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Abstract 

Developed by O’Beirne and Trounson (Trounson, 2012), the UC Auditory-

Visual Matrix Sentence Test (UCAMST) is an auditory-visual speech test in 

NZ English where sentences are assembled from 50 words arranged into 5 

columns (name, verb, quantity, adjective, object). Generation of sentence 

materials involved cutting and re-assembling 100 naturally spoken “original” 

sentences to create a large repertoire of 100,000 unique “synthesised” 

sentences.  

 

The process of synthesising sentences from video fragments resulted in 

occasional artifactual image jerks (“judders”)—quantified by an unusually 

large change in the “pixel difference value” of consecutive frames—at the 

edited transitions between video fragments. To preserve the naturalness of 

materials, Study 1 aimed to select transitions with the least “noticeable” 

judders. 

 

Normal-hearing participants (n = 18) assigned a 10-point noticeability rating 

score to 100 sentences comprising unedited “no judder” sentences (n = 28), and 

“synthesised” sentences (n = 72) that varied in the severity (i.e. pixel difference 

value), number, and position of judders. The judders were found to be 

significantly noticeable compared to no judder controls, and based on mean 

rating score, 2,494 sentences with “minimal noticeable judder” were included 
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in the auditory-visual UCAMST. Follow-on work should establish equivalent 

lists using these sentences. The average pixel difference value was found to be 

a significant predictor of rating score, therefore may be used as a guide in 

future development of auditory-visual speech tests assembled from video 

fragments.  

 

The aim of Study 2 was to normalise the auditory-alone UCAMST to make 

each audio fragment equally intelligible in noise. In Part I, individuals with 

normal hearing (n = 17) assessed 400 sentences containing each file fragment 

presented at four different SNRs (-18.5, -15, -11.5, and -8 dB) in both constant 

speech-shaped noise (n = 9) and six-talker babble (n = 8). An intelligibility 

function was fitted to word-specific data, and the midpoint (Lmid, intelligibility 

at 50%) of each function was adjusted to equal the mean pre-normalisation 

midpoint across fragments. In Part II, 30 lists of 20 sentences were generated 

with relatively homogeneous frequency of matrix word use. The predicted 

parameters in constant noise (Lmid = -14.0 dB SNR; slope = 13.9%/dB ± 

0.0%/dB) are comparable with published equivalents. The babble noise 

condition was, conversely, less sensitive (Lmid = -14.9 dB SNR; slope = 

10.3%/dB ± 0.1%/dB), possibly due to a smaller sample size (n = 8).  Overall, 

this research constituted an important first step in establishing the UCAMST as 

a reliable measure of speech recognition; follow-on work will validate the 

normalisation procedure carried out in this project. 

 



 

iii 

 

Acknowledgments 

I would like to express sincere appreciation to my supervisor, Associate 

Professor Greg O’Beirne, for his guidance and expertise. I also thank my co-

supervisor Dr Don Sinex for his valued support and input during the writing 

phase. 

I would like to thank the participants for assisting with my research. Without 

you, this would not have been possible. 

Thank you to the staff of the Audiology department at UC for sharing their 

talents. I thoroughly enjoyed my time on this course. 

Thank you to my awesome class mates who made me feel very welcome in 

Christchurch. I have no doubt that you will all make excellent audiologists and I 

hope to work with you in the future. 

Thank you to my mother, Denise, and father, Artie, for their love and support 

over 7 years of tertiary education. I also thank my brother Liam for his input and 

“brotherly wisdom”, and my friends for all the Skype dates and long text 

conversations while I was in Christchurch. 

Last but not least I thank Laura for her unwavering support, patience, and 

warmth throughout my post-graduate career. 

 



 

iv 

 

Table of Contents 

Abstract ................................................................................................................ i 

Acknowledgments ............................................................................................ iii 
Abbreviations .....................................................................................................ix 
Chapter 1  Introduction ..................................................................................... 1 

1.1 Background ........................................................................................ 1 
1.1.1 Hearing impairment in New Zealand (NZ) ................................ 1 
1.1.2 The structure of this project ........................................................ 3 

1.2 The anatomy of hearing ..................................................................... 4 
1.3 The anatomy of hearing loss ............................................................. 7 

1.4 Speech audiometry in NZ .................................................................. 9 

1.5 Speech testing in noise .................................................................... 12 
1.5.1 Psychophysical parameters ....................................................... 12 
1.5.2 Advantages of masking noise ................................................... 14 

1.5.3 Selection of masking noise ....................................................... 16 
1.6 Sentence tests ................................................................................... 18 

1.6.1 The advantages of MSTs........................................................... 20 

1.7 Development of the UCAMST ....................................................... 21 
1.7.1 Background................................................................................ 21 
1.7.2 Recording and editing UCAMST sentences ............................ 23 

1.8 Study 1: Noticeability of video judders .......................................... 27 
1.8.1 Video judders ............................................................................ 27 

1.8.2 Study 1 rationale ........................................................................ 29 
1.9 Normalisation of speech materials .................................................. 31 

1.9.1 The purpose of normalisation ................................................... 31 
1.9.2 The Swedish MST ..................................................................... 33 

1.9.3 The Danish MST ....................................................................... 34 

1.9.4 The Polish MST ........................................................................ 36 
1.9.5 The Spanish MST ...................................................................... 37 

1.9.6 The Dutch MST ......................................................................... 38 
1.9.7 The Finnish MST ...................................................................... 39 
1.9.8 The Italian MST ........................................................................ 40 

1.9.9 Set presentation format ............................................................. 41 
1.10 Study 2: Normalisation of the auditory-alone UCAMST .............. 43 

1.10.1 Rationale for auditory-alone normalisation ............................ 43 
1.10.2 Part I: Normalisation of UCAMST ......................................... 43 
1.10.3 Part II: Generation of test lists ................................................. 46 

1.11 Summary of project rationale .......................................................... 47 

Chapter 2  Study 1: Judder Noticeability Rating Task ............................... 49 
2.1 Method ............................................................................................. 49 

2.1.1 Design ........................................................................................ 49 

2.1.2 Participants ................................................................................ 52 
2.1.3 Equipment set-up ....................................................................... 53 



 

v 

 

2.1.4 Procedure ................................................................................... 54 
2.2 Results .............................................................................................. 57 

2.2.1 Comparison of rating score between conditions ...................... 57 
2.2.2 Relationship between rating score and average pixel difference 

value 62 

2.3 Selection of sentences for auditory-visual UCAMST .................... 65 
The results showed that a smaller proportion of transition 2 (52.1%) 

were acceptable compared with transition 1 (89%) and transition 3 

(87.2%). The number of sentences is, therefore, reduced by smaller 

number of acceptable transition 2 fragment pairs.Error! Bookmark not 

defined. 
Chapter 3  Study 2: Normalisation of auditory-alone UCAMST .............. 69 

5.1 Part I. Normalisation ....................................................................... 69 
5.1.1 Participants ................................................................................ 69 
5.1.2 Generation of masking noise .................................................... 69 
5.1.3 Initial pilot of SNRs .................................................................. 70 

5.1.4 Procedure ................................................................................... 71 
5.1.5 UCAMST scoring ..................................................................... 73 
5.1.6 Normalisation by fragment ....................................................... 75 

5.1.7 Normalisation by word .............................................................. 76 
5.2 Part I. Results ................................................................................... 78 

5.2.1 Constant noise ........................................................................... 78 
5.2.2 Babble noise .............................................................................. 83 

5.3 Test-specific slope ........................................................................... 88 

5.4 Part II. Generation of sentence lists ................................................ 91 
5.5 Comparison of parameters with international MSTs ..................... 97 

5.5.1 Comparison of test-specific slope (s50test) ................................ 97 
5.5.2 Comparison of predicted list values ......................................... 99 

Chapter 4 Discussion .....................................................................................101 
9.1 Study 1: Noticeability of video judders ........................................101 

9.1.1 Overview .................................................................................101 
9.1.2 Synthesised sentences vs. no judder sentences ......................101 
9.1.3 Relationship between pixel difference value and rating score103 

9.2 Sentences for inclusion in the auditory-visual UCAMST ............104 
9.3 Study 1: Limitations and future directions ...................................105 

9.4 Study 2: Normalisation of the auditory-alone UCAMST ............107 
9.4.1 Overview .................................................................................107 
9.4.2 The effect of masking noise on performance .........................108 

9.4.3 Normalisation of the UCAMST ..............................................109 
9.4.4 Comparison of test-specific slopes with international MSTs 111 

9.4.5 Homogeneity of test lists .........................................................112 
9.5 Study 2: Limitations ......................................................................113 

9.5.1 Sample size ..............................................................................113 
9.5.2 Data exclusion .........................................................................113 

9.6 Study 2: Future research ................................................................116 



 

vi 

 

9.6.1 Evaluation of lists ....................................................................116 
9.6.2 Word normalisation vs. fragment normalisation ....................117 
9.6.3 Adjustment limit ......................................................................118 
9.6.4 Piloting with hearing-impaired individuals ............................120 

9.7 Conclusion .....................................................................................120 

References .......................................................................................................123 
Appendix A .....................................................................................................131 
Appendix B ......................................................................................................139 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 

 

 

List of Figures  

Figure 1. Typical sigmoid shape associated with psychometric functions 

measuring proportion of correct responses, or p(c), against SNR (dB).12 
Figure 2. Comparison of intelligibility function with steep (dashed line) and 

shallow (solid line) slopes. .................................................................... 13 
Figure 3. Sentence recording method used to ensure each word had 10 co-

articulation specific realisations. Figure from Wagener et al., 2003. ... 23 

Figure 4 . Sentence 1) shows the file fragments involved used to create the 

sentence, and sentence 2) shows the specific audio content used from 

each fragment. ........................................................................................ 25 

Figure 5. Sentence 1) shows the file fragments involved used to create the 

sentence, and sentence 2) shows the specific audio content used from 

each fragment. ........................................................................................ 26 

Figure 6. A breakdown of the total number of transitions (n = 3000) into “no 

judder” (n = 1476) and “synthesised” (i.e. edited) transitions (n = 1524). 

The original (i.e. natural) transitions (n = 300) met the “no judder” 

criterion (i.e. pixel difference value < 300,000), therefore make up a 

small proportion of the no judder sentences. The intersection of no 

judder and synthesised groups represents the synthesised sentences that 

meet the no judder criterion (n = 1176). ............................................... 28 
Figure 7. Pre-normalisation (left graph) and post-normalisation (right graph) 

word-specific psychometric functions. The arrows indicate the direction 

of the adjustment to the Lmid. ................................................................. 31 

Figure 8. On-screen instructions presented prior to commencing practice phase.

 ................................................................................................................ 55 
Figure 9. Response screen after each sentence presentation, showing a 10-point 

sliding scale from “no noticeable judder” at 0 to “highly noticeable 

judder” at 10. .......................................................................................... 55 

Figure 10. Second set of on-screen instructions presented prior to data collection 

phase. ...................................................................................................... 56 
Figure 11. Histogram depicting the mean rating score for each sub-condition of 

the synthesised sentences. The mean rating score for sentences with no 

judder is represented by the dashed line. Error bars represent the 

standard error of the mean. .................................................................... 58 
Figure 12.  Mean rating score of one judder (J1) and two judder (J2) sentences 

within each tier group (Tier 2, Tier 3, Tier 4). Error bars represent 

standard deviation of each sub-condition. ............................................. 59 
Figure 13.  Mean rating score of sentences based on judder position. One judder 

sentences have a single judder transition (Tr01, Tr02, or Tr03); whereas 

two judder sentences have two judder transitions (Tr12, Tr13, or Tr13). 

Error bars represent the standard deviation of each sub-condition. ..... 60 



 

viii 

 

Figure 14. Scatter plot depicting the relationship between average pixel 

difference value and rating score. The solid line represents the model 

equation. ................................................................................................. 63 
Figure 15.  The 3,000 unique transitions labelled as “Acceptable” or 

“Unacceptable” based on the pixel difference value of each. Dashed 

lines illustrate transition boundaries. The position of each data point on 

the x-axis is random. .............................................................................. 68 
Figure 16. Matrix layout of response panel after each sentence presentation. A 

closed-set format was used with the 50 matrix words visible. Responses 

were entered by touching the desired word from each column. ........... 72 

Figure 17. Scoring procedure for the matrix sentences illustrated with five 

examples. ................................................................................................ 74 

Figure 18. The top sentence displays constituent sentence fragments, whereas 

the bottom sentence shows components used to create the audio of this 

sentence. These audio components were adjusted independently and like 

colours represent an equal magnitude of adjustment. ........................... 77 

Figure 19. Fragments with poor (left graph) and good (right graph) function fits. 

The examples provided are based on raw data performance across four 

SNRs (-8, -11.5, -15, and -18.5 dB). ..................................................... 79 

Figure 20.  The pre-normalisation (Panel A) and predicted post-normalisation 

functions (Panel B) for the constant noise condition by word position.82 

Figure 21. Babble noise pre-normalisation (Panel A) and post-normalisation 

(Panel B) psychometric functions. ........................................................ 87 
 

  



 

ix 

 

Abbreviations 

BM basilar membrane 

CVC consonant-vowel-consonant 

dB decibel 

dB HL decibels hearing level 

dB SPL decibels sound pressure level 

HINT Hearing In Noise Test 

Hz Hertz 

IHC  inner hair cell 

kHz kilohertz 

LTSS long term speech spectrum 

NZ New Zealand 

NZHINT New Zealand Hearing In Noise Test 

OHC outer hair cell 

PI performance-intensity 

RGB red green blue  

SNHL sensorineural hearing loss 

SRT speech reception threshold 

WHO World Health Organisation 



 

1 

 

Chapter 1  

Introduction 

 

1.1 Background 

1.1.1 Hearing impairment in New Zealand (NZ) 

Hearing impairment disrupts oral communication and presents 

numerous difficulties on a daily basis. Conversations are fatiguing, as greater 

effort is required to understand speech, and uncertainty regarding subject 

matter may lead to social withdrawal due to diminished confidence (Arlinger, 

2003). Hearing impairment has been shown to negatively impact quality of life 

(Dalton et al., 2003). More concerning is the effect on mental health: adults 

with hearing impairment are more likely to experience depression—

particularly women and individuals under 70 years of age (Li et al., 2014). Not 

only does hearing impairment affect the individual, but also their loved ones.  

Scarinci, Worrall, and Hickson (2008) found that spouses of affected 

individuals reported feeling exhausted at having to provide numerous 

repetitions. In some cases, the spouses reported fewer attempts at initiating 

conversation.  

However, for a number of reasons, a hearing impairment will often go 

undiagnosed (Dalton et al., 2003). First of all, it is not part of usual practice for 



 

2 

 

primary care professionals (i.e. general practitioners) to perform hearing 

checks. Most often, affected individuals complain of an inability to understand 

speech in  noisy environments (Hochmuth et al., 2012). As a consequence, in 

quiet situations, such as the doctor’s office, hearing impairment tends to go 

unnoticed. In the elderly population, a hearing impairment may be 

acknowledged, but is secondary to other more serious ailments (Newman & 

Sandridge, 2004). In other cases, the individual acknowledges their hearing 

impairment, but does not seek treatment (Dalton et al., 2003). In 2005, 

approximately 10.3% of the NZ population reported a hearing impairment; 

however, only 29% of this group reported the use of hearing aids (Greville, 

2005). The reluctance to seek treatment may be the product of a passive 

attitude towards healthcare; for example, the perception that hearing 

impairment is an inescapable consequence of ageing (Dalton et al., 2003). 

However, affected individuals have also cited financial constraints (64%) and 

the perceived stigma of hearing aid use (48%) as reasons for not adopting 

hearing aids  (Kochkin, 2007).  Despite these barriers, the diagnosis and 

treatment of hearing impairment has pervasive benefit to quality of life and 

relationships. Hearing aids were found to alleviate symptoms of depression 

and improve cognitive functioning in the elderly (Acar, Yurekli, Babademez, 

Karabulut, & Karasen, 2011). Furthermore, the negative impact on the spousal 

relationship was reduced if the affected spouse accepted their hearing 

impairment (Scarinci et al., 2008). These outcomes illustrate the value of 



 

3 

 

diagnosing and treating hearing loss. A reliable measure of speech recognition 

is crucial to this process.  

 

1.1.2 The structure of this project 

The University of Canterbury Auditory-visual Matrix Sentence Test 

(UCAMST) was developed by Trounson and O’Beirne (Trounson, 2012) to 

provide an assessment of speech recognition with an extensive repertoire of 

test sentences. The UCAMST allows a number of test conditions through 

choice of masking noise (i.e. six-talker babble, constant speech-shaped noise, 

and quiet), set presentation (open vs. closed) and presentation modality (i.e. 

auditory-alone, visual-alone, or auditory-visual) for different diagnostic and 

rehabilitative needs. The aim of the current project was to further the 

development of the UCAMST with two necessary studies. Study 1 

investigated how noticeable video “judders”—artifactual image jerks at the 

edited transitions between video file fragments—were with the use of a 

subjective rating scale. The relationship between this rating score and the 

“pixel difference value”—an objective measure describing the change in head 

position across each transition—was also probed.  Combined, this data 

informed selection of sentences with the least noticeable judders for inclusion 

in the auditory-visual version of the UCAMST. Study 2 normalised (i.e. 

equalised the difficulty of) matrix words in the auditory-alone condition, from 
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which lists of equivalent sentences were selected. Study 2 was carried out in 

two types of masking noise, constant speech-shaped noise and six-talker 

babble, and was an important step towards establishing the UCAMST as a 

reliable audiological test.   

 

1.2 The anatomy of hearing 

Before discussing the importance of speech recognition testing, we will 

first examine the auditory anatomy and physiology fundamental to 

understanding speech. Numerous key anatomical features of the peripheral 

auditory system are involved in the perception of sound. The ear is divisible 

into three anatomical segments: outer, middle, and inner. The outer ear 

comprises the pinna (the visible ear); the external auditory meatus, or ear 

canal; and the outer layer of the tympanic membrane, or eardrum. The middle 

ear consists of the tympanic cavity and ossicles, as well as the inner layer of 

the tympanic membrane. “Ossicles” is a collective term for the three bones 

individually referred to as the malleus, incus, and stapes (Donkelaar & Kaga, 

2011) . The inner ear consists of the vestibular system and the cochlea or organ 

of hearing, which are responsible for balance and hearing, respectively (Ko, 

2010). Within the cochlea is the organ of Corti, which sits on the basilar 

membrane (BM) and possesses sensory hair cells crucial to the perception of 
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sound (Donkelaar & Kaga, 2011; Pickles, 2012). Cochlear hair cells and their 

function will be discussed in further detail later in this section.  

Each anatomical segment of the ear has an important role in audition. 

Sound, a pressure wave propagating through the air, will first encounter the 

listener’s pinna (Pickles, 2012). The two main functions of the pinna are 1) to 

maximise sound pressure at the tympanic membrane using the resonant 

properties of the pinna, in particular the concha bowl, and 2) to provide cues 

for localising sound sources (Pickles, 2012). The sound wave is channelled 

down the ear canal by the pinna, which causes vibration of the tympanic 

membrane and ossicles (Patuzzi, 2009; Pickles, 2012). The head of the malleus 

connects to the tympanic membrane (Donkelaar & Kaga, 2011), whereas the 

stapes connects to the oval window of the cochlea (Pickles, 2012). The main 

function of the middle ear is to match the impedances of the air medium of the 

ear canal to the fluid medium inside the cochlea (Puria, Fay, & Popper, 

2013).To achieve this, ossicular vibration—in particular, the “piston-like” 

action of the stapes—generates pressure waves in the cochlear fluids that 

travel from the stapes in an apical (i.e. towards the cochlear apex) direction 

(Gates & Mills, 2005; Patuzzi, 2009). If the input is a sinusoidal pure tone, a 

displacement wave forms on the BM that reaches maximum amplitude at the 

location of peak resonance before subsiding sharply (Patuzzi, 2009). The 

arrangement of the BM is tonotopic: low and high frequency inputs peak at the 
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apex and base of the cochlea, respectively. The location of peak resonance is 

referred to as the characteristic frequency (Patuzzi, 2009; Pickles, 2012). 

