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Abstract 

We give characterizations of weighted Besov-Lipschitz and Triebel-Lizorkin 
spaces with A00 weights via a smooth kernel which satisfies "minimal" moment 
and Tauberian conditions. The results are stated in terms of the mixed norm of 
certain maximal function of a distribution in these weighted spaces. 

1. Introduction 

We recall the definitions of the weighted Besov-Lipschitz and Triebel-Lizorkin spaces. 
We refer to [1] for references to the relevant literature as well as proofs. Throughout 
this paper let 0 < p < oo, 0 < q :::; oo, -oo < a < oo, and w E A00 , where Aoo is 
the Muckenhoupt weight class. All functions and distributions are defined on Rn and 
explicit reference to Rn in the notation will be dropped. S is the usual space of test 
functions for the space of tempered distributions S '. 

To define the scales of spaces choose a function () E S such that 

00 

supp 0 ~ { ~ :::; Jel :::; 2}; 2: 0(2-j e) = 1, Jel -1- 0. 
j=-oo 

For each integer j, let 'lj;j E S be given by ~j(e) = 0(2-je). Following J. Peetre and 
H. Triebel, we define two scales of function spaces as follows: 
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where IJgllp,w = (jRn lg(x)IPw(x)dx) lfp is the quasi-norm for the weighted Lebesgue 

space L~. Since the functions ~j vanish in a neighbourhood of the origin, we see that 
these spaces are quasi-Banach spaces that are continuously embedded inS 1 /P, the space 
of tempered distributions modulo (all) polynomials. Different choices of e lead to the 
same spaces with equivalent quasi-norms. 

These two scales of function spaces and their inhomogeneous counterparts (see Sec­
tion 5) play an important role in the various branches of analysis. In particular, 

F·o,w HP 0 < 
p,2 = w ' p < 00 ' 

where Hfu denotes the weighted Hardy space of f E S 1 for which 

llfllm~ = II sup l4>t * f(-)lllp,w < oo , 
O<t<oo 

where 4> is a fixed function ins with r <l>(x)dx -=1- 0, and 4>t(x) = t-n</>(x/t). }Rn 
By the fundamental work of C. Fefferman and E.M. Stein [6] adapted to the weighted 

case, Hfu (or its local version h~ given in Section 5) does not depend on the function 
4> used in its definition (see also [1, Theorem 1.2],[12]). For the Besov-Lipschitz and 
Triebel-Lizorkin spaces, a basic result by J. Peetre [11, Theorem 3.1] showed that they 
are independent of the sequence { '1/Ji} entering in their definitions. 

In our results we have restricted p to be finite, but this is a technicality since for a 
non-trivial Aoo weight w, L::; = L00

• Observe that 

B~,oo = A~, 0 < a < oo, 1 ::=; p ::=; oo, 

where A~ is the homogeneous Holder-Zygmund space of order a, and so the results are 
well-known. See [9] for a treatment of the unweighted Besov-Lipschitz spaces. 

There is an equivalent family of quasi-norms in which the sums in (1.1) are replaced 
by integrals. Thus if <p E S, 

supp cp ~ {1/2:::; lei :::; 2} and l0(e)l ~ c > 0, 3/5 :::; lei :::; 5/3 

for some c > 0, then the weighted homogeneous Besov-Lipschitz and Triebel-Lizorkin 
spaces are characterized by 

(1.2) 

1\fiiP"·w ""' ( {oo (t-ai'Pt * fl)q dt) lfq 
p,q lo t 

p,w 

for all f E S 1 /P. The fact that these quasi-norms are independent of the choice of <p 
and are equivalent to those given in (1.1) follows by standard arguments that mimic the 
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proof that the quasi-norms in (1.1) are independent of the choice of e. See [11) or [7) for 
details of this argument. More can be found in Section 6( d). 

It is our purpose to find characterizations such as (1.2) but for kernels that occur nat­
urally and satisfy conditions simply stated and easily verified. One such characterization 
is well-known and it will be used in this paper. We shall use C, c, ... to denote positive 
constants which may depend on the parameters concerned, such as, a,p, q, w, ... , but 
not on the variable quantity, usually a distribution f. 

Theorem 1.1 (See [2),[3]). Let -oo <a< oo, 0 < p < oo, 0 < q:::; oo, wE Aoo; and 
r 0 = inf{r: wEAr}. Assume that k is a non-negative integer with 2k > a) and¢ E S 
is given by ~( O = ( -le l2)k e-1~12

• Then 

(1.3) 

for all f E S '/P; where ,\ > max(nrofp, nbjq) and 

¢;J(x) = ¢;,>.J(x) =sup lc/Jt * f(x- y)l (1 + M)->-
yERn t 

REMARKS. (i) Let Wt(x) = W(x, t) = (4?rttnf 2e-lxl
2

/
4t be the Gauss-Weierstrass 

kernel on Rf.+1 . If we set v(x, t) = (8j8t)kWt * f(x), then, since 'W;(e) = e-t1~1 2 , 
rPt * f(x) = t 2kv(x, t 2

), and the theorem above gives characterizations of the weighted 
homogeneous Besov-Lipschitz and Triebel-Lizorkin spaces via temperatures; i.e., solu­
tions to the heat equation. 

