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Abstract 

Hyperparasitoids can impede the establishment of primary parasitoid biological control 

agents or limit their control capacity. Although modern quarantine practices generally prevent 

hyperparasitoids being introduced with biological control agents, introductions can occur via 

natural pathways or accidentally with incoming passengers and cargo. In New Zealand, 

Baeoanusia albifunicle Girault is a self-introduced hyperparasitoid of Enoggera nassaui 

Girault, an intentionally introduced control agent of the eucalypt pest Paropsis charybdis 

Stål. A self-introduced primary parasitoid, Neopolycystus insectifurax (Girault), also 

parasitises P. charybdis in New Zealand.  We assessed B. albifunicle biology to better 

understand its potential to disrupt P. charybdis control. It was determined that B. albifunicle 

is an obligate solitary hyperparasitoid with a longer lifespan, lower fecundity and longer 

generation time than its host. The hyperparasitoid reduced effective parasitism by E. nassaui 

to <10% in the lab, indicating it may limit control of the first P. charybdis generation by 

slowing spring population growth. It was confirmed that N. insectifurax is not 

hyperparasitised by B. albifunicle and therefore has some potential to substitute for any 

hyperparasitoid-driven decline in E. nassaui. 

 

Keywords: Hyperparasitoid interactions, Encyrtidae, Pteromalidae, Enoggera, Neopolycystus, 

New Zealand  
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1 Introduction 

Internationally, records of deliberately or accidentally introduced hyperparasitoids are limited 

(e.g. Charles 1993; Day 2002; Gaines and Kok 1999; Peck et al. 2008; Wang and Messing 

2004). However, considering the numerous examples of accidentally introduced pest insects, 

and a small but relevant number of primary parasitoids (e.g., Bjørnson 2008; Calcaterra et al. 

2007; Charles 1993; Johnson et al. 2001; Peck et al. 2008), it is likely that hyperparasitoid 

incursions occur at higher frequencies than reported. While herbivore incursions and their 

damage may be conspicuous, the arrival of minute parasitoids is likely to go unnoticed unless 

they occur in intensively managed systems, yet their presence could have important 

consequences.   

 Obligate hyperparasitoids are generally considered integral in the regulation of primary 

parasitoids in their native range and detrimental to their use as biological control agents 

(BCAs) elsewhere (Rosenheim 1998). Hyperparasitoids can jeopardise BCA establishment 

by limiting population growth before (Bain and Kay 1989) or after (Gaines and Kok 1999) 

release, or prevent established agents from attaining densities sufficient to suppress their 

hosts (Höller et al. 1993; May and Hassell 1981; Rosenheim 1998; Sullivan and Völkl 1999). 

Consequently, screening to exclude hyperparasitoids from introduction with primary 

parasitoid BCAs has become a standard component of classical biological control in New 

Zealand and other countries with ‘risk adverse’ biosecurity policies. When selecting BCAs it 

is now also common to consider hyperparasitoid associations in the agent’s native range and 

potential susceptibility to hyperparasitoids already present in the receiving country (Berry 

and Mansfield 2006).  

Basic invasion theory predicts ample opportunity for natural and accidental introductions of 

Australian insects to New Zealand as a result of geography, wind patterns, high volume trade 

and travel (Close et al. 1978; Fox 1973; Ridley et al. 2000). Incursions of specialist eucalypt 

herbivores occur with particularly high frequency and several Australian parasitoids have 

been imported to New Zealand to control these pests in exotic eucalypt plantations (Withers 

2001). In addition to intentional introductions, at least five primary parasitoids of introduced 

eucalypt psyllids and one of paropsine beetles have been detected since the 1860s. Two 

hyperparasitoids also appear to have established without intentional human assistance (Berry 

2006): Coccidoctonus psyllae Riek (Hymenoptera: Encyrtidae) attacking the psyllid 

parasitoid Psyllaephagus sp. (Encyrtidae), and Baeoanusia albifunicle Girault (Encyrtidae) 

attacking Enoggera nassaui Girault (Hymenoptera: Pteromalidae), the primary parasitoid 
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BCA of Paropsis charybdis Stål (see below). As parasitoid BCAs introduced from Australia 

to New Zealand may associate with several hosts or share host species with other parasitoid 

species in Australia, the high rate of trans-Tasman dispersal could result in BCAs 

encountering new hosts, competitors, or natural enemies from their native range that were 

absent when they were initially introduced. 