What has been described thus far is the passive mechanism by which 

an incoming sound wave vibrates the BM; however, this passive mechanism is 

not sufficient for the perception of low-level sounds, particularly at high 

frequencies (Patuzzi, 2009). From this point onwards, the transduction of 

sound is dependent on two classes of hair cell located in the organ of Corti: 

outer hair cells (OHCs) and inner hair cells (IHCs) (Pickles, 2012). A healthy 

cochlea houses approximately 11,000 OHCs organised in rows of three or 

four, and 3,500 IHCs organised in single rows (Ashmore, 2008). The 

stereocilia of the OHCs are entrenched in the tectorial membrane—a large, 

“jelly-like” roof over the organ of Corti—whereas the IHCs are believed not to 

make contact with this membrane (Pickles, 2012). The role of the OHCs is to 

amplify the vibrations of the BM, reducing friction. This is achieved with an 

active process involving cyclical contraction of the motor protein “prestin”, 

which is found in the baso-lateral wall of the OHCs (Donkelaar & Kaga, 2011; 

Patuzzi, 2009; Pickles, 2012). The IHCs sense the vibrations of the OHCs and 

release neurotransmitters to stimulate afferent nerves, which send signals to 

the brain for higher level processing (Gates & Mills, 2005; Patuzzi, 2009). If 

auditory function is preserved, the result is the perception of sound. 
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1.3 The anatomy of hearing loss 

Abnormalities in the peripheral auditory system may cause hearing 

loss, the degree and origin of which can be ascertained by audiological testing. 

Adult hearing thresholds are typically determined with pure tone audiometry. 

This test involves presenting pure tones to a client who is instructed to respond 

(e.g., with a button press) when they hear a tone (Katz, 2009).  The frequencies 

presented encompass those most important for understanding speech, usually 

250 to 8000 Hz. An audiogram provides a graphical representation of a 

client’s hearing sensitivity, with the threshold in dB HL (decibels hearing 

level) depicted as a function of frequency in kilohertz (kHz) or hertz (Hz). 

Normal hearing is defined by the World Health Organisation (WHO) as a 

threshold of 25 dB HL or less. Conversely, hearing impairment is denoted by a 

threshold of 26 dB HL or greater, and is graded by severity from mild to 

profound (Mathers, Smith, & Concha, 2000). 

Based on the origin of the hearing loss, it is termed either “conductive” 

or “sensorineural”. A third term, “mixed”, is used if a hearing loss is 

comprises both conductive and sensorineural components (Patuzzi, 2009). A 

conductive hearing loss typically results from an irregularity in the outer or 

middle portions of the ear that disrupts the transmission of sound to the 

cochlea (Pickles, 2012). By comparison, sensorineural hearing loss (SNHL) 

originates from damage to the cochlea or the auditory nerve (Pickles, 2012). 
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This is the most common type of hearing loss in adults and is typically 

permanent (Newman & Sandridge, 2004). A common type of SNHL, known 

as “presbycusis”, is age-related, and may first be first noticed at approximately 

65 to 75 years of age. Characteristically, presbycusis first manifests as a high-

frequency hearing loss—the result of hair cell loss at the basal end of the 

cochlea (Donkelaar & Kaga, 2011). With time, the hearing loss spreads to 

encompass the lower frequencies (Gates & Mills, 2005), causing the 

audiogram to flatten. 

SNHL can be further subcategorised by origin. For example, the 

presbycusis described above would be termed a “cochlear” SNHL. A SNHL 

may also be defined as “retrocochlear” (i.e. beyond the cochlea) in origin 

(Patuzzi, 2009). A cochlear hearing loss arises from disruption to “motor” or 

“sensory” processes. The former relates to OHC function and the active 

process, and the latter relates to IHC function (Patuzzi, 2009). The effect of a 

motor hearing loss is twofold: a decrease in hearing sensitivity and a decrease 

in frequency specificity. The loss of hearing sensitivity is limited to 

approximately 60 dB HL as the active process only contributes to BM 

stimulation with low- to mid- intensity sounds. For high-intensity sounds, the 

cochlea is passive: the spatial selectivity of the BM is less sharp, and hence, a 

large area of the BM may be stimulated by a pure tone (Patuzzi, 2009; Pickles, 

2012). Consequently, damage to the OHCs and lack of active process means 
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the cochlea is reliant on passive stimulation. The result is the irreversible loss 

of sharp tuning, and therefore, a loss of frequency specificity (Patuzzi, 2009).  

The loss of frequency specificity can be defined through Plomp’s 

framework of hearing loss as having both “attenuation” and “distortion” 

components (Plomp, 1978). Attenuation corresponds to an increase in 

thresholds (i.e. decreased hearing sensitivity), while distortion corresponds to 

an impairment in the ability to understand speech (i.e. loss of the clarity of 

speech). The frequency specificity provided by the OHCs is essential for the 

intelligibility of speech (Patuzzi, 2009). The loss of this function has profound 

implications for rehabilitation, such as whether a client will benefit from 

amplification. Speech audiometry is, therefore, a unique and crucial part of the 

audiological test battery as it assesses the  “distortion” component of hearing 

loss (Plomp, 1978).  

 

1.4 Speech audiometry in NZ 

In NZ clinics, speech audiometry is typically carried out using the 

Consonant-Vowel-Consonant (CVC) meaningful word lists. Each list consists 

of 10 monosyllabic (single syllable) words comprising the same 10 first 

consonants, 10 vowels, and 10 final consonants (Boothroyd & Nittrouer, 

1988). Three different lists are presented auditory-alone in quiet (i.e. with no 

accompanying masking noise), each at a different presentation level (dB HL). 
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The test adopts phoneme scoring, which is based on the correct repetition of 

vowels and consonants as opposed to whole words (Boothroyd, 2008). The 

percentage correct (%) scored at each presentation level is plotted as a 

Performance-Intensity (PI) function (Katz, 2009). The listener’s Speech 

Reception Threshold (SRT) can be derived from this function: the presentation 

level at which the listener scores 50% correct (Boothroyd, 2008). Additionally, 

one may obtain the PBmax, which denotes the best possible score that a client 

can achieve (Katz, 2009). 

The PI function, SRT, and PBmax have a number of uses in diagnostic 

audiology. The PI function is usually compared to a normative curve to gauge 

the client’s level of performance relative to individuals with normal hearing. 

Furthermore, the SRT provides a value by which the pure tone thresholds can 

be cross-checked (Boothroyd, 2008; Mendel, 2008). Nonetheless, an 

experienced clinician can often predict speech recognition performance based 

on the severity of hearing loss on the audiogram (Gulya, Glasscock, Minor, & 

Poe, 2010).  If the speech results and pure tone thresholds are inconsistent, a 

non-organic hearing loss (i.e. false hearing loss) may be indicated. However, 

poor speech performance, beyond what would be predicted given the 

audiogram, may be a “red flag” for a vestibular schwannoma (Gulya et al., 

2010) or auditory neuropathy (Starr, Picton, Sininger, Hood, & Berlin, 1996). 

The morphology of the PI function may be consistent with the origin of the 

hearing loss. A PI function with the typical shape but shifted to an area of 
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increased presentation level is consistent with a conductive hearing loss, as 

increasing stimulus loudness overcomes the conductive component. A client 

with a high-frequency hearing loss may notice reduction in the clarity of 

consonants, which can result in word recognition errors (Garstecki & Erler, 

2009). In this case, speech audiometry may exhibit a pattern of consonant 

confusion or omission. On the other hand, a client with a cochlear impairment 

may not be able to perceive speech sounds—regardless of intensity—due to 

poor frequency discrimination (Walsh, 1953). This would manifest as a 

maximum score of less than 100% correct (i.e. a low PBmax) at high intensity 

levels. Based on such outcomes, speech audiometry is pivotal to rehabilitation, 

and can be used to guide hearing aid fitting.  Continuing the example above, if 

poor frequency discrimination in spite of presentation level is noted, 

amplification may not improve the client’s speech intelligibility, and may 

instead be detrimental to comfort. 

Overall, the current practice of speech audiometry in NZ is a valuable 

component of the audiological test battery in terms of diagnosing hearing 

impairment and informing client rehabilitation. Despite the pervasive use of 

CVC word lists in NZ, this test is disadvantaged by 1) the lack of masking 

noise, 2) the use of monosyllabic words, and 3) the limited amount of 

materials available for testing. Each of these disadvantages will be discussed 

over the following sections.  
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1.5 Speech testing in noise 

1.5.1 Psychophysical parameters 

Similar to speech tests in quiet, performance is typically indicated by 

the listener’s SRT: the presentation level that results in a performance of 50% 

intelligibility (Brand & Kollmeier, 2002). In noise, however, the SRT is 

derived from a psychometric function that represents performance—the 

proportion of correct responses, or intelligibility (%)—as a function of the 

signal-to-noise ratio (SNR). Psychometric functions of this nature are typically 

sigmoid (‘s’-shaped), as the probability of a correct response monotonically 

increases with the intensity of the stimulus (Gilchrist, Jerwood, & Ismaiel, 

2005). Figure 1 exemplifies the typical morphology of a psychometric 

function.   

 

 

Figure 1. Typical sigmoid shape associated with psychometric functions measuring 

proportion of correct responses, or p(c), against SNR (dB). 
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Regarding speech-in-noise testing, the accuracy of the SRT is denoted 

by the slope of the psychometric function at the point of the SRT (Ozimek, 

Warzybok, & Kutzner, 2010). The slope determines the “sensitivity” of the 

test: it represents the percentage increase in intelligibility for every 1 dB 

increase in the SNR (%/dB). A highly sensitive test will see a small change in 

stimulus value (i.e. dB SNR) yield a large change in the measured value (i.e. 

% correct response) (Brand & Kollmeier, 2002). Figure 2 compares the 

morphology of psychometric functions with steep and shallow slopes.  

 

 

Figure 2. Comparison of intelligibility function with steep (dashed line) and shallow (solid 

line) slopes. 
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the slope of the psychometric function is related to the reliability and 

efficiency of SRT measurement. We will return to the concept of reliability 

later in relation to the normalisation process carried out in Study 2.  

 

1.5.2 Advantages of masking noise 

Speech-in-noise tests are increasingly necessitated by evidence-based 

audiological practice for a number of reasons. The presentation of stimuli in 

quiet, as is typically practised in NZ, does not assess a client’s ability to 

understand speech in everyday situations where speech signals are usually 

masked by background noises (i.e. air-conditioning, traffic, and other talkers). 

A further advantage, the use of masking noise also improves the sensitivity of 

a speech test. In an experimental study, McArdle, Wilson, and Burks (2005) 

evinced that presenting speech at various SNRs in multi-talker babble 

produced a steeper psychometric function slope than when speech materials 

were presented in quiet. Compared to in quiet, the use of masking noise better 

distinguished the hearing-impaired group from the normal-hearing group, with 

a separation in the group SRTs of approximately 8 dB. The result is perhaps 

unsurprising, as difficulty understanding speech in noisy environments is a 

frequent complaint of individuals with hearing impairment (Hochmuth et al., 

2012). This difficulty may be the consequence of poor frequency 

discrimination which, as discussed previously, is commonly associated with a 
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cochlear hearing loss (Patuzzi, 2009). Frequency information (e.g., formant 

frequency) is crucial in distinguishing the requisite signal in situations with 

multiple talkers (Darwin & Hukin, 2000). Compounded with a lower hearing 

sensitivity, noisy environments present a challenge for individuals with 

hearing impairment.  

In a similar vein, speech-in-noise tests can also identify pathologies 

associated with impaired temporal processing. Poor speech discrimination in 

quiet—despite a normal pure tone audiogram—may support the diagnosis of 

auditory neuropathy (Starr et al., 1996). However, performance will typically 

deteriorate further in noise (Zeng & Liu, 2006). Similarly, older adults who 

perform well in quiet, but poorly in noise, may have what is referred to as 

“central presbycusis” (Gates & Mills, 2005). The specific temporal deficit is 

theorised to be an inability to utilise drops in background noise to enhance 

speech recognition (Lorenzi, Gilbert, Carn, Garnier, & Moore, 2006). This is 

relevant when selecting the type of masking noise (to be discussed in section 

1.5.3). In summary, masking noise would alert the clinician to deficits in both 

frequency specificity and temporal processing.  

Speech-in-noise tests are also useful for rehabilitation, such as when 

assessing amplification benefit. With development of digital hearing aids came 

new features designed to improve speech recognition in noise; for example, 

noise cancellation algorithms (Katz, 2009). For this reason, speech-in-noise 

tests are useful in counselling clients, as they may indicate which technology 
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provides the largest benefit to intelligibility in noisy environments (Wilson, 

McArdle, & Smith, 2007). If a speech-in-noise test is sound field capable, it 

may have utility in determining whether hearing aid technology is beneficial to 

the client.  

 

1.5.3 Selection of masking noise 

The selection of a masking noise has been a contentious issue in the 

literature. One viewpoint posits that everyday masking noise is typically 

speech; therefore, a masking noise that simulates this (i.e. multi-talker babble) 

has higher face validity (Killion, Niquette, Gudmundsen, Revit, & Banerjee, 

2004; Plomp, 1978). However, a disadvantage of babble is that it causes 

fluctuations in SNR (Killion et al., 2004), which may affect the accuracy of the 

SRT measurement. An alternative to babble is a masking noise that has the 

same spectral content as the target signal (i.e. a “speech-shaped” noise). 

Wagener and Brand (2005) found that a speech-shaped noise resulted in a 

higher sensitivity speech test than fluctuating multi-talker babble noise. A 

similar result was found elsewhere with a Dutch speech-in-noise test  

(Francart, 2011). Specifically, the stationary noises were found to produce 

steeper intelligibility functions than fluctuating babble noise. The babble noise, 

however, better discerned between levels of hearing impairment (by SRT) than 

the stationary noise maskers (Francart, 2011)—a result that may be due to 
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differences in temporal processing. As babble noise fluctuates, listeners are 

able to take advantage of amplitude variations in the envelope (i.e. gradual 

changes in amplitude) to detect the signal (Moore, 2008; Wagener & Brand, 

2005). The relative SNR is much more favourable (i.e. higher) in these 

temporal dips, allowing the listener a brief “glance” at the signal—a 

phenomenon known as “masking release” (Hopkins & Moore, 2009). By the 

same process, individuals with normal hearing also perform better in 

modulated (i.e. fluctuating) noise compared to steady noise (Peters, Moore, & 

Baer, 1998). 

 Taken as a whole, the aforementioned studies illustrate the importance 

of selecting masking noise to complement the goals of the speech test. Speech-

shaped noise may be preferable in a research context, where high sensitivity 

test is desirable to discern between two variables. High sensitivity is also 

beneficial when measurements are repeated over time, as differences in 

performance can be attributed to the variable being manipulated. Conversely, 

the use of multi-talker babble may be suited to clinical testing where 

simulation of an everyday noisy situation is desired, or as a means of 

distinguishing between levels of hearing loss  (Francart, 2011). 
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1.6 Sentence tests 

Another important consideration in speech audiometry is whether 

monosyllabic or sentence stimuli should be used. This decision should be 

based on the purpose of the test and the cognitive capabilities of the listener. 

Monosyllabic word stimuli are suited to situations where contextual 

information may overtly influence the listener’s response. They are also 

advantageous in that the listener does not have to repeat or recall an entire 

sentence, and therefore, memory does not constrain auditory performance 

(Wilson et al., 2007). Thus, short stimuli should be used when testing 

populations with impaired memory function. However, a number of arguments 

exist in favour of the use of sentence stimuli over monosyllabic words. Firstly, 

as everyday speech often consists of sentences, they have higher face validity 

as stimuli in speech testing. Secondly, the use of sentence stimuli would test 

the listener's ability to perceive multiple speech sounds in a single trial, 

enhancing the time-efficiency of the test (Hochmuth et al., 2012). In spite of 

these advantages, and the ready availability of sentence tests, they are rarely 

used in NZ clinics.  

There are a number of sentence tests available for use, and these can be 

divided into two distinct groups. The first group, referred to as “Plomp-type” 

sentences, are based on everyday conversation. The sentence lists are 

phonemically balanced; however, there is no consistent grammatical structure 
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across sentences (Plomp & Mimpen, 1979).  An example of a test that uses 

Plomp-type sentences is the Hearing in Noise Test (HINT). Developed by 

Nilsson, Soli, and Sullivan (1994), the HINT consists of 25 phonemically 

balanced lists of 10 sentences spoken by a male speaker in the presence of 

spectrally matched masking noise. Since its development, the HINT has 

gained international popularity, and is available in a number of different 

languages, such as Cantonese (Wong & Soli, 2005), NZ English (Hope, 2010), 

and Swedish (Hällgren, Larsby, & Arlinger, 2006). 

The format of the second group, known as Matrix Sentence Tests 

(MSTs), was originally pioneered by Hagerman (1982) in Swedish. 

Hagerman’s goal was to create a standardised speech-in-noise test with ample 

speech material. The matrix consisted of 10 identically structured five word 

sentences (name, verb, number, adjective, object). For example (translated into 

English): 

 

“Karin gave two old buttons.” 

 

The original Swedish version contained 13 phonetically balanced sentence 

lists dictated by a female speaker. The co-articulation between words was 

avoided in the recording process so that the words could be cut individually 

and synthesised to generate semantically dissimilar, but syntactically identical, 

sentences. Word files with an unnatural sound, such as long silences before or 
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after the words, were re-edited. The result was an essentially unlimited 

repertoire of speech material, which consisted of 10
5
 or 100,000 possible 

unique sentences. 

1.6.1 The advantages of MSTs 

The MST format has numerous advantages over existing speech tests. 

It is low redundancy and semantically unpredictable; thus, it prevents 

contextual information from influencing a listener’s response (Hochmuth et 

al., 2012). In addition,  the uniform grammatical structure of matrix sentences 

permits the generation of an essentially unlimited repertoire of test sentences 

(Hagerman, 1982; Hochmuth et al., 2012). This is an advantage over the CVC 

meaningful word lists, which only has 10 lists of 10 words available for 

clinical use, and may be easily memorised in the case of repeat testing 

(Boothroyd & Nittrouer, 1988). Due to these advantages, MSTs have been 

developed for a number of languages, including Danish, Polish, Spanish, 

Dutch, Finnish and Italian (Acar et al., 2011; Dietz, 2014; Hochmuth et al., 

2012; Houben et al., 2014; Ozimek et al., 2010; Puglisi et al., 2014; Wagener, 

Josvassen, & Ardenkjær, 2003). The uniform format of the MST allows for 

comparability across languages, with experimental evidence showing similar 

reference intelligibility functions across the Danish, Dutch, French, and Polish 

languages. This effectively allows listener performance to be compared 

internationally (Zokoll et al., 2013). However, listener performance is 
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dependent on the specific dialect used, as this performance may be confounded 

by the speaker's pronunciation (Hochmuth et al., 2012). For that reason, the 

British English version would not be valid within a NZ context, which 

necessitated the development of a MST in NZ English.  

 

1.7 Development of the UCAMST 

1.7.1 Background 

The UCAMST was developed by Trounson and O' Beirne (Trounson, 

2012) as a speech test specifically for use in NZ clinics. The sentences were 

read by an actress with a verified NZ English accent, and the materials were 

selected and adjusted to ensure the distribution of phonemes matched those 

used in the NZ Hearing In Noise Test (NZHINT) (Hope, 2010). Table 1 shows 

the UCAMST word matrix. 
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Table 1 

 

The UCAMST word matrix.  

Name Verb Number Adjective Object 

Amy bought two big bikes 

David gives three cheap books 

Hannah got four dark coats 

Oscar has six good hats 

Kathy kept eight green mugs 

Peter likes nine large ships 

Rachel sees ten new shirts 

Sophie sold twelve old shoes 

Thomas wants some red spoons 

William wins those small toys 

 

The UCAMST, unlike any known MST, included a visual component. The 

rationale for this was that visual feedback increases the perceived naturalness 

of speech (Mattheyses, Latacz, & Verhelst, 2009), and enhances speech 

intelligibility—particularly in situations with an unfavourable (i.e. low) SNR 

(Sumby & Pollack, 1954). The ability to switch between auditory-alone, 

auditory-visual, and visual-alone presentation modes would permit 

customisation of the speech test to complement clinical or research goals. For 

example, a visual-alone condition could be used to test lip-reading ability. 