(ii) Since convolution with <P in (1.3), (unlike convolution with r.p in (1.2)) does 
not annihilate all polynomials, one should interpret the left-hand side inequalities in 
(1.3) as being valid for some representative in the equivalence class in S' jP. Similar 
conventions hold for the conclusions of Theorems 3.1 and 4.1. However, if j vanishes in 
a neighbourhood of the origin, then the proof in [2) showed that these inequalities hold 
for the same representative f. 

(iii) Notice that the left-hand side inequality for the Besov-Lipschitz quasi-norms in 
(1.3) is stronger than that suggested by (1.2). Ideally one would want the quasi-norm on 
the left-hand side to be as strong as possible and that on the right-hand side as weak as 
possible. The role of the Hardy quasi-norm in (1.3) is described in Section 4. A similar 
comment holds for the Triebel-Lizorkin quasi-norms in (1.3). 

(iv) Versions of Theorem 1.1 are valid for harmonic functions. That is, derivatives 
of the Gauss-Weierstrass kernel can be replaced by derivatives of the Poisson kernel, 
provided high enough orders of differentiation are used. See Section 6(b) for details. This 
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is an example of how removing the kernel from S requires the imposition of "unnatural 
conditions". These additional conditions are imposed so the various integrals and sums 
that occur in the proof converge. 

There is near universal agreement on the minimum "natural conditions" to be satis­
fied by a kernel cp in order to yield a characterization as in (1.2). There are a "moment 
condition" to get size estimates, as in Lemma 2.1, used to get the left-hand side inequali­
ties and a "Tauberian condition" (a non-degeneracy condition on the Fourier transform) 
as in Lemma 2.3, used to get the right-hand side inequalities. Further requirements that 
the kernel be in S or that it is a measure with compact support are imposed so that 
the kernel and its derivatives have controlled growth at infinity and so that its Fourier 
transform is a multiplier on S. One hopes to get a version of (1.2) for kernels inS that 
satisfy these minimal conditions. 

However, an examination of our main results: Theorems 3.1, 4.1, and 5.1 shows that 
we have fallen short of our goal. We have obtained versions of (1.2) with 'Pt * f replaced 
by the maximal function of Peetre and Triebel, c.p; f = c.p; >.f. (See the first paragraph of 
Section 3 below for the definition.) Since ( c.p; f) ( x) domi~ates ( 'Pt * f) ( x) pointwise, the 
left-hand side inequalities are better than what we are looking for, but the right-hand 
side inequalities are worse. The significant open problem is to close this gap. More on 
this sub jet can be found in Section 6( d). 

We noted above that the independence of B for the definitions of the Triebel-Lizorkin 
and Besov-Lipschitz spaces in (1.1) depends on a basic result of Peetre. The weighted 
version of Peetre's result is essential in what follows. It is stated in the next theorem. 

Theorem 1.2 (See [1], [10]). Let -oo <a < oo, 0 < p < oo, 0 < q ::; oo, w E Ax) 1 

and ro = inf{r: wEAr}· Let a> 01 and assume that {cpj}~-oo is a sequence of 
functions inS such that supp~j ~ {2j-a::; JeJ::; 2J+aL and JDK~j(e)l::; CK2-jiKI for 
all j, K,, e. For ,\ > 0 and j = 0, ±1, ±2, ... 1 define 

f E S 1
, X ERn. 

(i) If A> max(nr0 jp, njq) 1 then 

::; CllfJJpa,w 
p,q 

for all f E S 1
• 

(ii) If,\> nro/p, then 

for all f E S 1
• 

4 



The rest of the paper is organized as follows: Section 2 contains five technical lemmas 
needed for the proofs of the main results. Section 3 gives a characterization of the 
weighted homogeneous Triebel-Lizorkin spaces, and Section 4 a characterization of the 
weighted homogeneous Besov-Lipschitz spaces. In Section 5 these results are extended 
to the inhomogeneous spaces. Section 6 is devoted to remarks and further results. 

AcKNOWLEDGEMENTS. The research in this paper began when the first two authors 
were visiting Washington University in St. Louis. It was completed while the last author 
was visiting University of Canterbury as an Erskine Visiting Fellow. Part of the research 
was also done while the first author was a Visiting Fellow at the Centre for Mathematics 
and its Applications at the Australian National University. All three authors would like 
to express their gratitude to the respective institutions for their warm hospitality and 
support. 

2. Technical lemmas 

In this section we shall gather a number of lemmas needed in the proofs of our main 
results in Sections 3 and 4. 

Let f1 be a measure either with density in S or with compact support and C be an 
integer. We say that f1 has moments of order up to C that vanish if 

f x"df.l(x)=O }Rn 

for all IKI :::; C, with the convention that no moment condition is required when C < 0. 

Lemma 2.1 (Size estimates of Heideman type). Let k, m and r be non-negative inte­
gers1 and assume that .\ ~ 0. 

( i) Let r; E S 1 and let f1 be a measure either with density in S or with compact 
support. Assume that f1 has moments of order up to k -1 that vanish. Then there exists 
C > 0 such that 

f ( IYI)>- (s)k }Rn 1 + t lr;t * f.ls(Y)idy:::; C t 
for all 0 < s :::; t < oo. 

