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Abstract 

 

Background and Aims Sexual deception is a species-specific pollination strategy commonly 

found in Orchidaceae.  Sexually deceptive orchids lure male insect pollinators by 

mimicking the sex pheromones and/or appearance of female insects, which elicit 

copulatory behaviour with the flower by the male insects. This specialised pollination 

strategy has recently been found in a Pterostylis species in Australia. Pterostylis orchids 

also occur in New Zealand, although very few studies have been done on this genus, 

and no such specialised insect pollination strategy has been documented in New 

Zealand. 

Methods I investigated the breeding system and pollinators of three Pterostylis spp. to 

determine whether sexual deception may be operating in P. oliveri, P. irsoniana and P. 

venosa growing in native beech forests in Arthur's Pass. We also investigated the floral 

headspace volatiles of P. oliveri to determine which compounds are present, and 

which may be responsible for pollinator attraction. 

Key Results Breeding system experiments suggest that P. oliveri and P. irsoniana are self 

compatible, but exclusively dependent on insects for pollination. Only male fungus 

gnats (Diptera: Mycetophilidae) were found carrying pollinia attached to their thoraxes 

in traps set up over the flowers. Insect identification and ITS DNA analysis of the 

pollinia showed that each orchid species was pollinated by a specific fungus gnat 

species; Mycetophila latifascia males found with pollen of P. oliveri; Morganiella fusca 

males found with pollen of P. irsoniana; and Tetragoneura sp. males found with pollen 

of P. venosa. Field tests of an unidentified compound found in headspace volatiles of P. 

oliveri did not attract any Mycetophila latifascia males. 

Conclusions These results indicate that pollination via sexual deception may be operating 

in these three Pterostylis spp. However, further floral volatile analyses are required to 

confirm whether the flowers emit volatile compounds that resemble the sex 

pheromones of the specific pollinators. 
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Glossary 

 

Column. Floral organ located in the interior of an orchid flower, where the stigma and anther 

regions are located. The anther is located at the top, and the stigma at the base of the 

column. 

Pollinarium (pollinaria pl.). A pollinium with a sticky tag. Each orchid anther has 4 pollinaria.  

Pollinium (pollinia pl.). A discrete mass of pollen. Each orchid anther has 4 pollinia.  

Stigma. The stigmatic region of an orchid flower is located the base of the column and has a sticky 

surface (viscidium), to which pollen can adhere to. 

Labellum.  A modified flower petal, also known as the flower’s lip, is associated with floral attraction 

(either producing scent of by its morphology)   

Anthesis. The ‘opening’ of a flower, after which the flower parts are available for pollination.   

Perianth. A collective term for the petal and sepals, or tepals of a flower. 
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Chapter 1 

Introduction 

Pollination by deception in Orchidaceae 

It has been estimated that over a third of Orchidaceae, a plant family of over 26 000 species 

(WCoSPF, 2011), may achieve pollination by deceptive means; promising a false reward, whether it 

be food, brood site or sex (Cozzolino and Widmer, 2005; Schiestl, 2005; Peakall et al., 2010; Xu et al., 

2012). Instead of providing rewards to attract pollinators, deceptive orchids exploit insect behaviour 

or other plant-pollinator relationships to achieve pollination (Jersakova et al., 2006). Deceptive 

pollination strategies include brood-site selection (Li et al., 2006), shelter imitation (Dafni et al., 

1981), territorial defence (pseudoantagonism) (Jersakova et al., 2006), food deception (Cheng et al., 

2009), and sexual deception (Dafni and Ivri, 1981; Ackerman, 1986; Schiestl, 2005; Jersakova et al., 

2006; Gaskett, 2011). Deceptive pollination strategies outside of Orchidaceae are rare but has 

recently been found in Oncocyclus irises (Iridaceae) (Sapir et al., 2005), and Gorteria diffusa 

(Asteraceae) (Ellis and Johnson, 2010; Schiestl, 2010a; Urru et al., 2011).   

Brood-site selection occurs when a female insect is attracted to orchid flowers which resemble a 

suitable site for oviposition (Jersakova et al., 2006; Urru et al., 2011). Brood-site mimicry coupled 

with food-deception may be the pollination strategy of the Chinese Cypripedium tibeticum (Li et al., 

2006).  Li et al. (2006) postulated that C. tibeticum’s large dark purple flowers resemble potential 

nesting sites for fertilized Bombus spp. queens as they emerge from hibernation in the spring. They 

found that the flowers offer no rewards and are fertilized once the queen bee pushes her way past 

the column while exiting the pouched labellum (Li et al., 2006).  

Shelter imitation is a pollination strategy where the flower mimics insect resting or hiding places 

(Jersakova et al., 2006). The dark red flowers of the Mediterranean genus Serapias are pollinated by 

solitary bees which take refuge in the flowers as they resemble nest entrances during bad weather 

(Dafni et al., 1981).  Four sympatric Serapias spp. have been found to have similar floral traits and 

flowering periods, and are all pollinated by solitary bees.  Chemical analyses of the floral scents 

showed slight differences in the floral scent of the four Serapias spp. which Pellegrino et al. (2012) 

theorise may provide a pre-pollination barrier and prevent hybridisation Pellegrino et al. (2012). 

Deceptive orchids are known not to provide any rewards to the insects fooled into pollinating these 

orchids, however in the case where the orchid flowers offer shelter, in return for pollination, I would 
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argue that this is at least some form of mutualistic interaction (Bronstein et al., 2006), as the insect is 

likely to gain from the interaction. 

One of the least studied but most fascinating and rare forms of orchid deception is when the orchids 

exploit the territorial defence behaviour of hymenopterans, known as pseudoantagonism. This 

pollination strategy has only been documented in the South American Oncidium and Tolumnia 

species (Jersakova et al., 2006). Such orchid flowers vibrate in the wind, which may resemble the 

hymenopterans’ antagonist, and are pollinated as the insect attacks the flower (Jersakova et al., 

2006).   

The largest portion of deceptive orchids are known as being ‘food deceptive’. This pollination 

strategy involves mimicking the floral traits of food rewarding plants growing in the same area 

(Cozzolino and Widmer, 2005; Schiestl, 2005; Jersakova et al., 2006). Food deceptive orchids offer no 

pollen or nectar, and are theorised to rely on foraging pollinators mistaking the non-rewarding 

orchid flowers for food rewarding flowers of the neighbouring plants. As expected, this pollination 

strategy is subject to negative density-dependent selection; where the smaller non-rewarding orchid 

populations benefit from higher pollination rates, as pollinators can learn to avoid non-rewarding 

flowers, especially when the non-rewarding orchids are more abundant (i.e. increase in population 

numbers) (Gumbert and Kunze, 2001; Jersakova et al., 2006). Studies have shown that bee 

pollination and the fruit-set of Cephalanthera rubra, Orchis israelitica, and Orchis boryi increases 

when plants not only mimic the food-rewarding plants' colouration and reflectance spectra, but also 

with similar flowering time and close vicinity to the food-rewarding plants (Dafni and Ivri, 1981; 

Nilson, 1983; Gumbert and Kunze, 2001). In the Baltic Sea island of Gotland, Cephalanthera rubra 

orchids are mostly (but not exclusively) pollinated by male Chelostoma fuliginosum and C. 

campanularum solitary bees. These orchids mimic the floral colouration of Campanula flowers 

where the female bees forage for food. This is also where the male bees search for mates. By 

mimicking the colouration of the Campanula flowers, the C. rubra orchids are pollinated by male 

bees which mistake the flowers for sites where the females can be found (Nilsson 1983). Food 

deceptive orchids also attract pollinators via olfactory cues. Coelogyne fimbriata and Steveniella 

satyrioides flowers attract female worker Vespula wasps by producing the scent of nectar, but offer 

no actual nectar (Nazarov, 1995; Cheng et al., 2009).  
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Pollination by deception outside of Orchidaceae 

Deceptive pollination strategies outside of Orchidaceae are rare but,  brood-site imitation has been 

found in other plant families such as Aristolochiaceae, Asclepiadaceae, and Araceae (Jersakova et al., 

2006); shelter imitation in Oncocyclus irises (Iridaceae) (Sapir et al., 2005), and the ‘intermediate 

form’ of sexual deception in Gorteria diffusa (Asteraceae) (Ellis and Johnson, 2010; Schiestl, 2010a).  

Shelter imitation has been found in Oncocyclus irises (Iridaceae) which grow throughout the Middle 

East (Sapir et al., 2005). Their dark-coloured flowers offer no nectar and have not been seen to be 

pollinated during the day. These flowers are pollinated by solitary male bees (Apidea) which enter 

the flowers at dusk and stay inside the flowers overnight. The breeding system experiments from  

Sapir et al. (2005) showed that six Oncocyclus irises are self-incompatible and their fruit-set depends 

on the pollination of the night sheltering bees (Sapir et al., 2005).  

The South African Daisy Gorteria diffusa presents a novel form of sexual deception which most 

probably evolved from food reward (Schiestl, 2010a). Previously, sexual deception has only been 

found in orchids which don’t offer any food, have their pollen packed in pollinia, and attract species-

specific male insects with a modified labellum which look and/or smell like a female insect 

(Kullenberg, 1961; Peakall and Beattie, 1996; Schiestl et al., 1999; Ayasse et al., 2003). In contrast, 

the discovery of the pollination strategy of G. diffusa is unexpected and unique in that Daisies have 

granular pollen, produce nectar and are visited by generalist pollinators. These floral traits show that 

sexual deception can also evolve in a generalist pollination system. In G. diffusa, the black spots 

(each a modified petal) on the orange inflorescence mimic a sitting insect which attracts male 

bombyliids which to try copulate with the black petals (Ellis and Johnson, 2010; Schiestl, 2010a). 

 

Sexual deception in Orchidaceae 

Sexually deceptive orchid species produce no food reward, but lure species-specific male insect 

pollinators by mimicking the sex pheromones and/or appearance of female insects, which elicits 

some degree of copulatory behaviour (pseudocopulation) with the flower by the male insects 

(Kullenberg, 1961; Peakall, 1990; Schiestl, 2005; Ayasse et al., 2010; Gaskett, 2011; Vereecken et al., 

2011).  
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Pollinators involved in sexual deception 

The most common pollinators of sexually deceptive orchids are wasps and bees (Nilson, 1983; 

Peakall, 1990; Ayasse et al., 2001; Gaskett and Herberstein, 2006; Gaskett, 2011), however ants 

(Peakall, 1989), beetles (Gaskett, 2011) and flies (Blanco and Barboza, 2005; Phillips et al., 2014) 

have also been documented. Twelve orchid genera have been found to be sexually deceptive in 

Australia, including Caladenia, Chiloglottis, Drakaea, Cryptostylis, and recently Pterostylis. Each 

species of Chiloglottis, Caladenia and Drakaea are pollinated by different species of thynnine wasps 

(Peakall, 1990; Peakall and Handel, 1993; Peakall and Beattie, 1996; Mant et al., 2005b; Hopper and 

Brown, 2007). While all five Cryptostylis species, which are morphologically distinct, share the same 

ichneumonid wasp pollinator, which is theorized to be as a result of the orchids all producing the 

same volatile compounds (Schiestl et al., 2004; Gaskett and Herberstein, 2006; Gaskett and 

Herberstein, 2010; Gaskett, 2011). Hybridization has been confirmed to be prevented by post-

pollination isolation in four of the Cryptostylis species, which have different chromosome numbers 

(Dawson et al., 2007; Cozzolino and Scopece, 2008; Gaskett, 2011). 

Eight genera in South and Central America have been studied, including Lepanthes glicensteinii 

which was the first confirmed case of a sexually deceptive orchid being pollinated by male fungus 

gnats (Bradysia floribunda, Sciaridae: Diptera). The tiny non-rewarding flowers of L. glicensteinii 

attract male fungus gnats which copulate with the miniscule labellum (**REF**). It is strongly 

expected that the labellum produce specific volatile compounds, which will be comparable with the 

female B. floribunda sex pheromones, to attract the B. floribunda males (Blanco and Barboza, 2005). 