However, the process of including a visual component presented some 

challenge in the development of the UCAMST, as outlined in the following 

section. 
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1.7.2 Recording and editing UCAMST sentences  

The UCAMST sentences followed the typical matrix sentence format: 

a five word sentence consisting of a name, verb, number, adjective, object. For 

example:  

“Amy bought two big bikes.” 

 

The method used to record UCAMST sentences was based on that of Wagener 

et al. (2003), who developed the Danish MST. In that study, one-hundred five 

word sentences (henceforth termed “original” sentences) were recorded in a 

manner that all words from one column were spoken in conjunction with all 

words from the following column. Figure 3 illustrates this method in the 

Danish version (English translation). 

 

 

Figure 3. Sentence recording method used to ensure each word had 10 co-articulation 

specific realisations. Figure from Wagener et al., 2003. 
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This method ensured that each word had 10 co-articulation-specific 

occurrences—in other words, each word had 10 different realisations. In the 

editing phase, the files were cut in a manner that best preserved the natural 

prosody of the sentences by accounting for the co-articulations of word. This 

resulted in smooth and natural transitions between words in the sentence, as 

opposed to the original Swedish version, where isolated words were 

synthesised with no co-articulation (Hagerman, 1982). The word fragments 

were then able to be re-combined and synthesised to generate 100,000 unique 

sentences.  

The method described above has since been widely adopted as 

standard in international MSTs (Dietz, 2014; Hochmuth et al., 2012; Houben 

et al., 2014; Ozimek et al., 2010; Wagener et al., 2003). The process of 

synthesising sentences, at times, resulted in unnatural sounding audio artefacts. 

In such instances, the affected sentences were excluded from the final sentence 

lists (Hochmuth et al., 2012; Houben et al., 2014). The UCAMST had the 

unique challenge of ensuring both audio and video components were 

perceived as natural at the edited transitions between words. A mismatch in 

the position of the actress’s head across image transitions in the video 

component would result in a perceivable image jerk artefact referred to as a 

“judder”.  

Numerous precautions were taken to minimise judder in the 

development of the UCAMST. Using the recording method described above, 
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the actress read the 100 original sentences in full. A microphone and a camera 

with an autocue system were used to capture both the audio and video 

components (mp4 format). Back and neck supports stabilised the actress’s 

head position, and post-recording algorithms were applied to improve video 

stability (Trounson, 2012). The original sentences, recorded in 720p resolution 

at 50 frames/second, were then cut and edited to generate 400 file fragments 

containing unique word pairs. A series of complex cutting rules were used to 

preserve the uniformity of facial expression across the edited transitions 

between file fragments. Figure 4 depicts how file fragments containing word 

pairs were edited together to create a complete sentence.  

 

Figure 4 . Sentence 1) shows the file fragments involved used to create the sentence, and 

sentence 2) shows the specific audio content used from each fragment.  

 

As shown, a sentence contains three “transitions”, each of which marks the 

point of interchange between two consecutive file fragments, which is where 

judder may occur. In Figure 4, the file fragments were cut at the beginning of 

the word; however, in a number of cases, this was not an ideal in terms of the 

smoothness of the transition between images (Trounson, 2012). In such cases, 
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file fragments were cut to provide an optimal transition which, at times, 

resulted in only parts of a word being used, as exemplified in Figure 5. 

 

 

Figure 5. Sentence 1) shows the file fragments involved used to create the sentence, and 

sentence 2) shows the specific audio content used from each fragment. 

  

A total of 3,000 unique transitions were generated; 300 were natural 

transitions spoken in full during the recording phase (e.g., “Amy gives two”), 

whereas 2,700 were edited transitions—word combinations not actually 

spoken by the actress during the recording phase.  For example,  “Amy gives 

six”, which was formed by synthesising the ‘Amy_gives’ fragment from the 

original sentence “Amy gives two cheap bikes”, and the ‘gives_six’ fragment 

from the original sentence “Kathy gives six cheap hats”. Sentences formed 

using at least one edited transition are henceforth referred to as “synthesised” 

sentences to distinguish them from the 100 original sentences.  
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1.8 Study 1: Noticeability of video judders 

1.8.1 Video judders 

Although the audio component of the UCAMST was noted to have a 

natural sound, unfortunately a large proportion of the edited transitions had an 

evident judder. Judder was largely attributed to changes in the actress’s head 

position, which affected the positioning of facial features (i.e. eyes, mouth, and 

nose) across the edited transitions (Trounson, 2012). As a means of 

quantifying the severity of the judders, the absolute difference between red, 

green, and blue (RGB) colour channels was calculated across the transitions—

henceforth known as the “pixel difference value” (Trounson, 2012). The 

mouth area was excluded from this calculation to focus on changes in head 

position across transitions. The pixel difference value was calculated as the 

difference between the RGB colour channels of the last image frame prior to 

the transition and the first image frame post-transition. For example, for 

transition 1 in Figure 4, it would be calculated as the difference between the 

last frame of ‘David______’, and the first frame of ‘bought_____’.   The pixel 

difference value was an objective measure of “judder severity”: the larger the 

pixel difference value, the larger the difference between subsequent images, 

and the more severe the resultant judder. As the resized video contained 640 

horizontal pixels by 480 vertical pixels by 256 colours/channel, the largest 

possible pixel difference value was 78,643,200 (which would occur changing 
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from a completely black screen to a completely white one). The 100 original 

sentences had values in the range of 178,761 to 249,157 (M = 217708 

±13923), and therefore, this describes the range of values for the natural 

image transitions (n = 300). For the purposes of this project, transitions with 

values of less than 300,000 were termed “no judder”, while a “judder” was 

used to describe a transition with a value over 300,000.  It is important to note 

that of the total number of edited transitions (n = 2700), a large proportion met 

the “no judder” criterion (44%). However, in contrast, over half (56%) of the 

edited transitions had pixel difference values of over 300,000 (i.e. were termed 

“judders”). Figure 6 shows the relevant proportion of transitions belonging to 

each of the described conditions.  

 

Figure 6. A breakdown of the total number of transitions (n = 3000) into “no judder” (n = 

1476) and “synthesised” (i.e. edited) transitions (n = 1524). The original (i.e. natural) 

transitions (n = 300) met the “no judder” criterion (i.e. pixel difference value < 300,000), 

therefore make up a small proportion of the no judder sentences. The intersection of no 

judder and synthesised groups represents the synthesised sentences that meet the no judder 

criterion (n = 1176). 
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We were interested in determining the utility of the transitions in the judder 

group (i.e. pixel difference value > 300,000) in the auditory-visual UCAMST, 

as these transitions comprised over half (51%) of the available materials from 

which sentences could be generated. 

 

1.8.2 Study 1 rationale 

Although pixel difference value provided an objective index of judder 

severity, it was uncertain whether this would reflect how noticeable human 

observers would perceive the judders to be.  Therefore, a subjective measure 

of how noticeable the judders were was necessitated to inform sentence 

selection for the auditory-visual UCAMST.  This comprised the main goal of 

Study 1 of this project. Listeners with normal hearing were asked to assign a 

rating score based on how noticeable they found judders (from 0, “no 

noticeable judder”, to 10, “highly noticeable judder”) in both synthesised 

sentences and sentences with no judder, the latter of which acted as controls. 

Three variables were proposed to influence the “noticeability” of judders: 1) 

“judder severity” (i.e. the pixel difference value), 2) the number of juddered 

transitions within the sentence (“judder number”), and 3) the position of these 

judders within the sentence (“judder position”). The aims of Study 1 were 

twofold and are outlined below. 
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1) Aim 1: To determine whether synthesised sentences were acceptable for 

inclusion in the auditory-visual UCAMST based on a comparison of judder 

noticeability rating scores with no judder control sentences. 

The synthesised sentences were broken down into 18 sub-conditions based on 

judder severity, judder number, and judder position (sentence stimuli are 

further detailed in Chapter 2). Each of the 18 sub-conditions was then 

compared with the no judder sentences in a series of 18 paired t-test analyses. 

We predicted that synthesised sentences would have significantly higher mean 

rating scores than the no judder sentences, due to the higher pixel difference 

value at one or more transition within these sentences. Based on rating score, 

sub-conditions of synthesised sentences with an acceptable level of noticeable 

judder were eligible for inclusion in the auditory-visual UCAMST. 

 

2) Aim 2: To determine the validity of pixel difference value as a measure of 

noticeable judder.  

The relationship between pixel difference value and rating score was 

determined by a linear regression analysis. The pixel difference value was 

hypothesised to be a significant predictor of rating score.  

 

The method and results of Study 1 are contained within Chapter 2 of this 

thesis. 
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1.9 Normalisation of speech materials 

1.9.1 The purpose of normalisation 

The second goal of this project was to normalise the auditory-alone 

condition of the UCAMST, which was part of the process referred to as 

“optimisation” by various established MSTs  (i.e., Hochmuth et al., 2012; 

Ozimek et al., 2010). In general, normalisation involves equalising the 

difficulty (% correct) of test materials (Wagener et al., 2003). This is typically 

achieved by manipulating word presentation level (dB) so that the 

psychometric function midpoint (Lmid, or intelligibility at 50%) equals the 

mean pre-normalisation midpoint across words (i.e., Ozimek et al., 2010). 

Figure 7 provides an example of pre- and post-normalisation psychometric 

functions. 

 

Figure 7. Pre-normalisation (left graph) and post-normalisation (right graph) word-specific 

psychometric functions. The arrows indicate the direction of the adjustment to the Lmid. 
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Normalisation has the effect of decreasing the standard deviation—that is, the 

distribution—of the word-specific Lmid measures (σLmid), thus increasing the 

homogeneity of the data. The homogeneity of the data can be determined by 

the slope of the psychometric function, which has an inverse relationship with 

standard deviation. In short, a steep slope is indicative of a small standard 

deviation—that is, a small distribution of word-specific intelligibilities—and 

hence a homogeneous data set (Brand & Kollmeier, 2002). 

Statistically, the efficacy of the normalisation process can be evaluated 

by calculation of the test-specific slope using a probabilistic model described 

by Kollmeier (1990), and included as equation 3 in Chapter 3 of this thesis. 

According to Kollmeier’s model, the test-specific intelligibility function 

equates to the convolution of the mean word-specific slope and standard 

deviation of Lmid measures. The slope of the test-specific function (s50test) can 

be determined using measured pre-normalisation data, and based on the 

required adjustments, predicted post-normalisation data and measured post-

normalisation data. The increase to the test-specific slope reflects the efficacy 

of the normalisation process; specifically, the adjustments made to the pre-

normalisation Lmid measure for each word.  

Once the data is normalised, so-called “equivalent lists” can be 

generated for clinical use (Tye-Murray, 2014). The use of homogeneous lists 

ensures that differences in performance between test lists are attributed to the 
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test variable—rather than inherent differences in difficulty between speech 

materials—as variations in the intelligibility of different lists are smaller than 

the effect to be assessed (Wagener et al., 2003). In other words, the test has 

high “test re-test” reliability. Normalisation has a crucial role in the 

development of a speech test, increasing its sensitivity—and hence, 

reliability—as a measure of SRT (Brand & Kollmeier, 2002). To emphasise 

the key methodological differences between the UCAMST and published 

MSTs, the normalisation method used by published MSTs will be discussed 

over the following sections.  

1.9.2 The Swedish MST 

In the Swedish version (Hagerman, 1982), an equal difficulty (% 

correct)  of test lists was achieved by manipulating the presentation level of 

matrix words, which increased the slope of the list-specific psychometric 

functions. Six subjects initially assessed the sentences. The presentation level 

of the matrix words (dB), and hence the overall SNR, was subsequently 

manipulated based on the shallowness of the initial intelligibility function 

slope (11.0%/dB). The level correction was limited to ± 4 dB to maintain a 

natural intonation; however, the maximum correction required was ± 1.3 dB. 

The adjustments were evaluated by 20 listeners with normal hearing in 

spectrally matched noise. Only five lists were tested, as the authors argued the 

same sounds were used in each list. The finalised lists were judged to be 
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homogeneous in terms of difficulty based on the similarity of mean 

intelligibility scores across lists. 

 

1.9.3 The Danish MST 

The method of normalisation has become more sophisticated since the 

original Swedish version, introducing the use of probabilistic modelling 

(Kollmeier, 1990) to ensure homogeneous data. This approach was used in the 

development of the Danish MST by Wagener et al. (2003). Here, the authors 

created 25 lists of 10 sentences for the optimisation phase, with each list 

containing one use of each matrix word. Listeners with normal hearing 

listened to sentence lists presented at 10 different SNRs, ranging from -18 dB 

to 0 dB SNR (2 dB increments). Spectrally matched stationary noise, created 

from superimposition of test sentences, was presented at a constant level of 65 

dB SPL, and the word presentation level was varied. The listeners were 

required to respond verbally in a supervised (i.e. scored by an experimenter) 

open-set format (i.e. without the word matrix visible). A maximum likelihood 

function was used to fit a psychometric function to each word-specific 

realisation. The pre-normalisation standard deviation of word-specific SRTs 

was 3.8 dB, with a mean slope of 16.1%/dB. Application of the probabilistic 

model (Kollmeier, 1990) to pre-normalisation data produced a test-specific 

slope of 8.7%/dB. A level adjustment of ± 4 dB was applied to the pre-
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normalisation word-specific SRTs, based on the difference between each 

word-specific SRT and the mean pre-normalisation SRT across all words.  The 

predicted standard deviation was 1.8 dB, denoting a 2 dB decrement from the 

measured pre-normalisation value (3.8 dB). This resulted in a predicted post-

normalisation test-specific slope of 13.2%/dB, which constituted a 4.9%/dB 

increase in slope from the measured pre-normalisation equivalent.  

To obtain measured post-normalisation data, the sentences were re-

evaluated by normal hearing listeners using a procedure developed by Brand 

and Kollmeier (2002), which will be briefly detailed here. This procedure 

involves the presentation of the sentences at two alternating SNRs, which 

approximate the “pair of compromise” (p1 = .19 and p2 = .81), to estimate the 

SRT and function in a quick and efficient manner. Test lists are presented in 

accordance with an adaptive procedure: the preceding stimulus and listener’s 

response determine the presentation level of the following trial (Levitt, 1971). 

If the listener responds incorrectly to one trial, the stimulus level will be 

increased for the subsequent trial, and vice-versa for a correct response. Over 

the course of the test, the presentation level will start to converge around the 

listener’s SRT, at which point the presentation levels are averaged to produce 

the final SRT. Using this method, Wagener et al. obtained measured post-

normalisation values. The measured post-normalisation test-specific slope was 

13.2%/dB, consistent with the predicted value. The mean list-specific SRT 
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was -8.4 dB SNR (± 0.2 dB), with an accompanying slope of 12.6%/dB (± 

0.8%/dB). 

 

1.9.4 The Polish MST 

A Polish MST was developed by Ozimek et al. (2010). To establish 

measured pre-normalisation data, sentences were presented to 30 listeners in a 

multi-talker babble. Each of the 500 words was presented at 11 different 

SNRs, ranging from -16.5 to -1.5 dB, and listeners responded verbally in a 

supervised open-set format. The range of SNRs was selected to approximate a 

speech intelligibility range of 10% to 90%. The pre-normalisation mean word-

specific slope was measured as 18.6%/dB, and the standard deviation of word-

specific SRTs was 1.9 dB. A probabilistic model (Kollmeier, 1990) was used 

to estimate the slope of the test-specific intelligibility function, which was 

calculated as 13.9%/dB.  A correction factor, limited to ± 3 dB, was applied. 

The standard deviation of the mean word-specific SRTs was predicted to be 

0.4 dB, resulting in a predicted test-specific slope of 18.2%/dB. This denoted a 

4.3%/dB increase from the test-specific slope measured in the pre-

normalisation phase. 

To obtain measured post-normalisation data, 10 lists of 10 sentences 

were re-evaluated in alternating SNRs of -7 and -11 dB by the same 30 

listeners. The two SNRs were chosen as they approximated the “pair of 
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compromise” (Brand & Kollmeier, 2002). Post-optimisation, the measured 

mean test-specific slope was 17.1%/dB—a 3.2%/dB increase from the 

measured pre-normalisation equivalent. The mean list-specific SRT was -9.6 

dB SNR (± 0.2 dB) with a slope of 17.1%/dB (± 1.5%/dB).  

 

1.9.5 The Spanish MST 

The Spanish MST was developed by Hochmuth et al. (2012). 

Spectrally matched stationary noise, created from the superposition of test 

sentences, was used as the masker. Listeners completed 12 “triple lists” (i.e. 

lists of 30 sentences), at SNRs that ranged from -15 to -2 dB, to determine pre-

normalisation SRTs. The test was carried out in open-set format (i.e. in the 

absence of the matrix display), and verbal responses were scored by an 

experimenter. Based on pre-normalisation data, 8 word realisations (out of 

500) were removed due to an inability to fit word-specific intelligibility 

functions. The resulting mean SRT across words was -8.1 dB SNR, with a 

slope of 27.0%/dB. A level correction of ± 3 dB was applied to each word 

realisation, which was judged as appropriate by a phonetician and a group of 

native Spanish speakers. Word realisations that exceeded this correction limit 

were excluded from the lists. The process of optimisation saw the standard 

deviation of word-specific SRTs decrease from 2.8 dB (measured pre-

normalisation) to 1.1 dB (predicted post-normalisation). Using a probabilistic 
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model (Kollmeier, 1990), the test-specific slope was predicted to increase from 

10.9%/dB (measured pre-normalisation) to 16.0%/dB (predicted post-

normalisation).  

To obtain post-normalisation measured data, 12 lists of 10 sentences 

were evaluated in an open-set format using the adaptive procedure described 

by Brand and Kollmeier (2002). The test-specific slope was 13.2%/dB, a 

2.3%/dB increase from the pre-normalisation value. The resultant mean SRT 

and test-specific slope measured post-normalisation were -6.8 dB SNR (± 0.2 

dB) and 13.2%/dB (standard deviation not supplied), respectively, for open-set 

measurement, and -7.7 dB SNR (standard deviation not supplied) and 

14.0%/dB, respectively, for closed-set measurement.  

 

1.9.6 The Dutch MST 

A Dutch MST was developed recently by Houben et al. (2014). Word-

specific intelligibility functions were created by assessing 360 sentences at 

five different SNRs (-12, -9, -6, -3, and 0 dB) in spectrally matched stationary 

noise created by the superimposition of sentence materials. Listeners with 

normal hearing responded by selecting words from a visible display containing 

the 50 matrix words—that is, in an unsupervised, closed-set format. 

Psychometric functions were fitted to the pre-normalisation data (not 

provided) using a logistic model that accounted for a 10% chance level. To 
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equalise word difficulty, an adjustment limit of ± 3 dB was applied to each 

word realisation. Sentences that were deemed too unnatural were discarded, 

and 14 lists of 20 sentences were created from the remaining 311 sentences. A 

further 15 listeners validated the pre-normalisation parameters (not provided) 

by assessing lists at three SNRs (-5, -7, and -9 dB), with noise presented at a 

constant level of 70 dB SPL. The resultant mean list-specific SRT was -8.4 dB 

SNR (± 0.2 dB), with an average slope of 10.2%/dB (± 0.9%/dB). As pre-

normalisation data were not provided, the efficacy of the normalisation 

process for the Dutch MST cannot be commented on. 

 

1.9.7 The Finnish MST 

Dietz (2014) developed the Finnish version of the MST. The test 

materials comprised 30 lists of 10 sentences, which were homogeneous in 

terms of word and transition occurrences, and therefore, could be combined 

freely. Spectrally matched stationary noise was presented at 65 dB SPL. 