In New Zealand, four species of Australian paropsine beetles (Chrysomelidae: Paropsini) are 

established and others have been intercepted at the border or eradicated (Withers 2001; Bain 

2013). In Australia these defoliators are regulated by a range of dipteran and hymenopteran 

primary parasitoids, themselves regulated by a suite of hyperparasitoids (de Little 1982; 

Greaves 1966; Tribe 2000). In New Zealand, P. charybdis initially constrained the 

establishment of a commercial eucalypt industry and remains the most serious eucalypt 

plantation defoliator today (New Zealand Forest Service 1976; Withers 2001). Early attempts 

at biological control failed, often because imported agents arrived heavily hyperparasitised by 

their Australian natural enemies (Bain and Kay 1989). Control was eventually achieved 

following the introduction of the solitary egg parasitoid, E. nassaui, from Western Australia 

in 1987 (Kay 1990). However, recent self-introductions of Neopolycystus insectifurax 

(Girault) (Pteromalidae) (Berry 2003), a solitary primary egg parasitoid that competes 

directly with E. nassaui for hosts, and the solitary hyperparasitoid B. albifunicle (Jones and 

Withers 2003) are thought to have altered these control dynamics.  

The biology and behaviour of E. nassaui and N. insectifurax are compared elsewhere 

(Mansfield et al. 2011; Murray et al. 2009). Interactions between them have not been 

assessed in the absence of B. albifunicle in Australia and the biology of B. albifunicle itself 

has received little attention. Tribe (2000) noted large head and mandibles of larvae, a female-

biased sex ratio, and concluded B. albifunicle was an obligate hyperparasitoid, but 

experiments were limited in replication and host eggs were presented to both primary and 

secondary parasitoids simultaneously. Field monitoring in New Zealand has shown E. 

nassaui is heavily hyperparasitised by B. albifunicle, leading to speculation that P. charybdis 

control has been disrupted (Berry and Mansfield 2006; Jones and Withers 2003; Murray et al. 

2008). As there is no evidence that N. insectifurax is also hyperparasitised, it could 

potentially complement or substitute for control provided by E. nassaui. Here, we investigate 

the biological characteristics of B. albifunicle to assess its potential to disrupt the previously 

well-established biological control of P. charybdis. 
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2 Materials and methods 

2.1 Insect cultures 

All insect colonies were maintained at 22 ± 2
o
C, 65% r.h., and L14:D10. Paropsis charybdis 

were reared in ventilated perspex cages (1.0 m x 0.7 m x 0.7 m). Fresh cut field-grown 

Eucalyptus nitens (Deane et Maiden) Maiden flush foliage was provided as food. Egg batches 

laid on the foliage were collected every 2-3 days and stored at 4
o
C for up to five days. 

Individual E. nassaui and N. insectifurax females ≥3-days-old were presented with these egg 

batches for 24 h in 90 mm Petri dishes in a separate room. Parasitised batches were 

maintained in Petri dishes in groups of five until emergence. Progeny were supplied undiluted 

honey on 20 mm
2
 paper-towel, and left to mate in the presence of the natal host eggshell. 

Baeoanusia albifunicle were maintained in 65 mm Petri dishes in a controlled climate cabinet 

(Custom made, Scion). Paropsis charybdis egg batches, parasitised by E. nassaui over the 

preceding 24 h, were presented to groups of five 3-5 day-old B. albifunicle females (sexed 

using antennae morphology: female flagellum clubbed, male plumose) for 48 h. Enoggera 

nassaui that escaped hyperparasitism were removed at emergence nine days later. 

Hyperparasitoids emerged after 14 days and were provided undiluted honey as above.  

