructs its own full hash table (see Table 4.9) and then uses it to partition the

remaining feature lists in the processor.

Table 4.8: Processor level information to construct the hash table.

(a) Information collected in processor P1.

Example No. Node

8 2
2 2
3 2
5 3
1 3

(b) Information collected in processor P2.

Example No. Node

7 3
6 3
10 3
4 3
9 3

In summary, most of parallel decision tree algorithms are based on the data par-

allelism approach. Moreover, most of the parallel algorithms construct axis-parallel

100 CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS

Table 4.9: Hash table for X1.

Example No. Node

8 2
2 2
3 2
5 3
1 3
7 3
6 3
10 3
4 3
9 3

decision trees. Since the search along each axis is independent of each other, axis-

parallel trees can easily be implemented in a parallel environment. To the best of

author’s knowledge, the information on oblique decision trees in parallel computing

environment is limited. In fact Cantu-Paz and Kamath (2003) state that the paral-

lelising existing oblique decision trees is difficult. However, Yıldız and Dikmen (2007)

parallelise the Linear Discriminant Tree of Yildiz and Alpaydin (2000), which con-

structs oblique DT. Cantu-Paz and Kamath (2003) refer to Cantu-Paz (2000) and

state that parallel decision trees based on evaluation algorithms can be implemented.

The common feature of DTs, whether the split is axis-parallel or oblique, is search for

the best split at a node independent of the other nodes. Hence, oblique decision tree

algorithms can be implemented in the task parallelism approach, where each node is

assigned to a processor. However, the data parallelism for oblique trees is difficult to

achieve as the split finding mechanism embedded in most algorithms require entire

example sets. In this regard, the HHCART methodology has an advantage as it can

be parallelised using task, data and hence, hybrid strategies.

CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS 101

4.1.3.1 Parallel implementation of HHCART

Though HHCART is designed to produce oblique splits, it uses axis-parallel splits

in a transformed space. Therefore, all the methods discussed in Section 4.1.3 can

be used to parallelise the HHCART algorithm including data and task parallelism,

which is a desirable characteristic of the HHCART approach. However, the task

parallelism procedure is obvious, the work load of each node is assigned to a

processor, thus it is not discussed in this thesis. The HHCART implementation

under data parallelism is discussed. The main focus of this section is to briefly

explain how HHCART can be implemented in a parallel environment. Therefore, the

other issues, for example load balancing and communication load, are not discussed.

Data parallism can be divided into two categories: (a) horizontal partitioning, and

(b) vertical partitioning. The following section describes one option of how HHCART

could assign work. Other choices exist which transform some or nearly all of the

master processor’s work to slave processors, which are briefly discussed in Section 4.2.

Vertical Partitioning

Case 1:

Resources Required:

[1] Cp2 number of processors.

[2] The memory capacity of the master processor should be large enough to hold

the entire dataset.

[3] The memory capacity of each slave processor should be large enough to hold

the entire set of feature values coming to the processor.

Work flow

At each non-terminal node, the master processor is responsible for:

102 CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS

[1] Calculating the impurity at the node.

[2] Converting qualitative features to quantitative features.

[3] Finding classes’ covariance matrices.

[4] Performing eigenanalysis on each covariance matrix.

[5] Constructing of Householder matrices using all the eigenvectors found in step

[4].

[6] Reflecting the example set using each Householder matrix. Each Householder

reflection creates p dimensional space so altogether there are Cp2 axes (or new

features) to search.

[7] Distributing each new feature (including with the class variable and impurity

at the node) to each processor to search for the best split.

[8] Receiving the best split found and impurity reduction from each processor.

[9] Comparing impurity reductions and selecting the best split for the node.

[10] Splitting the node based on the best split.

At each non-terminal node, each slave processor is responsible for:

[1] Receiving the feature which is sent by the master processor.

[2] Performing axis-parallel splits.

[3] Sending the best split found and the impurity reduction to the master processor.

If the number of processors is less than Cp2, then the work flow of case 1 can

be slightly modified to accomplish the task. Assume the number of processors is

R < Cp2. Multiple features can then be assigned to each processor and the processor

CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS 103

is responsible for finding the best split for those features coming to the node. The

fewer the number of processors the higher the number of features that can arrive at

each processor.

Horizontal partitioning

In horizontal partitioning, the example set is divided evenly into R number of blocks,

where R is the number of processors.

Resources Required:

[1] R number of processors.

[2] The memory capacity of the master processor should be enough to hold the

entire dataset.

[3] The memory capacity of each slave processor should be enough to hold the

feature values coming to the processor.

Work flow

At each non-terminal node, the master processor is responsible for:

[1] Calculating the impurity at the node.

[2] Converting qualitative features to quantitative features.

[3] Finding classes’ covariance matrices.

[4] Performing eigenanalysis on each covariance matrix.

[5] Constructing of Householder matrices on all eigenvectors found in step 4.

[6] Reflecting the example set using each Householder matrix.

[7] Partitioning each transformed example set into R blocks.

[8] Sending each block to each processor.

104 CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS

[9] Receiving the best split found and impurity after the split from each slave

processor.

[10] Calculating the impurity reduction for the best split for each feature.

[11] Comparing impurity reductions and selecting the best split for the node.

[12] Splitting the node based on the best split.

Each slave processor is responsible for:

[1] Receiving a block of the example set from the master processor.

[2] Searching for the best axis-parallel split while communicating other R proces-

sors. Here it is proposed to follow the mechanism used in the SPRINT parallel

algorithm (Shafer et al., 1996) to find the best split.

[3] Sending the best split found and the corresponding impurity to the master

processor.

4.2 Other possible work flow distributions

Other than options described above, some of the operations carried out at the master

processor level (in vertical and horizontal partition methods) can be parallelised in

many different ways. For example, instead of computing class covariance matrices at

the master processor, the example set belonging to each class can be sent to a slave

processor to compute the covariance matrix of that class and perform the eigenanal-

ysis. It is also possible to construct the Householder matrix for each eigenvector at

the same processor. Then all Householder matrices are sent to the master processor

to reflect the dataset before the transformed example sets sent to slave processors for

splitting.

CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS 105

Computation of CRIMCOORDs can also be assigned to slave processors. For each

qualitative feature, HHCART computes a CRIMCOORD. Therefore, each qualitative

feature can be assigned to a slave processor to compute its CRIMCOORD.

4.3 Discussion

This chapter presents several modified versions of HHCART for massive data classi-

fication problems. Two problems are considered: (a) how to induce DTs on example

sets which are too large to fit into the memory, and (b) how to deal with the excessive

induction time in the face of massive example sets. Various attempts have been pro-

posed in the literature and most methods are designed for axis-parallel DTs. Since

HHCART uses axis-parallel splits in a transformed space, the available methods can

easily be applied to HHCART to handle massive example sets. For the problem given

in (a), we present the modified serial implementation of the HHCART algorithm as

a solution to example sets which are too large to fit into the memory. Problem (b)

is solved in the parallel computing environment. HHCART is an easily parallelisable

algorithm, which leads to the proposal for several implementations of HHCART to

work under different (based on resources) parallel computing environments. However,

implementation of the proposed versions of HHCART is left for future work.

106 CHAPTER 4. HHCART WITH MASSIVE EXAMPLE SETS

Chapter 5

Alternative vectors for the
Householder reflection

As presented in Chapter 3, the HHCART algorithm captures the orientation of a

class by the principal eigenvector d1 of that class. The proposed heuristic argument

assumes that d1 is parallel to the separating hyperplane of that class. Hence, the

HHCART algorithm makes d1 parallel to e1 through a Householder reflection and

an axis-parallel search is performed in the reflected space to find the best separating

hyperplane. This chapter describes how HHCART can be used with other vectors to

improve the classification results. Two cases are considered. In the first case, a normal

vector to the angular bisector, introduced in the GDT algorithm (Manwani & Sastry,

2012), is used to construct the Householder reflection matrix. In the second case, Class

Representative Vectors are introduced and used to construct Householder reflection

matrices. For both cases, empirical evidence is provided to show the effectiveness of

the Householder reflection.

The GDT classifier has a tuning parameter which should be estimated before tree

building. Two estimation procedures are considered, namely: (a) two-stage ordinary

CV, and (b) nested CV. The effect of these procedures on the accuracy and the tree

size is thoroughly studied and recommendations are given based on the empirical

evidence obtained.

107

108 CHAPTER 5. ALTERNATIVE VECTORS

5.1 Application of the Householder reflection to

GDT

In this section, the methodological development of GDT is briefly explained. The

interested reader may refer to Manwani and Sastry (2012) for a detailed description.

For a two class problem, GDT finds a class separating hyperplane by means of an

angular bisector of two hyperplanes called clustering hyperplanes. The computation

of the angular bisector is given in the following section. As the main focus of this

section is to obtain a separating hyperplane of the two classes, the discussion is limited

to explain the method of finding the class separating hyperplane adopted in GDT.

The complete tree growing algorithm of GDT is not explained and can be found in

Manwani and Sastry (2012).

5.1.1 Finding the class separating hyperplane of the GDT

algorithm

Here the method of obtaining the angular bisector of GDT (Manwani & Sastry, 2012)

is briefly explained. The GDT algorithm is specifically designed to find separating

hyperplanes for two-class problems. However, when dealing with a multi-class prob-

lem, GDT converts it into a two-class problem by forming two super-classes1. GDT

tries to find two clustering hyperplanes, each one closest to examples in one class and

furthest away from examples in the other class. Let wT
1 x + b1 = 0 be the clustering

hyperplane of one class denoted by C+ and wT
2 x+b2 = 0 be the clustering hyperplane

of the other class denoted by C−. Here distance is refereed to the Euclidean distance.

The distance of a set of points to a hyperplane is defined as an average of squared

Euclidean distances. The average squared Euclidean distances of points of class C+

1A supper-class is a class which contains one or more original classes.

CHAPTER 5. ALTERNATIVE VECTORS 109

from a hyperplane wTx + b = 0 is:

D+(w, b) =
1

n+‖w‖2 ẃTAẃ (5.1.1)

where ẃ = [wT b]T , A(p+1)×(p+1) =
∑

xi∈C+
x́ix́i

T , x́ = [x 1]T and n+ = |C+|.

Similarly, the average squared distances of points of class C− from the hyperplane

wTx + b = 0 is given by:

D−(w, b) =
1

n−‖w‖2 ẃTBẃ (5.1.2)

where ẃ = [wT b]T , B(p+1)×(p+1) =
∑

xi∈C− x́ix́i
T , x́ = [x 1]T and n− = |C−|.

The algorithm tries to find a clustering hyperplane by maximising one of D+(w, b)

or D−(w, b) while minimising the other. Since both criteria cannot be satisfied to-

gether, the ratio between D+(w, b) and D−(w, b) is maximised (or minimised). Hence,

the problem can be re-expressed as:

ẃ1 = argmaxẃ 6=0

ẃTBẃ

ẃTAẃ
(5.1.3)

where ẃ1 = [wT
1 b1]T is the clustering hyperplane of class C+ and similarly:

ẃ2 = argminẃ 6=0

ẃTBẃ

ẃTAẃ
(5.1.4)

where ẃ2 = [wT
2 b2]T is the clustering hyperplane of class C−.

If A is in full rank, then the solutions to problems (5.1.3) and (5.1.4) are the solutions

of the generalised eigenvalue problem given by:

Bẃ = λAẃ. (5.1.5)

Specifically, the solutions ẃ1 and ẃ2 are eigenvectors corresponding to the maximum

and minimum eigenvalues of A−1B respectively. If A suffers from rank deficiency,

particularly for small samples, then the computation of A−1 becomes complex and

difficult (Chen, Liao, Ko, Lin, & Yu, 2000). However, Manwani and Sastry (2012) use

110 CHAPTER 5. ALTERNATIVE VECTORS

the method given in Chen et al. (2000), which is based on the original work of Liu,

Cheng, Yang, and Liu (1992), to find ẃ1 and ẃ2. The following section summarises

the development of the method.

5.1.2 Computing ẃ1 when matrix A suffers from rank defi-

ciency

Liu et al. (1992) show that equation (5.1.3) is functionally equivalent to:

ẃ1 = argmaxẃ 6=0

ẃTBẃ

ẃTAẃ + ẃTBẃ
= argmaxẃ 6=0

ẃTBẃ

ẃT (A+B)ẃ
. (5.1.6)

Hence, instead of solving equation (5.1.3), Liu et al. (1992) solve problem (5.1.6)

and ẃ1 will be the eigenvector corresponding to the maximum eigenvalue of

(A+B)−1B. However, if (A+B) suffers from rank deficiency Liu et al. (1992) solve the

problem in the complementary subspace of the null space of (A+B), that is, in the

range space of (A+B). Chen et al. (2000) identify a major drawback in the method

suggested by Liu et al. (1992) as follows:

Let F (ẃ) =
ẃTBẃ

ẃTAẃ + ẃTBẃ
. (5.1.7)

Let the ideal solution to problem (5.1.6) be given by the vector ws. That is, when

ẃ = ws, F (ws) = 1 (the maximum value) while maximising wT
s Bws and minimising

wT
s Aws. However, there may be an arbitrary vector q which will also give F (q) = 1,

the maximum value of F (q), if qTAq = 0 and qTBq 6= 0. That is, q minimises qTAq

but may not maximise qTBq. Under this circumstance, q will not be the ideal solution

for problem (5.1.6). Furthermore, the former case ws will not be distinguished with

the latter case q as in both cases F (.) attains to its maximum.

Hence, if A suffers from rank deficiency, Chen et al. (2000) project B onto the

null space of A, denoted by N (A), and find the eigenvector corresponding to the

CHAPTER 5. ALTERNATIVE VECTORS 111

largest eigenvalue of the projected B as a solution to problem (5.1.6). However, it

is noticed that this procedure fails when N (A) ⊆ N (B). If N (A) ⊆ N (B), then

projecting B onto the N (A) results in zero and hence problem (5.1.6) suffers from

the zero divided by zero problem. Hence, the following procedure is proposed by the

author to find a clustering hyperplane when N (A) ⊆ N (B) is true.

Let R(A) be the range space of A. Since A is a symmetric matrix, ẃ = u1 + v1

where u1 ∈ R(A) and v1 ∈ N (A). Then ẃTBẃ = (u1 + v1)TB(u1 + v1) = u1
TBu1

since v1
TB = Bv1 = 0 as v1 ∈ N (A) ⊆ N (B). Similarly, it can be shown that

ẃTAẃ = u1
TAu1. Therefore:

ẃTBẃ

ẃTAẃ
=

u1
TBu1

u1
TAu1

when N (A) ⊆ N (B). (5.1.8)

Hence, according to problem (5.1.3):

wRA
= argmaxẃ 6=0

ẃTBẃ

ẃTAẃ
= argmaxu1 6=0

u1
TBu1

u1
TAu1

(5.1.9)

where values of ẃ giving ẃTAẃ = 0 are avoided.

Similarly for problem (5.1.4), ẃ = u2 + v2 where u2 ∈ R(B) and v2 ∈ N (B) and

the solution can be written as:

wRB
= argmaxẃ 6=0

ẃTAẃ

ẃTBẃ
= argmaxu2 6=0

u2
TAu2

u2
TBu2

when N (B) ⊆ N (A)

(5.1.10)

where values of ẃ giving ẃTBẃ = 0 are avoided .

In summary, problem (5.1.3) is solved as follows:

[1] If A is in full rank, ẃ1 will be the eigenvector corresponding to the maximum

eigenvalue of A−1B.

[2] if A is not in full rank, but N (A) 6⊆ N (B), then project B onto N (A) and ẃ1

will be the eigenvector corresponding to the maximum eigenvalue of projected

B. These two steps are discussed in Manwani and Sastry (2012).

112 CHAPTER 5. ALTERNATIVE VECTORS

[3] If A is not in full rank and N (A) ⊆ N (B), project A and B onto R(A) (say

ARA
and BRB

respectively) and, according to problem (5.1.9), wRA
will be the

eigenvector corresponding to the maximum eigenvalue of A−1
RA

BRA
.

The same procedure is used to solve problem (5.1.4) by replacing matrices suitably.

The situation listed in case [3] is illustrated below using a hypothetical set of

examples given in Figure 5.1. Assume a two dimensional classification problem having

the following example set and the scatter plot of the examples is given in Figure 5.1.

Table 5.1: A hypothetical example set.

Y X1 X2

1 1 1
1 2 2
1 3 3
1 4 4
1 5 5
2 6 6
2 7 7
2 8 8
2 9 9

CHAPTER 5. ALTERNATIVE VECTORS 113

0 2 4 6 8 10
1

2

3

4

5

6

7

8

9

1
2

Figure 5.1: Scatter plot of the hypothetical data.

The computed A and B matrices are as follows:

A =


0.1145 0.1145 0.0382

0.1145 0.1145 0.0382

0.0382 0.0382 0.0153


and

B =


0.5800 0.5800 0.0867

0.5800 0.5800 0.0867

0.0867 0.0867 0.0133


The null spaces of both the matrices are the same: N (A) = N (B) =

[0.7071,−0.70710]T and hence, the projected B onto the N (A) becomes zero. There-

fore, the clustering hyperplane for the class 1 examples is found by projecting B and

A onto R(A). Similarly, the clustering hyperplane for class 2 examples is found by

projecting B and A onto R(B). Both clustering hyperplanes found are shown in

Figure 5.2.