Twenty-one Finnish speakers participated; three were presented with the test 

lists at 10 different SNRs, which ranged from -5 to -14 dB SNR.  After 

analysing the initial data, the range of presented SNRs was adjusted; the 

following 18 listeners listened to the test items at 15 different SNRs between 

-2 and -20 dB SNR. Responses were elicited verbally in a supervised open-set 

format. To establish pre-normalisation data, a logistic function was fitted to the 
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raw data. A mean word-specific SRT of -10.4 dB SNR (± 2.3 dB) with a mean 

slope of 18.9%/dB (± 7.9%/dB) was established. A level correction of ± 3 dB 

was applied to each word realisation. Based on the pre-normalisation data, 

words could be excluded for three reasons: 1) they exceed adjustment limit by 

2 dB, 2) they have an abnormally shallow slope, and 3) they show unreliable 

SRT and slope parameters. Fifteen words met the first criterion, and no words 

met the latter two. The predicted post-normalisation mean word-specific SRT 

was -10.4 dB SNR (± 0.6 dB). To obtain post-normalisation data, 14 lists of 10 

sentences were constructed. The lists were presented at three SNRs that 

approximated intelligibilities of 20%, 50%, and 80%. Measured data showed 

the lists to have a mean SRT of -10.1 dB SNR (± 0.7 dB) and a slope of 

16.7%/dB (± 1.2%/dB). 

 

1.9.8 The Italian MST 

An Italian MST was developed recently by Puglisi et al. (2014). The 

test materials consisted of 30 ten item lists, which contained all 50 matrix 

words. To obtain pre-normalisation data, intelligibility was measured at SNRs 

between 2 and -18 dB (2 dB increments) in spectrally matched stationary 

noise. A logistic model was used to fit the word-specific intelligibility 

functions to raw data. The pre-normalisation mean SRT was -8.3 dB SNR (± 

3.7 dB), with a median slope of 17.7%/dB over the 500 word realisations. 
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Level adjustments (limit ± 3 dB) were applied to the pre-normalisation data to 

equal the pre-normalisation mean word-specific SRT. The post-normalisation 

word-specific SRT was predicted to be -8.2 dB SNR (± 1.4 dB). In terms of 

the test-specific slope (Kollmeier, 1990), the adjustments were predicted to 

increase the test-specific slope from 9.2%/dB to 15.2%/dB (i.e. a 6.0%/dB 

increase). The equivalence of the compiled lists was evaluated using an 

adaptive procedure (Brand & Kollmeier, 2002), where six double-lists were 

presented at SNRs of -4.5, -7, and -9.5 dB (corresponding to 80%, 50%, and 

20% intelligibility, respectively). The mean list-specific SRT and slope were 

calculated to be -7.3 dB SNR (± 0.2 dB) and 13.3%/dB (± 1.2%/dB), 

respectively. The actual increase between pre-normalisation and post-

normalisation measured test-specific slopes was therefore 4.1%/dB. 

1.9.9 Set presentation format 

Before proceeding, it is necessary to discuss the importance of whether 

speech materials are presented in closed- or open-set format—that is, with or 

without a visible word matrix. An advantage of the uniform format MSTs is 

that it allows for closed-set testing (i.e. via a touch-screen), which in turn 

negates the need for a supervisor (i.e. an experimenter or audiologist) to score 

the responses of the listeners. Published MSTs have used both an open-set 

format (i.e., Dietz, 2014; Hochmuth et al., 2012; Ozimek et al., 2010; Wagener 

et al., 2003) and a closed-set format (i.e., Houben et al., 2014); whether this 
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presentation format affects listener performance is a contentious subject in the 

literature. In the Polish version, listener performance was unaffected by 

whether tests were performed verbally in open-set format under experimenter 

supervision, or carried out in a closed-set format without supervision (Ozimek 

et al., 2010). Elsewhere, Hochmuth et al. (2012) found that the use of a closed-

set format, where listeners responded via touch-screen, resulted in significantly 

better listener SRTs compared with an equivalent open-set format. According 

to the authors, this may result from the lack of training provided to the 

listeners in comparison to Ozimek et al. (2010), where listeners would have 

been more familiar with the test materials prior to open-set testing.  In this 

manner, a closed-set format is advantageous in that it improves the 

equivalency of list difficulty due to the provision of visual cues (Tye-Murray, 

2014). Furthermore, removing the need for supervision is advantageous in that 

scoring is not susceptible to experimenter inattention or error. It would also be 

more time-efficient when testing large populations (Ozimek et al., 2010). 

However, as the literature tentatively suggests, training may be necessary to 

ensure listener performance is similar between the two formats.  

 



 

43 

 

1.10 Study 2: Normalisation of the auditory-alone UCAMST 

1.10.1 Rationale for auditory-alone normalisation 

The aim of Study 2 was to normalise the auditory-alone UCAMST, 

which would establish its reliability as a measure of a listener’s SRT. The 

auditory-alone condition was normalised, specifically, as pilot testing with the 

Malay version of the UCAMST by Jamaluddin (2013) found presenting 

auditory-visual sentences at poor SNRs was essentially equivalent to a visual-

alone condition, as listeners were reliant on lip-reading. This made it difficult 

to obtain the data required for a full auditory-visual psychometric function. 

Therefore, Study 2 normalised the auditory-alone condition of the UCAMST 

to exclude the effect of lip-reading, which significantly lifted the floor value of 

the measurement range. Study 2 comprises two sequential parts, which will be 

described below. 

 

1.10.2 Part I: Normalisation of UCAMST 

As a summary, the normalisation method used by published MSTs was 

as follows. Average listener performance on each word-specific realisation (n 

= 500) was measured across a range of SNRs, and an intelligibility function 

was fitted to each word realisation. Level adjustments were made to equal the 

SRT of each word realisation to the mean pre-normalisation SRT across all 

words. As each word realisation was contained within a single file fragment, 



 

44 

 

these published MSTs normalised both the words and fragments, 

simultaneously (Dietz, 2014; Hochmuth et al., 2012; Houben et al., 2014; 

Ozimek et al., 2010; Wagener et al., 2003). In contrast, the UCAMST 

presented a unique challenge in that the audio of a specific word often mapped 

onto more than one file fragment. Therefore, level adjustments could be 

applied to equalise the difficulty of either the file fragments (“fragment 

normalisation”) or the matrix words (“word normalisation”). The latter 

involved averaging listener performance across fragments that contained the 

audio component of the specific word and fitting intelligibility functions to this 

data, resulting in 50 word-specific intelligibility functions. The former, similar 

to published MSTs, involved fitting intelligibility functions to each fragment, 

resulting in the generation of 400 fragment-specific intelligibility functions. In 

theory, word normalisation is justified by the fact that listeners are responding 

to words, not fragments. Normalisation by fragment does not consider the 

manner in which words map onto fragments; for example, a single word that 

maps onto two different fragments may be adjusted in two different directions 

(i.e. one increased and one decreased in level), resulting in an unnatural “level 

jump” within the sentence. Conversely, unlike fragment normalisation, the 

word normalisation technique described here does not account for the effect of 

context. As a brief example, the word “bought” may be more difficult to 

recognise when preceded by “Amy”, but easier when preceded by “Thomas”. 

In practice, the software used in this study acquired normalisation data at both 
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the word and fragment level; however, as listeners respond to words, and to 

prevent unnatural level jumps, the data from word normalisation was used to 

generate base lists (Part II). The efficacy of this technique will be the subject 

of further commentary in the discussion section.  Furthermore, due to the 

benefits of different types of masking noise (see section 1.5.3), the 

normalisation process was carried out in both constant speech-shaped noise 

(“constant noise”) and a six-talker babble (“babble noise”); the effect of each 

noise type on performance of the UCAMST was also the subject of 

investigation. Relevant aims and hypotheses for Part I are outlined below. 

 

Aim 1: To determine the effect of noise type on the sensitivity and difficulty of 

the UCAMST through a comparison of pre-normalisation test-specific slope 

(s50test) and mean Lmid (midpoint of the function, or intelligibility at 50%).  

Previously, speech-shaped noises were shown to produce steeper intelligibility 

functions compared to when a  fluctuating babble noise was used  (McArdle et 

al., 2005). However, fluctuating noise was found to have a lower average Lmid 

(i.e. 50% intelligibility at a poorer SNR), and therefore, words were more 

easily detected in babble noise than speech-shaped noises. This was attributed 

to the phenomenon of “masking release” (Peters et al., 1998; Wagener & 

Brand, 2005). Based on this previous research, it was hypothesised the 

constant noise would result in a steeper intelligibility function and a higher 

mean Lmid than babble noise. 
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Aim 2: To normalise the difficulty of matrix words (Lmid) by adjusting word 

presentation level to equal the measured pre-normalisation data (mean word-

specific Lmid).  

As mentioned previously, the efficacy of the normalisation process described 

here can be observed with application of a probabilistic model (Kollmeier, 

1990). Therefore, the predicted post-normalisation test-specific slope is 

hypothesised to be steeper than the measured pre-normalisation test-specific 

slope due to a reduction in the standard deviation of word-specific Lmid 

measures (σLmid). The increase to test-specific slope, based on predicted post-

normalisation data (in %/dB), is hypothesised to be comparable with existing 

MSTs (Hochmuth et al., 2012; Ozimek et al., 2010; Wagener et al., 2003). 

 

1.10.3 Part II: Generation of test lists 

Part II involved the selection of sentences to create 30 lists of 20 

sentences for each noise type that were homogeneous in terms of sensitivity. 

The purpose of generating lists was 1) to obtain post-normalisation data, 2) to 

evaluate test re-test reliability of lists, and 3) to evaluate scoring methods in 
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determining SRT
1
. A summary of the aims and relevant hypotheses for Study 

2 are detailed below. 

 

Aim 3: To produce 30 base lists of 20 sentences that are predicted to be 

homogeneous based on predicted post-normalisation list-specific slopes. 

Homogeneity was based on the definition used in previous MSTs (Ozimek et 

al., 2010; Wagener et al., 2003), in terms of the distribution of the predicted 

list-specific slopes across lists, as calculated using a probabilistic model 

(Kollmeier, 1990). List composition was adjusted to ensure minimal within-

list variation in sentence-specific slopes (based on measured pre-normalisation 

data). 

 

The method and results of Study 2 are located in Chapter 3 of this thesis. 

 

1.11 Summary of project rationale 

Taken as a whole, the information provided by Studies 1 and 2 would 

allow both 1) the selection of sentences with minimal noticeable judder for 

inclusion in the auditory-visual version of the UCAMST, and 2) generation of 

                                                 
1 Unfortunately, due to time constraints, these lists could not be evaluated in the current project. Measured 

pre-normalisation and predicted post-normalisation are, however, provided here. Evaluation of these 

lists will take place in follow-on research. 
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base lists predicted to have minimal variation in list-specific slopes, and 

minimal within-list variation in sentence-specific slopes. This project 

constituted a stepping stone towards inclusion of the UCAMST the University 

of Canterbury Adaptive Speech Test (UCAST) platform, which will comprise 

a battery of audiological speech tests for clinical and research use (O’Beirne, 

McGaffin, & Rickard, 2012).  
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Chapter 2  

Study 1: Judder Noticeability Rating Task 

 

2.1 Method 

2.1.1 Design 

A range of synthesised sentences was included in Study 1. As 

mentioned previously, the noticeability of a judder may be influenced by the 

number of judder transitions in a sentence (“judder number”), as well as the 

position of the judder transitions within a sentence (“judder position”). As 

such, these were incorporated as variables, which are described in detail 

below. 

The pixel difference values (i.e. “judder severity”) were categorised 

into different brackets (“tier groups”) using software custom-written in 

LabVIEW by Associate Professor O’Beirne. Table 2 displays the tier 

boundaries and the number of transitions within each tier group. The 

categories included in Study 1 were no judder, Tier 2, Tier 3, and Tier 4 

transitions, as these groups represented the majority of the unique transitions 

(97%).  
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Table 2 

 

Transitions organised according to tier. 
Tier Pixel difference value n  Transition label 

Lower limit Upper limit 

0 0 199,999 30 “No judder” 

1 200,000 299,999 1446  

2 300,000 399,999 806 “Judder” 

3 400,000 499,999 449  

4 500,000 599,999 186  

5 600,000 699.999 72  

6 700,000 799,999 10 

 

 

Total   3000  

 

To investigate the effect of judder number and judder position, the 

sentences were divided into those with one judder (at either transition 1, 2, or 

3) and those with two judders (at either transition 1 and 2, 2 and 3, or 1 and 3). 

The transitions of sentences with two judders were selected so as to have pixel 

difference values within ± 2% of each other in the respective tier, preventing 

one more severe judder transition from influencing the rating score. The 

sentences were coded by judder number (J1 or J2), judder position (Tr01, 

Tr02, Tr03, Tr12, Tr13, Tr23) and judder severity (Ti2, Ti3, Ti4). For 

example, a sentence with two judders at transitions 1 and 2 with Tier 3 pixel 

difference value would be labelled J2Tr12Ti3. The design for the synthesised 

sentences was 2 x 3 x 3 (judder number x judder position x judder severity), 

resulting in 18 sub-conditions, with four sentences per condition (n = 72). 

Sentences were selected at random from the pool of sentences fitting the 
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description of that condition. A further 28 sentences were sentences without 

judder randomly selected from the pool of 100 original sentences. This 

ensured that selected sentences with no judder had the lowest pixel difference 

values. 

During the process of assembling sentence lists, the custom software 

did not generate an adequate number of sentences for three of the synthesised 

sentence sub-conditions. For example, only three sentences were produced for 

J2Tr13Ti4. To rectify this, the three sentences were re-used in each of the 10 

lists, and the fourth sentence was randomly selected from the pool of 

sentences of equivalent judder number and tier (i.e. J2Tr12Ti4 and 

J2Tr23Ti4). Sentence lists were checked to ensure the randomly selected 

fourth sentence did not appear more than once within a list. The software did 

not produce any sentences for the other two conditions (J1Tr03Ti3 and 

J1Tr03Ti4). In these cases, the sentences were manually assembled by 

substituting the final word of an original sentence to create a transition of the 

desired tier. For example, the original sentence “David gives three cheap 

books” had the ending altered to “David gives three cheap shirts”, resulting in 

a transition 3 pixel difference value of 414,435 (Tier 3). The initial two 

transitions would have pixel difference values within tiers 0 and 1, as these 

were natural transitions derived from an original sentence. Through this 

process, 94 (J1Tr03Ti3) and 29 (J1Tr03Ti4) sentences were produced for 

incorporation into the sentence lists. In sum, 10 unique lists of 100 sentences 
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were generated, composed of synthesised sentences (n = 72) and sentences 

with no judder (n = 28).  

 

2.1.2 Participants 

Study 1 participants were 18 adults (2 males; 16 females). Ages ranged 

from 21 to 28 years of age (M = 23.6y ±1.7y). Participants were required to 1) 

be native speakers of NZ English; 2) have hearing within normal limits (as 

shown by a hearing test); and 3) have no chronic issues of dexterity (as the 

procedure involved selection of words on a touch-screen). Both Study 1 and 2 

gained approval from the University of Canterbury Human Ethics Committee 

(Reference: HEC 2014/49), and support from the Maori Research Advisory 

Group at the University of Canterbury; written informed consent was obtained 

from all participants for both studies. These documents can be found in 

Appendix A. 

To determine hearing status, a hearing test was carried out in a 

soundproof booth at the audiology clinic at the Department of Communication 

Disorders, University of Canterbury. The test comprised questions on ear 

health, an otoscopic examination of the ear, and pure tone audiometry. Air-

conduction pure tone thresholds were required to be within the normal range 

(≤ 20 dB HL) across the frequencies 250-8000 Hz; this encompasses what are 

considered the main speech frequencies (500-4000 Hz). Participants were 
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informed of the results of their hearing test: if normal hearing was confirmed, 

they were eligible to proceed with Study 1.  

 

2.1.3 Equipment set-up 

The UCAMST software, written in LabVIEW, was created by 

Associate Professor Greg O’Beirne, and was run from a laptop computer (HP 

Elitebook Revolve 810). This software presented the stimuli (described below) 

and provided a graphical user interface for data entry. The experimenter 

selected the parameters of the test, including which experiment to perform 

[‘rating’ (Study 1) or ‘normalisation’ (Study 2)], the language (‘NZ English’ in 

this case), and whether the sentence presentation was ‘monaural’ or ‘binaural’. 

For Study 1, the binaural presentation mode, the ‘rating’ task, and NZ English 

options were selected, and the sentences were presented via headphones 

(Sennheiser HD280 pro, 64 Ω impedance) attached to an external Sound 

Blaster X-Fi Surround 5.1 Pro soundcard (Creative Technologies, Singapore). 

The laptop volume control was set to maximum and the participant name and 

number were entered into the software. The participant number determined 

which of the 10 lists of 100 sentences was used. The list allocation repeated 

modulo 10, such that participants 1 and 11 would receive the same list (list 1). 

The data collected data was imported into SPSS statistics v. 20 (IBM) for 
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statistical analyses, while graphics were produced with RStudio v. 0.98.1081 

and Microsoft Excel. 

 

2.1.4 Procedure 

Participants were tested individually in a quiet room in the Department 

of Communication Disorders, University of Canterbury. The participant was 

seated in front of the laptop and verbally instructed that they would wear 

headphones and watch a video of a female speaker reading short sentences in 

quiet on the laptop screen. At the end of each sentence, they were required to 

rate how noticeable the “judders” at the transitions in the sentences were on 

10-point scale, from 0 (“no noticeable judder”) to 10 (“highly noticeable 

judder”), thus providing a noticeability rating score for each sentence. The 

verbal instructions were accompanied by on screen instructions, as shown in 

Figure 8.  
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Figure 8. On-screen instructions presented prior to commencing practice phase. 

 

To assign a rating score, the participant had to adjust an indicator on a sliding 

scale using the mouse or touch-screen, as shown in Figure 9. The rating score 

was based on the position of the slider on the scale. 

 

 

Figure 9. Response screen after each sentence presentation, showing a 10-point sliding scale 

from “no noticeable judder” at 0 to “highly noticeable judder” at 10. 
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To ensure full comprehension of the task the participant assessed four 

practice sentences consisting of two sentences with no judders alternated with 

two sentences which had numerous severe judders (three judder transitions of 

tiers 4, 4 and 3 respectively). On-screen instructions were provided again prior 

to commencing data collection, as shown in Figure 10. 

 

 

Figure 10. Second set of on-screen instructions presented prior to data collection phase. 

 

When presented with the second set of instructions, the participant was asked 

if they had any questions about the task; the data collection phase commenced 

after any such questions were answered. The participant then evaluated a 

single list of 100 sentences presented in a random order. The rating score 

allocated to each sentence, along with the sentence details (i.e. condition, pixel 

difference value, and word composition) and the time stamp of each response, 

were exported as a text file (.txt) to a specified folder. On average, the rating 

task took 18 minutes to complete.  
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2.2 Results 

2.2.1 Comparison of rating score between conditions 

The first goal of Study 1 was to compare the rating score of no judder 

and synthesised sentences; the latter of which was divided into 18 sub-

conditions based on judder severity, judder number, and judder position. For 

each participant, the rating score was averaged for each condition. Before 

proceeding to statistical analyses, the emergent trends in mean rating score 

will be discussed. The resulting mean rating score for each sub-condition
2
, as 

compared to sentences with no judder, is shown in Figure 11.   

 

                                                 
2  Key: J1Tr03Ti4 = one Tier 4 judder at transition 3; J2Tr12Ti3 = two Tier 3 judders at transitions 1 and 

2; etc. 
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Figure 11. Histogram depicting the mean rating score for each sub-condition of the synthesised 

sentences. The mean rating score for sentences with no judder is represented by the dashed 

line. Error bars represent the standard error of the mean.  

 

Figure 11 suggests two main trends: 1) sentences with two judders had higher 

rating score than sentences with one judder across the three tier groups (Tier 2, 

Tier 3, and Tier 4), and 2) judder position (Tr01, Tr02, Tr03, Tr12, Tr13, 

Tr23) did not appear to affect the overall mean rating score. A closer 

observation of these trends is provided in Figure 12 and Figure 13, 

respectively. 
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Figure 12.  Mean rating score of one judder (J1) and two judder (J2) sentences within each 

tier group (Tier 2, Tier 3, Tier 4). Error bars represent standard deviation of each sub-

condition. 

