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Abstract Karmarkar's algorithm for linear programming has become a highly 
active field of research, because it is claimed to be supremely efficient for the 
solution of very large calculations, because it has polynomial-time complexity, 
and because its theoretical properties are interesting. We describe and study 
the algorithm in the usual way that employs projective transformations and 
that requires the linear programming problem to be expressed in a standard 
form, the only inequality constraints being simple bounds on the variables. 
We then eliminate the dependence on the transformations analytically, which 
gives the form of the algorithm that can be viewed as a barrier function method 
from nonlinear programming. In this case the directions of the changes to the 
variables are solutions of quadratic programming calculations that have no 
general inequality constraints. By using some of the equalities to eliminate 
variables, we find a way of applying the algorithm directly to linear program­
ming problems in general form. Thus, except for the addition of at most two 
new variables that make all but one of the constraints homogeneous, there is 
no need to increase the original number of variables, even when there are very 
many constraints. We apply this procedure to a two variable problem with 
an infinite number of constraints that are derived from tangents to the unit 
circle. We find that convergence occurs to a point that, unfortunately, is not 
the solution of the calculation. In finite cases, however, our way of treating 
general linear constraints directly does preserve all the convergence properties 
of the standard form of Karmarkar's algorithm. 
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1. Introduction 

A linear programming problem is the minimization of a linear function of real 
variables subject to linear constraints on the values of the variables, which may 
include equality conditions as well as inequalities. We let n be the number of 
variables, x E Rn be the vector of variables, cTx be the objective function 
where c is a constant vector in Rn, and S be the set of points in Rn that 
satisfy the linear constraints. We assume that S is nonempty and bounded, 
and, due to linearity, it is a convex polytope. We define a vertex to be a point 
of S that is on the boundaries of n linearly independent constraints and an 
edge to be a straight line segment. in S that is contained in the intersection of 
n- l boundaries of linearly independent constraints. Thus the two end points 
of each edge are vertices. Thinking geometrically, it should be clear that the 
least value of cTx subject to x ES can always be achieved at a vertex, and that 
sometimes there are many optimal vectors of variables. 

The most widely used algorithm for solving linear programming calcula­
tions is the simplex method. The main operations of this algorithm can be 
viewed as moves from vertex to vertex along edges of the polytope, each edge 
being chosen so that the move reduces the objective function. Thus cycling 
does not occur, and termination is a consequence of the finiteness of the total 
number of vertices. Usually this algorithm is very efficient, but our geometrical 
interpretation shows that many vertices may have to be visited on the way to 
the solution even for small values of n. Therefore some iterative algorithms 
have been developed that adjust x by taking straight line steps within the 
interior of S, and usually they avoid vertices except in the limit when con­
vergence occurs to the required solution. Such algorithms are called "interior 
point methods". 

We address the most successful of these methods, namely Karmarkar's al­
gorithm. It hit the front page of the New York Times in 1984 because of 
the stunning improvements in efficiency over the simplex method that were 
claimed by the author. Many researchers found these claims unbelievable even 
after trying the algorithm in practice, but they were unable to refute the 
claims because many crucial details of the implementation of the algorithm 
are not given in the original paper (Karmarkar, 1984). This intriguing situ­
ation developed into the most active field of study throughout mathematical 
programming, and now the consensus is that the algorithm is much faster than 
the simplex method in many calculations when n is very large. In any case the 
ideas behind the algorithm are interesting and we are going to consider them. 

My reason for presenting a paper on this subject is unusual. Instead of 
describing some of my own research, I agreed to speak about Karmarkar's 
algorithm at the IMA Silver Jubilee Conference in order to force myself to 
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study this popular subject. After reading about one per cent of all relevant 
publications in order to grasp the main ideas, I decided to relate these ideas 
to my knowledge of nonlinear programming instead of perusing more papers, 
not having enough time for both of these activities, and now I agree with Gill, 
Murray, Saunders, Tomlin and Wright (1986) that the relations to barrier 
function methods are of fundamental importance. Thus we derive a version 
of Karmarkar's algorithm that handles general inequality constraints directly, 
which is not taken from the papers that I read. Applying this version to a 
semi-infinite programming problem in only two variables, we find that the 
algorithm is not always efficient when there are very many constraints. 

The paper that was most helpful to my studies is a report by Gonzaga 
(1988), which he kindly provided when I requested some information on an 
excellent talk that he presented at the 1989 SIAM meeting on Optimization. It 
explains very well the geometric properties of Karmarkar's algorithm. A brief 
introduction to these properties is given by Strang (1987), who emphasises 
that the projective transformations of the algorithm provide "room to move" 
when one seeks changes to the variables that reduce the objective function. I 
learnt several useful technical details from Todd and Burrell (1986) and from 
Gill et al (1986) which are mentioned later. The other papers that I read 
are of less relevance to the material that follows, but certainly I would have 
been helped greatly by the work of Tomlin (1987) and Shanno (1988) if I had 
chosen to discuss numerical comparisons to the simplex method and modified 
projections that are easy to compute. 

A basic form of Karmarkar's algorithm is described in Section 2, and we 
note the role of the potential function and the "restrictive assumption" that 
the optimal value of the objective function is zero. Section 3 presents the con­
vergence theorem that delights experts in complexity theory because it shows 
that linear programming problems can be solved in polynomial time. Further, 
it is explained that the "restrictive assumption" can be replaced by a lower 
bound on cTx. Section 4 describes the "big simplification", if one is a nonlin­
ear programmer, because here the projections of each iteration are replaced by 
algebra that corresponds implicitly to the projections. Extensions of the al­
gorithm to general linear inequality constraints are studied in Section 5. Here 
we find that there is no need to express a general linear programming problem 
in standard form before applying Karmarkar's algorithm, which often avoids 
large increases in the number of variables. This technique is demonstrated in 
Section 6 by the example that has been mentioned that has an infinite number 
of constraints. Finally, Section 7 includes a discussion of the given procedures 
and numerical results. 
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2. The basic algorithm 

Throughout Sections 2-4, the feasible region S is the set 

(2.1) 

where A is a given nxm matrix with linearly independent columns and a0 is a 
given vector in 'R"'. Because there are only n inequality constraints, this form 
is not very suitable for the geometric interpretation of Section 1, but in fact ex­
pression (2.1) does not lose generality in theory. Indeed, any general inequality 
constraint, wT x > bi say, can be expressed as the equation Xi= wr x-bi and the 
simple bound Xi~ 0, where Xi is a new variable of the calculation, so the only 
inequalities are nonnegativity conditions on the components of an augmented 
x. Further, we can ensure that at most one constraint has a nonzero right han,d 
side by forming linear combinations of equality constraints if necessary. Alter­
natively, the conditions WT x = b, for example, can be replaced by WT x-,Bb = 0 
and /3 = 1, where /3 is a new nonnegative variable, so all the constraints become 
homogeneous in the new vector of variables except for /3 = 1. 

It has been mentioned already that we require S to be nonempty and 
bounded, and that in this case the linear programming problem has at least 
one solution, x* say. Strengthening this assumption, we suppose that a vector 
xC1) is available that is in S, that has strictly positive components, and that is 
not optimal, which implies the inequality 

(2.2) 

The notation xC1) is used, because Karmarkar's algorithm requires such a point 
in order to begin an iterative procedure that calculates x(kH) from x(k) for 
k = 1, 2, 3, .... Our assumptions provide the following fundamental properties 
of the linear programming problem. 

Lemma 1 Let S0 be the closed set 

(2.3) 

Every element of S0 satisfies the inequality 

(2.4) 

where M is the constant 

M = max{llxlb I xES}. (2.5) 

Moreover, every solution x* has at least one and at most n-1 zero components. 
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Proof Because inequality (2.4) is trivial when x = O, we let x be a nonzero 
element of S0 • The value of a'{;x is nonzero, because if we had a'{;x = 0 then 
we would also have ( x<1) +AX) E S for all ,,\ 2::: O, which would contradict the 
boundedness of S. Further, a'{;x is positive if x is a multiple of x<1) because 
a5x<1> = 1 and both x and x<1) have no negative components. Otherwise, if a'{;x 
were negative, then the vector v = x - ( a'{; x) x<1) would be a nonzero element 
of S0 that satisfied a'{;v = 0, which is the previous contradiction. Therefore 
a'{;x is positive, and, since inequality (2.4) is homogeneous in x, we can restrict 
attention to the vectors of 80 that are also in S. In this case the bound (2.4) is 
a consequence of a'{;x = 1 and the definition (2.5), which establishes the first half 

· . of the lemma. The second half is true because, if x* had no zero components, 
then the point v = x* + ..\( x<1) - x*) would be in S for some negative values of 
..\, giving the contradiction cTv < cTx*, while the condition a'{;x* = 1 does not 
allow all the components of x* to be zero. 0 

We now consider the procedure that calculates x<k+t) from x(k) when x(k) > 0 
and x(k) ES. Several authors, in particular Strang (1987), motivate the proce­
dure by taking the view that, if some of the components of x<k) are very small, 
then the corresponding nonnegativity conditions cramp the choice of x(k+t), so 
it becomes difficult to achieve a substantial reduction in the objective function. 
Therefore we seek a change of variables, x=T(x) from x-space to x-space say, 
that maps x(k) and S into 5:(k) and §(k) respectively, such that 5:(k) is not close 
to the boundaries of the inequality constraints of §(k). We pick a search direc­
tion J(k) in §(k), and move along it from 5:(k) to i;(k)+a(k)J(k), where a(k) is the 
step-length of the line search. The new point x(k+t) is obtained by applying 
an inverse of the transformation to 5:(k)+a<k)J(k). 

Of course T depends on x(k), and at first sight the transformation is nonlin­
ear, because we require "room to move" about 5:(k) without §(k) being a severe 
distortion of S when some of the components of x(k) are very small. We let 
X(k) be the n x n diagonal matrix whose diagonal elements are the (positive) 
components of x(k), and for each k the transformation is the formula 

(2.6) 

where e is the vector in nn whose components are all one. The denominator 
is positive because every x in S has no negative and at least one positive 
components. Thus the inequality constraints x ~ 0 become x 2::: O, and x(k) 

is mapped into 5:(k) = e, which is well away from the inequality constraint 
boundaries as required. Further, the equality conditions ATx = 0 become the 
equations ;l(k)T5: = O, where A.(k) is the matrix 

A<k> = x<k> A, (2.7) 
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X3 

x-space 

x=T(x) 
==> 

£-space 

Figure 1: A transformation in three dimensions 

which depends on the symmetry of X(k). Further, the inhomogeneous condition 
a5x = 1 is irrelevant to x, because the transformation (2.6) is independent of 
the scaling of x, but we see that x satisfies eTx = n. Therefore 5(k) is the set 

(2.8) 

We let the inverse transformation be the formula 

(2.9) 

the denominator being positive because X(k)£ is a nonzero vector in the set 
(2.3) for all £(k) E S(k). This denominator gives the condition a5x = 1. Thus the 
transformation and its inverse provide a one-to-one correspondence between S 
and 5(k). In particular, if the only equality constraint is the inhomogeneous 
equation 

X1 +x2+· · ·+xn = n, (2.10) 

then a0 =e/n and S(k) is the same as S for all k. Figure 1 shows this transfor­
mation when n = 3, the feasible regions being shaded. 