Once the clustering hyperplanes of the classes are found, the angular bisectors

are computed if the clustering hyperplanes are not parallel. There are two angular

114 CHAPTER 5. ALTERNATIVE VECTORS

0 2 4 6 8 10

1

2

3

4

5

6

7

8

1
2

Figure 5.2: Class 1 and Class 2 clustering hyperplanes.

bisectors and one of the angular bisectors is chosen as the separating hyperplane based

on the evaluation of an impurity function. If the clustering hyperplanes are parallel

to each other, then the class separating hyperplane is parallel and halfway between

them. The following proposed methodology aims to improve the classification results

of GDT using the Householder reflection.

Let the normal vector of the selected hyperplane be ź. Then the Householder

reflection defined in equation (3.3.1) is used to make ź parallel to one of the feature

axes so that axis-parallel splits can be searched in the reflected space. With this

reflection, a new search space is constructed and oblique splits can be searched with

minimal cost (using axis-parallel splits). Up to the computation of ź, the multi-class

problem is considered as a two-class problem. However, when searching for the best

axis-parallel split in the reflected space, the proposed algorithm uses the full set of

classes. The algorithm is called HHGDT (HouseHolder Geometric Decision Tree)

and it works as follows: At each non-terminal node t, classes are grouped into two

super-classes as suggested in Manwani and Sastry (2012). Then for each class, a

clustering hyperplane is found and the angular bisectors are computed. The best

CHAPTER 5. ALTERNATIVE VECTORS 115

angular bisector is chosen using an impurity function. The normal vector of the

chosen angular bisector (say ź) is used to construct the Householder matrix which

makes ź parallel to the e1 axis. The example set available at node t is then reflected

using the Householder matrix and axis-parallel splits are searched in the reflected

space. The best axis-parallel split is then chosen by evaluating an impurity function.

All the classes available at the node are considered when evaluating the impurity

function. The hyperplane found divides node t into two child nodes. The algorithm

is recursively applied to all child nodes until the misclassification rate, (MisRate), at

the node is not greater than a user specified threshold ε. The optimal value of ε is

estimated using a separate cross validation procedure (Manwani & Sastry, 2012). An

overview of the split finding method of the HHGDT algorithm at node t is given in

Algorithm 7.

5.1.3 GDT vs HHGDT

In this section, two illustrations are given to show the effectiveness of the Householder

reflection to improve the classification result of the GDT algorithm. Two artificially

generated two dimensional example sets are classified using GDT and HHGDT. In

the first illustration a two-class problem is considered and in the second illustration

a five-class problem is considered.

[1] Consider the two dimensional two-class classification problem given in

Figure 5.3a. Class 2 (in black) is either side of Class 1 (in red). Figure 5.3b

shows the clustering hyperplanes found at the root node by GDT. In the figure,

the clustering hyperplane for class 2, depicted by the solid line, goes through

the three data clouds. the dashed line depicts the clustering hyperplane for

class 1 examples. The split at the root node is the selected angular bisector of

these two hyperplanes and the full partition structure produced by GDT (lines

116 CHAPTER 5. ALTERNATIVE VECTORS

Data: Input: Examples at node t, Dt

initialisation;
ht = empty;
Construct A and B matrices.
if A is full rank then

ẃ1 = eigenvector corresponding to the maximum eigenvalue of A−1B;
else if N (A) 6⊆ N (B) then

BNA
= projection of B onto N (A); (see Manwani and Sastry (2012))

ẃ1 = eigenvector corresponding to the maximum eigenvalue of BNA
;

else if N (A) ⊆ N (B) then
Let Qr(A) be the matrix whose columns are an orthonormal basis of

R(A);

BRA
= QT

r(A)BQr(A);

ARA
= QT

r(A)AQr(A);
wRA

= eigenvector corresponding to the maximum eigenvalue of
A−1
RA

BRA
;

ẃ1 = Qr(A)wRA
;

end

end

end
if B is full rank then

ẃ2 = eigenvector corresponding to the maximum eigenvalue of B−1A;
else if N (B) 6⊆ N (A) then

ANB
= projection of A onto N (B); (see Manwani and Sastry (2012))

ẃ2 = eigenvector corresponding to the maximum eigenvalue of ANB
;

else if N (B) ⊆ N (A) then
Let Qr(B) be the matrix whose columns are an orthonormal basis of

R(B);

ARB
= QT

r(B)AQr(B);

BRB
= QT

r(B)BQr(B);
wRB

= eigenvector corresponding to the maximum eigenvalue of
B−1
RB

ARB
;

ẃ2 = Qr(B)wRB
;

end

end

end
ź = the normal vector of the selected angular bisector of ẃ1 and ẃ2

Call Algorithm 8 with d = ź MinParent = 2, MisRate = ε and τ = 0

Algorithm 7: Overview of HHGDT algorithm at a single node.

CHAPTER 5. ALTERNATIVE VECTORS 117

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X1

X
2

C1

C2

(a) Scatter plot of two classes.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X1

X
2

C1

C2

C2

C1

(b) Clustering hyperplanes of GDT at the root
node. Solid line-clustring hyperplane of the
black class, dashed line: clustering hyperplane
for the red class.

Figure 5.3: GDT in two-class classification.

118 CHAPTER 5. ALTERNATIVE VECTORS

Data: Input: Examples at node t, Dt; permissible misclassification rate at a
node, MisRate; direction vector for the Householder matrix, d, and τ .

initialization;
Define Nt = Number of examples in Dt;
Define mpt = misclassification rate at node t;
ht = empty;
if (Nt > Minparent) and (MisRate < mpt) then

if ‖e1 − d‖ ≤ τ then
Ht = I, the Identity matrix;

else
Construct the Householder matrix Ht using d as shown in
equation (3.3.1);

end

Reflect Dt : D̂t = DtHt;
Find the best axis-parallel hyperplane split, called ht;
Return ht

end

Algorithm 8: Basic algorithm of HHCART at a single node.

in green) is given in Figure 5.4. The figure shows that although the classes are

classified accurately, the tree size (or the number of partitions) is unnecessarily

large. However, the resultant partition structure of the HHGDT algorithm for

the same example set is given in Figure 5.5. HHGDT makes the normal vector

of the angular bisector parallel to e1 using Householder reflection. This creates

a new two dimensional space and the axis-parallel splits in the reflected space

enables better splits to be found and hence, simplifies the tree.

[2] In the second illustration, a two dimensional five-class classification problem is

considered. The scatter plot of the example set is given in Figure 5.6.

The GDT algorithm first groups five classes into two super-classes: Class 1 con-

tains class A examples while class 2 contains the rest of the examples belonging to

the other classes. Then the clustering hyperplane for the two super-classes is found

and thereby computes the angular bisectors. The best angular bisector is selected as

CHAPTER 5. ALTERNATIVE VECTORS 119

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

Figure 5.4: The final partition structure of GDT in solid green lines.

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

C2

C1

Figure 5.5: The final partition structure of HHGDT in solid black lines.

120 CHAPTER 5. ALTERNATIVE VECTORS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

A
B
C
D
E

Figure 5.6: Scatter plot of examples belonging to five classes.

the first split and is shown in Figure 5.7. The HHGDT algorithm takes the normal

vector of this angular bisector and makes it parallel to e1 using the Householder re-

flection. The reflected dataset is given in Figure 5.8a. Then the axis-parallel splits

are searched along the axes of the reflected space and the best split found, in the

original space, is given in Figure 5.8b.

The final unpruned partition structures of GDT and HHGDT are given in Fig-

ure 5.9 and Figure 5.10 respectively. It is clearly evident that HHGDT produces a

more simplified tree than GDT for this dataset. The main reason for this is that the

ability of HHGDT to expand the search space and hence, there is an opportunity to

search for a better split with a minimal cost.

5.2 Experiments on real life datasets

The GDT algorithm developed by the author is somewhat different from the original

algorithm as it contains a new procedure of finding clustering hyperplanes under the

CHAPTER 5. ALTERNATIVE VECTORS 121

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

A
B
C
D
E

Figure 5.7: Selected angular bisector at the root node.

−1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TX1

T
X

2

A

B

C

D

E

a

(a) Scatter plot of the reflected space.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

A

B

C

D

E

b

(b) Best split found (in the original space) by
the HHGDT.

Figure 5.8: HHGDT in multiclass classification.

122 CHAPTER 5. ALTERNATIVE VECTORS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

A
B
C
D
E

Figure 5.9: Final unpruned partition structure of GDT.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

A
B
C
D
E

Figure 5.10: Final unpruned partition structure of HHGDT.

CHAPTER 5. ALTERNATIVE VECTORS 123

rank deficiency of matrices. GDT has one parameter, allowable node misclassifica-

tion rate (ε), to determine whether the node is a leaf node. Manwani and Sastry

(2012) use a two-stage ordinary CV procedure to estimate ε, in which, for each ex-

ample set, ε is estimated using a 10-fold cross validation (CV) (first-stage) and the

estimation of classification accuracy and tree size is done using another 10, 10-fold

CVs (second-stage). That is, the estimation of ε is done separately from the second

10-fold CV procedure which is used to estimate the accuracy. This may lead to an

overly optimistic parameter estimate of ε because of the following reason.

Consider a 10-fold CV partition set. At each time, nine folds are used to construct

the tree while the other fold is kept for testing. However, the testing fold is not

a purely independent, because the entire example set, including the examples in

the current test set, has been used when estimating ε prior to the tree building

process. This may lead to an optimistic result when using the test set. Therefore, it

is worthwhile to investigate the performances of the Nested CV procedure which

is specifically designed to estimate parameters when accuracy is being estimated. The

procedure of nested CV is given in Appendix B.

Thus, two sets of experiments are conducted. In the first experiment, the perfor-

mances are compared using the results obtained from two-stage ordinary CV. That

is, as suggested by the authors (Manwani & Sastry, 2012), a separate 10-fold ordinary

CV is run prior to the tree building to determine the optimal misclassification rate,

εTSOCV . For each example set, the accuracy is examined by varying the misclassi-

fication rate from 0.05 to 0.4 with the step size of 0.01. However, the method of

choosing the correct value for εTSOCV is not specifically presented by Manwani and

Sastry (2012). Therefore, in the first experiment, the misclassification rate which

produces the highest accuracy with the lowest tree size is chosen as the εTSOCV . The

estimated εTSOCV is then used in the second CV to estimate the average accuracy.

In the second experiment, the nested CV procedure is used to determine the

124 CHAPTER 5. ALTERNATIVE VECTORS

optimal misclassification rate, εNST . Here the misclassification rate which produces

the highest accuracy with the lowest tree size is chosen.

The same procedure is applied to determine the misclassification rate of HHGDT.

For both algorithms, the Gini Diversity Index is used to identify the best splits. In

the tree building, each method is run on the same data partitions constructed under

the cross-validation sampling. Since the SHUT example set comes with a separate

training and a test set, the CV procedure is not performed. Instead, GDT and

HHGDT are trained on the training set and tested on the test set. Hence, the results

for the SHUT example set do not contain the standard error. Moreover, in both

algorithms ε is set to 0 for the SHUT example set because the author notices that

as ε increases from 0, the minority classes tend to disappear from the tree. More

specifically, the SHUT example set has a highly imbalanced class distribution (the

class distributions is given in Table 3.3) in which class 7 has only two examples and

GDT fails to produce a terminal node for this class when ε is set to 0.01.

5.2.1 Results of two-stage ordinary CV

Results of ten, 10-fold two-stage ordinary CV experiments are reported in Table 5.2

along with respective standard deviations.

Manwani and Sastry (2012) consider the intuitive confidence interval for the ac-

curacy to be one standard deviation on either side of the estimated accuracy. If the

confidence intervals of the accuracy of a problem for the two algorithms do not over-

lap, it can be concluded that the algorithm having the higher classification accuracy

is significantly better than the other, say the 1-standard deviation rule (1-SD rule).

According to the above results, it can be shown that the average size of the tree

of HHGDT is significantly smaller than that of GDT for all the datasets except for

BS, BNK, WINE, HRT, SUR and PIND. A substantial reduction can be seen in the

CHAPTER 5. ALTERNATIVE VECTORS 125

Table 5.2: Results of two-stage ordinary CV of HHGDT and GDT methods.

Dataset DT Avg. Acc. Avg. Size Dataset DT Avg. Acc. Avg. Size

BS GDT 91.8± 0.8 20.2± 4.1 PIND GDT 76.6± 0.5 4.4± 1.3
HHGDT 91.9± 1.0 15.4± 1.0 HHGDT 75.1± 1.1 8.21± 0.8

BH GDT 82.2± 0.9 33.2± 1.6 WINE GDT 95.8± 1.0 3.6± 0.3
HHGDT 83.3± 1.3 9.5± 1.1 HHGDT 95.1± 1.0 3.8± 0.2

BC GDT 96.3± 0.4 11.3± 0.6 SUR GDT 73.8± 1.3 6.9± 0.7
HHGDT 97.2± 0.3 2.1± 0.2 HHGDT 73.2± 1.3 5.2± 0.7

BUPA GDT 67.8± 1.4 22.19± 1.2 HRT GDT 82.3± 0.8 6.9± 1.4
HHGDT 67.9± 1.9 10.9± 1.3 HHGDT 84.3± 0.9 2± 0

GLS GDT 58.4± 3.0 45.3± 2.5 LET GDT 84.8± 0.2 2480.5± 19.0
HHGDT 67.4± 2.3 11.3± 1.1 HHGDT 85.3± 0.2 1400.6± 11.3

BNK GDT 97.6± 0.03 2± 0 SHUT GDT 99.75 187
HHGDT 98.2± 0.1 2± 0 HHGDT 99.95 36

SEED GDT 93.3± 1.7 6.6± 1.2 CLI GDT 93.8± 0.6 4.5± 0.4
HHGDT 94.0± 1.4 4.6± 0.5 HHGDT 94.6± 0.6 2.1± 0.1

SHUT example set. However, for PIND the tree size of HHGDT is significantly larger

than that of GDT. HHGDT produces significantly better classification accuracies for

BC, BNK, GLS, SHUT and LET. For the other data sets, there are no significant dif-

ferences observed between accuracies of HHGDT and GDT. Therefore, the empirical

results show that HHGDT outperforms GDT either in terms of accuracy or tree size

for most of the datasets.

5.2.2 Results of nested CV

Table 5.3 shows the results of ten, 10-fold nested CV experiments along with respec-

tive standard deviations. The SHUT example set is not analysed as the only possible

value for ε is 0.

The accuracies of the nested CV experiment are similar to that of the two-stage

ordinary CV for the example sets. The first stage of the two-stage ordinary CV

procedure uses the entire example set to estimate the optimal value, εTSOCV . In the

second stage, using the same example set that was used in the first stage, another

CV is carried out with εTSOCV to estimate the accuracy. Therefore, the accuracy of

126 CHAPTER 5. ALTERNATIVE VECTORS

Table 5.3: Results of nested CV of HHGDT and GDT methods.

Dataset DT Avg. Acc. Avg. Size Dataset DT Avg. Acc. Avg. Size

BS GDT 91.8± 0.6 24.7± 3.7 PIND GDT 76.5± 0.8 6.7± 2.9
HHGDT 92.2± 1.1 17.6± 0.7 HHGDT 75.0± 1.0 10.0± 3.2

BH GDT 82.00± 0.9 32.4± 3.3 WINE GDT 95.9± 0.9 4.0± 0.4
HHGDT 84.0± 1.4 16.2± 2.3 HHGDT 94.8± 1.0 3.4± 0.2

BC GDT 96.3± 0.4 10.9± 0.8 SUR GDT 73.6± 1.2 8.1± 1.7
HHGDT 97.2± 0.3 2.1± 0.3 HHGDT 73.0± 1.3 5.1± 1.9

BUPA GDT 67.9± 2.0 21.01± 4.93 HRT GDT 82.1± 0.9 4.4± 1.8
HHGDT 66.5± 2.3 11.2± 2.4 HHGDT 84.4± 0.8 2.2± 0.3

GLS GDT 57.8± 2.4 47.03± 3.9 LET GDT 85.1± 0.8 2477.6± 21.6
HHGDT 67.18± 2.6 14.2± 2.4 HHGDT 85.4± 0.7 1581.6± 20.4

BNK GDT 97.6± 0.04 2.1± 0.2 CLI GDT 94.2± 0.5 5.1± 0.6
HHGDT 98.2± 0.1 2.0± 0.03 HHGDT 94.6± 0.7 2.6± 0.5

SEED GDT 93.9± 1.1 8.2± 1.3
HHGDT 93.8± 1.2 3.8± 0.4

two-stage ordinary CV may have an optimistic bias. On the other hand, nested CV

keeps the test set independent of the estimation of εNST and hence, the results should

be more realistic. But the observed results in Table 5.2 and Table 5.3 indicate that

they are not optimistic under two-stage ordinary CV when compared to the results

of nested CV, and thus needed further investigation. Note that this observation is

made using the results obtained by averaging the accuracies over ten CVs. In order

to get a precise view, the averages should be compared fold by fold. Hence, another

experiment is carried out. The steps and a detailed discussion of the experiment are

given below:

[1] Two example sets are selected (BS and BUPA) such that the classification task

of one (BS) is relatively easier than that of the other (BUPA). For the GDT

algorithm, the average accuracies of the BS and BUPA example sets are 91.8%

and 68.1% under the two-stage ordinary CV respectively. Hence, these two

example sets are selected to cover a wide range of degree of classifiability.