 

Figure 12 further suggests a large difference in mean rating score between one 

judder and two judder sentences in the Tier 3 and Tier 4 groups. On the other 

hand, the difference between one and two judder sentences in the Tier 2 group 

was comparatively small. 
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Figure 13.  Mean rating score of sentences based on judder position. One judder sentences 

have a single judder transition (Tr01, Tr02, or Tr03); whereas two judder sentences have two 

judder transitions (Tr12, Tr13, or Tr13). Error bars represent the standard deviation of each 

sub-condition. 

 

Figure 13 shows little difference in mean rating score with the manipulation of 

judder position in both one judder (Tr01, Tr02, and Tr03) and two judder 

(Tr12, Tr13, and Tr23) sentences.   

The mean rating score of the 18 sub-conditions was compared to the 

mean rating score of no judder sentences using a series of 18 paired t-tests. To 

account for the multiple comparisons, a Bonferroni correction was applied by 

dividing the original alpha (α = .05) by the number of paired comparisons 
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made (n = 18), resulting in an alpha of .00278 (Napierala, 2012).  The multiple 

comparisons of group means are summarised in Table 3. 

Table 3 

 

Multiple paired comparisons between synthesised and no judder sentences. 

Comparison Group Group Mean SD t-stat p-value 

J1Tr01Ti2 2.44 1.10 -7.12 <.001* 

J1Tr01Ti3 3.72 1.71 -7.76 <.001* 

J1Tr01Ti4 4.94 2.25 -8.20 <.001* 

J1Tr02Ti2 3.35 1.80 -6.51 <.001* 

J1Tr02Ti3 3.83 1.97 -6.97 <.001* 

J1Tr02Ti4 5.08 2.58 -7.40 <.001* 

J1Tr03Ti2 3.21 1.49 -7.48 <.001* 

J1Tr03Ti3 4.12 1.57 -9.53 <.001* 

J1Tr03Ti4 5.03 2.24 -8.42 <.001* 

J2Tr12Ti2 3.68 1.71 -7.69 <.001* 

J2Tr12Ti3 6.15 2.36 -10.00 <.001* 

J2Tr12Ti4 7.25 2.15 -13.16 <.001* 

J2Tr13Ti2 3.09 1.59 -6.67 <.001* 

J2Tr13Ti3 5.88 1.81 -12.38 <.001* 

J2Tr13Ti4 6.71 2.18 -11.90 <.001* 

J2Tr23Ti2 4.11 1.96 -7.63 <.001* 

J2Tr23Ti3 6.41 2.20 -11.26 <.001* 

J2Tr23Ti4 6.75 2.33 -11.22 <.001* 

*Significant difference (p <.00278) between specified condition and sentences with no judder 

(M = 0.59, SD = 0.66). 

 

According to the results, all 18 sub-conditions of the synthesised sentences had 

significantly higher average rating score than sentences with no judder. In 

short, there was on average a statistical difference between synthesised 

sentences and no judder sentences in terms of rating score. 
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2.2.2 Relationship between rating score and average pixel difference 

value 

The second aim of Study 1 was to elucidate the relationship between 

the subjective rating score and the objective pixel difference value, so as to 

determine whether the calculated value could be used to predict the perceived 

level of judder in a sentence. As the “two judder” sentences were selected to 

contain two judder transitions with pixel difference values within ± 2%, the 

pixel difference value was averaged across the two transitions creating a 

variable called the “average pixel difference value”. Outlined below is the 

method of calculating the average pixel difference value for each judder 

number condition. 

 

1) One judder sentences: the pixel difference value of the single edited 

transition.  

2) Two judder sentences: the average difference pixel value for the two edited 

transitions. 

3) No Judder sentences: the average pixel difference value of all three original 

no judder transitions.  
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A linear regression was carried out using average pixel difference 

value as a predictor of rating score.  

Figure 14 depicts the relationship between average pixel difference value and 

rating score, including the resulting regression equation. 

 

 

Figure 14. Scatter plot depicting the relationship between average pixel difference value and 

rating score. The solid line represents the model equation. 

 

The figure shows that a small number of participants were assigning ‘0’ rating 

scores to large judders, which may suggest that judders were missed in these 

sentences. 

The regression model was statistically significant (F (1, 1798) = 1251.67, 

p = < .001). Average pixel difference value accounted for approximately 41% 

of the variance in rating score (R
2
 = 0.41, Pearson’s r = 0.64). This correlation 

200000 300000 400000 500000 600000

0

2

4

6

8

10

Average Pixel Value

N
R

S

y= -2.69 + 1.69e-5x
R squared= .41

Average pixel difference value 

R
at

in
g
 s

co
re

 



 

64 

 

coefficient (Pearson’s r = 0.64) suggests a large effect size in accordance with 

the rule of thumb provided by Cohen (2003). On average, a one unit increase 

in average pixel difference value will result in a significant increase in rating 

score by 1.69 x 10
-5

. The equation presented in  

Figure 14 can be used to predict rating score based on average pixel difference 

value. It is important to note that this is based on averages, and therefore, only 

provides a rough approximation of rating score. Nevertheless, this measure 

may be of utility in the selection of sentences for inclusion in the auditory-

visual UCAMST. This selection process will be discussed in section 2.3. 

To investigate the additional effect of judder number on rating score, 

the data was subjected to a stepwise multiple regression. This analysis informs 

on whether subsequent additions into the regression model would predict a 

unique proportion of the variance in rating score. Judder position was excluded 

from the analysis as it did not appear to affect rating score. In step 1, the 

average pixel difference value was entered, in step 2 both average pixel 

difference value and judder number were entered. The results showed that 

adding judder number significantly improved the model (F(1,1797) = 246.26, p < 

.001, R
2
 = 0.48), accounting for 7% of the variance in rating score over and 

above what is explained by average pixel difference value (41%). When 

reversed, the average pixel difference value significantly improved the model 

(F(1,1797) = 349.15, p < .001), accounting for 10.1% unique variance in rating 

score over and above what is explained by judder number (38.1%).Although 
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conflation of the two predictors explains the greatest proportion of variance in 

rating score (48%), individually, the average pixel difference value predicts a 

greater proportion of variance than judder number (41% vs. 38.1%). 

2.3 Selection of sentences for auditory-visual UCAMST 

The result of the multiple comparisons carried out in section 2.2.1 

revealed that synthesised sentences were rated as having significantly more 

noticeable judder than control no judder sentences. With the no judder 

sentences alone, the number of sentences that could be included in the 

auditory-visual UCAMST would be limited to 1,233. Thus, to maximise the 

number of sentences that could be included, it was decided that the two 

synthesised sentence sub-conditions with the lowest rating scores would be 

selected to provide a larger overall repertoire of sentences for auditory-visual 

testing. Table 4 displays the mean rating scores by judder number and judder 

severity. Judder position, which did not appear to affect the rating score, was 

excluded to simplify the selection process.  
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Table 4 

 

Mean rating score across Tiers and Judders 

Tier Judder number Mean SD  

Tier 2 1  3.00* 2.28  

 2 3.63* 2.45  

 1 & 2 3.31 2.38  

Tier 3 1 3.89 2.56  

 2 6.15 2.84  

 1 & 2 5.02 2.93  

Tier 4 1 5.02 2.72  

 2 6.93 2.64  

 1 & 2 5.97 2.84  

* Acceptable conditions for inclusion in auditory-visual UCAMST. 

The two lowest mean rating scores in the synthesised sentences were the Tier 

2 sentences with one judder (M= 3.00, SD = 2.28) and two judders (M = 3.63, 

SD = 2.45). It was decided that these Tier 2 (M = 3.31, SD = 2.38) sentences 

had an acceptable level of noticeable judder. Based on this “Tier 2” criterion, 

usable sentences were selected from the original pool of sentences from which 

Study 1 sentence lists were generated. As the judder criteria become stricter, 

the number of transitions that can be used to form sentences diminishes, 

reducing the total number of available sentences. Table 5 provides a summary 

of the number of available sentences for auditory-visual presentation, 

including those with no judder. 
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Table 5 

 

Synthesised and no judder sentences available for inclusion in auditory-visual 

UCAMST. 

Judder number Tier Number of sentences 

0 (‘No Judder’) 

 

0  27 

1 1206 

1 2 551 

2 2 710 

Total   2494 

 

The inclusion criterion provided a large sample of acceptable sentences (n = 

2494).  Figure 15 compares the number of acceptable transitions with the 

number of unacceptable transitions based on the position within the sentence. 

The results showed that a smaller proportion of transition 2 (52.1%) were 

acceptable compared with transition 1 (89%) and transition 3 (87.2%). The 

number of sentences is, therefore, reduced by smaller number of acceptable 

transition 2 fragment pairs. 
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Figure 15.  The 3,000 unique transitions labelled as “Acceptable” or “Unacceptable” based on 

the pixel difference value of each. Dashed lines illustrate transition boundaries. The position 

of each data point on the x-axis is random. 
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Chapter 3  

Study 2: Normalisation of auditory-alone 

UCAMST 

 

5.1 Part I. Normalisation 

5.1.1 Participants 

 Participants were 17 adults (2 males; 15 females) from 21 to 28 years 

of age (M = 23.54 y ±1.64 y). The same inclusion criteria applied as in Study 1 

(see Chapter 2); those who had not participated in that study (n = 2) were 

required first to provide written informed consent before undergoing a hearing 

test. Each participant received a $20 petrol voucher as compensation for their 

time and effort. 

 

5.1.2 Generation of masking noise 

Two types of noise were generated for use in the UCAMST: constant 

speech-shaped noise (“constant noise”) and six-talker babble (“babble noise”). 

Briefly, the constant noise was generated by randomly superimposing the 

audio recordings from the actress 10,000 times in an automated process. This 
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meant that the signal and the noise had an almost identical spectral content (i.e. 

it was “spectrally matched”). A full description can be found in King (2010). 

The six-talker babble noise that was used in this study was generated for a 

previous study in the department (for details, see Spencer, 2011). In brief, the 

noise consisted of semantically anomalous sentences read by three male and 

three female speakers with NZ English accents.  

5.1.3 Initial pilot of SNRs 

Study 2 was piloted in constant noise with four SNRs (-15, -11.5, -8 

and -4 dB) in constant noise presented binaurally. The desired SNRs were 

achieved in by varying signal level with a constant noise level of 65 dB SPL. 

The averaged performance across SNRs (data not shown) did not produce an 

adequate psychometric function, with the two highest SNRs producing a 

proportion of correct response scores, or p(c), of over .90, and the lowest SNR 

condition, producing a p(c) of .57.  In other words, the measurement range was 

overall too easy. The -4 dB SNR condition was therefore replaced with a more 

difficult -18.5 dB SNR condition. Average performance across these adjusted 

SNRs (-8, -11.5, -15, and -18.5 dB) was found to produce an adequate 

psychometric function. 
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5.1.4 Procedure 

Study 2 was carried out in a soundproof booth at the Department of 

Communication Disorders or the Rutherford building at the University of 

Canterbury in Christchurch. Participants were tested individually using the 

same equipment and software as Study 1 (see Chapter 2). In the software, the 

‘normalisation’ task was selected with ‘binaural’
3
 presentation and either 

‘constant’ or ‘babble’ noise (see Chapter 1). As 17 participants were recruited 

in total, the first nine participants received constant noise, while the final eight 

participants received babble noise.  

First, the system volume control was set to maximum and participant 

name and number was entered into the software.  The participant was then 

seated in front of a laptop and was verbally instructed that: 1) they would hear 

short sentences in noise, in which the words would change in loudness and 

may be difficult to hear; and 2) they were required to choose the sentence they 

heard by selecting the words on the touch-screen or using the mouse (i.e. it 

was a closed-set format). The words could be selected in any order and the 

                                                 
3 Binaural listening (i.e. listening with both ears), compared to monaural (i.e. listening with one ear), has 

been shown to improve speech intelligibility in noise in a range of situations; the central auditory 

system can take advantage of acoustic differences between the two ears to diminish the masking effect 

of noise (Moncur & Dirks, 1967; Porter, Grantham, Ashmead, & Tharpe, 2014).  We therefore expect 

the Lmid measures in this study to be at lower SNRs than published work that used monaural 

presentation. 
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participant was advised to guess a word when uncertain. Breaks were 

encouraged, and the task could be suspended by selecting a button that read 

“PAUSE AFTER NEXT TRIAL”. Figure 16 depicts the layout of the response 

panel. 

 

Figure 16. Matrix layout of response panel after each sentence presentation. A closed-set 

format was used with the 50 matrix words visible. Responses were entered by touching the 

desired word from each column. 

 

After instructions were delivered and any questions were answered, the 

participant put on headphones and commenced the practise phase. The 

participant assessed 20 sentences with SNRs that ranged from -10 to -12 dB 

SNR. The purpose of this phase was to allow the participant to become 

familiar with the user interface and task, and therefore minimise learning 
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effects  (Tye-Murray, 2014)
4
. After the practise phase was completed, the data 

collection phase commenced. In this phase the participant assessed 400 

sentences, in which all 400 file fragments containing word pairs (i.e. 

‘Amy_bought’) were randomly presented at four different SNRs (-8, -11.5, -

15, and -18.5 dB). On completion of this phase, the participant’s data was 

saved to a .txt file in a specified folder for data analysis. On average Study 2 

took 90 minutes to complete, excluding breaks.  

 

5.1.5 UCAMST scoring 

The responses collected for each fragment were scored as shown in 

Figure 17 and used to create intelligibility functions for both fragments and 

words. Information about which word parts were contained in each fragment 

sample was used in the scoring calculations. Each word was divided into two 

parts, which could be within one fragment or across two adjacent fragments. 

 

 

 

 

  

                                                 
4 Additionally, in the Polish version, a training session equalised participant performance on closed- and 

open-set formats (Ozimek et al., 2010). 



 

74 

 

Scoring procedure for UCAMST sentences. 

Actual Amy bought  some red coats Fragment scoring 

Selected Amy bought  some red coats Pt1 Pt2 Total 

amy_bought A my _ _       2/2 0/0 1 

bought_some   bou ght s _     2/2 1/1 1 

some_red     _ ome re _   1/1 1/1 1 

red_coats       _ d co ats 1/1 2/2 1 

Word scoring 1 1 1 1 1  

 

 
Actual William kept ten good toys Fragment scoring 

Selected William kept ten green toys Pt1 Pt2 Total 

william_kept Will iam _ _       2/2 0/0 1 

kept_ten   ke pt _ _     2/2 0/0 1 

ten_good     te n _ _   2/2 0/0 1 

good_toys       go od to ys 0/2 2/2 0.5 

Word scoring 1 1 1 0 1  

  
Actual Peter has  six good mugs Fragment scoring 

Selected Peter has some good mugs Pt1 Pt2 Total 

peter_has Pe ter _ _       2/2 0/0 1 

has_six   ha s s _     2/2 0/1 0.667 

six_good     _ ix _ _   0/1 0/0 0 

good_mugs       go od mu gs 2/2 2/2 1 

Word scoring 1 1 0 1 1  

  
Actual Oscar got  four red books Fragment scoring 

Selected Oscar got four red books Pt1 Pt2 Total 

oscar_got Os car _ _       2/2 0/0 1 

got_four   go t f _     2/2 1/1 1 

four_red     _ our  re _   1/1 1/1 1 

red_books       _ d bo oks 1/1 0/2 0.333 

Word scoring 1 1 1 1 0  

  
Actual Hannah sees  nine large toys Fragment scoring 

Selected Amy sees eight cheap spoons Pt1 Pt2 Total 

hannah_sees Han nah s _       0/2 1/1 0.333 

sees_nine   _ ees _ _     1/1 0/0 1 

nine_large     ni ne  lar _   0/2 0/1 0 

large_toys       _  ge to ys 0/1 0/2 0 

Word scoring 0 1 0 0 0  

 

Figure 17. Scoring procedure for the matrix sentences illustrated with five examples. 
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5.1.6 Normalisation by fragment 

Normalisation by fragment was carried out separately for each noise 

condition. The mean intelligibility (%) for each fragment was first calculated 

across the four SNRs. These mean scores were used to construct fragment-

specific intelligibility functions with intelligibility (%) on the y-axis and SNR 

on the x-axis. A logistic model was used to fit these functions, as shown in 

Equation (1): 

(1) 

𝑆𝐼(𝐿) =
1

𝐴
 (

(1 + 𝑆𝐼max) ∙ (𝐴 − 1)

1 + exp (−4. 𝑆. [𝐿𝑚𝑖𝑑 − 𝐿])
) 

 

Equation adapted from Green and Swets (1966), Kollmeier and Wesselkamp (1997) and 

Wagener et al. (2003). 

 

where SI is Speech Intelligibility (%), S is slope (%/dB), L is level, Lmid is the 

midpoint of the psychometric function, SImax is the function ceiling, and A is 

the number of alternatives (with 1/A being the function floor).  When the 

number of alternatives is very large, a “0 floor” version of the equation may be 

used, as follows: 
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(2) 

𝑆𝐼(𝐿) =  
1

1 + exp(−4 ∙ 𝑆 ∙ [𝐿𝑚𝑖𝑑 − 𝐿])
 

Zero floor version of Equation 1. 

 

The Lmid for each fragment was derived from this function, and the mean Lmid 

across fragments was then calculated. The presentation level of each fragment 

was adjusted so that each individual Lmid was equal to the pre-normalisation 

mean Lmid (i.e. the mean intelligibility at 50%). The adjustment limit was ± 3 

dB, consistent with the most conservative limit used in international versions 

of the matrix sentence test (Dietz, 2014; Hochmuth et al., 2012; Houben et al., 

2014; Ozimek, Kutzner, & Libiszewski, 2012). 

  

5.1.7 Normalisation by word 

In order to apply level adjustments to each individual word, the 

fragments needed to have components from different words adjusted 

independently, as exemplified in Figure 18. 
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Figure 18. The top sentence displays constituent sentence fragments, whereas the bottom 

sentence shows components used to create the audio of this sentence. These audio 

components were adjusted independently and like colours represent an equal magnitude of 

adjustment. 

 

Using custom written software, the point on each waveform at which the 

transition to a new word occurred was labelled (in ms) for each fragment. This 

data was stored in the UCAST software and used to adjust programmatically 

the individual words of each word pair independently. 

The mean intelligibility (% correct) for each fragment was first 

calculated across the four presented SNRs. The mean intelligibility was then 

averaged across fragments that contained that specific word sound. As a brief 

example, the function for the word “four” was constructed by averaging the 

fragments containing “f___” (i.e. sees_four, kept_four, sold_four, etc.) and 

those containing “_our” (i.e. four_green, four_big, four_dark, etc.) across the 

four presented SNRs. The result was the mean intelligibility for each word at 

each of the four SNRs. These values were used to derive the word-specific 

Lmid using the logistic model presented in equation (1) fitted to a 0.1 floor to 

represent 10% chance rate (a 1 in 10 chance of correctly selecting the matrix 

word). Each word-specific Lmid was then adjusted for to match the pre-
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normalisation mean fragment Lmid with an adjustment limit of ± 3 dB. The pre-

normalisation mean fragment Lmid was used so that normalisation by word and 

by fragment produced sentences with the same mean SRT. 

 

5.2 Part I. Results 

5.2.1 Constant noise 

The data were first normalised by fragment. Fifteen (4%) fragments 

were discarded due psychometric functions with an unusual morphology, 

ceiling or floor effects
5
, which prevented an adequate fit with the logistic 

model. The most frequent reason for exclusion was ceiling effects (n = 12). 

Figure 19 provides an example of a fragment with a floor effect (‘wins_ten’), 

ceiling effect (‘nine_big’), and inconsistent performance across SNRs that 

resulted in an abnormal morphology (‘sees_twelve’). The fragment 

(‘green_hats’) had a good function fit, and the raw data follows the expected 

sigmoid (‘s-shaped’) function. 

 

                                                 
5 . A “floor effect” describes when performance reaches the lower limit of the measurement scale. 