(ii) If f1 E S 1 and r; E S has moments of order up to m- 1 + r that vanish and 
0 :::; .\ :::; r 1 then there exists C > 0 such that 

for all 0 < t :::; s < oo. 
(iii) If r; E S and f1 is a measure with compact support1 then there exists C > 0 such 

that 

for all 0 < t :::; s < oo. 
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PROOF. We shall prove (i) in the case p, has density in S, since the compactly 
supported case can be similarly handled. By Taylor's formula and the moment condition 
on p,, we have, for every y E R n, 

'flt * f-ls(Y) jRn rnr; (~- z) p, (~z) (~) n dz 

£ c, JR" C" ([ p'-l D"~ (~- pz)a+•l' (~z) (~)" dz 

I: c,J,(y, s, t) . 
JnJ=k 

Since r; E S, we see that 

for all lzl :::; IYI/2t and 0 < p < 1, and 

for all y, p, z and t. It follows that, for each K.,, 

as p, E S and s :::; t. Thus (i) follows. 
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Using Taylor's formula and the moment condition of TJ in a similar way as that in 
the proof of (i), we get 

for 0 < t / s ::::; 1 and r 2:: A 2:: 0. The last integral can be seen to be dominated by a 
positive constant by an argument similar to that in the proof of (i) (by interchanging t 
with sand TJ with Jl). Note that, although the proofs of (i) and (ii) are rather similar, 
part (ii) does not follow from part (i). 

For (iii), note that 

JR. (1+ ~~~r ~~·. fl,(y)jdy :S 

Ja. (1 + 1~1)' (Ja. r" ~~ (~- ~z) I djpj(z)) dy 

:S L (1 + ~1z1)' (l. r· 1~ (~- Tz) 1 (1 + 1~- Tzl)' dy) dlfll(z) 

= (jRniTJ(Y)I(l+lyl);\dy) (fRn (l+IIzl);\ dlfll(z)) 

::::; C(ry,A,Jl) (f);\ 
as TJ E S and sjt 2:: 1. 

REMARKS. (a) Parts (i) and (iii) when A= 0 are due to N.J.H. Heideman [8). 
(b) By mimicking the proof of the above Lemma, we can prove that, under the same 

assumptions as in part (ii), and for every b > 0, there exists a constant C such that 
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for all 0 < t::::; bs andy ERn. In particular, if 'f/ has infinitely many vanishing moments, 
then for every N > 0, there exists a constant C such that 

for all 0 < t ::::; bs and y E R n. 

Lemma 2.2 ([3, ~roposition 1:1]). Let -oo <a< oo, 0 < p < oo, 0 < q::::; oo and 
w E Aoo. If f E B;:r or f E Fp~'qw, then there exist polynomials P, P1, P2 , P3 , • • • such 
that 

f- p = li_l;&, u~m ,P; * f- Pm) 
inS', and deg(Pm) ::::; [a] for all m. 

Lemma 2.3 (Calderon representation theorem ([8], [9])). Let fJ be a measure either with 
density in S or of compact support. Assume that 1-l satisfies the Tauberian condition; 

ve =1- 0 3t > 0 such that p,(te) =1- 0 . 

Then there exists 'f/ E S with supp ry contained in an annulus about the origin such that 

roo ry(te){l(te) dt = 1 ve =1- 0 ' Jo t 

and for every f E S ', there is a non-negative integer k for which 

f = {'X> 'f/t * 1-lt * f dt 
Jo t 

in S'/Pk, the space of tempered distributions modulo polynomials of degree at most k. 

REMARK. The use of the Calderon representation theorem in the theory of func­
tion spaces originated with A.P. Calderon, and the idea was developed further by N.J. 
Heideman ([8]), by A.P. Calderon and A. Torchinsky ([5]), and by S. Janson and M.H. 
Taibleson ([9]). The formulation of our Lemma 2.3 is taken from [9]. Note also that the 
integer k in the lemma depends on the order of f as a distribution or on the growth of 
f at infinity. See [9] for details. 

We shall need the following special case of a result by J-0. Stromberg and A. Torchin­
sky (see [12, Chap.V, Theorem 2(b )]). 

Lemma 2.4 (Sub-mean value property). Let i.p E S satisfy the Tauberian condition in 
the sense of Lemma 2.3. Assume that (j; is supported in an annulus about the origin. 
Then for every r > 0 and N > OJ there exists C > 0 for which 

I'Pt*9(x)lr::::; c roo r I'Ps*9(Y)Ir (1 + lx-yi)-Nr s-n(min(sjt,tjs)trdyds 
Jo }Rn S s 

for all g E S ', x ERn and t > 0. 
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PROOF. Let 'fJ E S be the function given in Lemma 2.3 for c.p. Let u > 0. Since t.pu 
has infinitely many vanishing moments, Lemma 2.3 implies that 

ioo ds 
t.pu * g(z) = t.pu * 'fls * t.ps * g(z)-

0 s 

for all z ERn. By considering the supports of~ and 7];, we can find a, b > 0 such that 
t.pu * "ls = 0 unless au:::; s:::; bu. By using Remark (b) after Lemma 2.1, we deduce that 