We stated that "at first sight the transformation is nonlinear" because the 
denominators that cause the nonlinearities can be deleted. Specifically, we can 
take the view that S is not the set of points (2.1), but instead each element 
of S is a straight line in the positive orthant of n,n that begins at the origin. 
Specifically, we associate with every x ES the half-line {,\x I ,\ ~ O}. Thus the 
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homogeneous constraint a~x = 1 of expression (2.1) becomes irrelevant, which 
is appropriate to the homogeneity of the transformation (2.6). Further, we can 
forget the denominator of formula (2.9), because now only the direction and 
not the magnitude of x is important. Thus, for each k, there is now a one­
to-one correspondence between the half-lines from the origin in the set (2.3) 
and the points of §(h). In practice the vectors { x(h) I k = 1, 2, 3, ... } that occur 
in the calculation are nonzero points on the appropriate half-lines that need 
not satisfy the normalization condition arx<h) = 1, but of course the vector of 
variables that is returned to the user of the algorithm is scaled so that it is in 
S. Lemma 1 shows that this scaling can always be done. 

The technique that admits the objective function {c1'x I x E n.n} into this 
structure is an essential ingredient of Karmarkar's algorithm. A "potential 
function" {V(x) I xESo} is employed, where So is the set 

So= {x I x>O, ATx=O}, (2.11) 

which includes all the points { x<h) I x = 1, 2, 3, ... } that have been mentioned. 
We require V to tend to its least value when the sequence {x(h) I k = 1, 2, 3, ... } 
tends to a solution x"', because every iteration provides the reduction 

(2.12) 

We also require the half-line structure to be preserved, which demands that 
V(.-\x) be independent of .,\ for all x E S0 , where .,\ is any positive number. 
Karmarkar's solution is to include the term log c1'x in V(x) and to provide ho­
mogeneity by some balancing log Xi terms, where x; is still the i-th component 
of x. Specifically, the potential function has the value 

n 

V(x) = n logcTx - I: logx;, xESo, 
i=l 

which is constant on each half-line. 

(2.13) 

A limitation of this choice is that cT x < 0 is forbidden, so the solution 
x"' must satisfy cTx• > 0. Moreover, if cTx• were strictly positive, then, be­
cause Lemma 1 shows that x"' has a zero component, the sequence {V(x(h)) I 
k = 1, 2, 3, ... } would diverge to +oo if x(h) ~ x"', which would not allow the 
decreases (2.12) in the potential function. Therefore we have to make the 
"restrictive assumption" 

(2.14) 

although it is embarassing to need to know the optimal value of the objective 
function in advance. We will find in the next section that suitable adjustments 
to the procedure can be made automatically if this assumption is incorrect, but 
for the time being we impose the condition (2.14). It provides the following 
fundamental properties of the potential function. 
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Lemma 2 The given assumptions imply that the function (2.13) is well­
defined but not bounded below. If { x(k) I k = 1, 2, 3, ... } is a sequence of points 
in So that satisfies condition (2.12), and if the values of the potential function 
{V(x(k)) I k = 1, 2, 3, ... } tend to -oo, then {x(k) / a5x(k) I k = 1, 2, 3, ... } 
is a well-defined sequence in S whose limit points are solutions of the linear 
programming problem. 

Proof Let x be any point in S0 • Lemma 1 and the definition (2.11) imply that 
x/a5x is a well-defined point of S that has positive components. Therefore, 
by Lemma 1 again, it is not a solution of the linear programming problem, so 
we have cT(x/a5x)>cTx""'=O. Hence cTx is positive, making the value (2.13) 
well-defined. . 

Let x(1) and x• be a point of So and a solution of the linear programming 
problem respectively, and let 1""' be the set {i I xt =0}. Therefore 11""'1, which 
is the number of zero components of x•, satisfies 11""' I < n. We consider the 
potential function on the line segment whose end points are x• and x(l). The 
"restrictive assumption" and the definition of T imply that, for every O < 0::; 1, 
we have the relation 

V(x""'+O[x(1>-x•]) < n{logO+log(cTx(1
))}- °I:{logO+logxf>} 

ieI• 

- I: 1og(min[x;, xP>n, (2.15) 
i¢I" 

which is an inequality rather than an equation only because of the final sum. 
Since the dependence on O is contained in the term ( n -11""' I) log O, the limit 
() ~ 0 establishes that V is not bounded below. 

Lemma 1 shows that the sequence { x(k) / a5x(k) I k = 1, 2, 3, ... } , given 
in the statement of Lemma 2, is well-defined, and it is bounded because it 
is contained in S. Further, we are told that the numbers {V(x(k) /a5xU0>) = 
V(x(k)) I k=l,2,3, ... } tend to -oo. In view of the definition (2.13), it follows 
that cTx(k) / a5x(k) tends to zero. Therefore, by continuity, all limit points of 
{ x(k) / a5x(k) I k = 1, 2, 3, ... } are points of S at which the objective function 
is zero. Hence the restrictive assumption implies that these limit points are 
solutions of the linear programming problem as required. D 

We now address the details of the iteration that calculates x(k+l) from x(k) 
when x(k) E S0 • We make the change of variables (2.6), in order that we have 
room to move about the point &(k) = e = T(x(k)), so we require the analogue 
of the potential function in the subset §(k) of x-space. Specifically, we define 
V(x) = V(x) if x = T(x), which is a complete definition because of the one­
to-one properties of the transformation. Indeed, because equation (2.6) gives 
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x = T(X(k) x) when x E S(k), expression (2.13) implies the value 

A l'l, l'l, ) 

V(x) = V(X(k)x) = n logc(k)T5: - I)ogxi - I:logxik, xES(k), (2.16) 
i=1 i=l 

where c(k) is the vector 
(2.17) 

The polynomial time result, given in the next section, depends strongly on the 
fact that, at x = x(k) = e, the second derivative matrix of the term { - I:i log Xi I 
x E nn} is the unit matrix. This property makes projected steepest descent 
methods efficient in x-space. Therefore the search direction J(k) is defined by 
projecting the negative gradient 

- \7\/(e) = __ n_c(k) + e (2.18) 
c(k)Te 

into the set {d I A_(k)Td = O, eTd = O}. Thus the vector x<k>+aJ(k) remains 
in 5(k) when a is sufficiently small and positive. Forgetting the constraint 
eTd = 0 for the moment, but remembering that the columns of A are linearly 
independent, this procedure gives the vector 

J(k) = [J -A_(k)(A_(k)TA_(k)tlA.(k)T] (e _ c(k~Te c(k)). 

We were forgetful because we see that the identity 

A_(k)Te=ATx(k)e=ATx(k)=o 

(2.19) 

(2.20) 

implies eTJ(k) = 0. Therefore there is no need to include the condition eTd = 0 
explicitly in the projection that defines the search direction. 

This definition provides the downhill condition 

(2.21) 

and it will be shown in the next section that the inequality is strict. Therefore 
the reduction 

(2.22) 

can be achieved by choosing a(k) > 0. The advantage of the room to move is 
that the feasibility condition (x(k)+a<k)J(k)) E S(k) does not impose a small 
upper bound on the step-length. We let a(k) be this bound, and we let a(k) 

minimize the new value of the potential function {V(x(k)+a J(k)) I O ~a~ a(k)}, 

which defines the step-length uniquely (Todd and Burrell, 1986). As mentioned 
already, the new vector of variables x(k+l) is set to any positive multiple of 
X(k)(5:(k) +a(k)J(k)), which completes the work of the iteration. The reduc­
tion (2.22) is equivalent to condition (2.12), because the initial definition of V 
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implies that V(x(k+l)) and V(x(k)) have the values V(x(k)+a(k)J(k)) and V(x(k)) 

respectively. 
In view of Lemma 2, we expect the sequence {V(x(/c)) I k=l,2,3, ... } to 

tend to -oo, which will be proved in Section 3. Therefore the iterations are 
terminated when the inequality 

(2.23) 

is obtained, where L is a prescribed constant. This condition and the defini­
tions (2.5) and (2.13) imply the bound 

(2.24) 

where x(k) is the vector x(k) / a5x(k). Thus the final value of the objective 
function, namely cTx(k), is at most M e-L, which provides guidance on the 
choice of L. 

When condition (2.23) does not hold, we require the components of x(k) to 
be positive, in order to calculate x(k+l). The initial vector satisfies xC1) > 0 by 
hypothesis, and x(k+l) inherits strict positivity from x(k) if a(k) < o;(k), where 
o;(k) is defined soon after expression (2.22). The alternative case a(k) = o;(k) 
is very unusual, because then the - I:i log Xi term of the potential function 
(2.16) blows up, so the reduction (2.22) implies that c(k)T(i;(k)+a<k)J(k)) is zero, 
although all points of §(k), in particular S;(k) +a(k)J(k), are nonzero. It follows 
by analogy with inequality (2.15). that the new value of the potential function 
is V(x(k+l)) =lima--.a,. V(x(k)+a J(k)) = -oo, which will satisfy the termination 
condition (2.23) when k is increased by one, the vector x(k+l) / a5x(k+l) being 
a solution of the linear programming problem. Therefore we have x(k) > 0 at 
the beginning of every iteration that has to revise the variables. 

3. Convergence properties and the restrictive assumption 

The good convergence properties of Karmarkar's algorithm are due to the fact 
that the reduction in the potential function on every iteration is bounded away 
from zero. Several papers include proofs of this statement and we will do so too, 
in order to emphasise the success of the transformation (2.6) in providing room 
to move in x-space, and in order to present a lemma that is the basis of the 
technique that removes the "restrictive assumption" that was made in Section 
2. The key to the main convergence theorem is the question: when are we sure 
that the step from x(k) along the search direction J(k) can make a substantial 
reduction in V? The following three conditions are sufficient for a favourable 
answer: (a) that the initial directional derivative J(k)Tv'V(x(k))/lld(k)II is neg­
ative and bounded away from zero, (b) that there is an upper bound on the 
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curvature of V that ensures that the directional derivative remains negative for 
a substantial distance along the search direction, and (c) that the step-length 
is not restricted severely by the boundary of an inequality constraint. So far 
we have given most attention to condition (c), noting that :v(k) = e and that 
the inequality constraints are the simple bounds x ~ 0. Thus, because the def­
inition (2.19) takes account of the equality constraints, feasibility is preserved 
if we impose the bound 

(3.1) 

on the change of variables in x-space. The reason for the choice of right hand 
side will become clear. 