Over 165 Ophrys spp. have been studied in Europe, which are pollinated by bees, wasps, and beetles 

(Devey et al., 2008; Cortis et al., 2009; Streinzer et al., 2010; Vereecken et al., 2011; Xu et al., 2011; 

Breitkopf et al., 2013). In South Africa, Steiner et al. (1994) found two sister Disa species, which 

don’t offer any food reward, to be pollinated exclusively by male wasps. Disa atricapilla was 

pollinated by Podalonia canescens (Sphecidae), and Disa bivalvata was pollinated only by 

Hemipepsis hilaris (Pompilidae) male wasps (Steiner et al., 1994).  

 

Chemical cues of sexual deception  

The chemical volatiles produced by the flowers are important in the attraction mechanism of 

sexually deceptive orchids. (Schiestl et al., 2003; Franke et al., 2009; Peakall et al., 2010; Vereecken 

et al., 2011). Chemical ecological studies on have shown that the orchid-pollinator interaction is 

strongly maintained by the specific compounds, in a variety of mixtures and their relative 
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concentrations. Peakall et al. (2010) found that Australian sympatric Chiloglottis spp. attract their 

specific pollinators by either emitting a single different compound or different concentrations of the 

same compounds (Peakall et al., 2010). Ayasse et al. (2003) also found that the differences in Ophrys 

spp. volatiles are not as the result of producing a wide variety of compounds but rather, producing 

different concentrations of the same compounds (Ayasse et al., 2003). As for the location of the 

scent production; Phillips et al. (2014) found that the labellum was the sole source of the 

attractant in Pterostylis sanguinea, which elicits copulatory behaviour from the insects 

(Phillips et al., 2014). In Ophrys spp. the volatiles are produced by subcuticular cells in the plant 

epidermis (Samuels et al., 2008). Peakall and Beattie (1996) have shown that the sexual 

pheromone mimic volatiles are produced by the calli (swollen structures on the labellum) of 

Caladenia tentaculata (Peakall and Beattie, 1996). It is possible that the subcuticular cells of the calli 

structures on the labellum are producing the same volatiles as the female insects. 

 

The majority of studies on sexually deceptive orchids have found that the orchids attract their 

pollinators with olfactory cues.  The most comprehensive studies which were able to confirm sexual 

deception as the pollination strategy in orchids use gas chromatography–mass spectrometry (GC-

MS) to determine which floral volatile compounds are present, coupled with gas chromatography - 

electroantennographic detection (GC-EAD) to determine which of these floral compounds trigger a 

response from the male insect antennae, and a pseudocopulatory response in behavioural assays 

(Schiestl et al., 1999; Ayasse et al., 2003; Mant et al., 2005a; Schiestl and Peakall, 2005). 

 The main function of cuticular hydrocarbons present on the bodies of insects is to prevent 

desiccation. However their composition has been shown to serve as the distinguishable sex 

pheromones among different  insects (Ayasse et al., 2001; Ayasse et al., 2003; Schiestl, 2005; Peakall 

et al., 2010; Ayasse et al., 2011; Vereecken et al., 2011; Pellegrino et al., 2012). Schiestl et al. (1999) 

showed that Ophrys sphegodes, which are pollinated by Andrena nigroaenea solitary bees, attract 

the males by producing the same compounds in similar relative proportions as the female bees 

(Schiestl et al., 1999), and Ophrys speculum has been found not only to mimic the sex pheromones 

of Campsoscolia ciliate wasps, but actually be more attractive to the male wasps than the females 

(Ayasse et al., 2003; Ayasse et al., 2010; Ayasse et al., 2011). Mant et al. (2005) found that 22 active 

compounds in the cuticular extracts of the female Colletes cuniculrius bees were also produced by 

Oprhys exaltata which is pollinated by the males (Mant et al., 2005a). Both Chiloglottis trapeziformis 

and Chiloglottis valida which are pollinated exclusively by male Neozeleboria cryptoides and 

Neozeleboria monticola, respectively, produce a single biologically active component called 
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‘chiloglottone’ which is also produced by the female wasps (Schiestl et al., 2003; Schiestl and Peakall, 

2005; Peakall et al., 2010). Behavioural field experiments showed that the compound was highly 

attractive to both male wasp species, which means they could visit any of the two orchid species, yet 

the two orchid species are genetically distinct. This indicates that there has to be a reproductive 

barrier isolating these two orchid species. From field observations Schiestl and Peakall (2005) 

theorized that the difference of floral height (C. trapeziformis grows taller than C. valida) may be as a 

result of difference in height of each of the wasp species mate-searching flights (Schiestl and Peakall, 

2005). And that the difference in the wasp species mate-search behaviour maintains the orchid 

species reproductive barrier, also known as pre-mating isolation (Schiestl and Peakall, 2005). The 

sympatric orchids Cryptostylis erecta and Cryptostylis subulata are morphologically distinct, yet 

share the same pollinator, male Lissopimpla excels wasps (Schiestl et al., 2004). GC-MS analyses have 

not been able to detect the actual compound responsible for the wasps’ attraction. However, GC-

EAD analyses showed that the male L. excels wasps responded to the same compound (GC peak) in 

both orchid volatiles, which indicated that a single compound produced by the two Cryptostylis spp. 

is responsible for the male’s attraction (Schiestl et al., 2004). With no hybrids found in field among 

these two sympatric populations, Schiestl et al. (2004) theorizes that some form of genetic 

incompatibility is most likely to be the reproductive barrier. 

 

Sexual behaviours of the pollinators triggered by floral chemical cues  

Sexually deceptive orchids elicit different levels of sexual behaviour from their male pollinators 

(Gaskett, 2011; Phillips et al., 2014). In the most extreme and rare cases the pollinator will ejaculate 

while attempting to copulate with the labellum of the flower. This level of sexual behaviour has only 

been observed in Cryptostylis spp. (Gaskett et al., 2008; Gaskett, 2011), and Lepanthes glicensteinii 

(Blanco and Barboza, 2005). In most cases the pollinator will merely attempt to copulate with the 

labellum, as seen in Ophrys spp. (Schiestl, 2005). Less intense interactions include some form of pre-

mating behaviour where the insect will fan their wings and/or grip the labellum (Blanco and Barboza, 

2005; Phillips et al., 2014). In Pterostylis sanguinea, the probing copulatory behaviour of a male 

fungus gnat triggers the labellum to trap the insects inside the flower. The orchid is pollinated as the 

fungus gnat escapes from the flower (Cheeseman, 1872; Johns and Molloy, 1983; Bernhardt, 1995; 

Proctor et al., 1996; Gaskett, 2011; Phillips et al., 2014).  

Male insects are lured to the flowers of sexually deceptive orchids by volatile semiochemicals. The 

semiochemicals of each orchid species act as long range attractants, and mimic the sex pheromones 
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of a single insect species (Schiestl et al., 1999; Ayasse et al., 2001; Ayasse et al., 2003; Schiestl et al., 

2003; Schiestl and Peakall, 2005; Bower and Brown, 2009; Peakall et al., 2010). At close range, the 

mimicry of visual and/or tactile cues has been shown to stimulate copulatory behaviour in Ophrys, 

Chiloglottis, Drakea and Caleana species (Cortis et al., 2009; Gaskett, 2011).  The colour of the flower 

perianth can increase the detectability of the flower against their background (Gaskett and 

Herberstein, 2010; Streinzer et al., 2010; Vereecken et al., 2011), while the shape and pilosity 

(trichomes on the surface of the labellum which makes it appear as ‘furry’) of the labellum can direct 

the position of the pollinator during copulation, as seen in Ophrys spp. (Devey et al., 2008; Cortis et 

al., 2009; Vereecken et al., 2011). Drakeae and Caleana orchids have intriguing insectiform (female-

like) flowers. In Drakeae livida the labellum resemble the flightless females of the Zaspilothynnus 

nigripes (Thynnidae) wasps.  The flowers are pollinated when a male wasp tries to pick up and fly 

away with the ‘female-like’ labellum (Hopper and Brown, 2007; Gaskett, 2011). Similarly in 

Chiloglottis spp. along with the odour attractant, the calli resemble the female body and encourage 

the male wasps to try and pick up the flightless females (Schiestl, 2004; Schiestl, 2005). 

Can a specialised pollination strategy such as sexual deception be operating in Pterostylis 

greenhood orchids in New Zealand?  

Several of the sexually deceptive orchid genera present in Australia are also present in New Zealand, 

including Caladenia, Chiloglottis, Cryptostylis and Pterostylis spp., among other genera (Hatch, 1946; 

Johns and Molloy, 1983; St. George, 1999). However, no cases of highly specialised plant-insect 

pollination systems, such as sexual deception in orchids, have been documented in New Zealand 

(Lehnebach et al., 2005; Newstrom and Robertson, 2005; Gaskett, 2011). Currently, New Zealand has 

over 160 known orchid species within 35 genera (NZNOG, 2015). Pterostylis makes up the largest 

genus with 29 species in New Zealand (St. George, 2014), and one of the four genera (along with 

Plumatichilos, Hymenochilus and Diplodium) which are known as the ‘greenhood’ orchids (Clements 

et al., 2011; NZNOG, 2015)  

 Pterostylis spp. have been thought to be sexually deceptive for many years, going back to 

Cheeseman (1872), and Darwin (1885). Although these orchids were generally known to be 

pollinated by fungus gnats (Diptera: Sciaridae and Mycetophilidae), evidence of the actual 

pollination strategy and pollinator species have been largely based upon anecdotal evidence. (Bates, 

1977; Bernhardt, 1995; Jones and Clements, 2002; Lehnebach et al., 2005; Gaskett, 2011). In a 

pollination study of four New Zealand orchids, Lehnebach et al. (2005) showed that Pterostylis 

alobula (Syn: Diplodium alobulum) and P. patens were self-compatible but dependent on insects for 

pollination. They found male Zygomyia (Mycetophilidae) fungus gnats inside the flowers of P. 
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alobula, but none were carrying pollen, which meant the insects were regarded as 'suggested 

pollinators' (Adams and Lawson, 1993; Lehnebach et al., 2005). These results left open the question 

as to whether the pollination strategy of Pterostylis orchids in New Zealand involves sexual 

deception. Only recently, Phillips et al. (2014) confirmed sexual deception in Pterostylis sanguinea in 

Western Australia. The orchids were pollinated after male Mycomya (Mycetophilidae) fungus gnats 

were recorded attempting to copulate with flower labella (Phillips et al., 2014).  

The aim of this study was to determine whether sexual deception is operating as the pollination 

strategy in P. oliveri, P. irsoniana, and P. venosa growing in native beech forests in Arthur's Pass 

National Park (NP), New Zealand. The field experiments were carried out at three locations where 

the orchids were the most abundant; Greyney’s Shelter, Cockayne Nature Walk, and Scott’s Track. 

Four hypotheses were tested to determine whether the orchids are sexually deceptive: (a) the 

flowers of each of the three Pterostylis spp. depend on insects for pollination; (b) each of the three 

Pterostylis spp. flowers attract a different insect pollinator species; (c) the flowers attract only male 

insect pollinators; (d) the flowers emit volatile compounds which resemble the sex pheromones of 

the specific insects. 

In Chapter 2, I will investigate the breeding system of the orchids, with pollination treatments in 

order to determine whether the orchids depend on insect for pollination. In chapter 3, I trap and 

identify the orchid pollinators. And finally I will attempt to find the floral volatiles of P. oliveri in 

Chapter 4. In this study, each of the chapters answers a very specific question. In chapter 5, I am able 

to combine the answers of the previous questions and make to conclusion of the study as a whole; 

are the three Pterostylis orchids sexually deceptive?   
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Chapter 2 

Do the Pterostylis orchids depend on insects for pollination? 