I'Pu * ~,(()1 ~ cu-n (~r (1 + 1~ 1 ) -N 

for all 0 < s :::; bu and e E R n. It follows that 

(2.1) 

If r 2: 1, then by using (2.1) for N + n + 1 (in place of N) and Holder's inequality, we 
obtain 

rbt r ( lx- YI)-Nr (s)Nr ds 
lc.pt * g(x)lr:::; C Jo }Rn lc.ps * g(y)lr 1 + s s-n t dy-;, 

which implies the conclusion of the lemma in this case. 
Assume next that 0 < r < 1. For x E Rn and t > 0, define 

MN(x,t)= sup lc.ps*g(y)l (1+ lx-yi)-N min(sjt,tjs)N. 
yERn,s>O S 

Then by using this "maximal function" MN, together with (2.1) and the obvious in­
equality 

(
s)N[ 1+lx-yl/s ]N[min(ujt,tju)]N C 
~ (1 + lx- zl/u)(1 + lz- Yi/u) min(t/ s, sjt) :::; 

for all au:::; s:::; bu, t > 0, and x, y, z in Rn, we can mimic the proof of Theorems 1 and 
5 in [12] to obtain the desired result in this case. 

REMARK. Note that the vector-valued versions of Lemmas 2.1, 2.3 and 2.4 also hold. 

Let W(·, t) = Wt be the Gauss-Weierstrass kernel on Rf.+l (as in Section 1). For 
A 2: 0 and g E S ', following C. Fefferman and E.M. Stein we define 

g~*(x)=g**(x)= sup IW(-,p2)*g(y)1(1+1x-y1)-.A' 
yERn,p>O p 

x E Rn. Note then that llg**llp,w ~ llgllm:, if A> nr0 jp, r 0 = inf{r : w EAr} (see e.g., 
[1, p.584]). 
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Lemma 2.5 ( i) Let k be a non-negative integer, and let ¢ E S be given by ~(e) 
( -lel 2)ke-lel

2
• Suppose A ~ 0 and M ~ 1. Then there exists C > 0 such that 

(cps* f)**(x) ~ C(c/Yt * f)**(x) 

for all t ~ s ~ Mt, f E S 1 and x E Rn. 
( ii) Let () and rJ be functions in S. assume that 0 < a ~ b < oo and A ~ 0. Then 

there exists C > 0 such that 

sup i()s*'T/t*g(y)i (1+ lx-yl)-,\ ~ C sup irJt*g(y)i (1+ lx-yl)-,\ 
yERn t yERn t 

for all at ~ s ~ bt, g E S ' and x E R n. 

PROOF. We shall prove (i) only as the proof of (ii) is similar. As Wu * Wv = Wu+v 
for all u, v > 0, by writings= Jt2 + a2t2 with 0 ~a~ JM2 - 1, we deduce that 

W(-, p
2

) * c/Ys * f = (1 + a2
)kW(-, p2 + a2t2

) * c/Yt * f 
= (1 + a2 )kW(-, a-2

) * W(-, a-2
) * c/Yt * f , 

where a- > 0 is given by 2a-2 = p2 + a2t 2
• It follows that 

IW(-,p'). ~ •• f(y)l (1 + lx ~ Yif' :S 

M'k L W(z, u')IW(-,u') * ~. * f(y- z)l ( 1+ lx-! + zlr' 

(~+ lx-!+zl)' (~+ lx~yr dz 

< C(~ •• f)"(x) JR.(~+ ~;~r-·-l (~+ 1;1)' (1 + lx ~ Ylr 

(1+ lx ~ Ylr u-•az 

< C ( cpt * f)** (X) . 

Taking the supremum of the left-hand side with respect to y and p, we obtain (i). 

3. Characterization of the weighted homogeneous 
Triebel-Lizorkin spaces 

Let A ~ 0 and f-l E S. For f E S 1 and t > 0, following J. Peetre and H. Triebel, we 
define a version of the Fefferman-Stein maximal function by 

f-li,>-f(x) =sup lilt* f(x- Y)i (1 + M)->- , 
yERn t 
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x E R n. In the sequel, as we shall fix a ). (satisfying some additional assumption), we 
write 11; f for 11; >.f· 

' 

Theorem 3.1 Let -oo <a< oo, 0 < p < oo, 0 < q:::; oo, wE A00 , r0 = inf{r: w E 
ArL and).> max(nro/p,njq). Assume that 11 E S satisfies the moment condition; i.e. 1 

for all\n:\ :::; [aL and that v E S satisfies the Tauberian condition; i.e. 1 

Vt =1- 0 3t > 0 such that v(te) =1- 0 . 

Then there exist positive constants c and C for which 

< 1\f\\pa,w 
p,q 

< C (f(r"v;J(x))'~tt' (3.1) 
p,w 

for all f E S'jP. 