One comment of Section 2 is highly relevant to condition (b ), namely that 
at x = 5:(k) = e the second derivative matrix of the term { - Li log Xi I x ER"'} 
of the potential function (2.16) is just the unit matrix. Further, for general x, 
the second derivative matrix of this function is the expression 

-r,2V"(")- n "(k),..(k)T d' (1/"2) 
v X - - (c(k)Tx)2 C c + 1ag Xi , (3.2) 

the last term being the n x n diagonal matrix whose diagonal elements have 
the values { 1 / x; I i = 1, 2, ... , n}. Thus we have the upper bound 

(3.3) 

when x satisfies {xi~ f I i = 1, 2, ... , n }. We make use of this relation at the 
points { x = 5:(k) + a J(k) I a ~ 0}, whose components are all at least ! when 
inequality (3.1) is obtained. 

In order to show that condition ( a) also holds, we deduce the following 
conclusion from the restrictive assumption (2.14), using the notation 

(3.4) 

for the symmetric projection matrix that occurs in the definition (2.19) of the 
search direction. 

Lemma 3 At least one component of p(k)c(k) is nonpositive, where c{k) is 
the vector (2.17). 

Proof Let x* be a solution of the linear programming problem and, as in 
Section 2, let X(k) be the diagonal matrix whose diagonal elements are the 
positive numbers { x}") I i = 1, 2, ... , n}. The constraint AT x* = 0 and the 
definitions (2.7) and (3.4) imply x<") p(k) x<k>-1x* =x*. Thus we can write the 
final value of the objective function in the form 

cTx* = cTX(k) p(k) X(k)-1x* = (P(k)c{k)?(X(k)-lx*). (3.5) 
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Now this expression is zero by the restrictive assumption, and, remembering 
x* 2::: 0 and the last statement of Lemma 1, the vector X(k)-1:v* has no negative 
and at least one positive components. Therefore we would have a contradiction 
if all the components of p(k)fP~> were positive, so the lemma is true. D 

Equations (2.19) and (2.20) imply the value 

J(k) - e - _n_p(k) c<k) 
- c(k)Te ' (3.6) 

and the denominator c(k)Te = c<k)Tx(k)-lx(k) = cTx(k) is positive. Hence we 
deduce from Lemma 3 that not every component of J(k) is less than one, which 
provides the bound 

(3.7) 

It follows from the projection technique that defines J(k) that the initial direc­
tional derivative of the line search satisfies the inequality 

J<k>Tv1v(x<k>) / 11J<k>112 - -[P<k>vv(x<k>) fvv(x<k>) I 11J<k>112 

= -11p<k>v1v(x<k>)11~ I 11J<k>112 

= -11J(k)l'2 ~ -1. (3.8) 

Conditions (a), (b) and ( c) that are mentioned in the opening paragraph of this 
section are expressions (3.8), (3.3) and (3.1) respectively. Therefore it is now 
straightforward to establish the main convergence property of Karmarkar's 
algorithm. 

Theorem 4 The given assumptions imply that the reduction V(x(k)) -
V(x(k+l)) is bounded away from zero on every iteration that calculates x(k+l) 
from x(k). 

Proof Let {</>(a) I a 2::: 0} and a denote the values of the potential function 
{V(x(k>+a J(k)) I a 2::: O} and (2 IIJ(k)ll 2)-1 respectively. From the definition of 
a(k), the Taylor series with explicit remainder and the three conditions that 
have just been mentioned, we deduce the relation 

V(x<k>+a<k>J<k>) < o~fa </>(a) 

- o~f) </>(O) + a </>'(O) + fo'\a-0) </>"(O) d()] 

min_[ V(x(k)) + a J(k)Tv1V(x(k)) 
0:50::50: 

+ loo: ( a-0) J(k) Tv72\/( £(k) + () J,(k)) J(k) d()] 

< minJV(x<k>) - a 11J<k>112 + 2a2 11J<k>11~1 
0:50::50: 

11 



(3.9) 

the last line being derived from the value a=(4 IIJ(k)ll2)-1 =!a, The theorem 
follows from the fact that the reduction in V is the same as the reduction in 
v. 0 

The well-known polynomial-time complexity property of Karmarkar's algo­
rithm is a consequence of a corollary of this theorem, namely that the number 
of iterations that are needed to satisfy the termination condition (2.23) is 
bounded above by a constant multiple of n. 

We now relax the restrictive assumption cT x* = 0 that is made in Section 
2. If the optimal value of the objective function, c1' x* = 1* say, is known in 
advance, but 1* is nonzero, then it is sufficient to modify c before beginning the 
calculation that is described in Section 2. Specifically, because the definition 
(2.1) implies that x* minimizes cTx subject to x ES if and only if it minimizes 
(c-1*aofx subject to x ES, we can replace c by c-1*a0 in order that the 
optimal value of the new objective function is zero. Usually, however, 1* is not 
available. In this case for each k the calculation of x(k+l) from x(k) depends on 
an estimate 1(k) of 1*, where 1(1) is given and where the subsequent values are 
generated automatically so that the sequence { 1(k) I k = 1, 2, 3, ... } converges 
to 1*, On the k-th iteration c is replaced by the vector 

c(k) = c - 1(k) ao, (3.10) 

which induces the new value 

(3.11) 

of expression (2.17), and corresponding changes are made to equations (2.16), 
(2.18) and (2.19), but the sets S, s0 , s(1c> and So and the transformations 
(2.6) and (2.9) are the same as before. Having made these modifications, the 
procedure of Section 2 generates x(k+l) from x(k), unless it is detected that 1(k) 

should be revised. 
Of course 1(k) is unacceptable if a negative value of c3(k)Tx occurs during 

the line search from £(k) = e along the direction J(k), because then the potential 
function (2.16) is not properly defined. We see that equations (3.10) and (3.11) 
give the identity 

(3.12) 

Moreover, x E s(k) implies X(k)5; E So and then Lemma 1 shows that a5 x(k)x 

is positive, x being nonzero because it is in s(k). Therefore we can avoid the 
negative value of c3(k)T5; by reducing 1(k). We recommend being generous when 
decreasing this parameter, and perhaps reductions should be made even when 
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c(k)T5; remains positive throughout the line search, because there is a highly 
suitable way of making the sequence {,(k) I k = j,j + 1,j +2, ... } increase 
monotonically to 1*, where j is any integer such that ,(j) ~ ,* (Todd and 
Burrell, 1986). This technique depends on the following lemma. Further, the 
lemma sometimes provides a useful lower bound on the new value of ,(k) when 
,(k) is decreased. 

Lemma 5 Let x(k) be any vector in S0 , let .A.(k) and p(k) be the matrices 
(2.7) and (3.4), where as usual X(k)=diag(xfk)), and let,* be the least value 
of the original objective function {cTx Ix ES}. Then, if all components of the · 
vector p(k) c:.<k) are positive, the strict inequality ,(k) < 1 * is satisfied. 

Proof Let x* solve the linear programming problem and suppose that, as 
in the statement of the lemma, we have p(k)c(k) > 0. Since x* is nonzero and 
nonnegative and since x(k) E So implies x<k) > O, these conditions give the strict 
inequality e,(k)T p(k)X(k)-1x• > 0. Moreover, as in the proof of Lemma 3, the 
equation X(k) p(k)X(k)-1x• = x* holds. Therefore the condition c(k)T X(k)-1x• > 
O is satisfied, and, remembering expressions (3.10) and (3.11), we write it in the 
form (c-1(k)a0 )T x* > 0. The lemma now follows from the definition,* =cTx* 

and the constraint a5x* = 1. D 

The lemma suggests the useful procedure that will be described in the next 
paragraph. It requires a lower bound ,<1) on the optimal value of the objective 
function to be given instead of the restrictive assumption cT x" = 0. For each I 
in the set { ,(k) I k = 1, 2, 3, ... }, the potential function is now the expression 

n 

V(x; 1 ) = n log[(c-1aofx]- I: log xi, xESo, 1 ~ 1*, (3.13) 
i=l 

which is still homogeneous in x. We see that the case 1 = ,* corresponds to 
the potential function that we had before, so Lemma 2 shows that V(x;,*) 
is well-defined for all x E S0 , the scalar product (c- 1*a0 )Tx being positive. 
Otherwise, when 1 < ,*, we apply Lemma 1 to x E S0 C 80 in order to deduce 
the condition 

(3.14) 

Thus V(x; 1 ) is still well-defined. Expression (3.14) also provides the inequality 

V(x; 1 ) > V(x;,*), xESo, ,<,*, (3.15) 

which will be needed later. We preserve the definition V(x; 1 ) = V(x; 1) when 
x = T( x), in order that the reductions in V that are achieved by revising the 
&-variables are still enjoyed by V. Therefore equation (2.16) remains valid, 
since the dependence of c(k) on ,(k) is present in the relations (3.10)-(3.11). 
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The k-th iteration of the revised procedure is supplied with a lower bound 
,(k) on ,*, given by the user when k = 1 and inherited from the previous it­
eration when k > 1. It is also supplied with a vector of variables x(k) that as 
before is in 80 or there is the remote possibility that x(k) has some zero compo­
nents because it is the solution of the linear programming problem, which can 
happen only if 1<k) =1*, The iterations are terminated if V(x<k>;1(k)) ~ -Ln, 
this test being no weaker than condition (2.23) in view of inequality (3.15). 
When termination does not occur, all components of x<k) are positive, we let 
c(k) and c(k) have the values (3.10) and (3.11), and we define the search direc­
tion J(k) by formula (2.19). If every component of J(k) is less than one, then it 
follows from equation (3.6) and Lemma 5 that we have 1(k) < ,*. We seize this 
opportunity of being able to increase 1(k) in a way that preserves ,(k) ~ ,*, 
letting the new value of 1(k) be the least larger number such that the vector 
p(k)c(k) = p(k)X(k}(c-1<k)a0 ) has a zero component. We then return to the 
beginning of the iteration to retry the termination condition and to recalculate 
the search direction if necessary. Thus J(k} satisfies condition (3. 7) on every 
iteration that changes the variables. As before, x(k+l} is any positive multiple 
of X(k}(x<k>+a<k)J(k)), where the step-length a(k) is found by a line search that 
minimizes the potential function. Finally, 1(k+l} is set to the current value of 
,(k} and the next iteration is begun. 