Introduction  

In this chapter I will describe the floral trapping mechanism of Pterostylis flowers which have been 

the subject of speculation concerning the orchids' pollination system. I will introduce the three 

Pterostylis species included in the study, and the locations where the field experiments were carried 

out. I will describe the methods specific to the breeding system experiments, including the four 

pollination treatments. 

Investigating whether the pollination strategy of Pterostylis orchids in New Zealand is by sexual 

deception we first have to understand these orchids' floral traits and breeding system.  In New 

Zealand all Pterostylis spp. bear solitary flowers (Clements et al., 2011; NZNOG, 2015), which trap 

their pollinators (Fig. 2.1) (Johns and Molloy, 1983; Proctor et al., 1996; Lehnebach et al., 2005). 

Most of the perianth is fused to form a floral chamber; the dorsal and ventral sepals form a floral 

tube around a small and narrow labellum in the centre of the flower. This distinct floral structure 

most likely evolved as trapping mechanism to promote out-crossing (Lehnebach et al., 2005; Phillips 

et al., 2014). The production of a floral scent, which resembles the sex pheromones of the female 

insect, is expected to be the reason why the male insect flies towards and lands on the labellum, as 

previous studies on sexually deceptive orchids have shown (Ayasse et al., 2003; Schiestl et al., 2003; 

Mant et al., 2005c). Either the motion of the landing or attempted copulatory behaviour triggers the 

hinged labellum to catapult the insect into the base of floral tube, imprisoning the insect. The only 

passage for escape is past the stigma, where any pollinium the insect is carrying is deposited, and 

subsequently past the anthers, where a pollinium attaches to the thorax of the insect. Once the 

insect is trapped within another flower, the pollen is transferred to the adhesive stigmatic region on 

exit and cross pollination is achieved (Bernhardt, 1995; Lehnebach et al., 2005; Gaskett, 2011; 

Phillips et al., 2014). After fertilisation the inferior ovary will swell and once ripe, eventually dry out 

to become longitudinally dehiscent capsules which release the seeds at the end of the flowering 

season. Depending on the fruit-set number, thousands of minute dry seeds (< 1 mm long) will be 

dispersed by wind (Johns and Molloy, 1983).  

In a previous pollination study of four New Zealand orchids, Lehnebach et al. (2005) conducted 

breeding system experiments on two Pterostylis spp. They found that both P. patens and P. alobula 

were self-compatible but non-autogamous, i.e. the plants depended on insects for pollination 
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(Lehnebach et al., 2005). This study aims to document the breeding systems of P. oliveri and P. 

irsoniana growing in Arthur's Pass National Park, particularly to test for self-compatibility, pollen 

limitation and dependence on insects for pollination.  To test for this, I carried out natural-, self- and 

cross-pollination treatments on the flowers in the field, and excluded insect pollinators in the control 

treatment for P. oliveri and P. irsoniana. At the end of each season, I counted the fruit-set of the 

flowers in each pollination treatment. I was not able to include the third species, P. venosa, in all the 

pollination treatments but did count the natural fruit-set. 

The data analyses of the pollination treatments focused on; (1) the mean fruit-set difference among 

the four breeding system treatments of P. oliveri at Greyney’s Shelter (2012/13 and 2013/14), and 

(2) P. irsoniana at Cockayne walk (2013/14), in order to compare their levels of self-compatibility and 

pollen limitation. I also looked at (3) the differences in the natural fruit-set of P. oliveri, P. irsoniana, 

and P. venosa among the three locations, as the three locations differed in vegetation composition, 

and different numbers of the three orchids species were found at each of the three study locations.  

 

 

Figure 2.1   Illustration showing the interior of a Pterostylis flower trap. The anthers and pollinia are shown in 
yellow, and the stigma are shown in pink. A The labellum at rest; (1) insect flies towards the flower, (2) motion 
of insect on labellum triggers it to flick back into the flower, catapulting the insect into the base of the flower 
(3). B Labellum triggered; (3) insects tries to escape, (4) crawls past the stigma, through the column wings, and 
(5) anthers. (6) Insect escapes bearing a pollinium.  Adapted from Fig. 3 in Bernhardt (1995)  
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Methods 

Three Pterostylis species studied  

Five different Pterostylis species; P. oliveri, P. irsoniana, P. australis, P. montana, and P. venosa, were 

found at different locations in Arthur's Pass NP. However, only three of the species; P. oliveri, P. 

irsoniana, and P. venosa were included in this study, as they had sufficient population numbers to 

carry out the breeding system and pollinator trap experiments for this study (Table 2.1). 

The diagnostic features of each species are described below.   

Pterostylis oliveri are relatively large (10 - 30 cm), entirely green plants (Fig. 2.2 A). The lance-ovate 

leaves are in alternate arrangement on the stem, with slight wavy margins. The solitary flower is 

relative large (3 - 6 cm tall). The dorsal sepal is green with white/translucent stripes at the base. Its 

long style curls downwards over the flower. The green petals are tucked in beneath the dorsal sepal. 

The lateral sepals end in very long styles (> 8 cm from base to tip).   The labellum (3 - 4 cm long by 5-

8 mm wide) is a yellow/brown to green. In Arthur's Pass Pterostylis oliveri flower from mid 

November to the end of January. 

Pterostylis irsoniana plants are more delicate and grass-like (Fig. 2.2 A), ranging from 10 – 15 cm in 

size. The leaves are linear with entire margins, in alternate arrangement on the stem. Colouration on 

the leaves include light and dark green stripes along a pink/orange midvein. The stem and ovary can 

sometimes be the same colour as the mid-vein. The flowers are small (2.5 - 3 cm tall). The dorsal 

sepal is short as it bends over the flower at a right angle, and has green and white stripes which 

blend together at the orange tip. The petals have stripes ranging in colour from dark green to 

maroon, and are the same length as the dorsal sepal, tucked away beneath it. The lateral sepals are 

green at base with pink/orange tips, and extend backwards at right angles. The labellum is white 

with purple stripes, and has a curled black tip. In Arthur's Pass Pterostylis irsoniana flower about the 

same time as P. oliveri, from late November to the end of January. 

Pterostylis venosa are very small plants (4 - 7 cm tall). It grows close to ground among moss patches 

(Fig. 2.2 B). The leaves are green, and broadly ovate with wavy margins. The plants have short stems 

and appear to have a basal leaf arrangement. The flowers (2 cm tall) are light in colour. The dorsal 

sepal and petals are largely white with green stripes, curved over the flower at a right angle. The 

lateral sepals are green at base with light pink styles, and extend upward past the dorsal sepal. The 

labellum is dark red/purple in colour. In Arthur's Pass Pterostylis venosa flower from October to end 

of November.  
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A                                                         B 

Figure 2.2   Study species; A Pterostylis irsoniana (left) and Pterostylis oliveri (right) growing in sympatry at 
Greyney's Shelter (Picture taken December 2012). B  Pterostylis venosa at Scott's Track (Picture taken October 
2013). Scale bars 1 cm. Pictures taken by Liezl Thalwitzer.  
 

Study Sites 

Three locations were included in this study; Greyney's Shelter, Cockayne Walk, and Scott's Track in 

Arthur's Pass NP. These locations had sufficient population numbers of one or two of the Pterostylis 

study species, and were easily accessible to allow for the pollination treatments and pollinator 

trapping experiments to be carried out. Arthur's Pass NP is situated along the Southern Alps, 

between Canterbury and the West Coast regions of the South Island. All study sites were located on 

the west side of Highway 73 within Arthur's Pass NP.  

Old Coach Road at Greyney's Shelter (42°58'S, 171°35'E) is a walking track located 6 km south of 

Arthur's Pass Village. The area was dense in native mountain beech (Nothofagus solandri) forest, 

along with fern, lancewood (Pseudopanax crassilofius), kapuka (Griselinia littoralis), and marbleleaf 

(Carpodetus serratus) undergrowth. P. oliveri was present in a large number of colonies (together 

>400 plants across the site) which stretched about 200 meters along the foot path. A small number 

of P. irsoniana and P. montana colonies were also present in this area. The breeding system, 
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pollinator trapping experiments, and volatile headspace collections of P. oliveri were conducted at 

this site. Pollinator trapping experiments were also conducted on P. irsoniana.  

Scott's Track (42°56'S, 171°33'E) is a tramping track which starts 1 km north of Arthur's Pass village. 

The vegetation changes from native beech forests to sub-alpine shrub with rising elevation of the 

track. Over 15 small colonies of P. venosa plants (2 to 5 plants per colony) were recorded along the 

first 300 meters of the walking track and surrounding area. Pollinator trapping experiments of P. 

venosa were conducted at this site. 

Cockayne Nature Walk at Kelly's Creek (42°48'S, 171°34'E) is a walking track located 17 km north of 

Arthur's Pass in the West Coast region. This side of Arthur's Pass is a temperate rain forest with 

diverse podocarp-broadleaf plants including large fuchsia (F. excorticata) and totara (Podocarpus 

totara) trees, along with kapuka, lancewood, tutu (Coriaria arborea), and fern undergrowth. Large 

colonies of P. oliveri (> 150 plants) and P. irsoniana (> 80 plants), and small colonies of P. australis (> 

5 plants) and P. montana (> 3 plants) were found along the entrance of the walking track. The 

breeding system of P. irsoniana, and pollinator trapping of P. irsoniana and P. oliveri were conducted 

at this site. 

 

Study species population numbers at the study sites 

Sufficient numbers of the three different Pterostylis spp. flowers were needed to carry out the 

pollination treatments and pollinator trapping experiments in the field. Both P. oliveri and P. 

irsoniana were present at Greyney’s Shelter and Cockayne Walk (Table 2.1). P. oliveri were present 

in large numbers at Greyney’s Shelter, which made it possible to carry out all planned experiments 

on P. oliveri at this location. Overall, P. oliveri were more common at Greyney’s Shelter and 

Cockayne Walk compared to P. irsoniana, except for the last recorded flowering season (Summer of 

2014/15) in which only two P. oliveri plants were found at Cockayne Walk. P. irsoniana was present 

in relatively small numbers at Greyney’s Shelter and Cockayne Walk. The 2013/14 flowering season 

at Cockayne Walk made it possible to carry out the pollination treatments on P. irsoniana, which was 

not possible the previous year when only 17 flowering plants were counted in total.  P. venosa was 

only found at Scott’s Track in 2013/14, and was present in many small colonies (2 - 5 plants) in the 

area of the track. P. venosa was not found at the other two locations. The plant size and scattered 

population distribution of P. venosa at Scott's Track made it impossible to carry out the all the 

pollination treatments (See Pollination treatments in the field, below).  
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Table 2.1   The three Pterostylis spp. population numbers at Greyney’s Shelter, Cockayne Walk and Scott’s 

Track for three flowering seasons (2012/13 to 2014/15). NP: orchid species not present at study area/location; 

NA: population number not measured.  

  

Pollination treatments in the field 

The breeding system of P. oliveri at Greyney's Shelter, and P. irsoniana at Cockayne Walk were 

investigated with treatments adapted from Newstrom and Robertson (2005). Both Pterostylis 

species were subjected to four different pollination treatments in the field; natural pollination 

(open), autogamy (bagged), self-pollinated (selfed) and cross-pollination (crossed) (Fig. 2.3 A, C). The 

short flowering stalks of P. venosa made it difficult to securely bag any of the plants, thus only the 

natural fruit-set was scored and included in this experiment. All plants included in the study were 

tagged (with various coloured flagging tape) and labelled at the base of the stems. In the treatments 

where the plants were bagged, the flowers were covered with fine nylon netting material, which was 

securely closed below the ovary, to exclude potential insect visitors. The bagged plants were 

checked weekly to ensure the plants were still alive. For the self- and cross-pollination treatments, 

the plants were hand pollinated once the stigma was sticky (i.e. receptive to pollen), which can take 

up to 2 weeks after anthesis (personal observation). For this reason the flowers were bagged before 

anthesis, and hand pollinated after 2 weeks, and bags replaced. All plants were scored in the field 

once the flowers dried up on the stalks (where a fruit was ripening) or the flower stalks started to 

wilt (when the fruit was not developing) (Fig. 2.3 B).  