PROOF. Assume that f E Fp~qw. By subtracting a suitable polynomial from f and 
using Lemma 2.2, we deduce that there exists a sequence of polynomials {Pm} such that 

inS', and deg(Pm) :::; [a] for all m. Hence it follows from the fact that 11 E Sand the 
moment condition of 11 that 

00 

f * /lt (X) = I: /lt * '1/J j * f (X) 
j=-oo 

for all x E Rn and t > 0. Let ¢ be a function in S with the following properties: 
~(0 = 1 for 1/2 :::; \t\ :::; 2; supp ~ ~ {1/3 :::; \t\ :::; 3}. For j = 0, ±1, ±2, ... , let 
<Pj E S be given by ~j(e) = ~(2-j e). Then, since '1/Jj = '1/Jj * <Pj for all j, the above can 
be rewritten as 

00 

f * !lt(x) = I: !lt * '1/Jj * <Pj * f(x) . 
j=-oo 

By an argument similar to the Gaussian case given in [2, p.56] we see that, for each 
integer £, and 2-t-l :::; t :::; 2-t, 

00 

ra /1; f( X) :::; C I: a2·-t(2(C-j)a + 2(£-j)(a->.) )2ja </Jj f( X) , 
j=-oo 
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where 

and 

i . A 
aj = sup IPs*1/Yi(Y)I(1+2JIYI) dy, j = 0,±1,±2, ... 

l<s<l Rn 
2- -

(as in Theorem 1. 2). It follows that, with p = min( 1, q), 

by using well-known inequalities. The left-hand side inequality in (3.1) follows from 
Theorem 1.2 if we can show that 

00 

S = L [a£(T£a + 2-£(a-A)))P < oo . 
£=-oo 

Noting that ~£(e)= B(2-£e) witheE s supported in H:::; lei:::; 2} (cf. Section 1), we 
deduce from Lemma 2.1 (i), (ii) that 

a£ = l~~~l !Rn IPs* 1/J£(Y)I(1 + 2£IYI)Ady 
2--

~s~~~JR" lp, * B,-,(Y)I (1+ ~~~ r dy 

{ 
2£k if £ < 0 

< C 2-£m if £; 0 
' 

where k = [a]+ 1 if a~ 0, k = 0 if a< 0, and m is chosen so that m +a- A > 0. The 
above estimates imply the finiteness of S. 

Next we shall prove the second inequality in (3.1). Let ry E S be the function given 
by Lemma 2.3 for v. Assume that supp ~ ~ {2-A+l :::; lei :::; 2A-l }, where A > 1. 
As each 1/Ji has moments of all orders which vanish, Lemma 2.3 implies that, for every 
X ERn, 

roo 1/t * T}t * 1/Yj * f(x) dt 
Jo t 

{ Vt * T}t * 1/J j * j (X) dt , 
}~ t 

(3.2) 

because TJt * 1/Yj = 0 unless t E Ij = [2-j-A, 2-HA ]. Note also that v * ry satisfies the 
Tauberian condition by Lemma 2.3. Let r > 0 and t E Ij. Choose N = A+ (n + 1)/r. 
Applying Lemma 2.4 to cp = v * ry and g = 1/Yj * j, we obtain 
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(1+ lx-yl)->-r (1+ lx-yl)-n-1 s-ndyds =C { { ... dyds 
s s s Jri }Rn s 

because Tfs * 'lj;j = 0 unless s E Ij. Since t ~ s ~ 2-j fort, s E lj, Lemma 2.5 (ii) implies 
that 

s~p { jv, * ~, * ?/J; * f(y)j (1+ jx: yjr} 

:0 Cs~p{jv,•f(y)j (1+ jx:yjr'} = Cv;J(x). 

It follows from all the above that 

(3.3) 

for every x and j. 
Assume first that 0 < q ~ 1. Letting r = q in (3.3) and using Minkowski's inequality 

we obtain 

< C { ( { ( v; j (X)) dt) q ds 
lri lri t s 

< c r (v;J(x))qds . 
lri s 

On the other hand if q > 1, then by taking r = 1 in ( 3. 3) we get 

Hence it follows that 

c~oo (2j"lo/; * f( X) ll') 110 

:0 c C~J, ( s-• v; !(X))'~) 
110 

:0 C(2A)11' (f (s-•v;J(x))'d:) 
110 

for all q > 0. Thus we obtain the desired inequality by taking the L~-quasi-norms on 
both sides of the above. 

REMARK. Note that if the right-hand side inequality in (3.1) holds for a ..\0 , then it 
holds for all A ~ ..\0 . It follows that the right-hand side inequality holds for all A E R. 
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4. Characterization of the weighted homogeneous 
Besov-Lipschitz spaces 

We shall keep the same notations as in Section 3 with regard to the maximal functions 
It; f, v; f. 

Theorem 4.1 Let -oo < a < oo, 0 < p < oo, 0 < q :S oo, w E A)O, r 0 = inf{r : 
w E Ar}; and A > nr0 jp. Assume that 1-l E S satisfies the moment condition and 
v E S satisfies the Tauberian condition (as in Theorem 3.1). Then there exist positive 
constants c and C for which 

( 4.1) 

for all f E S'/P. 

REMARK. Since 

( 
I 1)-->-~iEJ- IW(·, p2

) * 1-lt * f(x- y)l 1 + T 
p<t 

< sup I w (.' p2) * 1-lt * f (X - y) I 1 + .!!_ ( 
I I)->-

p~t p 

< (!-lt * f)**(x) 

for every x,y,t, we deduce that 

. where Cis independent oft> 0 and f E S'. Hence the left-hand side inequality in (4.1) 
is stronger than the corresponding result for the Triebel-Lizorkin spaces in Theorem 3.1. 