[2] Two-stage ordinary CV procedure is run on each example set as follows.

CHAPTER 5. ALTERNATIVE VECTORS 127

[a] A 10-fold CV is performed to estimate εTSOCV for each of the example sets

prior to the second stage of the two-stage ordinary CV. Figure 5.11 shows

the change in accuracy with respect to ε for each example set. The red

dot shows the highest accuracy while the point where the blue dash-line

meets ε axis gives εTSOCV . It can be seen that the accuracy fluctuates

(a) BS. (b) BUPA.

Figure 5.11: Variation of accuracy with ε for the two example sets.

between approximately 66− 68% when ε is in between 0.2 and 0.3 for the

BUPA example set and for the BS example set the accuracy varies between

89 − 91% when ε is in the range of 0.05 − 0.2. For the BS example set,

the estimated εTSOCV is taken as 0.16, as it produces the highest accuracy

while simplifying the tree. For the BUPA example set εTSOCV is taken as

0.3.

[b] Using the chosen ε, two repetitions of ordinary 10-fold CVs are run on

each example set to estimate the average accuracy. The results are given

in Table 5.4.

[3] Two repetitions of 10-fold nested CV are performed to estimate the accuracy of

128 CHAPTER 5. ALTERNATIVE VECTORS

Table 5.4: Accuracies of BS and BUPA example sets.

Example set CV Avg. Accuracy Avg. Tree size

BS 1 92.5 19.7
2 92.7 25.5

BUPA 1 69.3 15.3
2 67.2 15

the tree. In order to obtain a fair comparison of results between the two-stage

ordinary CV and the nested CV procedures, the two 10-fold CVs used in step

2.b are used here. For each training fold in the outer CV, a tree is trained on

an ε value which is chosen using another 10-fold CV (inner CV) performed on

that training fold. That is, the outer CV is used to estimate the accuracy of

the tree while inner CV is used to choose εNST for each training set in the outer

CV. For the first repetition of the nested CV, the variation of the accuracy as ε

changes is given in Figure 5.12 and Figure 5.13 for the each training set of BS

and BUPA respectively. Here also, the red dot and the blue dash-line have the

same meaning as in Figure 5.11.

It is shown in Figure 5.12, for BS, εNST values vary between 0.06 (see Fig-

ure 5.12c) and 0.18 (see Figure 5.12h). Furthermore, εTSOCV found in the

two-stage ordinary CV is 0.16 which is in the range of ε under the nested CV.

Also, in the nested CV, at each optimal point, the estimated accuracy stays

around 90% which is almost the same in two-stage ordinary CV. For the BUPA

example set, εNST fluctuates between 0.25 (see Figure 5.13i) and 0.34 (see Fig-

ure 5.13g). The optimal value, εTSOCV , for two-stage ordinary CV is 0.3 which

falls in this region. Moreover, the accuracies of each optimal point vary between

approximately 66% - 72% which includes the accuracy at εTSOCV . Hence, this

information confirms that εNST is consistent with εTSOCV and is subjected to

CHAPTER 5. ALTERNATIVE VECTORS 129

(a) Fold-1 results. (b) Fold-2 results.

(c) Fold-3 results. (d) Fold-4 results.

(e) Fold-5 results. (f) Fold-6 results.

130 CHAPTER 5. ALTERNATIVE VECTORS

(g) Fold-7 results. (h) Fold-8 results.

(i) Fold-9 results. (j) Fold-10 results.

Figure 5.12: Fluctuation of accuracy with ε in each CV fold for BS.

CHAPTER 5. ALTERNATIVE VECTORS 131

(a) Fold-1 results. (b) Fold-2 results.

(c) Fold-3 results. (d) Fold-4 results.

(e) Fold-5 results. (f) Fold-6 results.

132 CHAPTER 5. ALTERNATIVE VECTORS

(g) Fold-7 results. (h) Fold-8 results.

(i) Fold-9 results. (j) Fold-10 results.

Figure 5.13: Fluctuation of accuracy with ε in each CV fold for BUPA.

CHAPTER 5. ALTERNATIVE VECTORS 133

a greater variability. However, the average accuracy at all optimal points ap-

proximately equals to the accuracy at the optimal point of two-stage ordinary

CV.

[4] The chosen ε, εNST , is used to build a tree using the training set of the outer

CV. In two-stage ordinary CV, there is one εTSOCV involved for each training

set whereas in nested CV a separate εNST is used for each training set. Since,

the same CV partitions are used to estimate the tree accuracy in the two-stage

ordinary CV and the nested CV procedure, a particular tree is trained and

tested on the same training and test set respectively. A fair comparison of the

results is thereby obtained. The accuracy for each test fold is then compared

for both CV methods and is given in Table 5.5 - 5.8.

Table 5.5: Results of the first repetition of CV for BUPA.

Nested CV Ordinary CV: εTSOCV = 0.3

Test Fold εNST Accuracy Tree Size Accuracy Tree Size
1 0.28 62.9 23 65.7 12
2 0.33 68.6 4 68.6 12
3 0.26 68.6 28 71.4 19
4 0.32 68.6 9 68.6 20
5 0.31 68.6 12 74.3 17
6 0.37 65.7 8 65.7 27
7 0.34 74.3 13 74.3 13
8 0.27 74.3 22 74.3 15
9 0.25 62.6 35 57.1 2
10 0.28 73.3 20 73.3 16

Mean 0.3 68.8 17.4 69.3 15.3
SD 0.04 4.3 9.8 5.5 6.5

First, consider the BUPA example set. Looking at the εNST values, in Table 5.5

and Table 5.6, it is evident that there is a considerable impact on the tree size due

to the variability in εNST . The reason for the variation in εNST is each training

134 CHAPTER 5. ALTERNATIVE VECTORS

Table 5.6: Results of the second repetition of CV for BUPA.

Nested CV Ordinary CV: εTSOCV = 0.3

Test Fold εNST Accuracy Tree Size Accuracy Tree Size
1 0.26 68.6 20 68.6 18
2 0.31 80.0 16 80.0 16
3 0.3 62.9 17 54.3 7
4 0.28 74.3 22 68.6 13
5 0.31 60.0 9 60.0 9
6 0.22 80.0 46 62.9 13
7 0.31 77.1 19 77.1 19
8 0.25 62.9 34 65.7 22
9 0.37 60.0 9 68.6 13
10 0.24 60.3 42 66.6 20

Mean 0.3 68.6 23.4 67.2 15.0
SD 0.04 8.5 13.0 7.5 4.9

Table 5.7: Results of the first repetition of CV for BS.

Nested CV Ordinary CV: εTSOCV = 0.16

Fold εNST Accuracy Tree Size Accuracy Tree Size
1 0.18 96.8 20 96.8 20
2 0.14 88.9 24 88.9 23
3 0.19 90.5 6 90.5 6
4 0.17 93.7 14 93.7 14
5 0.18 96.8 19 96.6 19
6 0.17 93.7 20 93.7 20
7 0.15 88.9 29 88.9 29
8 0.19 88.9 14 88.9 14
9 0.11 90.5 25 90.5 23
10 0.17 96.6 19 96.5 29

Mean 0.16 92.5 19.0 92.5 19.7
SD 0.02 3.4 6.5 3.3 7.1

CHAPTER 5. ALTERNATIVE VECTORS 135

Table 5.8: Results of the second repetition of CV for BS.

Nested CV Ordinary CV: εTSOCV = 0.16

Fold εNST Accuracy Tree Size Accuracy Tree Size
1 0.15 95.2 27 95.2 27
2 0.16 90.5 5 90.5 5
3 0.07 95.2 37 95.2 30
4 0.17 93.7 18 93.7 18
5 0.15 92.1 37 92.1 37
6 0.16 93.7 17 93.7 17
7 0.18 88.9 43 88.9 43
8 0.16 96.8 22 96.8 22
9 0.18 87.3 23 87.3 23
10 0.16 93.1 33 93.1 33

Mean 0.15 92.7 26.2 92.7 25.5
SD 0.03 3.0 11.5 3.0 11.0

partition is different from each other. On the other hand, an inherent feature of tree

classifiers is that they are very sensitive to data perturbation (Hand, Mannila, &

Smyth, 2001). Therefore, different combinations of partitions of the same example

set can produce heterogeneous trees and thus lead to a different value of εNST for

each training partition.

Furthermore, Table 5.5 and Table 5.6 show the accuracies of each test set for the

two repetitions of CV. In Table 5.5, for test folds 1, 3 and 5, two-stage ordinary CV

produces the higher accuracies while for test fold 9, the accuracy is higher for the

nested CV. For all other folds, the accuracies remain the same. Table 5.6 shows that

the test folds 3, 4 and 6 produce higher accuracies for nested CV while 8, 9 and 10

produce higher accuracies for two-stage ordinary CV. For the other test folds the

results remain the same. Therefore, on average, none of the procedures outperform

each other. Moreover, Table 5.5 and Table 5.6 show that the mean accuracies and

the standard deviations are similar in the two CV procedures.

When considering the results of the BS example set, a relatively easy classification

136 CHAPTER 5. ALTERNATIVE VECTORS

problem, Table 5.7 and Table 5.8 show that the εNST values are very similar to εTSOCV .

Hence, the accuracy and the tree size of nested CV for each fold in both repetitions

are almost equal to that of the two-stage ordinary CV. This shows that if the classes

are separable, the optimal ε is similar in both CV procedures and hence, the final

classification accuracies are similar.

As mentioned in Section 5.2.2, it is believed that the two-stage ordinary CV

procedure may have higher accuracy than the nested CV procedure. However, fold

by fold observation reveals that there is no apparent difference in accuracies in both

procedures. That is, trees trained using εNST perform more or less the same as the

trees trained using εTSOCV . Therefore, it can be concluded that the effect of εNST ,

which is independent of the test set, in determining the accuracy on average is the

same as that of εTSOCV . Hence, the estimate of εTSOCV obtained from the first stage

CV is almost independent of the second stage CV partitions even though the same

example set is used in both occasions.

5.2.3 Remarks

The following observations are also made in the experiment.

[1] In Table 5.5, under two-stage ordinary CV, the estimated accuracy of the tree

tested on the 9th test fold is 57%. However, that tree has only 2 terminal nodes.

The same can be seen under the nested CV where the tree tested on the 2nd

test fold gives 68.6% accuracy with the tree size of 4. When compared to the

other tree sizes and the accuracies in the table, these two observations reveal

that most of the data can be correctly classified in the upper nodes and the rest

of the nodes actually classify the hard-to-classify examples. This observation is

also made by (Manwani & Sastry, 2012).

[2] Furthermore, the nested CV procedure takes considerably more time than that

CHAPTER 5. ALTERNATIVE VECTORS 137

of two-stage ordinary CV to estimate the optimal ε. In the ordinary CV, initially

a separate CV is run varying ε from 0.05 to 0.4 with the step size of 0.01, which

requires 36 trees to be built to estimate εTSOCV . However, to estimate εNST ,

each training set requires 36 tree to be built. Hence, when estimating the

accuracy, a one repetition of 10-fold CV requires only 36 trees under two-stage

ordinary CV, while the nested CV requires a total of 360 trees to be built.

In summary, the nested cross validation procedure is a logically correct procedure

to apply in experiments where the parameter estimation is done simultaneously

with the estimation of accuracy. However, when considering accuracies given in

Table 5.5 - 5.8, it is evident that the accuracies of both procedures are similar. In

the two-stage CV, first a separate CV is run to estimate εTSOCV . The example set is

then divided into v-folds (v = 10), and for each v, v− 1 partitions are used to induce

a classifier with the optimal node level misclassification of εTSOCV . The accuracy is

then estimated on the test set, the vth fold. It is important to note that, the vth fold

does not specifically act on choosing εTSOCV . Therefore, it is reasonable to assume

that the test set is independent of εTSOCV in the two stage ordinary CV. On the other

hand, theoretically there should be at least some optimistic bias. However, it cannot

be detected because of the variation in the accuracies. Two-stage CV can be ap-

plied to estimate the accuracy of the classifier although nested CV is the ideal method.

5.3 Use of Class Representative Vectors (CRVs)

Here, another possible set of vectors which can be used as alternative vectors for

the Householder reflection is introduced. In the principal method of HHCART, the

eigenvectors of classes’ covariance matrices are used to represent the class orientation.

In this section, another vector which represents the orientation of a class is defined,

138 CHAPTER 5. ALTERNATIVE VECTORS

called Class Representative Vector (CRV). CRV for a set of examples belongs to one

class (say Class A) is derived as follows.

Let Xn×p be a data matrix containing points of class A. Assume the centre of

class A is the origin and each example has a unit length. That is, Xn×p contains

mean corrected examples with a unit length. The aim is to find a vector v such that

the sum of the squared perpendicular distances from the data points of A to the line

λv, λ ∈ R is minimised.

Let xi be the vector representing the ith example. The perpendicular distance di

from xi to the line λv, λ ∈ R can be obtained as follows.

Figure 5.14: Geometrical view of the proof.

d2
i = ‖xi‖2 sin2 α (see Figure 5.14)

cosα =
v · xi

‖v‖ ‖xi‖

d2
i = ‖xi‖2

(
1− (v · xi)

2

‖v‖2 ‖xi‖2

)
since 1− cos2 α = sin2 α

d2
i =
‖v‖2 ‖xi‖2 − (v · xi)

2

‖v‖2

(5.3.1)

CHAPTER 5. ALTERNATIVE VECTORS 139

Setting ‖v‖2 = 1, the total squared perpendicular distance D is given by D =∑n
i=1(1 − (v · xi)2) = n −

∑n
i=1(v · xi)2 = n − vTXTXv. Minimising D is equiv-

alent to finding the v∗ that maximises vTXTXv subject to ‖v∗‖ = 1. Noting that

X is rank p, then XTX is positive definite and so vTXTXv is maximised if v∗ is the

dominant eigenvector of XTX.

Then Householder reflection, defined in equation (3.3.1), is used to make v∗ par-

allel to one of the feature axes so that the axis-parallel splits can be searched in

the reflected space. This algorithm is called HHCRV. The split finding method of

HHCRV works as follows. At each non-terminal node t, HHCRV finds v∗ for each

class of examples. Then for each v∗, a Householder matrix is constructed and the

set of examples available at node t is reflected using each Householder matrix. axis-

parallel splits are then searched in each reflected space and the best split found is

chosen to split the node. The algorithm is recursively applied on all child nodes until

each child node satisfies either:

[1] The misclassification rate at the child node is not greater than a user specified

threshold (MisRate); or

[2] The number of examples in the node is less than or equal to a user specified

threshold (MinParent).

An overview of HHCRV algorithm at a non-terminal node t is given in Algorithm 9.

The CRV may be beneficial in some situations where the dominant eigenvector fails

to capture the orientation of its class. It is tempting to assume that the orientation

of a class is defined by the orientation of the majority of the points in the class. If

the class contains some extreme values or outliers, then the orientation defined by

the majority points may be distorted and hence, the dominant eigenvector may fail

to capture the class orientation. This is illustrated in Figure 5.15.

The superimposed ellipse shows the orientation of the majority of examples.

140 CHAPTER 5. ALTERNATIVE VECTORS

Data: Input: Examples at node t, Dt.
initialization;
Define Ct = number of classes at node t;
∆(Imax) = 0;
ht = empty;
for i=1:Ct do

Extract the examples that belong to the ith class in Dt, called Di;
Transform Di such that its centre becomes the origin and divide the each
row of Di by its own norm: call the new dataset as Dcs

i ;

v∗ = eigenvector corresponding to the maximum eigenvalue of (Dcs
i)TDcs

i ;
Call Algorithm 8 with d = v∗, MinParent = 2, MisRate = 0 and τ = 0;
Let hti be the hyperplane returned by Algorithm 8 ;
if impurity reduction of hti > ∆(Imax) then

Replace ht with hti , the best hyperplane found so far;
Replace ∆(Imax) with the impurity reduction of hti

end

end

Algorithm 9: Overview of HHCRV algorithm at a single node.

0 1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

X1

X
2

(a) Scatter plot of the set of examples. (b) Scatter plot super imposed with an ellipse.

Figure 5.15: Effect of extreme values on the orientation of data.

CHAPTER 5. ALTERNATIVE VECTORS 141

Therefore, what would be anticipated is that the dominant eigenvector would be

in the most stretched direction or otherwise known as the major axis of the ellipse.

However, because of the two extreme values, the most stretched direction of the ma-

jority points is deviated towards to the least stretched direction of the majority points

and is shown in Figure 5.16. The blue line shows the dominant eigenvector of the

covariance matrix which is not aligned with the orientation of the majority points.

The CRV found for the above example is shown by the blue line in Figure 5.17 which

−1 0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Figure 5.16: Scatter plot and the dominant eigenvector.

captures the orientation of the class properly.