 

 

Location Year Number of orchid flowering plants per location 
P. oliveri                   P. irsoniana                          P. venosa  

Greyney’s Shelter  2014/15 430 23 NP 

 2013/14 244 37 NP 

 2012/13 302 27 NP 

Cockayne Walk  2014/15 2 15 NP 

 2013/14 157 87 NP 

 2012/13 86 17 NP 

Scott’s track  2014/15 NP NP 39 

 2013/14 NP NP 57 

 2012/13 NP NP NA 
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    A                                                 C 
 
Figure 2.3   Breeding system experiments; A, Flowers of P. oliveri in bagged (rear) and natural (front) 
pollination treatments. B, Fruit-set: unfertilised wilted flower (left), and fertilised (right) fruit of P. oliveri. C, 
Flowers of P. irsoniana in bagged (left) and natural (right) pollination treatments. Pictures taken by Liezl 
Thalwitzer. 
 
 

The four breeding system treatments are described below. 

1. Natural pollination treatment establishes the natural percentage of fruit set of the orchids. Plants 

with developing floral buds were tagged at their base, and allowed to develop and set fruit under 

natural conditions without any manipulation. Fruit-set was scored after flowering was complete. 

2. Autogamy treatment tests whether the plants are able to set fruit/self-fertilise without insect 

visitation. The floral buds were bagged before anthesis, to exclude all insect pollinators. Fruit-set 

was scored after flowering was complete. 

3. Self-pollination treatment tests whether the plants are self-compatible, i.e. able to set fruit when 

fertilized with its own pollen. The floral buds were bagged before anthesis to prevent cross-

pollination by insects. Once the stigmas of the flowers became receptive, flowers were hand-
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pollinated with one of its own pollinia. Plants were again bagged after pollination and fruit-set was 

scored after flowering was complete.  

4. Cross-pollination treatment tests whether the plants are able to set fruit when fertilized with 

pollen from another plant. The floral buds were bagged before anthesis. Once the stigmas of the 

flowers became receptive, flowers were hand-pollinated with a single pollinium from a flower of a 

neighbouring colony. Plants were again bagged after pollination and fruit-set was scored after 

flowering was complete.  

 

Data analyses  

The fruit-set means are presented as percentages in the tables. The degree of self-sterility was 

calculated using the Self-Compatibly Index (SCI: Self-pollinated fruit-set / Cross-pollinated fruit-set); 

and the degree of pollen limitation was calculated using the Pollination Limitation Index                 

(PLI: 1 – Natural fruit-set / Cross-pollinated fruit-set, which was truncated at 0, Larson and Barrett, 

2000) (Newstrom and Robertson, 2005).  

The fruit-set means data were analysed using binomial GLMs in R version 3.1.2. The focus of the 

different datasets included; comparing the fruit-set means of the four treatments to determine the 

different levels of self-compatibility and pollen limitation of (1) P. oliveri at Greyney’s Shelter 

(2012/13 and 2013/14), and (2) P. irsoniana at Cockayne walk (2013/14); and (3) comparing the 

natural fruit-set means of P. oliveri and P. irsoniana among Greyney’s Shelter and Cockayne Walk, 

and P. venosa at Scott’s Track. 

 

Comparisons among treatment means were difficult to analyse in R when one of the treatments had 

no variation (e.g. the bagged treatments which all had 0% fruit-set, and the selfed and crossed 

treatments of P. oliveri at Greyney’s Shelter in 2013/14 which all had 100% fruit-set) because this 

gave a “complete separation” error which inflated the standard errors. For this reason, I ran 

binomial GLMs with the bagged treatment to determine any significant treatment effect, and then 

ran another GLM without the bagged treatment for more reliable coefficient estimates of the other 

three treatments. 

 

Comparisons of particular a priori interest were the self vs. crossed (to assess self-compatibility) and 

natural vs. crossed (to determine pollen limitation). Analyses of P. oliveri at Greyney’s Shelter with 

two years of data available, included Treatment, Year, and the Treatment x Year interaction. If the 

interaction was non-significant, the GLM was run again without the interaction term to get the best 
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estimates of the coefficients for Treatment and Year. For analyses of the P. irsoniana (2013/14) 

dataset, I ran GLMs with the crossed, natural and selfed treatments, using crossed as the reference 

treatment (intercept) to compare with each of the other treatment means for the a priori tests 

mentioned above.  

 

The natural fruit-set of P. oliveri was recorded for three years (2012/13 - 2014/15), and two years for 

P. irsoniana (2013/14 and 2014/15) at Greyney’s Shelter and Cockayne Walk. The fruit-set of P. 

venosa was recorded in 2014/15 at Scott’s Track.  The natural fruit-set was compared among the 

three species and three locations, thus the analyses of the fruit-set means included Location, 

Species, and the Location x Species interaction term. If the interaction was non-significant, the GLM 

was run again without the interaction term to get the best estimates of the coefficients for Locations 

and Species.  

 

Results  

Data analyses of the pollination treatments in the field 

There were significant differences among the four breeding system treatments of P. oliveri and P. 

irsoniana. For both species, none of the flowers in the bagged treatment set fruit. Hand self- and 

cross-fertilised plants had high fruit-set means (Table 2.2). These results indicate that P. oliveri and P. 

irsoniana flowers are self-compatible, however they are not able to autonomously self fertilise (non-

autogamous), which shows that these two species are dependent on external pollinators for 

fertilisation. The natural fruit-set of both P. oliveri (80%) and P. irsoniana (92%) was higher at 

Cockayne Walk, when compared to the natural fruit-set of P. oliveri at Greyney’s Shelter (Table 2.5). 

The natural fruit-set of P. venosa was also high at Scott's Track. Out of a total of 39 flowers, 29 set 

fruit (74%).  
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Table 2.2   The mean fruit set (in %, with number of flowers in brackets), and the self-compatibility (SCI) and 

pollination limitation (PLI) indices for Pterostylis oliveri (2012/12 & 2013/14) at Greyney’s Shelter, and P. 

irsoniana (2013/14) at Cockayne Walk under four pollination treatments. The degree of self-sterility was 

calculated using the Self-Compatibly Index (SCI: Self-pollinated fruit-set / Cross-pollinated fruit-set); and the 

degree of pollen limitation was calculated using the Pollination Limitation Index (PLI: 1 – Natural fruit-set / 

Cross-pollinated fruit-set) (truncated at 0, Larson & Barrett 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment P. oliveri   (2012/13) P. oliveri   (2013/14) P. irsoniana  (2013/14) 

Natural (open) 21.00 (24) 44.00 (25) 92.30 (13) 

Bagged 0.0 (15) 0.0 (11) 0.0 (10) 

Self-pollinated  91.00 (11) 100 (10) 80.0 (10) 

Cross-pollinated  73.00 (11) 100 (10) 80.0 (10) 

SCI  1.25 1 1 

PLI  0.71 0.56 0 
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1. P. oliveri fruit-set at Greyney’s Shelter (2012/13 and 2013/14) 

There was a significant difference among the 4 treatments (Table 2.3a). There was a much lower 

fruit-set in the bagged treatment (none of the bagged flowers set fruit). The bagged treatment was 

excluded from subsequent analyses, as the lack of variation in the bagged treatment caused a 

“complete separation” error which inflated the standard errors in the R summary output. With the 

bagged treatment excluded from the dataset, there was still a highly significant difference among 

the 3 treatments and year (Table 2.3b). There was no interaction effect between the years and 

treatments; Table 2.2 shows that, apart from the bagged treatment, the natural, selfed and crossed 

treatments had higher fruit-set in the second year (2013/14). The selfed and crossed treatments 

were similar (Table 2.3c), and both were significantly higher than the natural treatment. The 

similarly high fruit-set means of the crossed and selfed treatments indicated that P. oliveri is highly 

self-compatible. The natural fruit-set was significantly lower than the crossed fruit-set, which 

indicates that P. oliveri is highly pollen limited at Greyney’s Shelter.  

 
Table 2.3 Analyses of the pollination treatments for P. oliveri fruit-set at Greyney’s Shelter (2012/13 and 
2013/14) 

(a) Binomial GLM including all four treatments 

 Df Deviance Residual Df Residual Deviance P (Chi) 

Null                                                                       116                           161.503               

Treatment            3                      74.332                      113                              87.172                         < 0.001 

 

(b) Binomial GLM of three Treatments + Year 

 

(c) Coefficients from (b) (Logit-transformed units) 
 

Treatment Coefficient Std. Error Z value P (>|z|) 

Crossed (Intercept)           -2894.4834                   1199.4403                         -2.413                          0.015813 

Natural                 -2.8358                          0.7555                         -3.754                          0.000174 

Selfed                   1.2421                          1.2154                          1.022                          0.306810     

Year                   1.4392                          0.5961                          2.415                          0.015755 

 

 

 

 

 

 

 Df Deviance Residual Df Residual Deviance P (Chi) 

Null                                                                         90                          122.958 

Treatment            2                     35.787                          88                            87.172                         < 0.001 

Year            1                       6.557                          87                            80.615                            0.010 
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2. P. irsoniana fruit-set at Cockayne walk (2013/14) 

There was a significant difference among the 4 treatments (Table 2.4a). However, with the bagged 

treatment excluded from the data, the remaining 3 treatments did not differ (Table 2.4b). The 

natural fruit-set was 12% higher than the crossed treatment (Table 2.2). The crossed and selfed 

plants had identical fruit-set means (Table 2.2, 2.4c). The identical crossed and selfed fruit-set means 

showed that P. irsoniana was highly self-compatible (SCI: 1, Table 2.2). With the natural fruit-set 

being 12% higher than the crossed fruit-set, the population at Cockayne Walk was not pollen limited 

(PLI: 0, Table 2.2).  

 
 

Table 2.4 Treatment analyses of P. irsoniana at Cockayne Walk (2013/14) 

(a) Binomial GLM including all four treatments 

 Df Deviance Residual Df Residual Deviance P (Chi) 

Null                                                                       42                              55.618               

Treatment            3                      28.551                      39                              27.067                          < 0.001 

 
(b) Binomial GLM excluding the bagged treatment 

 

 Df Deviance Residual Df Residual Deviance P (Chi) 

Null                                                                        32                             28.072          

Treatment 2                       1.0047                   30                             27.067                             0.61 

 
(c) Coefficients from (b) (Logit-transformed units) 

 

Treatment Coefficient Std. Error Z value P (>|z|) 

Crossed (Intercept)             1.386                              0.791                                1.754                              0.08 

Natural             1.099                              1.307                                0.841                              0.401 

Selfed             0.0                                   1.118                                0.0                                   1.0 
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3. Natural fruit-set of P. oliveri (2012/13-2014/15) and P. irsoniana (2013/14 & 2014/15) at 

Greyney’s Shelter and Cockayne Walk, and P. venosa (2014/15) at Scott’s Track 

There was a significant difference in the overall natural fruit-set among locations, and species (Table 

2.5, 2.6a), but no significant interaction effect. The natural fruit-set of both P. oliveri and P. irsoniana 

was significantly higher at Cockayne Walk (Table 2.5, 2.6b). The fruit-set mean of P. oliveri was 34.3% 

(2012/13-2014/15) at Greyney’s Shelter, and 80% at Cockayne Walk (2013/14 and 2014/15); and the 

mean of P. irsoniana was 4.4% at Greyney’s Shelter (2014/15) and 69.5% at Cockayne Walk (2013/14 

and 2014/15) (Table 2.5). The overall fruit-set at Cockayne Walk was similar to Scott’s Track (Table 

2.5, 2.6b) as the combined mean of P. oliveri and P. irsoniana was 71% at Cockayne Walk and 74.4% 

for P. venosa at Scott’s Track was 74.4% (Table 2.5).  