Experiments were conducted in growth cabinets (22
o
C, 65-70% r.h., L14:D10) in which all 

egg batches exposed to parasitoids were subsequently held for up to 21 days to record their 

fate. As neither E. nassaui nor N. insectifurax are sexually dimorphic it was not possible to 

expose the desired number of hosts to female parasitoids in every experiment. Generally, 

behavioural observation at the beginning of each experiment verified the wasps used were 

female. All parasitoids were dissected after experiments to confirm their sex and hosts 

exposed to males were discarded as replicates.  

 

2.2 Obligate or facultative hyperparasitism 

Tribe (2000) reported B. albifunicle to be an obligate hyperparasitoid following exposure of 

paropsine eggs to B. albifunicle either without or simultaneously with a primary parasitoid. 

Murphy (2002) described B. albifunicle as ovipositing into unparasitised P. charybdis eggs 

and developing only if the host was subsequently parasitised by a primary parasitoid. If B. 

albifunicle is an obligate hyperparasitoid this strategy could provide opportunity for it to 

evolve facultative hyperparasitism. The following trials were conducted to confirm if B. 

albifunicle is an obligate hyperparasitoid and when it must oviposit relative to its primary 

parasitoid host. In trial one, P. charybdis egg batches were placed in separate Petri dishes, 

provisioned with honey, and exposed to individual 3-day-old females of either B. albifunicle 
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or E. nassaui for 24 h (n = 20 per species). Half (n = 10) the batches exposed to each species 

were then immediately presented to the other species for a further 24 h. In trial two, egg 

batches were exposed to E. nassaui (2 h) followed by B. albifunicle for a further 2 h after an 

interval of 2, 4, 6, 12 or 24 h since the start of the first exposure period (n = 10 per time 

interval). For trial one and two the number of P. charybdis, E. nassaui and B. albifunicle that 

later emerged was recorded. Trial three followed the procedures of trial two but with 

exposure to B. albifunicle after intervals of 30, 1, 24, 12, 18, 15, 17 and 16 h (n = 20 per 

interval). As appropriately aged insects were limited, one interval was tested per day in the 

order indicated above until a minimum interval between primary and secondary parasitism 

was determined. On each occasion five egg batches were also exposed to E. nassaui alone (2 

h) as a control. Parasitised and control batches were subsequently submerged in sodium 

hypochlorite 5% v/v to partially dissolve the chorion. The softened eggs were pressed onto a 

glass slide with a coverslip and viewed at 100-200 x magnification to record the presence of 

primary and secondary parasitoid eggs. Percent hyperparasitism was compared between 

intervals by non-parametric Wilcoxon ranked-sums tests (SAS Version 9.1) and P-values 

adjusted for multiple tests using the sequential Bonferonni procedure (R Development Core 

Team 2009). 

 

2.3 Hyperparasitism of N. insectifurax 

As two primary parasitoids of P. charybdis exist in New Zealand the impact of B. albifunicle 

on P. charybdis control will depend on its ability to exploit each of them. Neopolycystus 

insectifurax is not thought to be a host for B. albifunicle, which if true may limit the 

hyperparasitoid’s reduction of P. charybdis control. To confirm this, individual P. charybdis 

egg batches were exposed to either individual 3-day old female E. nassaui (1 h, n = 20), N. 

insectifurax (24 h as this species is much slower to initiate parasitism (Mansfield et al. 2011), 

n = 17) or no primary parasitoid (n = 20).  All batches from the three treatments were then 

individually exposed to solitary 3-day-old hyperparasitoid females for 2 h, beginning 24 h 

after primary parasitoids had been first introduced.  Slides were prepared as above (section 

2.2) and viewed at 200 x mag. to record the number of eggs of each wasp species per P. 

charybdis egg batch. 

In a second experiment, egg batches were exposed for 24 h to a solitary 2-day-old E. nassaui, 

or 6-day-old N. insectifurax female (n = 20 each), followed immediately by a single B. 

albifunicle female for 24 h. Eggs were allowed to develop and the number of each species 

that emerged per batch was recorded.  
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2.4 Fecundity, sex ratio and percent hyperparasitism 

Comparing fecundity, progeny sex ratios and parasitism success between B. albifunicle and 

E. nassaui may indicate the hyperparasitoid’s ability to suppress E. nassaui. Upon 

emergence, ten B. albifunicle females were placed into individual 65 mm Petri dishes. Each 

was presented with honey and a batch of P. charybdis eggs that had been exposed to E. 

nassaui for the preceding 24 h. This was repeated daily for the lifetime of each female. The 

number of P. charybdis, E. nassaui and B. albifunicle that emerged per batch was recorded 

and percent hyperparasitism, total number of offspring and offspring sex ratio was 

determined for each parent.  