5.4 Experiments on real life data sets

In this section, the empirical results are presented to show the performance of HHCRV

and they are compared to the results of OC1 and OC1-LC. For OC1 and OC1-LC, the

142 CHAPTER 5. ALTERNATIVE VECTORS

−4 −2 0 2 4 6

0

1

2

3

4

5

6

7

8

9

X1

X
2

Figure 5.17: Scatter plot and the CRV.

minimum number of observations to split a node was set to 2. For OC1, the number

of restarts and number of jumps were set to 20 and 5 (default values), respectively. For

the HHCRV algorithm, MinParent, MisRate and τ was set to 2, 0 and 0 respectively.

All algorithms used the Twoing rule as the measure of impurity (Breiman et al., 1984)

and cost complexity pruning (Breiman et al., 1984) with 0-SE2. For all algorithms,

ten, 5-fold ordinary CV procedures were used. For each fold, 10% of the training

set was used exclusively for pruning. Results are reported in Table 5.9 along with

respective standard deviations.

Results of Table 5.9 show that HHCRV’s accuracies and tree sizes are comparable

with OC1 and OC1-LC except for the BS and LET datasets. Eight example sets

have more than 8 features and can be considered as higher dimensional classification

problems. Of those eight sets, the performance of HHCRV is comparable with the

2see Section 1.7.1

CHAPTER 5. ALTERNATIVE VECTORS 143

Table 5.9: Results of HHCRV, OC1 and OC1-LC methods.

Dataset DT Avg. Acc. Avg. Size Dataset DT Avg. Acc. Avg. Size

BS HHCRV 87.0± 1.8 12.8± 4.1 PIND HHCRV 72.8± 1.4 12.2± 7.5
OC1 92.2± 0.6 9.34± 2.5 OC1 72.8± 1.4 9.5± 4.0
OC1-LC 85.5± 1.7 11.0± 6.3 OC1-LC 73.2± 1.27 10.24± 5.4

BH HHCRV 82.1± 0.9 9.3± 3.1 WINE HHCRV 89.8± 3.0 4.2± 0.7
OC1 82.4± 1.0 9.1± 3.4 OC1 89.9± 2.0 4.3± 0.2
OC1-LC 82.1± 2.1 9.7± 3.3 OC1-LC 90.2± 2.2 4.1± 0.3

BC HHCRV 96.4± 0.3 2.8± 0.8 SUR HHCRV 72.2± 1.4 5.7± 4.7
OC1 95.5± 0.7 3.4± 1.4 HHGDT 71.4± 2.0 7± 1.8
OC1-LC 95.5± 0.7 4.3± 1.1 OC1-LC 70.7± 1.5 7.2± 4.1

BUPA HHCRV 63.2± 3.0 9.9± 4.6 HRT HHCRV 75.1± 2.7 6.6± 2.8
OC1 66.5± 1.9 7.8± 4.4 OC1 76.7± 2.4 4.37± 0.8
OC1-LC 64.9± 2.2 8.4± 3.7 OC1-LC 75.5± 2.4 5.6± 1.3

GLS HHCRV 65.4± 1.6 11.1± 2.9 LET HHCRV 83.3± 0.3 1250.3± 115.5
OC1 64.7± 2.2 13.2± 2.5 OC1 84.3± 0.3 1318.6± 93.9
OC1-LC 69.0± 3.0 12.2± 4.80 OC1-LC 85.39± 0.4 1497± 71

BNK HHCRV 98.9± 0.1 4.3± 0.1 CLI HHCRV 92.0± 0.8 3.1± 0.7
OC1 98.9± 0.3 7.1± 1.3 OC1 91.5± 0.9 3.1± 0.9
OC1-LC 98.5± 1.0 7.3± 1.1 OC1-LC 92.9± 0.7 4.1± 1.5

SEED HHCRV 90.5± 2.3 3.7± 0.4
OC1 92.8± 1.8 3.6± 0.6
OC1-LC 88.4± 1.1 3.8± 0.7

other benchmark methods. The maximum time complexity of HHCRV at a non-

terminal node is O(Cp(p + n log n)) while for OC13 it is O(n2p log n). Therefore,

for larger n, HHCRV is a good alternative to the OC1 and OC1-LC algorithms.

Moreover, the number of impurity function evaluations of OC1 at each non-terminal

node is 20βγnp (see Section 2.2) whereas HHCRV evaluates the impurity function

only Cnp times.

5.5 Conclusions and discussion

This chapter presents a set of alternative vectors that can be used to define the House-

holder reflection to improve classification results. In the first case, we show that the

3This is valid only if Max minority or Sum minority impurity function is used. For other functions,
obtaining an upper bound is an open question (Murthy & Salzberg, 1995b).

144 CHAPTER 5. ALTERNATIVE VECTORS

Householder reflection based on the normal vector of the angular bisector of clustering

hyperplanes, defined in Manwani and Sastry (2012), improves or shows no difference

from the classification results of GDT for most of the datasets. Furthermore, the tree

sizes of HHGDT are significantly smaller than that of GDT for most of the problems

and hence, based on the empirical results, it can be concluded that HHGDT performs

better than GDT because simpler classification rules are obtained without affecting

accuracy. These improvements are basically due to two reasons and are as follows:

[1] In the GDT algorithm, the splitting hyperplane defined by the angular bisector

of two clustering hyperplanes is a specific hyperplane defined by the normal vec-

tor of the angular bisector. In the HHGDT algorithm, an axis-parallel search is

made along the angular bisector (the first coordinate axis of the reflected space)

to find the best split. Therefore, HHGDT evaluates a series of hyperplanes which

are parallel to the separating hyperplane found by GDT and hence, HHGDT

has higher chance of finding a better hyperplane than GDT along the said nor-

mal vector. This is especially beneficial in multi-class classification problems

because GDT is specifically designed only for two-class problems. GDT con-

verts a multi-class classification problem into two-class classification problem

by forming two super-classes and then it finds a clustering hyperplane for each

super-class. Clustering hyperplanes are intended to capture the dominant lin-

ear tendency of the class (Manwani & Sastry, 2012). However, the clustering

hyperplane for the super-class which represents all the classes other than the

one having the most number of examples may not capture an effective linear

tendency. In fact it is difficult to define the dominant linear tendency for a

super-class. Therefore, the angular bisector may not be effective in this situa-

tion. On the other hand, HHGDT searches splits along the reflected axes and

more importantly, when it evaluates those splits it uses all the classes instead

of using two super-classes.

CHAPTER 5. ALTERNATIVE VECTORS 145

[2] The HHGDT algorithm explores more space than the GDT algorithm. More

specifically, HHGDT evaluates np splits at a node compared to just one solitary

split of the GDT algorithm. Therefore, HHGDT has higher chance of finding

better splits than GDT.

A new methodology is presented to find the clustering hyperplanes when the

matrices are singular. It is shown in the Subsection 5.1.2 that the existing method fails

to find the clustering hyperplanes when the null space of the denominator matrix is a

subspace of the null space of the numerator matrix. The proposed method overcomes

this problem by performing matrix operations in the range space of the denominator

matrix. The significance of the method is that it can be used for any application

which solves a generalised eigenvalue problem under ill conditioned matrices.

Effects of the nested CV and the ordinary CV on the final classification accuracy

were thoroughly studied. The GDT algorithm, and hence HHGDT, needs the node

level misclassification, ε, to be estimated prior to the tree building. In this situation,

a theoretically suitable method of estimating ε is to use nested CV. However, it is

observed that there is no significant difference between the two stage ordinary and

nested CV procedures in terms of accuracy. In two-stage ordinary CV, the two CV

procedures run on different partitions. Hence, test set examples which are used to

estimate the accuracy (in the second stage CV) have no direct effect in deciding

the optimum ε and thus, it is reasonable to assume the test set is independent of

the optimal ε. Furthermore, because of the variability associated with accuracies,

the study failed to identify the subtle optimistic bias which may arise when using

two-fold ordinary CV. Therefore, using two-stage ordinary CV over nested CV is

recommended as:

[1] There is no significant difference between the accuracies.

[2] The time taken to run the nested CV procedure is much longer than that of

146 CHAPTER 5. ALTERNATIVE VECTORS

two-stage ordinary CV.

In the second case, a new set of vectors, CRVs, is introduced to define the House-

holder reflection. The algorithm which uses CRVs for data classification is called

HHCRV. The empirical results show that the classification accuracies of HHCRV are

comparable with the other competitive methods. The time complexity of the HHCRV

algorithm is also lower than those methods and hence, HHCRV can be regarded as a

good alternative for those competitive methods on large example sets.

Chapter 6

HHBUT: HouseHolder Bottom-Up
Tree

6.1 Introduction

As an alternative to the top-down tree building approach, the bottom-up approach

has recently been explored to induce binary decision trees. This chapter presents

the motivation of the bottom-up tree induction approach followed by the existing

bottom-up strategies of tree building. The approach starts with identifying clusters

in the data and finding splitting hyperplanes to separate these clusters. Some of

the more recently proposed bottom-up approach use the Expectation-Maximisation

(EM) algorithm for data clustering and support vector machines (SVM) for finding

the separating hyperplanes between clusters. A brief introduction on model based

clustering via the EM algorithm and SVM is presented. The new algorithm, HHBUT

(HouseHolder Bottom-Up Tree), proposed in this chapter explores the possibility

of replacing SVM with the split finding principle of the HHCART algorithm to find

separating hyperplanes between clusters. Finally, the results of bottom-up trees based

on SVM are compared to HHBUT. The effect of the proposed heuristic of the thesis

on top-down and bottom-up approaches is investigated via the HHCART(A) and

147

148 CHAPTER 6. BOTTOM-UP APPROACH

HHBUT algorithms.

6.2 Bottom-Up tree induction approach

6.2.1 Motivation

First, a brief explanation of the top-down tree building approach is given prior to

the introduction of the bottom-up method. The top-down approach starts with the

root node, where the full set of examples reside, and then recursively partitions the

feature space into disjoint sub-regions until each sub-region becomes homogeneous

or near-homogeneous with respect to a particular class. A tree induced for a two-

class two-dimensional classification problem using the top-down approach is given in

Figure 6.1 and the corresponding partition sequence is given in Figure 6.2.

Red

RedBlue

Blue

Test: X1 <= 0.5

Test: X2 <= 0.3

Test: X1<= 0.7

1

2 3

6 7

12
13

Figure 6.1: Basic structure of a classification tree.

Figure 6.2 shows the sub-division of the feature space at each non-terminal node

in the tree given in Figure 6.1. Each sub-region is numbered by the corresponding

node number. This sub-division of the feature space can be perceived as an attempt

to identify possible clusters within each class of the example set. It is evident that

CHAPTER 6. BOTTOM-UP APPROACH 149

X1

X2

0.5 X1

X2

 2
 3

0.3

0.5 X1

X2

 7

 6

0.3

0.70.5 X1

X2

 12 13

a b

c d

 1

Figure 6.2: Feature space partition sequence.

according to the final partition structure (see Figure 6.2 (d)) each individual partition

can be thought of as a cluster of that particular class. In this example, the spatial

distribution of the classes can form more than one cluster per class. These individual

partitions (or clusters) determine the terminal nodes of the tree. This motivated the

bottom-up approach, which is explained in the next section.

6.2.2 Bottom-Up tree induction strategy

The first binary tree using the bottom-up approach is given in Landeweerd, Timmers,

Gelsema, Bins, and Halie (1983). In this approach, the authors believe that each

class forms one cluster in the feature space. Hence, initially a leaf or a terminal

node is created for each class. Then for each pair of terminal nodes, the Mahalanobis

distance is calculated. The pair having the smallest Mahalanobis distance is then

merged to form a new class. This process is repeated until the root node is formed.

150 CHAPTER 6. BOTTOM-UP APPROACH

At each merging point, Fisher’s linear discriminant analysis is used to determine the

separating hyperplane of the two classes. The major drawback of this method is that

it forces only one terminal node per class to be in the tree at the outset of the tree

building. For example, a three class classification problem can only has three terminal

nodes in the tree. This is quite restrictive as in practice, the distribution of a set of

examples belonging to one class can form several clusters in the feature space (see

Figure 6.2 for example).

A complete framework of the bottom-up tree building approach, Bottom-Up

Oblique Decision-Tree Induction Framework (BUTIF), was introduced by Barros,

Jaskowiak, Cerri, and de Carvalho (2014). This approach addresses the problem of

having one cluster per class and uses a cluster analysis to identify the number of

clusters within a given class. The steps of the BUTIF framework are given below:

[1] Divide the training data into pure subsets based on the class labels.

[2] Apply a clustering algorithm over each pure subset and identify clusters within

each class. These clusters are considered as terminal nodes in the tree. Any

clustering algorithm is possible, however, priority is given to the methods which

are capable of automatically estimating the number of clusters from the data.

[3] For each cluster (terminal node), compute the cluster mean vector to determine

the cluster centroid.

[4] Merge two nearest nodes, belonging to different classes, into a new class (meta-

class). The authors suggest using Euclidean distance to measure the nearness

between centroids. Once the new class is formed, the centroid is computed.

Once the nodes are merged they are not considered for merging again.

[5] Use a feature selection algorithm for rule simplification. This is an optional

task.

CHAPTER 6. BOTTOM-UP APPROACH 151

[6] Generate the separating hyperplane using any binary classifier to find the

boundary between two classes being merged. BUITA uses the SVM algorithm

with a linear-kernel for this purpose.

[7] Repeat the steps [4] to [6] until there are no classes to be merged. That is, this

repetition occurs until the root node is attained.

One of the advantages of bottom-up induction method is that it always guarantees

at least one terminal node per class. This characteristic is really appealing when

handling classification problems, especially with unequal class sizes. In the top-down

approach this characteristic is not guaranteed because smaller classes can get pruned

out from the tree. This is especially so with unequal class sizes. Unless pre-pruning is

used top-down trees tend to over-fit the training examples. Therefore, tree pruning is

an instrumental procedure in top-down tree building as it helps to reduce over-fitting

and thereby increases the prediction accuracy. However, in the bottom-up approach,

pruning is not required since it does not over-fit the data. Consider the illustration

given in Figure 6.3. The two clusters found, one for each class (Red and Blue),

from the clustering method, are to be separated and the best split found is shown

by the line. It is clear that some examples are misclassified in bottom-up approach.

However, no further splitting is considered for examples. Therefore, over-fitting does

not happen in the bottom-up approach and hence, pruning is not required.

6.3 Model based clustering

One of the main processes in the bottom-up approach is to identify clusters within

each class. Various techniques have been proposed to identify clusters within data

and basically these techniques can be categorised into: (a) hierarchical clustering, (b)

optimisation clustering, and (c) model based clustering (Everitt, Landau, Leese, &

152 CHAPTER 6. BOTTOM-UP APPROACH

−6 −4 −2 0 2 4 6 8 10 12

0

2

4

6

8

10

12

X1

X
2

1
2

Figure 6.3: Separation hyperplane found by bottom-up approach.

Stahl, 2011). However, in this research the model based clustering approach is used

to identify clusters within each class following the approach presented in Barros et

al. (2014). The model based clustering approach attempts to fit a finite mixture of

probability densities to the data. In this approach, often the family of the distributions

are assumed but the parameters which specify the distributions are unknown. The

number of probability densities found to be in the mixture model is then taken as the

number of clusters found in the data. In practice, the common approach is to take the

component densities to be univariate or multivariate Gaussian (Normal) (McLachlan

& Peel, 2004). Moreover, Marron and Wand (1992) show that Gaussian mixtures are

very flexible in approximating many arbitrarily shaped distributions. This is very

important in the tree building context as the user does not know about the cluster

structure of a particular class a priori. The following section introduces model based

clustering and the parameter estimation procedure of Gaussian densities.

CHAPTER 6. BOTTOM-UP APPROACH 153

6.3.1 Finite Gaussian Mixture Model (FGMM)

Let X1,X2, . . . ,Xn be a random sample of size n, where each Xi is a p-dimensional

random vector with Gaussian probability density function of Φp(X|µ,Σ) on Rp, where

µp×1 and Σp×p are the mean vector and the covariance matrix respectively. Let D =

(XT
1 ,X

T
2 , . . . ,X

T
n)T represent the entire random sample and d = (xT1 ,x

T
2 , . . . ,x

T
n)T is

a realization of D.

The K-component FGMM, f , is given by McLachlan and Peel (2004):

f(xi|Ψ) =
K∑
k=1

πkΦ(xi|µk,Σk). (6.3.1)

where πi’s are the mixing proportions and Ψ = {π1, . . . πK−1, µ1 . . . µK , } and the

distinct elements of component covariance matrices Σk, k = 1 . . . K. Equation (6.3.1)

means that each observation xi of d has been drawn from one of the Gaussian densities

(known as components) designated by µk and Σk and selecting the kth Gaussian

component has the probability of πk.

6.3.2 Maximum likelihood estimates of a Gaussian mixture

model

Parameter estimates of a Gaussian mixture model are obtained via maximum like-

lihood estimation procedure. The likelihood function of FGMM given in equa-

tion (6.3.1) is given by:

l(Ψ|d) =
n∏
i=1

{
K∑
k=1

πkΨ(xi|µk,Σk)

}
. (6.3.2)

The log likelihood function is therefore, is given by:

log l(Ψ|d) =
n∑
i=1

log

{
K∑
k=1

πkΦ(xi|µk,Σk)

}
. (6.3.3)

154 CHAPTER 6. BOTTOM-UP APPROACH

If the component label of each xi had been observed, then estimation would be

much easier. Specifically, if that is the situation, it is possible to extract all xi’s be-

longing to each component separately (subsets) and ML estimates can be obtained by

applying the ML estimation procedure to each subset of d. However, since the compo-

nent labels have not been observed, the common approach of estimating the parame-

ter vector, which maximises equation (6.3.3), is to use the Expectation-Maximisation

(EM) algorithm (Dempster, Laird, & Rubin, 1977). In this particular situation, the

EM algorithm assumes that each Xi ∈ D is observed with its component label (known

as latent variable) Zi a K-dimensional binary random vector. The kth element of Zi

is defined as:

Zik =

1 if Xi belongs to the kth component

0 otherwise.