An important property of this technique for increasing 1(k} is that it guar­
antees that Lemma 3 is valid on every iteration. Therefore the deduction in 
inequality (3.9) and the definition of V provide the condition 

V(x(k+l}; 1(k}) < V(x(k}; 1(k}) - i, (3.16) 

where ,(k) has the value that is chosen by the k-th iteration. Increases in ,(k) 

also reduce the potential function, because we have noted already that a5x is 
positive in the definition (3.13). Therefore Theorem 4 applies to the revised 
algorithm, giving the same polynomial-time complexity property as before. 
Further, if the termination condition is omitted and if none of the points 
{x(k} I k= 1, 2, 3, ... } is an exact solution of the linear programming problem, 
then the sequence {V(x(k}; ,(k}) I k = 1, 2, 3, ... } must decrease monotonically 
to -oo. It follows from inequality (3.15) that the sequence {V(x(k};,*) I k= 
1, 2, 3, ... } also decreases to -oo. Therefore, by Lemma 2, all limit points of 
{ x(k) / a5x(k} I k = 1, 2, 3, ... } are solutions of the linear programming problem 
as before. Further, the increasing sequence { ,(k) I k = 1, 2, 3, ... } tends to ,*, 
because, if its limit were 1 < 1*, our deductions since equation (3.13) and the 
definition (2.5) would imply the inequality 

lim V(x<k>;1<k>) - lim V(x<k>/arx<k>;,<k>) 
k-+oo k-+oo 

> k~1! V(x(k) I arx<k); 1) 
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> lim n log [ ( c-1aof x(k) / arx(k)] - n log M 
k-oo 

- limn log [ (c-,"'aofx(k) /arx<k) + (1"'-1)] - n logM 
k-oo 

- nlog(,"'-1)-nlogM, (3.17) 

which contradicts the fact that the sequence {V(x(k);,(k)) I k = 1,2,3, ... } 
diverges to -oo. 

Thus the main convergence properties of Karmarkar's algorithm are re­
tained by the above procedure. In the remainder of the paper, however, we 
revert to the basic algorithm of Section 2 in order to simplify notation, except 
that techniques are given in the final paragraphs of Sections 4 and 5 that ex­
tend the work of these sections to the case when only a lower bound on the 
optimal value of the objective function is known initially. 

4. Making the transformations implicit 

The explicit transformations from x-space to x-space and back again, that 
occur in every iteration of the algorithm of Section 2, can be avoided by some 
algebra. It was pointed out by Gill et al (1986) that the resultant algorithm is 
a "barrier function method", due to the fact that the potential function (2.13) 
usually becomes infinite if one or more components of x > 0 tend to zero. 
The algebra does provide a big simplification, partly because it removes the 
need to distinguish between x-space and x-space. Therefore this alternative 
form of Karmarkar's algorithm is derived in this section, in two different ways 
that are shown to be equivalent. Thus we identify some interesting and useful 
properties of the new form of the old method. 

We begin by considering the choice of step-length of the line search of 
the algorithm of Section 2, which is defined in the paragraph that includes 
inequalities (2.21)-(2.22). We recall that o:(k) is the value of o: that minimizes 
{V(x<k>+o:J(k) I O~o:~o:(k)}, and we also recall that we can define V by the 
equation 

V(x) = v(x<k>x), (4.1) 

as in expression (2.16). Hence, remembering the relation x(k) =X(k)e=X(k)£(k) 
and introducing the search direction 

(4.2) 

in x-space, the step-length minimizes the function 

V(x<k>+o:J<k>) - v(x<k>[x<k>+o:J(k>]) 

- V(x<k>+o:d(k)), O~o:<a<k). (4.3) 
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Having calculated a(k), the procedure of Section 2 sets x(k+i) to any positive 
multiple of X(k)(£(k)+aJ(k)), which includes the usual choice 

(4.4) 

Further, the bound a(k) is defined to be the greatest number such that all 
components of x(k)+a(k)J(k) are nonnegative, which is also the greatest number 
such that the components of X(k)(x(k) + a(k)J(k)) = x(k) + a(k)d(k) have this 
property, since X(k) is diagonal and positive definite. Therefore each iteration 
of Section 2 that changes the variables can be implemented in the following way. 
The search direction ( 4.2) is calculated. Then a(k) is found by minimizing the 
function ( 4.3), the bound a< a(k) being the condition x(k)+a d(k);?:: 0. Finally, 
x(k+l) is defined by formula (4.4). 

We complete this description by removing the dependence of d(k) on the 
transformations. Equations ( 4.2), (3.6) and (2.17) and further use of x(k) = 
x(k)e imply the value 

ik) - x(k) - _n_ x(k) p(k) x(k)c 
- c1'x(k) ' 

(4.5) 

while the definitions (3.4) and (2.7) yield the matrix 

p(k) = I - x(k) A(ATx(k)2At1 ATx(k), (4.6) 

which give the search direction 

ik) = x<k) - _n_ [X(k)2 - x(k)2A(ATx(k)2At1 ATX(k)2] c. (4.7) 
cTx(k) 

The calculation is now in a form that has no explicit dependence on £-space. 
A check on our algebra is that the method of Section 2 was designed to 

have the property that, if x(k) satisfies the equality constraints AT x(k) = O, then 
x(k+l) also satisfies them. In view of formula ( 4.4), an equivalent statement is 
that we expect ATd(k) to be zero whenever AT x(k) = O, and we see that equation 
( 4. 7) passes this test. Another check is that, because we found using equation 
(2.20) that eT J(k) = O, we should now have the identity 

(4.8) 

Formula ( 4.7) satisfies this condition because of the relations eTX(k)-lx(k) =n, 

eTX(k) c = cT x<k) and eTX(k) A= x(k) TA= 0. We gain further knowledge of d(k) 

by studying a different way of eliminating the x variables from the definition 
(4.2). 

The starting point of this different approach is recalling that J(k), the search 
direction in x-space, is generated by applying to the negative gradient vector 
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(2.18) the orthogonal projection operator into the null space of A_(k)T. This 
construction implies that J(k) is the point in the subspace {d I A_(k)Td=O} that 
is closest to -'vV(e), where distance is measured in the Euclidean metric. 
Therefore the squared distance 11J(k)+'vV(e)lrn is made as small as possible. 
In other words, J(k) is the solution of the quadratic programming problem 

minimize dT'vV(e) +} lldll~, 

subject to A_(k)Td = O 

Therefore the solution of the analogous calculation 

dE'R" } , 

minimize (X(k)-1df'vV(e) +} IIX(k)-1dll~, 

subject to A_(k)T(X(k)-ld) = Q 

(4.9) 

(4.10) 

must occur when X(k)-ld = J(k), which is when d is the search direction ( 4.2) 
in x-space. Since the derivative of the identity ( 4.1) with respect to x provides 
the relation 

( 4.11) 

and since .A.(k) is the matrix (2.7), it follows that the required search direction 
in x-space is the solution of the quadratic programming problem 

minimize dT'vV(x(k)) + ! dT x(k)-2d, 

subject to ATd = 0 
dE'R" } , (4.12) 

Again we have a definition of d(k) that does not depend explicitly on the 
transformations of Section 2. 

In order to solve this problem analytically, we let µ(k) be the vector of 
Lagrange multipliers at its solution. Therefore d(k) and µ(k) satisfy the linear 
equations 

'vV(x(k)) + X(k)-2d(k) = Aµ(k) } . 

ATd(k) = 0 
(4.13) 

Multiplication of the first equation by ATX(k) 2, in order that d(k) can be elim­
inated by the second equation, yields the vector 

(4.14) 

By substituting this expression into the first equation, we find the search di­
rection 

d<k) = -X(k) 2 [I - A(ATX(k) 2At1 ATX(k) 2 ] 'vV(x(k)). (4.15) 
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Therefore, since the potential function (2.13) has the gradient 

v'V(a/k)) = _n_ c - x(k)-2x(k) 
cTx(k) ' 

(4.16) 

where the last term is a convenient form of the vector with components {1/ x~k) I 
i = 1,2, ... ,n}, and since ATx(k) = 0, we see that formulae (4.7) and (4.15) 
are equivalent. More importantly, the quadratic programming problem (4.12) 
provides a valid definition of the search direction. 

We extend this point of view by considering the second derivative matrix 
of the potential function, which has the value 

v'2V(x(k))=- n ccT+X(k)-2 (4.17) 
(cTx(k))2 . 

We note that the diagonal matrix X(k)- 2 also occurs in expression ( 4.12). 
Indeed, the work so far of this section has established the following theorem, 
which provides a description of an iteration of Karmarkar's algorithm that 
seems to be much clearer than the one that is developed in Section 2. 

Theorem 6 Given a point x(k) E 80 , an iteration of the algorithm first tests 
the termination condition (2.23). If a further improvement to the vector of 
variables is required, then the gradient of the potential function (2.13) and 
the diagonal second derivative matrix of the -I:1 log Xi term are calculated at 
x = x(k). The search direction d(k) is defined to be the solution of the quadratic 
programming problem ( 4.12). Finally, the new vector of variables is given 
the value (4.4), where the step-length a(k) minimizes the univariate function 
{V(x(")+a d(k)) I a 2:: O}, subject to the condition x(k+l) > 0. D 

The relation to the "log barrier method" for constrained optimization that 
was noticed by Gill et al (1986) is as follows. We let y(k) be the approximation 
to the potential function that is formed by replacing the n log cT x term of the 
definition (2.13) by the first order Taylor series expansion 

n log cTx ~ n log cTx(k) + _n_ (x-x(k)f c (4.18) 
cTx(k) · 

Thus the gradients v'V(x(k)) and v'V(k\x(k)) are equal and the second deriva­

tive matrix of expression ( 4.12) is v12v<"\x<")). Therefore d(k) is the Newton­
Raphson search direction at x(k) of the linearly constrained nonlinear program­
ming problem 

minimize {v<"\x)lxE'R.n} subjectto ATx=O. (4.19) 

Lemma 2, however, shows that actually the algorithm solves the problem 

minimize { V(x) I xE'R.n} subject to ATx = O, ( 4.20) 
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since the - Li log xi term of V keeps x nonnegative. Perhaps, therefore, we 
should be considering the Newton-Raphson search direction of this calculation 
at x(k), which is normally defined to be the solution to the problem ( 4.12) after 
replacing X(k)-2 = v'2V(k)(x(k)) by the matrix v'2V(x(k>). Unfortunately this 
approach is unsuitable, because now the quadratic programming calculation 
cannot have a unique solution due to the homogeneity of V. Indeed, we suppose 
that d(k) is a solution and we consider the set of vectors { d = d(k)+ox(k) I ()En}. 
For every() the constraints ATd=O are satisfied due to ATx(k)=O, and the new 
quadratic objective function 

takes the value 

Q( d(k) + ()x(k)) = Q( d(k)) + ()d(k) Tv72y( x(k)) x(k)' ()ER, ( 4.22) 

because, by homogeneity, the terms x(k)Tv'V(x(k)) and x(k)Tv'2V(x(k)) x(k) are 
zero, which is shown explicitly in the derivatives ( 4.16) and ( 4.17). It follows 
that d(k) is well-defined only if the function ( 4.22) has a unique minimum at 
() = 0, which is impossible as the dependence on () is linear. Therefore the use of 
the function (4.19) instead of the function (4.20) when calculating the search 
direction by a Newton-Raphson procedure provides some stabilization that 
is certainly needed if one employs a general numerical method for quadratic 
programming. 