Conversely, a “ceiling effect” describes when performance reaches the upper limit of the measurement 

scale (Twisk & Rijmen, 2009). 
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Figure 19. Fragments with poor (left graph) and good (right graph) function fits. The 

examples provided are based on raw data performance across four SNRs (-8, -11.5, -15, and 

-18.5 dB). 

 

Some discarded fragments contained the same words; for example, 

four started with “nine” (eg ‘nine_big’, ‘nine_old’, ‘nine_good’, ‘nine_dark’) 

and three started with “Rachel” (e.g., ‘Rachel_has’, ‘Rachel_bought’, 

‘Rachel_got’). Both of these groups exhibited ceiling effects, and therefore 

these word pair combinations were avoided when assembling sentence lists for 

use in constant noise (see section 3.3).   

The remaining 385 fragments produced a mean pre-normalisation Lmid 

of -14.2 dB SNR (± 2.1 dB). On average, the easiest fragment to detect was 

‘two_old’ (Lmid = -20.5 dB SNR), whereas the hardest fragment to detect was 

‘gives_twelve’ (Lmid = -7.3 dB SNR). The fragments were adjusted to the 

mean pre-normalisation Lmid of -14.2 dB SNR; based on this, the fragments 

were predicted to have a 50% chance of correct identification when presented 
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at -14.2 dB SNR. The average magnitude of adjustment required prior to 

applying the limit was 1.7 dB (± 1.0 dB). Eighty-one (20%) fragments had a 

required adjustment of greater than the ± 3 dB limit. The average magnitude of 

adjustment was 1.6 dB (± 1.0 dB) with the limit enforced. 

The pre-normalisation word-specific functions were then fitted. 

According to this data, the easiest word to detect was “nine” (Lmid = -18.4 dB 

SNR) whereas the hardest word was “shirts” (Lmid = -8.0 dB SNR). The mean 

word-specific Lmid was -13.6 dB SNR (± 2.4 dB) and the mean slope was 

14.4%/dB (± 3.2%/dB).  The pre-normalisation (measured) descriptive 

statistics for each of the five word positions (name, verb, number, adjective, 

and object) are provided in Table 6.  

 

Table 6 

 

Measured (pre-normalisation) descriptive statistics of Lmid and slope based on 

word position in constant noise. 

 

Position Mean Lmid (dB SNR) SD Mean slope (%/dB) SD 

Name -15.3 1.6 16.2 2.6 

Verb -11.3 1.8 13.8 2.5 

Number -15.2 1.9 16.1 2.8 

Adjective -13.7 2.0 13.7 1.8 

Object -12.6 2.2 12.2 4.2 

 

When examining the data based on word position, the names (Lmid = -15.3 dB 

SNR ± 1.6 dB) and numbers (Lmid = -15.2 dB SNR ± 1.9 dB) were the easiest 
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word positions to detect and had the smallest distribution of Lmid measures. As 

a result, names (16.2%/dB ± 2.6%/dB) and numbers (16.1%/dB ± 2.8%/dB) 

had the steepest slopes at the midpoint due to the inverse relationship between 

standard deviation and slope (Brand & Kollmeier, 2002). The verb (Lmid = 

-11.3 dB SNR) and object (Lmid = -12.6 dB SNR) word positions were, on 

average, the most difficult to detect.  

The data was then normalised; the pre-normalisation word-specific 

midpoints were then adjusted to equal the mean pre-normalisation mean 

fragment Lmid of -14.2 dB SNR (± 2.1 dB). The mean magnitude of adjustment 

required prior to applying the limit was 2.0 dB (± 1.5 dB); seven words (14%) 

required an adjustment in excess of the ± 3 dB limit. The mean magnitude of 

adjustment with the limit applied was 1.7 dB (± 1.0 dB). Figure 20 displays 

the pre-normalisation and predicted post-normalisation psychometric functions 

by each of the five word positions in the sentence (i.e. name, verb, number, 

adjective, object) for the 50 matrix words. 
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Figure 20.  The pre-normalisation (Panel A) and predicted post-normalisation functions 

(Panel B) for the constant noise condition by word position. 
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According to Figure 20, the functions were adjusted by a maximum of ± 3dB 

to have an equivalent Lmid across words. The adjustment results in the aligning 

of the Lmid, and therefore, greater overlap in the post-normalisation functions 

than in the pre-normalisation functions. Those functions that do not align with 

other functions in the post-normalisation panel required an adjustment that 

exceeded the limit. This is particularly evident in the object words “shirts” and 

“ships”. With the adjustments made, the post-normalisation mean word-

specific Lmid is predicted to be -14.0 dB SNR ± 0.8 dB, denoting a 1.6 dB 

decrease in the standard deviation of word-specific Lmid measures.
 

 

5.2.2 Babble noise 

Babble noise data was normalised first by fragment. Forty-seven 

(12%) fragments had to be excluded from the babble noise condition due to an 

inability to fit psychometric functions. The most common reason for excluding 

fragments was a ceiling effect (n = 24). Again, the discarded fragments 

contained certain word patterns. For example, “wins” (n = 8), “nine” (n = 7), 

“Thomas” (n = 4) and “some” (n = 4). As in the constant noise condition, 

fragments starting with “nine” displayed a ceiling effect. In contrast, fragments 

starting with “wins” were difficult to detect and thus had a floor effect. 

Fragments beginning with the word “Thomas” showed an unusual 

morphology, which resulted from inconsistent responses across the four 
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presented SNRs. Word pair combinations from discarded fragments were 

avoided in generating sentence lists in the babble noise condition to maximise 

the reliability of list functions (see section 3.3). 

The mean Lmid across the remaining 353 fragments was -14.9 dB SNR 

(± 2.9 dB). Therefore, the UCAMST task was slightly easier in babble noise 

than in constant noise. ‘Oscar_gives’ was the easiest fragment to detect in this 

condition with an Lmid of -23.4 dB SNR). The most difficult fragment was 

‘kept_nine’ (Lmid = -5.2 dB SNR). The fragments were adjusted to have an 

Lmid of -14.9 dB SNR, and the average magnitude of adjustment was 2.3 dB 

SNR (± 1.8 dB) prior to applying the limit. One-hundred and nine out of 400 

fragments (37%) required adjustment in excess of the ± 3 dB limit. The 

average magnitude of adjustment with the limit applied was 1.6 dB (± 1.1 dB). 

The pre-normalisation word-specific functions were then fitted. The word 

“wins” was discarded and not used in the generation of sentence lists in babble 

noise, as it produced an abnormally steep word-specific function. The easiest 

word to detect was “nine” (Lmid = -27.7 dB SNR) and the hardest word was 

“shirts” (Lmid = 9.7 dB SNR). “Shirts” was also the hardest word in constant 

noise, although, not to quite the same extent (Lmid = -8.0 dB SNR). Owing to 

the difficulty of “shirts” in babble noise, which required a 24.6 dB adjustment 

to equalise the pre-normalisation mean Lmid, this was discarded from the test 

materials. The mean pre-normalisation Lmid across words was –14.5 dB SNR 

(± 3.6 dB) and the mean slope across words was 10.3%/dB SNR (± 2.8%/dB).   
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Table 7 shows the descriptive data based on word position in the sentence for 

babble noise. 

 

Table 7 

 

Pre-normalisation (measured) descriptive statistics of Lmid and slope based 

on word position in babble noise. 

Position Mean Lmid (dB SNR) SD Mean slope (%/dB) SD 

Name -16.8 2.0 11.5 2.9 

Verb -10.4 2.5 8.6 2.2 

Number -18.1 3.6 10.7 2.6 

Adjective -14.0 1.9 11.5 2.7 

Object -13.2 2.8 8.9 2.1 

 

As in the constant noise condition, the names (Lmid = -16.8 dB SNR ± 2.0 dB) 

and numbers (Lmid = -18.1 dB SNR ± 2.6 dB) were the easiest word positions 

to detect. The names (11.5%/dB ± 2.9%/dB) and adjectives (11.5%/dB ± 

2.7%/dB) had the steepest mean slopes, a reflection of the small distribution of 

Lmid measures in these conditions (SD = 2.0 dB for names, SD = 1.9 dB for 

adjectives). Also as in the constant noise condition, the verb (Lmid = -10.4 dB 

SNR) and object (Lmid = -13.2 dB SNR) positions were the most difficult to 

detect. Thus, the same pattern of word difficulties was observed regardless of 

the masking noise used. 

The word-specific midpoints were then adjusted to equal the mean pre-

normalisation Lmid across fragments (Lmid = -14.9 dB SNR ± 2.9 dB). The 
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required adjustment prior to applying the limit was 3.4 dB (± 3.8 dB). Twenty 

words (out of 49, or 41%) required an adjustment in excess of the ± 3 dB limit. 

With the limit applied, the mean magnitude of adjustment was 2.2 dB (± 0.9 

dB). Figure 21 shows the pre-normalised and predicted post-normalisation 

psychometric functions for each of the five word positions.  
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Figure 21. Babble noise pre-normalisation (Panel A) and post-normalisation (Panel B) 

psychometric functions.  
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In general, compared to constant noise (Figure 20), the predicted post-

normalisation functions do not have as much overlap. This is likely due to the 

greater proportion of words (41%) that required adjustment in excess of the 

adjustment limit compared to the constant noise condition (14%); therefore, 

the Lmid of affected words are predicted to better approximate—but not 

equal—the mean pre-normalisation Lmid. The mean post-normalisation Lmid is 

predicted to be -14.9 dB SNR ± 1.9 dB, denoting a reduction in the standard 

deviation of word-specific Lmid of 1.7 dB. 

 

5.3 Test-specific slope 

The normalisation procedure can be evaluated by examining the slope 

of the test-specific intelligibility function (s50test) based on the measured pre-

normalisation data and the predicted post-normalisation data. The measured 

post-normalisation data will also be obtained for comparison; due to time 

constraints, this was not able to be achieved as part of the current project, and 

will be the subject of follow-on research. 

The test-specific intelligibility function equates to the convolution of 

the mean word-specific functions and the standard deviation of SRTs 

(Kollmeier, 1990), as described in the probabilistic model presented in 

equation (3): 
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(3) 

𝑠50𝑡𝑒𝑠𝑡 =  
𝑠𝑤𝑜𝑟𝑑

√1 +
16 𝑆𝑤𝑜𝑟𝑑

2 × 𝜎𝐿𝑚𝑖𝑑
2

(ln (2𝑒
1
2 − 1 + 2𝑒

1
4))

2

 

Equation adapted from Hochmuth et al. (2012). 

 

where sword is the mean slope of the word-specific functions, and σLmid is the 

standard deviation of word-specific Lmid measures. A reduction in the standard 

deviation of word-specific Lmid measures can be observed when word 

presentation levels are adjusted, which in effect increases the slope of the test-

specific function (Hochmuth et al., 2012). Unfortunately, due to time 

constraints, measured post-normalisation data was unable to be obtained. 

However, the predicted outcomes for s50test for both constant and babble noise 

will be evaluated here compared to the initial measured pre-normalisation 

values. A summary of this data for both constant and babble noise conditions 

is provided in Table 8. 
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Table 8 

Measured pre-normalisation and predicted post-normalisation word-specific 

sensitivity (sword) and difficulty (Lmid). 

Noise M. mean sword  

(%/dB) 

M. mean Lmid 

(dB SNR) 

SD  

(dB) 

P. Mean Lmid 

(dB SNR) 

P. SD 

(dB) 

Constant 14.4 -13.6 2.4  -14.0 0.8 

Babble 10.3 -14.0 3.6  -14.9 1.9 

‘P.’ refers to a predicted post-normalisation value, ‘M.’ Refers to a measured value. 

 

The pre-normalisation (measured) test-specific slope (s50test) for 

constant noise was calculated to be 0.108 dB
-1

 or 10.8%/dB. With the 

adjustment applied, the standard deviation is predicted to be 0.8 dB, a 

reduction from the measured 2.4 dB. The test-specific slope (s50test) is 

predicted to increase to 0.139 dB
-1

 or 13.9%/dB, denoting a 3.1%/dB increase 

in slope with normalisation. 

For babble noise, the pre-normalisation test-specific slope was 0.062 

dB
-1

 or 6.2%/dB. With the adjustment, and the removal of “shirts”, the 

standard deviation of word-specific Lmid was reduced from 5.0 dB to 3.6 dB, 

resulting in a measured pre-normalisation slope of 7.5%/dB. With the 

adjustment applied, the predicted standard deviation of Lmid was 1.9 dB. The 

predicted post-normalisation test-specific slope increased to 9.3%/dB; a 

3.1%/dB increase in slope from the original measured data. A comparison of 

the test-specific parameters with published values will be provided in the 

discussion section (Chapter 4). 
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5.4 Part II. Generation of sentence lists 

Based on the data provided in the previous section, 30 base lists of 

20 sentences were generated for each noise condition, which will be used to 

obtain measured post-normalisation data. This data would be used to 1) 

evaluate the normalisation process carried out here (i.e. obtain the measured 

post-normalisation test-specific slope), 2) evaluate the performance of 

UCAMST in lists (i.e. with sentence scoring), and 3) evaluate the test re-test 

reliability of these lists.  

The lists were constructed in Microsoft Excel using the word-specific 

slopes (sword) generated from the word normalisation process and the predicted 

post-normalisation Lmid for each word.  The average of the five word-specific 

slopes in each sentence was taken to generate the sentence-specific slope 

(sentence). The predicted list-specific slope (s50list) was calculated by 

probabilistic modelling using the mean slope across words (sword), and 

predicted standard deviation of Lmid (σLmid) in each list. The data was used to 

ensure lists were homogeneous in terms of 1) the distribution of sentence-

specific within each list (i.e. similar minimum and maximum ssentence and 

σssentence), and 2) the predicted list-specific slopes within each noise condition. 

In order to maximise the sensitivity and reliability of the lists, the 

fragments and words which produced abnormal psychometric function (i.e. 

“wins”, or ‘nine_good’) or required excessive adjustment (“shirts”) were 
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avoided in generating the lists in the affected noise condition. The words 

“wins” and “shirts” were replaced at random with one of the other nine 

alternatives in that sentence position. Where possible, word substitutions were 

made to reduce the distribution of sentence-specific and list-specific slopes. 

All included sentences were unique in that no sentence was repeated both 

within, and between, noise conditions. Table 9 shows the proportion of total 

occurrences (n = 3000) contributed by each matrix word in the final base lists 

for constant and babble noise.  
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Table 9 

 

Proportion (%) of matrix words in constant and babble noise lists. 

Word Constant % Babble %  Word Constant % Babble % 

amy 2.00 2.07  old 2.00 2.00 

big 2.00 2.13  oscar 2.00 1.90 

bikes 2.00 2.23  peter 2.00 2.03 

books 2.00 2.27  rachel 2.00 2.10 

bought 2.00 2.07  red 2.00 2.00 

cheap 2.00 2.00  sees 2.00 2.40 

coats 2.00 2.27  ships 2.00 2.20 

dark 2.00 1.90  shirts 2.00 0.00 

david 2.00 2.03  shoes 2.00 2.17 

eight 2.00 2.00  six 2.00 2.07 

four 2.00 2.20  small 2.00 1.97 

gives 2.00 2.40  sold 2.00 2.73 

good 2.00 1.87  some 2.00 2.10 

got 2.00 2.17  sophie 2.00 2.07 

green 2.00 2.00  spoons 2.00 2.20 

hannah 2.00 1.77  ten 2.00 2.03 

has 2.00 1.80  thomas 2.00 1.90 

hats 2.00 2.23  those 2.00 1.93 

kathy 2.00 2.07  three 2.00 2.00 

kept 2.00 2.17  toys 2.00 2.23 

large 2.00 2.03  twelve 2.00 1.97 

likes 2.00 2.23  two 2.00 2.03 

mugs 2.00 2.20  wants 2.00 2.03 

new 2.00 2.10  william 2.00 2.07 

nine 2.00 1.67  wins 2.00 0.00 

 

Word frequencies were homogeneous in constant noise; there was 

slight variation in babble due to the exclusion of “wins” and “shirts”. Thus, 

unlike in constant noise, the predicted list-specific slopes (s50list) were not 

equivalent to the test-specific slope (s50test) in babble noise, necessitating the 

calculation of this value for each list. Table 10 and Table 11 display the 
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resulting descriptive statistics for finalised lists in the constant and babble 

noise conditions, respectively.  
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Table 10 

 

Constant noise list descriptive statistics. 

 

List  

Mean sword 

(%/dB) 

σssentence 

(%/dB) 

Min. 

ssentence  

Max. 

ssentence 

P. Mean Lmid   

(dB SNR) 

P. σLmid 

(dB) 

P. s50list 

(%/dB) 

1 14.4 1.3 12.0 17.0 -14.0 0.8 13.9 

2 14.4 1.5 11.3 16.8 -14.0 0.8 13.9 

3 14.4 1.4 11.3 17.2 -14.0 0.8 13.9 

4 14.4 1.4 12.3 16.6 -14.0 0.8 13.9 

5 14.4 1.3 12.3 17.2 -14.0 0.8 13.9 

6 14.4 1.0 12.5 16.6 -14.0 0.8 13.9 

7 14.4 0.9 12.6 16.7 -14.0 0.8 13.9 

8 14.4 1.0 12.3 16.4 -14.0 0.8 13.9 

9 14.4 1.0 11.9 16.2 -14.0 0.8 13.9 

10 14.4 1.0 12.8 16.3 -14.0 0.8 13.9 

11 14.4 1.6 11.4 17.3 -14.0 0.8 13.9 

12 14.4 0.9 12.9 16.8 -14.0 0.8 13.9 

13 14.4 1.7 11.5 17.7 -14.0 0.8 13.9 

14 14.4 1.3 11.7 17.4 -14.0 0.8 13.9 

15 14.4 1.3 12.0 17.0 -14.0 0.8 13.9 

16 14.4 1.4 12.2 16.7 -14.0 0.8 13.9 

17 14.4 1.4 12.0 17.0 -14.0 0.8 13.9 

18 14.4 1.3 12.3 16.9 -14.0 0.8 13.9 

19 14.4 1.0 12.9 16.2 -14.0 0.8 13.9 

20 14.4 1.1 12.7 16.2 -14.0 0.8 13.9 

21 14.4 1.2 12.0 16.4 -14.0 0.8 13.9 

22 14.4 1.4 11.5 17.7 -14.0 0.8 13.9 

23 14.4 1.2 12.0 16.9 -14.0 0.8 13.9 

24 14.4 0.9 13.0 16.7 -14.0 0.8 13.9 

25 14.4 1.2 12.1 17.7 -14.0 0.8 13.9 

26 14.4 1.4 12.0 17.3 -14.0 0.8 13.9 

27 14.4 1.3 12.5 17.0 -14.0 0.8 13.9 

28 14.4 1.0 12.4 16.9 -14.0 0.8 13.9 

29 14.4 1.2 12.2 16.9 -14.0 0.8 13.9 

30 14.4 1.5 11.4 16.5 -14.0 0.8 13.9 

Mean 14.4 1.2 12.1 16.9 -14.0 0.8 13.9 

SD 0.0 0.2 0.5 0.4 0.0 0.0 0.0 

P = predicted. 
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Table 11 

 

Babble noise list descriptive statistics. 