Since, the random vector Xi belonging to the kth component of the mixture model is

given by Zik = 1, the marginal distribution of Zi is given by:

p(Zik = 1) = πk where
K∑
k=1

πk = 1. (6.3.4)

Thus, Zi is distributed according to a multinomial distribution consisting of one draw

on K components with probabilities π1, . . . , πK , that is:

p(zi) =
K∏
k=1

πzikk , (6.3.5)

where zi is a realisation of Zi.

Moreover, in the Gaussian mixture model, the conditional density of Xi given Zi is

Gaussian and is given by:

fXi|Zi
(xi|zi) = Φ(xi|µk,Σk). (6.3.6)

Equation (6.3.6) can be written as:

fXi|Zi
(xi|zi) =

K∏
k=1

(Φ(xi|µk,Σk)
zik (6.3.7)

CHAPTER 6. BOTTOM-UP APPROACH 155

Therefore, the joint density of Xi and Zi is given by:

fXiZi
(xi, zi|Ψ) =

K∏
k=1

(πk(Φ(xi|µk,Σk))
zik . (6.3.8)

Using the Bayes rule, for any given Ψ:

E(zik|xi,Ψ) = p(zik = 1|xi,Ψ)

=
πkΦ(xi|µk,Σk)∑K
k=1 πkΦ(xi|µk,Σk)

= γik(Ψ).

(6.3.9)

The quantity γik(Ψ) is the posterior probability of zik = 1 after observing xi and

is called responsibility.

Denote the set of all latent variables by matrix Zn×K , where zTi corresponds to the

ith row of Z. For each observation vector xi ∈ d, there is a particular row in Z and

hence both d and Z together are called the complete data and the observed sample

d alone is called the incomplete data. For example, the complete data set has the

following structure:

d
C =



x11, x12 . . . x1p z11, z12 . . . z1K

...
...

xi1, xi2 . . . xip zi1, zi2 . . . ziK
...

...

xn1, xn2 . . . xnp zn1, zn2 . . . znK


(6.3.10)

where each xij ∈ R and only one element of ith row (zi1, zi2 . . . ziK) of Z equals one

for i = 1, . . . , n.

According to equation (6.3.8), the complete data likelihood is therefore given by:

l(Ψ|dC) =
n∏
i=1

{
K∏
k=1

(πkΦ(xi|µk,Σk))
zik

}
, (6.3.11)

156 CHAPTER 6. BOTTOM-UP APPROACH

and the complete data log likelihood is given by:

log l(Ψ|dC) =
n∑
i=1

{
K∑
k=1

zik log [πkΦ(xi|µk,Σk)]

}
. (6.3.12)

The EM algorithm is then used to obtain the maximum likelihood estimates of

the parameters in FGMM using the log likelihood function given in equation (6.3.12).

It has two steps, namely: (a) Expectation step (E), and (b) Maximisation step (M).

The two steps of the EM algorithm are as follows:

1. E-Step

Compute Q(Ψ,Ψ(j)) which the is expectation of the complete data log likelihood w.r.t.

the conditional density of latent variables conditioned on incomplete data where the

current value of Ψ is given by Ψ(j)

Q(Ψ,Ψ(j)) = E(log l(Ψ|dC))

=
n∑
i=1

{
K∑
k=1

E
[
zik|xi,Ψ

(j)
]

log [πkΦ(xi|µk,Σk)]

}

=
n∑
i=1

{
K∑
k=1

γik(Ψ
(j)) log [πkΦ(xi|µk,Σk)]

}
.

(6.3.13)

2. M-Step

Find Ψ(j+1) which maximises Q(Ψ,Ψ(j)) over Ψ. That is:

Ψ(j+1) ← argmaxΨ

[
Q(Ψ,Ψ(j))

]
. (6.3.14)

The (j + 1)th value of the each element in the set Ψ is obtained by setting:

∂Q(Ψ,Ψ(j))

∂ψ∈Ψ

= 0. (6.3.15)

The EM algorithm iterates through the E-step and M-step until there is no sig-

nificant change in estimates of Ψ from Ψ(j)th step to Ψ(j+1)th step.

Once the k-component Gaussian mixture model is fitted to the data, each example

is assigned to one of the K Gaussian components based on the estimated posterior

CHAPTER 6. BOTTOM-UP APPROACH 157

probabilities given by γ̂(Ψ̂) where Ψ̂ is the estimated parameter vector. γ̂(Ψ̂) is a

n×K matrix where the element in the ith row and jth column gives the probability of

the ith example belongs to the jth component of the mixture model. More specifically,

the ith row of γ̂(Ψ̂) is given by:

γ̂i(Ψ̂) =
{
γ̂i1(Ψ̂), γ̂i2(Ψ̂), . . . , ˆγiK(Ψ̂)

}
.

The corresponding Gaussian component i(k
∗) for the ith example is then found ac-

cording to the criterion:

i(k
∗) = argmaxk

{
γ̂i1(Ψ̂), γ̂i2(Ψ̂), . . . , ˆγiK(Ψ̂)

}
. (6.3.16)

Based on the assigned component label, each observation is then grouped into

clusters where each cluster comprises of observations having the same component

label. These clusters are considered as the terminal nodes in the bottom-up approach.

6.3.3 Determining the number of clusters

In the finite mixture modelling context the number of mixture components, K, cor-

responds to the number of clusters. The number of clusters found in each class

determines the number of terminal nodes belonging to that class in the tree. Usually,

the number of clusters present in the example set is unknown. Various methods have

been suggested to estimate K for a mixture model (Everitt et al., 2011), for example:

[1] Log likelihood ratio test statistics.

[2] Markov Chain Monte Carlo methods using reversible jump MCMC or birth and

death process methodology.

[3] Information theoretic approaches.

[4] v-fold CV.

158 CHAPTER 6. BOTTOM-UP APPROACH

[5] Monte Carlo cross-validation1.

All these methods test the hypothesis of H0K = k0 Vs H1K = k1 for some k1 > k0

and usually k1 = K0 + 1. The use of log likelihood ratio test fails, as the regularity

conditions do not hold. Therefore, the distribution of the corresponding test statistic

(−2 lnλ) does not follow the chi-square distribution (Everitt et al., 2011; McLachlan

& Peel, 2004). Monte Carlo methods require extensive use of simulations to test

the hypothesis (McLachlan & Peel, 2004). Therefore, they are not ideal choices to

include into the bottom-up approach as it increases the induction time of the tree.

Information theoretic based approaches to determine K are also popular in finite

mixture modelling. In particularly, the BIC produces a consistent estimate of K

when a normal mixture model is used (Roeder & Wasserman, 1997). (McLachlan &

Peel, 2004) used a simulation study to show that Akaike Information Criterion (AIC)

tends to overestimate the number of clusters .

The v-fold cross-validation method partitions the example set into v-folds and

each time the likelihood of the test partition is evaluated on the model fitted on the

remaining partitions. The steps of v-fold CV are given below:

[1] Set the number of components (clusters) to 1.

[2] The training set is divided randomly into v-folds.

[3] EM is performed over v− 1 sets to fit the mixture model and the remaining set

is used to evaluate the log likelihood of the fitted model.

[4] The log likelihood is averaged over all v results.

[5] If the log likelihood is increased the number of clusters is increased by 1 and

the procedure continues at step 2.

1this is introduced in Section 1.9

CHAPTER 6. BOTTOM-UP APPROACH 159

Smyth (1996, 2000) shows that v-fold CV is inferior to BIC under Gaussian mix-

tures and recommend the Monte Carlo cross-validation method. However, both v-fold

CV and Monte Carlo CV are time consuming procedures. Thus, incorporating these

procedures into the tree building algorithm causes the total induction time to increase.

Hence, although there are many criteria/procedures are proposed to determine K, se-

lecting the most suitable method in the context of tree building depends on various

factors, which are listed below.

[1] It is important to select a method which takes less time to determine the number

of clusters.

In the bottom-up approach, total tree induction time mainly depends on two

factors: (a) the time taken by the clustering algorithm, and (b) the time taken

to build the tree. The time spent by the clustering algorithm can be reduced by

choosing a time efficient clustering method to determine the number of clusters.

[2] User intervention should be minimal during the tree induction process.

Determining the number of clusters is a part of the model selection which is

usually done by statisticians and sometimes with the help from problem do-

main experts. However, non-statisticians or non-experts may not be familiar

with these concepts and therefore, data mining tools which need expert user

intervention in the middle of the process may inhibit their usefulness to others

(Campos, Stengard, & Milenova, 2005). Hence, fully automated data min-

ing tools, in this instance oblique trees, are desirable to cater for non-experts’

requirements. Thus, clustering methods which rely on user intervention to de-

termine the number of clusters are not ideal choices to use in tree building

algorithms.

[3] It is reasonable enough to identify the number of clusters such that the induced

tree will be accurate and compact. In the data clustering perspective, the main

160 CHAPTER 6. BOTTOM-UP APPROACH

aim is precise identification of clusters and the number of clusters. However, in

the context of bottom-up decision tree induction, precise cluster identification is

not that important as long as it does not have an adverse effect on classification

accuracy and the tree size. Consider the scatter plot of hypothetical data given

in Figure 6.4. The scatter plot shows that there are two clusters in the blue

Figure 6.4: Clusters found and separation.

class and one cluster in the red class. A good clustering algorithm will easily

explore this structure and a tree can be built upon the clusters found. However,

failing to identify two blue clusters does not have any adverse effect of the final

classification as the red class and the blue class can be easily separated. In this

particular example, the former case produces a larger tree (three terminal nodes)

while the latter case produces a compact tree (only two terminal nodes) without

trading off the accuracy. Hence, the intuition is that a criterion which under-

estimates the number of clusters would be preferred as long as the classification

accuracy is not penalised. Abas (2013) refer to Yang and Zwolinski (2001)

and state that BIC tends to under-estimate the number of clusters when the

example set is small.

CHAPTER 6. BOTTOM-UP APPROACH 161

To the best of the author’s knowledge, estimating the number of clusters in the context

of decision tree induction has not been explored much. Barros et al. (2014) use two

methods, namely: (a) 10-fold CV, and (b) The ordered multiple runs procedure to

estimate the number of clusters. Moreover, the 10-fold CV is used as the criterion

for the EM algorithm whereas the ordered multiple runs procedure was used as the

criterion for the k-means algorithm. Barros et al. (2014) show that EM based trees

produce a better classification accuracy than k-means based trees when support vector

classifiers (given in Section 6.4) are used for split finding. However, Barros et al. (2014)

empirically show that the results can be improved by applying a feature selection

method at each non-terminal node before the splits are searched. In this research,

two methods are used in the experiments to determine K, namely: (a) the BIC

criterion, and (b) the CV procedure.

6.4 Support Vector Machine

A Support Vector Machine (SVM) (Vapnik (2000), Shawe-Taylor and Cristianini

(2000), Hastie et al. (2009) and Boser, Guyon, and Vapnik (1992)) is a classifier which

uses a margin maximisation technique to find the separating hyperplane for a two-class

classification problem. The margin M is defined as the width between the decision

boundary f(x) and the closest examples from either classes. Let (x1, y1), . . . , (xn, yn)

be the training sample where xi ∈ Rp and yi ∈ {−1,+1}. The classification rule

given by SVM assigns x to class +1 if f(x) ≥ 0 and to class −1 otherwise.

Since, this thesis only considers linear classifiers, the discussion is limited to how

SVM finds a linear hyperplane between classes. If the classes are linearly separable,

then the SVM problem is known as a hard margin classification problem whereas

when the classes are not linearly separable it is know as a soft margin classification

problem. First, the SVM strategy of finding a separating hyperplane for a hard margin

162 CHAPTER 6. BOTTOM-UP APPROACH

classification problem is explained and then the soft margin strategy, the general case,

is explained.

6.4.1 Hard margin classification problem

The hard margin problem is illustrated in Figure 6.5. SVM tries to find a function

f(x) = β0 + xTβ by solving the optimisation problem given in equation (6.4.1):

Figure 6.5: SVM in separable case.

max
β0,β

M

subject to
yif(xi)

‖β‖
≥M, i = 1, . . . , n.

(6.4.1)

Taking M = 1/ ‖β‖, equation (6.4.1) can be written as:

min
β0,β

1

2
‖β‖2

subject to yif(xi) ≥ 1, i = 1, . . . , n.

(6.4.2)

The convex optimisation problem given in equation (6.4.2) is solved by using the

Lagrange Multiplier technique (Boser et al., 1992; Hastie et al., 2009), where the

CHAPTER 6. BOTTOM-UP APPROACH 163

Lagrange primal function is given by:

Lp =
1

2
‖β‖2 −

n∑
i=1

αi[yif(xi)− 1] where αi’s are Lagrange multipliers. (6.4.3)

It can be shown that the examples whose αi > 0 define the separating hyperplane

(Hastie et al., 2009) and are called support vectors.

6.4.2 Soft margin classification problem

The soft margin problem is illustrated in Figure 6.6. If the classes are linearly non-

Figure 6.6: SVM in non-separable case.

separable, the optimisation problem given in equation (6.4.1) does not converge to

a solution as ∀xi, yif(xi) ≥ M, i = 1, . . . , n will not be satisfied. In order to relax

the constraints of the optimisation problem, a slack variable is introduced for each

example and the optimisation problem (6.4.1) now can be written as:

min
β0,β

1

2
‖β‖2 + Γ

n∑
i=1

ξi

subject to yif(xi) ≥ 1− ξi, ∀i

ξi ≥ 0

(6.4.4)

164 CHAPTER 6. BOTTOM-UP APPROACH

The Lagrange function corresponding to problem (6.4.4) is given by:

Lp =
1

2
‖β‖2 + Γ

n∑
i=1

ξi −
n∑
i=1

αi[yif(xi)− (1− ξi)]−
n∑
i=1

µiξi, (6.4.5)

where αi’s and µi are Lagrange multipliers.

Here too, the only examples that have αi > 0 contribute to the separating hy-

perplane f(x). The constant Γ, cost parameter or box constraint, is a user defined

parameter. Larger Γ values penalise the margin violations (
∑n

i=1 ξi) more and there-

fore, the margin is narrower. On the other hand, smaller Γ values allow some margin

violations and hence, the margin is larger. Thus, the choice of Γ determines the

width of the margin which in turn affects the accuracy of the classifier. Therefore,

the value of Γ which maximises the accuracy has to be estimated before the classifier

is constructed. Hastie et al. (2009) propose v-fold CV while A and Gopal (2010) use

separate validation set to estimate the optimal value of Γ. Barros et al. (2014) use

SVM at each non-terminal node to obtain the class separation hyperplane. However,

Barros et al. (2014) have not mentioned how the parameter Γ is estimated.

Ideally, at each non-terminal node the parameter Γ should be tuned to obtain a

locally optimal split. However, this consumes more time, especially for trees with a

large number of non-terminal nodes. Hence, in the experiments, the 10-fold CV is

used, prior to the tree building, to estimate the optimal value of Γ for the entire tree.

This Γ value can be regarded as a common optimal value rather than a node specific

optimal value.

6.5 The principle of HHCART in place of SVM

In the bottom-up induction approach, as given in Section 6.2.2, terminal nodes (clus-

ters) are merged upwards until the root node is reached. Once the two terminal nodes

are merged, a new class (meta-class) is formed and that meta-class is represented by

CHAPTER 6. BOTTOM-UP APPROACH 165

a non-terminal node in the tree. At each non-terminal node, a hyperplane is found

to separate the examples coming to that node. Barros et al. (2014) use SVM to find

the separating hyperplane. However, in the description of the bottom-up algorithm,

Barros et al. (2014) state that any binary classifier can be used to find a separat-

ing hyperplane in non-terminal nodes. Therefore, in this research, the split finding

methodology of the HHCART algorithm is used to find the separating hyperplane at

each non-terminal node. Hence, at each non-terminal node, the proposed algorithm,

HHBUT, first computes the covariance matrix of each class (or meta-class), and then

finds all the eigenvector of these matrices. Recall that there are only two classes at

each non-terminal node. The Householder matrices are then constructed using eigen-

vectors and the example set at the node is reflected using each matrix. axis-parallel

splits are then searched in the reflected spaces and the best split found is used as

the separating hyperplane at the non-terminal node. The overview of the proposed

algorithm, HHBUT, is given in Algorithm 10.

Therefore, in this research, SVM is replaced by the split finding principle of HH-

CART to find the separating hyperplane between classes. Both BIC criteria and CV

procedure are used to determine the number of clusters in a class. The results of

the trees based on BIC and CV are compared and a suggestion is made as to which

method is suitable to determine the number of clusters in the context of tree building.