PROOF OF THEOREM 4.1. Since the proof of the right-hand side inequality in 
(4.1) is similar to the proof of the corresponding result in Theorem 3.1, we shall only 
give the details for the other inequality in ( 4.1). Let k be a non-negative integer such 
that 2k > a, and let ¢ E S be given by ¢(e) = ( -lel 2)ke-lel

2
• Clearly ¢ satisfies the 

Tauberian condition. Let '(/ be the function given by Lemma 2.3 for ¢. Let f E B~'qw. 
Assume first that J = 0 in a neighbourhood of the origin. Then it is easy to see from 
Lemma 2.3 that we have the representation 

1
00 dt 

f = ¢t * 'r/t * f-
0 t 
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in S '. It follows from the above and the semi-group property of the Gaussian kernel (as 
in the proof of Lemma 2.5 (i)) that, for every p > 0, s > 0 and x,z ERn, 

and 

JW(·, p2) * f.ls * f(z)J = 14k laoo W(·, p2 + 3t2 /4) * c/>t/2 * f * 'f}t * f.ls(z) ~t I 

:::; C laoo { JRn lrJt * f.ls(z)JJW(·,p2 + 3t2/4) * (c/>t/2 * f)(z- y)J 

(
1 + lx- z + yJ ) -.A ( 1 + lx- zl) >- ( 1 + hl) >- }ay dt , 

J p2 + 3t2 I 4 P t t 

(f.ls * f)**(x) =sup JW(·, p2) * (f.ls * f)(z)J (1 + Jx- zl) -.A 
z,p p 

~ C [(<Pt/2 * f) .. (x) {JR. (1 + 1;1) \,, * ~,(y)ldy} ~t 

= C f u;i,(x) { /,_. ( 1+ I~ I)\,,* ~t(Y)Idy} ~t 
= C las .. ·+ C 100 

.. • = I1(x,s) + I2(x,s), 

where we have set Ut = c/>t * f for simplicity. Assume that 0 < p < 1. Choose a non­
negative integer m with m +a > 0. Using Lemma 2.1 (ii) and the "monotonicity" of 
u;* (Lemma 2.5 (i)), we obtain 

JI1(x,s)JP < C (las u;j2(x) (l)m ~t)P 
< C las ( u;*(x) (l) m)p ~t . 

If q 2:: p, the above and Hardy's inequality imply that 
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On the other hand, if 0 < q < p, then by using Lemma 2.5 (i) again, we get 

Using Lemma 2.1 (i) and Lemma 2.5(i) we obtain 

Then by arguments similar to those immediately above, one can show that 

The above estimates for I 1 and I 2 imply that 

(f (s-"11(1', * JJ"II,,w)' ~j )"' ~ C (f (t-"11( ¢, * f)"ll,,w)'~j )"' 
Since ll(f.ls * f)**llp,w ~ IIJ.Ls *film~ and II(<Pt * f)**llp,w ~ II<Pt *film:,, the proof of the 
desired result is completed by invoking Theorem 1.1. 

Next we shall remove the restriction that j = 0 in a neighbourhood of the origin. 
Using Lemma 2.2 and the moment condition of f.l as in the proof of Theorem 3.1, we 
obtain 

Wp * f.l s * f (X) = lim Wp * f.l s * f m (X) , 
m-+oo 

for all p, s > 0 and x E Rn (after subtracting a suitable polynomial from f), where 
00 

fm = L '1/Jj *f. The desired inequality then follows from the above representation of 
j=-m 

Wp * f.ls * f by a limit argument similar to the Gaussian case (cf. [2, p.61]). The proof 
in the case p < 1 is thus complete. 

The case p 2: 1 can be handled in a similar way but is generally simpler than the 
case p < 1 and so details are omitted. 

5. Characterizations of inhomogeneous spaces 

In this section we shall give the inhomogeneous version of the results in Sections 3 and 
4. As the proofs are similar to the homogeneous case we shall be brief and indicate only 
the necessary modifications. 
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00 

Let { '1/Jj} be as in Section 1 and let w be the function ins given by w(e)+ L ¢j(e) = 1 
j=l 

for all e ERn. Let 0 < p < oo, 0 < q:::; oo, -oo <a< oo, and wE A00 • The weighted, 
inhomogeneous Besov and Triebel-Lizorkin spaces are defined by 

B;,~w = { J E S 
1 

: IIJIIB~,';' = IIW * fllp,w + 

(t.(2j"ll?/>; * fllv,w)') l/q < 00} , 

Fpcxq,w = {j E S 1 
: IIJIIF"•w 

' p,q 

Let {<Pi} and a > 0 be as in Theorem 1.2, and let <I> E S be such that supp <f> ~ 
{I e I :::; 2a}. For A > 0 and f E s I' define <Pj,>.f = <Pj f as in Theorem 1. 2 and let 

<I>~f(x) =<I>* f(x) = sup I<I> * f(x- Y)l(1 + IYI)->., 
yERn 

x E Rn. Let r0 = inf{r : w E Ar }. The maximal inequalities (Theorem 1.2) for 
inhomogeneous spaces are as follows: 

If A> max(nr0 jp, njq), then 

for all f E S 1
• 

If A > nr0 jp, then 

for all f E S 1
• It is useful to note that (5.2) implies a stronger result: 

Here, forgES 1, 

where <P E S with f <P( x )dx -=J 0. 
}Rn 

17 
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We refer again to [1) for the above and related properties of the inhomogeneous 
spaces as well as references to the relevant literature. 

