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1 Introduction 

In this article the problem under consideration is that of finding optimum values for the 

variables x1 , x 2, ••• , Xk, to minimize the function S(X), where 

S(X) = trace[(R + P X)K(R + P Xf], (1.1) 

and X denotes the diagonal matrix with non-zero elements Xjj = Xj· The problem arises 

from an attempt to perform a regression with an unobservable dependent variable. Suppose 

that k independent estimates of an unobservable data series are given by rj + pjxh where 
-

the n-dimensional vectors, rj and pj, j = 1, 2, ... , k, are columns of the n x k data 

matrices R and P respectively and x1 , ... , xk are scalars to be determined. The sum of 

squared deviations of these estimates about observed values cannot be minimized because 

there are no observations. If instead the variance (or more correctly the trace of the sample 

variance/covariance matrix) of the k estimates is minimized then the resulting function to 

be minimized can be defined by (1.1), where K is the (positive semi-definite) matrix 

K = ki- ones(k, k), (1.2) 

and ones(k, k) denotes the k x k matrix with all its elements unity. 

The statistical merits of the approach outlined above are not considered here but the 

linear algebra underlying the minimization problem, the conditions under which a unique 

solution can be expected and how this might be calculated effectively, are investigated. 

First it is noted that S(X) is a quadratic function of the parameters x1 , x 2 , ••• , Xk, 

and hence a necessary condition for the variance to be minimized is that 8S/8xj = 0, 

j = 1, 2, ... , k. Differentiating (1.1) gives (see, for example [2]). 

(1.3) 

Because X is diagonal, only the derivatives where i = j are of interest. Therefore, the 

required stationary point satisfies 

diag(PT RK) =- diag(PT PXK), (1.4) 
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which is a system of k linear equations in the components of the vector x = X e, where 

e = (1, 1, ... , 1f is the k-dimensional vector whose components are all one. 

Exploiting the special structure (1.2) of K enables equation (1.4) to be reduced to the 

simple matrix/vector equation 

where 

A= pTp, 

B = prR, 

Ax= -Be, 

A= k diag(A)- A; 

B = k diag(B)- B. 

(1.5) 

(1.6) 

(1.7) 

2 Uniqueness of the Minimum Variance Estimator 

Equation (1.5) will provide a unique solution for x provided that the matrix A is non

singular. This is easily established by making repeated use of the following property of a 

congruence transformation (see, for example, Strang[3] ) . 

Sylvester's Law of Inertia. If A and Care n x n real matrices, with A symmetric and 

C non-singular, then the matrix cr AC has the same number of positive eigenvalues as 

A, the same number of negative eigenvalues, and the same number of zero eigenvalues. 

Thus a congruence transformation preserves the signs of the eigenvalues. 

Theorem 2.1. Let A be a real k x k symmetric positive semi-definite matrix. Then the 

matrix 

A= k diag(A)- A, (2.1) 

is positive definite if, and only if, A has positive diagonal elements and rank(A) > 1. 

Proof: First note that if A has a zero diagonal element, then so does the matrix A., which 

cannot therefore be positive definite. 
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Alternatively, if A has positive diagonal elements define 

C = diag [ ~, ... , ~] 
v au v akk 

to be the diagonal matrix whose elements are the reciprocal square roots of the diagonal 

elements of A. Then it is sufficient to show that cr AC has positive eigenvalues, because 

this matrix is clearly congruent to A. But 

cT AC = kl - cr AC 
' (2.2) 

so if .A1 , .A2 , ... , Ak, are the eigenvalues of cr AC, then the corresponding eigenvalues of 

cr AC are: 

J.Lj=k-.Aj, j=1,2, ... ,k. (2.3) 

However, cr AC is congruent to A and therefore has non-negative eigenvalues. Also 

[CT AC]ii=1, i=1, 2, ... , k, therefore 

k 

trace( cr AC) = k = 2::: Aj. 
1 

Thus 0 :::; Aj :::; k, j = 1, 2, ... , k and Aj = k for some j if and only if all other eigenvalues 

are zero, that is if, and only if, rank( A) < 2. Clearly, f.Lj > 0, j = 1, 2, ... , k, if, and only if, 

rank(A) > 1. 0 

Corollary 2.1. Problem (1.1) has a unique solution if, and only if, the matrix P has no 

zero columns, and at least two linearly independent columns. 

Proof: This follows directly from the definition of A in equation (1.5) and Theorem (2.1). 

0 

It should be clear that it would be highly unusual in any practical case for a unique 

solution to not exist. In fact, even in such (pathological) cases A is positive semi-definite 

and equation (2.1) is consistent (and therefore infinitely many solutions exist) but this is 

not considered further here since this situation should never occur in practice. 
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3 Numerical Considerations 

The obvious approach to solving the system (2.1) is to first form the vector Be, without 

forming B, using the special form (1.5) of B. This requires only k(2n + 1) multiplications 

and additions. Next the matrix A is formed at a cost of k2n multiplications and a sim

ilar number of additions. Then the Choleski factors of A would be calculated, requiring 

about ik 3 multiplications/additions and the solution of (2.1) completed by forward and 

back substitution with two triangular coefficient matrices requiring a further k2 multipli

cations/additions. Thus the dominant cost by this method is 

multiplications/additions, which is also the dominant cost of computing a solution to the 

more familiar linear least squares problem via "normal equations" of the form: 

(3.1) 

However, for greater numerical stability, forming the normal equations (3.1) in the linear 

least squares case is sometimes avoided because the matrix pT P can be very ill-conditioned. 

More precisely, 

cond(PT P) = cond(P) 2
, 

where cond(P) denotes the spectral condition number of the matrix P, which is defined 

as the ratio of the largest to the smallest singular value of the matrix P. Instead of 

forming the matrix pT P, the QR-factorisation, or singular value decomposition of the 

matrix P is sometimes recommended for greater numerical stability even though each of 

these approaches requires more computational effort (see [1], for example). 

Unfortunately the QR-factors of P are not helpful in solving the system of equations 

(2.1), so it is relevant to ask if this system can also be prone to the numerical instability that 

can effect the normal equations (3.1) when P is ill-conditioned. Fortunately, it turns out 

that the system (2.1) is much less susceptible to ill-conditioning as the following example 

illustrates. 
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Let P be the n x k segment of the Hilbert matrix whose elements are Pij = 1/ ( i + j - 1), 

i = 1, 2, ... , n; j = 1, 2, ... , k. This matrix is notoriously ill-conditioned, even for quite 

moderate values of n, k, as Table 3.1 shows. However, the condition number of the matrix 

A, grows much more slowly with nand k as can also be seen from Table 3.1. In this case, 

the slow growth of condition number with n and k would allow quite large systems to 

be solved accurately without having to resort to orthogonal factorisations (either QR or 

SVD). 

Condition Number 

n k p pTp A 

7 3 2.11e+02 4.46e+04 1.47e+02 

7 5 1.66e+05 2.77e+10 2.31e+02 

9 3 1.83e+02 3.37e+04 1.30e+02 

9 5 1.01e+05 1.02e+10 1.97e+02 

9 7 1.24e+08 1.57e+16 2.91e+02 

Table 3.1. Spectral Condition Numbers. 

Of course, it is still possible to construct a matrix, P, which gives rise to a poorly 

conditioned matrix A; indeed as Theorem 2.1 indicates, this could be achieved most easily 

either by choosing P to be arbitrarily close to a rank-1 matrix or by making one column 

of P arbitrarily small in norm. Hopefully, such situations would be unlikely to occur in 

practical cases. 
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