 

3 Results 

3.1 Obligate or facultative hyperparasitism 

In trial one, only P. charybdis larvae emerged from eggs exposed to B. albifunicle alone. 

Enoggera nassaui emerged from hosts exposed to B. albifunicle followed by E. nassaui, or to 

E. nassaui alone (Fig 1). Of the eggs presented to B. albifunicle after E. nassaui, 91.8% were 

hyperparasitised and E. nassaui emerged from a further 2.7%. Only one hyperparasitoid 

emerged per host egg. The highest host-egg mortality (8.4%) occurred when eggs were 

exposed to B. albifunicle only (Fig 1 ‘collapsed’).  
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Fig 1 Proportion of P. charybdis eggs from which P. charybdis, E. nassaui, B. albifunicle or nothing (collapsed) 

emerged following exposure in the laboratory to; B. albifunicle (= Baeo only), B. albifunicle followed by E. 

nassaui (= Baeo-Enog), E. nassaui (= Enog only) or E. nassaui followed by B. albifunicle (= Enog-Baeo). Hosts 

were exposed to the first parasitoid for 24 h followed immediately by the second parasitoid for the succeeding 

24 h (22
o
C, 70% r.h.) 
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In trial two no hyperparasitoids emerged from P. charybdis eggs exposed to B. albifunicle 2 h 

(n = 68), 4 h (n = 62) or 6 h (n = 73) after primary parasitism. When exposed to 

hyperparasitoids 12 h and 24 h after primary parasitism, B. albifunicle emerged from 1/81 

and17/62 P. charybdis eggs respectively. For the 24 h interval this represents successful 

hyperparasitism of 11.6% of P. charybdis eggs and 27.4% of individual E. nassaui.  

In trial three, E. nassaui eggs were detected in 97.5% of control egg batches by dissection. 

No hyperparasitoid eggs were found in hosts exposed < 16 h after primary parasitism (Table 

1). From 16-24 h, hyperparasitism of E. nassaui increased steadily from 1% to 62% then 

declined to 39% at 30 h. The proportion of primary parasitoids super-hyperparasitised (i.e. > 

1 B. albifunicle egg present, see Fig 2c) followed a similar pattern. Super-hyperparasitism 

was highest (25%, Table 1) after the 24 h interval, and almost half the hyperparasitoid eggs 

were located externally adjacent to E. nassaui. When only one or two hyperparasitoid eggs 

were present per host, all were located inside an E. nassaui egg or larva (Fig 2). 

 

Table 1 Number of E. nassaui (1
o
) and B. albifunicle (2

o
) dissected from P. charybdis eggs that had been 

exposed to B. albifunicle 1-30 h after E. nassaui (22 
o
C, 70% r.h., L14:D10). The proportion of 1

o
 parasitoids 

hyperparasitised (% of 1
o
), and super-hyperparasitised (% Super.) and the proportion of 2

o
 parasitoid eggs found 

within or external to 1
o
 parasitoid eggs and larvae are indicated.  

 P. charybdis Parasitoid eggs  Hyperparasitism 

Interval eggs 1
o
 2

o
  % of 1

o
 % Super. % Inside % Outside 

1 h 157 121 0  0.0 - - - 

12 h 106 110 0  0.0 - - - 

15 h 79 56 0  0.0 - - - 

16 h 66 56 1  1.8 0.0 100.0 0.0 

17 h 77 72 24  26.4 6.9 100.0 0.0 

18 h 81 66 32  33.3 9.0 87.5 12.5 

24 h 78 71 128  62.0 25.4 50.8 49.2 

30 h 101 109 58  39.4 10.1 93.1 6.9 

 

 

3.2 Hyperparasitism of N. insectifurax 

Hyperparasitoid eggs were dissected from 90% of batches parasitised by E. nassaui but none 

of the unparasitised batches nor those parasitised by N. insectifurax. In the second trial, 

successful parasitism by E. nassaui and N. insectifurax was 48% and 58% respectively. 