Table 2.5   The mean percentage of natural fruit set of Pterostylis oliveri, P. irsoniana and P. venosa at the 

three study locations. The number of flowers per treatment is shown in brackets. NP: orchid species not 

present at study location. NA: natural fruit-set not scored.  

 

 

 

 

 

 

 

Location Year Mean percentage of natural fruit-set  
P. oliveri                   P. irsoniana                          P. venosa  

Greyney’s Shelter  2014/15 37.97 (79) 4.35 (23) NP 

 2013/14 44.00 (25) NA NP 

 2012/13 20.83 (24) NA NP 

Cockayne Walk  2014/15 NA 46.67 (15) NP 

 2013/14 80.00 (10) 92.31 (13) NP 

 2012/13 NA NA NP 

Scott’s track  2014/15 NP NP 74.36 (39) 

 2013/14 NP NP NA 

 2012/13 NP NP NA 
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Table 2.6 Analyses of the natural fruit-set of P. oliveri and P. irsoniana at Greyney’s Shelter and Cockayne 

Walk, and P. venosa at Scott’s track. 

(a) Binomial GLM of the three locations and three species 

 Df Deviance Residual Df Residual Deviance P (Chi) 

Null                                                                       227                             313.95               

Location 2                       36.547                       225                             277.40                         < 0.001 

species 1                   10.407                      224                             267.00                             0.001 

 

(b) Coefficients (Logit-transformed units) with Cockayne and P. irsoniana as the intercept (1 not defined 
because of singularities) 
 

Group Coefficient Std. Error Z value P (>|z|) 

Cockayne (intercept)            0.5770                          0.3774                               1.529                             0.126  

Greyneys          -2.8911                           0.6625                            -4.364                           < 0.001 

Scotts            0.4877                           0.5262                             0.927                               0.354    

P. oliveri            1.6995                           0.6304                             2.696                               0.007 

P. venosa               NA                                 NA                                        NA                                NA 

  

 

Discussion 

 

P. oliveri and P. irsoniana flowers were highly self-compatible, however they were not able to self 

fertilise (non-autogamous), which shows that these two species are dependent on insects for 

pollination. The high percentage of selfed fruit-set indicated a low degree of self-sterility (Newstrom 

and Robertson, 2005; Gaskett, 2011). A low degree of self-sterility can be the result of a lack of early 

acting inbreeding depression within a population (Newstrom and Robertson, 2005; Jersakova et al., 

2006). The lack of inbreeding could be the result of the efficiency of the trapping mechanism of the 

flower, which is promotes cross-fertilisation (Lehnebach et al., 2005; Gaskett, 2011; Phillips et al., 

2014). 

 

P. oliveri and P. irsoniana both had very high natural fruit-set rates at Cockayne Walk, relative to 

Greyney's Shelter.  P. oliveri had an average natural fruit-set of 34% at Greyney’s Shelter and was 

highly pollen limited (PLI: 0.71 in 2012/13, and 0.56 in 2013/14), whereas the natural fruit-set at 

Cockayne Walk was very high (80%) in 2013/14. Similarly with P. irsoniana, the natural fruit-set at 

Greyney's Shelter was extremely low (4.4%) in 2014/15, and high at Cockayne Walk (69% average for 

2013/14 and 2014/15). P. irsoniana was not pollen limited (PLI: 0) at Cockayne Walk. These results 

indicate that the pollination rates are higher are Cockayne Walk.  
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P. venosa was included into the study in October 2013, but I was unable to include this species into 

the hand-pollination treatments, or bag the flowers as they were very small. However in October 

2014, I tagged all the flowering plants I could find in the beginning of the flowering season. From a 

total of 39 flowers, 29 set fruit (74%). This gives P. venosa a high natural pollination rate. 

 

There was a significant difference in fruit-set in both P. oliveri and P. irsoniana among the two study 

sites; could the different habitats of Greyney's Shelter and Cockayne Walk be responsible for the 

difference in the natural fruit-set rates of P. oliveri and P. irsoniana?  The two locations are on 

opposite sides of 'the divide'. Greyney's Shelter is on the eastern side of the Southern Alps region of 

Canterbury, and Cockayne Walk is on the western side in the West Coast region.  The climate on the 

west side certainly gets more rain, and the vegetation among the two locations was different. 

Cockayne Walk is in a temperate rain forest with diverse podocarp-broadleaf plants. While Greyney's 

Shelter is a walking path cut into a dense native mountain beech forest. If the differences among the 

locations are to be considered, a future study can document the ecological variables such as climate, 

elevation, vegetation, precipitation. However, I do not however expect that the habitat differences 

are directly responsible for the difference in the orchid population size or fruit set.  

Janes et al. (2010) investigated the environmental variables of 9 Pterostylis spp. in Tasmania, in 

order to understand their ecological requirements and niche space, and to determine whether 

competitive exclusion may contribute their population range and sizes (Janes et al., 2010). They 

included several ecological variables such as altitude, soil drainage and texture, precipitation, 

vegetation type, temperature, climate etc. However, they found no clear ecological separation 

between the orchid species ranges. Janes et al. (2010) concluded with the suggestion that further 

research into pollinator specificity is required, as they recognised that the niche partitioning may not 

result from ecological variables but from pollinator shifts, as these orchids may be sexually 

deceptive. According to the competitive exclusion theory (Hardin, 1960), two closely related species 

or two species with similar ecological requirements cannot coexist indefinitely, as competitive 

exclusion will result in each species either finding their own niche or go extinct. In this case however, 

if the orchids are sexually deceptive, they are attracting specific male pollinators. Most sexually 

deceptive orchids do not to compete for pollinators, as even closely related species produce 

different semiochemical compounds (or relative compositions of the same compounds) (Peakall et 

al., 2010), or have different floral morphologies (Schiestl and Peakall, 2005; Schiestl and Schluter, 

2009), to attract a different species of pollinator. These traits in turn also act as pre-zygotic isolation 

barriers to prevent hybridisation among the orchid species.  
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Another explanation for the difference in fruit-set of P. oliveri and P. irsoniana among the two study 

sites could be due the local abundance of each pollinator species. According to the breeding system 

results of P. sanguinea from Phillips et al. (2014), P. alobula and P. patens in Lehnebach et al. (2005), 

and P. oliveri and P. irsoniana in this study, the Pterostylis orchids fecundity (fruit-set success) is 

dependent on insects for pollination. Next, I will investigate the insect pollinators in Chapter 3, and 

determine whether the pollination system operating here is also sexually deceptive.  
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Chapter 3 

Which insects pollinate the orchids? 

Introduction 

According to the results from the previous chapter, P. oliveri and P. irsoniana require insect 

pollinators for fertilisation. The next questions are: do the flowers of each orchid species attract a 

different pollinator species; and are these pollinators all male?   

In this chapter I will discuss the investigation of the pollinators of the three Pterostylis species. In 

most cases sexually deceptive orchids attract only a single pollinator species, and in all reported 

cases the pollinators are male insects (Ayasse et al., 2001; Schiestl et al., 2003; Schiestl and Peakall, 

2005; Bower and Brown, 2009; Peakall et al., 2010; Gaskett, 2011). A review by Gaskett (2011) 

showed that all previous studies done on Pterostylis in Australia and New Zealand found fungus gnat 

(Diptera: Mycetophilidae) pollinators. Lehnebach et al. (2005) found dead and alive male fungus 

gnats, from the genus Zygomyia, trapped inside P. alobula flowers in the North Island of New 

Zealand. However, evidence for sexual deception as the pollination strategy in Pterostylis was not 

confirmed in that study (Lehnebach et al., 2005). Only recently, Phillips et al. (2014) found that 

Pterostylis sanguinea was pollinated solely by male Mycomya sp. (Diptera: Mycetophilidae) in 

Western Australia, confirming sexual deception in Pterostylis for the first time. In that study they 

were able to gather observational and video recordings of the male fungus gnats attempting to 

copulate with the flower labellum (Phillips et al., 2014).  

Pollinator traps were set up over the three Pterostylis spp. to investigate whether these orchids 

attract species-specific male pollinators. This is the first empirical study to show species specificity in 

Pterostylis orchids in New Zealand. The results serve as circumstantial evidence for sexual deception 

operating as the pollination strategy, which has not been recorded in New Zealand. Here, insect 

traps were set up over P. oliveri, P. irsoniana, and P. venosa. Insects with pollinia stuck to their 

thoraxes were identified as pollinators, and the pollen was sent to Landcare Research for ITS DNA 

analyses to determine which orchid species the pollen originated from.  
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Methods 

Pollinator traps and insect identification 

The aim of this experiment was to catch the pollinators as they visit the flowers. Traps were set up 

over P. oliveri and P. irsoniana flowers for two flowering seasons (summer of 2012/13 and 2013/14) 

at Greyney's Shelter and Cockayne Walk; and P. venosa for one season (2013/14) at Scott's Track. 

Small sticky traps were designed to cover the individual flowers. Each trap consisted of a clear plastic 

tube (~10cm long, 7cm diameter) attached to a metal stand, with the interior lined with insect 

trapping glue (‘Tanglefoot’) (Fig. 3.1). The treatment traps were placed over individual plants, 

covering the flower. The control traps were set up within the orchid population, among the 

treatment traps, but not over any flowers.  All traps were set up close to the ground, at the same 

height as the orchid flowers. Each set of traps were left out in the field for two week periods. The 

number of traps varied among species and sites (see Table 3.2). After the traps were collected from 

the field, they were inspected under a stereomicroscope. The identities of the pollinators were 

determined by their morphology and wing venation, following the Tonnoir & Edwards (1927) 

description key. The sexes of the insects were determined by studying their abdominal terminalia 

(Tonnoir and Edwards, 1927; Colles and McAlpine, 1991).  

In the first field season (2012/13) I didn't know what to expect to find in the traps, or how I would 

determine which insects the pollinators were. For this reason I had both treatment and control traps 

set up in the field. The following season (2013/14) only treatment traps were set up over the flowers 

with the aim to increase the replication of the pollinators caught in the traps. In addition, treatment 

traps were also set up over P. venosa flowers in October 2013/14, after populations were found at 

Scott's Track.  
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Figure 3.1   Pollinator treatment traps set up over P. oliveri flowers in the field. A, Treatment traps with the 
interior of the trap lined with insect trapping glue; B, Treatment trap with the exterior of the trap lined with 
insect trapping glue (initial experimental traps of the first field season, 2012/13). Pictures taken by Liezl 
Thalwitzer. 

 

Plant and pollen DNA identification  

DNA sequences from the nuclear ribosomal internal transcribed spacer (ITS) region can be amplified 

by standard PCR methods (Clements et al., 2011). ITS primers are useful in phylogenetic studies of 

angiosperm families (Baldwin et al., 1995; Álvarez and Wendel, 2003). ITS DNA analysis was 

performed for two reasons in this study; (a) to ensure that we were working with the same orchid 

species at the each of the study sites; and (b) to determine which orchid species the pollinia from 

the pollinators originated from. DNA was extracted and the ITS regions amplified from fresh plant 

tissue samples of P. oliveri and P. irsoniana at Greyney's Shelter and Cockayne Walk, P. venosa at 

Scott's Track; and the pollen samples from pollinators caught on the insect traps. All DNA analyses 

were done by Rob Smissen at Landcare in Lincoln.  

DNA was extracted from plant tissue or pollinia using the Maxwell 16 system (Promega). The nuclear 

ribosomal DNA region containing Internal Transcribed Spacer (ITS) 1, 5.8S RNA and ITS2 was 

amplified by PCR using Roche FastStartTaqDNA polymerase and reagents and the primers ITS5 

(White et al., 1990) and ITS28cc (Glenny and Wagstaff, 1997). PCR products were sequenced using 

BDT 3.1 sequencing reagents with cycle sequencing products separated on an ABI 3500 Genetic 



31 
 

Analyser. The generated sequences were aligned with available GenBank sequences of New Zealand 

Pterostylis species P. oliveri (FJ473348, GQ866390),  P. irsoniana (GQ866375), P. venosa (GQ866404), 

P. australis (GQ866352), P. montana (GQ866380) and as an outgroup the Australian species P. 

cucullata (GQ866362). Aligned sequences were analysed under maximum parsimony using 

PAUP*4.0b10 (Swofford, 1999). 