In fact the homogeneity makes the vector x(k) in the definition (4.7) re­
dundant. A good way of interpreting this remark is to take the view that is 
presented in the paragraph that follows equation (2.10), namely that {V(x) I 
x E 80} is not a function of the point x but instead is a function of the half­
line {,\ x I ,\ > O}. Thus the set of points {x(k) + a a(k) I a 2:: O} can be 
regarded as a set of half-lines, and the line search must find the step-length 
a(k) that minimizes the constant value of the potential function on the half-line 
{,\ (x(k) +a(k)d(k)) I ,\ > O}. Thus only the directions and not the magnitudes 
of the vectors {x(k) +ad(k) I a~ O} are important. Further, the positive 
line search parameter makes all half-lines in the convex hull of the half-lines 
{,\ x(k) I ,\ > O} and {,\ d(k) I ,\ > O} accessible. Now, if we drop the x(k) term 
from the definition (4.7), the new search direction is d(k)_x(k), and the new 
line search has access to all half-lines in the convex hull of {,\x(k) I ,\>0} and 
{,\ (d(k)_x(k)) I,\> O}. Therefore, by taking the average of the new extreme 
half-lines, we find that the old line search over the range O:::; a:::; oo is equiv­
alent to the new line search over the range O < a :::; 1. Further, the old range 
0 <a:::; a(k) that occurs in equation ( 4.3) becomes the new range O:::; a:::; &(k), 

where &(k) is defined by the condition that x(k)+&(k)(d(k)_x(k)) is a multiple 
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of x(k)+a(k)d(k), which gives the value &(k) = a(k)j(l+a(k)). Therefore the 
deletion of x(k) from expression (4.7) would preserve the choice (4.4), apart 
from an unimportant scaling factor. 

Some use will be made of this freedom in Section 6, but until then we re­
tain the usual choice of search direction that we have derived in two different 
ways. The fact that this choice satisfies equation ( 4.8) provides a noteworthy 
property. Specifically, since we have X(k)-le = X(k)- 2x(k), condition ( 4.8) 
implies that the search direction is orthogonal to the last term of the gra­
dient (4.16). Therefore there is no first order change to the penalty term 
{- Ei log Xi I x E S0 } of the potential function when the step-length of the 
line search is small. Because this term is strictly convex for all x E S0 , its 
second derivative matrix being diag(l/ x;), it follows that every iteration of 
the algorithm increases the penalty term. Therefore Theorem 4 shows that 
not only {V(x) I xES0 } but also {logcTx I xES0 } is reduced by a substantial 
amount on every iteration. Although this observation is interesting, it does 
not illuminate the progress of the variables towards the solution of the original 
linear programming problem, because we are not taking account of the nor­
malization condition a'[x = 1 that is imposed by the inhomogeneous constraint. 
Further, it is straightforward to construct examples where the change to the 
variables gives ~(x(k+l)ja'[x(k+l)) > c!I'(x(k)ja'[x(k)), although the reduction 
cT x(k+l) < c7 x(k) is guaranteed. 

When the restrictive assumption is replaced by a lower bound ,(k) on the 
final value of the objective function, we recall from the last three paragraphs 
of Section 3 that we replace c by the vector (3.10) wherever it occurs. Thus 
formula ( 4. 7) provides the search direction 

ik) = x(k) - n x(k)p(k)x(k)(c-,(k)ao), 
( c-,(k)ao)T x(k) 

(4.23) 

We also recall that it is advantageous to increase ,(k) if all components of the 
vector 

(4.24) 

are positive, the new value being the least larger value of ,(k) that causes 
a component of this vector to become zero. After any increase the search 
direction ( 4.23) is recalculated. Thus at least one component of d(k) is no less 
than the corresponding component of x(k), which gives the bound 

( 4.25) 

corresponding to inequality (3.7). This construction provides the polynomial­
time property as before. Indeed, all the material of this section is just a 
reformulation of techniques and results that are given or that could have been 
derived in Sections 2 and 3. 
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5. General inequality constraints 

In many linear programming problems one has initially far fewer variables 
than constraints. For example, one may require the cubic polynomial fit to 
one hundred given measured values of a function of one variable, { ( t3, J;) I j = 
1, 2, ... , 100} say, that minimizes the maximum residual of the fit. In this case 
it is convenient to employ five variables, which are the four coefficients of the 
cubic polynomial and an upper bound on the maximum residual that is going 
to be made as small as possible. Thus the calculation is expressed in the linear 
programming form 

2 3 -subject to x1+x2t;+x3t;+x4t;-xs ~ J; 
< x1+x2t;+x3tJ+x4tj+xs, 

} 
, (5.1) 

j = 1, 2, ... , 100 

where c is the fifth coordinate vector, because we wish to minimize the value 
of x5 • We see that there are two hundred linear inequality constraints and no 
simple bounds. Therefore one might introduce some new variables in order 
to express the calculation in standard form, some suitable techniques being 
mentioned in the opening paragraph of Section 2. The standard form, however, 
has as many variables as inequalities, so in this case the number of variables 
would increase from five to at least two hundred. We are going to show, 
therefore, that Karmarkar's algorithm can handle general inequalities directly, 
avoiding the need to increase the number of variables, except that one extra 
variable is usually required to make all but one of the constraints homogeneous. 

Our claim that the standard form of the problem (5.1) requires at least 
two hundred variables presumes that there is no preliminary calculation that 
depends on the details of the data, an extreme and unreasonable example of 
preliminary work being the solution of the problem itself. Assuming that the 
actual numerical values of the elements of the vectors and matrices that specify 
the problem are the concern of the main linear programming algorithm, it is not 
possible to say in advance that any of the inequality constraints are redundant. 
Therefore, as mentioned already, the number of variables of the standard form 
is at least the initial number of inequality constraints. Moreover, whenever the 
standard form demands a new variable, a new equality condition is introduced 
too, in order that the amount of freedom to change the variables remains the 
same. Hence it is usual for the equations AT x = 0 in the calculation of Section 
2 to have the property that it is easy to employ some of them to eliminate 
some of the new variables from the standard form, in order that these new 
variables do not occur explicitly. 

Therefore we address the case when them linearly independent constraints 
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of the standard form AT x = 0 have the structure 

the components of y and z being the first r and last n - r components of 
x respectively. Thus, because the total number of equations is still m, the 
dimensions of BT and zT are (m+r-n)xr and (n-r)xr respectively. Further, 
if A does not give the structure (5.2) immediately, we postmultiply it by a 
nonsingular m x m matrix, U say, that provides the partitioning 

AU= ( ! 1-: ) (5.3) 

in order that expression (5.2) is equivalent to ATx = 0. Such transformations 
exist for any choice of the integer r from [n-m, n-1], because of the assumption 
that the homogeneous equality constraints are linearly independent, but the 
n-m variables that are expressed in terms of the remaining variables by the 
identity z = zTy cannot always be the last n-m components of x. Therefore 
we assume that the variables are reordered if necessary. 

For any y E 7?/ we form the vector x = x(y) E 'R,n by appending z = zTy to 
y. It follows that the problem of minimizing {V(x) I x E So} is equivalent to 
minimizing the new potential function 

W(y) = V(x(y)) = n log hTy- t,1ogy, - f.1og (t,z,m), yEYo, (5.4) 

where h E nr is defined by the identity hTy = cTx(y), which gives the compo­
nents 

n-r 

hi= Ci+ I: Zw;·+j, i= 1, 2, ... , r, (5.5) 
j=l 

and where Yo is the set {y I x(y) E S0}. Thus, by analogy with expres­
sion (2.11), Yo is the set of vectors that provide positive arguments of the 
logarithms of the potential function (5.4), and that satisfy the relevant ho­
mogeneous equality constraints. These constraints are now just the m+r-n 
conditions BTy=O, which are empty if r=n-m, because n-r of the original 
constraints have been used to eliminate the last n-r variables of the standard 
form of Section 2. 

We go back to the standard form, however, in order to consider the search 
direction ( 4. 7) that is generated in x-space. We recall that AT x(k) = 0 implies 
ATd(k) = 0. Therefore the points on the search direction in x-space can be 
expressed in the form {x(k>+ad(k) = x(y(k>+ae(k)) I a~ O}, where x(y) is 
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defined at the beginning of the previous paragraph and where y(k) and e(k) are 
composed of the first r components of x(k) and d(k) respectively. Therefore, 
in view of the definitions (2.13) and (5.4), searching along d(k) from x(k) to 
minimize the potential function V is equivalent to searching along e(k) from 
y(k) to minimize the potential function W. Further, the second search gives 
the vector 

(5.6) 

in 7?}, where a(k) is the step-length of equation (4.4), and where y(k+t) E n,r 
inherits the first r components of x<k+t). 

We now take the view that we are working in y-space, so h, B and Z are 
available, the objective function is { hTy I y E n,r}, the constraints are y 2::: O, 
zTy 2::: 0 and BTy = O, and the potential function is expression (5.4). We let 
y(k) E Yo C n,r be the initial vector of variables for an iteration of Karmarkar's 
algorithm. If the usual termination condition, which now has the form 

(5.7) 

is not satisfied, then we are going to calculate y(k+l) in the way that is suggested 
in the previous paragraph. Therefore we construct the vectors and matrix 

(5.8) 

in order that formula ( 4. 7) provides a suitable search direction in x-space. 
As before, the components of e(k) E n,r are the first r components of d(k). 
Then y(k+l) is chosen to be the vector (5.6), where, as mentioned already, 
the step-length a(k) is the value of a that minimizes the univariate function 
{W(y(k) + a e(k)) I a 2::: O}, subject to the condition that the arguments of 
the logarithms of the potential function remain nonnegative, which should be 
satisfied automatically. We note that the constraints AT x = 0 when A is defined 
by expression (5.8) are equivalent to the original constraints ATx=O, even if U 
is different from the identity matrix in expression (5.3). Further, when these 
constraints are satisfied, the definitions (5.5) and (5.8) make the new value of 
cT x the same as the original one, even if some of the last n-r components of 
the original c are nonzero. Thus we preserve the property that each reduction 
in the potential function is bounded away from zero. 

It is important to the main result of this section to eliminate from this use 
of formula ( 4. 7) the explicit dependence on x(k), c, X(k) and A. Indeed, we 
are going to express the search direction e(k) in terms of h, B, Z and y(k). In 
theory this can be done by substituting the definitions (5.8) into equation (4.7) 
and identifying the first r components of the resultant d(k), but the algebra is 
awkward, and it is difficult to extract a simple specification of e(k). Instead, 
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therefore, we take advantage of the fact that we know already that d(k) is 
the solution of the quadratic programming problem ( 4.12). Fortunately, this 
derivation of e(k) is easy and highly instructive. 