Hyperparasitoids emerged from 95% of eggs parasitised by E. nassaui (n = 304 eggs) and 0% 

parasitised by N. insectifurax (n = 314 eggs).  
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Fig 2 Baeoanusia albifunicle eggs within a) 16 h old E. nassaui egg (maintained at 22
o
C), b) early-instar E. 

nassaui larva, c), mid-instar E. nassaui larva. d) B. albifunicle larva developing within late instar E. nassaui 

(Ehc = E. nassaui head capsule, Bhc = B. albifunicle head capsule) 

 

3.3 Fecundity, sex ratio and percent hyperparasitism 

On average, female B. albifunicle oviposited for 19 days after emergence and survived five 

more days once oviposition ceased (Table 2). Mean lifetime fecundity was 127.2 progeny 

(max = 182) and 69.9% were female. Progeny sex ratio per parent ranged from 1.2 to 3.9 

females ( x  = 2.6 ± 0.3) to 1 male. Males ( x = 2.4 per egg batch) emerged first and three 

parents produced only males for their last 5-7 reproductive days. Baeoanusia albifunicle 

successfully hyperparasitised 41.8% of P. charybdis eggs and E. nassaui emerged from an 

additional 7.9% (Table 2). Assuming obligate hyperparasitism and no E. nassaui mortality 

without hyperparasitism, this indicates 84.1% of E. nassaui were hyperparasitised and 15.9% 

escaped.  

 

Table 2 Lifespan and fecundity of B. albifunicle (n = 10) when provided daily with fresh hosts (22
o
C, 70% r.h., 

L14:D10). ‘Reproductive’ = number of days that females continued to oviposit. Mean number of host eggs 

exposed per female from which emerged P. charybdis (P.c.), E. nassaui (E.n.) or B. albifunicle (B.a.) are shown 

with the total proportion of host eggs from which each emerged (remaining 47.3% host eggs collapsed without 

hatching). The sex of B. albifunicle offspring is also shown. 

 # Days 

dDays  

Total   # Host eggs  Species emerged  B. albifunicle sex 

 reproductive lifespan  presented  P.c. E.n. B.a.  Female Male 

Min. 13.0 14.0  223.0   0.0   3.0  87.0   62.0 19.0 

Max. 27.0 32.0  421.0  21.0 67.0 182.0  124.0 74.0 

Mean 18.8 24.2  304.7     9.2 24.1 127.2    88.9 38.3 

Total - -  3047  3.0% 7.9% 41.8%  69.9% 30.1% 
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4 Discussion 

4.1 Biology of Baeoanusia albifunicle 

Biological characteristics determine the ability of introduced parasitoid BCAs to establish, 

disperse and regulate their pest host (Pschorn-Walcher 1977). For example, in New Zealand 

E. nassaui has characteristics that allow it to regulate P. charybdis more effectively than does 

N. insectifurax (Mansfield et al. 2011). The same is true with regard to an invasive 

hyperparasitoid’s capacity to reduce parasitoid density below the level necessary to control 

the herbivore pest. Schooler (2011) hypothesised that hyperparasitoids with a higher intrinsic 

rate of increase (r) than their host pose the greatest risk to biological control. Generation 

time, fecundity, sex ratio and parasitism level are all important determinants of r, hence the 

impact of B. albifunicle on P. charybdis in New Zealand depends on how these parameters 

compare between B. albifunicle and E. nassaui and, possibly, N. insectifurax. All of these 

parameters are expected to be lower for secondary than primary parasitoids (Sullivan and 

Völkl 1999). At 22
o
C, B. albifunicle has a longer generation time (14 days) than E. nassaui (9 

days) and N. insectifurax (11 days) (Murray 2010) but females have similar longevity when 

fed undiluted honey in the absence of host; B. albifunicle max = 102.5 days, x̄ = 56.7 ± 6.5 