6.6 Experiments on real life example sets

The main objectives of the experiments are:

[1] To find the most suitable method to estimate the number of clusters in the

bottom-up tree building context.

166 CHAPTER 6. BOTTOM-UP APPROACH

Data: Input: Training example set D.
initialization;
C -Number of Classes;
Rm Nodes - Number of remaining nodes;
Distance matrix, M ;
ht = empty;
for i=1:C do

Extract the examples that belong to the ith class in D, called Di;
Apply a clustering algorithm on Di to find clusters within Di. Let Θi be
the set of clusters found in the ith class;
Create a terminal node for each element in Θi and assign the corresponding
class label to each terminal node;
Compute the centre of each element in Θi;

end
Calculate the distance between each pair of terminal nodes (distance between
two centres) which are not belonging to the same class and store into M ;

Rm Nodes =
∑C

i=1 |Θi|;
if Rm Nodes 6= 1 then

while Rm Nodes > 1 do
Find the two nodes (t1, t2) which has the minimum distance (belonging
to two separate classes) . Distances are stored in M;
Merge t1 and t2 and make a new node t (non-terminal);
Compute the centre of the new node and assign a new label;
Update M . compute distances between existing nodes and t;
Compute the covariance matrices of examples belonging to t1 and t2 ;
Perform eigenanalysis of each covariance matrix;
For each eigenvector construct a Householder matrix;
Transform examples belonging to t ;
Perform axis-parallel splits in the reflected spaces;
ht = The best split found for the non-terminal node t;
Rm Nodes = Rm Nodes− 1;

end

end

Algorithm 10: Overview of the HHBUT algorithm.

CHAPTER 6. BOTTOM-UP APPROACH 167

[2] To compare the performances of SVM and HHBUT with respect to the classi-

fication accuracy.

An experiment is conducted using 5-fold CV. For each training fold, a finite mix-

ture model is fitted to identify the number of clusters within each class. The number

of clusters is estimated using a particular criterion, BIC or CV. Once the clusters are

identified, a split finding algorithm, SVM or HHBUT, is applied to build a decision

tree. Then the test fold is applied to estimate the accuracy. Ten repetitions of 5-

fold CV are used to estimate the final classification accuracy of a given example set.

Since there are two criteria to determine the number of clusters and two split finding

algorithms, four trees are induced for each example set, namely: (a) SVM with BIC

(b) SVM with CV (c) HHBUT with BIC, and (d) HHBUT with CV. Each tree is

induced and tested on the same training partition and testing partition respectively

and hence, a fair comparison is reached.

Two assumptions are made when fitting a finite mixture model to an example set

and are given below:

[1] It is assumed that the each cluster has a Gaussian distribution.

[2] Heteroscedastic covariance matrices in the mixture model.

As discussed in Section 6.3.1, the author assumes that each component of the

mixture model has a Gaussian distribution. Finite mixture models are fitted with

various covariance structures. For example, diagonal covariance matrices are chosen

assuming that there is no correlation between features. In some cases, the finite mix-

ture model is fitted with a common covariance matrix. However, in the experiment,

no prior assumptions on the structure of the covariance matrices are made and hence,

the results obtained generalise to any Gaussian mixture models.

Linear soft margin SVMs have a user input parameter, the cost parameter, which is

usually estimated using the available examples. Here again, either two-stage ordinary

168 CHAPTER 6. BOTTOM-UP APPROACH

CV or more ideally nested CV can be used for the estimation. However, as it is

identified in Section 5.2.1 in Chapter 5, estimation is done using two-stage ordinary

CV instead of nested CV. That is, prior to the tree building, a separate CV is run to

determine the optimal value of the cost parameter (Γ).

The example sets used in the experiments are given in the Appendix A. The

results obtained are given in Table 6.1 and Table 6.2.

Table 6.1: Classification results of SVM and HHBUT when BIC is used to determine
the number of clusters.

Dataset SVM HHBUT Tree Size Avg. no. of Clusters

BS 89.8 +/- 1.1 89.6 +/- 1.2 3.9 +/- 0.3 (1.0, 1.4, 1.5)
BC 94.6 +/- 0.6 96.5 +/- 0.4 4.3 +/- 0.2 (2.9, 1.4)
BH 85.0 +/- 1.5 81.7 +/- 1.2 5.7 +/- 0.6 (3.1,2.6)
BUPA 66.2 +/-5.6 66.2 +/- 2.2 4.2 +/-0.2 (2.0, 2.2)
GLASS 64.0 +/- 2.4 59.5 +/ -2.6 6.3 +/- 0.2 (1.0, 1.3, 1.0, 1.0, 1.0, 1.0)
BNK 95.8 +/- 3.4 96.8 +/- 0.7 12.1 +/- 1.2 (6.1, 6.0)
PIND 70.6 +/- 1.9 65.6 +/- 2.1 5.6 +/- 0.3 (3.1, 2.5)
WINE 96.5 +/- 1.1 91.3 +/- 2.3 3.0 +/- 0 (1.0, 1.0, 1.0)
SUR 68.4 +/- 3.0 73.4 + /- 1.6 4.9+ /- 0.2 (3.0, 1.9)
HRT 82.7 +/- 0.9 73.4 +/ - 2.1 2.0 +/- 0 (1.0,1.0)
CLI 90.00 +/- 1.0 90.7 +/- 1.6 2.0 +/- 0 (1.0,1.0)
SEED 94.2 +/-0.9 90.4 +/- 1.3 3.0 +/- 0 (1.0,1.0,1.0)

Unlike the top-down approach, tree size is not dependent on the split finding

algorithm in the bottom-up approach. In the latter approach, the cluster algorithm

finds the clusters in each class and all the clusters found then become the terminal

nodes of the tree. Hence, the number of terminal nodes is fixed prior to the tree

building process. Only two nodes are merged at a time. Therefore, the size of the

tree does not depend on the split finding algorithm.

The last column of each table shows the average number of clusters per class over

the 10 repetitions of 5-fold CV. The far left figure is for the class indexed by 1 whereas

the far right figure is for the class having the largest index. For all example sets, each

CHAPTER 6. BOTTOM-UP APPROACH 169

Table 6.2: Classification results of SVM and HHBUT when CV is used to determine
the number of clusters.

Dataset SVM HHBUT Tree Size Avg. no. of Clusters

BS 84.8 +/- 1.3 84.2 +/- 1.7 10.6 +/- 0.9 (1.3, 4.7,4.6)
BC 92.7 +/- 2.2 95.9 +/- 0.8 6.8 +/- 0.5 (4.7, 2.1)
BH 84.8 +/- 1.4 80.4 +/- 1.7 9.0 +/- 0.3 (4.7,4.3)
BUPA 63.6 +/-2.8 64.8 +/- 2.1 4.5 +/-0.3 (2.2, 2.3)
GLS 65.9 +/- 2.1 62.4 +/- 2.7 13.4 +/- 0.9 (3.8, 3.0,2.7, 1.6, 1.0, 1.3)
BNK 97.8 +/- 0.9 97.4 +/- 0.9 26.3 +/- 2.2 (14.2, 12.1)
PIND 70.0 +/- 1.8 65.2 +/- 1.0 8.1 +/- 0.4 (4.5, 3.6)
WINE 96.5 +/- 1.1 90.9 +/- 2.6 3.1 +/- 0.0 (1.0, 1.1, 1.0)
SUR 69.0 +/- 2.2 73.0 + /- 1.7 5.0+ /- 0.3 (3.2, 1.8)
HRT 80.4 +/- 2.2 72.5 +/ - 2.0 2.6 +/- 0.2 (1.6,1.0)
CLI 90.2 +/- 0.9 88.9 +/- 1.1 4.5 +/- 0.4 (1.1,3.4)
SEED 92.6 +/-1.2 89.2 +/- 1.1 4.7 +/- 0.3 (1.7,1.5,1.5)

class has at least one terminal node irrespective of the size of the class. This is a

significant property in the bottom-up approach as in the top-down approach, classes

with very few examples can have a chance of being eliminated from the tree at the

pruning stage.

Table 6.1 presents the accuracies of the SVM and HHBUT algorithms for each

example set when the number of clusters is determined by the BIC criterion. The

results show that the performance of HHBUT is significantly (1-SD rule) better than

SVM on the BC and SUR example sets whereas SVM perform significantly better

classification on the BH, PIND, WINE, HRT and SEED example sets. For all other

example sets, results do not indicate significant difference between two methods.

Table 6.2 shows the accuracies of SVM and HHBUT when CV is used to determine

the number of clusters. According to the empirical results, it is evident that the

relative performances of both the algorithms are similar to the relative performances

of them under the BIC criterion and thus, it can be concluded that the clustering

method has no interaction with the splitting method with respect to the accuracy.

170 CHAPTER 6. BOTTOM-UP APPROACH

In terms of accuracy, SVM performs significantly better than HHBUT on five

example sets whereas for the other seven example sets, HHBUT shows at least the

same or better performances than SVM (based on 1-SD rule). However, the better

performance of SVM comes with the extra cost of time because, prior to the tree

building, the cost parameter has to be estimated for each example set.

The results of Table 6.1 and Table 6.2 reveal that more compact trees can be

obtained when BIC is used to determine the number of clusters instead of CV. For

all example sets, except for BUPA and SUR the tree size of BIC-based clustering is

significantly smaller than that of CV-based clustering. Furthermore, BIC tree sizes

for the BS, BH, GLS, BNK and CLI example sets, are almost half of the corresponding

CV-based tree sizes.

However, it is important to note that, though the BIC method produces small

trees, there is no trade off between accuracy and tree size. In fact the accuracy of

the BIC tree on the BS example set is significantly higher than that of the CV based

tree. For all other example sets, there is no significant difference observed between

the BIC and CV methods on classification accuracies of both algorithms. Therefore,

using BIC helps in reducing the tree size without trading off the accuracy.

When considering the time complexity of SVM and HHBUT, the time complex-

ity of SVM, at a non-terminal node in the worst case scenario is O(n3) (Bordes,

Ertekin, Weston, & Bottou, 2005). Moreover, SVM needs a cost parameter to be

estimated prior to the tree building, which also affects the time complexity. Recall

that HHCART has time complexity of O(Cp2(p+n log n)) in the worst case scenario.

However, HHBUT always considers only two classes, and hence the time complexity

of HHBUT at a non-terminal node will be O(p2(p + n log n)) and for n >> p this

will be equivalent to O(p2n log n) . Therefore, HHBUT is a good alternative for SVM

when n >> p.

A comparison is performed on the results of the bottom-up approach and the

CHAPTER 6. BOTTOM-UP APPROACH 171

top-down approach. In the bottom-up approach, the BIC method performs better

than the CV method. Therefore, the results of the BIC-method is compared with

the results of the top-down approach. For both approaches, the comparison is made

against the tree building method which produces the best classification accuracy on

each example set. The results for the top-down approach are extracted from Table 3.1.

The results are obtained from two separate 5-fold CV, and thus, both approaches are

run on different partitions. The results are given in Table 6.3.

Table 6.3: Comparison of the top-down and bottom-up approaches.
Tree Abbreviations: S=SVM, HB=HHBUT, HH(A)=HHCART(A), OC1=OC1,
LC=(OC1-LC), AP=(OC1-AP).

Bottom-Up induction Top-Down induction

Example Set Tree Accuracy Size Tree Accuracy Size
BS S 89.8± 1.1 3.9± 0.3 HH(A) 93.7± 1.3 7.9± 1.7
BC HB 96.5± 0.4 4.3± 0.2 HH(A) 97.0± 0.3 2.4± 0.6
BH S 85.0± 1.5 5.7± 0.6 HH(A) 83.3± 0.9 6.5± 2.1
BUPA HB 66.2± 2.2 4.2± 0.2 OC1 66.9± 2.2 8.9± 6.1
GLASS S 64.0± 2.4 6.3± 0.2 LC 67.4± 2.0 12.0± 3.6
BNK HB 96.8± 0.7 12.1± 1.2 HH(A) 99.4±−0.2 3.0± 0.3
PIND S 70.6± 1.9 5.6± 0.3 AP 73.6± 1.4 15.9± 8.7
WINE S 96.5± 1.1 3.0± 0.0 HH(A) 91.3± 1.6 3.4± 0.3
SUR HB 73.4± 1.6 4.9± 0.2 HH(A) 73.5± 1.5 5.3± 2.7
HRT S 82.7± 0.9 2.0± 0.0 OC1 77.1± 2.5 3.6± 1.0
CLI HB 90.7± 1.6 2.0± 0.0 HH(A) 91.7± 1.0 2.4± 0.9
SEED S 94.2± 0.9 3.0± 0.0 OC1 92.9± 1.8 3.6± 0.6

According to the results, it is difficult to find which approach provides better

classification accuracy in general. The performances of the top-down approach on BS

and BNK are significantly (1-SD rule) better than the bottom-up approach while for

the WINE and HRT example sets the reverse is true. There is no significant difference

in performance on all other example sets. Therefore, it is difficult to recommend one

approach over the other. However, it is worthwhile to investigate the two approaches

on a given classifier. Thus, another analysis is carried out to examine which approach

172 CHAPTER 6. BOTTOM-UP APPROACH

is more suitable for the proposed split finding heuristic in this thesis. That is, the

comparison between HHCART(A) and HHBUT. The results for the HHCART(A)

and HHBUT algorithms are extracted from Table 3.1 and Table 6.1 respectively and

are given in Table 6.4.

Table 6.4: Comparison between HHCART(A) and HHBUT.

HHBUT HHCART(A)

Example Set Accuracy Size Accuracy Size
BS 89.6± 1.2 3.9± 0.3 93.7± 1.3 7.9± 1.7
BC 96.5± 0.4 4.3± 0.2 97.0± 0.3 2.4± 0.6
BH 81.7± 1.2 5.7± 0.6 83.3± 0.9 6.5± 2.1
BUPA 66.2± 2.2 4.2± 0.2 64.1± 2.6 6.5± 1.5
GLASS 59.5± 2.6 6.3± 0.2 60.3± 3.0 8.5± 3.0
BNK 96.8± 0.7 12.1± 1.2 99.4± 0.2 3.0± 0.3
PIND 65.6± 2.1 5.6± 0.3 72.2± 2.0 9.1± 5.1
WINE 91.3± 2.3 3.0± 0.0 91.3± 1.6 3.4± 0.3
SUR 73.4± 1.6 4.9± 0.2 73.5± 1.5 5.3± 2.7
HRT 73.4± 2.1 2.0± 0.0 74.1± 2.9 4.5± 1.7
CLI 90.7± 1.6 2.0± 0.0 91.7± 1.0 2.4± 0.9
SEED 90.4± 1.3 3.0± 0.0 90.4± 1.4 3.9± 0.8

According to the results, HHCART(A) performs significantly (1-SD rule) better

than HHBUT for the BS, BNK and PIND example sets. For all other example sets,

HHCART(A) and HHBUT perform similarly. However, the accuracies of HHBUT

are lower than that of HHCART for most of the problems. Therefore, HHCART(A)

can be recommended if higher accuracy is the major concern. It can be seen that the

average tree size of HHCART(A) is generally higher than that of HHBUT.

CHAPTER 6. BOTTOM-UP APPROACH 173

6.7 Shortcomings of the bottom-up approach

The top-down approach has a higher chance of finding better splits since the tree

building methodology keeps partitioning the feature space until each sub-region be-

comes homogeneous (or near homogeneous) with respect to a class. However, this

may increase the tree size. On the other hand, the bottom-up approach finds hyper-

planes merely to separate the terminal nodes which have already been determined.

Therefore, if the terminal nodes cannot be separated by a single hyperplane this

approach constructs heterogeneous sub-regions and hence, produces lower accuracy.

This can happen in two situations namely: (a) terminal nodes (clusters) are not lin-

early separable, or (b) terminal nodes (clusters) overlap each other. Both situations

are illustrated in Figure 6.7 and Figure 6.8 respectively.

(a) Boundary structure of HHBUT.
(b) Boundary structure of HHCART. Hyper-
plane number is in the parenthesis.

Figure 6.7: Linearly non-separable terminal nodes.

Figure 6.7a and Figure 6.8a show that the hyperplane generated by the bottom-up

approach to separate the red and blue terminal nodes (clusters). In Figure 6.7a, the

hyperplane separates the blue class from the red class however, some portion of the

red class has been misclassified to the region belonging to the blue class. When the

terminal nodes overlap, HHBUT produces (see Figure 6.8a) heterogeneous terminal

174 CHAPTER 6. BOTTOM-UP APPROACH

(a) Boundary structure of HHBUT.
(b) Boundary structure of HHCART. Hyper-
plane number is in the parenthesis.

Figure 6.8: Overlapped terminal nodes.

nodes. The bottom-up approach does not have a mechanism for further partitioning

these nodes and therefore, the final boundary structure contains heterogeneous sub-

region. However, Figure 6.7b and Figure 6.8b show that the top-down approach keeps

partitioning until each sub-region becomes homogeneous and thus, it has the ability

to find pure sub-regions at the expense of larger tree size.

Hence, the linear separability and non-overlapping terminal nodes are critical for

HHBUT’s success and they are heavily dependent on the clustering algorithm and

the spatial distribution of examples. Therefore, considering all these factors, the

top-down approach can be recommended for the heuristic presented in this thesis.