We separate the variables of the problem (4.12) and the matrix X(k) by the 
partitions 

d= (t) ( 

y(k) 
and x(k) = O i(k) ) ' (5.9) 

where e and fare in 'R/ and n,n-r, and where the dimensions of y(k) and n(k) 

are r x r and ( n-r) x ( n-r) respectively, so e is no longer the vector of ones. 
Of course y(k) and O(k) are diagonal matrices whose diagonal elements are the 
components of the vector x(k) of expression (5.8). We also let Z(·,j) denote 
the j-th column of Z, which gives the values 

n~J) = Z(·,J°ly(k), j = 1, 2, ... , n-r. (5.10) 

The definitions (5.8) and (5.9) show that the constraints ATd=O on the vari­
ables of the problem ( 4.12) are the equalities 

(5.11) 

We use the second condition to eliminate f from the quadratic objective func­
tion of expression ( 4.12), which provides a strictly convex quadratic function of 
the variables e. The required search direction e(k) is the vector that minimizes 
this function subject to BT e = 0. 

It follows from equations (5.9), (4.16), (5.8), (5.10) and (5.11) that the 
linear term of this objective function has the value 

dTVV(x(k)) = _n_ eTh _ eTy(k)-2y(k) _ JTn(k)-2 zTy(k) 
hTy(k) 

n Th Ty(k)-2 (k) ~ Ji 
- hT. (k) e - e y - ~ Z(· ')T. (k) y 3=1 ,J y 

n Th Ty(k)-2 (k) ~ eT Z(·,j) 
- hT. (k) e - e y - ~ Z(· ')T. (k). y 3=1 ,J y 

(5.12) 

This is a very nice result, because, by differentiating the potential function 
(5.4), we see that expression (5.12) is the scalar product eTVW(y(k)). Further, 
the quadratic part of the objective function ( 4.12) is the term 
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which gives the good news that the large brackets contain the second derivative 
matrix of the last two terms of W. We summarise these discoveries by stating 
that the comment in Section 4 on the calculation (4.19) extends to the current 
problem. Specifically, e(k) is the Newton-Raphson search direction at y(k) of 
the problem 

minimize {W(k\y) I yEn.r} subject to BTy=O, 

where w(k) is the function 

n-r 

- I: log Z(·,jfy, yE1?t. 
j=1 

(5.14) 

(5.15) 

A strong benefit of this technique is that it allows departures from the stan­
dard form of Section 2, that provide much useful freedom in the specification 
of linear programming problems that can be treated directly by Karmarkar's 
algorithm. It is now convenient not to distinguish between simple bounds and 
general linear inequality constraints. Therefore we let the original calculation 
be the problem 

minimize h Ty, y E 1?/ } 

subject to zTy ~ O, BTy = 0 and b'[y = 1 ' 
(5.16) 

where h and b0 are given vectors in 1?/, and Z and B are given r x n and 
r x s matrices respectively. This is the standard form when r = n and Z 
is the identity matrix, but, when Z is rectangular and r < n, the standard 
form requires some extra variables, which can be eliminated in the way that 
has been described. Alternatively, the potential function (5.4) anticipates the 
elimination, and, including any bounds with the general inequalities, it is the 
expression 

n 

W(y) = n log hTy - I:log Z(·,jfy, yEYo, (5.17) 
j=l 

where Yo is the set 
(5.18) 

Thus the problem can be solved in the following way, that avoids the con­
struction of the standard form and occasional large increases in the number of 
variables. 

We require a feasible starting point y(l) E Yo to be given that is not optimal, 
and we require the set of feasible points to be bounded. Further, we continue to 
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make the restrictive assumption that the final value of the objective function 
is zero, but this condition will be replaced by a lower bound on hTy* later, 
where y" denotes a solution of the calculation. The k-th iteration in y-space 
is as follows for the sequence of positive integers k. A nonzero starting point 
y(k) is available that satisfies zTy(k) ~ 0 and BTy(k) = 0. The calculation ends 
if the termination condition ( 5. 7) is satisfied. Otherwise y(k) is known to be in 
the set (5.18) and the vector of variables has to be revised. Therefore we let 
e(k) be the solution of the quadratic programming problem 

minimize eTv'W(y(k)) + l eT (~ Z(·,j) Z(·,jf) e 
2. f;;t [Z(·,j)Ty(k)]2 , eE'R/ } , (5.19) 

subject to BTe = 0 

the gradient having the value 

(k) . n ~ Z(·,j) 
v'W(y ) = hT (k) h - -f--1 Z(. ')T (k)' y J=1 ,J y 

(5.20) 

The new vector of variables is y(k+l) = y(k)+a(k) e(k), where, as in the paragraph 
that includes equation (5.8), the step-length a(k) is found by a line search that 
minimizes {W(y(k)+ae(k)) I a~O}. Then the next iteration is begun. 

However, we have not yet proved that the above algorithm is Karmarkar's 
algorithm for all the problems (5.16) that satisfy the conditions that have just 
been stated, because the starting point of the analysis of this section, namely 
that the equality constraints in x-space can yield the equations (5.2), is not 
sufficiently general. Indeed, because the elimination that has been described 
reduces the number of variables, our work so far is restricted to the case when 
the dimensions of the r x n matrix Z satisfy r < n. There is no need for this 
restriction on the problem (5.16), however, because the boundedness of the 
feasible region allows more variables than inequalities when there are some 
equality constraints. Therefore we present a general result that fills this gap. 

Theorem 7 Let the problem (5.16) satisfy the conditions that have been 
stated, and let the sequence of points {y(k) I k = 1, 2, 3, ... } be generated 
by the given algorithm that employs the quadratic programming calculation 
(5.19). Then there exists a linear programming problem in standard form, 
having n variables and the following property. Defining the sequence { x(k) I 
k = 1, 2, 3, ... } by applying Karmarkar's algorithm to the standard form, these 
points satisfy the identities { x(k) = zTy(k) I k = 1, 2, 3, ... }. Further, if x E n,n 
and yE'Rr are any vectors such that x=ZTy and BTy=O, then the potential 
function of the standard form has the value V(x) = W(y), where W is the 
potential function (5.17). 
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Proof Let YCR} be the linear space {y I BTy=O}. Thus the set of vectors 
{ x = zTy I y E Y} is a linear subspace of Rn, and we call it S. It is important 
that the conditions of the theorem imply that the correspondence between Y 
and S is one-to-one. 

To prove this assertion, we suppose that y(a) and y(b) are different elements 
of y such that zTy(a) = zTy(b). Hence the nonzero vector y(c) = y(b) -y(a) 

satisfies zTy(c) =0 and BTy(c) =0. The condition b'[y(c) /0 must hold, because 
otherwise the feasible set of expression (5.16) would not be bounded. Further, 
we let y(d) be the starting vector y<1> if y(c) and y(l) are linearly independent, 
but otherwise we let y(d) be a solution y* of the linear programming problem 
(5.16). It follows that the vector 

(5.21) 

is nonzero and satisfies zTy(e) ;2: O, BTy(e) = 0 and b'[y(e) = 0. Therefore the 
addition of any positive multiple of y(e) to any feasible vector preserves feasi­
bility. In this case, however, the feasible region would not be bounded, so we 
have a contradiction that gives the required result. 

We now choose two matrices z+ and A. The isomorphism that has just 
been proved and linearity imply that we can let z+ be an n x r matrix that 
satisfies the equation 

(5.22) 

Further, we let A be any matrix with linearly independent columns such that 
S is the space { x I AT x = 0}. Further, we complete the definition of the linear 
programming problem in standard form, where we are using the notation of 
Section 2, by setting c = z+h and by letting a0 be any vector, satisfying the 
normalization condition a'[ zTy(1) = 1, such that the feasible region (2.1) is 
bounded. Thus S0 in Lemma 1 is {x= zTy I y EYo}, where Yo is the set 

Yo = { y I zTy :2: O, y E Y }. (5.23) 

The two calculations that we are comparing confine the sequences { x(k) I k = 
1,2,3, ... } and {y(k) I k=l,2,3, ... } to S0 and Yo respectively. Further, the 
isomorphism gives a sequence {y(k) I k = 1, 2, 3, ... } in Yo such that {x(k) = 
zTg(k) I k=l,2,3, ... }. We have to prove that y(k)=y(k) can be achieved for 
all k. 

Of course the relation between the potential functions (2.13) and (5.17) 
depends on the choice c=Z+h. If BTy=O and x=ZTy, then the identity 

CTX = hTz+T zTy = hTy (5.24) 

is a consequence of equation (5.22), the condition BTy=O being equivalent to 
y E j), It follows from the definitions of V and W that the last statement of 
the theorem is true. 
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We begin the calculation of the standard form of Karmarkar's algorithm at 
the feasible point x(l) = zTy(l), which is in 80 because we are given y(l) E Yo, 
Employing the usual notation, we let x(2) = x(l) +ci1)d(1), and, because x(2) is 
in S, we recall from the isomorphism that x(2) = zTg(2) and g(2) E j) define g(2). 
Further, because d(1) is in S, we can define e<1) by the conditions d(1) = zTe<1> 
and e(l) E j), which provides the relation y(2) =y(1>+ci1>e(l). It follows from the 
equivalence of the potential functions V and W and the exact line searches that 
the calculation in y-space gives y(2) = jj<2> if and only if the search direction e(l) 
is a positive multiple of e(1). In fact we are going to establish e(l) = e(1), and 
then a straightforward inductive argument completes the proof of the theorem. 
Therefore it remains to show that x(k) = zTy(k) implies e(k) = e(k). 

The search direction d(k) minimizes the objective function of the quadratic 
programming problem ( 4.12) subject to d(k) ES. Since, for every d ES, there 
is a unique e E j) such that d = ZTe, and since we have zTe E 8 for every e E j), 
it follows that d(k) is the vector zTe(k), where e(k) is the value of e that solves 
the calculation 

rmmrmze eTZ'vV(x(k)) + ! eTzx(k)-2zTe, 

subject to BTe = 0 
<E'R! } . (5.25) 

We compare this calculatioii with the quadratic prograrruning problem (5.19). 
The analogy of expression (5.12) is that equations (4.16) and (5.20) give the 
identity 

n -T -T ~ Z(·,j) 
- T(k) e Zc - e LJ (k) 

C X j=l X3 

n -T n eT Z(·,j) 
- hTy(k) e h - fi Z(·,j)Ty(k) 

- eT'vW(y(k)), e E j), (5.26) 

where the middle line depends on c = z+h and on the inductive hypothesis 
x<k) = zTy(k). Further, the analogy of expression (5.13) is the identity 

1-Tzx<k>-2zT- = 1 -T (~ Z(·,i) Z(·,i?)-
2 e e 2 e ,!-J [Z(· ')T. (k)]2 e. 