(Murray, 2010), E. nassaui max = 109, x̄ = 42.5 ± 6.1, N. insectifurax max = 107,  x̄  = 37.6 ± 

7.6 (Mansfield et al. 2011). The sex ratio of B. albifunicle (69.9% female) is comparable to E. 

nassaui in Western Australia (68.5%; Tribe 2000) but lower than reported in New Zealand 

(88.3%; Murray 2010). As P. charybdis egg size, and therefore quality, is highly uniform 

within egg-batches, B. albifunicle likely exhibits a set pattern of sex allocation, producing 

only enough males to fertilise their sisters. Hyperparasitoid fecundity was only slightly lower 

(103 progeny in 14 days) than previously recorded for E. nassaui (123 progeny in 14 days, 

Mansfield unpub. data) and total levels of hyperparasitism recorded across the experiments 

here ranged from 84.1% to 95%. These combined data suggest B. albifunicle has the potential 

to reduce effective parasitism of P. charybdis by E. nassaui to <16%. A reduction of this 

scale was observed in some North Island field sites between 2003 and 2005 (Jones and 

Withers 2003; Mansfield et al. 2011).  

Mackauer and Volkl (1993) argued that even when local rates of hyperparasitism are high, 

population impacts on the host are limited by longer generation times, lower lifetime 

fecundity (due to lower egg storage capacity) and higher temperature requirements delaying 

spring appearance. The relative biology of B. albifunicle to its host generally supports these 

assertions. It is established that E. nassaui exert limited spring control of P. charybdis 

because higher temperature requirements delay population growth relative to the pest. The 
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delay between spring appearance of E. nassaui and B. albifunicle has not been fully assessed 

but field observations (Jones and Withers 2003) suggest that even if B. albifunicle does 

appear later, it may reach densities that reduce the E. nassaui population by the time E. 

nassaui has itself built up sufficiently to control P. charybdis. 

 

4.2 Host range and host suitability 

Baeoanusia albifunicle is not host specific at the herbivore level. Low levels of 

hyperparasitism have been recorded from field-collected Chrysophtharta decolorata 

(Chapuis), Chrysophtharta amoena (Clark), Paropsis geographica Baly and Paropsis 

atomaria Olivier in Australia (Tribe 2000), and Dicranosterna semipunctata (Chapuis) in the 

laboratory (Murray et al. 2010). The arrangement, placement and chorion texture of these 

beetle’s eggs vary; suggesting B. albifunicle searches a variety of surfaces for parasitoid cues. 

It is likely, however, that B. albifunicle is specific to the genus Enoggera, having only been 

confirmed from eggs hosting E. nassaui and E. reticulata Naumann (Cumpston 1939; Tribe 

2000). In south-east Queensland B. albifunicle reportedly hyperparasitise Neopolycystus sp. 

at low levels but this has not been definitively confirmed. Rather, Neopolycystus sp. was the 

only primary parasitoid to emerge from extensive field collections of P. atomaria eggs, 

which was taken to indicate that no other species was available to have hosted the 

hyperparasitoid (Nahrung and Duffy 2008). In New Zealand, we are confident that B. 

albifunicle is restricted to E. nassaui because parasitised P. charybdis eggs subsequently 

develop distinct colour patterns. All field-collected host eggs from which hyperparasitoids 

have emerged (Jones and Withers 2003) have shown the colour pattern consistent with E. 

nassaui not N. insectifurax. The present study has confirmed the restriction to E. nassaui 

experimentally. The high levels (47.3%) of P. charybdis egg collapse observed after 

sequential exposure to E. nassaui and B. albifunicle suggest however, that E. nassaui is not 

an ideal host, especially as only 15.9% of eggs collapse when exposed to E. nassaui alone 

(Mansfield unpub. data). Contrariwise, is also possible that the lengthy test period induced 

repeated probing by B. albifunicle after successful oviposition, inducing the host-egg collapse 

and an underestimate of hyperparasitism (see Tribe 2000). 