6.8 Conclusions and discussion

This chapter explores the possibilities of improvement in the bottom-up tree induction

approach. In this approach, a clustering method is used prior to the tree building to

identify the terminal nodes in the tree. A pair of nodes at a time are merged until the

root node is reached. The bottom-up method presented in Barros et al. (2014) used

CHAPTER 6. BOTTOM-UP APPROACH 175

a finite mixture modelling approach and the k-means algorithm to find the clusters.

SVMs are used for splitting. Moreover, Barros et al. (2014) use CV procedure to

determine the number of clusters. In this research, the bottom-up method is explored

in two directions: (a) search for an effective criterion to determine the number of

clusters, and (b) examine the effectiveness of the HHCART split finding principle

over SVM.

Based on the empirical evidence, it can be concluded that the performance of

SVMs is superior to HHBUT. However, for some problem domains HHBUT performs

better than SVMs. SVMs need to tune a cost parameter before starting tree building

and this can take considerable time. Except for the HRT and PIND example sets, the

2-SD confidence interval for the average accuracy of both type of trees has sufficient

overlap. Hence, HHBUT is also a competitive alternative to the SVM bottom-up

trees especially when n >> p.

The other important finding of this chapter is that the use of BIC to determine

the number of clusters helps to induce better trees both in terms of accuracy and

tree size. The CV procedure is shown to be ineffective in the decision tree context.

The number of clusters identified by the CV method is generally larger and hence

the tree size becomes large. Moreover, for some problems accuracy of the CV-based

method is lower than that of the BIC-based method. These facts reveal that the

cluster structure determined by CV is not favourable in the decision tree context.

Therefore, based on these empirical results, BIC can be recommended for use in the

bottom-up tree building procedures to determine the number of clusters.

Top-down and bottom-up induction approaches are compared. In general, there

is not enough evidence to recommend one approach over the other. When compar-

ing HHCART(A) and HHBUT the top-down approach can be recommended as it

produces better classification accuracies.

However, there is room for exploring the bottom-up approach further. In this

176 CHAPTER 6. BOTTOM-UP APPROACH

approach, clusters (terminal nodes or meta-class nodes) are selected to merge based

on the Euclidean distance between them. The cluster overlap is not taken into con-

sideration. Therefore, it is worthwhile to investigate cluster overlapping and find a

better criterion to select clusters for merging. Furthermore, ensemble methods are

popular in the decision tree context to reduce the final classification error. Hence, a

tree ensemble for bottom-up trees is worth exploring.

Chapter 7

Summary of conclusions and future
work

The main objectives of this research work are presented in Chapter 1 and a com-

prehensive description of methodologies used to achieve those objectives are given

in Chapter 3 - 6. This chapter summarises the entire work of this thesis briefly and

highlights the main contributions of the work towards the field of study. Furthermore,

future research directions, revealed through the study, are presented as possible re-

search areas.

7.1 Summary of conclusions

The main focus of this thesis was to propose a time efficient oblique DT induction

methodology using the Householder reflection. A DT is a non-parametric statistical

model which uses a set of rules to predict a class or a value of a response variable given

a feature vector. If the prediction is a class, then the tree is known as a classification

tree, otherwise it is a regression tree. The work presented in this thesis focused on

inducing classification trees. Classification trees are widely applied in many fields,

such as, medicine, engineering and marketing.

177

178 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Chapter 2 presented the early attempts of inducing oblique trees. Three cate-

gories of oblique decision tree induction methods were identified based on the split

finding mechanism of the tree. The use of optimisation techniques can be regarded as

a benchmark method as it does not make any assumptions about the distribution of

examples or boundary structure between classes when finding splits. However, these

methods are computationally expensive. Hence, standard statistical techniques such

as linear discriminant analysis are used to find splits in a shorter time. Although they

are fast, they often make assumptions about the structure of the feature covariance

matrices. Meanwhile, DTs based on heuristic arguments are explored as alternative

methods. In heuristic methods, a logic is assumed about the structure of the class

separating boundary. These methods have been shown to be efficient and competitive

compared with optimisation based DT methods. Robertson et al. (2013) proposed the

CARTopt algorithm, which uses a heuristic oblique decision trees to find a minimiser

of a non-smooth function. The CARTopt oblique DT first makes the orientation of a

class parallel to e1 axis using a transformation. The orientation of a class is captured

by the dominant eigenvector, d, of the class covariance matrix. Examples are then

transformed using a Householder matrix which is defined using d, and axis-parallel

splits are searched in the transformed space. The best split found in the transformed

space will be oblique in the original space. However, the CARTopt algorithm is

specifically designed to solve optimisation problems and hence, the CARTopt oblique

decision tree is only capable of classifying two-class problems. Moreover, the trans-

formation is done only once at the root node. This thesis explores the concept used

in the CARTopt oblique decision tree to introduce a range of decision trees based on

the Householder reflection for statistical data classification.

The significant contribution of this thesis is introduced in Chapter 3. The CAR-

Topt oblique decision tree concept is comprehensively extended in a number of ways

to induce a time efficient oblique decision tree for statistical data classification as an

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 179

alternative to the decision trees which use optimisation techniques. HHCART is a

multi-class classifier. Different classes can take different orientations in the feature

space. Moreover, the orientation of a class at different non-terminal nodes can also be

varied. Therefore, HHCART performs Householder reflections at each non-terminal

node to transform the example set at that node. This strategy immensely helps in

effective classification, especially for multi-class data classification.

Classification problems originate from a wide range of disciplines and hence, the

feature space often contains both qualitative and quantitative features. However,

most oblique decision trees have been designed to work only with quantitative fea-

tures which limits the applicability of such trees. On the other hand, HHCART is

capable of handling both qualitative and quantitative features in the same oblique

split. Therefore, HHCART is practical and useful decision tree algorithm which can

be used in a wide range of classification problems.

Two versions of HHCART were presented, namely: (a) HHCART(A), and (b)

HHCART(D). At each non-terminal node, HHCART(A) uses all the eigenvectors from

each classes’ covariance matrix to define Householder matrices. HHCART(D) instead

uses only the dominant eigenvector of each class to define Householder matrices. The

empirical results show that the performances of HHCART(A) are better than that of

benchmark decision trees for most of problem domains. HHCART(D) performances

are compatible with those benchmark methods and also, the time complexity is less

than that of HHCART(A). Therefore, HHCART(D) is a good alternative for higher

dimensional classification problems.

The other contribution from Chapter 3 was the investigation of effect of sampling

scheme used to construct CV partitions on the tree accuracy. It was found that using

stratified random sampling based CV increases the classification accuracy of minority

classes.

Chapter 4 presented the proposed modification of HHCART in order to handle

180 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

massive example sets. In the first instance, it was shown that HHCART can be

implemented as a disk resident algorithm. Then a HHCART implementation under

the parallel computing architecture was introduced. The parallel version is helpful

not only to handle massive example sets but also it helps to speed up the induction

time by distributing the workload to different slave processors. The unique feature

of HHCART compared to most of the other oblique decision trees is that it can

be parallelised under all parallelism strategies such as task, data and hybrid paral-

lelism. Most decision trees implemented under parallel computing architecture use

axis-parallel splits. Therefore, the use of axis-parallel splits (in the transformed space)

in HHCART enables the algorithm to be easily parallelised. Thus, the proposed HH-

CART algorithm can be considered as a flexible oblique tree algorithm where it can

be implemented under any computing architecture and is a good alternative to handle

classification problems with ever increasing size of data.

The two versions of HHCART, HHCART(A) and HHCART(D), use eigenvectors

of classes’ covariance matrices to construct Householder matrices. However, the user

can replace the eigenvector, by which the Householder matrix is constructed (equa-

tion (3.3.1)), with other vectors. In Chapter 5 two such vectors are examined, namely:

(a) the normal vector of the angular bisectors of the two clustering hyperplanes defined

in Manwani and Sastry (2012), and (b) class representative vectors. Angular bisec-

tors are used as splitting hyperplanes in the GDT algorithm. However, the HHGDT

algorithm presented in Chapter 5 uses the normal vector of the angular bisectors to

construct the Householder reflection. It is shown that HHGDT significantly improves

the performance of GDT, either in terms of accuracy or tree size.

The GDT algorithm has a tuning parameter, the allowable node misclassification

rate ε, which should be estimated prior to the tree building. Manwani and Sastry

(2012) use the two stage ordinary CV to estimate ε although the ideal way is to

use nested CV. Therefore, the method used in Manwani and Sastry (2012) may lead

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 181

to an optimistic bias in the estimator. Within the scope of the literature review of

this thesis, the author was unable to find a reference to justify the use of two stage

ordinary CV over nested CV. Therefore, another experiment was conducted and it

was empirically shown that two stage ordinary CV is a good alternative to nested CV

for estimating ε.

Furthermore, a new methodology is proposed to find clustering hyperplanes under

the rank deficiency of matrices. The method is useful not only in GDT or HHGDT

but also in any other situations where the solution of a generalised eigenvalue problem

is required when rank deficiency of matrices exists.

The class representative vectors (CRV) are derived and proposed as alternative

vectors to the eigenvectors in equation (3.3.1). Empirical results show that the new

algorithm, HHCRV, which uses CRVs to construct Householder matrices, is a com-

petitive method when compared with benchmark decision trees.

The final objective of this thesis was to use the Householder reflection in the

bottom-up approach to induce trees in bottom-up fashion. The bottom-up strategy

first uses a clustering algorithm to find clusters within each class. These clusters

are considered as terminal nodes and then a pair of terminal nodes (which do not

belong to the same class) are merged until the root node is reached. The clustering

algorithm plays an important role in bottom-up approach. Barros et al. (2014) use

finite Gaussian mixture model with the CV procedure to determine the number of

clusters. In this work, it was found that the CV method is inferior to the BIC

method in determining the number of clusters in terms of decision tree induction

context. Empirical results show that the BIC based clustering is more accurate and

produces more compact trees compared with the CV based clustering.

Barros et al. (2014) use SVM to find the separating hyperplane at each non-

terminal node. In this work, the SVM method is replaced by the concept of HHCART

to propose a new algorithm, HHBUT. The results show that SVM produces better

182 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

trees (based on 1-SD rule) for most of the classification problems considered. However,

the better results come with extra computational time, especially as SVM has a tuning

parameter which has to be estimated prior to the tree building. The classification

accuracy of HHBUT is similar to that of SVM tree under 2-SD rule and therefore,

HHBUT is also a good alternative to SVM.

7.2 Future work

HHCART is an easily parallelisable algorithm, a significant property when compared

with benchmark oblique decision tree algorithms. Therefore, it will be an impor-

tant contribution to the field of statistical learning/machine learning to introduce

the parallel implementation of the HHCART algorithm. Moreover, Chapter 4 pre-

sented the methodological development of the parallel version of HHCART. Hence,

the author wishes to implement the parallel version of HHCART which makes the

proposed tree induction algorithm in this thesis a comprehensive tool for statistical

data classification.

Tree structured classifiers are often regarded as sensitive to data perturbation.

Hence, random forest models have been explored and have been shown to be more

robust than a single tree. Random forest is a collection of axis-parallel unpruned

trees where each unpruned tree finds the best split at each non-terminal node in the

following way: (a) a subset of features is selected randomly, and (b) the best axis-

parallel split is chosen from the subset to split the node. The HHCART algorithm can

easily be modified to construct a random forest based oblique tree classifiers, where a

subset of features can be selected in transformed spaces. However, the best split found

in a transformed space is an oblique in the original space. Therefore, implementation

of the random forest version of HHCART will be an important future work.

In the bottom-up tree building approach, cluster analysis is performed within each

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 183

class. Therefore, clusters found in one class are independent of the clusters found in

another class. Hence, clusters belonging to different classes can overlap in the feature

space. This may have an adverse effect on classification if the degree of overlap is

severe. A measure of the degree of cluster overlap would be important to determine

whether those clusters represent a specific class (if the degree of overlap is less than

a threshold) or if the class of clusters are undecided (if the degree of overlap is grater

than a threshold). Thus, inducing a bottom-up oblique DT taking into account the

degree of cluster overlap will be an important future study.

As mentioned in Section 6.7, overlapping clusters belonging to different classes or

linearly inseparable clusters prevent the bottom-up tree building approach producing

better results when compared with the top-down approach. On the other hand, the

appealing feature in this approach is that it produces at least one terminal node for

each class whereas in the top-down approach, terminal nodes belonging to rare classes

can be eliminated at the pruning stage. Hence, to preserve the important qualities

and remove the shortcomings of both algorithms, it is worthwhile to investigate the

possibility of inducing a hybrid tree building approach. In this approach, tree building

starts with cluster analysis and identifies terminal nodes. Terminal nodes are then

merged upwards until the root node is reached. Then the tree building procedure

shifts to the top-down approach from impure terminal nodes (spatially overlapping

clusters). These nodes can be split further until each node becomes homogeneous (or

near homogeneous) with respect to a class.

184 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Appendix A

Downloaded datasets used in the

analysis

The following datasets were downloaded from UCI repository (Lichman, 2013). The

example sets in Table A.1 contain only quantitative features while the example sets

in Table A.2 contain both type of features. The descriptions of the example sets are

given in the Section A.1.

A.1 Descriptions of the example sets

[1] Balance Scale

This example set was generated to model psychological experimental results.

Each example is classified as having the balance scale tip to the right, tip to

the left, or be balanced.

[2] Boston Housing

This example set contains the housing values in suburbs of Boston along with

13 predictor variables. The intention is to predict the housing value which is a

185

186 APPENDIX A. DOWNLOADED DATASETS USED IN THE ANALYSIS

quantitative feature. However, Murthy converts the problem into a classification

problem as follows: if the house value < 21000, then the category =1 otherwise

2.

[3] Breast Cancer

This example set was compiled on the problem of diagnosing the two types of

the breast cancer namely: benign and malignant using nine predictor variables.

[4] BUPA

The results of 5 blood tests, which are thought to be sensitive to the liver

disorder of male individuals have been stored.

[5] Glass

The classification task of this example set is to predict the type of the glass

using its oxide content.

[6] Heart

This example set contains 13 attributes to classify whether a patient suffering

from a heart disease or not.

[7] BankNote

Examples were extracted from images that were taken from genuine and forged

banknote-like specimens. The classification task is to predict the given note is

genuine or forged.

[8] Pima Indian

The example set contains the observations made on 21 year or older Pima Indi-

ans. The aim is to diagnostic whether a given patient shows signs of diabetes.

[9] Shuttle

APPENDIX A. DOWNLOADED DATASETS USED IN THE ANALYSIS 187

The shuttle example set contains 9 attributes all of which are numerical. Ap-

proximately 80% of the data belongs to class 1. Hence, the aim is to obtain an

accuracy of 99 - 99.9%.

[10] WINE

The example set is complied using the results of a chemical analysis of wines

grown in the same region in Italy but derived from three different cultivars.

[11] Letter

Here the objective is to identify each of a large number of black-and-white

rectangular pixel displays as one of the 26 capital letters in the English alphabet.

[12] Survival

The example set contains cases from study conducted on the survival of patients

who had undergone surgery for breast cancer. The aim is to predict whether

the patient is survived (died before 5 years of the surgery).

[13] Climate

The objective of the problem is to predict climate model simulation outcomes

given scaled values of climate model input parameters.

[14] Seed

Measurements of geometrical properties of kernels belonging to three different

varieties of wheat are stored. The objective is to predict the variety given the

geometrical properties of kernels.

[15] Income

The prediction task of this example set is to determine whether a person makes

over 50K a year.

188 APPENDIX A. DOWNLOADED DATASETS USED IN THE ANALYSIS

[16] Bank

The example set is related with direct marketing campaigns (phone calls) of a

Portuguese banking institution. The classification goal is to predict if the client

will subscribe a term deposit (variable y).

[17] StatLog

The example set contains the information extracted from credit card applica-

tions without disclosing the identification.

Table A.1: Real Data sets with quantitative features

Data set No. of No. of No. of
feature classes examples

Balance Scale (BS) 4 3 625
Boston Housing (BH) 13 2 506
Breast Cancer (BC) 9 2 638

BUPA 6 2 345
Glass (GLS) 9 6 214
Heart (HRT) 13 2 270

BankNote (BNK) 4 2 1372
Pima Indian (PIND) 8 2 768

Shuttle (SHUT) 9 7 58000
Wine(WINE) 13 3 178
Letter (LET) 16 26 20000

Survival (SUR) 3 2 306
Climate (CLI) 18 2 540
Seed (SEED) 6 3 210

APPENDIX A. DOWNLOADED DATASETS USED IN THE ANALYSIS 189

Table A.2: Real Data sets with qualitative and quantitative features

Data Set No. of features No. of No. of
(No. of Qualitative) Classes Examples

Income 14(8) 2 45222
Bank 16(9) 2 45211

StatLog 14(8) 2 690

190 APPENDIX A. DOWNLOADED DATASETS USED IN THE ANALYSIS

Appendix B

Nested CV procedure

Some classifiers require input parameters before the classifier is trained. For example,

Geometric Decision Tree (GDT) (Manwani & Sastry, 2012) requires allowable node

level misclassification rate ε, while the soft margin support vector machine requires

a cost parameter or box constraint before it is trained. In the small sample cases,

practitioners may not be able to use a separate portion of the example set to estimate

these parameters. Therefore, they are estimated using the same examples on which

the classifier is trained and tested. Usually v-fold CV is used to test the classifier.