J=l ,J y 
(5.27) 

Therefore the calculations (5.19) and (5.25) are the same. Hence they provide 
e(k) = e(k) as required, which completes the proof of the theorem. D 

An immediate corollary is that every iteration of the calculation in y-space 
reduces its potential function by an amount that is bounded away from zero. 
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Therefore the polynomial-time property of Karmarkar's algorithm is enjoyed 
by our version that treats the linear programming problem (5.16) directly. 

We now address the removal of the restrictive assumption, obtaining guid­
ance from the standard form that is constructed in the proof of Theorem 7. 
Since equation (5.24) shows that the objective functions of the two calculations 
of the theorem agree, it is suitable to pretend for a moment that we are work­
ing in x-space, and to increase ,(k) by the technique that is described at the 
end of Section 4, after giving further attention to the choice of ao. Specifically, 
we require the relation 

(5.28) 

to hold when x = zTy and BTy = 0, so we set a0 = z+b0• Therefore we can 
follow the rule, stated in the last paragraph of Section 4, that any increases in 
,(k) are to provide the property that at least one component of d(k) is no less 
than the corresponding component of x(k). Our analysis shows that in y-space 
this means that at least one component of zT(e(k)_y(k)) is to be nonnegative, 
but we have to look more closely at the calculation (5.19) in order to express 
this condition in a convenient form. 

Let H be the second derivative matrix of the problem (5.19). Then, by 
analogy with the derivation of equation ( 4.15) from expression ( 4.12), the 
search direction is the vector 

(5.29) 

Moreover the identity 

~ Z(·,j) = (~ Z(·,j) Z(·,i?) y(k) = Hy(k) 
f;:i Z(·,j)Ty(k) f;:i [Z(·,j)Ty(k)]2 

(5.30) 

implies that the last term of the gradient (5.20) is simply -Hy(k). It follows, 
remembering the constraint BTy(k) = O, that the contribution from this term 
to the search direction (5.29) is just y(k). Therefore we have the equation 

e(k) _y(k) = (h-,(k~bo)Ty(k) H-1 [ I - B(BT H-1 Bt1BT H-1] (h-,(k)bo), 

(5.31) 
after replacing h by h-,(k)b0 in the gradient (5.20) in order to take account of 
the current lower bound, which corresponds to the definition (3.10). Now as 
usual the lower bound makes the denominator (h-,(k)bof y(k) positive. Hence 
our rule for changing ,(k) is that we require at least one component of the 
vector 

(5.32) 
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to be nonpositive. If necessary we make the smallest increase in 1(k) that 
provides this condition, which is analogous to the change that depends on 
equation (4.24). 

6. An example that has an infinite number of constraints 

The work of Section 5 shows that Karmarkar's algorithm can be applied di­
rectly to linear programming problems that have few variables and a large 
number of constraints. We are going to study a simple example of such a 
calculation, which is derived from the nonlinear problem 

minimize 

subject to 

X2, xE'R-
2

} 

x2 + x2 < 1 · 1 2 -

(6.1) 

We approximate the nonlinear constraint by an envelope of tangents to the 
unit circle, each tangential condition having the form 

(6.2) 

for some angle (), We see that x is feasible if and only if inequality (6.2) holds 
for all () E [O, 21r]. For interest, we let () have an infinite number of values, 
distributed uniformly over [O, 21r], which allows the sum that occurs in the 
potential function to be replaced by an integral. Moreover, we require all 
constraints to be homogeneous except for a single equation. Thus the number 
of variables increases from two to three, and we use the notation y E 'R,3 for 
the new variables because we will go back to the original variables x E 'R-2 

later. Therefore we express the calculation as the semi-infinite programming 
problem 

minimize 

subject to 

and 

Y2 + Y3, yE'R-
3 

} 

cos() Y1 +sin() Y2 + y3 ~ 0, 0 :s; () :s; 21r , 

Y3 = 1 

(6.3) 

the term y3 being included in the objective function in order that the "restric­
tive assumption" is satisfied. Hence, choosing a normalization that provides 
homogeneity in y, the potential function (5.17) is the expression 

Because there are no homogeneous equality constraints in this example, the 
algorithm can be regarded as a procedure for unconstrained minimization that 
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is applied to {vV(y) I yE'R.3 }. We expect the integral term of expression (6.4) 
to keep the homogeneous inequality constraints satisfied. The fact that we 
have only three variables shows the advantage of the version of the algorithm 
that is developed in Section 5. 

There is an analytic expression for the above integral. Indeed, the equation 
that is numbered 865.44 in Dwight (1961) is the formula 

11r log (a± bcost) dt = 1r log(! a+! Ja2 - b2). (6.5) 

Since the range of() is [O, 21r], we may replace the term Y1 cos a+y2 sin() by 
(Yi +y~)112 cos() in equation (6.4). It follows that the potential function has 
the value 

W(y) = 21r log (Y2+Ys) - 21r log ( ~ Ys +~VY~ - Yi - Yi), Y E'R.3 , (6.6) 

Now, for every y(k) that occurs during the calculation of the algorithm, we 
are going to take advantage of the homogeneity by picking the normalization 
yt> = 1. Therefore every iteration is going to reduce the function 

F(x) = log (1 + x2) - log (1 + Vl - x~ - x~), xE'R.2, (6.7) 

which is derived by setting y1 = x1 , y2 = x2 and Ys = 1 in the expression 
{W(y)/(21r) - log 2 I y E'R.3}. 

We see that we no longer have the usual property that the potential function 
tends to infinity when y ( or x) approaches the boundary of the feasible region, 
because this feature has been removed by the analytic integration and our 
scaling of the potential function. However, the gradient 

( 

Y1/[a(ys+a)] l 
'vW(y) = 21r l/(Y2+Ys) + Y2/[a(ys+a)] , 

l/(Y2+Ys) - l/a 

(6.8) 

where a is the term 
a= VY~ - Yi - Y~, (6.9) 

becomes unbounded if y tries to violate the constraints. Thus, if y(k) is strictly 
inside the feasible region and e(k) is any search direction that goes to the 
boundary of this region, then the line search function {W(y(k)+a e(k)) I a~ O} 
has a minimum at a feasible point. 

Another important consequence of the infinite number of constraints is 
that we do not know if the algorithm will converge successfully. Indeed, the 
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guaranteed reduction of Theorem 4 depends on the potential function being 
normalized so that the logarithm of the objective function (cTx or hTy) is 
multiplied by the number of inequality constraints. Therefore, before applying 
the analysis of Section 3, we should rescale the function (6.4) so that the factor 
21r becomes infinite. Thus the guaranteed reduction in our potential function 
is a positive constant multiplied by zero, so the theorem is of no relevance to 
the present example. 

Nevertheless, it is still straightforward to apply the algorithm that is given 
in Section 5. We begin at any interior feasible point y(l). For each positive 
integer k, the search direction e(h) is derived from a quadratic programming 
problem that is analogous to the calculation (5.19). In the present case there 
are no constraints, so e(h) is obtained by equating the gradient of the quadratic 
objective function to zero. The matrix of this linear system in Section 5 is the 
second derivative matrix of the last part of the potential function (5.17), so 
now we must employ the analogous part of the function (6.6), which is the 
expression 

-21r log (!v3 + !Jv'#,-y; -v~), yE'R-3. 

It has the second derivative matrix 

a2(y3+a) + Yi (y3+2a) Y1 Y2 (y3+2a) 
a3 (y3 +a )2 a3 (y3+a)2 

H(y) = 21r Y1 Y2 (y3+2a) a2 (y3+a) + y~ (y3+2a) 
a3 (y3+a)2 a3 (y3 + a )2 

-y1 -y2 
a3 a3 

where a is still the term (6.9). Thus e(h) is defined by the system 

H(y(h)) e(h) = -VW(y(h>), 

which has the solution 

( 

Y1/(y2+y3) ) 
e(h) = -a 1 +a/ (Y2 +y3) , 

1 - a /(Y2+Y3) 

(6.10) 

-vi 
a3 

-v2 
a3 

Y3 
a3 

(6.11) 

(6.12) 

(6.13) 

One can verify this claim by substituting the values (6.8), (6.11) and (6.13) into 
equation (6.12), remembering the definition of a. A partial check is provided 
by a remark in the penultimate paragraph of Section 4, namely that the line 
search makes no first order change to the barrier term of the potential function, 
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which in the present case is expression (6.10). It follows from the derivation of 
the gradient (6.8) that e(k) should be orthogonal to the vector ( y1 y2 -y3-a). 
This condition is satisfied. 

We are going to return to a two-dimensional form of our calculation in order 
to provide some numerical results and a picture. Therefore, for each y E 'R,3 
we let x E 'R-2 have the components y1/y3 and y2/y3 • As mentioned already, we 
normalize y(k) so that vt> = 1, so it would be convenient if the last component of 
the search direction in y-space were zero. Fortunately, the half-line argument in 
the complete paragraph that follows equation ( 4.22) shows that some additions 
of multiples of y(k) to e(k) make no difference to the calculation in y-space 
because of homogeneity. Specifically, since y3 = 1, we construct the vector 

-(]' 

Y1 
Y2+l 

a 
1+-­

Y2+l 
a 

l---
Y2+l 

which suggests the search direction 
(6.14) 

(6.15) 

in x-space, the positive multiplying factor a/ (y2+ 1) being unimportant. Since 
d(k) must go to the boundary of the unit circle from any interior point x(k) E 'R,2 , 

the addition in equation (6.14) of a multiple of y(k) to e(k) does not exclude 
any relevant points of the line search, which can happen sometimes because 
the feasible region in y-space is a cone. 

Therefore our two-dimensional calculation is as follows. We let the initial 
vector of variables x(l) be any point that is strictly inside the unit circle. Each 
iteration sets x(k+l) = x(k>+a(k)d(k), where d(k) is the direction (6.15) and where 
a(k) is calculated to minimize the new value of the function ( 6. 7). Because the 
usual termination condition may be unattainable, we continue the iterations 
until the inequality 

(6.16) 

is satisfied. 
Numerical results using two starting points are reported in Table 1. The 

first starting point has the components (0.1, -0.5), which is a fair estimate of 
the solution at (0, -1), but we see that the sequence {x(k) I k=l,2,3, ... } 
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First calculation 
k 

Second calculation 
(k) (k) (k) (k) 

X1 X2 X1 X2 

0.1000000 -0.5000000 1 0.5990000 0.8000000 
0.0424728 -0.9990972 2 0.7052093 0.7021610 
0.0415769 -0.9991353 3 0.8954367 0.4010370 
0.0415583 -0.9991361 4 0.9773643 -0.0878220 
0.0415579 -0.9991361 5 0.8981845 -0.4253666 

6 0.8166685 -0.5747441 
7 0.7713221 -0.6360218 
8 0.7497547 -0.6616377 
9 0.7400236 -0.6725662 

10 0. 7357213 -0.6772816 
11 0.7338350 -0.6793272 
12 0.7330110 -0.6802167 
13 0.7326515 -0.6806040 
14 0.7324948 -0.6807727 
15 0.7324265 -0.6808461 
16 0.7323967 -0.6808782 
17 0.7323837 -0.6808921 
18 0.7323781 -0.6808982 
19 0.7323756 -0.6809008 
20 0.7323746 -0.6809020 
21 0.7323741 -0.6809025 

Table 1: The semi-infinite programming example 

seems to be converging to a wrong point on the unit circle. The second cal­
culation is pathological, because x(l) is very close to the edge of the feasible 
region. In this case the Karmarkar search direction is nearly parallel to the 
nearest constraint boundary. Consequently, the table shows that the sequence 
{x(k) I k = 1, 2, 3, ... } stays close to the boundary of the unit circle. Again 
the numerical results indicate that quite rapid convergence is occurring to a 
spurious point. Another calculation is shown in Figure 2. Here the starting 
vector is (0.8, 0.5), the points x(l), x(2), x(3), x(4) and the limit of the sequence 
{ x(k) I k = 1, 2, 3, ... } being plotted. Further, the dotted curves are level lines 
{ x I F( x) =constant} of the potential function. 