Host dissections indicated that B. albifunicle oviposits directly into E. nassaui, which only 

becomes susceptible to hyperparasitism 12-16 h after oviposition. It may be that E. nassaui 

eggs are too small to detect, reach, or accommodate the hyperparasitoid before this (e.g. 

Strand and Vinson 1984). Hyperparasitism decreased when the delay exceeded 24 h, possibly 
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due to the larval integument toughening, insufficient time for hyperparasitoid development, 

or physical and immunological host defences. We conclude E. nassaui is susceptible to 

hyperparasitism for only a short period and B. albifunicle should require high host-finding 

efficiency and seasonal synchrony with E. nassaui to cause a significant reduction in the E. 

nassaui population.  

 

4.3 Implications for biological control 

High rates of hyperparasitism alone do not reliably indicate significant impact on the efficacy 

of a primary parasitoid (Rosenheim 1998). Some models predict hyperparasitism will disrupt 

biological control (May and Hassell 1981) while others predict a stabilising effect that 

improves control if there are fluctuations in the host-primary-parasitoid system (Beddington 

and Hammond 1977). Experimental studies show some BCAs perform poorly in the presence 

of hyperparasitoids (e.g. Wang and Messing 2004; Gains and Kok 1999) while others remain 

economically successful (e.g. Day 2002; Hammond and Neuenschwander 1990). The high 

levels of parasitism achieved in the absence of hyperparasitism, as evidenced by the success 

of E. nassaui controlling P. charybdis in warmer regions of New Zealand (Kay 1990; 

Murphy and Kay 2000) and of E. reticulata controlling T. tincticollis in South Africa (Tribe 

2000), are indicative that hyperparasitoids can exert considerable regulatory pressure on hosts 

in their native range (de Little 1982; Tribe 2000). It is therefore appropriate to assume that 

accidental or self-introductions of BCAs native hyperparasitoids have the potential to 

significantly weaken classical biological.  

The arrival of B. albifunicle to New Zealand was expected to devastate P. charybdis control. 

As an obligate hyperparasitoid with only one available host, B. albifunicle presumably 

exhibits strong synchrony with E. nassaui as it has successfully established, dispersed and 

proliferated (Jones and Withers 2003; Murray et al. 2008). We have confirmed that B. 

albifunicle has the biological capacity to reduce effective parasitism by E. nassaui to just 5-

16%, similar to field-survey estimates made shortly after B. albifunicle’s detection (Jones and 

Withers, 2003). The confirmation that N. insectifurax is not also exploited supports the notion 

that it may substitute for control lost to hyperparasitoid-driven reductions in E. nassaui. Up to 

2008, B. albifunicle was recorded from four New Zealand regions where N. insectifurax was 

not, but these distributions are expected to eventually overlap given the climatic ranges each 

species already exploits (Murray et al. 2008). Currently, E. nassaui remains the primary BCA 

active against the spring (most damaging) generation of P. charybdis as N. insectifurax has a 
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slower developmental rate, longer pre-oviposition period, and is less well synchronised with 

P. charybdis oviposition peaks (Mansfield et al. 2011).  Although obligate hyperparasitism 

does not reduce intra-generational impact on herbivore density (Jones and Withers 2003), 

heavy late-summer hyperparasitism is likely to reduce the E. nassaui population going into 

winter. As winter mortality is already high (Murphy and Kay 2000), E. nassaui may become 

even more scarce in early spring, increasing the time taken to attain levels sufficient to 

suppress P. charybdis. This capacity of B. albifunicle to further reduce P. charybdis control 

has yet to be quantified in the field. Additional assessment will determine the geographical 

and temporal scales on which control is affected and whether N. insectifurax, now well 

established, is substituting for E. nassaui. 

Despite BCA import regulations and strict border biosecurity in New Zealand accidental 

introductions will continue, especially from Australia. Most will fail to establish, but those 

that do have the potential to become pests or place established BCAs at risk. Selecting BCAs 

with a low native hyperparasitoid load may maximise their likelihood of remaining 

hyperparasitoid-free to provide long term pest suppression. Continued monitoring of 

biological control programs may assist early detection of organisms disrupting control; 

facilitating better management and identification of the pathways by which 

parasitoid/hyperparasitoid incursions occur. 
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