Data analyses of the specific pollinators in the traps 

The data from the insect traps were analysed to determine the significant differences in the specific 

pollinator presence among the three different orchid species and three different locations, as well as 

among the treatment and control traps. The pollinator trap data were analysed using a Poisson GLM 

in R version 3.1.2. None of the analyses were over-dispersed. The data were analysed by running 

each specific pollinator against 5 different trap groups; P. oliveri treatment-, P. oliveri control-, P. 

irsoniana treatment-, P. irsoniana control, and P. venosa treatment traps. Location was added as the 

second term in the analyses. Each of the three analyses were run with Groups + Location, after none 

of the analyses showed a significant Groups x Location interaction effect. 

 

Results  

The results from the pollinator traps indicate that P. oliveri, P. irsoniana, and P. venosa attract 

species-specific male pollinators. Three different fungus gnat (Diptera: Mycetophilidae) species were 

caught carrying pollen in the pollinator traps; Mycetophila latifascia, Morganiella fusca, 

Tetragoneura sp. A total of 43 gnats were caught carrying pollen, all of which were identified as male 

insects. ITS DNA analyses of the pollinia carried by the fungus gnats confirmed that Mycetophila 

latifascia only carried pollinia from P. oliveri; Morganiella fusca only carried pollinia from P. 

irsoniana; and Tetragoneura sp. fungus gnats only carried pollinia from P. venosa. 

Pollinator traps and insect identification 

Three different fungus gnat species (Diptera: Mycetophilidae) were caught carrying pollen on their 

thoraxes in the traps (Table 3.1). The fungus gnats were identified by their morphological 

characteristics and wing venation. Both Mycetophila latifascia Edwards and Morganiella fusca 

Tonnoir males were caught in the treatment and control traps of P. oliveri and P. irsoniana flowers at 

Greyney's Shelter and Cockayne Walk. Only a single species, from the genus Tetragoneura Winn., 

was found with pollinia in the traps set up over P. venosa at Scott's Track. Pollen from each of the 

three orchid species was found on three different fungus gnat species (Table 3.1, Fig. 3.2). 
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Only Mycetophila latifascia male fungus gnats were caught bearing P. oliveri pollinia. A total of 

thirteen M. latifascia males were confirmed (with ITS DNA analyses) to carry pollinia from P. oliveri 

at Greyney's Shelter (n=11) and Cockayne Walk (n=2). Only Morganiella fusca male gnats were 

caught bearing P. irsoniana pollinia. Twenty-five M. fusca males were caught with pollinia at 

Cockayne Walk, of which nine pollinia samples were confirmed to belong to P. irsoniana. No M. 

fusca males were caught with pollinia at Greyney's Shelter. Four Tetragoneura sp. male gnats were 

found with pollinia at Scott's Track, and three of the pollen samples were confirmed to belong to P. 

venosa. 

 

Table 3.1   Pollinia bearing Mycetophila latifascia, Morganiella fusca, and a single Tetragoneura species caught 

in both treatment and control traps over P. oliveri, P. irsoniana and P. venosa at Greyney's Shelter, Cockayne 

Walk, and Scott's Track in Arthurs Pass. Origin of the pollinia was determined with ITS DNA analyses.  

 

 

 

 

 

 

 

 

 

Orchid species Location  Total insects bearing pollinia 
 

           n           Species (sex) 

Orchid origin confirmed 
(number of pollinia origin 
confirmed via ITS DNA analyses) 

P. oliveri Greyney’s Shelter   10 M. latifascia (m) P. oliveri (10) 

 Cockayne Walk  3 M. latifascia (m) P. oliveri (2) 

   2 M. fusca (m) P. irsoniana (1) 

P. irsoniana Greyney’s Shelter   1 M. latifascia (m) P. oliveri (1) 

 Cockayne Walk  23 M. fusca (m) P. irsoniana (8) 

P. venosa Scott’s Track  4 Tetragoneura sp. (m) P. venosa (3) 
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Figure 3.2   Three different fungus gnats (Mycetophilidae) caught with orchid pollinia in the pollinator traps.  
A, Mycetophila latifascia caught with P. oliveri pollinia (D). B, Morganiella fusca caught with P. irsoniana 
pollinia (E). C, Tetragoneura sp. caught with P. venosa pollinia (F). Scale bars; Insect scale bar 5mm (A-C); 
Flower scale bar 2cm (D-F). Pictures taken by Liezl Thalwitzer. 

 

Plant and pollen DNA identification  

We sequenced the ITS DNA region from fresh plant material of P. oliveri, P. irsoniana, and P. venosa 

and compared the sequences to those available in GenBank. In all cases there were differences 

between our sequences and those in GenBank which were generated from two previous studies; P. 

oliveri sequence FJ473348 was generated by (Alvarez-Molina and Cameron, 2009); and the other 

sequences were generated by (Clements et al., 2011). The differences involved a number of 

insertions (“GC” or “GCG” motifs in the GenBank sequences, not found in our sequences) or 

deletions, but not any substitutions. The positions of these insertions/deletions were consistent 

across the three GenBank sequences. We interpret the differences observed between sequences 
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generated for our study and those in GenBank as resulting from errors in the GenBank sequences. 

These are likely to have arisen during the alignment of sequences in the studies of Alvarez-Molina 

and Cameron (2009) and Clements et al. (2011). Such errors often arise in phylogenetic studies and 

are not always corrected when they do not impact on the results, as is probably the case here. 

What is important here is that all of our newly generated plant and pollinia sample sequences 

corresponded; all P. oliveri plant samples, from both study sites, and all pollinia recovered from M. 

latifascia fungus gnats, shared exactly the same sequence. The same was found with P. irsoniana 

plant samples and all pollinia recovered from M. fusca gnats. All plant samples of P. venosa at Scott's 

Track and pollinia from Tetragoneura sp. The sequences of the three species differed by at least 7 

substitutions (P. irsoniana vs. P. oliveri), and as many as 18 (P. irsoniana vs. P. venosa). 

The ITS sequences recovered from some samples had little similarity to those of orchids, but had 

significant similarity to fungal ITS sequences. The best match returned by a nucleotide Blast search 

on GenBank was to JN569114, an ITS sequence from a root associated Ceratobasidium 

(Ceratobasidiaceae) sample. Some Ceratobasidium species form mycorrhizal associations with 

orchids (Irwin et al., 2007). Inadvertent amplification of fungal ITS sequences from green plant 

sample is not an uncommon occurrence. The fact that we found many of the pollinia samples 

infested with fungal DNA was initially not expected, but not at all surprising as the traps were left in 

the field for two week periods close to the ground in humid conditions. In two instances, when traps 

were not refrigerated after collection from the field, and left out in the laboratory, fungal mycelia 

and spores were seen around the pollinia on the fungus gnats. 

 

Data analyses of the specific pollinator abundances in the traps 

There was a significant difference in the presence of the specific pollinators among the three 

different Pterostylis spp. traps and the three locations. M. latifascia were caught in P. oliveri traps 

(treatment and control), and P. irsoniana control traps at both Greyney's Shelter and Cockayne 

Walk. There were significantly more M. latifascia gnats caught in traps over P. oliveri flowers 

(0.7/trap) at Cockayne Walk (Table 3.2, 3.3) than Greyney's Shelter. No M. latifascia gnats were 

caught in any of the traps set up over P. irsoniana or P. venosa flowers. M. fusca gnats were caught 

in both the treatment and control P. irsoniana traps at Cockayne Walk. There were significantly 

more M. fusca caught in traps set up over P. irsoniana flowers (3.91/trap) at Cockayne Walk (Table 

3.2, 3.4) than the control traps, or any trap at Greyney's Shelter. A total of 157 M. fusca were caught 

at Cockayne Walk, while only one was caught at Greyney's Shelter.  A single species of Tetragoneura 

fungus gnats were caught at Scott’s Track in the traps set up over P. venosa flowers. These insects 
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were not recorded in any other traps, at any other location. The 12 treatment traps at Scott’s track 

were sparse with insect number and diversity; a total of 23 insects were caught of which 19 were 

Tetragoneura sp. fungus gnats. Neither M. latifascia nor M. fusca were found in any of these traps.  

 

 

Table 3.2   The average number of specific pollinator species (M. latifascia, M. fusca, and Tetragoneura sp.) caught per 

trap in the traps set up over (flower treatment) and among (control) flowering plants of P. oliveri, P. irsoniana and P. 

venosa at Greyney's Shelter, Cockayne Walk, and Scott's Track in Arthurs Pass.  

 

 

Table 3.3 Analyses of M. latifascia fungus gnat presence in traps over the three Pterostylis spp. and at the 
three locations.  
 

(d) Poisson GLM Groups + Location 

 Df Deviance Residual Df Residual Deviance P (Chi) 

Null                                                                      290                                242.52               

Groups             4                     54.414                      286                               188.11                       < 0.001 

Location             1                        6.368                     285                                181.74                          0.012 

 

(b) Coefficients (Log-transformed units) with P. oliveri treatment traps as the intercept. Scott’s Track 
(location) not defined due to similarities to P. venosa (flower) 

 

Treatment Coefficient Std. Error Z value P (>|z|) 

P. oliveri (flower)        -0.3554                        0.2185                         -1.627                          0.104 

P. oliveri (control)        -1.2984                        0.3639                        -3.568                      <  0.001 

P. irsoniana (flower)     -18.6945                  1245.1787                        -0.015                          0.988 

P. irsoniana (control)         -1.6087                        0.5248                        -3.065                          0.002 

P. venosa (flower)       -18.9472                 2721.2299                       -0.007                          0.994 

Location Greyneys         -0.6917                         0.2657                      -2.603                           0.009 

Location Scotts               NA                               NA                             NA                                NA 

Orchid 
species 

Location Treatment Number  
of traps 

Average number of pollinators caught per 
trap (total insects caught) 

 
 M. latifascia         M. fusca      Tetragoneura sp. 

P. oliveri Greyney’s Shelter  Flower 82 0.35 (29) 0.01 (1) 0 (0) 

  Control 60 0.1 (7) 0 (0) 0 (0) 

 Cockayne Walk Flower 26 0.70 (18) 0.15 (4) 0 (0) 

  Control 17 0.18 (3) 0.29 (5) 0 (0) 

P. irsoniana Greyney’s Shelter  Flower 21 0 (0) 0 (0) 0 (0) 

  Control 21 0.05 (1) 0 (0) 0 (0) 

 Cockayne Walk Flower 34 0 (0) 3.91 (133) 0 (0) 

  Control 18 0.17 (3) 0.83 (15) 0 (0) 

P. venosa Scott’s Track Flower 12 0 (0) 0 (0)  1.58 (19) 
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Table 3.4 Analyses of M. fusca fungus gnat presence in traps over the three Pterostylis spp. and at the three 
locations.  
 