However, in this situation the use of ordinary v-fold CV may not provide a proper

parameter estimation. Therefore, the nested CV procedure is used to overcome the

drawback of the ordinary CV procedure and it is given below.

Let v-fold CV be used to estimate the accuracy of a classifier. First, the entire

sample is partitioned to v disjoint subsets. At each time v − 1 subsets are used

to train the classifier and the other set is used to test the classifier. In the nested

CV procedure, those v − 1 subsets, the training set, are used to estimate the input

parameters. The strategy is to perform another m-fold ordinary CV on v−1 subsets.

A Schematic of the nested CV procedure is given below. Assume that the objective

191

192 APPENDIX B. NESTED CV PROCEDURE

of the nested CV is to estimate the node level misclassification rate ε of GDT. Let v

and m be 5.

Figure B.1: Schematic of the nested CV procedure.

The steps of the nested CV procedure for a general case are given below.

1. Example set is partitioned into v-folds.

2. A training set Dtrain is extracted: comprises of v − 1 folds. The remaining fold

is the test set, Dtest.

3. Dtrain is again partitioned into m-folds.

4. Ordinary CV procedure is applied to m-folds to estimate the optimal value for

the parameter, ε. That is a sequence of ε values are generated from 0.05 to 0.4

with step size of 0.01. For each ε, a m-fold CV procedure is run and accuracy

is estimated. The ε value which produces the highest accuracy was chosen as

the optimal ε.

APPENDIX B. NESTED CV PROCEDURE 193

5. Use Dtrain with the optimal value of the parameter to train the classifier.

6. Dtest is classified using the classifier and the accuracy is estimated.

7. Repeat steps 2-6 v times assigning a new fold to Dtest at the step 2.

194 APPENDIX B. NESTED CV PROCEDURE

References

A, K. M., & Gopal, M. (2010). A hybrid svm based decision tree. Pattern Recognition,

43 (12), 3977–3987.

Abas, A. R. (2013). On determining efficient finite mixture models with compact and

essential components for clustering data. Egyptian Informatics Journal , 14 (1),

79–88.

Amado, N., Gama, J., & Silva, F. (2001). Parallel implementation of decision tree

learning algorithms. In Progress in artificial intelligence (pp. 6–13). Springer.

Amasyah, M., & Ersoy, O. (2008). Cline: A new decision-tree family. Neural Net-

works, IEEE Transactions on, 19 (2), 356–363.

Ancona, N., Maestri, R., Marinazzo, D., Nitti, L., Pellicoro, M., Pinna, G., & Stra-

maglia, S. (2005). Leave-one-out prediction error of systolic arterial pressure

time series under paced breathing. Physiological measurement , 26 (4), 363.

Barros, R. C., Jaskowiak, P. A., Cerri, R., & de Carvalho, A. C. (2014). A framework

for bottom-up induction of oblique decision trees. Neurocomputing , 135 , 3–12.

Bell, J. F. (1996). Application of classification trees to the habitat preference of

upland birds. Journal of Applied Statistics , 23 (2-3), 349–360.

Bellman, R. (1961). Adaptive control processes: a guided tour (Vol. 4). Princeton

university press Princeton.

195

196 REFERENCES

Ben-Haim, Y., & Tom-Tov, E. (2010). A streaming parallel decision tree algorithm.

The Journal of Machine Learning Research, 11 , 849–872.

Bennett, K. P. (1992). Decision tree construction via linear programming. Center for

Parallel Optimization, Computer Sciences Department, University of Wiscon-

sin.

Bordes, A., Ertekin, S., Weston, J., & Bottou, L. (2005). Fast kernel classifiers

with online and active learning. The Journal of Machine Learning Research, 6 ,

1579–1619.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal

margin classifiers. In Proceedings of the fifth annual workshop on computational

learning theory (pp. 144–152).

Braha, D., & Shmilovici, A. (2003). On the use of decision tree induction for discovery

of interactions in a photolithographic process. Semiconductor Manufacturing,

IEEE Transactions on, 16 (4), 644–652.

Breiman, L., Olshen, R., Friedman, J., & Stone, C. (1984). Classification and regres-

sion trees. CRC press.

Brodley, C. E., & Utgoff, P. E. (1995). Multivariate decision trees. Machine learning ,

19 (1), 45–77.

Campos, M. M., Stengard, P. J., & Milenova, B. L. (2005). Data-centric automated

data mining. In Machine learning and applications, 2005. proceedings. fourth

international conference on (pp. 8–pp).

Cantu-Paz, E. (2000). Efficient and accurate parallel genetic algorithms (Vol. 1).

Springer Science & Business Media.

REFERENCES 197

Cantu-Paz, E., & Kamath, C. (2003). Inducing oblique decision trees with evolu-

tionary algorithms. Evolutionary Computation, IEEE Transactions on, 7 (1),

54–68.

Chen, L.-F., Liao, H.-Y. M., Ko, M.-T., Lin, J.-C., & Yu, G.-J. (2000). A new lda-

based face recognition system which can solve the small sample size problem.

Pattern recognition, 33 (10), 1713–1726.

Dahan, H., Cohen, S., Rokach, L., & Maimon, O. (2014). Proactive data mining

using decision trees. In Proactive data mining with decision trees. Springer.

Decaestecker, C., Remmelink, M., Salmon, I., Camby, I., Goldschmidt, D., Petein,

M., . . . Kiss, R. (1996). Methodological aspects of using decision trees to

characterise leiomyomatous tumors. Cytometry , 24 (1), 83–92.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the em algorithm. Journal of the royal statistical society.

Series B (methodological), 1–38.

Devroye, L., Györfi, L., & Lugosi, G. (1996). A probabilistic theory of pattern recog-

nition. Springer (New York).

DeWitt, D. J., Naughton, J. F., & Schneider, D. A. (1991). Parallel sorting on a

shared-nothing architecture using probabilistic splitting. In Parallel and dis-

tributed information systems, 1991., proceedings of the first international con-

ference on (pp. 280–291).

Duda, R. O., Hart, P. E., & Stork, D. G. (1999). Pattern classification. John Wiley

& Sons,.

Esposito, F., Malerba, D., Semeraro, G., & Kay, J. (1997). A comparative analysis of

methods for pruning decision trees. Pattern Analysis and Machine Intelligence,

198 REFERENCES

IEEE Transactions on, 19 (5), 476–491.

Everitt, s. B., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis. John

Wiley & Sons.

Filzmoser, P., Liebmann, B., & Varmuza, K. (2009). Repeated double cross validation.

na.

Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from

remotely sensed data. Remote sensing of environment , 61 (3), 399–409.

Gama, J., & Brazdil, P. (1999). Linear tree. Intelligent Data Analysis , 3 (1), 1–22.

Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers & Operations Research, 13 (5), 533–549.

Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining. MIT press.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning

(Vol. 2) (No. 1). Springer.

Heath, D., Kasif, S., & Salzberg, S. (1993). Induction of oblique decision trees. In

Ijcai (pp. 1002–1007).

Henrichon, G., Ernest, & Fu, K.-S. (1969). A nonparametric partitioning procedure

for pattern classification. Computers, IEEE Transactions on, 100 (7), 614–624.

Hu, J., Deng, J., & Sui, M. (2009). A new approach for decision tree based on principal

component analysis. In Computational intelligence and software engineering,

2009. cise 2009. international conference on (pp. 1–4).

Hyafil, L., & Rivest, R. L. (1976). Constructing optimal binary decision trees is

np-complete. Information Processing Letters , 5 (1), 15–17.

Ittner, A., & Schlosser, M. (1996). Non-linear decision trees-ndt. In Icml (pp.

252–257).

REFERENCES 199

Iyengar, V. S. (1999). Hot: Heuristics for oblique trees. In Tools with artificial

intelligence, 1999. proceedings. 11th ieee international conference on (pp. 91–

98).

Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis

(Vol. 5). Prentice hall Englewood Cliffs, NJ.

Joshi, M. V., Karypis, G., & Kumar, V. (1998). Scalparc: A new scalable and

efficient parallel classification algorithm for mining large datasets. In Parallel

processing symposium, 1998. ipps/spdp 1998. proceedings of the first merged

international... and symposium on parallel and distributed processing 1998 (pp.

573–579).

Kim, H., & Loh, W.-Y. (2001). Classification trees with unbiased multiway splits.

Journal of the American Statistical Association, 96 (454).

Kim, H., & Loh, W.-Y. (2003). Classification trees with bivariate linear discriminant

node models. Journal of Computational and Graphical Statistics , 12 (3), 512–

530.

Kolakowska, A., & Malina, W. (2005). Fisher sequential classifiers. Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 35 (5), 988–998.

Kretowski, M. (2004). An evolutionary algorithm for oblique decision tree induc-

tion. In Artificial intelligence and soft computing-icaisc 2004 (pp. 432–437).

Springer.

Krstajic, D., Buturovic, L. J., Leahy, D. E., & Thomas, S. (2014). Cross-validation

pitfalls when selecting and assessing regression and classification models. Jour-

nal of cheminformatics , 6 (1), 1–15.

Kufrin, R. (1997). Decision trees on parallel processors. Machine Intelligence and

200 REFERENCES

Pattern Recognition, 20 , 279–306.

Landeweerd, G., Timmers, T., Gelsema, E. S., Bins, M., & Halie, M. (1983). Bi-

nary tree versus single level tree classification of white blood cells. Pattern

Recognition, 16 (6), 571–577.

Li, N., Zhao, L., Chen, A.-X., Meng, Q.-W., & Zhang, G.-F. (2009). A new heuris-

tic of the decision tree induction. In Machine learning and cybernetics, 2009

international conference on (Vol. 3, pp. 1659–1664).

Li, X. B., Sweigart, J. R., Teng, J. T., Donohue, J. M., Thombs, L. A., & Wang,

S. M. (2003). Multivariate decision trees using linear discriminants and tabu

search. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE

Transactions on, 33 (2), 194–205.

Li, Y., Dong, M., & Kothari, R. (2005). Classifiability-based omnivariate decision

trees. Neural Networks, IEEE Transactions on, 16 (6), 1547–1560.

Lichman, M. (2013). UCI machine learning repository. Retrieved from http://

archive.ics.uci.edu/ml

Lim, T.-S., Loh, W.-Y., & Shih, Y.-S. (2000). A comparison of prediction accu-

racy, complexity, and training time of thirty-three old and new classification

algorithms. Machine learning , 40 (3), 203–228.

Liu, K., Cheng, Y.-Q., Yang, J.-Y., & Liu, X. (1992). An efficient algorithm for foley–

sammon optimal set of discriminant vectors by algebraic method. International

Journal of Pattern Recognition and Artificial Intelligence, 6 (05), 817–829.

Loh, W.-Y., & Shih, Y.-S. (1997). Split selection methods for classification trees.

Statistica sinica, 7 (4), 815–840.

Loh, W.-Y., & Vanichsetakul, N. (1988). Tree-structured classification via generalized

REFERENCES 201

discriminant analysis. Journal of the American Statistical Association, 83 (403),

715–725.

López-Chau, A., Cervantes, J., López-Garćıa, L., & Lamont, F. G. (2013). Fisher’s

decision tree. Expert Systems with Applications , 40 (16), 6283–6291.

Malerba, D., Esposito, F., & Semeraro, G. (1996). A further comparison of simplifica-

tion methods for decision-tree induction. In Learning from data (pp. 365–374).

Springer.

Manwani, N., & Sastry, P. (2012). Geometric decision tree. Systems, Man, and

Cybernetics, Part B: Cybernetics, IEEE Transactions on, 42 (1), 181–192.

Marron, J. S., & Wand, M. P. (1992). Exact mean integrated squared error. The

Annals of Statistics , 712–736.

McLachlan, G., & Peel, D. (2004). Finite mixture models. John Wiley & Sons.

Mehta, M., Agrawal, R., & Rissanen, J. (1996). Sliq: A fast scalable classifier for

data mining. In Advances in database technologyedbt’96 (pp. 18–32). Springer.

Mingers, J. (1987). Expert systems-rule induction with statistical data. Journal of

the operational research society , 39–47.

Mingers, J. (1989a). An empirical comparison of pruning methods for decision tree

induction. Machine learning , 4 (2), 227–243.

Mingers, J. (1989b). An empirical comparison of selection measures for decision-tree

induction. Machine learning , 3 (4), 319–342.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear

regression analysis (Vol. 821). John Wiley & Sons.

Moro, S., Laureano, R., & Cortez, P. (2011). Using data mining for bank direct

marketing: An application of the crisp-dm methodology. In Proceedings of

202 REFERENCES

european simulation and modelling conference-esm’2011 (pp. 117–121).

Murthy, S., Kasif, S., & Salzberg, S. (1994). A system for induction of oblique decision

trees. Journal of artificial intelligence research.

Murthy, S., & Salzberg, S. (n.d.). The OC1 decision tree system., year = 1995, url

= //http://salzberg-lab.org/software/,.

Murthy, S., & Salzberg, S. (1995a). Lookahead and pathology in decision tree induc-

tion. In Ijcai (pp. 1025–1033).

Murthy, S., & Salzberg, S. L. (1995b). On growing better decision trees from data

(Unpublished doctoral dissertation). Citeseer.

Nelder, J. A., & McCullagh, R. (1989). Generalized linear models. Springer.

Olaru, C., & Wehenkel, L. (2003). A complete fuzzy decision tree technique. Fuzzy

sets and systems , 138 (2), 221–254.

Patil, D. D., Wadhai, V., & Gokhale, J. (2010). Evaluation of decision tree pruning

algorithms for complexity and classification accuracy. International Journal of

Computer Applications , 11 (2).

Podgorelec, V., Kokol, P., Stiglic, B., & Rozman, I. (2002). Decision trees: an

overview and their use in medicine. Journal of medical systems , 26 (5), 445–

463.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning , 1 (1), 81–106.

Quinlan, J. R. (1987). Simplifying decision trees. International journal of man-

machine studies , 27 (3), 221–234.

Quinlan, J. R. (1993). C4.5: programs for machine learning. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.

Robertson, B. L., Price, C. J., & Reale, M. (2013). Cartopt: a random search method

REFERENCES 203

for nonsmooth unconstrained optimization. Computational Optimization and

Applications , 56 (2), 291–315.

Robertson, B. L., Price, C. J., & Reale, M. (2014). A cartopt method for bound

constrained global optimization. ANZIAM Journal , 55 , 109–128.

Roeder, K., & Wasserman, L. (1997). Practical bayesian density estimation using

mixtures of normals. Journal of the American Statistical Association, 92 (439),

894–902.

Rokach, L. (2008). Data mining with decision trees: theory and applications (Vol. 69).

World scientific.

Sarkar, U., Chakrabarti, P., Ghose, S., & DeSarkar, S. (1994). Improving greedy

algorithms by lookahead-search. Journal of Algorithms , 16 (1), 1–23.

Scull, P., Franklin, J., & Chadwick, O. (2005). The application of classification tree

analysis to soil type prediction in a desert landscape. Ecological Modelling ,

181 (1), 1–15.

Shafer, J., Agrawal, R., & Methta, M. (1996). Sprint: A scalable parallel classifier

for data mining. In Proc. 22nd Int. Conf. Very Large Databases , 544–555.

Shawe-Taylor, J., & Cristianini, N. (2000). Support vector machines. An Introduction

to Support Vector Machines and Other Kernel-based Learning Methods , 93–112.

Smyth, P. (1996). Clustering using monte carlo cross-validation. In Kdd (pp. 126–

133).

Smyth, P. (2000). Model selection for probabilistic clustering using cross-validated

likelihood. Statistics and Computing , 10 (1), 63–72.

204 REFERENCES

Sreenivas, M. K., Alsabti, K., & Ranka, S. (1999). Parallel out-of-core divide-and-

conquer techniques with application to classification trees. In Parallel process-

ing, 1999. 13th international and 10th symposium on parallel and distributed

processing, 1999. 1999 ipps/spdp. proceedings (pp. 555–562).

Srivastava A, A., Han, E.-H., Kumar, V., & Singh, V. (2002). Parallel formulations

of decision-tree classification algorithms. Springer.

Tirenni, G., Kaiser, C., & Herrmann, A. (2007). Applying decision trees for value-

based customer relations management: Predicting airline customers’ future val-

ues. Journal of Database Marketing & Customer Strategy Management , 14 (2),

130–142.

Utgoff, P. E., & Brodley, C. E. (1991). Linear machine decision trees. COINS

Technical Report 91-10 .

V, K., Grama, A., Gupta, A., & Karypis, G. (1994). Introduction to parallel com-

puting: design and analysis of algorithms. Benjamin/Cummings Publishing

Company Redwood City, CA.

Vapnik, V. (2000). The nature of statistical learning theory. Springer Science &

Business Media.

Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation

for model selection. BMC bioinformatics , 7 (1), 91.

Yang, Z. R., & Zwolinski, M. (2001). Mutual information theory for adaptive mixture

models. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

23 (4), 396–403.

Yildiz, O. T., & Alpaydin, E. (2000). Linear discriminant trees. In Icml (pp. 1175–

1182).

REFERENCES 205

Yıldız, O. T., & Dikmen, O. (2007). Parallel univariate decision trees. Pattern

Recognition Letters , 28 (7), 825–832.