List 

Mean sword 

(%/dB) 

σssentence 

(%/dB) 

Min. 

ssentence 

Max. 

ssentence 

P. Mean Lmid   

(dB SNR) 

P. σLmid 

(dB) 

P. s50list 

(%/dB) 

1 10.3 1.2 7.4 12.2 -14.8 1.5 9.6 

2 10.2 1.1 8.5 11.9 -14.8 1.8 9.2 

3 10.2 1.1 7.9 12.6 -14.9 1.8 9.2 

4 10.1 1.1 8.1 12.4 -14.9 1.8 9.2 

5 10.2 1.0 8.1 11.9 -14.9 1.8 9.3 

6 10.4 0.9 8.8 12.5 -14.8 1.6 9.6 

7 10.4 1.2 8.5 12.9 -14.8 1.8 9.3 

8 10.3 1.3 8.1 13.3 -14.8 1.5 9.6 

9 10.2 0.9 9.0 12.2 -14.9 1.8 9.2 

10 10.3 1.0 8.2 11.9 -14.8 1.6 9.5 

11 10.3 1.0 8.6 12.9 -14.7 1.6 9.5 

12 10.4 1.3 8.2 12.5 -14.9 1.8 9.4 

13 10.3 1.1 7.6 12.0 -14.8 1.9 9.3 

14 10.2 1.1 7.9 11.8 -14.8 1.6 9.4 

15 10.4 1.3 8.2 12.5 -14.9 1.8 9.4 

16 10.3 1.3 7.6 12.3 -14.9 1.9 9.2 

17 10.2 0.9 8.6 12.3 -14.9 1.8 9.3 

18 10.2 1.1 8.3 13.5 -14.9 1.8 9.3 

19 10.3 1.4 8.0 13.6 -14.9 1.8 9.3 

20 10.2 0.6 9.2 11.4 -14.9 1.7 9.3 

21 10.3 0.9 8.1 11.6 -14.9 1.8 9.3 

22 10.2 1.3 8.1 12.6 -14.9 1.8 9.2 

23 10.4 1.0 8.2 12.8 -14.8 1.5 9.6 

24 10.3 1.0 8.3 12.4 -14.8 1.9 9.2 

25 10.3 1.1 8.1 11.9 -14.9 1.8 9.3 

26 10.3 1.1 8.6 12.6 -14.8 1.5 9.6 

27 10.3 0.9 8.7 11.8 -14.9 1.8 9.3 

28 10.2 1.4 7.9 13.0 -14.9 1.8 9.3 

29 10.5 1.2 8.0 12.3 -14.8 1.6 9.6 

30 10.3 0.8 8.8 11.9 -14.9 1.8 9.3 

Mean 10.3 1.1 8.3 12.4 -14.9 1.7 9.4 

SD 0.1 0.2 0.4 0.5 0.1 0.1 0.1 

P = predicted. 
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Comparisons between lists within each noise condition will be made 

first. As word-specific functions all had adequate fits in constant noise, each 

list contained exactly two occurrences of each matrix word. Thus, as lists are 

comprised of the same matrix word-specific slopes, the list-specific slope is 

predicted to be the same across lists (M = 13.9%/dB ± 0.0%/dB). The babble 

noise (M = 9.4%/dB) is expected to have slightly more variation in list-

specific (± 0.1%/dB).  

With regards to within-list comparisons, the mean distribution of 

sentence-specific slopes within each list are comparable (mean σssentence = 

1.2%/dB in constant noise; mean σssentence = 1.1%/dB in babble noise). This 

was due to the larger proportion of words and word pairs that were excluded, 

necessitating the substitution of other words. The complete sentence lists can 

be found in Appendix B. The following section will compare the values 

obtained here with those of international MSTs. 

 

5.5 Comparison of parameters with international MSTs 

5.5.1 Comparison of test-specific slope (s50test) 

A comparison shall first be made between the measured pre-

normalisation and predicted post-normalisation test-specific slopes of the 

UCAMST with those of published MSTs, as summarised in Table 12. 
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Table 12 

 

Test-specific slopes (s50test) based on measured pre-normalisation and 

predicted post-normalisation data across MSTs. Emboldened data is from this 

project (NZ English). 

Language
6
 Noise

7
 M. Pre-norm. 

s50test (%/dB) 

P. Post-norm. 

s50test (%/dB) 

M. Post-norm. 

s50test (%/dB) 

Danish SS 8.7 13.2 13.2 

Polish B 13.9 18.2 17.1 

Spanish SS 10.9 16.0 13.2 (open-set) 

14.0 (closed-set) 

Italian SS 9.2 15.2 13.3 

NZ English SS 10.8 13.9 * 

 B 6.2 9.3 * 

M. = Measured, P. = Predicted. 

* To be confirmed by follow-on research. 

 

The measured pre-normalisation data will be examined first. The test-specific 

slope in constant noise (10.8%/dB) was steeper than those of the Danish 

(8.7%/dB) and Italian (9.2%/dB) MSTs. On the other hand, the test-specific 

slope for the babble noise (6.2%/dB) was lower than all published values, 

reflecting the larger distribution of word-specific Lmid measures. A small 

                                                 
6 Author key: Danish (Wagener et al., 2003), Polish (Ozimek et al., 2010), Spanish (Hochmuth et al., 

2012), and Italian (Puglisi et al., 2014). 

7 Noise key: SS = Speech-shaped noise, B = Babble noise. 
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increase to this slope (1.3%/dB) was noted with the removal of “shirts” from 

the base matrix.  

Turning now to predicted values, the test-specific slope in constant 

noise (13.9%/dB) is comparable with the measured post-normalisation test-

specific slopes of the Italian (13.3%/dB), Danish (13.2%/dB), and Spanish 

(14.0%/dB) MSTs; however, this is lower than the predicted values of these 

MSTs with the exception of the Danish version (13.2%/dB). The predicted 

test-specific slope for babble noise (9.3%/dB) is lower than both predicted and 

measured post-normalisation slopes listed in Table 12. Of particular relevance 

is a comparison with the Polish MST (18.2%/dB and 17.1%/dB, respectively), 

which also used babble noise.   

5.5.2 Comparison of predicted list values 

A comparison will also be drawn between the predicted list values 

offered in this project, and measured list values of international MSTs. The 

test-specific slope assumes equal frequencies of included data, and differs 

from list-specific slope in the current project in that babble lists used slightly 

heterogeneous word frequencies due to word exclusions. List-specific data 

also provided inter-list variability, and the mean Lmid for each test will also be 

discussed here. A summary of list-specific and mean Lmid data is provided in 

Table 13. 
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Table 13 

 

Predicted post-normalisation list-specific parameters (s50list) of NZ English 

(emboldened) in comparison with measured post-normalisation parameters of 

international MSTs.  

Author(s) Language Noise Mean SRT  

(dB SNR) 

Mean    

s50list (%/dB) 

Wagener et al. (2003) Danish SS -8.4 ± 0.2 12.6 ± 0.8   

Ozimek et al. (2010) Polish B -9.6 ± 0.2 17.1 ± 1.5 

Hochmuth et al. 

(2012) 

Spanish SS -6.8 ± 0.2 13.1 ± n.a. 

Houben et al. (2014) Dutch SS -8.4 ± 0.2 10.2 ± 0.9 

Dietz (2014) Finnish SS -10.1 ± 0.1 16.7 ± 1.2 

Puglisi et al. (2014) Italian SS -7.3 ± 0.2 13.3 ±1.2 

Current NZ English SS -14.0 ± 0.0*  13.9  ± 0.0** 

Current NZ English B -14.9 ± 0.1* 9.4 ± 0.1** 

* predicted based on applied adjustments. 

** predicted based on probabilistic modelling (see equation 3). 

 

The mean list-specific slope for constant noise is predicted to be steeper than 

the measured slope equivalents for the Danish, Spanish, Dutch, and Italian 

MSTs.  The measured mean list-specific slope of the Finnish version is 

2.3%/dB steeper than the predicted UCAMST function. With regard to babble 

noise comparisons, the predicted list-specific slope is 6.8%/dB shallower than 

the Polish version. In terms of difficulty (mean Lmid), the NZ English version 

is predicted to be detectable at lower SNRs than the other MSTs. This is 

because, as mentioned earlier in this chapter, performance was measured 

binaurally, as opposed to monaurally. 
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Chapter 4 

Discussion 

 

9.1 Study 1: Noticeability of video judders 

9.1.1 Overview  

“Judders”, or image jerks, were a by-product of the complex editing 

process in which unedited original sentences were cut and reconstructed to 

create so-called “synthesised” sentences (Trounson, 2012).  As synthesised 

sentences comprise the majority of possible auditory-visual sentences, it was 

necessary to establish a subjective index of how “noticeable” the judders were 

compared to the unedited “original” sentences from which they were 

constructed. This constituted the main goal of Study 1. Based on this data, 

sentences with minimal noticeable judder were selected for inclusion in the 

auditory-visual UCAMST. The following section will provide a commentary 

relating the results of Study 1 to the initial research questions. 

 

9.1.2 Synthesised sentences vs. no judder sentences 

It was initially hypothesised that the mean rating score of synthesised 

and no judder sentences would significantly differ. This initial prediction was 

confirmed, as the synthesised sentences were assigned, on average, 
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significantly higher rating scores than no judder sentences. The no judder 

sentences were assigned a mean pixel difference value (M = 0.59) that 

approximated ‘0’ (“no noticeable judder”). This observation suggests that, in 

general, the requirements of the task were understood, as participants were 

correctly assigning low rating scores to sentences without judders. Why the 

mean rating score for this condition did not better approximate 0 is unknown; 

there are, however, two potential explanations. Firstly, imprecise placement of 

the cursor on the rating scale may have resulted in a rating score response that 

did not represent the intended response. Secondly, experimental evidence has 

shown individual response styles to differ; some participants respond with the 

extreme values of the scale, whereas some favour more central values. This 

response style may be related to personality factors (Naemi, Beal, & Payne, 

2009). A tendency towards central values may have predominated in Study 1. 

A closer analysis of the results in Study 1 reveals how small the 

relative difference in judder severity is between sentences with no judder and 

sentences with Tier 2 judder. Tier 2 sentences had pixel difference values 

between 300,000 to 400,000, which represented a 0.38% (300,000/78,643,200 

x 100) to 0.51% (400,000/78,643,200 x 100) absolute change in pixel 

difference value between transitions, compared to 0.23% to 0.31% for the no 

judder sentences. A comparison of the absolute change in pixel difference 

value suggests that small disruptions to the smoothness of video transition 

translate to a large difference in the subjective measure of noticeability (M = 



 

103 

 

0.59 vs. M = 3.00). This relationship will be further elucidated with regards to 

the second aim of Study 1, as detailed in the following section. 

 

9.1.3 Relationship between pixel difference value and rating score 

The second aim of Study 1 was to investigate the relationship between 

the average pixel difference value and rating score. The findings were 

congruent with the initial prediction: the regression model confirmed that 

average pixel difference value was a significant predictor of rating score. The 

relationship constituted a large effect size (Pearson’s r = 0.64)
8
, and average 

pixel difference value accounted for approximately 41% of the variation in 

rating score. This represented a slightly larger proportion of variance 

accounted for than by judder number (38.1%); thus, judder severity was 

slightly more influential of rating score than the number of judders per 

sentence. Combined, these predictors accounted for almost half (48%) of the 

total variance in rating score. The 52% variation unexplained may be due to a 

number of factors; one potential source of variation is individual differences in 

response style, as discussed in the previous section. For example, participant 9 

assigned a maximum rating score of 3.01, whereas other participants provided 

a greater range of rating scores across the 10-point scale. The threshold for 

what each participant deemed “noticeable” may depend on personality related 

                                                 
8 Based on Cohen’s rule of thumb (see Cohen, 2003). 
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factors, such as decisiveness (Naemi et al., 2009). Other individual differences, 

notably the acuity of the individual’s visual system, and factors related to 

attention or fatigue, may also have influenced the rating scores. It is also 

possible that, because the average pixel difference value accounted for change 

in head position only, the unexplained variance is due to perceived noticeable 

judder in other regions of the image (i.e. the actress’s mouth and eyes). 

The model equation describing the relationship between average pixel 

difference value, which was the best predictor, and rating score may be utilised 

as an indication of the level of judder severity that will result in the requisite 

level of noticeable judder. This model may be of use in the development of 

future auditory-visual MSTs. However, the accuracy of this method is limited 

as it is based on averages, and therefore should be used as a guide only. 

 

9.2 Sentences for inclusion in the auditory-visual UCAMST 

As a whole, the evidence from Study 1 warranted a compromise 

between quality (i.e. the “noticeability” of the judders) and quantity (i.e. the 

number of usable sentences) in the selection of sentences for the auditory-

visual UCAMST. This compromise was reached by choosing synthesised 

sentences with minimal noticeable judder. It was decided that Tier 2 sentences 

(M= 3.31) had an acceptable level of judder that would be of minimal 

distraction during UCAMST testing. The Tier 2 limit elucidated a repertoire of 
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2,494 sentences for inclusion in the auditory-visual UCAMST, including no 

judder sentences, which were sourced from the pool of sentences used to 

generate test materials for Study 1. Preferential selection of sentences with no 

judder (n = 1233) is advised to maintain the least noticeable judder overall. 

Interestingly, when the “Tier 2” criterion was applied to the 3,000 transitions, 

fewer transition 2 fragment combinations (n = 521) met this criterion than 

transition 1 (n = 890) and transition 3 (n = 872). Thus, the pool of candidate 

sentences was limited by the fewer acceptable transition 2 fragment 

combinations.   

 

9.3 Study 1: Limitations and future directions 

In summary, the main goal of Study 1 was to establish a collection of 

sentences for use in the auditory-visual UCAMST. Based on these results, 

sentences with minimal noticeable judder were selected as a means of 

increasing the number of available sentences. It is important to note that the 

conditions under which participants performed Study 1 may limit the 

applicability of the results. Participants were exclusively instructed to rate 

judders, resulting in active attendance to the judders. By contrast, a naive 

client performing the UCAMST may not notice the judders—in particular 

those with low pixel difference values (Tier 2 or 3)—as attention will, at least 

in part, be focused on interpreting the sentences. This seems a compelling 
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reason to argue that the rating scores obtained here may be liberal estimates of 

how noticeable the judders are during performance of the UCAMST.  

The video judders were an unfortunate by-product of the complex 

editing process and were largely attributed to changes in head position across 

the transitions (Trounson, 2012). This endures as a limitation of the current 

project, which has revealed on average a significant “noticeability” of these 

artefacts compared unedited no judder sentences. Although a large a sample of 

candidate sentences for the auditory-visual UCAMST were provided (n = 

2494), approximately one-half of this sample will exhibit one or two slight 

judders (n = 1261). In the unlikely event that a larger sample size of auditory-

visual sentences is desired, one alternative would be to re-record sentences 

using measures that better support the actress’s head and neck (Trounson, 

2012). For example, in recording the Malay version of the UCAMST 

(Jamaluddin & O’Beirne, in progress), a plaster cast was used to hold the 

speaker’s head in place underneath her headscarf. Head mounted cameras may 

also be considered as a means of affixing head position on the lens. 

Nonetheless, it is expected the sample of sentences produced here is 

sufficiently large, and low in noticeable judder, to allow for the continued use 

of these recordings. The next logical step for future research is to compile 

equivalent lists from these recommended sentences, which will constitute 

materials for auditory-visual testing. 
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9.4 Study 2: Normalisation of the auditory-alone UCAMST 

9.4.1 Overview 

Study 2 was comprised of two complementary phases; each carried out 

in both constant speech-shaped and six-talker babble noise. The aim of Phase I 

was to normalise the difficulty of matrix words and fragments by adjusting 

individual word-specific Lmid measures to equal the mean pre-normalisation 

Lmid across fragments. It was predicted that, based on pre-normalisation data, 

the participants would be more sensitive to constant noise (s50test), and would 

also find the UCAMST more difficult (mean Lmid), compared to the babble 

noise condition. We also hypothesised that the normalisation process would 

result in a predicted increase to the test-specific slope. Due to the unique way 

in which the audio component mapped onto fragments, data could be 

normalised by fragment or by word; both methods were incorporated in the 

development of sentence lists in Phase II. In this second phase, 30 lists of 20 

sentences were generated in each noise condition. The sentences were 

homogeneous in terms of: 1) the overall proportion of word occurrences 

within each noise condition, 2) the within-list distribution of sentence-specific 

slopes (ssentence), and 3) the distribution of predicted list-specific slopes (s50list). 

It is important to note that the mean Lmid measures observed in this study are 

lower than published values as materials were presented binaurally. This 

section will discuss the results of Study 2 in a chronological fashion. 
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9.4.2 The effect of masking noise on performance 

Firstly, the influence of masking noise on performance of the 

UCAMST in terms of the difficulty (Lmid) and sensitivity (s50test) will be 

considered. As predicted, the pre-normalisation data confirmed that 

participants found it slightly harder to detect words in constant noise (Lmid = 

-14.2 dB SNR) than in babble noise (Lmid = -14.9 dB SNR).  The direction of 

this difference is consistent with what is expected with masking release, in that 

listeners take advantage of momentary dips in the envelope to detect the target 

signal (Peters et al., 1998; Wagener & Brand, 2005). However, the relative 

separation of the mean Lmid measures in this study is small (0.7 dB). One 

possible reason for this is the number of talkers in the masker, which has been 

shown to influence the masking capability of babble.  For example, inWagener 

and Brand (2005), normal-hearing listeners performed significantly better in a 

one-talker babble (SRT = -21.6 dB SNR) compared to a six-talker babble 

(SRT = -9.9 dB SNR). Furthermore, a 2.7 dB difference separated the mean 

listener SRT in six-talker babble from that in constant speech-shaped noise 

(-6.2 dB SNR). The comparatively smaller separation observed in the 

UCAMST data (0.7 dB) may be attributed to the use of a closed-set 

presentation format.  Elsewhere, Simpson and Cooke (2005) found that 

gradually increasing the number of talkers non-monotonically decreased the 

intelligibility of consonants. The result was ascribed to a number of factors, 

including the increasingly more non-stationary (i.e. non-fluctuating) nature of 
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babble maskers with a large number of talkers (see Simpson & Cooke, 2005, 

for more detail). In summary, listener performance on the UCAMST is not 

expected to vary greatly between the constant and babble noise conditions. 

With regards to sensitivity, the constant noise had a steeper measured 

test-specific slope than the babble noise, which is consistent with both the 

initial hypothesis and the experimental evidence comparing babble and 

speech-shaped noises (Francart, 2011; Wagener & Brand, 2005). The utility of 

each noise type in the UCAMST will be detailed in the following section in 

the context of the predicted post-normalisation data. 

 

9.4.3 Normalisation of the UCAMST 

The second aim of Study 2 was to normalise the difficulty of the matrix 

words in both constant and babble noise. The efficacy of this process was 

calculated using a probabilistic model (equation 3, Chapter 3) described by 

Kollmeier (1990). If the level adjustment made to pre-normalisation word-

specific Lmid measures effectively decreases the distribution of post-

normalisation word-specific Lmid measures (σLmid), a large increase in the test-

specific slope (s50test) will be observed. Indeed, consistent with the initial 

hypothesis, an increase in the predicted test-specific slope in both constant 

(3.1%/dB) and babble noise (3.1%/dB) was observed with probabilistic 

modelling. This indicates that the adjustments made to pre-normalisation data 
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resulted in a theoretical decrease in the distribution of Lmid measures, 

homogenising the difficulty of the matrix words.  

In comparing the two masking noises, the constant noise was predicted 

to have a steeper test-specific slope (13.9%/dB) than the babble (9.3%/dB). 

This has implications for the selection of masking noise to use during 

UCAMST testing in both clinical and research contexts. Generally a steep 

slope is desirable as it denotes the reliability of the test, and in effect, the 

accuracy of the client’s SRT (Ozimek et al., 2010). In clinical practice, the 

audiologist has a limited amount of time to complete a large battery of 

audiological tests, which are typically repeated at follow-up appointments. 

Therefore, a test that can quickly and accurately estimate the SRT would be a 

valuable addition to the audiological test battery, as it could potentially save 

time. In contrast, babble noise may be considered to have higher face-validity, 

as it simulates everyday contexts where the masker is largely speech (Killion 

et al., 2004; Plomp, 1978). This may give the audiologist a better idea of what 

benefit the rehabilitation plan would have to the individual’s life. The 

UCAMST enables a choice between two types of noise based on the specific 

goals of rehabilitation or research.  However, before firmer conclusions can be 

drawn on the sensitivity of the UCAMST in either noise type, measured post-

normalisation values are required to confirm the efficacy of the adjustments 
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made in this project. Future considerations for the normalisation of the 

UCAMST are detailed in section 9.6. 