(a) Poisson GLM Group + Location 

 Df Deviance Residual Df Residual Deviance P (Chi) 

Null                                                         290                        786.31 

Species            4                     341.14                         287                         445.18                           < 0.001 

Location            1                     168.71                         285                         276.47                           < 0.001 

 

(b) Coefficients (Log-transformed units) with P. irsoniana treatment traps as the intercept. Scott’s 
Track (location) not defined due to similarities to P. venosa (flower) 

 

Treatment Coefficient Std. Error Z value P (>|z|) 

P. irsoniana (flower)         1.35931                    0.08684                        15.653                        < 0.001 

P. irsoniana (control)        -1.55045                    0.27240                         -5.692                        < 0.001 

P. oliveri (flower)        -3.03163                   0.45593                          -6.649                       < 0.001 

P. oliveri (control)        -2.60953                    0.45605                          -5.722                       < 0.001 

P. venosa (flower)     -18.66189             1001.08453                          -0.019                          0.985 

Location Greyneys       -4.88050                     1.00514                          -4.856                      < 0.001 

Location Scotts               NA                               NA                             NA                                NA 

 

 

Discussion 

The results from the pollinator traps indicate that the pollination system of P. oliveri, P. irsoniana, 

and P. venosa are species-specific; pollen from each of the orchid species was found being carried by 

unique fungus gnat species. Hundreds of insects were caught in the traps set up of the flowers of 

each orchid species, in the three locations (Greyney's Shelter, Cockayne Walk and Scott's Track), yet 

only three fungus gnat species, all male, were caught carrying pollen.  Only Mycetophila latifascia 

male fungus gnats were caught bearing pollinia in the traps set up over P. oliveri flowers at 

Greyney's Shelter (n=14) and Cockayne Walk (n=3). Fourteen of those pollinia samples were 

confirmed to belong to P. oliveri with ITS DNA analyses. Only Morganiella fusca males were caught 

bearing pollen in the traps set up over P. irsoniana flowers at Cockayne Walk (n=23). Nine of those 

pollinia samples were able to be confirmed to belong to P. irsoniana. Four fungus gnats of a single 

species, from the genus Tetragoneura, were found with pollen in the traps set up over P. venosa 

flowers at Scott's Track. Three of the pollinia samples were confirmed to belong to P. venosa.  

The pollinators were found in different abundances at the different locations. M. latifascia were 

present at both Greyney's Shelter (37 insects) and Cockayne Walk (24 insects), but was most 

abundantly found in the traps over P. oliveri flowers at Cockayne Walk. Only one M. fusca was 

caught at Greyney's Shelter, while 157 of the insects were caught at Cockayne Walk, mostly over P. 

irsoniana flowers. Nineteen Tetragoneura sp. fungus gnats were caught at Scott's Track. These 
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insects were not present at the other two locations, and none of the other two pollinator species 

were present in the traps of P. venosa at Scott's Track. 

 

These results of the pollinator traps along with the breeding system results from Chapter 2, are 

discussed  in Chapter 5, as together these results indicate that sexual deception is operating as the 

pollination system in these Pterostylis orchids, and that the fruit-set of the orchids are dependent on 

the specific insects. 

 

Next, I will investigate the semiochemical volatiles of P. oliveri at Greyney's Shelter, in an attempt to 

identify the compound/s responsible for attracting M. latifascia which were caught with the pollen 

of P. oliveri in the pollinator traps.  
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Chapter 4  

Do the orchids attract their pollinators with volatile compounds 

which resemble the sex pheromone of the female insect? 

Introduction 

In this chapter, I will describe the methodology of collecting the semiochemical volatiles from 

sexually deceptive orchids, and how I collected the volatiles of P. oliveri. I will describe the methods 

of the volatile analyses, and testing compounds in the field. 

Study methods of chemical ecology 

Chemical ecology studies of sexually deceptive orchids investigate the compounds present in the 

floral volatiles which are responsible for attracting the male pollinators. Such studies start by 

collecting the floral volatiles. The dynamic headspace collection method involves collecting the 

headspace volatiles from the plants within a closed chamber around the plant part of interest such 

as the flowers (Fig. 4.1). Air is drawn through the chamber by a vacuum pump, and the extracted air 

is passed through a cartridge tube with adsorbent particles which traps any volatile compounds 

emitted from the plant (Raguso and Pellmyr, 1998). Any compounds present in the cartridge are 

subsequently eluted with a solvent, and sub-samples are analysed with gas chromatography−mass 

spectrometry (GC-MS) to identify the compounds present in the sample (Schiestl et al., 2004; 

Salzmann et al., 2006). 

Solvent extraction is another method of volatile collection which involves the plant organ of interest 

being immersed in a solvent to extract any volatiles present in the wax layer on the surface of the 

plant (Ayasse et al., 2003; Schiestl et al., 2003; Mant et al., 2005a; Schiestl and Peakall, 2005; Peakall 

et al., 2010). Most chemical ecology studies of sexually deceptive orchids focus on the orchid 

labellum, which has been shown to be the site of emission (Ayasse et al., 2001; Schiestl, 2005; 

Phillips et al., 2014).  Solvent extraction is also used to identify the actual sex pheromones of the 

female insects, by rinsing the female head and/or body with solvent to collect any cuticular 

hydrocarbons such as the insect specific pheromones (Ayasse et al., 2003; Schiestl et al., 2003; Mant 

et al., 2005a). 

Once the volatiles from the plant and female insects have been identified with GC-MS analyses, they 

can be compared to determine which compounds from the female insect are also present in the 

plant volatiles. The corresponding compounds can then be synthesised and used for gas 
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chromatography-electroantennal detection (GC-EAD). A GC-EAD records any responses from live but 

amputated male antennae, as the synthesised compounds are released to flow past the antennae. 

The compounds found to elicit a response from the male antennae, known as biologically active 

compounds, are then further investigated with behavioural bioassays to test the perceived signal 

function in the field. Plastic beads treated with the biologically active compound/s, along with plant 

labella and female insect cuticular extracts, are set up in the field for both quantitative and 

qualitative comparisons of the male insect attraction to the different volatiles, by counting the 

number of visitors to the plastic beads and recording their behaviour  (Ayasse et al., 2003; Schiestl et 

al., 2003; Mant et al., 2005a; Schiestl and Peakall, 2005; Peakall et al., 2010). The compounds that 

elicit copulatory behaviour from the expected male insect species can then be confirmed as the 

sexual pheromone mimic compound which functions as the orchid attractant in its sexual deceptive 

pollination strategy. Schiestl et al. (2003) investigated the sexual deceptive orchid Chiloglottis 

trapeziformis which was known to attract male Neozeleboria cryptoides thynnine wasps. With GC-

MS analyses of the floral and female insect body volatiles, they found a single unique compound, 

called ‘chiloglotone’, within the female sex pheromone volatiles that was also produced by the 

flower labella. The compound was then synthesised, and found to trigger a response in the male 

antennae with GC-EAD analyses. In the field experiments (bioassays), the male insects were found to 

be equally attracted (copulatory behaviour observed) to the synthesized compound, female extracts 

and floral extracts (Schiestl et al., 2003).  

No evidence has yet been provided that fungus gnats are lured to Pterostylis orchids with a sexual 

pheromone mimic volatile (Gaskett, 2011). However, a sexual chemical attractant is expected to be 

the reason why the species-specific males are visiting the flowers (Ayasse et al., 2003; Schiestl et al., 

2003; Mant et al., 2005c). Thus, it is useful to investigate the floral and female insect volatiles, along 

with pollinator behaviour. Here, I collected the volatiles of P. oliveri. The main purpose of this part of 

the study was to identify a compound or compounds in the volatile analyses that were present only 

the orchid volatile samples. And to test this compound in the field for its attractiveness to 

Mycetophila latifascia, the fungus gnat species found with pollinia from P. oliveri in chapter 3. 
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Figure 4.1 Diagram of the dynamic headspace volatile collection in the field, showing the flower enclosed by a  

glass chamber on stands; direction of air flow, in through charcoal glass tube, and out through a Tenax glass 

tube; connected via silicon tubing to the vacuum pump. Adapted from Fig.1 in Raguso & Pellmyr (1998) 

 

Methods 

 

Volatile collection in the field 

Headspace volatiles were collected from P. oliveri at Greyney's Shelter in December 2012 (Fig. 4.2), 

using a dynamic headspace collection method (Raguso and Pellmyr, 1998). I tested which volatiles 

were coming from the flower (treatment), and which volatiles were background/field volatiles 

(control). For the treatment samples, five flowers were individually enclosed within small glass 

chambers to capture the headspace volatiles. Inflow air passed through a charcoal filter glass tube, 

while outflow air passed through a volatile adsorbent (Tenax) trap (a 60mm long x 6mm wide glass 

tube containing 60mg of Tenax-GR 35/60 from Sigma-Aldrich Co.). The control samples were taken 

from empty glass chambers set up in the same area as the flowers, to capture any background 

volatiles. Each volatile collection session lasted for 24 hours. 
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Figure 4.2 Headspace volatile collections of P. oliveri flowers at Greyney's Shelter. In the picture, the glass 

chambers are set up over the flowers. The charcoal tube (larger tube), and the Tenax trap (small tube) which is 

connected to the floral chambers and the battery powered vacuum pump (within the white plastic container) 

via silicon tubing. Picture taken by Liezl Thalwitzer. 

 

Volatile analysis 

The Tenax traps were eluted with 500 µl of n-hexane (AnalaR BDH, Laboratory Supplies, UK). Each 

sample was subsequently reduced to 50 µl under argon stream, and 1 µl of the concentrated sample 

was injected into a GC-MS (Varian 3800 GC coupled to a Varian 2200 MS; Varian, Inc., Walnut Creek, 

CA) for volatile compound analyses.  Helium was used as the gas carrier (1 ml min -1), in a VF-5 ms 

non-polar column (30 m × 0.25 mm inner diameter × 0.25 μm film; Varian, Inc., Walnut Creek, CA). 

The  ov ts retention indexes (KI) were calculated for the compounds (Kovats, 1965). The 

unidentified compounds of interest were named for their structure by John Revell, Ashraf El-Sayed 

and Rikard Unelius, after structural assignments of the compounds were made by comparing their 

mass spectra with the MS library (NIST 2011), as well as by comparison to  ov ts retention indices 

from The Pherobase, a database of known insect pheromones (El-Sayed, 2014) 
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Bioassays in the field 

One of the compounds of interest, the lavender lactone that was identified, was synthesised by 

Rikard Unelius at Plant and Food Research (Lincoln) for field bioassays. After synthesis, the 

compound was injected onto small pieces of rubber (called septa, 1 cm x 2.5 cm) for slow volatile 

release in the field. Four different blends of the compound were prepared in the laboratory; 0.1 mg, 

1 mg, and 10 mg of the lactone dissolved in hexane; and a hexane control. Five septa were prepared 

for each of the four treatments, and each group of septa were vacuum sealed in aluminium packets 

to prevent chemical contamination or odour loss. Twenty insects traps (five traps for each of the 

four treatments) were prepared to house the rubber septa in the field. The traps were constructed 

from plastic, in the shape of a 'bird-house'. Inside of the trap, a plastic sheet covered with 

'Tanglefoot' glue was placed (~20 cm2).  

 

In the field, the traps were placed in the four groups, labelled and the rubber septa of each 

treatment placed inside of the 'bird-house' traps, on top of the sticky sheet.  A trap from each of the 

treatments was placed in a location (total of four traps at five different locations) along the walking 

track at Greyney's Shelter where P. oliveri orchids are found. The traps were left out in the field for 3 

weeks in December 2013. After the traps were collected, the plastic sheets were removed from the 

plastic housing and inspected under a stereomicroscope for the presence of M. latifascia male 

fungus gnats. 

 

 

Results 

Over 45 compounds were found in the treatment and control volatile samples taken from P. oliveri 

in December 2012. However, many more compounds in trace amounts may be present. Two 

unidentified isomeric compounds were consistently found in all five treatment volatile samples at 

extremely low but similar concentrations (Fig. 4.3). These compounds were identified by John Revell, 

Ashraf El-Sayed and Rikard Unelius from Plant and Food Research Ltd., after comparisons with 

known compound structures. 