In the rest of this section let f.l E S satisfy the moment condition and let v E S satisfy 
the Tauberian condition (as in Theorem 3.1). For f E S' and>. > 0, let f.l;,;...J = f.l;f 
and v; ;...! = v; f be defined as at the beginning of Section 3, and for (, c.p E S, let (* f 
and c.p~ f be defined similarly to if!* f above. 

Theorem 5.1 Let 0 < p < oo, 0 < q :::; oo, -oo < a < oo, a > 0, w E Aoo and 
r0 = inf { r : w E Ar}. Assume that ( E S J and that c.p E S satisfies the strong Tauberian 

condition tP(O) = f c.p(x)dx =f:. 0. }Rn 

( i) If). > max( nr0 I p, n I q) 1 then there exist positive constant b, c and C for which 

c(IICJII,,w + I (fw"~:J(x))'~rlJ :0: IIJIIF~·· 
:0: C ( ll10' fll,,w + ( ],' (C" v;J( X))'~~ flJ ( 5.3) 

forallfES'. 
( ii) If). > nr0 lp1 then there exist positive constants b, c and C for which 

(5.4) 

for all f E S'. 

PROOF. Observe that in the inhomogeneous case, we have the representation 
00 

f = 'I! * f + ~ '1/Jj * f inS'. 
j=l 

Let { cPj} be as in the proof of Theorem 3.1 and let if! E S be such that supp <i> ~ { JeJ :::; 3} 
and <i> = 1 on supp W. We start with the proof of the left-hand side inequality in (5.3). 
The above representation then implies that 

00 

/.lt * j (X) = /.lt * if! * \]! * j (X) + ~ /.lt * cP j * '1/J j * f (X) (5.5) 
j=l 

for all x and t. By using (5.1) the infinite sum on the right-hand side of (5.5) can be 
estimated in the same way as in the proof of Theorem 3.1. We shall next deal with the 
first term. For each x and y in Rn and 0 < t :::; a, 
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It follows that 

S~p ll't * ih IJH f(x- Y)l ( 1+ ~~~f < Cif!' f(x) JRJI't * if>(z)l ( 1+ ~:~r dz 

< Ctk'I!* f( X) 

for all 0 < t :::; a by Lemma 2.1 (i), because we can write <I> = (<I>1;a)a· This estimate 
and the estimate for the infinite sum observed above give 

It is easy to see that 

II(* fllp,w :S Cll( * fJJh{;, ' 
and by an argument similar to the Gaussian case [2, (18)], using a multiplier theorem 
on the weighted Hardy space h~ [1, Lemma 4.8], we obtain 

The proof of the left-hand side inequality in (5.3) is thus complete. 
To prove the right-hand side inequality in (5.3) let rt be the function given by Lemma 

2.3 for v. Let 8 > 0 be such that 'i'(e) =f- 0 for Jel :::; 8. Following [9] we set 

if e =1- o 
if e = o . 

Then 1 E S, and as fJ is supported in an annulus about the origin, if we choose b large 
enough, we see that supp 1 ~ {JeJ:::; 8}. It follows that 1 = (i/)0))0 with (1/'i') E S, so 
that 

JJ?/J* JJJp,w :S CJJ<p* JJJp,w · 
Using the above inequality and the representation 

l b dt 
f = I * f + "lt * Vt * f-

0 t 
(5.6) 

in S 1 
( cf. [9]), we obtain the right-hand side inequality in (5.3) by an argument similar 

to the proof of Theorem 3.1. 
The right-hand side inequality in (5.4) can be verified in a similar way to the cor­

responding inequality in (5.3). To prove the other inequality in (5.4), let k be a non­
negative integer with 2k > a and let J(e) = ( -JeJ 2 )ke-lel

2 
as in the proof of Theorem 

4.1. By [2, Theorem 1], we have the following inequality 
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where W1(x) = (47r)-nf2 e-lxl
2

/
4 as in Section 1. Similarly to (5.6), letting ry be the 

function given by Lemma 2.3 for </J, we can find 1 E S such that supp 1 is compact, and 
that 

f = 1 * f + r a 'r/t * <Pt * f dt lo t 

inS'. As ')tjU\ E Sand 1 = (1/W1)U\, we deduce that 

(by a multiplier theorem for the weighted Hardy spaces hfv). 
Using all the above, we can modify the proof of Theorem 4.1 to obtain the left-hand 

side inequality in (5.4). 