9.4.4 Comparison of test-specific slopes with international MSTs 

The results section comprised a comparison of UCAMST parameters 

with those of international MSTs (section 3.5). In general, the constant noise 

condition produced predicted test-specific and list-specific parameters 

comparable with the majority of international MSTs, which is consistent with 

the initial hypothesis. However, contrary to the same hypothesis, the babble 

noise condition had a much lower predicted slope value (9.3%/dB) when 

compared to the Polish version (17.1%/dB), which also used babble noise. As 

discussed previously, a comparatively shallow slope is expected when 

measuring performance in a fluctuating masker as compared to a speech-

shaped noise (Francart, 2011; Wagener & Brand, 2005). The slope estimation 

in the babble condition may also have been affected by the small sample size 

used here (n = 8) compared to the Polish version (n = 30) (Ozimek et al., 

2010). Further discussion of sample size is provided in section 9.5 (“Study 2: 

Limitations”).  

Regarding cross-language comparison, an advantage of the MST 

format is that it permits comparability across languages, allowing for listener 

performance to be compared internationally (Zokoll et al., 2013). However, 

the test-specific slope may be influenced by the unique speech qualities of 
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each language, such as speed and articulation (Houben et al., 2014). This view 

is held by Zokoll et al. (2013), who noted a similarity in reference slopes 

between Polish and Russian MSTs, both of which are Slavic languages. In a 

similar manner, the unique characteristics of NZ English may affect the 

parameters of the psychometric function. For example, its rhythm has been 

found to differ from other forms of English due to vowel duration (Nokes & 

Hay, 2012). Slight variations between languages may, therefore, result from 

language-specific factors.  

9.4.5 Homogeneity of test lists 

With regards to inter-list variation in predicted list-specific slopes, the 

constant noise was predicted to be homogeneous, as the same word 

compositions were used in each list (13.9%/dB ± 0.0%/dB). However, word 

exclusions in the babble condition resulted in slightly different word 

compositions between lists. In spite of this, there is little predicted inter-list 

variation in slopes, with a mean list-specific slope of 9.4%/dB and standard 

deviation of 0.1%/dB. As these are predicted values, one should interpret them 

as such; this will be discussed further in conjunction with plans for evaluation 

of the UCAMST in section 9.6 (“Study 2: Future research”). 
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9.5 Study 2: Limitations  

9.5.1 Sample size 

The current project was limited by the small sample size, which 

particularly affected data collection in the babble noise condition. The small 

sample size was attributed to time constraints that arose due to delays in the 

development of the normalisation software. Follow-on work may consider the 

recruitment of further participants, particularly in the babble noise condition, 

to improve the accuracy of slope and Lmid estimates. 

9.5.2 Data exclusion 

Related in part to sample size, one main drawback of the current study 

was the large proportion of data excluded in Study 2. In Phase I, a small 

proportion of fragments failed to produce adequate function fits with logistic 

modelling (see equation 1) due to 1) floor effects (i.e. SNR too low), 2) ceiling 

effects (i.e. SNR too high), or 3) unreliable or inconsistent performance across 

presented SNRs. Affected fragments were not included in Phase II to 

maximise the sensitivity, and therefore reliability, of the sentence lists. The 

attrition of usable data was expected: poor function fits have been noted in 

published MSTs using the logistic model. In brief, the Spanish version saw 

eight out of 500 (1.6%) word realisations owing to poor model fits (Hochmuth 

et al., 2012), and the Finnish version saw 15 out of 500 (3%) removed due to 

exceeding the adjustment limit by a further 2 dB (Dietz, 2014). The relatively 



 

114 

 

large proportion of fragments excluded in this project may be ascribed to a 

comparatively smaller sample size, as discussed in section 9.5.1. As each 

participant contributed 4 data points to each file fragment (across the four 

presented SNRs), each fragment garnered 36 data points in constant noise, and 

32 data points in babble noise. The difference in sample size may therefore 

have contributed, at least in part, to the threefold larger proportion of data 

removed from the babble condition (12%, n = 8) compared to the constant 

noise condition (4%, n = 9).  Increasing the sample size may improve the fit of 

the function by minimising the proportion of data that would warrant removal.  

The relative ease of the babble noise condition compared to constant 

noise, as discussed earlier in this chapter in a comparison of Lmid measures (see 

section 9.4.2), may also be associated with the larger proportion of data 

excluded from this condition. The dominant reason for fragment exclusion 

from the constant noise condition was ceiling effects (n = 12); thus, as 

detection of matrix words in the babble condition was, on average, easier than 

in constant noise, one may expect the proportion of file fragments “hitting the 

ceiling”  of the measurement range to increase. As 24 fragments warranted 

exclusion from the babble condition due to ceiling effects, this seems a likely 

rationale. In practice, floor and ceiling effects can be avoided by broadening 

the range of SNRs, thus essentially extending the “floor” and “ceiling” of the 

measurement range.  
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Alternatively, the inability to fit psychometric functions may be the 

product of inherent word-specific characteristics, and in this manner, 

impervious to both the type of noise and sample size. The trends observable in 

excluded fragments propound this view.  A large proportion of fragments 

containing the word “nine” were excluded from both the constant (n = 4) and 

babble (n = 7) noise conditions due to a ceiling effect. Descriptive analyses in 

Study 2 found—regardless of noise type—the ‘name’ and ‘number’ words 

were on average the easiest to detect, and therefore, at greater risk of ceiling 

effects.  This suggests that there is a relationship between the grammatical role 

of the word and the rate of exclusion (due to ceiling and floor effects). Another 

relevant word-specific characteristic is its phonemic composition. Liu and 

Eddins (2008) provide confirmatory evidence that certain vowels in American 

English had lower thresholds in LTSS noise. The phoneme /I/ (i.e. “wins”) had 

a high detection threshold compared to the 11 other vowel sounds included in 

the study. The authors attributed differences in detection thresholds to the 

specific vowel spectra. It is quite possible that—particularly at unfavourable 

SNRs—the participants based word selection on detection of the vowel 

component. Similarly, word selection may have been influenced by the 

phonemic composition of other words in the matrix. For example, the word 

“shirts” was removed from the babble condition as it was very difficult for the 

participants to detect (Lmid = 9.7 dB SNR). “Shirts” also proved difficult to 

detect in constant noise, although not quite to the same extent (Lmid = -8.0 dB 
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SNR). The reason for this apparent difficulty could be due to a confusion of 

“shirts” with “ships”, which both contain the /sh/ sound. In addition to 

phonemic composition, other contributing factors worthy of consideration are 

word frequency and consonant sound.   

 

9.6 Study 2: Future research 

9.6.1 Evaluation of lists 

Study 2 provided predicted post-normalisation parameters based on 

adjustments made to measured data, and we emphasise that these should be 

interpreted as predicted estimates until further validation of these parameters 

can be ascertained. The lists generated in this project should be subjected to 

evaluation to establish: 1) the efficacy of the normalisation procedure carried 

out here, by comparing predicted and measured post-normalisation test-

specific slopes, and 2) test re-test reliability of the generated lists. Evaluating 

the lists in these ways would constitute an important step in establishing the 

UCAMST as a reliable measure of SRT, particularly when repeated testing 

(and hence, multiple test lists) is warranted. 

Proposed here is a method for future evaluation of this normalisation 

process, which aligns with the methods used in existing international MSTs 

(i.e., Hochmuth et al., 2012; Ozimek et al., 2010). A large sample of normal-

hearing participants (n = 10-20) should assess a small sample of lists (i.e. five) 
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at two different SNRs that approximate the “pair of compromise” (i.e. p1 = .19 

and p2 = .81). This method estimates the list-specific SRT and slope in a quick 

and efficient manner using an adaptive procedure (see Brand & Kollmeier, 

2002, for further details). A comparison of the predicted and measured post-

normalisation data, specifically the test-specific specific slope, will be 

necessary to confirm the efficacy of the adjustments made in this project. A 

comparison of the inter-list and inter-subject standard deviations of Lmid 

measures would indicate the test re-test reliability of the lists; if the inter-list 

measure is smaller than the inter-subject measure—that is, the differences 

between lists is smaller than between subjects—the lists may be used inter-

changeably (Dietz, 2014; Houben et al., 2014). On the whole, one can expect 

post-normalisation parameters to show some departure from these predicted 

values—in particular, the distribution of list-specific slopes in constant (± 

0.0%/dB) and babble (0.1%/dB) noise.  These values will naturally be subject 

to novel sources of variation, such as between-subjects differences. Measured 

test-specific slopes in this post-normalisation phase will provide reference 

values for the published version of the auditory-alone UCAMST. 

 

9.6.2 Word normalisation vs. fragment normalisation 

An important goal for follow-on work is to validate the “word 

normalisation” method employed in this project. In brief, word normalisation 
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involved averaging performance across all realisations of each word (n = 10) 

to establish word-specific intelligibility functions. However, this approach 

negated the effect of context on word difficulty. This was not a challenge 

encountered by published MSTs, as each word realisation of the word mapped 

onto a single file fragment (i.e., Wagener et al., 2003). If, indeed, context had 

an effect on word difficulty, the post-normalisation distribution of word-

specific Lmid measures will not reduce to match the predicted value. The result 

will be a measured test-specific slope that is lower than the predicted 

equivalent. If this occurs, “fragment normalisation” should be considered. One 

drawback of this approach, however, is that it disregards the fact that the audio 

components that comprise a single word may map onto more than one file 

fragment. For example, the audio of the word “small” in “those small toys” 

maps onto two fragments: ‘those_s____’ and ‘_mall_toys’. If the former 

fragment required a level decrease, while the latter fragment required a level 

increase, an unnatural “level jump” would result at the edited transition (“s-

mall”). Fragment normalisation should therefore be piloted prior to its full 

implementation. 

9.6.3 Adjustment limit 

The adjustment limit used in this project may also be worthy of future 

consideration. A ± 3 dB limit was selected as it represented the limit used in 

the majority of published MSTs, which have confirmed the naturalness of this 
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limit (i.e., Dietz, 2014; Hochmuth et al., 2012; Houben et al., 2014; Ozimek et 

al., 2012). The Danish version, on the other hand, used a more relaxed limit of  

± 4 dB (Wagener et al., 2003). According to Ozimek et al. (2010), the larger 

adjustment limit used in the Danish version resulted in equal predicted and 

measured post-normalisation test-specific slopes (both 13.2%/dB). This is 

because a more conservative adjustment limit will result in a failure to align 

the word-specific SRTs with the pre-normalisation mean SRT, as evident in 

published MSTs which used a ± 3 dB limit (i.e., Hochmuth et al., 2012; 

Ozimek et al., 2010; Puglisi et al., 2014). In Study 2, there were a large 

proportion of words that exceeded the adjustment limit in both constant (14%) 

and babble (41%) noise conditions. If a ± 4 dB limit was applied, however, the 

proportion of words exceeding this limit is greatly reduced in the babble 

condition (22%), and slightly reduced in the constant noise condition (12%). 

This would likely increase the test-specific slope, to a greater extent in the 

babble condition. However, care should be taken when applying the 

adjustment limit; one that is too liberal may cause an unnatural level jump 

between words, particularly if consecutive words are adjusted in opposite 

directions (i.e. one increased in presentation level, one decreased in 

presentation level). Nonetheless, as a means of increasing the sensitivity of the 

test, incorporation of a ± 4 dB limit could be fruitfully investigated by future 

research. Based on the limit used in this project and by published MSTs (i.e., 

Dietz, 2014; Hochmuth et al., 2012; Houben et al., 2014; Ozimek et al., 2010; 
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Puglisi et al., 2014),  it is tentatively suggested that measured post-

normalisation test-specific slopes will not equate to the same level of 

sensitivity indicated by the predicted values. 

9.6.4 Piloting with hearing-impaired individuals  

In addition to participants with normal hearing, the auditory-alone 

UCAMST should also be assessed by individuals with hearing impairment. 

The rationale for this is to establish reference criteria by which normal hearing 

and hearing impairment can be categorised. This should be carried out in both 

noise types independently as, due to the differences in Lmid observed here and 

in previous work (Peters et al., 1998; Wagener & Brand, 2005), babble noise 

will likely require poorer performance to merit concern.  

 

9.7 Conclusion 

Speech audiometry is an important component of the audiological test 

battery, providing information essential to both the diagnosis and rehabilitation 

of hearing loss. The UCAMST presents numerous advantages over the 

traditionally used method of speech audiometry: it is automatic, easy to 

administer, uses higher validity sentence stimuli, and has the potential to 

generate an unlimited repertoire of speech materials. The uniform format of 

the MST also allows for comparability across languages. Before the UCAMST 

can be incorporated into clinical and research use, two studies were warranted 
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to validate and generate materials for auditory-visual and auditory-alone 

testing. 

In Study 1, subjective ratings of judder noticeability were obtained 

which, combined with an objective measure of judder severity, generated a 

pool of sentences with minimal noticeable judder from which materials for 

auditory-visual testing can be drawn. In practice, minimising the 

“noticeability” of judder is crucial to ensuring the video component of the 

UCAMST appears natural and without noticeable distractions. The average 

pixel difference value had a large effect on rating score, thus may be of utility 

in predicting noticeable judder in future work. 

Study 2 involved the normalisation of the auditory-alone UCAMST to 

ensure equal difficulty of test materials in both constant speech-shaped noise 

and six-talker babble. The predicted post-normalisation test-specific slopes are 

comparable with the measured equivalents of published international MSTs, 

with the exception of the babble noise condition; therefore, further 

development of this condition, in the form of a larger sample size, should be 

considered. Additionally, follow-on work should validate the adjustments 

made here to ensure predicted post-normalisation slope values align with the 

measured post-normalisations values.  

In sum, the current project constituted the second instalment in a series 

of projects that will ultimately result in the inclusion of the UCAMST into the 
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UCAST platform, which comprises a battery of audiological speech tests for 

use in NZ clinical and research contexts (O’Beirne et al., 2012). 
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Information Sheet 

 

 

 
Full Project Title: Naturalness and Normalisation of the UC Auditory-
Visual Matrix Sentence Test. 
Principal Researcher: Amber McClelland, MAud student (2nd year) 
 Department of Communication Disorders 
Research Supervisor: Associate Professor Greg O’Beirne 
 Department of Communication Disorders 
 
Associate Supervisor:      Dr. Donal Sinex, Senior Lecturer 
                                                 Department of Communication Disorders    
 
This study is part of a project to produce an auditory-visual speech test in NZ 
English to supplement the information gathered from other tests typically 
used in audiology. The study contains three parts. Part one of this project 
aims to assess how natural the sentences used in this test are. Parts two and 
three will assess the difficulty of the sentences used in this test.  
 
The test will take place at the University of Canterbury (either in the 
Audiology clinics of the Department of Communication Disorders, or the 
Audiology laboratory in Rutherford 801). 
 
To be eligible to participate, you must:  
-be 18 years of age or older 
-be a native NZ English speaker 
-have normal hearing 
-have no chronic dexterity issues 
 
A quick hearing check will be undertaken first to determine whether you are 
able to participate. You will be asked for a history of your ear health and 
hearing, which ethnic group you belong to, and your ears will be examined. 
You will then have a hearing check (if you have not provided an audiologist-
completed audiogram dated within six months), and I will inform you of the 
results. If you would like me to, I can write a letter summarising the results if 



 

135 

 

you would like to follow up on this with your GP or an audiologist. In the 
event of an unexpected diagnosis of a hearing loss, a full audiological 
assessment will be offered at the University of Canterbury Speech and 
Hearing Clinic free of charge. If you choose to follow up with your GP, this will 
be at your own expense. If a conductive hearing loss were to be identified 
during the hearing check, you will receive a $10 fuel voucher for your time. 
 
In part one you will watch video of short sentences being read in quiet. In 
some of the clips, there are noticeable edits that will cause the image to “judder”, 

while others will appear smooth with no noticeable edits. At the end of each 
sentence you are to select how much judder you perceived that sentence to 
have, from "no noticeable judder" to "highly noticeable judder", on the 
sliding scale provided. Part one should take no more than 1 hour, and will be 
completed after the hearing check. 
 
Parts two and three will be completed in two independent sessions. In both 
of these parts, you will hear short sentences being read in noise. The words 
will change in loudness and may at times be difficult for you to hear. After 
each sentence has been read, you are to choose the sentence you heard by 
selecting the words on a screen. Part two should take no longer than 2 hours. 
Part three will have fewer sentences to appraise than part two and should 
take no longer than 1 hour.  
 
This study is being carried out as part of a Masters of Audiology. The 
information I obtain from you will be used in further development of this test 
so that it may be used as a diagnostic tool.  
 
I am happy to answer any queries you may have. My phone and email details 
are provided in case you have any questions at a later date. In recognition of 
the time and effort involved on your behalf, you will receive an honorarium 
of $30, as well as a free hearing check. 
 
I have provided a consent form for you to sign prior to participating in this 
study.  
 
Signing this indicates your understanding that the data collected in this study 
will not be anonymous, but it will be confidential, and only viewed by people 
directly involved in this study (those listed at the top of the first page). 
Participation is voluntary and you have the right to withdraw at any stage 
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without penalty. If you withdraw, I will remove all of the information relating 
to you. 
 
The project has been reviewed and approved by the University of Canterbury 
Human Ethics Committee. 
 
For your own reference, please take this form away with you. 
 
With thanks, 

 
Amber McClelland 
2nd year MAud Student 
Department of Communication Disorders 
University of Canterbury 
Email: amber.mcclelland@pg.canterbury.ac.nz 
Phone: 021 0677 364 
 
Greg O'Beirne, PhD 
Primary research supervisor & Associate Professor  
in Audiology  
Department of Communication Disorders 
University of Canterbury 
Private Bag 4800, Christchurch 8140, New Zealand 
Email: gregory.obeirne@canterbury.ac.nz 
Phone: +64 3 364 2987 ext. 7085  
  
 

Alternatively, if you have any complaints, please contact the Chair of the 
University of Canterbury Human ethics committee, Private Bag 4800, 
Christchurch (human-ethics@canterbury.ac.nz), phone: +64 3 364 2987. 

 
 

 

 

 

 

Donal Sinex, PhD 
Secondary research supervisor & Senior 
Lecturer in Audiology  
Department of Communication Disorders 
University of Canterbury 
Private Bag 4800, Christchurch 8140, New 
Zealand 
Email: donal.sinex@canterbury.ac.nz 
Phone: +64 3 364 2987 ext. 7851 
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Full Project Title:  Naturalness and Normalisation of the UC Auditory-Visual Matrix 
Sentence Test. 
 
I have read and understand the Information Sheet. 
 
I, __________________________________________ agree to participate in this 
project according to the conditions in the Information Sheet. I will be given a copy 
of Information Sheet and Consent Form to keep. 
 
The researcher has agreed not to reveal the participant’s identity and personal 
details if information about this project is published or presented in any public 
form.   
 
I agree that research data gathered in this study may be published and used in 
future studies. I provide consent for this publication and the re-use of the data 
with the understanding that my name or other identifying information will not 
be used. 
 
I understand that participation is voluntary and I may withdraw at any time 
without penalty. Withdrawal of participation will also include the withdrawal of 
any information I have provided should this remain practically achievable.  
 
I understand that all data collected for the study will be kept in locked and secure 
facilities and/or in password protected electronic form and will be destroyed after 
five years.  
 
I understand the risks associated with taking part and how they will be managed.  
 
I understand that I can contact the researcher or supervisor for further 
information. If I have any complaints, I can contact the Chair of the University of 
Canterbury Human Ethics Committee, Private Bag 4800, Christchurch (human-
ethics@canterbury.ac.nz)  
 
I would like to receive a report on the findings of the study at the conclusion of the 
study (please tick one):             
 

Consent Form for Persons Participating in 
Research Studies 
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Yes □                              No  □ 
 
If yes, please provide a contact email and/or postal address below: 
 
............................................................................................................................ 
 
By signing below, I agree to participate in this research project. 
 
Signature                                                                                                  Date 
 
………………………………........................ ..............………………… 
 
 
Note: All parties signing the Consent Form must date their own signature. Please 
return the consent form to the researcher before you actively participate in this 
research.  
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Appendix B 

 

 

 Test lists for constant noise 

 Test lists for babble noise 
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Constant noise sentence lists 
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Babble noise sentence lists  
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