These results seem to contradict the current opinion that Karmarkar's al­
gorithm is suitable for very large linear programming calculations. Therefore 
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Figure 2: An example of premature convergence 

analytic expressions were derived for the changes to the variables of a typical 
iteration, in order to prove theoretically that, when all arithmetic is exact, the 
algorithm fails to solve the problem that is studied in this section. Some of 
this analysis is given below, but most of the details are omitted because there 
are several pages of algebra in the complete proof. 

We suppose that at the starting point x(k) of a typical iteration we have 
xik) > 0 and x~k) < O, which does not lose generality because x 2 becomes 
negative after a :finite number of iterations and the sign of x1 is unimportant, 
except that in the special case when x1 = 0 the search direction leads directly 
to the solution at (0, -1). Further, we recall that x(k) is strictly inside the 
unit circle. It is therefore convenient to use the notation 

x(k) = ( sin'I/J cosw) (6.17) 
- cos 'Ip 

for the starting point of the iteration, where O < '1/J < 1r /2 and O < w < 7r /2. 
Thus, after dividing by the positive factor sin '1/J, formula (6.15) provides the 
search direction 

d(k) = ( - cos.'1/J cosw. - sin'I/J cosw. sinw ) . (6.lS) 
- sm '1/J - smw + cos '1/J smw 
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Because the components of d(k} are negative and the step-length a(k} is going 
to be positive, the iteration preserves x2 < 0. Further, x1 will remain positive, 
because, if a is such that the first component of x(k}+a d(k) is zero, then this 
point is outside the unit circle. It follows that, after removing the termination 
condition, the algorithm generates a well-defined infinite sequence { x(k} I k = 
1, 2, 3, ... }, where each vector of variables has the form (6.17) with O < '1/J < 1r /2 
and O <w < 1r /2. 

The required step-length a(k} is the unique positive value of a that satisfies 
the equation 

ik)TVF(x(k}+aik))=O, a>O, (6.19) 

(Todd and Burrell, 1986), where Fis the potential function (6.7). Using the 
definition of F, we write equation (6.19) in the form 

d~k) (1- llx(k} + ad(k)II~ + J1 - llx(k) + ad(k)II~) 

+ (1 + x~k) + ad?>) d(k)T(x(k) + ad(k)) = 0. (6.20) 

Fortunately, the terms in a 2 that are not under the square root sign cancel each 
other, so a(k) is a root of a quadratic polynomial. The two roots have opposite 
signs, and, by substituting expressions (6.17) and (6.18) into this polynomial 
and carrying out some laborious algebra, one can show that the positive root 
has the value 

a<k) = (1 - cos '1/J + sin VJ) sin w / L'.1, 

where the denominator is the number 

(6.21) 

6. = 1 + ( cos '1/J + sin '1/J) sinw + (1 - cos '1/J + sin '1/J) sin2w. (6.22) 

Thus the components of x(k+i) are given by the formula 

x~k+l) = cosw [ sin VJ+ (1-cos VJ) sinw] / L1 } • (
6
.
23

) 

x~k+l) = -1 + (1-cos'I/J)(l-sinw) / L1 

In order to verify that a(k) is correct, it is easier to check condition (6.19) 
instead of wrestling with the quadratic equation. 

We now consider the reduction in the potential function (6.7) that is 
achieved by the iteration. A relatively easy calculation shows that formula 
(6.23) provides the identity 

F(x(k+i)) = F(x(k)) - log (~+s~nw). (6.24) 
-smw 

Further, it follows from the relation 

. 2 (1 (k)2 (k)2)/(1 ,,.(k)2) Sln W = - X1 - X2 - "'2 (6.25) 
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that the value of won the (k+l)-th iteration satisfies the inequality 

sin2w(k+l) = (1-cosVJ)(l-sinw) sin2w 
1 +cos VJ+(l +2 sin VJ+cos VJ) sinw+2 (1-cos VJ+sin VJ) sin2w 

< 1 - cos VJ . 2 
1 ./, Slll w, + cos 'r' 

(6.26) 

where, as usual, the superscript is an iteration number. Now we recall that 
cos VJ= -x~k), that x~k) is negative and that every iteration reduces this vari­
able. Therefore expression (6.26) gives the relation 

sin2w(k+l) < - cos.,., sin2w(t) 
( 

1 .,.(t)) k+1-t -

- 1 + cosVJ(t) ' 
k?. i, (6.27) 

where i is any fixed integer such that cos VJ(t) is positive. It follows that the 
sum I:1c sin w(k) is absolutely convergent, so we have the bound 

00 
(1 + sinw(k)) I: log . (k) < oo. 

k=t 1 - smw 
(6.28) 

Hence we deduce from equation (6.24) that the monotonically decreasing se­
quence {F(x(k)) I k=l,2,3, ... } is bounded below. Therefore the calculated 
vectors of variables {x(k) I k = 1, 2, 3, ... } do not tend to the optimal point 
(0, -1), which completes the proof that Karmarkar's algorithm can fail to 
provide convergence to the solution of a semi-infinite programming problem. 

7. Discussion 

I have greatly enjoyed studying Karmarkar's algorithm because of its elegant 
theoretical properties. The crucial ingredient seems to be that, due to the 
homogeneity of the potential function, there are no ill effects from the nonlin­
earity of the transformation (2.6). We have noted that the price of homogeneity 
is the need to assume that the optimal value of the objective function is zero, 
and it is brilliant that one can afford this price in practical calculations by 
working with a lower bound on cTx* that is improved automatically in a way 
that preserves the polynomial time complexity. These ideas alone persuade 
me that the algorithm breaks new ground in the development of numerical 
methods for optimization calculations, and I feel sure that the ideas are of 
fundamental importance to future research, regardless of whether or not the 
actual performance of the algorithm is sometimes vastly superior to the sim­
plex method as claimed. I know little about the comparisons that have been 
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made by numerical experiments, my degree of interest in these activities being 
relatively small. On the other hand, I am very willing to be excited by tech­
niques that improve efficiency, including the use of approximations and the 
implementations of matrix calculations. 

The example of Section 6 shows a need for extensions to the basic algo­
rithm, unless one takes the view that the method under investigation is not 
Karmarkar's algorithm. It is so easy to apply the results of Section 5 to semi­
infinite programming problems with an infinite number of constraints, that 
the question of identity should surely be aimed at the procedure in Section 5 
that tackles the general linear programming problem (5.16) directly, instead of 
requiring a preliminary calculation that expresses the problem in a standard 
form. I submit that Theorem 7 establishes that our procedure is equivalent 
to the original algorithm. Indeed, the components of zTy in expression (5.16) 
have to be variables in the standard calculation because there the only in­
equality constraints are simple bounds. Thus the theorem proves that our 
calculation does correspond to a standard one that has the minimal number 
of variables. 

The failure of the method in Section 6 is due partly to the fact that, when 
x(k) is very close to the boundary of the unit circle, then the search direction d{k) 

is nearly orthogonal to x(k). Therefore the preservation of feasibility demands a 
small step-length because the feasible region has a curved boundary. It might 
be possible to devise an ad hoc remedy that forces the line search to move 
away from the perimeter of the unit circle initially, but it can be shown that 
d(k) already satisfies this condition in the region that is sandwiched between 
the ellipse { x E R 2 I xr + 2x~ + 2x2 = 0} and the unit circle, so one would need 
to strengthen this condition artificially. An alternative remedy might be to 
modify the potential function (6.4) in a way that recovers the usual property 
that this function is unbounded at the edge of the feasible region, but, when 
the number of constraints is infinite, this goal is in conflict with homogeneity. 

The main reason why I had not studied Karmarkar's algorithm earlier is 
that I believe that linear constraints in optimization calculations should nor­
mally be treated explicitly, instead of being lumped together in a penalty 
function method. I still hold this view, and it has been strengthened by the 
results of this paper. On the other hand, I agree that it is important to avoid 
the inefficiencies that are liable to occur in the simplex method when many 
vertices of the feasible region are close to each other. Therefore I developed 
some Fortran software recently (Powell, 1989) for linearly constrained opti­
mization calculations that generates search directions that are not allowed to 
move towards the boundaries of any constraints with "small" residuals, the 
meaning of "small" being dependent on a tolerance parameter that is adjusted 
automatically. This software is highly suitable for calculations that have far 
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more constraints than variables, except that it takes no account of sparsity. 
Good techniques for managing large sparse matrices are essential for the effi­
cient solution of most problems that are regarded as substantial by the linear 
programming community. Further, when such techniques are available, there 
may be no need for the elimination of variables that is performed in Section 5. 
The details of the elimination show, however, that the use of quadratic pro­
gramming calculations for defining search directions provides a very convenient 
description of Karmarkar's algorithm for solving general linear programming 
problems. 

We have viewed the most active field of research in optimization through a 
window that is shamefully narrow because I prefer to develop some ideas inde­
pendently instead of reading the relevant literature comprehensively. The given 
description of Karmarkar's algorithm, however, should provide insight into its 
fundamental properties, because we have avoided several unnecessary details 
that are present in many published papers. In particular, I learnt from Gon­
zaga (1988) the simplification of ignoring the single inhomogeneous constraint 
until the end of the calculation when the restrictive assumption is satisfied. 
Further, Gill et al (1986) introduced me to the nonlinear programming point 
of view that initiates the findings of Section 5. I believe that the main conclu­
sion of Section 6 is new, however, and it would be interesting to take this work 
further, investigating the deterioration in efficiency that surely occurs if more 
and more linear constraints are employed to approximate the feasible region 
{ x ER 2 I x~ +x~ < 1}. Indeed, there seem to be many opportunities for further 
research on Karmarkar's algorithm. 
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