6. Remarks and further results 

(a) When f.t equals v and satisfies both the moment condition and the Tauberian condi­
tion, our results in Sections 3-5 give necessary and sufficient conditions for memberships 
in the corresponding weighted spaces and also equivalent quasi-norms on them. In the 
unweighted case (w = 1), there are results by H. Triebel where he obtained equiv­
alent quasi-norms on the unweighted Besov-Lipschitz and Triebel-Lizorkin spaces (see 
[13),[14]). Triebel's methods seem designed to apply to kernels that are not smooth (i.e., 
not in S) and so growth conditions at infinity and behaviours near zero of the kernel 
and its Fourier transform are expressed in rather complicated forms. These conditions 
seem stronger than the moment condition when pis close to 0. Moreover, his Tauberian 
condition takes the form it(O = v(e) # o for 1/2:::; 1e1:::; 2 (so that the quotient iJ!A is 
defined). His approach is based on an inequality of Plancherel-Polya-Nikolskij type and 
seems difficult to extend to the weighted case without some restriction on the weight 
function w. 

We note also that Triebel's results are stated in terms of the mixed norm of lvt * f( x) I, 
but his results do not give a sufficient condition for a distribution to be in the relevant 
unweighted space. See (d) below for a discussion in the weighted case. 

(b) Though Lemma 2.1 (i) and (ii) were stated under the assumption J-l E S, a close 
examination of the proof shows that (i) holds if 

while (ii) holds if there exists 8 > 0 for which 

ID"J-l(z)l :S C(1 + lzlt,\-n-8 

for all ln:l = m + r. It follows that our main results in Sections 3-5 remain valid for 
the Poisson kernel; i.e., for {t(e) = (-lelle-1€1, £>.A+ n + max(a,O), where 1-lt * f is 
interpreted appropriately. 

(c) Our main results in Sections 3-5 hold for vector-valued f.t or v, where we re­
quire the moment condition for each component and the Tauberian condition as a 
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vector-valued function. Moreover, they remain valid for compactly supported (vector­
valued) measures v, and also for compactly supported (vector-valued) measures f-l if 
a > max(nr0 jp, njq) in the Triebel-Lizorkin case and a > nr0 jp in the Besov case 
(see Lemma 2.1) provided the function f satisfies an appropriate growth condition at 
infinity (see Remark after Lemma 2.3). A special case of the compactly supported 
vector-valued measures worth noting here is when f-l = (f-l(l), ... , f-l(n)) = v, where 
f-l(j) = (5ej- 50)*···* (Dej- Do) (k times), k >a, Dej is the Dirac measure concentrated 
at ej = (0, ... , 1, ... 0) and Do is the Dirac measure concentrated at the origin. Note 
that each f-l(j) does not satisfy the Tauberian condition, but f-l does. Observe that 

(Dej- Do)t * f(x) = f(x- tej)- f(x), 

so that our results in this case give characterizations of the corresponding weighted 
spaces by means of difference operators. 

(d) It would be of interest to replace v; f(x) by lvt * f(x)i in our results. By [2], this 
is certainly possible for the Gauss-Weierstrass kernel (and the proof given there also 
works for the Poisson kernel). For a general v, we can prove the above in the following 
two cases: either 

(i) 1 < p < oo, w E Ap, 1 < q :::; oo (in the Besov case, we can let 0 < q :::; oo ); or 
(ii) [) is compactly supported and v also satisfies the moment condition. 
We shall give proof only for the homogeneous Triebel spaces P;,qw, as the other cases 

can be handled similarly. 
Assume that the conditions of (i) are satisfied. Then by (3.2) and Holder's inequality, 

where Mg denotes the (Hardy-Littlewood) maximal function of g. Hence it follows from 
the weighted estimate for the vector-valued maximal function [10] that 

if q < oo, while for q = oo we need only use the weighted estimate for the maximal 
function. 

By using a version of Heideman type estimate, which is different from Lemma 2.1, 
we had proved the above result in the unweighted case ([4]), and the proof given there 
works also for the weighted case. Note that the result in [4] for the unweighted Besov 
spaces holds also for p = 1. 

Assume next that the conditions of (ii) are satisfied. Since f is a tempered distribu­
tion, we can choose ..\ = ..\ f large enough so that 

s~p lv, * f(x- y)l (1 + 1~1) -A= v;J(x) < oo 
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for all s and x. By a variation of the Fefferman-Stein maximal function techniques used 
by J. Peetre [11, Lemma 2.1 and Proof of Theorem 3.1], we can show that 

where A satisfies the additional condition, A> max(nr0 jp, njq, n), r = nj A, 0 < 8 < 1, 
and c is independent of j, s and 8 (see also [3, Lemma 2.1], [13, Theorem 1.3.1]). 
Choosing 8 such that c8 < 1/2 in the above, we obtain 

and putting this into (3.3) and using well-known inequalities, we get 

It follows that 

Hence, similarly to case (i), we obtain 

(6.1) 

However, as C depends on A and hence implicitly on j, we have proved that if the 
right-hand side of (6.1) is finite, then f E Pp~qw· Fix A > max(nr0 jp, njq, n). As 
P;,qw ~ P;,:, and v satisfies the moment condition, the left-hand side inequality in (3.1) 
implies that 

v;J(x) < oo 

for all s and x. Repeating the above proof of (6.1) we obtain the independence of Con 
f. 

REMARK. The above use of the moment condition seems artificial. It is used to 
show that the inclusion map, which is into, is continuous. If there were a direct proof 
that the space of distributions for which the quasi-norm on the right-hand side of (6.1) 
is finite, is complete, we would get the continuity by means of the closed graph theorem. 
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