The compounds were identified as lavender lactone and lavender lactol, with Kovat Indices of 929 

and 948, respectively. The lavender lactone was synthesized by Rikard Unelius. Unfortunately the 

attempts for synthesising lavender lactol repeatedly failed. For this reason, only the lavender lactone 

was tested in the field. No M. latifascia insects were present on any of the plastic sheets, in any of 

the four treatments. 
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 These results show that the lavender lactone is not an attractant of P. oliveri. Further volatile 

analyses is required to determine whether P. oliveri attract their pollinators with volatile 

compound/s which resembles the sex pheromone of the female insect. 
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Figure 4.3    Chromatogram showing (1) the unidentified compounds (A and B) found in P. oliveri flower 
volatile, against (2) the control volatile sample. The two isomeric compounds found in P. oliveri volatile; A 
Lavender Lactone, and B Lavender Lactol.  
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Discussion 

Two previously unidentified compounds, lavender lactone and lavender lactol, were found to be 

present in the volatiles of P. oliveri collected in the field. Only the lavender lactone was synthesised 

and tested in the field. This compound did not appear to be an attractant of P. oliveri, as none of 

their pollinators, M. latifascia fungus gnats, were caught in any of the traps with a blend of lavender 

lactone.  

Investigating the volatile compounds of sexually deceptive orchids normally takes several years to 

elucidate, and several factors in this study have made finding the volatiles of P. oliveri even more 

challenging.  

If the dynamic volatile collection method is used in a future study, the control headspace volatile 

collections should also include taking volatiles from the leaves of the orchid species, along with an 

empty chamber in the field. The method I followed tested which volatiles were coming from the 

flower (treatment), and which volatiles were background/field volatiles (control). The control 

samples should include being taken from a glass chamber enclosed around a leaf in order to 

determine which volatiles were coming from the leaves, i.e. the plant. The volatiles present on the 

leaf can then be compared to volatile present in the flower, which should eliminate a lot of 

compounds, and narrow down on possible compounds of interest. We also expect the attractant 

compound to be present at extremely low concentrations, which increases the difficulty for 

identifying the compound/s.  

In studies that have found the floral attractant, researchers were able to compare compounds in the 

floral volatiles with those of the female insect of the pollinator species. The pollinators in these 

studies were relatively easy to catch or trap alive. The female bodies are rinsed in a solvent for GC-

MS analyses, while the male insects are kept alive until their antennae are amputated for GC-EAD 

analyses (Ayasse et al., 2003; Schiestl et al., 2003; Mant et al., 2005c).  

Fungus gnats are very small and fragile insects, and hard to trap alive long enough to separate the 

males from the females, and to use the male antennae for GC-EAD analyses. Throughout my study, I 

was unable to catch these insects alive. Future studies of the volatile compounds of Pterostylis 

orchids and their fungus gnat pollinators will need to find a method of catching the insect in the 

field, or perhaps even methods of rearing the insects in the laboratory.  

In this study we were unable to find the attractant of P. oliveri, or to determine which volatiles 

present in the flowers resembled the sex pheromones of the female pollinator species. Future 
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volatile collections should include a P. oliveri (a) flower, (b) leaf, (c) and background control. The 

volatiles produced by the plant (leaf) can serve as a control, which can be useful in determining and 

excluding the compounds which are present in both the leaf and the flower, and narrow down the 

amount of volatiles of interest. 
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Chapter 5 

Discussion 

 

In Chapter 2, I investigated (a) whether the flowers of each of the three Pterostylis spp. depend on 

insects for pollination. P. oliveri and P. irsoniana flowers were highly self-compatible, and non-

autogamous, which shows that these two species are dependent on insects for pollination. The 

breeding system experiments also indicated a lack of early acting inbreeding depression within both 

species populations at Greyney's Shelter and Cockayne Walk, which is most likely the result of 

natural intra-specific cross-pollination promoted by the trapping mechanism of the flower 

(Lehnebach et al., 2005; Newstrom and Robertson, 2005; Phillips et al., 2014). 

In Chapter 3, I determined (b) whether each of the three Pterostylis spp. flowers attract a different 

insect pollinator species, and (c) whether the flowers attract only male insect pollinators. Results 

from the pollinator traps indicated that sexual deception is operating as the pollination system in 

these three Pterostylis spp. Each of the three Pterostylis spp. flowers attracted only male species-

specific fungus gnats.  Only Mycetophila latifascia male fungus gnats were caught bearing pollinia of 

P. oliveri flowers. Only Morganiella fusca males were caught bearing pollen of P. irsoniana flowers. 

And only a single species, in the genus Tetragoneura, was found with pollen of P. venosa flowers.   

In chapter 4, I investigated whether (d) the flowers emit volatile compounds which resemble the sex 

pheromones of the specific insects.  The study species was limited to P. oliveri populations at 

Greyney's Shelter. The volatiles of P. oliveri were collected in the field, and after GC-MS analyses, 

two previously unidentified compounds, lavender lactone and a lavender lactol, were found to be 

present in the volatiles of P. oliveri. Only the lavender lactone was tested in the field for its 

attractiveness to the P. oliveri pollinator. However, the compound did not attract any of P. oliveri's 

pollinators, M. latifascia fungus gnats, to the traps. Thus this compound is not an attractant of P. 

oliveri. I was unable to catch any live M. latifascia in the field, thus I was not able to perform any 

volatile extractions from the female insect bodies or perform any GC-EAD on the male antennae.   It 

is highly expected that the orchids must attract their pollinators with sexual olfactory cues, as seen 

with other sexually deceptive orchid spp. (Ayasse et al., 2003; Schiestl et al., 2003; Mant et al., 

2005c), and further research is needed to identify the semiochemical compounds in the P. oliveri 

floral volatiles which resemble the sex pheromones of the female M. latifascia fungus gnats. 

Phillips et al. (2014) investigated Pterostylis sanguinea, and found that the flowers were pollinated 

by a single male fungus gnat species. In that study Phillips et al. (2014) also introduced a list of the 
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‘Criteria for confirming pollination by sexual deception’. Meeting one or more of the criteria is 

confirmation of sexual deception. The criteria includes; the observation of (1) any courtship or pre-

mating behaviour by the insect to the flower, or (2) attempted copulation with the flower, or (3) 

ejaculation of the male insect during attempted copulation, or (4) the discovery of chemical mimicry 

by the flower (i.e. finding semiochemicals in the flower volatiles which mimic the sex pheromones of 

the female insects, to elicit a sexual response from the males in bioassays). According to this criteria 

the pollination system of the Pterostylis sanguinea could be confirmed as being sexually deceptive, 

as the male pollinators were observed (and recorded in the study) to attempt to copulate with the 

labellum (Phillips et al., 2014).  

The results from my study cannot confirm sexual deception. However, in the absence of behavioural 

observations or chemical volatile confirmation, other lines of evidence (circumstantial evidence) can 

indicate pollination by sexual deception; (1) finding only male pollinators, (2) flowers which lack any 

food reward, (3) only one, or two pollinator species (species-specificity), (4) finding the insects are 

attracted to a covered flower (where visual signals are reduced or eliminated), or artificially 

presented (baited) flower (chemical attractant), (5) the flower having an insect-like shape or shaped 

organ such as the labellum, and /or being dull in colour, inconspicuous flowers, or flowers with a 

large labellum (Phillips et al., 2014). Thus according to the criteria; finding only male pollinators, and 

only one pollinator species for each of the three orchid species, indicates that P. oliveri, P. irsoniana 

and P. venosa may be sexually deceptive orchids. 

We now know that the fecundity (fruit-set success) of the at least four Pterostylis orchids in New 

Zealand, including P. oliveri and P. irsoniana from this study, and P. alobula and P. patens from 

Lehnebach et al. (2005) are dependent on specific insect species, we have a deeper understanding 

that could aid in their future conservation.  Pauw and Bond (2011) and Pauw and Hawkins (2011) 

theorised that specialised orchid pollination systems can make the orchid populations vulnerable, as 

their fecundity depends on their pollinators. For this reason it would be useful to understand 

whether the orchid fruit-set is related to the abundance of the specific pollinators. 

Could the orchid population sizes affect their own fruit-set rate, assuming they are sexually 

deceptive? 

The potential for negative frequency-dependent selection has been shown in non-rewarding 

deceptive orchids (Smithson and Macnair, 1997; Ayasse et al., 2000; Schiestl, 2005; Schiestl and 

Schluter, 2009). In this case the fitness of the orchid (fruit-set rate) will decrease as it becomes more 

common in the plant community, as a result of the pollinators 'wising up' to the false promise of sex 
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and start to avoid the flowers. If this is the case with the Pterostylis spp. of my study, I would expect 

to see the smaller orchid populations have a higher fruit-set rate at the end of each flowering 

season. This could be the case with P .oliveri, which had a lower fruit-set (average 34%) at Greyney's 

Shelter where the orchid population size was large (average or 352 plants); and a high fruit-set 

(average 80%) at Cockayne Walk with a smaller population size (average of 82 plants). However, this 

doesn't explain why P. irsoniana found in small populations (average 29 plants) at Greyney's Shelter 

had such a low fruit-set (average 4.4%), when it had a higher fruit-set (average 69%) at Cockayne 

Walk, where an average of 40 plants were found from 2012-2015. The negative frequency-

dependent selection does not appear to be operating here.   Phillips et al. (2014) investigated the 

fruit-set of 19 populations of Pterostylis sanguinea in two separate years (2008 and 2012), where the 

population sizes ranged from 5 to 127 plants. They didn't find any relationship between the natural 

fruit-set and the population size or densities. There is also no current evidence that Diptera have the 

ability to learn to avoid non-rewarding flowers. The studies where the insects were fooled into being 

pollinators, and subsequently learned to avoid the non-rewarding flowers, were all hymenopterans 

(Smithson and Macnair, 1997; Ayasse et al., 2000; Schiestl, 2005). 

Could the pollinator population numbers be related to the natural pollination rates? 

The simplest explanation for the orchid populations thriving or suffering from pollen limitation could 

simply be related to the number of insects present at each location. Perhaps there are more of the 

pollinator species (M. latifascia and M. fusca) present at Cockayne Walk. Future studies can focus on 

trapping insects for the purpose of surveying the number of each pollinator present per trap, per 

location, along with recording the natural fruit-set of the orchids at each location.  

The current distribution and population ranges of New Zealand Pterostylis orchids may also depend 

on the fungi in the soil in the native forests. It has long been thought that the New Zealand 

Pterostylis species are vagrants from Australia, as seeds are carried by the west winds to the islands, 

populations can only establish where the right soil fungi is present (Hatch, 1946; Johns and Molloy, 

1983; Irwin et al., 2007). Pterostylis orchids are known to have mutual associations with soil fungi 

such as Ceratobasidium species (Irwin et al., 2007). These associations have also been shown to be 

species-specific (Warcup, 1981). Irwin et al. (2007) sampled Pterostylis nutans from across south 

eastern Australia and found that the plants roots were colonised by only two closely related 

Ceratobasidium sp. of fungi. Knowledge of the orchid-mycorrhizae associations are important for the 

conservation of orchid populations, considering the orchid species distribution depends not only on 

whether the soil is colonized by mycorrhizal fungi (Feuerherdt et al., 2005), but also whether the 

right species of fungi may be present.  
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Janes et al. (2010) considered many ecological variables (see Chapter 2 Discussion) as possible 

abiotic factors which could have some effect on the current distribution of the Pterostylis orchids in 

Tasmania. They found that none of the ecological (abiotic) variables could explain the current 

distribution of the orchids, which is interesting as the results from Phillips et al. (2014) and my study 

show that sexual deception is operating in Pterostylis orchids. This means biotic interactions, such as 

the pollinator dependency and root associated fungi, need to be considered as possible predictors of 

Pterostylis orchid population size and distribution ranges.   

 

Conclusions 

The results from this study indicate pollination via sexual deception may be operating in these 

three Pterostylis spp. The breeding system results showed that P. oliveri and P. irsoniana are self-

compatible but depend on insects for pollination. The pollinator trapping experiments showed 

that each orchid species was pollinated by a unique fungus gnat species, all of which were male 

insects. Further floral volatile analyses are required to confirm whether the flowers emit volatile 

compounds which resemble the sex pheromones of the specific pollinators. This is the first 

empirical study to show species specificity of Pterostylis spp. in New Zealand, and serve as 

circumstantial evidence of sexual deception operating as the pollination strategy which has not 

been recorded in New Zealand.  
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